pmap.c revision 195949
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 195949 2009-07-29 19:38:33Z kib $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#define PMAP_DIAGNOSTIC
107
108#include "opt_cpu.h"
109#include "opt_pmap.h"
110#include "opt_msgbuf.h"
111#include "opt_smp.h"
112#include "opt_xbox.h"
113
114#include <sys/param.h>
115#include <sys/systm.h>
116#include <sys/kernel.h>
117#include <sys/ktr.h>
118#include <sys/lock.h>
119#include <sys/malloc.h>
120#include <sys/mman.h>
121#include <sys/msgbuf.h>
122#include <sys/mutex.h>
123#include <sys/proc.h>
124#include <sys/sf_buf.h>
125#include <sys/sx.h>
126#include <sys/vmmeter.h>
127#include <sys/sched.h>
128#include <sys/sysctl.h>
129#ifdef SMP
130#include <sys/smp.h>
131#endif
132
133#include <vm/vm.h>
134#include <vm/vm_param.h>
135#include <vm/vm_kern.h>
136#include <vm/vm_page.h>
137#include <vm/vm_map.h>
138#include <vm/vm_object.h>
139#include <vm/vm_extern.h>
140#include <vm/vm_pageout.h>
141#include <vm/vm_pager.h>
142#include <vm/uma.h>
143
144#include <machine/cpu.h>
145#include <machine/cputypes.h>
146#include <machine/md_var.h>
147#include <machine/pcb.h>
148#include <machine/specialreg.h>
149#ifdef SMP
150#include <machine/smp.h>
151#endif
152
153#ifdef XBOX
154#include <machine/xbox.h>
155#endif
156
157#include <xen/interface/xen.h>
158#include <xen/hypervisor.h>
159#include <machine/xen/hypercall.h>
160#include <machine/xen/xenvar.h>
161#include <machine/xen/xenfunc.h>
162
163#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
164#define CPU_ENABLE_SSE
165#endif
166
167#ifndef PMAP_SHPGPERPROC
168#define PMAP_SHPGPERPROC 200
169#endif
170
171#if defined(DIAGNOSTIC)
172#define PMAP_DIAGNOSTIC
173#endif
174
175#if !defined(PMAP_DIAGNOSTIC)
176#define PMAP_INLINE	__gnu89_inline
177#else
178#define PMAP_INLINE
179#endif
180
181#define PV_STATS
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188#define	pa_index(pa)	((pa) >> PDRSHIFT)
189#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
190
191/*
192 * Get PDEs and PTEs for user/kernel address space
193 */
194#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
195#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
196
197#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
198#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
199#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
200#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
201#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
202
203#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205struct pmap kernel_pmap_store;
206LIST_HEAD(pmaplist, pmap);
207static struct pmaplist allpmaps;
208static struct mtx allpmaps_lock;
209
210vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212int pgeflag = 0;		/* PG_G or-in */
213int pseflag = 0;		/* PG_PS or-in */
214
215int nkpt;
216vm_offset_t kernel_vm_end;
217extern u_int32_t KERNend;
218
219#ifdef PAE
220pt_entry_t pg_nx;
221#if !defined(XEN)
222static uma_zone_t pdptzone;
223#endif
224#endif
225
226/*
227 * Data for the pv entry allocation mechanism
228 */
229static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
230static struct md_page *pv_table;
231static int shpgperproc = PMAP_SHPGPERPROC;
232
233struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
234int pv_maxchunks;			/* How many chunks we have KVA for */
235vm_offset_t pv_vafree;			/* freelist stored in the PTE */
236
237/*
238 * All those kernel PT submaps that BSD is so fond of
239 */
240struct sysmaps {
241	struct	mtx lock;
242	pt_entry_t *CMAP1;
243	pt_entry_t *CMAP2;
244	caddr_t	CADDR1;
245	caddr_t	CADDR2;
246};
247static struct sysmaps sysmaps_pcpu[MAXCPU];
248pt_entry_t *CMAP1 = 0;
249static pt_entry_t *CMAP3;
250caddr_t CADDR1 = 0, ptvmmap = 0;
251static caddr_t CADDR3;
252struct msgbuf *msgbufp = 0;
253
254/*
255 * Crashdump maps.
256 */
257static caddr_t crashdumpmap;
258
259static pt_entry_t *PMAP1 = 0, *PMAP2;
260static pt_entry_t *PADDR1 = 0, *PADDR2;
261#ifdef SMP
262static int PMAP1cpu;
263static int PMAP1changedcpu;
264SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
265	   &PMAP1changedcpu, 0,
266	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
267#endif
268static int PMAP1changed;
269SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
270	   &PMAP1changed, 0,
271	   "Number of times pmap_pte_quick changed PMAP1");
272static int PMAP1unchanged;
273SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
274	   &PMAP1unchanged, 0,
275	   "Number of times pmap_pte_quick didn't change PMAP1");
276static struct mtx PMAP2mutex;
277
278SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
279static int pg_ps_enabled;
280SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
281    "Are large page mappings enabled?");
282
283SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
284	"Max number of PV entries");
285SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
286	"Page share factor per proc");
287
288static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
289static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
290
291static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
292    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
293static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
294    vm_page_t *free);
295static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
296    vm_page_t *free);
297static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
298					vm_offset_t va);
299static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
300static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
301    vm_page_t m);
302
303static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
304
305static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
306static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
307static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
308static void pmap_pte_release(pt_entry_t *pte);
309static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
310static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
311static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
312static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
313
314
315#if defined(PAE) && !defined(XEN)
316static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
317#endif
318
319CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
320CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
321
322/*
323 * If you get an error here, then you set KVA_PAGES wrong! See the
324 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
325 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
326 */
327CTASSERT(KERNBASE % (1 << 24) == 0);
328
329
330
331static __inline void
332pagezero(void *page)
333{
334#if defined(I686_CPU)
335	if (cpu_class == CPUCLASS_686) {
336#if defined(CPU_ENABLE_SSE)
337		if (cpu_feature & CPUID_SSE2)
338			sse2_pagezero(page);
339		else
340#endif
341			i686_pagezero(page);
342	} else
343#endif
344		bzero(page, PAGE_SIZE);
345}
346
347void
348pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
349{
350	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
351
352	switch (type) {
353	case SH_PD_SET_VA:
354#if 0
355		xen_queue_pt_update(shadow_pdir_ma,
356				    xpmap_ptom(val & ~(PG_RW)));
357#endif
358		xen_queue_pt_update(pdir_ma,
359				    xpmap_ptom(val));
360		break;
361	case SH_PD_SET_VA_MA:
362#if 0
363		xen_queue_pt_update(shadow_pdir_ma,
364				    val & ~(PG_RW));
365#endif
366		xen_queue_pt_update(pdir_ma, val);
367		break;
368	case SH_PD_SET_VA_CLEAR:
369#if 0
370		xen_queue_pt_update(shadow_pdir_ma, 0);
371#endif
372		xen_queue_pt_update(pdir_ma, 0);
373		break;
374	}
375}
376
377/*
378 * Move the kernel virtual free pointer to the next
379 * 4MB.  This is used to help improve performance
380 * by using a large (4MB) page for much of the kernel
381 * (.text, .data, .bss)
382 */
383static vm_offset_t
384pmap_kmem_choose(vm_offset_t addr)
385{
386	vm_offset_t newaddr = addr;
387
388#ifndef DISABLE_PSE
389	if (cpu_feature & CPUID_PSE)
390		newaddr = (addr + PDRMASK) & ~PDRMASK;
391#endif
392	return newaddr;
393}
394
395/*
396 *	Bootstrap the system enough to run with virtual memory.
397 *
398 *	On the i386 this is called after mapping has already been enabled
399 *	and just syncs the pmap module with what has already been done.
400 *	[We can't call it easily with mapping off since the kernel is not
401 *	mapped with PA == VA, hence we would have to relocate every address
402 *	from the linked base (virtual) address "KERNBASE" to the actual
403 *	(physical) address starting relative to 0]
404 */
405void
406pmap_bootstrap(vm_paddr_t firstaddr)
407{
408	vm_offset_t va;
409	pt_entry_t *pte, *unused;
410	struct sysmaps *sysmaps;
411	int i;
412
413	/*
414	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
415	 * large. It should instead be correctly calculated in locore.s and
416	 * not based on 'first' (which is a physical address, not a virtual
417	 * address, for the start of unused physical memory). The kernel
418	 * page tables are NOT double mapped and thus should not be included
419	 * in this calculation.
420	 */
421	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
422	virtual_avail = pmap_kmem_choose(virtual_avail);
423
424	virtual_end = VM_MAX_KERNEL_ADDRESS;
425
426	/*
427	 * Initialize the kernel pmap (which is statically allocated).
428	 */
429	PMAP_LOCK_INIT(kernel_pmap);
430	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
431#ifdef PAE
432	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
433#endif
434	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
435	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
436	LIST_INIT(&allpmaps);
437	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
438	mtx_lock_spin(&allpmaps_lock);
439	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
440	mtx_unlock_spin(&allpmaps_lock);
441	if (nkpt == 0)
442		nkpt = NKPT;
443
444	/*
445	 * Reserve some special page table entries/VA space for temporary
446	 * mapping of pages.
447	 */
448#define	SYSMAP(c, p, v, n)	\
449	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
450
451	va = virtual_avail;
452	pte = vtopte(va);
453
454	/*
455	 * CMAP1/CMAP2 are used for zeroing and copying pages.
456	 * CMAP3 is used for the idle process page zeroing.
457	 */
458	for (i = 0; i < MAXCPU; i++) {
459		sysmaps = &sysmaps_pcpu[i];
460		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
461		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
462		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
463	}
464	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
465	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
466	PT_SET_MA(CADDR3, 0);
467
468	/*
469	 * Crashdump maps.
470	 */
471	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
472
473	/*
474	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
475	 */
476	SYSMAP(caddr_t, unused, ptvmmap, 1)
477
478	/*
479	 * msgbufp is used to map the system message buffer.
480	 */
481	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
482
483	/*
484	 * ptemap is used for pmap_pte_quick
485	 */
486	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
487	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
488
489	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
490
491	virtual_avail = va;
492	PT_SET_MA(CADDR1, 0);
493
494	/*
495	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
496	 * physical memory region that is used by the ACPI wakeup code.  This
497	 * mapping must not have PG_G set.
498	 */
499#ifndef XEN
500	/*
501	 * leave here deliberately to show that this is not supported
502	 */
503#ifdef XBOX
504	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
505	 * an early stadium, we cannot yet neatly map video memory ... :-(
506	 * Better fixes are very welcome! */
507	if (!arch_i386_is_xbox)
508#endif
509	for (i = 1; i < NKPT; i++)
510		PTD[i] = 0;
511
512	/* Initialize the PAT MSR if present. */
513	pmap_init_pat();
514
515	/* Turn on PG_G on kernel page(s) */
516	pmap_set_pg();
517#endif
518}
519
520/*
521 * Setup the PAT MSR.
522 */
523void
524pmap_init_pat(void)
525{
526	uint64_t pat_msr;
527
528	/* Bail if this CPU doesn't implement PAT. */
529	if (!(cpu_feature & CPUID_PAT))
530		return;
531
532#ifdef PAT_WORKS
533	/*
534	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
535	 * Program 4 and 5 as WP and WC.
536	 * Leave 6 and 7 as UC and UC-.
537	 */
538	pat_msr = rdmsr(MSR_PAT);
539	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
540	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
541	    PAT_VALUE(5, PAT_WRITE_COMBINING);
542#else
543	/*
544	 * Due to some Intel errata, we can only safely use the lower 4
545	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
546	 * of UC-.
547	 *
548	 *   Intel Pentium III Processor Specification Update
549	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
550	 * or Mode C Paging)
551	 *
552	 *   Intel Pentium IV  Processor Specification Update
553	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
554	 */
555	pat_msr = rdmsr(MSR_PAT);
556	pat_msr &= ~PAT_MASK(2);
557	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
558#endif
559	wrmsr(MSR_PAT, pat_msr);
560}
561
562/*
563 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
564 */
565void
566pmap_set_pg(void)
567{
568	pd_entry_t pdir;
569	pt_entry_t *pte;
570	vm_offset_t va, endva;
571	int i;
572
573	if (pgeflag == 0)
574		return;
575
576	i = KERNLOAD/NBPDR;
577	endva = KERNBASE + KERNend;
578
579	if (pseflag) {
580		va = KERNBASE + KERNLOAD;
581		while (va  < endva) {
582			pdir = kernel_pmap->pm_pdir[KPTDI+i];
583			pdir |= pgeflag;
584			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
585			invltlb();	/* Play it safe, invltlb() every time */
586			i++;
587			va += NBPDR;
588		}
589	} else {
590		va = (vm_offset_t)btext;
591		while (va < endva) {
592			pte = vtopte(va);
593			if (*pte & PG_V)
594				*pte |= pgeflag;
595			invltlb();	/* Play it safe, invltlb() every time */
596			va += PAGE_SIZE;
597		}
598	}
599}
600
601/*
602 * Initialize a vm_page's machine-dependent fields.
603 */
604void
605pmap_page_init(vm_page_t m)
606{
607
608	TAILQ_INIT(&m->md.pv_list);
609	m->md.pat_mode = PAT_WRITE_BACK;
610}
611
612#if defined(PAE) && !defined(XEN)
613static void *
614pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
615{
616
617	/* Inform UMA that this allocator uses kernel_map/object. */
618	*flags = UMA_SLAB_KERNEL;
619	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
620	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
621}
622#endif
623
624/*
625 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
626 * Requirements:
627 *  - Must deal with pages in order to ensure that none of the PG_* bits
628 *    are ever set, PG_V in particular.
629 *  - Assumes we can write to ptes without pte_store() atomic ops, even
630 *    on PAE systems.  This should be ok.
631 *  - Assumes nothing will ever test these addresses for 0 to indicate
632 *    no mapping instead of correctly checking PG_V.
633 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
634 * Because PG_V is never set, there can be no mappings to invalidate.
635 */
636static int ptelist_count = 0;
637static vm_offset_t
638pmap_ptelist_alloc(vm_offset_t *head)
639{
640	vm_offset_t va;
641	vm_offset_t *phead = (vm_offset_t *)*head;
642
643	if (ptelist_count == 0) {
644		printf("out of memory!!!!!!\n");
645		return (0);	/* Out of memory */
646	}
647	ptelist_count--;
648	va = phead[ptelist_count];
649	return (va);
650}
651
652static void
653pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
654{
655	vm_offset_t *phead = (vm_offset_t *)*head;
656
657	phead[ptelist_count++] = va;
658}
659
660static void
661pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
662{
663	int i, nstackpages;
664	vm_offset_t va;
665	vm_page_t m;
666
667	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
668	for (i = 0; i < nstackpages; i++) {
669		va = (vm_offset_t)base + i * PAGE_SIZE;
670		m = vm_page_alloc(NULL, i,
671		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
672		    VM_ALLOC_ZERO);
673		pmap_qenter(va, &m, 1);
674	}
675
676	*head = (vm_offset_t)base;
677	for (i = npages - 1; i >= nstackpages; i--) {
678		va = (vm_offset_t)base + i * PAGE_SIZE;
679		pmap_ptelist_free(head, va);
680	}
681}
682
683
684/*
685 *	Initialize the pmap module.
