pmap.c revision 99987
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 99987 2002-07-14 20:24:40Z alc $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176static int pmap_pagedaemon_waken = 0;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static void	pmap_remove_all(vm_page_t m);
207static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte);
209static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
210static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
211static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
212					vm_offset_t va);
213static boolean_t pmap_testbit(vm_page_t m, int bit);
214static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m);
216
217static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
218
219static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
220static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
221static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
222static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
223static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
226
227static pd_entry_t pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE pt_entry_t *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	pd_entry_t *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr)
262{
263	vm_offset_t newaddr = addr;
264
265#ifndef DISABLE_PSE
266	if (cpu_feature & CPUID_PSE)
267		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
268#endif
269	return newaddr;
270}
271
272/*
273 *	Bootstrap the system enough to run with virtual memory.
274 *
275 *	On the i386 this is called after mapping has already been enabled
276 *	and just syncs the pmap module with what has already been done.
277 *	[We can't call it easily with mapping off since the kernel is not
278 *	mapped with PA == VA, hence we would have to relocate every address
279 *	from the linked base (virtual) address "KERNBASE" to the actual
280 *	(physical) address starting relative to 0]
281 */
282void
283pmap_bootstrap(firstaddr, loadaddr)
284	vm_offset_t firstaddr;
285	vm_offset_t loadaddr;
286{
287	vm_offset_t va;
288	pt_entry_t *pte;
289	int i;
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * Initialize the kernel pmap (which is statically allocated).
313	 */
314	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
315	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
316	TAILQ_INIT(&kernel_pmap->pm_pvlist);
317	LIST_INIT(&allpmaps);
318	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 * CMAP3 is used for the idle process page zeroing.
334	 */
335	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
336	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
337	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
338
339	/*
340	 * Crashdump maps.
341	 */
342	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
343
344	/*
345	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
346	 * XXX ptmmap is not used.
347	 */
348	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
349
350	/*
351	 * msgbufp is used to map the system message buffer.
352	 * XXX msgbufmap is not used.
353	 */
354	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
355	       atop(round_page(MSGBUF_SIZE)))
356
357	/*
358	 * ptemap is used for pmap_pte_quick
359	 */
360	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
361
362	virtual_avail = va;
363
364	*CMAP1 = *CMAP2 = 0;
365	for (i = 0; i < NKPT; i++)
366		PTD[i] = 0;
367
368	pgeflag = 0;
369#ifndef DISABLE_PG_G
370	if (cpu_feature & CPUID_PGE)
371		pgeflag = PG_G;
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#ifndef DISABLE_PSE
385	if (cpu_feature & CPUID_PSE) {
386		pd_entry_t ptditmp;
387		/*
388		 * Note that we have enabled PSE mode
389		 */
390		pseflag = PG_PS;
391		ptditmp = *(PTmap + i386_btop(KERNBASE));
392		ptditmp &= ~(NBPDR - 1);
393		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
394		pdir4mb = ptditmp;
395	}
396#endif
397#ifndef SMP
398	/*
399	 * Turn on PGE/PSE.  SMP does this later on since the
400	 * 4K page tables are required for AP boot (for now).
401	 * XXX fixme.
402	 */
403	pmap_set_opt();
404#endif
405#ifdef SMP
406	if (cpu_apic_address == 0)
407		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
408
409	/* local apic is mapped on last page */
410	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
411	    (cpu_apic_address & PG_FRAME));
412#endif
413	invltlb();
414}
415
416/*
417 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
418 * BSP will run this after all the AP's have started up.
