mp_machdep.c revision 196256
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * Copyright (c) 2008, by Kip Macy
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the developer may NOT be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/i386/xen/mp_machdep.c 196256 2009-08-15 18:37:06Z attilio $");
29
30#include "opt_apic.h"
31#include "opt_cpu.h"
32#include "opt_kstack_pages.h"
33#include "opt_mp_watchdog.h"
34#include "opt_sched.h"
35#include "opt_smp.h"
36
37#if !defined(lint)
38#if !defined(SMP)
39#error How did you get here?
40#endif
41
42#ifndef DEV_APIC
43#error The apic device is required for SMP, add "device apic" to your config file.
44#endif
45#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
46#error SMP not supported with CPU_DISABLE_CMPXCHG
47#endif
48#endif /* not lint */
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/bus.h>
53#include <sys/cons.h>	/* cngetc() */
54#ifdef GPROF
55#include <sys/gmon.h>
56#endif
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/memrange.h>
62#include <sys/mutex.h>
63#include <sys/pcpu.h>
64#include <sys/proc.h>
65#include <sys/sched.h>
66#include <sys/smp.h>
67#include <sys/sysctl.h>
68
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#include <vm/vm_kern.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_page.h>
75
76#include <machine/apicreg.h>
77#include <machine/md_var.h>
78#include <machine/mp_watchdog.h>
79#include <machine/pcb.h>
80#include <machine/psl.h>
81#include <machine/smp.h>
82#include <machine/specialreg.h>
83#include <machine/pcpu.h>
84
85
86
87#include <machine/xen/xen-os.h>
88#include <xen/evtchn.h>
89#include <xen/xen_intr.h>
90#include <xen/hypervisor.h>
91#include <xen/interface/vcpu.h>
92
93
94int	mp_naps;		/* # of Applications processors */
95int	boot_cpu_id = -1;	/* designated BSP */
96
97extern	struct pcpu __pcpu[];
98
99static int bootAP;
100static union descriptor *bootAPgdt;
101
102static char resched_name[NR_CPUS][15];
103static char callfunc_name[NR_CPUS][15];
104
105/* Free these after use */
106void *bootstacks[MAXCPU];
107
108/* Hotwire a 0->4MB V==P mapping */
109extern pt_entry_t *KPTphys;
110
111struct pcb stoppcbs[MAXCPU];
112
113/* Variables needed for SMP tlb shootdown. */
114vm_offset_t smp_tlb_addr1;
115vm_offset_t smp_tlb_addr2;
116volatile int smp_tlb_wait;
117
118typedef void call_data_func_t(uintptr_t , uintptr_t);
119
120static u_int logical_cpus;
121static volatile cpumask_t ipi_nmi_pending;
122
123/* used to hold the AP's until we are ready to release them */
124static struct mtx ap_boot_mtx;
125
126/* Set to 1 once we're ready to let the APs out of the pen. */
127static volatile int aps_ready = 0;
128
129/*
130 * Store data from cpu_add() until later in the boot when we actually setup
131 * the APs.
132 */
133struct cpu_info {
134	int	cpu_present:1;
135	int	cpu_bsp:1;
136	int	cpu_disabled:1;
137} static cpu_info[MAX_APIC_ID + 1];
138int cpu_apic_ids[MAXCPU];
139int apic_cpuids[MAX_APIC_ID + 1];
140
141/* Holds pending bitmap based IPIs per CPU */
142static volatile u_int cpu_ipi_pending[MAXCPU];
143
144static int cpu_logical;
145static int cpu_cores;
146
147static void	assign_cpu_ids(void);
148static void	set_interrupt_apic_ids(void);
149int	start_all_aps(void);
150static int	start_ap(int apic_id);
151static void	release_aps(void *dummy);
152
153static u_int	hyperthreading_cpus;
154static cpumask_t	hyperthreading_cpus_mask;
155
156extern void Xhypervisor_callback(void);
157extern void failsafe_callback(void);
158extern void pmap_lazyfix_action(void);
159
160struct cpu_group *
161cpu_topo(void)
162{
163	if (cpu_cores == 0)
164		cpu_cores = 1;
165	if (cpu_logical == 0)
166		cpu_logical = 1;
167	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
168		printf("WARNING: Non-uniform processors.\n");
169		printf("WARNING: Using suboptimal topology.\n");
170		return (smp_topo_none());
171	}
172	/*
173	 * No multi-core or hyper-threaded.
174	 */
175	if (cpu_logical * cpu_cores == 1)
176		return (smp_topo_none());
177	/*
178	 * Only HTT no multi-core.
179	 */
180	if (cpu_logical > 1 && cpu_cores == 1)
181		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, CG_FLAG_HTT));
182	/*
183	 * Only multi-core no HTT.