686 *	Called by vm_init, to initialize any structures that the pmap
687 *	system needs to map virtual memory.
688 */
689void
690pmap_init(void)
691{
692	vm_page_t mpte;
693	vm_size_t s;
694	int i, pv_npg;
695
696	/*
697	 * Initialize the vm page array entries for the kernel pmap's
698	 * page table pages.
699	 */
700	for (i = 0; i < nkpt; i++) {
701		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
702		KASSERT(mpte >= vm_page_array &&
703		    mpte < &vm_page_array[vm_page_array_size],
704		    ("pmap_init: page table page is out of range"));
705		mpte->pindex = i + KPTDI;
706		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
707	}
708
709        /*
710	 * Initialize the address space (zone) for the pv entries.  Set a
711	 * high water mark so that the system can recover from excessive
712	 * numbers of pv entries.
713	 */
714	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
715	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
716	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
717	pv_entry_max = roundup(pv_entry_max, _NPCPV);
718	pv_entry_high_water = 9 * (pv_entry_max / 10);
719
720	/*
721	 * Are large page mappings enabled?
722	 */
723	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
724
725	/*
726	 * Calculate the size of the pv head table for superpages.
727	 */
728	for (i = 0; phys_avail[i + 1]; i += 2);
729	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
730
731	/*
732	 * Allocate memory for the pv head table for superpages.
733	 */
734	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
735	s = round_page(s);
736	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
737	for (i = 0; i < pv_npg; i++)
738		TAILQ_INIT(&pv_table[i].pv_list);
739
740	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
741	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
742	    PAGE_SIZE * pv_maxchunks);
743	if (pv_chunkbase == NULL)
744		panic("pmap_init: not enough kvm for pv chunks");
745	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
746#if defined(PAE) && !defined(XEN)
747	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
748	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
749	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
750	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
751#endif
752}
753
754
755/***************************************************
756 * Low level helper routines.....
757 ***************************************************/
758
759/*
760 * Determine the appropriate bits to set in a PTE or PDE for a specified
761 * caching mode.
762 */
763int
764pmap_cache_bits(int mode, boolean_t is_pde)
765{
766	int pat_flag, pat_index, cache_bits;
767
768	/* The PAT bit is different for PTE's and PDE's. */
769	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
770
771	/* If we don't support PAT, map extended modes to older ones. */
772	if (!(cpu_feature & CPUID_PAT)) {
773		switch (mode) {
774		case PAT_UNCACHEABLE:
775		case PAT_WRITE_THROUGH:
776		case PAT_WRITE_BACK:
777			break;
778		case PAT_UNCACHED:
779		case PAT_WRITE_COMBINING:
780		case PAT_WRITE_PROTECTED:
781			mode = PAT_UNCACHEABLE;
782			break;
783		}
784	}
785
786	/* Map the caching mode to a PAT index. */
787	switch (mode) {
788#ifdef PAT_WORKS
789	case PAT_UNCACHEABLE:
790		pat_index = 3;
791		break;
792	case PAT_WRITE_THROUGH:
793		pat_index = 1;
794		break;
795	case PAT_WRITE_BACK:
796		pat_index = 0;
797		break;
798	case PAT_UNCACHED:
799		pat_index = 2;
800		break;
801	case PAT_WRITE_COMBINING:
802		pat_index = 5;
803		break;
804	case PAT_WRITE_PROTECTED:
805		pat_index = 4;
806		break;
807#else
808	case PAT_UNCACHED:
809	case PAT_UNCACHEABLE:
810	case PAT_WRITE_PROTECTED:
811		pat_index = 3;
812		break;
813	case PAT_WRITE_THROUGH:
814		pat_index = 1;
815		break;
816	case PAT_WRITE_BACK:
817		pat_index = 0;
818		break;
819	case PAT_WRITE_COMBINING:
820		pat_index = 2;
821		break;
822#endif
823	default:
824		panic("Unknown caching mode %d\n", mode);
825	}
826
827	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
828	cache_bits = 0;
829	if (pat_index & 0x4)
830		cache_bits |= pat_flag;
831	if (pat_index & 0x2)
832		cache_bits |= PG_NC_PCD;
833	if (pat_index & 0x1)
834		cache_bits |= PG_NC_PWT;
835	return (cache_bits);
836}
837#ifdef SMP
838/*
839 * For SMP, these functions have to use the IPI mechanism for coherence.
840 *
841 * N.B.: Before calling any of the following TLB invalidation functions,
842 * the calling processor must ensure that all stores updating a non-
843 * kernel page table are globally performed.  Otherwise, another
844 * processor could cache an old, pre-update entry without being
845 * invalidated.  This can happen one of two ways: (1) The pmap becomes
846 * active on another processor after its pm_active field is checked by
847 * one of the following functions but before a store updating the page
848 * table is globally performed. (2) The pmap becomes active on another
849 * processor before its pm_active field is checked but due to
850 * speculative loads one of the following functions stills reads the
851 * pmap as inactive on the other processor.
852 *
853 * The kernel page table is exempt because its pm_active field is
854 * immutable.  The kernel page table is always active on every
855 * processor.
856 */
857void
858pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
859{
860	u_int cpumask;
861	u_int other_cpus;
862
863	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
864	    pmap, va);
865
866	sched_pin();
867	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
868		invlpg(va);
869		smp_invlpg(va);
870	} else {
871		cpumask = PCPU_GET(cpumask);
872		other_cpus = PCPU_GET(other_cpus);
873		if (pmap->pm_active & cpumask)
874			invlpg(va);
875		if (pmap->pm_active & other_cpus)
876			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
877	}
878	sched_unpin();
879	PT_UPDATES_FLUSH();
880}
881
882void
883pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
884{
885	u_int cpumask;
886	u_int other_cpus;
887	vm_offset_t addr;
888
889	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
890	    pmap, sva, eva);
891
892	sched_pin();
893	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
894		for (addr = sva; addr < eva; addr += PAGE_SIZE)
895			invlpg(addr);
896		smp_invlpg_range(sva, eva);
897	} else {
898		cpumask = PCPU_GET(cpumask);
899		other_cpus = PCPU_GET(other_cpus);
900		if (pmap->pm_active & cpumask)
901			for (addr = sva; addr < eva; addr += PAGE_SIZE)
902				invlpg(addr);
903		if (pmap->pm_active & other_cpus)
904			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
905			    sva, eva);
906	}
907	sched_unpin();
908	PT_UPDATES_FLUSH();
909}
910
911void
912pmap_invalidate_all(pmap_t pmap)
913{
914	u_int cpumask;
915	u_int other_cpus;
916
917	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
918
919	sched_pin();
920	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
921		invltlb();
922		smp_invltlb();
923	} else {
924		cpumask = PCPU_GET(cpumask);
925		other_cpus = PCPU_GET(other_cpus);
926		if (pmap->pm_active & cpumask)
927			invltlb();
928		if (pmap->pm_active & other_cpus)
929			smp_masked_invltlb(pmap->pm_active & other_cpus);
930	}
931	sched_unpin();
932}
933
934void
935pmap_invalidate_cache(void)
936{
937
938	sched_pin();
939	wbinvd();
940	smp_cache_flush();
941	sched_unpin();
942}
943#else /* !SMP */
944/*
945 * Normal, non-SMP, 486+ invalidation functions.
946 * We inline these within pmap.c for speed.
947 */
948PMAP_INLINE void
949pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
950{
951	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
952	    pmap, va);
953
954	if (pmap == kernel_pmap || pmap->pm_active)
955		invlpg(va);
956	PT_UPDATES_FLUSH();
957}
958
959PMAP_INLINE void
960pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
961{
962	vm_offset_t addr;
963
964	if (eva - sva > PAGE_SIZE)
965		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
966		    pmap, sva, eva);
967
968	if (pmap == kernel_pmap || pmap->pm_active)
969		for (addr = sva; addr < eva; addr += PAGE_SIZE)
970			invlpg(addr);
971	PT_UPDATES_FLUSH();
972}
973
974PMAP_INLINE void
975pmap_invalidate_all(pmap_t pmap)
976{
977
978	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
979
980	if (pmap == kernel_pmap || pmap->pm_active)
981		invltlb();
982}
983
984PMAP_INLINE void
985pmap_invalidate_cache(void)
986{
987
988	wbinvd();
989}
990#endif /* !SMP */
991
992void
993pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
994{
995
996	KASSERT((sva & PAGE_MASK) == 0,
997	    ("pmap_invalidate_cache_range: sva not page-aligned"));
998	KASSERT((eva & PAGE_MASK) == 0,
999	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1000
1001	if (cpu_feature & CPUID_SS)
1002		; /* If "Self Snoop" is supported, do nothing. */
1003	else if (cpu_feature & CPUID_CLFSH) {
1004
1005		/*
1006		 * Otherwise, do per-cache line flush.  Use the mfence
1007		 * instruction to insure that previous stores are
1008		 * included in the write-back.  The processor
1009		 * propagates flush to other processors in the cache
1010		 * coherence domain.
1011		 */
1012		mfence();
1013		for (; eva < sva; eva += cpu_clflush_line_size)
1014			clflush(eva);
1015		mfence();
1016	} else {
1017
1018		/*
1019		 * No targeted cache flush methods are supported by CPU,
1020		 * globally invalidate cache as a last resort.
1021		 */
1022		pmap_invalidate_cache();
1023	}
1024}
1025
1026/*
1027 * Are we current address space or kernel?  N.B. We return FALSE when
1028 * a pmap's page table is in use because a kernel thread is borrowing
1029 * it.  The borrowed page table can change spontaneously, making any
1030 * dependence on its continued use subject to a race condition.
1031 */
1032static __inline int
1033pmap_is_current(pmap_t pmap)
1034{
1035
1036	return (pmap == kernel_pmap ||
1037	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1038		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1039}
1040
1041/*
1042 * If the given pmap is not the current or kernel pmap, the returned pte must
1043 * be released by passing it to pmap_pte_release().
1044 */
1045pt_entry_t *
1046pmap_pte(pmap_t pmap, vm_offset_t va)
1047{
1048	pd_entry_t newpf;
1049	pd_entry_t *pde;
1050
1051	pde = pmap_pde(pmap, va);
1052	if (*pde & PG_PS)
1053		return (pde);
1054	if (*pde != 0) {
1055		/* are we current address space or kernel? */
1056		if (pmap_is_current(pmap))
1057			return (vtopte(va));
1058		mtx_lock(&PMAP2mutex);
1059		newpf = *pde & PG_FRAME;
1060		if ((*PMAP2 & PG_FRAME) != newpf) {
1061			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1062			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1063			    pmap, va, (*PMAP2 & 0xffffffff));
1064		}
1065
1066		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1067	}
1068	return (0);
1069}
1070
1071/*
1072 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1073 * being NULL.
1074 */
1075static __inline void
1076pmap_pte_release(pt_entry_t *pte)
1077{
1078
1079	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1080		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1081		    *PMAP2);
1082		PT_SET_VA(PMAP2, 0, TRUE);
1083		mtx_unlock(&PMAP2mutex);
1084	}
1085}
1086
1087static __inline void
1088invlcaddr(void *caddr)
1089{
1090
1091	invlpg((u_int)caddr);
1092	PT_UPDATES_FLUSH();
1093}
1094
1095/*
1096 * Super fast pmap_pte routine best used when scanning
1097 * the pv lists.  This eliminates many coarse-grained
1098 * invltlb calls.  Note that many of the pv list
1099 * scans are across different pmaps.  It is very wasteful
1100 * to do an entire invltlb for checking a single mapping.
1101 *
1102 * If the given pmap is not the current pmap, vm_page_queue_mtx
1103 * must be held and curthread pinned to a CPU.
1104 */
1105static pt_entry_t *
1106pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1107{
1108	pd_entry_t newpf;
1109	pd_entry_t *pde;
1110
1111	pde = pmap_pde(pmap, va);
1112	if (*pde & PG_PS)
1113		return (pde);
1114	if (*pde != 0) {
1115		/* are we current address space or kernel? */
1116		if (pmap_is_current(pmap))
1117			return (vtopte(va));
1118		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1119		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1120		newpf = *pde & PG_FRAME;
1121		if ((*PMAP1 & PG_FRAME) != newpf) {
1122			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1123			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1124			    pmap, va, (u_long)*PMAP1);
1125
1126#ifdef SMP
1127			PMAP1cpu = PCPU_GET(cpuid);
1128#endif
1129			PMAP1changed++;
1130		} else
1131#ifdef SMP
1132		if (PMAP1cpu != PCPU_GET(cpuid)) {
1133			PMAP1cpu = PCPU_GET(cpuid);
1134			invlcaddr(PADDR1);
1135			PMAP1changedcpu++;
1136		} else
1137#endif
1138			PMAP1unchanged++;
1139		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1140	}
1141	return (0);
1142}
1143
1144/*
1145 *	Routine:	pmap_extract
1146 *	Function:
1147 *		Extract the physical page address associated
1148 *		with the given map/virtual_address pair.
1149 */
1150vm_paddr_t
1151pmap_extract(pmap_t pmap, vm_offset_t va)
1152{
1153	vm_paddr_t rtval;
1154	pt_entry_t *pte;
1155	pd_entry_t pde;
1156	pt_entry_t pteval;
1157
1158	rtval = 0;
1159	PMAP_LOCK(pmap);
1160	pde = pmap->pm_pdir[va >> PDRSHIFT];
1161	if (pde != 0) {
1162		if ((pde & PG_PS) != 0) {
1163			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1164			PMAP_UNLOCK(pmap);
1165			return rtval;
1166		}
1167		pte = pmap_pte(pmap, va);
1168		pteval = *pte ? xpmap_mtop(*pte) : 0;
1169		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1170		pmap_pte_release(pte);
1171	}
1172	PMAP_UNLOCK(pmap);
1173	return (rtval);
1174}
1175
1176/*
1177 *	Routine:	pmap_extract_ma
1178 *	Function:
1179 *		Like pmap_extract, but returns machine address
1180 */
1181vm_paddr_t
1182pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1183{
1184	vm_paddr_t rtval;
1185	pt_entry_t *pte;
1186	pd_entry_t pde;
1187
1188	rtval = 0;
1189	PMAP_LOCK(pmap);
1190	pde = pmap->pm_pdir[va >> PDRSHIFT];
1191	if (pde != 0) {
1192		if ((pde & PG_PS) != 0) {
1193			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1194			PMAP_UNLOCK(pmap);
1195			return rtval;
1196		}
1197		pte = pmap_pte(pmap, va);
1198		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1199		pmap_pte_release(pte);
1200	}
1201	PMAP_UNLOCK(pmap);
1202	return (rtval);
1203}
1204
1205/*
1206 *	Routine:	pmap_extract_and_hold
1207 *	Function:
1208 *		Atomically extract and hold the physical page
1209 *		with the given pmap and virtual address pair
1210 *		if that mapping permits the given protection.