419 */
420void
421pmap_set_opt(void)
422{
423	pt_entry_t *pte;
424	vm_offset_t va, endva;
425
426	if (pgeflag && (cpu_feature & CPUID_PGE)) {
427		load_cr4(rcr4() | CR4_PGE);
428		invltlb();		/* Insurance */
429	}
430#ifndef DISABLE_PSE
431	if (pseflag && (cpu_feature & CPUID_PSE)) {
432		load_cr4(rcr4() | CR4_PSE);
433		invltlb();		/* Insurance */
434	}
435#endif
436	if (PCPU_GET(cpuid) == 0) {
437#ifndef DISABLE_PSE
438		if (pdir4mb) {
439			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
440			invltlb();	/* Insurance */
441		}
442#endif
443		if (pgeflag) {
444			/* Turn on PG_G for text, data, bss pages. */
445			va = (vm_offset_t)btext;
446			endva = KERNBASE + KERNend;
447			while (va < endva) {
448				pte = vtopte(va);
449				if (*pte)
450					*pte |= pgeflag;
451				va += PAGE_SIZE;
452			}
453			invltlb();	/* Insurance */
454		}
455		/*
456		 * We do not need to broadcast the invltlb here, because
457		 * each AP does it the moment it is released from the boot
458		 * lock.  See ap_init().
459		 */
460	}
461}
462
463void *
464pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
465{
466	*flags = UMA_SLAB_PRIV;
467	return (void *)kmem_alloc(kernel_map, bytes);
468}
469
470/*
471 *	Initialize the pmap module.
472 *	Called by vm_init, to initialize any structures that the pmap
473 *	system needs to map virtual memory.
474 *	pmap_init has been enhanced to support in a fairly consistant
475 *	way, discontiguous physical memory.
476 */
477void
478pmap_init(phys_start, phys_end)
479	vm_offset_t phys_start, phys_end;
480{
481	int i;
482	int initial_pvs;
483
484	/*
485	 * object for kernel page table pages
486	 */
487	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
488
489	/*
490	 * Allocate memory for random pmap data structures.  Includes the
491	 * pv_head_table.
492	 */
493
494	for(i = 0; i < vm_page_array_size; i++) {
495		vm_page_t m;
496
497		m = &vm_page_array[i];
498		TAILQ_INIT(&m->md.pv_list);
499		m->md.pv_list_count = 0;
500	}
501
502	/*
503	 * init the pv free list
504	 */
505	initial_pvs = vm_page_array_size;
506	if (initial_pvs < MINPV)
507		initial_pvs = MINPV;
508	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
509	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
510	uma_zone_set_allocf(pvzone, pmap_allocf);
511	uma_prealloc(pvzone, initial_pvs);
512
513	/*
514	 * Now it is safe to enable pv_table recording.
515	 */
516	pmap_initialized = TRUE;
517}
518
519/*
520 * Initialize the address space (zone) for the pv_entries.  Set a
521 * high water mark so that the system can recover from excessive
522 * numbers of pv entries.
523 */
524void
525pmap_init2()
526{
527	int shpgperproc = PMAP_SHPGPERPROC;
528
529	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
530	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
531	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
532	pv_entry_high_water = 9 * (pv_entry_max / 10);
533	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
534}
535
536
537/***************************************************
538 * Low level helper routines.....
539 ***************************************************/
540
541#if defined(PMAP_DIAGNOSTIC)
542
543/*
544 * This code checks for non-writeable/modified pages.
545 * This should be an invalid condition.
546 */
547static int
548pmap_nw_modified(pt_entry_t ptea)
549{
550	int pte;
551
552	pte = (int) ptea;
553
554	if ((pte & (PG_M|PG_RW)) == PG_M)
555		return 1;
556	else
557		return 0;
558}
559#endif
560
561
562/*
563 * this routine defines the region(s) of memory that should
564 * not be tested for the modified bit.
565 */
566static PMAP_INLINE int
567pmap_track_modified(vm_offset_t va)
568{
569	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
570		return 1;
571	else
572		return 0;
573}
574
575#ifdef I386_CPU
576/*
577 * i386 only has "invalidate everything" and no SMP to worry about.
578 */
579PMAP_INLINE void
580pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
581{
582
583	if (pmap == kernel_pmap || pmap->pm_active)
584		invltlb();
585}
586
587PMAP_INLINE void
588pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
589{
590
591	if (pmap == kernel_pmap || pmap->pm_active)
592		invltlb();
593}
594
595PMAP_INLINE void
596pmap_invalidate_all(pmap_t pmap)
597{
598
599	if (pmap == kernel_pmap || pmap->pm_active)
600		invltlb();
601}
602#else /* !I386_CPU */
603#ifdef SMP
604/*
605 * For SMP, these functions have to use the IPI mechanism for coherence.