184	 */
185	if (cpu_cores > 1 && cpu_logical == 1)
186		return (smp_topo_1level(CG_SHARE_NONE, cpu_cores, 0));
187	/*
188	 * Both HTT and multi-core.
189	 */
190	return (smp_topo_2level(CG_SHARE_NONE, cpu_cores,
191	    CG_SHARE_L1, cpu_logical, CG_FLAG_HTT));
192}
193
194/*
195 * Calculate usable address in base memory for AP trampoline code.
196 */
197u_int
198mp_bootaddress(u_int basemem)
199{
200
201	return (basemem);
202}
203
204void
205cpu_add(u_int apic_id, char boot_cpu)
206{
207
208	if (apic_id > MAX_APIC_ID) {
209		panic("SMP: APIC ID %d too high", apic_id);
210		return;
211	}
212	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
213	    apic_id));
214	cpu_info[apic_id].cpu_present = 1;
215	if (boot_cpu) {
216		KASSERT(boot_cpu_id == -1,
217		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
218		    boot_cpu_id));
219		boot_cpu_id = apic_id;
220		cpu_info[apic_id].cpu_bsp = 1;
221	}
222	if (mp_ncpus < MAXCPU)
223		mp_ncpus++;
224	if (bootverbose)
225		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
226		    "AP");
227}
228
229void
230cpu_mp_setmaxid(void)
231{
232
233	mp_maxid = MAXCPU - 1;
234}
235
236int
237cpu_mp_probe(void)
238{
239
240	/*
241	 * Always record BSP in CPU map so that the mbuf init code works
242	 * correctly.
243	 */
244	all_cpus = 1;
245	if (mp_ncpus == 0) {
246		/*
247		 * No CPUs were found, so this must be a UP system.  Setup
248		 * the variables to represent a system with a single CPU
249		 * with an id of 0.
250		 */
251		mp_ncpus = 1;
252		return (0);
253	}
254
255	/* At least one CPU was found. */
256	if (mp_ncpus == 1) {
257		/*
258		 * One CPU was found, so this must be a UP system with
259		 * an I/O APIC.
260		 */
261		return (0);
262	}
263
264	/* At least two CPUs were found. */
265	return (1);
266}
267
268/*
269 * Initialize the IPI handlers and start up the AP's.
270 */
271void
272cpu_mp_start(void)
273{
274	int i;
275
276	/* Initialize the logical ID to APIC ID table. */
277	for (i = 0; i < MAXCPU; i++) {
278		cpu_apic_ids[i] = -1;
279		cpu_ipi_pending[i] = 0;
280	}
281
282	/* Set boot_cpu_id if needed. */
283	if (boot_cpu_id == -1) {
284		boot_cpu_id = PCPU_GET(apic_id);
285		cpu_info[boot_cpu_id].cpu_bsp = 1;
286	} else
287		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
288		    ("BSP's APIC ID doesn't match boot_cpu_id"));
289	cpu_apic_ids[0] = boot_cpu_id;
290	apic_cpuids[boot_cpu_id] = 0;
291
292	assign_cpu_ids();
293
294	/* Start each Application Processor */
295	start_all_aps();
296
297	/* Setup the initial logical CPUs info. */
298	logical_cpus = logical_cpus_mask = 0;
299	if (cpu_feature & CPUID_HTT)
300		logical_cpus = (cpu_procinfo & CPUID_HTT_CORES) >> 16;
301
302	set_interrupt_apic_ids();
303}
304
305
306static void
307iv_rendezvous(uintptr_t a, uintptr_t b)
308{
309	smp_rendezvous_action();
310}
311
312static void
313iv_invltlb(uintptr_t a, uintptr_t b)
314{
315	xen_tlb_flush();
316}
317
318static void
319iv_invlpg(uintptr_t a, uintptr_t b)
320{
321	xen_invlpg(a);
322}
323
324static void
325iv_invlrng(uintptr_t a, uintptr_t b)
326{
327	vm_offset_t start = (vm_offset_t)a;
328	vm_offset_t end = (vm_offset_t)b;
329
330	while (start < end) {
331		xen_invlpg(start);
332		start += PAGE_SIZE;
333	}
334}
335
336
337static void
338iv_invlcache(uintptr_t a, uintptr_t b)
339{
340
341	wbinvd();
342	atomic_add_int(&smp_tlb_wait, 1);
343}
344
345static void
346iv_lazypmap(uintptr_t a, uintptr_t b)
347{
348	pmap_lazyfix_action();
349	atomic_add_int(&smp_tlb_wait, 1);
350}
351
352/*
353 * These start from "IPI offset" APIC_IPI_INTS
354 */
355static call_data_func_t *ipi_vectors[6] =
356{
357  iv_rendezvous,
358  iv_invltlb,
359  iv_invlpg,
360  iv_invlrng,
361  iv_invlcache,
362  iv_lazypmap,
363};
364
365/*
366 * Reschedule call back. Nothing to do,
367 * all the work is done automatically when
368 * we return from the interrupt.