1211 */
1212vm_page_t
1213pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1214{
1215	pd_entry_t pde;
1216	pt_entry_t pte;
1217	vm_page_t m;
1218
1219	m = NULL;
1220	vm_page_lock_queues();
1221	PMAP_LOCK(pmap);
1222	pde = PT_GET(pmap_pde(pmap, va));
1223	if (pde != 0) {
1224		if (pde & PG_PS) {
1225			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1226				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1227				    (va & PDRMASK));
1228				vm_page_hold(m);
1229			}
1230		} else {
1231			sched_pin();
1232			pte = PT_GET(pmap_pte_quick(pmap, va));
1233			if (*PMAP1)
1234				PT_SET_MA(PADDR1, 0);
1235			if ((pte & PG_V) &&
1236			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1237				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1238				vm_page_hold(m);
1239			}
1240			sched_unpin();
1241		}
1242	}
1243	vm_page_unlock_queues();
1244	PMAP_UNLOCK(pmap);
1245	return (m);
1246}
1247
1248/***************************************************
1249 * Low level mapping routines.....
1250 ***************************************************/
1251
1252/*
1253 * Add a wired page to the kva.
1254 * Note: not SMP coherent.
1255 */
1256void
1257pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1258{
1259	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1260}
1261
1262void
1263pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1264{
1265	pt_entry_t *pte;
1266
1267	pte = vtopte(va);
1268	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1269}
1270
1271
1272static __inline void
1273pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1274{
1275	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1276}
1277
1278/*
1279 * Remove a page from the kernel pagetables.
1280 * Note: not SMP coherent.
1281 */
1282PMAP_INLINE void
1283pmap_kremove(vm_offset_t va)
1284{
1285	pt_entry_t *pte;
1286
1287	pte = vtopte(va);
1288	PT_CLEAR_VA(pte, FALSE);
1289}
1290
1291/*
1292 *	Used to map a range of physical addresses into kernel
1293 *	virtual address space.
1294 *
1295 *	The value passed in '*virt' is a suggested virtual address for
1296 *	the mapping. Architectures which can support a direct-mapped
1297 *	physical to virtual region can return the appropriate address
1298 *	within that region, leaving '*virt' unchanged. Other
1299 *	architectures should map the pages starting at '*virt' and
1300 *	update '*virt' with the first usable address after the mapped
1301 *	region.
1302 */
1303vm_offset_t
1304pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1305{
1306	vm_offset_t va, sva;
1307
1308	va = sva = *virt;
1309	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1310	    va, start, end, prot);
1311	while (start < end) {
1312		pmap_kenter(va, start);
1313		va += PAGE_SIZE;
1314		start += PAGE_SIZE;
1315	}
1316	pmap_invalidate_range(kernel_pmap, sva, va);
1317	*virt = va;
1318	return (sva);
1319}
1320
1321
1322/*
1323 * Add a list of wired pages to the kva
1324 * this routine is only used for temporary
1325 * kernel mappings that do not need to have
1326 * page modification or references recorded.
1327 * Note that old mappings are simply written
1328 * over.  The page *must* be wired.
1329 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1330 */
1331void
1332pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1333{
1334	pt_entry_t *endpte, *pte;
1335	vm_paddr_t pa;
1336	vm_offset_t va = sva;
1337	int mclcount = 0;
1338	multicall_entry_t mcl[16];
1339	multicall_entry_t *mclp = mcl;
1340	int error;
1341
1342	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1343	pte = vtopte(sva);
1344	endpte = pte + count;
1345	while (pte < endpte) {
1346		pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1347
1348		mclp->op = __HYPERVISOR_update_va_mapping;
1349		mclp->args[0] = va;
1350		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1351		mclp->args[2] = (uint32_t)(pa >> 32);
1352		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1353
1354		va += PAGE_SIZE;
1355		pte++;
1356		ma++;
1357		mclp++;
1358		mclcount++;
1359		if (mclcount == 16) {
1360			error = HYPERVISOR_multicall(mcl, mclcount);
1361			mclp = mcl;
1362			mclcount = 0;
1363			KASSERT(error == 0, ("bad multicall %d", error));
1364		}
1365	}
1366	if (mclcount) {
1367		error = HYPERVISOR_multicall(mcl, mclcount);
1368		KASSERT(error == 0, ("bad multicall %d", error));
1369	}
1370
1371#ifdef INVARIANTS
1372	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1373		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1374#endif
1375}
1376
1377
1378/*
1379 * This routine tears out page mappings from the
1380 * kernel -- it is meant only for temporary mappings.
1381 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1382 */
1383void
1384pmap_qremove(vm_offset_t sva, int count)
1385{
1386	vm_offset_t va;
1387
1388	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1389	va = sva;
1390	vm_page_lock_queues();
1391	critical_enter();
1392	while (count-- > 0) {
1393		pmap_kremove(va);
1394		va += PAGE_SIZE;
1395	}
1396	pmap_invalidate_range(kernel_pmap, sva, va);
1397	critical_exit();
1398	vm_page_unlock_queues();
1399}
1400
1401/***************************************************
1402 * Page table page management routines.....
1403 ***************************************************/
1404static __inline void
1405pmap_free_zero_pages(vm_page_t free)
1406{
1407	vm_page_t m;
1408
1409	while (free != NULL) {
1410		m = free;
1411		free = m->right;
1412		vm_page_free_zero(m);
1413	}
1414}
1415
1416/*
1417 * This routine unholds page table pages, and if the hold count
1418 * drops to zero, then it decrements the wire count.
1419 */
1420static __inline int
1421pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1422{
1423
1424	--m->wire_count;
1425	if (m->wire_count == 0)
1426		return _pmap_unwire_pte_hold(pmap, m, free);
1427	else
1428		return 0;
1429}
1430
1431static int
1432_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1433{
1434	vm_offset_t pteva;
1435
1436	PT_UPDATES_FLUSH();
1437	/*
1438	 * unmap the page table page
1439	 */
1440	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1441	/*
1442	 * page *might* contain residual mapping :-/
1443	 */
1444	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1445	pmap_zero_page(m);
1446	--pmap->pm_stats.resident_count;
1447
1448	/*
1449	 * This is a release store so that the ordinary store unmapping
1450	 * the page table page is globally performed before TLB shoot-
1451	 * down is begun.
1452	 */
1453	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1454
1455	/*
1456	 * Do an invltlb to make the invalidated mapping
1457	 * take effect immediately.
1458	 */
1459	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1460	pmap_invalidate_page(pmap, pteva);
1461
1462	/*
1463	 * Put page on a list so that it is released after
1464	 * *ALL* TLB shootdown is done
1465	 */
1466	m->right = *free;
1467	*free = m;
1468
1469	return 1;
1470}
1471
1472/*
1473 * After removing a page table entry, this routine is used to
1474 * conditionally free the page, and manage the hold/wire counts.
1475 */
1476static int
1477pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1478{
1479	pd_entry_t ptepde;
1480	vm_page_t mpte;
1481
1482	if (va >= VM_MAXUSER_ADDRESS)
1483		return 0;
1484	ptepde = PT_GET(pmap_pde(pmap, va));
1485	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1486	return pmap_unwire_pte_hold(pmap, mpte, free);
1487}
1488
1489void
1490pmap_pinit0(pmap_t pmap)
1491{
1492
1493	PMAP_LOCK_INIT(pmap);
1494	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1495#ifdef PAE
1496	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1497#endif
1498	pmap->pm_active = 0;
1499	PCPU_SET(curpmap, pmap);
1500	TAILQ_INIT(&pmap->pm_pvchunk);
1501	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1502	mtx_lock_spin(&allpmaps_lock);
1503	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1504	mtx_unlock_spin(&allpmaps_lock);
1505}
1506
1507/*
1508 * Initialize a preallocated and zeroed pmap structure,
1509 * such as one in a vmspace structure.
1510 */
1511int
1512pmap_pinit(pmap_t pmap)
1513{
1514	vm_page_t m, ptdpg[NPGPTD + 1];
1515	int npgptd = NPGPTD + 1;
1516	static int color;
1517	int i;
1518
1519	PMAP_LOCK_INIT(pmap);
1520
1521	/*
1522	 * No need to allocate page table space yet but we do need a valid
1523	 * page directory table.
1524	 */
1525	if (pmap->pm_pdir == NULL) {
1526		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1527		    NBPTD);
1528		if (pmap->pm_pdir == NULL) {
1529			PMAP_LOCK_DESTROY(pmap);
1530			return (0);
1531		}
1532#if defined(XEN) && defined(PAE)
1533		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1534#endif
1535
1536#if defined(PAE) && !defined(XEN)
1537		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1538		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1539		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1540		    ("pmap_pinit: pdpt misaligned"));
1541		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1542		    ("pmap_pinit: pdpt above 4g"));
1543#endif
1544	}
1545
1546	/*
1547	 * allocate the page directory page(s)
1548	 */
1549	for (i = 0; i < npgptd;) {
1550		m = vm_page_alloc(NULL, color++,
1551		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1552		    VM_ALLOC_ZERO);
1553		if (m == NULL)
1554			VM_WAIT;
1555		else {
1556			ptdpg[i++] = m;
1557		}
1558	}
1559	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1560	for (i = 0; i < NPGPTD; i++) {
1561		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1562			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1563	}
1564
1565	mtx_lock_spin(&allpmaps_lock);
1566	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1567	mtx_unlock_spin(&allpmaps_lock);
1568	/* Wire in kernel global address entries. */
1569
1570	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1571#ifdef PAE
1572#ifdef XEN
1573	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1574	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1575		bzero(pmap->pm_pdpt, PAGE_SIZE);
1576#endif
1577	for (i = 0; i < NPGPTD; i++) {
1578		vm_paddr_t ma;
1579
1580		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1581		pmap->pm_pdpt[i] = ma | PG_V;
1582
1583	}
1584#endif
1585#ifdef XEN
1586	for (i = 0; i < NPGPTD; i++) {
1587		pt_entry_t *pd;
1588		vm_paddr_t ma;
1589
1590		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1591		pd = pmap->pm_pdir + (i * NPDEPG);
1592		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1593#if 0
1594		xen_pgd_pin(ma);
1595#endif
1596	}
1597
1598#ifdef PAE
1599	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1600#endif
1601	vm_page_lock_queues();
1602	xen_flush_queue();
1603	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
1604	for (i = 0; i < NPGPTD; i++) {
1605		vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1606		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1607	}
1608	xen_flush_queue();
1609	vm_page_unlock_queues();
1610#endif
1611	pmap->pm_active = 0;
1612	TAILQ_INIT(&pmap->pm_pvchunk);
1613	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1614
1615	return (1);
1616}
1617
1618/*
1619 * this routine is called if the page table page is not
1620 * mapped correctly.
1621 */
1622static vm_page_t
1623_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1624{
1625	vm_paddr_t ptema;
1626	vm_page_t m;
1627
1628	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1629	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1630	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1631
1632	/*
1633	 * Allocate a page table page.
1634	 */
1635	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1636	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1637		if (flags & M_WAITOK) {
1638			PMAP_UNLOCK(pmap);
1639			vm_page_unlock_queues();
1640			VM_WAIT;
1641			vm_page_lock_queues();
1642			PMAP_LOCK(pmap);
1643		}
1644
1645		/*
1646		 * Indicate the need to retry.  While waiting, the page table
1647		 * page may have been allocated.
1648		 */
1649		return (NULL);
1650	}
1651	if ((m->flags & PG_ZERO) == 0)
1652		pmap_zero_page(m);
1653
1654	/*
1655	 * Map the pagetable page into the process address space, if
1656	 * it isn't already there.
1657	 */
1658	pmap->pm_stats.resident_count++;
1659
1660	ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1661	xen_pt_pin(ptema);
1662	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1663		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1664
1665	KASSERT(pmap->pm_pdir[ptepindex],
1666	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1667	return (m);
1668}
1669
1670static vm_page_t
1671pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1672{
1673	unsigned ptepindex;
1674	pd_entry_t ptema;
1675	vm_page_t m;
1676
1677	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1678	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1679	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1680
1681	/*
1682	 * Calculate pagetable page index
1683	 */
1684	ptepindex = va >> PDRSHIFT;
1685retry:
1686	/*
1687	 * Get the page directory entry
1688	 */
1689	ptema = pmap->pm_pdir[ptepindex];
1690
1691	/*
1692	 * This supports switching from a 4MB page to a
1693	 * normal 4K page.
1694	 */
1695	if (ptema & PG_PS) {
1696		/*
1697		 * XXX
1698		 */
1699		pmap->pm_pdir[ptepindex] = 0;
1700		ptema = 0;
1701		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1702		pmap_invalidate_all(kernel_pmap);
1703	}
1704
1705	/*
1706	 * If the page table page is mapped, we just increment the
1707	 * hold count, and activate it.
1708	 */
1709	if (ptema & PG_V) {
1710		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1711		m->wire_count++;
1712	} else {
1713		/*
1714		 * Here if the pte page isn't mapped, or if it has
1715		 * been deallocated.
1716		 */
1717		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1718		    pmap, va, flags);
1719		m = _pmap_allocpte(pmap, ptepindex, flags);
1720		if (m == NULL && (flags & M_WAITOK))
1721			goto retry;
1722
1723		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1724	}
1725	return (m);
1726}
1727
1728
1729/***************************************************
1730* Pmap allocation/deallocation routines.
1731 ***************************************************/
1732
1733#ifdef SMP
1734/*
1735 * Deal with a SMP shootdown of other users of the pmap that we are
1736 * trying to dispose of.  This can be a bit hairy.
1737 */
1738static u_int *lazymask;
1739static u_int lazyptd;
1740static volatile u_int lazywait;
1741
1742void pmap_lazyfix_action(void);
1743
1744void
1745pmap_lazyfix_action(void)
1746{
1747	u_int mymask = PCPU_GET(cpumask);
1748
1749#ifdef COUNT_IPIS
1750	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1751#endif
1752	if (rcr3() == lazyptd)
1753		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1754	atomic_clear_int(lazymask, mymask);
1755	atomic_store_rel_int(&lazywait, 1);
1756}
1757
1758static void
1759pmap_lazyfix_self(u_int mymask)
1760{
1761
1762	if (rcr3() == lazyptd)
1763		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1764	atomic_clear_int(lazymask, mymask);
1765}
1766
1767
1768static void
1769pmap_lazyfix(pmap_t pmap)
1770{
1771	u_int mymask;
1772	u_int mask;
1773	u_int spins;
1774
1775	while ((mask = pmap->pm_active) != 0) {
1776		spins = 50000000;
1777		mask = mask & -mask;	/* Find least significant set bit */
1778		mtx_lock_spin(&smp_ipi_mtx);
1779#ifdef PAE
1780		lazyptd = vtophys(pmap->pm_pdpt);
1781#else
1782		lazyptd = vtophys(pmap->pm_pdir);
1783#endif
1784		mymask = PCPU_GET(cpumask);
1785		if (mask == mymask) {
1786			lazymask = &pmap->pm_active;
1787			pmap_lazyfix_self(mymask);
1788		} else {
1789			atomic_store_rel_int((u_int *)&lazymask,
1790			    (u_int)&pmap->pm_active);
1791			atomic_store_rel_int(&lazywait, 0);
1792			ipi_selected(mask, IPI_LAZYPMAP);
1793			while (lazywait == 0) {
1794				ia32_pause();
1795				if (--spins == 0)
1796					break;
1797			}
1798		}
1799		mtx_unlock_spin(&smp_ipi_mtx);
1800		if (spins == 0)
1801			printf("pmap_lazyfix: spun for 50000000\n");
1802	}
1803}
1804
1805#else	/* SMP */
1806
1807/*
1808 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1809 * unlikely to have to even execute this code, including the fact
1810 * that the cleanup is deferred until the parent does a wait(2), which
1811 * means that another userland process has run.