606 */
607void
608pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
609{
610	u_int cpumask;
611	u_int other_cpus;
612
613	critical_enter();
614	/*
615	 * We need to disable interrupt preemption but MUST NOT have
616	 * interrupts disabled here.
617	 * XXX we may need to hold schedlock to get a coherent pm_active
618	 */
619	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
620		invlpg(va);
621		smp_invlpg(va);
622	} else {
623		cpumask = PCPU_GET(cpumask);
624		other_cpus = PCPU_GET(other_cpus);
625		if (pmap->pm_active & cpumask)
626			invlpg(va);
627		if (pmap->pm_active & other_cpus)
628			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
629	}
630	critical_exit();
631}
632
633void
634pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
635{
636	u_int cpumask;
637	u_int other_cpus;
638	vm_offset_t addr;
639
640	critical_enter();
641	/*
642	 * We need to disable interrupt preemption but MUST NOT have
643	 * interrupts disabled here.
644	 * XXX we may need to hold schedlock to get a coherent pm_active
645	 */
646	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
647		for (addr = sva; addr < eva; addr += PAGE_SIZE)
648			invlpg(addr);
649		smp_invlpg_range(sva, eva);
650	} else {
651		cpumask = PCPU_GET(cpumask);
652		other_cpus = PCPU_GET(other_cpus);
653		if (pmap->pm_active & cpumask)
654			for (addr = sva; addr < eva; addr += PAGE_SIZE)
655				invlpg(addr);
656		if (pmap->pm_active & other_cpus)
657			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
658			    sva, eva);
659	}
660	critical_exit();
661}
662
663void
664pmap_invalidate_all(pmap_t pmap)
665{
666	u_int cpumask;
667	u_int other_cpus;
668
669	critical_enter();
670	/*
671	 * We need to disable interrupt preemption but MUST NOT have
672	 * interrupts disabled here.
673	 * XXX we may need to hold schedlock to get a coherent pm_active
674	 */
675	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
676		invltlb();
677		smp_invltlb();
678	} else {
679		cpumask = PCPU_GET(cpumask);
680		other_cpus = PCPU_GET(other_cpus);
681		if (pmap->pm_active & cpumask)
682			invltlb();
683		if (pmap->pm_active & other_cpus)
684			smp_masked_invltlb(pmap->pm_active & other_cpus);
685	}
686	critical_exit();
687}
688#else /* !SMP */
689/*
690 * Normal, non-SMP, 486+ invalidation functions.
691 * We inline these within pmap.c for speed.
692 */
693PMAP_INLINE void
694pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
695{
696
697	if (pmap == kernel_pmap || pmap->pm_active)
698		invlpg(va);
699}
700
701PMAP_INLINE void
702pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
703{
704	vm_offset_t addr;
705
706	if (pmap == kernel_pmap || pmap->pm_active)
707		for (addr = sva; addr < eva; addr += PAGE_SIZE)
708			invlpg(addr);
709}
710
711PMAP_INLINE void
712pmap_invalidate_all(pmap_t pmap)
713{
714
715	if (pmap == kernel_pmap || pmap->pm_active)
716		invltlb();
717}
718#endif /* !SMP */
719#endif /* !I386_CPU */
720
721/*
722 * Return an address which is the base of the Virtual mapping of
723 * all the PTEs for the given pmap. Note this doesn't say that
724 * all the PTEs will be present or that the pages there are valid.
725 * The PTEs are made available by the recursive mapping trick.
726 * It will map in the alternate PTE space if needed.