369 */
370static int
371smp_reschedule_interrupt(void *unused)
372{
373	int cpu = PCPU_GET(cpuid);
374	u_int ipi_bitmap;
375
376	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
377
378	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
379#ifdef COUNT_IPIS
380		(*ipi_preempt_counts[cpu])++;
381#endif
382		sched_preempt(curthread);
383	}
384
385	if (ipi_bitmap & (1 << IPI_AST)) {
386#ifdef COUNT_IPIS
387		(*ipi_ast_counts[cpu])++;
388#endif
389		/* Nothing to do for AST */
390	}
391	return (FILTER_HANDLED);
392}
393
394struct _call_data {
395	uint16_t func_id;
396	uint16_t wait;
397	uintptr_t arg1;
398	uintptr_t arg2;
399	atomic_t started;
400	atomic_t finished;
401};
402
403static struct _call_data *call_data;
404
405static int
406smp_call_function_interrupt(void *unused)
407{
408	call_data_func_t *func;
409	uintptr_t arg1 = call_data->arg1;
410	uintptr_t arg2 = call_data->arg2;
411	int wait = call_data->wait;
412	atomic_t *started = &call_data->started;
413	atomic_t *finished = &call_data->finished;
414
415	/* We only handle function IPIs, not bitmap IPIs */
416	if (call_data->func_id < APIC_IPI_INTS || call_data->func_id > IPI_BITMAP_VECTOR)
417		panic("invalid function id %u", call_data->func_id);
418
419	func = ipi_vectors[call_data->func_id - APIC_IPI_INTS];
420	/*
421	 * Notify initiating CPU that I've grabbed the data and am
422	 * about to execute the function
423	 */
424	mb();
425	atomic_inc(started);
426	/*
427	 * At this point the info structure may be out of scope unless wait==1
428	 */
429	(*func)(arg1, arg2);
430
431	if (wait) {
432		mb();
433		atomic_inc(finished);
434	}
435	atomic_add_int(&smp_tlb_wait, 1);
436	return (FILTER_HANDLED);
437}
438
439/*
440 * Print various information about the SMP system hardware and setup.
441 */
442void
443cpu_mp_announce(void)
444{
445	int i, x;
446
447	/* List CPUs */
448	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
449	for (i = 1, x = 0; x <= MAX_APIC_ID; x++) {
450		if (!cpu_info[x].cpu_present || cpu_info[x].cpu_bsp)
451			continue;
452		if (cpu_info[x].cpu_disabled)
453			printf("  cpu (AP): APIC ID: %2d (disabled)\n", x);
454		else {
455			KASSERT(i < mp_ncpus,
456			    ("mp_ncpus and actual cpus are out of whack"));
457			printf(" cpu%d (AP): APIC ID: %2d\n", i++, x);
458		}
459	}
460}
461
462static int
463xen_smp_intr_init(unsigned int cpu)
464{
465	int rc;
466	unsigned int irq;
467
468	per_cpu(resched_irq, cpu) = per_cpu(callfunc_irq, cpu) = -1;
469
470	sprintf(resched_name[cpu], "resched%u", cpu);
471	rc = bind_ipi_to_irqhandler(RESCHEDULE_VECTOR,
472				    cpu,
473				    resched_name[cpu],
474				    smp_reschedule_interrupt,
475	    INTR_FAST|INTR_TYPE_TTY|INTR_MPSAFE, &irq);
476
477	printf("[XEN] IPI cpu=%d irq=%d vector=RESCHEDULE_VECTOR (%d)\n",
478	    cpu, irq, RESCHEDULE_VECTOR);
479
480	per_cpu(resched_irq, cpu) = irq;
481
482	sprintf(callfunc_name[cpu], "callfunc%u", cpu);
483	rc = bind_ipi_to_irqhandler(CALL_FUNCTION_VECTOR,
484				    cpu,
485				    callfunc_name[cpu],
486				    smp_call_function_interrupt,
487	    INTR_FAST|INTR_TYPE_TTY|INTR_MPSAFE, &irq);
488	if (rc < 0)
489		goto fail;
490	per_cpu(callfunc_irq, cpu) = irq;
491
492	printf("[XEN] IPI cpu=%d irq=%d vector=CALL_FUNCTION_VECTOR (%d)\n",
493	    cpu, irq, CALL_FUNCTION_VECTOR);
494
495
496	if ((cpu != 0) && ((rc = ap_cpu_initclocks(cpu)) != 0))
497		goto fail;
498
499	return 0;
500
501 fail:
502	if (per_cpu(resched_irq, cpu) >= 0)
503		unbind_from_irqhandler(per_cpu(resched_irq, cpu));
504	if (per_cpu(callfunc_irq, cpu) >= 0)
505		unbind_from_irqhandler(per_cpu(callfunc_irq, cpu));
506	return rc;
507}
508
509static void
510xen_smp_intr_init_cpus(void *unused)
511{
512	int i;
513
514	for (i = 0; i < mp_ncpus; i++)
515		xen_smp_intr_init(i);
516}
517
518#define MTOPSIZE (1<<(14 + PAGE_SHIFT))
519
520/*
521 * AP CPU's call this to initialize themselves.