1812 */
1813static void
1814pmap_lazyfix(pmap_t pmap)
1815{
1816	u_int cr3;
1817
1818	cr3 = vtophys(pmap->pm_pdir);
1819	if (cr3 == rcr3()) {
1820		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1821		pmap->pm_active &= ~(PCPU_GET(cpumask));
1822	}
1823}
1824#endif	/* SMP */
1825
1826/*
1827 * Release any resources held by the given physical map.
1828 * Called when a pmap initialized by pmap_pinit is being released.
1829 * Should only be called if the map contains no valid mappings.
1830 */
1831void
1832pmap_release(pmap_t pmap)
1833{
1834	vm_page_t m, ptdpg[2*NPGPTD+1];
1835	vm_paddr_t ma;
1836	int i;
1837#ifdef XEN
1838#ifdef PAE
1839	int npgptd = NPGPTD + 1;
1840#else
1841	int npgptd = NPGPTD;
1842#endif
1843#else
1844	int npgptd = NPGPTD;
1845#endif
1846	KASSERT(pmap->pm_stats.resident_count == 0,
1847	    ("pmap_release: pmap resident count %ld != 0",
1848	    pmap->pm_stats.resident_count));
1849	PT_UPDATES_FLUSH();
1850
1851	pmap_lazyfix(pmap);
1852	mtx_lock_spin(&allpmaps_lock);
1853	LIST_REMOVE(pmap, pm_list);
1854	mtx_unlock_spin(&allpmaps_lock);
1855
1856	for (i = 0; i < NPGPTD; i++)
1857		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1858	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1859#if defined(PAE) && defined(XEN)
1860	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1861#endif
1862
1863	for (i = 0; i < npgptd; i++) {
1864		m = ptdpg[i];
1865		ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1866		/* unpinning L1 and L2 treated the same */
1867                xen_pgd_unpin(ma);
1868#ifdef PAE
1869		KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
1870		    ("pmap_release: got wrong ptd page"));
1871#endif
1872		m->wire_count--;
1873		atomic_subtract_int(&cnt.v_wire_count, 1);
1874		vm_page_free(m);
1875	}
1876	PMAP_LOCK_DESTROY(pmap);
1877}
1878
1879static int
1880kvm_size(SYSCTL_HANDLER_ARGS)
1881{
1882	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1883
1884	return sysctl_handle_long(oidp, &ksize, 0, req);
1885}
1886SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1887    0, 0, kvm_size, "IU", "Size of KVM");
1888
1889static int
1890kvm_free(SYSCTL_HANDLER_ARGS)
1891{
1892	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1893
1894	return sysctl_handle_long(oidp, &kfree, 0, req);
1895}
1896SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1897    0, 0, kvm_free, "IU", "Amount of KVM free");
1898
1899/*
1900 * grow the number of kernel page table entries, if needed
1901 */
1902void
1903pmap_growkernel(vm_offset_t addr)
1904{
1905	struct pmap *pmap;
1906	vm_paddr_t ptppaddr;
1907	vm_page_t nkpg;
1908	pd_entry_t newpdir;
1909
1910	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1911	if (kernel_vm_end == 0) {
1912		kernel_vm_end = KERNBASE;
1913		nkpt = 0;
1914		while (pdir_pde(PTD, kernel_vm_end)) {
1915			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1916			nkpt++;
1917			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1918				kernel_vm_end = kernel_map->max_offset;
1919				break;
1920			}
1921		}
1922	}
1923	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1924	if (addr - 1 >= kernel_map->max_offset)
1925		addr = kernel_map->max_offset;
1926	while (kernel_vm_end < addr) {
1927		if (pdir_pde(PTD, kernel_vm_end)) {
1928			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1929			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1930				kernel_vm_end = kernel_map->max_offset;
1931				break;
1932			}
1933			continue;
1934		}
1935
1936		/*
1937		 * This index is bogus, but out of the way
1938		 */
1939		nkpg = vm_page_alloc(NULL, nkpt,
1940		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1941		if (!nkpg)
1942			panic("pmap_growkernel: no memory to grow kernel");
1943
1944		nkpt++;
1945
1946		pmap_zero_page(nkpg);
1947		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1948		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1949		vm_page_lock_queues();
1950		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1951		mtx_lock_spin(&allpmaps_lock);
1952		LIST_FOREACH(pmap, &allpmaps, pm_list)
1953			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1954
1955		mtx_unlock_spin(&allpmaps_lock);
1956		vm_page_unlock_queues();
1957
1958		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1959		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1960			kernel_vm_end = kernel_map->max_offset;
1961			break;
1962		}
1963	}
1964}
1965
1966
1967/***************************************************
1968 * page management routines.
1969 ***************************************************/
1970
1971CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1972CTASSERT(_NPCM == 11);
1973
1974static __inline struct pv_chunk *
1975pv_to_chunk(pv_entry_t pv)
1976{
1977
1978	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1979}
1980
1981#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1982
1983#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1984#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1985
1986static uint32_t pc_freemask[11] = {
1987	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1988	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1989	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1990	PC_FREE0_9, PC_FREE10
1991};
1992
1993SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1994	"Current number of pv entries");
1995
1996#ifdef PV_STATS
1997static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1998
1999SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2000	"Current number of pv entry chunks");
2001SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2002	"Current number of pv entry chunks allocated");
2003SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2004	"Current number of pv entry chunks frees");
2005SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2006	"Number of times tried to get a chunk page but failed.");
2007
2008static long pv_entry_frees, pv_entry_allocs;
2009static int pv_entry_spare;
2010
2011SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2012	"Current number of pv entry frees");
2013SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2014	"Current number of pv entry allocs");
2015SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2016	"Current number of spare pv entries");
2017
2018static int pmap_collect_inactive, pmap_collect_active;
2019
2020SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2021	"Current number times pmap_collect called on inactive queue");
2022SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2023	"Current number times pmap_collect called on active queue");
2024#endif
2025
2026/*
2027 * We are in a serious low memory condition.  Resort to
2028 * drastic measures to free some pages so we can allocate
2029 * another pv entry chunk.  This is normally called to
2030 * unmap inactive pages, and if necessary, active pages.
2031 */
2032static void
2033pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2034{
2035	pmap_t pmap;
2036	pt_entry_t *pte, tpte;
2037	pv_entry_t next_pv, pv;
2038	vm_offset_t va;
2039	vm_page_t m, free;
2040
2041	sched_pin();
2042	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2043		if (m->hold_count || m->busy)
2044			continue;
2045		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2046			va = pv->pv_va;
2047			pmap = PV_PMAP(pv);
2048			/* Avoid deadlock and lock recursion. */
2049			if (pmap > locked_pmap)
2050				PMAP_LOCK(pmap);
2051			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2052				continue;
2053			pmap->pm_stats.resident_count--;
2054			pte = pmap_pte_quick(pmap, va);
2055			tpte = pte_load_clear(pte);
2056			KASSERT((tpte & PG_W) == 0,
2057			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2058			if (tpte & PG_A)
2059				vm_page_flag_set(m, PG_REFERENCED);
2060			if (tpte & PG_M) {
2061				KASSERT((tpte & PG_RW),
2062	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
2063				    va, (uintmax_t)tpte));
2064				vm_page_dirty(m);
2065			}
2066			free = NULL;
2067			pmap_unuse_pt(pmap, va, &free);
2068			pmap_invalidate_page(pmap, va);
2069			pmap_free_zero_pages(free);
2070			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2071			if (TAILQ_EMPTY(&m->md.pv_list))
2072				vm_page_flag_clear(m, PG_WRITEABLE);
2073			free_pv_entry(pmap, pv);
2074			if (pmap != locked_pmap)
2075				PMAP_UNLOCK(pmap);
2076		}
2077	}
2078	sched_unpin();
2079}
2080
2081
2082/*
2083 * free the pv_entry back to the free list
2084 */
2085static void
2086free_pv_entry(pmap_t pmap, pv_entry_t pv)
2087{
2088	vm_page_t m;
2089	struct pv_chunk *pc;
2090	int idx, field, bit;
2091
2092	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2093	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2094	PV_STAT(pv_entry_frees++);
2095	PV_STAT(pv_entry_spare++);
2096	pv_entry_count--;
2097	pc = pv_to_chunk(pv);
2098	idx = pv - &pc->pc_pventry[0];
2099	field = idx / 32;
2100	bit = idx % 32;
2101	pc->pc_map[field] |= 1ul << bit;
2102	/* move to head of list */
2103	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2104	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2105	for (idx = 0; idx < _NPCM; idx++)
2106		if (pc->pc_map[idx] != pc_freemask[idx])
2107			return;
2108	PV_STAT(pv_entry_spare -= _NPCPV);
2109	PV_STAT(pc_chunk_count--);
2110	PV_STAT(pc_chunk_frees++);
2111	/* entire chunk is free, return it */
2112	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2113	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2114	pmap_qremove((vm_offset_t)pc, 1);
2115	vm_page_unwire(m, 0);
2116	vm_page_free(m);
2117	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2118}
2119
2120/*
2121 * get a new pv_entry, allocating a block from the system
2122 * when needed.
2123 */
2124static pv_entry_t
2125get_pv_entry(pmap_t pmap, int try)
2126{
2127	static const struct timeval printinterval = { 60, 0 };
2128	static struct timeval lastprint;
2129	static vm_pindex_t colour;
2130	struct vpgqueues *pq;
2131	int bit, field;
2132	pv_entry_t pv;
2133	struct pv_chunk *pc;
2134	vm_page_t m;
2135
2136	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2137	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2138	PV_STAT(pv_entry_allocs++);
2139	pv_entry_count++;
2140	if (pv_entry_count > pv_entry_high_water)
2141		if (ratecheck(&lastprint, &printinterval))
2142			printf("Approaching the limit on PV entries, consider "
2143			    "increasing either the vm.pmap.shpgperproc or the "
2144			    "vm.pmap.pv_entry_max tunable.\n");
2145	pq = NULL;
2146retry:
2147	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2148	if (pc != NULL) {
2149		for (field = 0; field < _NPCM; field++) {
2150			if (pc->pc_map[field]) {
2151				bit = bsfl(pc->pc_map[field]);
2152				break;
2153			}
2154		}
2155		if (field < _NPCM) {
2156			pv = &pc->pc_pventry[field * 32 + bit];
2157			pc->pc_map[field] &= ~(1ul << bit);
2158			/* If this was the last item, move it to tail */
2159			for (field = 0; field < _NPCM; field++)
2160				if (pc->pc_map[field] != 0) {
2161					PV_STAT(pv_entry_spare--);
2162					return (pv);	/* not full, return */
2163				}
2164			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2165			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2166			PV_STAT(pv_entry_spare--);
2167			return (pv);
2168		}
2169	}
2170	/*
2171	 * Access to the ptelist "pv_vafree" is synchronized by the page
2172	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2173	 * remain non-empty until pmap_ptelist_alloc() completes.
2174	 */
2175	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2176	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2177	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2178		if (try) {
2179			pv_entry_count--;
2180			PV_STAT(pc_chunk_tryfail++);
2181			return (NULL);
2182		}
2183		/*
2184		 * Reclaim pv entries: At first, destroy mappings to
2185		 * inactive pages.  After that, if a pv chunk entry
2186		 * is still needed, destroy mappings to active pages.
2187		 */
2188		if (pq == NULL) {
2189			PV_STAT(pmap_collect_inactive++);
2190			pq = &vm_page_queues[PQ_INACTIVE];
2191		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2192			PV_STAT(pmap_collect_active++);
2193			pq = &vm_page_queues[PQ_ACTIVE];
2194		} else
2195			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2196		pmap_collect(pmap, pq);
2197		goto retry;
2198	}
2199	PV_STAT(pc_chunk_count++);
2200	PV_STAT(pc_chunk_allocs++);
2201	colour++;
2202	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2203	pmap_qenter((vm_offset_t)pc, &m, 1);
2204	if ((m->flags & PG_ZERO) == 0)
2205		pagezero(pc);
2206	pc->pc_pmap = pmap;
2207	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2208	for (field = 1; field < _NPCM; field++)
2209		pc->pc_map[field] = pc_freemask[field];
2210	pv = &pc->pc_pventry[0];
2211	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2212	PV_STAT(pv_entry_spare += _NPCPV - 1);
2213	return (pv);
2214}
2215
2216static void
2217pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2218{
2219	pv_entry_t pv;
2220
2221	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2222	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2223	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2224		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
2225			break;
2226	}
2227	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
2228	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2229	if (TAILQ_EMPTY(&m->md.pv_list))
2230		vm_page_flag_clear(m, PG_WRITEABLE);
2231	free_pv_entry(pmap, pv);
2232}
2233
2234/*
2235 * Create a pv entry for page at pa for
2236 * (pmap, va).
2237 */
2238static void
2239pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2240{
2241	pv_entry_t pv;
2242
2243	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2244	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2245	pv = get_pv_entry(pmap, FALSE);
2246	pv->pv_va = va;
2247	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2248}
2249
2250/*
2251 * Conditionally create a pv entry.
2252 */
2253static boolean_t
2254pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2255{
2256	pv_entry_t pv;
2257
2258	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2259	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2260	if (pv_entry_count < pv_entry_high_water &&
2261	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2262		pv->pv_va = va;
2263		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2264		return (TRUE);
2265	} else
2266		return (FALSE);
2267}
2268
2269/*
2270 * pmap_remove_pte: do the things to unmap a page in a process
2271 */
2272static int
2273pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2274{
2275	pt_entry_t oldpte;
2276	vm_page_t m;
2277
2278	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2279	    pmap, (u_long)*ptq, va);
2280
2281	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2282	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2283	oldpte = *ptq;
2284	PT_SET_VA_MA(ptq, 0, TRUE);
2285	if (oldpte & PG_W)
2286		pmap->pm_stats.wired_count -= 1;
2287	/*
2288	 * Machines that don't support invlpg, also don't support
2289	 * PG_G.
2290	 */
2291	if (oldpte & PG_G)
2292		pmap_invalidate_page(kernel_pmap, va);
2293	pmap->pm_stats.resident_count -= 1;
2294	/*
2295	 * XXX This is not strictly correctly, but somewhere along the line
2296	 * we are losing the managed bit on some pages. It is unclear to me
2297	 * why, but I think the most likely explanation is that xen's writable
2298	 * page table implementation doesn't respect the unused bits.