727 */
728static pt_entry_t *
729get_ptbase(pmap)
730	pmap_t pmap;
731{
732	pd_entry_t frame;
733
734	/* are we current address space or kernel? */
735	if (pmap == kernel_pmap)
736		return PTmap;
737	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
738	if (frame == (PTDpde & PG_FRAME))
739		return PTmap;
740	/* otherwise, we are alternate address space */
741	if (frame != (APTDpde & PG_FRAME)) {
742		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
743		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
744	}
745	return APTmap;
746}
747
748/*
749 * Super fast pmap_pte routine best used when scanning
750 * the pv lists.  This eliminates many coarse-grained
751 * invltlb calls.  Note that many of the pv list
752 * scans are across different pmaps.  It is very wasteful
753 * to do an entire invltlb for checking a single mapping.
754 */
755
756static pt_entry_t *
757pmap_pte_quick(pmap, va)
758	register pmap_t pmap;
759	vm_offset_t va;
760{
761	pd_entry_t pde, newpf;
762	pde = pmap->pm_pdir[va >> PDRSHIFT];
763	if (pde != 0) {
764		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
765		unsigned index = i386_btop(va);
766		/* are we current address space or kernel? */
767		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
768			return PTmap + index;
769		newpf = pde & PG_FRAME;
770		if (((*PMAP1) & PG_FRAME) != newpf) {
771			*PMAP1 = newpf | PG_RW | PG_V;
772			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
773		}
774		return PADDR1 + (index & (NPTEPG - 1));
775	}
776	return (0);
777}
778
779/*
780 *	Routine:	pmap_extract
781 *	Function:
782 *		Extract the physical page address associated
783 *		with the given map/virtual_address pair.
784 */
785vm_offset_t
786pmap_extract(pmap, va)
787	register pmap_t pmap;
788	vm_offset_t va;
789{
790	vm_offset_t rtval;	/* XXX FIXME */
791	vm_offset_t pdirindex;
792
793	if (pmap == 0)
794		return 0;
795	pdirindex = va >> PDRSHIFT;
796	rtval = pmap->pm_pdir[pdirindex];
797	if (rtval != 0) {
798		pt_entry_t *pte;
799		if ((rtval & PG_PS) != 0) {
800			rtval &= ~(NBPDR - 1);
801			rtval |= va & (NBPDR - 1);
802			return rtval;
803		}
804		pte = get_ptbase(pmap) + i386_btop(va);
805		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
806		return rtval;
807	}
808	return 0;
809
810}
811
812/***************************************************
813 * Low level mapping routines.....
814 ***************************************************/
815
816/*
817 * Add a wired page to the kva.
818 * Note: not SMP coherent.
819 */
820PMAP_INLINE void
821pmap_kenter(vm_offset_t va, vm_offset_t pa)
822{
823	pt_entry_t *pte;
824
825	pte = vtopte(va);
826	*pte = pa | PG_RW | PG_V | pgeflag;
827}
828
829/*
830 * Remove a page from the kernel pagetables.
831 * Note: not SMP coherent.
832 */
833PMAP_INLINE void
834pmap_kremove(vm_offset_t va)
835{
836	pt_entry_t *pte;
837
838	pte = vtopte(va);
839	*pte = 0;
840}
841
842/*
843 *	Used to map a range of physical addresses into kernel
844 *	virtual address space.
845 *
846 *	The value passed in '*virt' is a suggested virtual address for
847 *	the mapping. Architectures which can support a direct-mapped
848 *	physical to virtual region can return the appropriate address
849 *	within that region, leaving '*virt' unchanged. Other
850 *	architectures should map the pages starting at '*virt' and
851 *	update '*virt' with the first usable address after the mapped
852 *	region.
853 */
854vm_offset_t
855pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
856{
857	vm_offset_t va, sva;
858
859	va = sva = *virt;
860	while (start < end) {
861		pmap_kenter(va, start);
862		va += PAGE_SIZE;
863		start += PAGE_SIZE;
864	}
865	pmap_invalidate_range(kernel_pmap, sva, va);
866	*virt = va;
867	return (sva);
868}
869
870
871/*
872 * Add a list of wired pages to the kva
873 * this routine is only used for temporary
874 * kernel mappings that do not need to have
875 * page modification or references recorded.