522 */
523void
524init_secondary(void)
525{
526	vm_offset_t addr;
527	int	gsel_tss;
528
529
530	/* bootAP is set in start_ap() to our ID. */
531	PCPU_SET(currentldt, _default_ldt);
532	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
533#if 0
534	gdt[bootAP * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
535#endif
536	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
537	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
538	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
539#if 0
540	PCPU_SET(tss_gdt, &gdt[bootAP * NGDT + GPROC0_SEL].sd);
541
542	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
543#endif
544	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
545
546	/*
547	 * Set to a known state:
548	 * Set by mpboot.s: CR0_PG, CR0_PE
549	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
550	 */
551	/*
552	 * signal our startup to the BSP.
553	 */
554	mp_naps++;
555
556	/* Spin until the BSP releases the AP's. */
557	while (!aps_ready)
558		ia32_pause();
559
560	/* BSP may have changed PTD while we were waiting */
561	invltlb();
562	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
563		invlpg(addr);
564
565	/* set up FPU state on the AP */
566	npxinit();
567#if 0
568
569	/* set up SSE registers */
570	enable_sse();
571#endif
572#if 0 && defined(PAE)
573	/* Enable the PTE no-execute bit. */
574	if ((amd_feature & AMDID_NX) != 0) {
575		uint64_t msr;
576
577		msr = rdmsr(MSR_EFER) | EFER_NXE;
578		wrmsr(MSR_EFER, msr);
579	}
580#endif
581#if 0
582	/* A quick check from sanity claus */
583	if (PCPU_GET(apic_id) != lapic_id()) {
584		printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
585		printf("SMP: actual apic_id = %d\n", lapic_id());
586		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
587		panic("cpuid mismatch! boom!!");
588	}
589#endif
590
591	/* Initialize curthread. */
592	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
593	PCPU_SET(curthread, PCPU_GET(idlethread));
594
595	mtx_lock_spin(&ap_boot_mtx);
596#if 0
597
598	/* Init local apic for irq's */
599	lapic_setup(1);
600#endif
601	smp_cpus++;
602
603	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", PCPU_GET(cpuid));
604	printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
605
606	/* Determine if we are a logical CPU. */
607	if (logical_cpus > 1 && PCPU_GET(apic_id) % logical_cpus != 0)
608		logical_cpus_mask |= PCPU_GET(cpumask);
609
610	/* Determine if we are a hyperthread. */
611	if (hyperthreading_cpus > 1 &&
612	    PCPU_GET(apic_id) % hyperthreading_cpus != 0)
613		hyperthreading_cpus_mask |= PCPU_GET(cpumask);
614
615	/* Build our map of 'other' CPUs. */
616	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
617#if 0
618	if (bootverbose)
619		lapic_dump("AP");
620#endif
621	if (smp_cpus == mp_ncpus) {
622		/* enable IPI's, tlb shootdown, freezes etc */
623		atomic_store_rel_int(&smp_started, 1);
624		smp_active = 1;	 /* historic */
625	}
626
627	mtx_unlock_spin(&ap_boot_mtx);
628
629	/* wait until all the AP's are up */
630	while (smp_started == 0)
631		ia32_pause();
632
633
634	PCPU_SET(curthread, PCPU_GET(idlethread));
635	/* enter the scheduler */
636	sched_throw(NULL);
637
638	panic("scheduler returned us to %s", __func__);
639	/* NOTREACHED */
640}
641
642/*******************************************************************
643 * local functions and data
644 */
645
646/*
647 * We tell the I/O APIC code about all the CPUs we want to receive
648 * interrupts.  If we don't want certain CPUs to receive IRQs we
649 * can simply not tell the I/O APIC code about them in this function.
650 * We also do not tell it about the BSP since it tells itself about
651 * the BSP internally to work with UP kernels and on UP machines.
652 */
653static void
654set_interrupt_apic_ids(void)
655{
656	u_int i, apic_id;
657
658	for (i = 0; i < MAXCPU; i++) {
659		apic_id = cpu_apic_ids[i];
660		if (apic_id == -1)
661			continue;
662		if (cpu_info[apic_id].cpu_bsp)
663			continue;
664		if (cpu_info[apic_id].cpu_disabled)
665			continue;
666
667		/* Don't let hyperthreads service interrupts. */
668		if (hyperthreading_cpus > 1 &&
669		    apic_id % hyperthreading_cpus != 0)
670			continue;
671
672		intr_add_cpu(i);
673	}
674}
675
676/*
677 * Assign logical CPU IDs to local APICs.