2299	 */
2300	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2301		) {
2302		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2303
2304		if (!(oldpte & PG_MANAGED))
2305			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2306
2307		if (oldpte & PG_M) {
2308			KASSERT((oldpte & PG_RW),
2309	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
2310			    va, (uintmax_t)oldpte));
2311			vm_page_dirty(m);
2312		}
2313		if (oldpte & PG_A)
2314			vm_page_flag_set(m, PG_REFERENCED);
2315		pmap_remove_entry(pmap, m, va);
2316	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2317		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2318
2319	return (pmap_unuse_pt(pmap, va, free));
2320}
2321
2322/*
2323 * Remove a single page from a process address space
2324 */
2325static void
2326pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2327{
2328	pt_entry_t *pte;
2329
2330	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2331	    pmap, va);
2332
2333	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2334	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2335	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2336	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2337		return;
2338	pmap_remove_pte(pmap, pte, va, free);
2339	pmap_invalidate_page(pmap, va);
2340	if (*PMAP1)
2341		PT_SET_MA(PADDR1, 0);
2342
2343}
2344
2345/*
2346 *	Remove the given range of addresses from the specified map.
2347 *
2348 *	It is assumed that the start and end are properly
2349 *	rounded to the page size.
2350 */
2351void
2352pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2353{
2354	vm_offset_t pdnxt;
2355	pd_entry_t ptpaddr;
2356	pt_entry_t *pte;
2357	vm_page_t free = NULL;
2358	int anyvalid;
2359
2360	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2361	    pmap, sva, eva);
2362
2363	/*
2364	 * Perform an unsynchronized read.  This is, however, safe.
2365	 */
2366	if (pmap->pm_stats.resident_count == 0)
2367		return;
2368
2369	anyvalid = 0;
2370
2371	vm_page_lock_queues();
2372	sched_pin();
2373	PMAP_LOCK(pmap);
2374
2375	/*
2376	 * special handling of removing one page.  a very
2377	 * common operation and easy to short circuit some
2378	 * code.
2379	 */
2380	if ((sva + PAGE_SIZE == eva) &&
2381	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2382		pmap_remove_page(pmap, sva, &free);
2383		goto out;
2384	}
2385
2386	for (; sva < eva; sva = pdnxt) {
2387		unsigned pdirindex;
2388
2389		/*
2390		 * Calculate index for next page table.
2391		 */
2392		pdnxt = (sva + NBPDR) & ~PDRMASK;
2393		if (pmap->pm_stats.resident_count == 0)
2394			break;
2395
2396		pdirindex = sva >> PDRSHIFT;
2397		ptpaddr = pmap->pm_pdir[pdirindex];
2398
2399		/*
2400		 * Weed out invalid mappings. Note: we assume that the page
2401		 * directory table is always allocated, and in kernel virtual.
2402		 */
2403		if (ptpaddr == 0)
2404			continue;
2405
2406		/*
2407		 * Check for large page.
2408		 */
2409		if ((ptpaddr & PG_PS) != 0) {
2410			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2411			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2412			anyvalid = 1;
2413			continue;
2414		}
2415
2416		/*
2417		 * Limit our scan to either the end of the va represented
2418		 * by the current page table page, or to the end of the
2419		 * range being removed.
2420		 */
2421		if (pdnxt > eva)
2422			pdnxt = eva;
2423
2424		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2425		    sva += PAGE_SIZE) {
2426			if ((*pte & PG_V) == 0)
2427				continue;
2428
2429			/*
2430			 * The TLB entry for a PG_G mapping is invalidated
2431			 * by pmap_remove_pte().
2432			 */
2433			if ((*pte & PG_G) == 0)
2434				anyvalid = 1;
2435			if (pmap_remove_pte(pmap, pte, sva, &free))
2436				break;
2437		}
2438	}
2439	PT_UPDATES_FLUSH();
2440	if (*PMAP1)
2441		PT_SET_VA_MA(PMAP1, 0, TRUE);
2442out:
2443	if (anyvalid)
2444		pmap_invalidate_all(pmap);
2445	sched_unpin();
2446	vm_page_unlock_queues();
2447	PMAP_UNLOCK(pmap);
2448	pmap_free_zero_pages(free);
2449}
2450
2451/*
2452 *	Routine:	pmap_remove_all
2453 *	Function:
2454 *		Removes this physical page from
2455 *		all physical maps in which it resides.
2456 *		Reflects back modify bits to the pager.
2457 *
2458 *	Notes:
2459 *		Original versions of this routine were very
2460 *		inefficient because they iteratively called
2461 *		pmap_remove (slow...)
2462 */
2463
2464void
2465pmap_remove_all(vm_page_t m)
2466{
2467	pv_entry_t pv;
2468	pmap_t pmap;
2469	pt_entry_t *pte, tpte;
2470	vm_page_t free;
2471
2472#if defined(PMAP_DIAGNOSTIC)
2473	/*
2474	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2475	 */
2476	if (m->flags & PG_FICTITIOUS) {
2477		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx",
2478		    VM_PAGE_TO_PHYS(m) & 0xffffffff);
2479	}
2480#endif
2481	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2482	sched_pin();
2483	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2484		pmap = PV_PMAP(pv);
2485		PMAP_LOCK(pmap);
2486		pmap->pm_stats.resident_count--;
2487		pte = pmap_pte_quick(pmap, pv->pv_va);
2488
2489		tpte = *pte;
2490		PT_SET_VA_MA(pte, 0, TRUE);
2491		if (tpte & PG_W)
2492			pmap->pm_stats.wired_count--;
2493		if (tpte & PG_A)
2494			vm_page_flag_set(m, PG_REFERENCED);
2495
2496		/*
2497		 * Update the vm_page_t clean and reference bits.
2498		 */
2499		if (tpte & PG_M) {
2500			KASSERT((tpte & PG_RW),
2501	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2502			    pv->pv_va, (uintmax_t)tpte));
2503			vm_page_dirty(m);
2504		}
2505		free = NULL;
2506		pmap_unuse_pt(pmap, pv->pv_va, &free);
2507		pmap_invalidate_page(pmap, pv->pv_va);
2508		pmap_free_zero_pages(free);
2509		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2510		free_pv_entry(pmap, pv);
2511		PMAP_UNLOCK(pmap);
2512	}
2513	vm_page_flag_clear(m, PG_WRITEABLE);
2514	PT_UPDATES_FLUSH();
2515	if (*PMAP1)
2516		PT_SET_MA(PADDR1, 0);
2517	sched_unpin();
2518}
2519
2520/*
2521 *	Set the physical protection on the
2522 *	specified range of this map as requested.
2523 */
2524void
2525pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2526{
2527	vm_offset_t pdnxt;
2528	pd_entry_t ptpaddr;
2529	pt_entry_t *pte;
2530	int anychanged;
2531
2532	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2533	    pmap, sva, eva, prot);
2534
2535	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2536		pmap_remove(pmap, sva, eva);
2537		return;
2538	}
2539
2540#ifdef PAE
2541	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2542	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2543		return;
2544#else
2545	if (prot & VM_PROT_WRITE)
2546		return;
2547#endif
2548
2549	anychanged = 0;
2550
2551	vm_page_lock_queues();
2552	sched_pin();
2553	PMAP_LOCK(pmap);
2554	for (; sva < eva; sva = pdnxt) {
2555		pt_entry_t obits, pbits;
2556		unsigned pdirindex;
2557
2558		pdnxt = (sva + NBPDR) & ~PDRMASK;
2559
2560		pdirindex = sva >> PDRSHIFT;
2561		ptpaddr = pmap->pm_pdir[pdirindex];
2562
2563		/*
2564		 * Weed out invalid mappings. Note: we assume that the page
2565		 * directory table is always allocated, and in kernel virtual.
2566		 */
2567		if (ptpaddr == 0)
2568			continue;
2569
2570		/*
2571		 * Check for large page.
2572		 */
2573		if ((ptpaddr & PG_PS) != 0) {
2574			if ((prot & VM_PROT_WRITE) == 0)
2575				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2576#ifdef PAE
2577			if ((prot & VM_PROT_EXECUTE) == 0)
2578				pmap->pm_pdir[pdirindex] |= pg_nx;
2579#endif
2580			anychanged = 1;
2581			continue;
2582		}
2583
2584		if (pdnxt > eva)
2585			pdnxt = eva;
2586
2587		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2588		    sva += PAGE_SIZE) {
2589			vm_page_t m;
2590
2591retry:
2592			/*
2593			 * Regardless of whether a pte is 32 or 64 bits in
2594			 * size, PG_RW, PG_A, and PG_M are among the least
2595			 * significant 32 bits.
2596			 */
2597			obits = pbits = *pte;
2598			if ((pbits & PG_V) == 0)
2599				continue;
2600			if (pbits & PG_MANAGED) {
2601				m = NULL;
2602				if (pbits & PG_A) {
2603					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
2604					vm_page_flag_set(m, PG_REFERENCED);
2605					pbits &= ~PG_A;
2606				}
2607				if ((pbits & PG_M) != 0) {
2608					if (m == NULL)
2609						m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
2610					vm_page_dirty(m);
2611				}
2612			}
2613
2614			if ((prot & VM_PROT_WRITE) == 0)
2615				pbits &= ~(PG_RW | PG_M);
2616#ifdef PAE
2617			if ((prot & VM_PROT_EXECUTE) == 0)
2618				pbits |= pg_nx;
2619#endif
2620
2621			if (pbits != obits) {
2622#ifdef XEN
2623				obits = *pte;
2624				PT_SET_VA_MA(pte, pbits, TRUE);
2625				if (*pte != pbits)
2626					goto retry;
2627#else
2628#ifdef PAE
2629				if (!atomic_cmpset_64(pte, obits, pbits))
2630					goto retry;
2631#else
2632				if (!atomic_cmpset_int((u_int *)pte, obits,
2633				    pbits))
2634					goto retry;
2635#endif
2636#endif
2637				if (obits & PG_G)
2638					pmap_invalidate_page(pmap, sva);
2639				else
2640					anychanged = 1;
2641			}
2642		}
2643	}
2644	PT_UPDATES_FLUSH();
2645	if (*PMAP1)
2646		PT_SET_VA_MA(PMAP1, 0, TRUE);
2647	if (anychanged)
2648		pmap_invalidate_all(pmap);
2649	sched_unpin();
2650	vm_page_unlock_queues();
2651	PMAP_UNLOCK(pmap);
2652}
2653
2654/*
2655 *	Insert the given physical page (p) at
2656 *	the specified virtual address (v) in the
2657 *	target physical map with the protection requested.
2658 *
2659 *	If specified, the page will be wired down, meaning
2660 *	that the related pte can not be reclaimed.
2661 *
2662 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2663 *	or lose information.  That is, this routine must actually
2664 *	insert this page into the given map NOW.
2665 */
2666void
2667pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2668    vm_prot_t prot, boolean_t wired)
2669{
2670	vm_paddr_t pa;
2671	pd_entry_t *pde;
2672	pt_entry_t *pte;
2673	vm_paddr_t opa;
2674	pt_entry_t origpte, newpte;
2675	vm_page_t mpte, om;
2676	boolean_t invlva;
2677
2678	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2679	    pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
2680	va = trunc_page(va);
2681#ifdef PMAP_DIAGNOSTIC
2682	if (va > VM_MAX_KERNEL_ADDRESS)
2683		panic("pmap_enter: toobig");
2684	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2685		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2686#endif
2687
2688	mpte = NULL;
2689
2690	vm_page_lock_queues();
2691	PMAP_LOCK(pmap);
2692	sched_pin();
2693
2694	/*
2695	 * In the case that a page table page is not
2696	 * resident, we are creating it here.
2697	 */
2698	if (va < VM_MAXUSER_ADDRESS) {
2699		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2700	}
2701#if 0 && defined(PMAP_DIAGNOSTIC)
2702	else {
2703		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2704		origpte = *pdeaddr;
2705		if ((origpte & PG_V) == 0) {
2706			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2707				pmap->pm_pdir[PTDPTDI], origpte, va);
2708		}
2709	}
2710#endif
2711
2712	pde = pmap_pde(pmap, va);
2713	if ((*pde & PG_PS) != 0)
2714		panic("pmap_enter: attempted pmap_enter on 4MB page");
2715	pte = pmap_pte_quick(pmap, va);
2716
2717	/*
2718	 * Page Directory table entry not valid, we need a new PT page
2719	 */
2720	if (pte == NULL) {
2721		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2722			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2723	}
2724
2725	pa = VM_PAGE_TO_PHYS(m);
2726	om = NULL;
2727	opa = origpte = 0;
2728
2729#if 0
2730	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2731		pte, *pte));
2732#endif
2733	origpte = *pte;
2734	if (origpte)
2735		origpte = xpmap_mtop(origpte);
2736	opa = origpte & PG_FRAME;
2737
2738	/*
2739	 * Mapping has not changed, must be protection or wiring change.
2740	 */
2741	if (origpte && (opa == pa)) {
2742		/*
2743		 * Wiring change, just update stats. We don't worry about
2744		 * wiring PT pages as they remain resident as long as there
2745		 * are valid mappings in them. Hence, if a user page is wired,
2746		 * the PT page will be also.
2747		 */
2748		if (wired && ((origpte & PG_W) == 0))
2749			pmap->pm_stats.wired_count++;
2750		else if (!wired && (origpte & PG_W))
2751			pmap->pm_stats.wired_count--;
2752
2753		/*
2754		 * Remove extra pte reference
2755		 */
2756		if (mpte)
2757			mpte->wire_count--;
2758
2759		/*
2760		 * We might be turning off write access to the page,
2761		 * so we go ahead and sense modify status.
2762		 */
2763		if (origpte & PG_MANAGED) {
2764			om = m;
2765			pa |= PG_MANAGED;
2766		}
2767		goto validate;
2768	}
2769	/*
2770	 * Mapping has changed, invalidate old range and fall through to
2771	 * handle validating new mapping.
2772	 */
2773	if (opa) {
2774		if (origpte & PG_W)
2775			pmap->pm_stats.wired_count--;
2776		if (origpte & PG_MANAGED) {
2777			om = PHYS_TO_VM_PAGE(opa);
2778			pmap_remove_entry(pmap, om, va);
2779		} else if (va < VM_MAXUSER_ADDRESS)
2780			printf("va=0x%x is unmanaged :-( \n", va);
2781
2782		if (mpte != NULL) {
2783			mpte->wire_count--;
2784			KASSERT(mpte->wire_count > 0,
2785			    ("pmap_enter: missing reference to page table page,"
2786			     " va: 0x%x", va));
2787		}
2788	} else
2789		pmap->pm_stats.resident_count++;
2790
2791	/*
2792	 * Enter on the PV list if part of our managed memory.
2793	 */
2794	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2795		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2796		    ("pmap_enter: managed mapping within the clean submap"));
2797		pmap_insert_entry(pmap, va, m);
2798		pa |= PG_MANAGED;
2799	}
2800
2801	/*
2802	 * Increment counters
2803	 */
2804	if (wired)
2805		pmap->pm_stats.wired_count++;
2806
2807validate:
2808	/*
2809	 * Now validate mapping with desired protection/wiring.