876 * Note that old mappings are simply written
877 * over.  The page *must* be wired.
878 * Note: SMP coherent.  Uses a ranged shootdown IPI.
879 */
880void
881pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
882{
883	vm_offset_t va;
884
885	va = sva;
886	while (count-- > 0) {
887		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
888		va += PAGE_SIZE;
889		m++;
890	}
891	pmap_invalidate_range(kernel_pmap, sva, va);
892}
893
894/*
895 * This routine tears out page mappings from the
896 * kernel -- it is meant only for temporary mappings.
897 * Note: SMP coherent.  Uses a ranged shootdown IPI.
898 */
899void
900pmap_qremove(vm_offset_t sva, int count)
901{
902	vm_offset_t va;
903
904	va = sva;
905	while (count-- > 0) {
906		pmap_kremove(va);
907		va += PAGE_SIZE;
908	}
909	pmap_invalidate_range(kernel_pmap, sva, va);
910}
911
912static vm_page_t
913pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
914{
915	vm_page_t m;
916
917retry:
918	m = vm_page_lookup(object, pindex);
919	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
920		goto retry;
921	return m;
922}
923
924/*
925 * Create the kernel stack (including pcb for i386) for a new thread.
926 * This routine directly affects the fork perf for a process and
927 * create performance for a thread.
928 */
929void
930pmap_new_thread(struct thread *td)
931{
932	int i;
933	vm_page_t ma[KSTACK_PAGES];
934	vm_object_t ksobj;
935	vm_page_t m;
936	vm_offset_t ks;
937
938	/*
939	 * allocate object for the kstack
940	 */
941	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
942	td->td_kstack_obj = ksobj;
943
944	/* get a kernel virtual address for the kstack for this thread */
945#ifdef KSTACK_GUARD
946	ks = kmem_alloc_nofault(kernel_map, (KSTACK_PAGES + 1) * PAGE_SIZE);
947	if (ks == 0)
948		panic("pmap_new_thread: kstack allocation failed");
949	if (*vtopte(ks) != 0)
950		pmap_qremove(ks, 1);
951	ks += PAGE_SIZE;
952	td->td_kstack = ks;
953#else
954	/* get a kernel virtual address for the kstack for this thread */
955	ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
956	if (ks == 0)
957		panic("pmap_new_thread: kstack allocation failed");
958	td->td_kstack = ks;
959#endif
960	/*
961	 * For the length of the stack, link in a real page of ram for each
962	 * page of stack.
963	 */
964	for (i = 0; i < KSTACK_PAGES; i++) {
965		/*
966		 * Get a kernel stack page
967		 */
968		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
969		ma[i] = m;
970
971		/*
972		 * Wire the page
973		 */
974		m->wire_count++;
975		cnt.v_wire_count++;
976
977		vm_page_wakeup(m);
978		vm_page_flag_clear(m, PG_ZERO);
979		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
980		m->valid = VM_PAGE_BITS_ALL;
981	}
982	pmap_qenter(ks, ma, KSTACK_PAGES);
983}
984
985/*
986 * Dispose the kernel stack for a thread that has exited.
987 * This routine directly impacts the exit perf of a process and thread.
988 */
989void
990pmap_dispose_thread(td)
991	struct thread *td;
992{
993	int i;
994	vm_object_t ksobj;
995	vm_offset_t ks;
996	vm_page_t m;
997
998	ksobj = td->td_kstack_obj;
999	ks = td->td_kstack;
1000	pmap_qremove(ks, KSTACK_PAGES);
1001	for (i = 0; i < KSTACK_PAGES; i++) {
1002		m = vm_page_lookup(ksobj, i);
1003		if (m == NULL)
1004			panic("pmap_dispose_thread: kstack already missing?");
1005		vm_page_lock_queues();
1006		vm_page_busy(m);
1007		vm_page_unwire(m, 0);
1008		vm_page_free(m);
1009		vm_page_unlock_queues();
1010	}
1011	/*
1012	 * Free the space that this stack was mapped to in the kernel
1013	 * address map.