678 */
679static void
680assign_cpu_ids(void)
681{
682	u_int i;
683
684	/* Check for explicitly disabled CPUs. */
685	for (i = 0; i <= MAX_APIC_ID; i++) {
686		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
687			continue;
688
689		/* Don't use this CPU if it has been disabled by a tunable. */
690		if (resource_disabled("lapic", i)) {
691			cpu_info[i].cpu_disabled = 1;
692			continue;
693		}
694	}
695
696	/*
697	 * Assign CPU IDs to local APIC IDs and disable any CPUs
698	 * beyond MAXCPU.  CPU 0 has already been assigned to the BSP,
699	 * so we only have to assign IDs for APs.
700	 */
701	mp_ncpus = 1;
702	for (i = 0; i <= MAX_APIC_ID; i++) {
703		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
704		    cpu_info[i].cpu_disabled)
705			continue;
706
707		if (mp_ncpus < MAXCPU) {
708			cpu_apic_ids[mp_ncpus] = i;
709			apic_cpuids[i] = mp_ncpus;
710			mp_ncpus++;
711		} else
712			cpu_info[i].cpu_disabled = 1;
713	}
714	KASSERT(mp_maxid >= mp_ncpus - 1,
715	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
716	    mp_ncpus));
717}
718
719/*
720 * start each AP in our list
721 */
722/* Lowest 1MB is already mapped: don't touch*/
723#define TMPMAP_START 1
724int
725start_all_aps(void)
726{
727	int x,apic_id, cpu;
728	struct pcpu *pc;
729
730	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
731
732	/* set up temporary P==V mapping for AP boot */
733	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
734
735	/* start each AP */
736	for (cpu = 1; cpu < mp_ncpus; cpu++) {
737		apic_id = cpu_apic_ids[cpu];
738
739
740		bootAP = cpu;
741		bootAPgdt = gdt + (512*cpu);
742
743		/* Get per-cpu data */
744		pc = &__pcpu[bootAP];
745		pcpu_init(pc, bootAP, sizeof(struct pcpu));
746		dpcpu_init((void *)kmem_alloc(kernel_map, DPCPU_SIZE), bootAP);
747		pc->pc_apic_id = cpu_apic_ids[bootAP];
748		pc->pc_prvspace = pc;
749		pc->pc_curthread = 0;
750
751		gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
752		gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
753
754		PT_SET_MA(bootAPgdt, xpmap_ptom(VTOP(bootAPgdt)) | PG_V | PG_RW);
755		bzero(bootAPgdt, PAGE_SIZE);
756		for (x = 0; x < NGDT; x++)
757			ssdtosd(&gdt_segs[x], &bootAPgdt[x].sd);
758		PT_SET_MA(bootAPgdt, vtomach(bootAPgdt) | PG_V);
759#ifdef notyet
760
761                if (HYPERVISOR_vcpu_op(VCPUOP_get_physid, cpu, &cpu_id) == 0) {
762                        apicid = xen_vcpu_physid_to_x86_apicid(cpu_id.phys_id);
763                        acpiid = xen_vcpu_physid_to_x86_acpiid(cpu_id.phys_id);
764#ifdef CONFIG_ACPI
765                        if (acpiid != 0xff)
766                                x86_acpiid_to_apicid[acpiid] = apicid;
767#endif
768                }
769#endif
770
771		/* attempt to start the Application Processor */
772		if (!start_ap(cpu)) {
773			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
774			/* better panic as the AP may be running loose */
775			printf("panic y/n? [y] ");
776			if (cngetc() != 'n')
777				panic("bye-bye");
778		}
779
780		all_cpus |= (1 << cpu);		/* record AP in CPU map */
781	}
782
783
784	/* build our map of 'other' CPUs */
785	PCPU_SET(other_cpus, all_cpus & ~PCPU_GET(cpumask));
786
787	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
788
789	/* number of APs actually started */
790	return mp_naps;
791}
792
793extern uint8_t *pcpu_boot_stack;
794extern trap_info_t trap_table[];
795
796static void
797smp_trap_init(trap_info_t *trap_ctxt)
798{
799        const trap_info_t *t = trap_table;
800
801        for (t = trap_table; t->address; t++) {
802                trap_ctxt[t->vector].flags = t->flags;
803                trap_ctxt[t->vector].cs = t->cs;
804                trap_ctxt[t->vector].address = t->address;
805        }
806}
807
808extern int nkpt;
809static void
810cpu_initialize_context(unsigned int cpu)
811{
812	/* vcpu_guest_context_t is too large to allocate on the stack.