2810	 */
2811	newpte = (pt_entry_t)(pa | PG_V);
2812	if ((prot & VM_PROT_WRITE) != 0) {
2813		newpte |= PG_RW;
2814		vm_page_flag_set(m, PG_WRITEABLE);
2815	}
2816#ifdef PAE
2817	if ((prot & VM_PROT_EXECUTE) == 0)
2818		newpte |= pg_nx;
2819#endif
2820	if (wired)
2821		newpte |= PG_W;
2822	if (va < VM_MAXUSER_ADDRESS)
2823		newpte |= PG_U;
2824	if (pmap == kernel_pmap)
2825		newpte |= pgeflag;
2826
2827	critical_enter();
2828	/*
2829	 * if the mapping or permission bits are different, we need
2830	 * to update the pte.
2831	 */
2832	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2833		if (origpte) {
2834			invlva = FALSE;
2835			origpte = *pte;
2836			PT_SET_VA(pte, newpte | PG_A, FALSE);
2837			if (origpte & PG_A) {
2838				if (origpte & PG_MANAGED)
2839					vm_page_flag_set(om, PG_REFERENCED);
2840				if (opa != VM_PAGE_TO_PHYS(m))
2841					invlva = TRUE;
2842#ifdef PAE
2843				if ((origpte & PG_NX) == 0 &&
2844				    (newpte & PG_NX) != 0)
2845					invlva = TRUE;
2846#endif
2847			}
2848			if (origpte & PG_M) {
2849				KASSERT((origpte & PG_RW),
2850	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2851				    va, (uintmax_t)origpte));
2852				if ((origpte & PG_MANAGED) != 0)
2853					vm_page_dirty(om);
2854				if ((prot & VM_PROT_WRITE) == 0)
2855					invlva = TRUE;
2856			}
2857			if (invlva)
2858				pmap_invalidate_page(pmap, va);
2859		} else{
2860			PT_SET_VA(pte, newpte | PG_A, FALSE);
2861		}
2862
2863	}
2864	PT_UPDATES_FLUSH();
2865	critical_exit();
2866	if (*PMAP1)
2867		PT_SET_VA_MA(PMAP1, 0, TRUE);
2868	sched_unpin();
2869	vm_page_unlock_queues();
2870	PMAP_UNLOCK(pmap);
2871}
2872
2873/*
2874 * Maps a sequence of resident pages belonging to the same object.
2875 * The sequence begins with the given page m_start.  This page is
2876 * mapped at the given virtual address start.  Each subsequent page is
2877 * mapped at a virtual address that is offset from start by the same
2878 * amount as the page is offset from m_start within the object.  The
2879 * last page in the sequence is the page with the largest offset from
2880 * m_start that can be mapped at a virtual address less than the given
2881 * virtual address end.  Not every virtual page between start and end
2882 * is mapped; only those for which a resident page exists with the
2883 * corresponding offset from m_start are mapped.
2884 */
2885void
2886pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2887    vm_page_t m_start, vm_prot_t prot)
2888{
2889	vm_page_t m, mpte;
2890	vm_pindex_t diff, psize;
2891	multicall_entry_t mcl[16];
2892	multicall_entry_t *mclp = mcl;
2893	int error, count = 0;
2894
2895	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2896	psize = atop(end - start);
2897
2898	mpte = NULL;
2899	m = m_start;
2900	PMAP_LOCK(pmap);
2901	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2902		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2903		    prot, mpte);
2904		m = TAILQ_NEXT(m, listq);
2905		if (count == 16) {
2906			error = HYPERVISOR_multicall(mcl, count);
2907			KASSERT(error == 0, ("bad multicall %d", error));
2908			mclp = mcl;
2909			count = 0;
2910		}
2911	}
2912	if (count) {
2913		error = HYPERVISOR_multicall(mcl, count);
2914		KASSERT(error == 0, ("bad multicall %d", error));
2915	}
2916
2917	PMAP_UNLOCK(pmap);
2918}
2919
2920/*
2921 * this code makes some *MAJOR* assumptions:
2922 * 1. Current pmap & pmap exists.
2923 * 2. Not wired.
2924 * 3. Read access.
2925 * 4. No page table pages.
2926 * but is *MUCH* faster than pmap_enter...
2927 */
2928
2929void
2930pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2931{
2932	multicall_entry_t mcl, *mclp;
2933	int count = 0;
2934	mclp = &mcl;
2935
2936	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2937	    pmap, va, m, prot);
2938
2939	PMAP_LOCK(pmap);
2940	(void) pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2941	if (count)
2942		HYPERVISOR_multicall(&mcl, count);
2943	PMAP_UNLOCK(pmap);
2944}
2945
2946#ifdef notyet
2947void
2948pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2949{
2950	int i, error, index = 0;
2951	multicall_entry_t mcl[16];
2952	multicall_entry_t *mclp = mcl;
2953
2954	PMAP_LOCK(pmap);
2955	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2956		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2957			continue;
2958
2959		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2960		if (index == 16) {
2961			error = HYPERVISOR_multicall(mcl, index);
2962			mclp = mcl;
2963			index = 0;
2964			KASSERT(error == 0, ("bad multicall %d", error));
2965		}
2966	}
2967	if (index) {
2968		error = HYPERVISOR_multicall(mcl, index);
2969		KASSERT(error == 0, ("bad multicall %d", error));
2970	}
2971
2972	PMAP_UNLOCK(pmap);
2973}
2974#endif
2975
2976static vm_page_t
2977pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2978    vm_prot_t prot, vm_page_t mpte)
2979{
2980	pt_entry_t *pte;
2981	vm_paddr_t pa;
2982	vm_page_t free;
2983	multicall_entry_t *mcl = *mclpp;
2984
2985	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2986	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2987	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2988	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2989	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2990
2991	/*
2992	 * In the case that a page table page is not
2993	 * resident, we are creating it here.
2994	 */
2995	if (va < VM_MAXUSER_ADDRESS) {
2996		unsigned ptepindex;
2997		pd_entry_t ptema;
2998
2999		/*
3000		 * Calculate pagetable page index
3001		 */
3002		ptepindex = va >> PDRSHIFT;
3003		if (mpte && (mpte->pindex == ptepindex)) {
3004			mpte->wire_count++;
3005		} else {
3006			/*
3007			 * Get the page directory entry
3008			 */
3009			ptema = pmap->pm_pdir[ptepindex];
3010
3011			/*
3012			 * If the page table page is mapped, we just increment
3013			 * the hold count, and activate it.
3014			 */
3015			if (ptema & PG_V) {
3016				if (ptema & PG_PS)
3017					panic("pmap_enter_quick: unexpected mapping into 4MB page");
3018				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
3019				mpte->wire_count++;
3020			} else {
3021				mpte = _pmap_allocpte(pmap, ptepindex,
3022				    M_NOWAIT);
3023				if (mpte == NULL)
3024					return (mpte);
3025			}
3026		}
3027	} else {
3028		mpte = NULL;
3029	}
3030
3031	/*
3032	 * This call to vtopte makes the assumption that we are
3033	 * entering the page into the current pmap.  In order to support
3034	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3035	 * But that isn't as quick as vtopte.
3036	 */
3037	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3038	pte = vtopte(va);
3039	if (*pte & PG_V) {
3040		if (mpte != NULL) {
3041			mpte->wire_count--;
3042			mpte = NULL;
3043		}
3044		return (mpte);
3045	}
3046
3047	/*
3048	 * Enter on the PV list if part of our managed memory.
3049	 */
3050	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3051	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3052		if (mpte != NULL) {
3053			free = NULL;
3054			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3055				pmap_invalidate_page(pmap, va);
3056				pmap_free_zero_pages(free);
3057			}
3058
3059			mpte = NULL;
3060		}
3061		return (mpte);
3062	}
3063
3064	/*
3065	 * Increment counters
3066	 */
3067	pmap->pm_stats.resident_count++;
3068
3069	pa = VM_PAGE_TO_PHYS(m);
3070#ifdef PAE
3071	if ((prot & VM_PROT_EXECUTE) == 0)
3072		pa |= pg_nx;
3073#endif
3074
3075#if 0
3076	/*
3077	 * Now validate mapping with RO protection
3078	 */
3079	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3080		pte_store(pte, pa | PG_V | PG_U);
3081	else
3082		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3083#else
3084	/*
3085	 * Now validate mapping with RO protection
3086	 */
3087	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3088		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3089	else
3090		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3091
3092	mcl->op = __HYPERVISOR_update_va_mapping;
3093	mcl->args[0] = va;
3094	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3095	mcl->args[2] = (uint32_t)(pa >> 32);
3096	mcl->args[3] = 0;
3097	*mclpp = mcl + 1;
3098	*count = *count + 1;
3099#endif
3100	return mpte;
3101}
3102
3103/*
3104 * Make a temporary mapping for a physical address.  This is only intended
3105 * to be used for panic dumps.
3106 */
3107void *
3108pmap_kenter_temporary(vm_paddr_t pa, int i)
3109{
3110	vm_offset_t va;
3111
3112	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3113	pmap_kenter(va, pa);
3114	invlpg(va);
3115	return ((void *)crashdumpmap);
3116}
3117
3118/*
3119 * This code maps large physical mmap regions into the
3120 * processor address space.  Note that some shortcuts
3121 * are taken, but the code works.
3122 */
3123void
3124pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3125		    vm_object_t object, vm_pindex_t pindex,
3126		    vm_size_t size)
3127{
3128	vm_page_t p;
3129
3130	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3131	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3132	    ("pmap_object_init_pt: non-device object"));
3133	if (pseflag &&
3134	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3135		int i;
3136		vm_page_t m[1];
3137		unsigned int ptepindex;
3138		int npdes;
3139		pd_entry_t ptepa;
3140
3141		PMAP_LOCK(pmap);
3142		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3143			goto out;
3144		PMAP_UNLOCK(pmap);
3145retry:
3146		p = vm_page_lookup(object, pindex);
3147		if (p != NULL) {
3148			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3149				goto retry;
3150		} else {
3151			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3152			if (p == NULL)
3153				return;
3154			m[0] = p;
3155
3156			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3157				vm_page_lock_queues();
3158				vm_page_free(p);
3159				vm_page_unlock_queues();
3160				return;
3161			}
3162
3163			p = vm_page_lookup(object, pindex);
3164			vm_page_wakeup(p);
3165		}
3166
3167		ptepa = VM_PAGE_TO_PHYS(p);
3168		if (ptepa & (NBPDR - 1))
3169			return;
3170
3171		p->valid = VM_PAGE_BITS_ALL;
3172
3173		PMAP_LOCK(pmap);
3174		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3175		npdes = size >> PDRSHIFT;
3176		critical_enter();
3177		for(i = 0; i < npdes; i++) {
3178			PD_SET_VA(pmap, ptepindex,
3179			    ptepa | PG_U | PG_M | PG_RW | PG_V | PG_PS, FALSE);
3180			ptepa += NBPDR;
3181			ptepindex += 1;
3182		}
3183		pmap_invalidate_all(pmap);
3184		critical_exit();
3185out:
3186		PMAP_UNLOCK(pmap);
3187	}
3188}
3189
3190/*
3191 *	Routine:	pmap_change_wiring
3192 *	Function:	Change the wiring attribute for a map/virtual-address
3193 *			pair.
3194 *	In/out conditions:
3195 *			The mapping must already exist in the pmap.
3196 */
3197void
3198pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3199{
3200	pt_entry_t *pte;
3201
3202	vm_page_lock_queues();
3203	PMAP_LOCK(pmap);
3204	pte = pmap_pte(pmap, va);
3205
3206	if (wired && !pmap_pte_w(pte)) {
3207		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3208		pmap->pm_stats.wired_count++;
3209	} else if (!wired && pmap_pte_w(pte)) {
3210		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3211		pmap->pm_stats.wired_count--;
3212	}
3213
3214	/*
3215	 * Wiring is not a hardware characteristic so there is no need to
3216	 * invalidate TLB.
3217	 */
3218	pmap_pte_release(pte);
3219	PMAP_UNLOCK(pmap);
3220	vm_page_unlock_queues();
3221}
3222
3223
3224
3225/*
3226 *	Copy the range specified by src_addr/len
3227 *	from the source map to the range dst_addr/len
3228 *	in the destination map.
3229 *
3230 *	This routine is only advisory and need not do anything.
3231 */
3232
3233void
3234pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3235	  vm_offset_t src_addr)
3236{
3237	vm_page_t   free;
3238	vm_offset_t addr;
3239	vm_offset_t end_addr = src_addr + len;
3240	vm_offset_t pdnxt;
3241
3242	if (dst_addr != src_addr)
3243		return;
3244
3245	if (!pmap_is_current(src_pmap)) {
3246		CTR2(KTR_PMAP,
3247		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3248		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3249
3250		return;
3251	}
3252	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3253	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3254
3255	vm_page_lock_queues();
3256	if (dst_pmap < src_pmap) {
3257		PMAP_LOCK(dst_pmap);
3258		PMAP_LOCK(src_pmap);
3259	} else {
3260		PMAP_LOCK(src_pmap);
3261		PMAP_LOCK(dst_pmap);
3262	}
3263	sched_pin();
3264	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3265		pt_entry_t *src_pte, *dst_pte;
3266		vm_page_t dstmpte, srcmpte;
3267		pd_entry_t srcptepaddr;
3268		unsigned ptepindex;
3269
3270		if (addr >= UPT_MIN_ADDRESS)
3271			panic("pmap_copy: invalid to pmap_copy page tables");
3272
3273		pdnxt = (addr + NBPDR) & ~PDRMASK;
3274		ptepindex = addr >> PDRSHIFT;
3275
3276		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3277		if (srcptepaddr == 0)
3278			continue;
3279
3280		if (srcptepaddr & PG_PS) {
3281			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3282				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3283				dst_pmap->pm_stats.resident_count +=
3284				    NBPDR / PAGE_SIZE;
3285			}
3286			continue;
3287		}
3288
3289		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3290		if (srcmpte->wire_count == 0)
3291			panic("pmap_copy: source page table page is unused");
3292
3293		if (pdnxt > end_addr)
3294			pdnxt = end_addr;
3295
3296		src_pte = vtopte(addr);
3297		while (addr < pdnxt) {
3298			pt_entry_t ptetemp;
3299			ptetemp = *src_pte;
3300			/*
3301			 * we only virtual copy managed pages
3302			 */
3303			if ((ptetemp & PG_MANAGED) != 0) {
3304				dstmpte = pmap_allocpte(dst_pmap, addr,
3305				    M_NOWAIT);
3306				if (dstmpte == NULL)
3307					break;
3308				dst_pte = pmap_pte_quick(dst_pmap, addr);
3309				if (*dst_pte == 0 &&
3310				    pmap_try_insert_pv_entry(dst_pmap, addr,
3311				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3312					/*
3313					 * Clear the wired, modified, and
3314					 * accessed (referenced) bits
3315					 * during the copy.
3316					 */
3317					KASSERT(ptetemp != 0, ("src_pte not set"));
3318					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3319					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3320					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3321						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3322					dst_pmap->pm_stats.resident_count++;
3323	 			} else {
3324					free = NULL;
3325					if (pmap_unwire_pte_hold(dst_pmap,
3326					    dstmpte, &free)) {
3327						pmap_invalidate_page(dst_pmap,
3328						    addr);
3329						pmap_free_zero_pages(free);
3330					}
3331				}
3332				if (dstmpte->wire_count >= srcmpte->wire_count)
3333					break;
3334			}
3335			addr += PAGE_SIZE;
3336			src_pte++;
3337		}
3338	}
3339	PT_UPDATES_FLUSH();
3340	sched_unpin();
3341	vm_page_unlock_queues();
3342	PMAP_UNLOCK(src_pmap);
3343	PMAP_UNLOCK(dst_pmap);
3344}
3345
3346/*
3347 *	pmap_zero_page zeros the specified hardware page by mapping
3348 *	the page into KVM and using bzero to clear its contents.