813	 * Hence we allocate statically and protect it with a lock */
814	vm_page_t m[4];
815	static vcpu_guest_context_t ctxt;
816	vm_offset_t boot_stack;
817	vm_offset_t newPTD;
818	vm_paddr_t ma[NPGPTD];
819	static int color;
820	int i;
821
822	/*
823	 * Page 0,[0-3]	PTD
824	 * Page 1, [4]	boot stack
825	 * Page [5]	PDPT
826	 *
827	 */
828	for (i = 0; i < NPGPTD + 2; i++) {
829		m[i] = vm_page_alloc(NULL, color++,
830		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
831		    VM_ALLOC_ZERO);
832
833		pmap_zero_page(m[i]);
834
835	}
836	boot_stack = kmem_alloc_nofault(kernel_map, 1);
837	newPTD = kmem_alloc_nofault(kernel_map, NPGPTD);
838	ma[0] = xpmap_ptom(VM_PAGE_TO_PHYS(m[0]))|PG_V;
839
840#ifdef PAE
841	pmap_kenter(boot_stack, VM_PAGE_TO_PHYS(m[NPGPTD + 1]));
842	for (i = 0; i < NPGPTD; i++) {
843		((vm_paddr_t *)boot_stack)[i] =
844		ma[i] =
845		    xpmap_ptom(VM_PAGE_TO_PHYS(m[i]))|PG_V;
846	}
847#endif
848
849	/*
850	 * Copy cpu0 IdlePTD to new IdlePTD - copying only
851	 * kernel mappings
852	 */
853	pmap_qenter(newPTD, m, 4);
854
855	memcpy((uint8_t *)newPTD + KPTDI*sizeof(vm_paddr_t),
856	    (uint8_t *)PTOV(IdlePTD) + KPTDI*sizeof(vm_paddr_t),
857	    nkpt*sizeof(vm_paddr_t));
858
859	pmap_qremove(newPTD, 4);
860	kmem_free(kernel_map, newPTD, 4);
861	/*
862	 * map actual idle stack to boot_stack
863	 */
864	pmap_kenter(boot_stack, VM_PAGE_TO_PHYS(m[NPGPTD]));
865
866
867	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(m[NPGPTD + 1])));
868	vm_page_lock_queues();
869	for (i = 0; i < 4; i++) {
870		int pdir = (PTDPTDI + i) / NPDEPG;
871		int curoffset = (PTDPTDI + i) % NPDEPG;
872
873		xen_queue_pt_update((vm_paddr_t)
874		    ((ma[pdir] & ~PG_V) + (curoffset*sizeof(vm_paddr_t))),
875		    ma[i]);
876	}
877	PT_UPDATES_FLUSH();
878	vm_page_unlock_queues();
879
880	memset(&ctxt, 0, sizeof(ctxt));
881	ctxt.flags = VGCF_IN_KERNEL;
882	ctxt.user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
883	ctxt.user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
884	ctxt.user_regs.fs = GSEL(GPRIV_SEL, SEL_KPL);
885	ctxt.user_regs.gs = GSEL(GDATA_SEL, SEL_KPL);
886	ctxt.user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
887	ctxt.user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
888	ctxt.user_regs.eip = (unsigned long)init_secondary;
889	ctxt.user_regs.eflags = PSL_KERNEL | 0x1000; /* IOPL_RING1 */
890
891	memset(&ctxt.fpu_ctxt, 0, sizeof(ctxt.fpu_ctxt));
892
893	smp_trap_init(ctxt.trap_ctxt);
894
895	ctxt.ldt_ents = 0;
896	ctxt.gdt_frames[0] = (uint32_t)((uint64_t)vtomach(bootAPgdt) >> PAGE_SHIFT);
897	ctxt.gdt_ents      = 512;
898
899#ifdef __i386__
900	ctxt.user_regs.esp = boot_stack + PAGE_SIZE;
901
902	ctxt.kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
903	ctxt.kernel_sp = boot_stack + PAGE_SIZE;
904
905	ctxt.event_callback_cs     = GSEL(GCODE_SEL, SEL_KPL);
906	ctxt.event_callback_eip    = (unsigned long)Xhypervisor_callback;
907	ctxt.failsafe_callback_cs  = GSEL(GCODE_SEL, SEL_KPL);
908	ctxt.failsafe_callback_eip = (unsigned long)failsafe_callback;
909
910	ctxt.ctrlreg[3] = xpmap_ptom(VM_PAGE_TO_PHYS(m[NPGPTD + 1]));
911#else /* __x86_64__ */
912	ctxt.user_regs.esp = idle->thread.rsp0 - sizeof(struct pt_regs);
913	ctxt.kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
914	ctxt.kernel_sp = idle->thread.rsp0;
915
916	ctxt.event_callback_eip    = (unsigned long)hypervisor_callback;
917	ctxt.failsafe_callback_eip = (unsigned long)failsafe_callback;
918	ctxt.syscall_callback_eip  = (unsigned long)system_call;
919
920	ctxt.ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(init_level4_pgt));
921
922	ctxt.gs_base_kernel = (unsigned long)(cpu_pda(cpu));
923#endif
924
925	printf("gdtpfn=%lx pdptpfn=%lx\n",
926	    ctxt.gdt_frames[0],
927	    ctxt.ctrlreg[3] >> PAGE_SHIFT);
928
929	PANIC_IF(HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, &ctxt));
930	DELAY(3000);
931	PANIC_IF(HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL));
932}
933
934/*
935 * This function starts the AP (application processor) identified
936 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
937 * to accomplish this.  This is necessary because of the nuances
938 * of the different hardware we might encounter.  It isn't pretty,
939 * but it seems to work.