3349 */
3350void
3351pmap_zero_page(vm_page_t m)
3352{
3353	struct sysmaps *sysmaps;
3354
3355	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3356	mtx_lock(&sysmaps->lock);
3357	if (*sysmaps->CMAP2)
3358		panic("pmap_zero_page: CMAP2 busy");
3359	sched_pin();
3360	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3361	pagezero(sysmaps->CADDR2);
3362	PT_SET_MA(sysmaps->CADDR2, 0);
3363	sched_unpin();
3364	mtx_unlock(&sysmaps->lock);
3365}
3366
3367/*
3368 *	pmap_zero_page_area zeros the specified hardware page by mapping
3369 *	the page into KVM and using bzero to clear its contents.
3370 *
3371 *	off and size may not cover an area beyond a single hardware page.
3372 */
3373void
3374pmap_zero_page_area(vm_page_t m, int off, int size)
3375{
3376	struct sysmaps *sysmaps;
3377
3378	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3379	mtx_lock(&sysmaps->lock);
3380	if (*sysmaps->CMAP2)
3381		panic("pmap_zero_page: CMAP2 busy");
3382	sched_pin();
3383	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3384
3385	if (off == 0 && size == PAGE_SIZE)
3386		pagezero(sysmaps->CADDR2);
3387	else
3388		bzero((char *)sysmaps->CADDR2 + off, size);
3389	PT_SET_MA(sysmaps->CADDR2, 0);
3390	sched_unpin();
3391	mtx_unlock(&sysmaps->lock);
3392}
3393
3394/*
3395 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3396 *	the page into KVM and using bzero to clear its contents.  This
3397 *	is intended to be called from the vm_pagezero process only and
3398 *	outside of Giant.
3399 */
3400void
3401pmap_zero_page_idle(vm_page_t m)
3402{
3403
3404	if (*CMAP3)
3405		panic("pmap_zero_page: CMAP3 busy");
3406	sched_pin();
3407	PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3408	pagezero(CADDR3);
3409	PT_SET_MA(CADDR3, 0);
3410	sched_unpin();
3411}
3412
3413/*
3414 *	pmap_copy_page copies the specified (machine independent)
3415 *	page by mapping the page into virtual memory and using
3416 *	bcopy to copy the page, one machine dependent page at a
3417 *	time.
3418 */
3419void
3420pmap_copy_page(vm_page_t src, vm_page_t dst)
3421{
3422	struct sysmaps *sysmaps;
3423
3424	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3425	mtx_lock(&sysmaps->lock);
3426	if (*sysmaps->CMAP1)
3427		panic("pmap_copy_page: CMAP1 busy");
3428	if (*sysmaps->CMAP2)
3429		panic("pmap_copy_page: CMAP2 busy");
3430	sched_pin();
3431	PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
3432	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
3433	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3434	PT_SET_MA(sysmaps->CADDR1, 0);
3435	PT_SET_MA(sysmaps->CADDR2, 0);
3436	sched_unpin();
3437	mtx_unlock(&sysmaps->lock);
3438}
3439
3440/*
3441 * Returns true if the pmap's pv is one of the first
3442 * 16 pvs linked to from this page.  This count may
3443 * be changed upwards or downwards in the future; it
3444 * is only necessary that true be returned for a small
3445 * subset of pmaps for proper page aging.
3446 */
3447boolean_t
3448pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3449{
3450	pv_entry_t pv;
3451	int loops = 0;
3452
3453	if (m->flags & PG_FICTITIOUS)
3454		return (FALSE);
3455
3456	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3457	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3458		if (PV_PMAP(pv) == pmap) {
3459			return TRUE;
3460		}
3461		loops++;
3462		if (loops >= 16)
3463			break;
3464	}
3465	return (FALSE);
3466}
3467
3468/*
3469 *	pmap_page_wired_mappings:
3470 *
3471 *	Return the number of managed mappings to the given physical page
3472 *	that are wired.
3473 */
3474int
3475pmap_page_wired_mappings(vm_page_t m)
3476{
3477	pv_entry_t pv;
3478	pt_entry_t *pte;
3479	pmap_t pmap;
3480	int count;
3481
3482	count = 0;
3483	if ((m->flags & PG_FICTITIOUS) != 0)
3484		return (count);
3485	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3486	sched_pin();
3487	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3488		pmap = PV_PMAP(pv);
3489		PMAP_LOCK(pmap);
3490		pte = pmap_pte_quick(pmap, pv->pv_va);
3491		if ((*pte & PG_W) != 0)
3492			count++;
3493		PMAP_UNLOCK(pmap);
3494	}
3495	sched_unpin();
3496	return (count);
3497}
3498
3499/*
3500 * Returns TRUE if the given page is mapped individually or as part of
3501 * a 4mpage.  Otherwise, returns FALSE.
3502 */
3503boolean_t
3504pmap_page_is_mapped(vm_page_t m)
3505{
3506	struct md_page *pvh;
3507
3508	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3509		return (FALSE);
3510	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3511	if (TAILQ_EMPTY(&m->md.pv_list)) {
3512		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3513		return (!TAILQ_EMPTY(&pvh->pv_list));
3514	} else
3515		return (TRUE);
3516}
3517
3518/*
3519 * Remove all pages from specified address space
3520 * this aids process exit speeds.  Also, this code
3521 * is special cased for current process only, but
3522 * can have the more generic (and slightly slower)
3523 * mode enabled.  This is much faster than pmap_remove
3524 * in the case of running down an entire address space.
3525 */
3526void
3527pmap_remove_pages(pmap_t pmap)
3528{
3529	pt_entry_t *pte, tpte;
3530	vm_page_t m, free = NULL;
3531	pv_entry_t pv;
3532	struct pv_chunk *pc, *npc;
3533	int field, idx;
3534	int32_t bit;
3535	uint32_t inuse, bitmask;
3536	int allfree;
3537
3538	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3539
3540	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3541		printf("warning: pmap_remove_pages called with non-current pmap\n");
3542		return;
3543	}
3544	vm_page_lock_queues();
3545	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3546	PMAP_LOCK(pmap);
3547	sched_pin();
3548	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3549		allfree = 1;
3550		for (field = 0; field < _NPCM; field++) {
3551			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3552			while (inuse != 0) {
3553				bit = bsfl(inuse);
3554				bitmask = 1UL << bit;
3555				idx = field * 32 + bit;
3556				pv = &pc->pc_pventry[idx];
3557				inuse &= ~bitmask;
3558
3559				pte = vtopte(pv->pv_va);
3560				tpte = *pte ? xpmap_mtop(*pte) : 0;
3561
3562				if (tpte == 0) {
3563					printf(
3564					    "TPTE at %p  IS ZERO @ VA %08x\n",
3565					    pte, pv->pv_va);
3566					panic("bad pte");
3567				}
3568
3569/*
3570 * We cannot remove wired pages from a process' mapping at this time
3571 */
3572				if (tpte & PG_W) {
3573					allfree = 0;
3574					continue;
3575				}
3576
3577				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3578				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3579				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3580				    m, (uintmax_t)m->phys_addr,
3581				    (uintmax_t)tpte));
3582
3583				KASSERT(m < &vm_page_array[vm_page_array_size],
3584					("pmap_remove_pages: bad tpte %#jx",
3585					(uintmax_t)tpte));
3586
3587
3588				PT_CLEAR_VA(pte, FALSE);
3589
3590				/*
3591				 * Update the vm_page_t clean/reference bits.
3592				 */
3593				if (tpte & PG_M)
3594					vm_page_dirty(m);
3595
3596				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3597				if (TAILQ_EMPTY(&m->md.pv_list))
3598					vm_page_flag_clear(m, PG_WRITEABLE);
3599
3600				pmap_unuse_pt(pmap, pv->pv_va, &free);
3601
3602				/* Mark free */
3603				PV_STAT(pv_entry_frees++);
3604				PV_STAT(pv_entry_spare++);
3605				pv_entry_count--;
3606				pc->pc_map[field] |= bitmask;
3607				pmap->pm_stats.resident_count--;
3608			}
3609		}
3610		PT_UPDATES_FLUSH();
3611		if (allfree) {
3612			PV_STAT(pv_entry_spare -= _NPCPV);
3613			PV_STAT(pc_chunk_count--);
3614			PV_STAT(pc_chunk_frees++);
3615			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3616			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3617			pmap_qremove((vm_offset_t)pc, 1);
3618			vm_page_unwire(m, 0);
3619			vm_page_free(m);
3620			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3621		}
3622	}
3623	PT_UPDATES_FLUSH();
3624	if (*PMAP1)
3625		PT_SET_MA(PADDR1, 0);
3626
3627	sched_unpin();
3628	pmap_invalidate_all(pmap);
3629	vm_page_unlock_queues();
3630	PMAP_UNLOCK(pmap);
3631	pmap_free_zero_pages(free);
3632}
3633
3634/*
3635 *	pmap_is_modified:
3636 *
3637 *	Return whether or not the specified physical page was modified
3638 *	in any physical maps.
3639 */
3640boolean_t
3641pmap_is_modified(vm_page_t m)
3642{
3643	pv_entry_t pv;
3644	pt_entry_t *pte;
3645	pmap_t pmap;
3646	boolean_t rv;
3647
3648	rv = FALSE;
3649	if (m->flags & PG_FICTITIOUS)
3650		return (rv);
3651
3652	sched_pin();
3653	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3654	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3655		pmap = PV_PMAP(pv);
3656		PMAP_LOCK(pmap);
3657		pte = pmap_pte_quick(pmap, pv->pv_va);
3658		rv = (*pte & PG_M) != 0;
3659		PMAP_UNLOCK(pmap);
3660		if (rv)
3661			break;
3662	}
3663	if (*PMAP1)
3664		PT_SET_MA(PADDR1, 0);
3665	sched_unpin();
3666	return (rv);
3667}
3668
3669/*
3670 *	pmap_is_prefaultable:
3671 *
3672 *	Return whether or not the specified virtual address is elgible
3673 *	for prefault.
3674 */
3675static boolean_t
3676pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3677{
3678	pt_entry_t *pte;
3679	boolean_t rv = FALSE;
3680
3681	return (rv);
3682
3683	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3684		pte = vtopte(addr);
3685		rv = (*pte == 0);
3686	}
3687	return (rv);
3688}
3689
3690boolean_t
3691pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3692{
3693	boolean_t rv;
3694
3695	PMAP_LOCK(pmap);
3696	rv = pmap_is_prefaultable_locked(pmap, addr);
3697	PMAP_UNLOCK(pmap);
3698	return (rv);
3699}
3700
3701void
3702pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3703{
3704	int i, npages = round_page(len) >> PAGE_SHIFT;
3705	for (i = 0; i < npages; i++) {
3706		pt_entry_t *pte;
3707		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3708		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3709		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3710		pmap_pte_release(pte);
3711	}
3712}
3713
3714void
3715pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3716{
3717	int i, npages = round_page(len) >> PAGE_SHIFT;
3718	for (i = 0; i < npages; i++) {
3719		pt_entry_t *pte;
3720		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3721		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3722		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3723		pmap_pte_release(pte);
3724	}
3725}
3726
3727/*
3728 * Clear the write and modified bits in each of the given page's mappings.
3729 */
3730void
3731pmap_remove_write(vm_page_t m)
3732{
3733	pv_entry_t pv;
3734	pmap_t pmap;
3735	pt_entry_t oldpte, *pte;
3736
3737	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3738	if ((m->flags & PG_FICTITIOUS) != 0 ||
3739	    (m->flags & PG_WRITEABLE) == 0)
3740		return;
3741	sched_pin();
3742	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3743		pmap = PV_PMAP(pv);
3744		PMAP_LOCK(pmap);
3745		pte = pmap_pte_quick(pmap, pv->pv_va);
3746retry:
3747		oldpte = *pte;
3748		if ((oldpte & PG_RW) != 0) {
3749			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3750
3751			/*
3752			 * Regardless of whether a pte is 32 or 64 bits
3753			 * in size, PG_RW and PG_M are among the least
3754			 * significant 32 bits.
3755			 */
3756			PT_SET_VA_MA(pte, newpte, TRUE);
3757			if (*pte != newpte)
3758				goto retry;
3759
3760			if ((oldpte & PG_M) != 0)
3761				vm_page_dirty(m);
3762			pmap_invalidate_page(pmap, pv->pv_va);
3763		}
3764		PMAP_UNLOCK(pmap);
3765	}
3766	vm_page_flag_clear(m, PG_WRITEABLE);
3767	PT_UPDATES_FLUSH();
3768	if (*PMAP1)
3769		PT_SET_MA(PADDR1, 0);
3770	sched_unpin();
3771}
3772
3773/*
3774 *	pmap_ts_referenced:
3775 *
3776 *	Return a count of reference bits for a page, clearing those bits.
3777 *	It is not necessary for every reference bit to be cleared, but it
3778 *	is necessary that 0 only be returned when there are truly no
3779 *	reference bits set.
3780 *
3781 *	XXX: The exact number of bits to check and clear is a matter that
3782 *	should be tested and standardized at some point in the future for
3783 *	optimal aging of shared pages.
3784 */
3785int
3786pmap_ts_referenced(vm_page_t m)
3787{
3788	pv_entry_t pv, pvf, pvn;
3789	pmap_t pmap;
3790	pt_entry_t *pte;
3791	int rtval = 0;
3792
3793	if (m->flags & PG_FICTITIOUS)
3794		return (rtval);
3795	sched_pin();
3796	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3797	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3798		pvf = pv;
3799		do {
3800			pvn = TAILQ_NEXT(pv, pv_list);
3801			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3802			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3803			pmap = PV_PMAP(pv);
3804			PMAP_LOCK(pmap);
3805			pte = pmap_pte_quick(pmap, pv->pv_va);
3806			if ((*pte & PG_A) != 0) {
3807				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3808				pmap_invalidate_page(pmap, pv->pv_va);
3809				rtval++;
3810				if (rtval > 4)
3811					pvn = NULL;
3812			}
3813			PMAP_UNLOCK(pmap);
3814		} while ((pv = pvn) != NULL && pv != pvf);
3815	}
3816	PT_UPDATES_FLUSH();
3817	if (*PMAP1)
3818		PT_SET_MA(PADDR1, 0);
3819
3820	sched_unpin();
3821	return (rtval);
3822}
3823
3824/*
3825 *	Clear the modify bits on the specified physical page.
3826 */
3827void
3828pmap_clear_modify(vm_page_t m)
3829{
3830	pv_entry_t pv;
3831	pmap_t pmap;
3832	pt_entry_t *pte;
3833
3834	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3835	if ((m->flags & PG_FICTITIOUS) != 0)
3836		return;
3837	sched_pin();
3838	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3839		pmap = PV_PMAP(pv);
3840		PMAP_LOCK(pmap);
3841		pte = pmap_pte_quick(pmap, pv->pv_va);
3842		if ((*pte & PG_M) != 0) {
3843			/*
3844			 * Regardless of whether a pte is 32 or 64 bits
3845			 * in size, PG_M is among the least significant
3846			 * 32 bits.
3847			 */
3848			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3849			pmap_invalidate_page(pmap, pv->pv_va);
3850		}
3851		PMAP_UNLOCK(pmap);
3852	}
3853	sched_unpin();
3854}
3855
3856/*
3857 *	pmap_clear_reference:
3858 *
3859 *	Clear the reference bit on the specified physical page.
3860 */
3861void
3862pmap_clear_reference(vm_page_t m)
3863{
3864	pv_entry_t pv;
3865	pmap_t pmap;
3866	pt_entry_t *pte;
3867
3868	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3869	if ((m->flags & PG_FICTITIOUS) != 0)
3870		return;
3871	sched_pin();
3872	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3873		pmap = PV_PMAP(pv);
3874		PMAP_LOCK(pmap);
3875		pte = pmap_pte_quick(pmap, pv->pv_va);
3876		if ((*pte & PG_A) != 0) {
3877			/*
3878			 * Regardless of whether a pte is 32 or 64 bits
3879			 * in size, PG_A is among the least significant
3880			 * 32 bits.
3881			 */
3882			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3883			pmap_invalidate_page(pmap, pv->pv_va);
3884		}
3885		PMAP_UNLOCK(pmap);
3886	}
3887	sched_unpin();
3888}
3889
3890/*
3891 * Miscellaneous support routines follow
3892 */
3893
3894/*
3895 * Map a set of physical memory pages into the kernel virtual
3896 * address space. Return a pointer to where it is mapped. This
3897 * routine is intended to be used for mapping device memory,
3898 * NOT real memory.
3899 */
3900void *
3901pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3902{
3903	vm_offset_t va, offset;
3904	vm_size_t tmpsize;
3905
3906	offset = pa & PAGE_MASK;
3907	size = roundup(offset + size, PAGE_SIZE);
3908	pa = pa & PG_FRAME;
3909
3910	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3911		va = KERNBASE + pa;
3912	else
3913		va = kmem_alloc_nofault(kernel_map, size);
3914	if (!va)
3915		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3916
3917	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3918		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3919	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3920	pmap_invalidate_cache_range(va, va + size);
3921	return ((void *)(va + offset));
3922}
3923
3924void *
3925pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3926{
3927
3928	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3929}
3930
3931void *
3932pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3933{
3934
3935	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3936}
3937
3938void
3939pmap_unmapdev(vm_offset_t va, vm_size_t size)
3940{
3941	vm_offset_t base, offset, tmpva;
3942
3943	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3944		return;
3945	base = trunc_page(va);
3946	offset = va & PAGE_MASK;
3947	size = roundup(offset + size, PAGE_SIZE);
3948	critical_enter();
3949	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3950		pmap_kremove(tmpva);
3951	pmap_invalidate_range(kernel_pmap, va, tmpva);
3952	critical_exit();
3953	kmem_free(kernel_map, base, size);
3954}
3955
3956/*
3957 * Sets the memory attribute for the specified page.
3958 */
3959void
3960pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3961{
3962	struct sysmaps *sysmaps;
3963	vm_offset_t sva, eva;
3964
3965	m->md.pat_mode = ma;
3966	if ((m->flags & PG_FICTITIOUS) != 0)
3967		return;
3968
3969	/*
3970	 * If "m" is a normal page, flush it from the cache.
3971	 * See pmap_invalidate_cache_range().
3972	 *
3973	 * First, try to find an existing mapping of the page by sf
3974	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3975	 * flushes the cache.
3976	 */
3977	if (sf_buf_invalidate_cache(m))
3978		return;
3979
3980	/*
3981	 * If page is not mapped by sf buffer, but CPU does not
3982	 * support self snoop, map the page transient and do
3983	 * invalidation. In the worst case, whole cache is flushed by
3984	 * pmap_invalidate_cache_range().
3985	 */
3986	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
3987		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3988		mtx_lock(&sysmaps->lock);
3989		if (*sysmaps->CMAP2)
3990			panic("pmap_page_set_memattr: CMAP2 busy");
3991		sched_pin();
3992		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3993		    xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M |
3994		    pmap_cache_bits(m->md.pat_mode, 0));
3995		invlcaddr(sysmaps->CADDR2);
3996		sva = (vm_offset_t)sysmaps->CADDR2;
3997		eva = sva + PAGE_SIZE;
3998	} else
3999		sva = eva = 0; /* gcc */
4000	pmap_invalidate_cache_range(sva, eva);
4001	if (sva != 0) {
4002		PT_SET_MA(sysmaps->CADDR2, 0);
4003		sched_unpin();
4004		mtx_unlock(&sysmaps->lock);
4005	}
4006}
4007
4008int
4009pmap_change_attr(va, size, mode)
4010	vm_offset_t va;
4011	vm_size_t size;
4012	int mode;
4013{
4014	vm_offset_t base, offset, tmpva;
4015	pt_entry_t *pte;
4016	u_int opte, npte;
4017	pd_entry_t *pde;
4018	boolean_t changed;
4019
4020	base = trunc_page(va);
4021	offset = va & PAGE_MASK;
4022	size = roundup(offset + size, PAGE_SIZE);
4023
4024	/* Only supported on kernel virtual addresses. */
4025	if (base <= VM_MAXUSER_ADDRESS)
4026		return (EINVAL);
4027
4028	/* 4MB pages and pages that aren't mapped aren't supported. */
4029	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4030		pde = pmap_pde(kernel_pmap, tmpva);
4031		if (*pde & PG_PS)
4032			return (EINVAL);
4033		if ((*pde & PG_V) == 0)
4034			return (EINVAL);
4035		pte = vtopte(va);
4036		if ((*pte & PG_V) == 0)
4037			return (EINVAL);
4038	}
4039
4040	changed = FALSE;
4041
4042	/*
4043	 * Ok, all the pages exist and are 4k, so run through them updating
4044	 * their cache mode.
4045	 */
4046	for (tmpva = base; size > 0; ) {
4047		pte = vtopte(tmpva);
4048
4049		/*
4050		 * The cache mode bits are all in the low 32-bits of the
4051		 * PTE, so we can just spin on updating the low 32-bits.
4052		 */
4053		do {
4054			opte = *(u_int *)pte;
4055			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4056			npte |= pmap_cache_bits(mode, 0);
4057			PT_SET_VA_MA(pte, npte, TRUE);
4058		} while (npte != opte && (*pte != npte));
4059		if (npte != opte)
4060			changed = TRUE;
4061		tmpva += PAGE_SIZE;
4062		size -= PAGE_SIZE;
4063	}
4064
4065	/*
4066	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4067	 * be, etc.
4068	 */
4069	if (changed) {
4070		pmap_invalidate_range(kernel_pmap, base, tmpva);
4071		pmap_invalidate_cache_range(base, tmpva);
4072	}
4073	return (0);
4074}
4075
4076/*
4077 * perform the pmap work for mincore
4078 */
4079int
4080pmap_mincore(pmap_t pmap, vm_offset_t addr)
4081{
4082	pt_entry_t *ptep, pte;
4083	vm_page_t m;
4084	int val = 0;
4085
4086	PMAP_LOCK(pmap);
4087	ptep = pmap_pte(pmap, addr);
4088	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4089	pmap_pte_release(ptep);
4090	PMAP_UNLOCK(pmap);
4091
4092	if (pte != 0) {
4093		vm_paddr_t pa;
4094
4095		val = MINCORE_INCORE;
4096		if ((pte & PG_MANAGED) == 0)
4097			return val;
4098
4099		pa = pte & PG_FRAME;
4100
4101		m = PHYS_TO_VM_PAGE(pa);
4102
4103		/*
4104		 * Modified by us
4105		 */
4106		if (pte & PG_M)
4107			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4108		else {
4109			/*
4110			 * Modified by someone else
4111			 */
4112			vm_page_lock_queues();
4113			if (m->dirty || pmap_is_modified(m))
4114				val |= MINCORE_MODIFIED_OTHER;
4115			vm_page_unlock_queues();
4116		}
4117		/*
4118		 * Referenced by us
4119		 */
4120		if (pte & PG_A)
4121			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4122		else {
4123			/*
4124			 * Referenced by someone else
4125			 */
4126			vm_page_lock_queues();
4127			if ((m->flags & PG_REFERENCED) ||
4128			    pmap_ts_referenced(m)) {
4129				val |= MINCORE_REFERENCED_OTHER;
4130				vm_page_flag_set(m, PG_REFERENCED);
4131			}
4132			vm_page_unlock_queues();
4133		}
4134	}
4135	return val;
4136}
4137
4138void
4139pmap_activate(struct thread *td)
4140{
4141	pmap_t	pmap, oldpmap;
4142	u_int32_t  cr3;
4143
4144	critical_enter();
4145	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4146	oldpmap = PCPU_GET(curpmap);
4147#if defined(SMP)
4148	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4149	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4150#else
4151	oldpmap->pm_active &= ~1;
4152	pmap->pm_active |= 1;
4153#endif
4154#ifdef PAE
4155	cr3 = vtophys(pmap->pm_pdpt);
4156#else
4157	cr3 = vtophys(pmap->pm_pdir);
4158#endif
4159	/*
4160	 * pmap_activate is for the current thread on the current cpu
4161	 */
4162	td->td_pcb->pcb_cr3 = cr3;
4163	PT_UPDATES_FLUSH();
4164	load_cr3(cr3);
4165
4166	PCPU_SET(curpmap, pmap);
4167	critical_exit();
4168}
4169
4170/*
4171 *	Increase the starting virtual address of the given mapping if a
4172 *	different alignment might result in more superpage mappings.
4173 */
4174void
4175pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4176    vm_offset_t *addr, vm_size_t size)
4177{
4178	vm_offset_t superpage_offset;
4179
4180	if (size < NBPDR)
4181		return;
4182	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4183		offset += ptoa(object->pg_color);
4184	superpage_offset = offset & PDRMASK;
4185	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4186	    (*addr & PDRMASK) == superpage_offset)
4187		return;
4188	if ((*addr & PDRMASK) < superpage_offset)
4189		*addr = (*addr & ~PDRMASK) + superpage_offset;
4190	else
4191		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4192}
4193
4194#ifdef XEN
4195
4196void
4197pmap_suspend()
4198{
4199	pmap_t pmap;
4200	int i, pdir, offset;
4201	vm_paddr_t pdirma;
4202	mmu_update_t mu[4];
4203
4204	/*
4205	 * We need to remove the recursive mapping structure from all
4206	 * our pmaps so that Xen doesn't get confused when it restores
4207	 * the page tables. The recursive map lives at page directory
4208	 * index PTDPTDI. We assume that the suspend code has stopped
4209	 * the other vcpus (if any).
4210	 */
4211	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4212		for (i = 0; i < 4; i++) {
4213			/*
4214			 * Figure out which page directory (L2) page
4215			 * contains this bit of the recursive map and
4216			 * the offset within that page of the map
4217			 * entry
4218			 */
4219			pdir = (PTDPTDI + i) / NPDEPG;
4220			offset = (PTDPTDI + i) % NPDEPG;
4221			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4222			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4223			mu[i].val = 0;
4224		}
4225		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4226	}
4227}
4228
4229void
4230pmap_resume()
4231{
4232	pmap_t pmap;
4233	int i, pdir, offset;
4234	vm_paddr_t pdirma;
4235	mmu_update_t mu[4];
4236
4237	/*
4238	 * Restore the recursive map that we removed on suspend.
4239	 */
4240	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4241		for (i = 0; i < 4; i++) {
4242			/*
4243			 * Figure out which page directory (L2) page
4244			 * contains this bit of the recursive map and
4245			 * the offset within that page of the map
4246			 * entry
4247			 */
4248			pdir = (PTDPTDI + i) / NPDEPG;
4249			offset = (PTDPTDI + i) % NPDEPG;
4250			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4251			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4252			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4253		}
4254		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4255	}
4256}
4257
4258#endif
4259
4260#if defined(PMAP_DEBUG)
4261pmap_pid_dump(int pid)
4262{
4263	pmap_t pmap;
4264	struct proc *p;
4265	int npte = 0;
4266	int index;
4267
4268	sx_slock(&allproc_lock);
4269	FOREACH_PROC_IN_SYSTEM(p) {
4270		if (p->p_pid != pid)
4271			continue;
4272
4273		if (p->p_vmspace) {
4274			int i,j;
4275			index = 0;
4276			pmap = vmspace_pmap(p->p_vmspace);
4277			for (i = 0; i < NPDEPTD; i++) {
4278				pd_entry_t *pde;
4279				pt_entry_t *pte;
4280				vm_offset_t base = i << PDRSHIFT;
4281
4282				pde = &pmap->pm_pdir[i];
4283				if (pde && pmap_pde_v(pde)) {
4284					for (j = 0; j < NPTEPG; j++) {
4285						vm_offset_t va = base + (j << PAGE_SHIFT);
4286						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4287							if (index) {
4288								index = 0;
4289								printf("\n");
4290							}
4291							sx_sunlock(&allproc_lock);
4292							return npte;
4293						}
4294						pte = pmap_pte(pmap, va);
4295						if (pte && pmap_pte_v(pte)) {
4296							pt_entry_t pa;
4297							vm_page_t m;
4298							pa = PT_GET(pte);
4299							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4300							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4301								va, pa, m->hold_count, m->wire_count, m->flags);
4302							npte++;
4303							index++;
4304							if (index >= 2) {
4305								index = 0;
4306								printf("\n");
4307							} else {
4308								printf(" ");
4309							}
4310						}
4311					}
4312				}
4313			}
4314		}
4315	}
4316	sx_sunlock(&allproc_lock);
4317	return npte;
4318}
4319#endif
4320
4321#if defined(DEBUG)
4322
4323static void	pads(pmap_t pm);
4324void		pmap_pvdump(vm_paddr_t pa);
4325
4326/* print address space of pmap*/
4327static void
4328pads(pmap_t pm)
4329{
4330	int i, j;
4331	vm_paddr_t va;
4332	pt_entry_t *ptep;
4333
4334	if (pm == kernel_pmap)
4335		return;
4336	for (i = 0; i < NPDEPTD; i++)
4337		if (pm->pm_pdir[i])
4338			for (j = 0; j < NPTEPG; j++) {
4339				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4340				if (pm == kernel_pmap && va < KERNBASE)
4341					continue;
4342				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4343					continue;
4344				ptep = pmap_pte(pm, va);
4345				if (pmap_pte_v(ptep))
4346					printf("%x:%x ", va, *ptep);
4347			};
4348
4349}
4350
4351void
4352pmap_pvdump(vm_paddr_t pa)
4353{
4354	pv_entry_t pv;
4355	pmap_t pmap;
4356	vm_page_t m;
4357
4358	printf("pa %x", pa);
4359	m = PHYS_TO_VM_PAGE(pa);
4360	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4361		pmap = PV_PMAP(pv);
4362		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4363		pads(pmap);
4364	}
4365	printf(" ");
4366}
4367#endif
4368