940 */
941
942int cpus;
943static int
944start_ap(int apic_id)
945{
946	int ms;
947
948	/* used as a watchpoint to signal AP startup */
949	cpus = mp_naps;
950
951	cpu_initialize_context(apic_id);
952
953	/* Wait up to 5 seconds for it to start. */
954	for (ms = 0; ms < 5000; ms++) {
955		if (mp_naps > cpus)
956			return 1;	/* return SUCCESS */
957		DELAY(1000);
958	}
959	return 0;		/* return FAILURE */
960}
961
962/*
963 * Flush the TLB on all other CPU's
964 */
965static void
966smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
967{
968	u_int ncpu;
969	struct _call_data data;
970
971	ncpu = mp_ncpus - 1;	/* does not shootdown self */
972	if (ncpu < 1)
973		return;		/* no other cpus */
974	if (!(read_eflags() & PSL_I))
975		panic("%s: interrupts disabled", __func__);
976	mtx_lock_spin(&smp_ipi_mtx);
977	KASSERT(call_data == NULL, ("call_data isn't null?!"));
978	call_data = &data;
979	call_data->func_id = vector;
980	call_data->arg1 = addr1;
981	call_data->arg2 = addr2;
982	atomic_store_rel_int(&smp_tlb_wait, 0);
983	ipi_all_but_self(vector);
984	while (smp_tlb_wait < ncpu)
985		ia32_pause();
986	call_data = NULL;
987	mtx_unlock_spin(&smp_ipi_mtx);
988}
989
990static void
991smp_targeted_tlb_shootdown(cpumask_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
992{
993	int ncpu, othercpus;
994	struct _call_data data;
995
996	othercpus = mp_ncpus - 1;
997	if (mask == (u_int)-1) {
998		ncpu = othercpus;
999		if (ncpu < 1)
1000			return;
1001	} else {
1002		mask &= ~PCPU_GET(cpumask);
1003		if (mask == 0)
1004			return;
1005		ncpu = bitcount32(mask);
1006		if (ncpu > othercpus) {
1007			/* XXX this should be a panic offence */
1008			printf("SMP: tlb shootdown to %d other cpus (only have %d)\n",
1009			    ncpu, othercpus);
1010			ncpu = othercpus;
1011		}
1012		/* XXX should be a panic, implied by mask == 0 above */
1013		if (ncpu < 1)
1014			return;
1015	}
1016	if (!(read_eflags() & PSL_I))
1017		panic("%s: interrupts disabled", __func__);
1018	mtx_lock_spin(&smp_ipi_mtx);
1019	KASSERT(call_data == NULL, ("call_data isn't null?!"));
1020	call_data = &data;
1021	call_data->func_id = vector;
1022	call_data->arg1 = addr1;
1023	call_data->arg2 = addr2;
1024	atomic_store_rel_int(&smp_tlb_wait, 0);
1025	if (mask == (u_int)-1)
1026		ipi_all_but_self(vector);
1027	else
1028		ipi_selected(mask, vector);
1029	while (smp_tlb_wait < ncpu)
1030		ia32_pause();
1031	call_data = NULL;
1032	mtx_unlock_spin(&smp_ipi_mtx);
1033}
1034
1035void
1036smp_cache_flush(void)
1037{
1038
1039	if (smp_started)
1040		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1041}
1042
1043void
1044smp_invltlb(void)
1045{
1046
1047	if (smp_started) {
1048		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1049	}
1050}
1051
1052void
1053smp_invlpg(vm_offset_t addr)
1054{
1055
1056	if (smp_started) {
1057		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1058	}
1059}
1060
1061void
1062smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1063{
1064
1065	if (smp_started) {
1066		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1067	}
1068}
1069
1070void
1071smp_masked_invltlb(cpumask_t mask)
1072{
1073
1074	if (smp_started) {
1075		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1076	}
1077}
1078
1079void
1080smp_masked_invlpg(cpumask_t mask, vm_offset_t addr)
1081{
1082
1083	if (smp_started) {
1084		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1085	}
1086}
1087
1088void
1089smp_masked_invlpg_range(cpumask_t mask, vm_offset_t addr1, vm_offset_t addr2)
1090{
1091
1092	if (smp_started) {
1093		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1094	}
1095}
1096
1097/*
1098 * send an IPI to a set of cpus.
1099 */
1100void
1101ipi_selected(cpumask_t cpus, u_int ipi)
1102{
1103	int cpu;
1104	u_int bitmap = 0;
1105	u_int old_pending;
1106	u_int new_pending;
1107
1108	if (IPI_IS_BITMAPED(ipi)) {
1109		bitmap = 1 << ipi;
1110		ipi = IPI_BITMAP_VECTOR;
1111	}
1112
1113	/*
1114	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1115	 * of help in order to understand what is the source.
1116	 * Set the mask of receiving CPUs for this purpose.
1117	 */
1118	if (ipi == IPI_STOP_HARD)
1119		atomic_set_int(&ipi_nmi_pending, cpus);
1120
1121	CTR3(KTR_SMP, "%s: cpus: %x ipi: %x", __func__, cpus, ipi);
1122	while ((cpu = ffs(cpus)) != 0) {
1123		cpu--;
1124		cpus &= ~(1 << cpu);
1125
1126		KASSERT(cpu_apic_ids[cpu] != -1,
1127		    ("IPI to non-existent CPU %d", cpu));
1128
1129		if (bitmap) {
1130			do {
1131				old_pending = cpu_ipi_pending[cpu];
1132				new_pending = old_pending | bitmap;
1133			} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],old_pending, new_pending));
1134
1135			if (!old_pending)
1136				ipi_pcpu(cpu, RESCHEDULE_VECTOR);
1137			continue;
1138
1139		} else {
1140			KASSERT(call_data != NULL, ("call_data not set"));
1141			ipi_pcpu(cpu, CALL_FUNCTION_VECTOR);
1142		}
1143	}
1144}
1145
1146/*
1147 * send an IPI to all CPUs EXCEPT myself
1148 */
1149void
1150ipi_all_but_self(u_int ipi)
1151{
1152
1153	/*
1154	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1155	 * of help in order to understand what is the source.
1156	 * Set the mask of receiving CPUs for this purpose.
1157	 */
1158	if (ipi == IPI_STOP_HARD)
1159		atomic_set_int(&ipi_nmi_pending, PCPU_GET(other_cpus));
1160
1161	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1162	ipi_selected(PCPU_GET(other_cpus), ipi);
1163}
1164
1165int
1166ipi_nmi_handler()
1167{
1168	cpumask_t cpumask;
1169
1170	/*
1171	 * As long as there is not a simple way to know about a NMI's
1172	 * source, if the bitmask for the current CPU is present in
1173	 * the global pending bitword an IPI_STOP_HARD has been issued
1174	 * and should be handled.
1175	 */
1176	cpumask = PCPU_GET(cpumask);
1177	if ((ipi_nmi_pending & cpumask) == 0)
1178		return (1);
1179
1180	atomic_clear_int(&ipi_nmi_pending, cpumask);
1181	cpustop_handler();
1182	return (0);
1183}
1184
1185/*
1186 * Handle an IPI_STOP by saving our current context and spinning until we
1187 * are resumed.
1188 */
1189void
1190cpustop_handler(void)
1191{
1192	int cpu = PCPU_GET(cpuid);
1193	int cpumask = PCPU_GET(cpumask);
1194
1195	savectx(&stoppcbs[cpu]);
1196
1197	/* Indicate that we are stopped */
1198	atomic_set_int(&stopped_cpus, cpumask);
1199
1200	/* Wait for restart */
1201	while (!(started_cpus & cpumask))
1202	    ia32_pause();
1203
1204	atomic_clear_int(&started_cpus, cpumask);
1205	atomic_clear_int(&stopped_cpus, cpumask);
1206
1207	if (cpu == 0 && cpustop_restartfunc != NULL) {
1208		cpustop_restartfunc();
1209		cpustop_restartfunc = NULL;
1210	}
1211}
1212
1213/*
1214 * This is called once the rest of the system is up and running and we're
1215 * ready to let the AP's out of the pen.
1216 */
1217static void
1218release_aps(void *dummy __unused)
1219{
1220
1221	if (mp_ncpus == 1)
1222		return;
1223	atomic_store_rel_int(&aps_ready, 1);
1224	while (smp_started == 0)
1225		ia32_pause();
1226}
1227SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1228SYSINIT(start_ipis, SI_SUB_INTR, SI_ORDER_ANY, xen_smp_intr_init_cpus, NULL);
1229
1230