1014	 */
1015#ifdef KSTACK_GUARD
1016	kmem_free(kernel_map, ks - PAGE_SIZE, (KSTACK_PAGES + 1) * PAGE_SIZE);
1017#else
1018	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
1019#endif
1020	vm_object_deallocate(ksobj);
1021}
1022
1023/*
1024 * Allow the Kernel stack for a thread to be prejudicially paged out.
1025 */
1026void
1027pmap_swapout_thread(td)
1028	struct thread *td;
1029{
1030	int i;
1031	vm_object_t ksobj;
1032	vm_offset_t ks;
1033	vm_page_t m;
1034
1035	ksobj = td->td_kstack_obj;
1036	ks = td->td_kstack;
1037	pmap_qremove(ks, KSTACK_PAGES);
1038	for (i = 0; i < KSTACK_PAGES; i++) {
1039		m = vm_page_lookup(ksobj, i);
1040		if (m == NULL)
1041			panic("pmap_swapout_thread: kstack already missing?");
1042		vm_page_lock_queues();
1043		vm_page_dirty(m);
1044		vm_page_unwire(m, 0);
1045		vm_page_unlock_queues();
1046	}
1047}
1048
1049/*
1050 * Bring the kernel stack for a specified thread back in.
1051 */
1052void
1053pmap_swapin_thread(td)
1054	struct thread *td;
1055{
1056	int i, rv;
1057	vm_page_t ma[KSTACK_PAGES];
1058	vm_object_t ksobj;
1059	vm_offset_t ks;
1060	vm_page_t m;
1061
1062	ksobj = td->td_kstack_obj;
1063	ks = td->td_kstack;
1064	for (i = 0; i < KSTACK_PAGES; i++) {
1065		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1066		if (m->valid != VM_PAGE_BITS_ALL) {
1067			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1068			if (rv != VM_PAGER_OK)
1069				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1070			m = vm_page_lookup(ksobj, i);
1071			m->valid = VM_PAGE_BITS_ALL;
1072		}
1073		ma[i] = m;
1074		vm_page_lock_queues();
1075		vm_page_wire(m);
1076		vm_page_wakeup(m);
1077		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1078		vm_page_unlock_queues();
1079	}
1080	pmap_qenter(ks, ma, KSTACK_PAGES);
1081}
1082
1083/***************************************************
1084 * Page table page management routines.....
1085 ***************************************************/
1086
1087/*
1088 * This routine unholds page table pages, and if the hold count
1089 * drops to zero, then it decrements the wire count.
1090 */
1091static int
1092_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1093{
1094
1095	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1096		;
1097
1098	if (m->hold_count == 0) {
1099		vm_offset_t pteva;
1100		/*
1101		 * unmap the page table page
1102		 */
1103		pmap->pm_pdir[m->pindex] = 0;
1104		--pmap->pm_stats.resident_count;
1105		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1106		    (PTDpde & PG_FRAME)) {
1107			/*
1108			 * Do a invltlb to make the invalidated mapping
1109			 * take effect immediately.
1110			 */
1111			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1112			pmap_invalidate_page(pmap, pteva);
1113		}
1114
1115		if (pmap->pm_ptphint == m)
1116			pmap->pm_ptphint = NULL;
1117
1118		/*
1119		 * If the page is finally unwired, simply free it.
1120		 */
1121		--m->wire_count;
1122		if (m->wire_count == 0) {
1123
1124			vm_page_flash(m);
1125			vm_page_busy(m);
1126			vm_page_free_zero(m);
1127			--cnt.v_wire_count;
1128		}
1129		return 1;
1130	}
1131	return 0;
1132}
1133
1134static PMAP_INLINE int
1135pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1136{
1137	vm_page_unhold(m);
1138	if (m->hold_count == 0)
1139		return _pmap_unwire_pte_hold(pmap, m);
1140	else
1141		return 0;
1142}
1143
1144/*
1145 * After removing a page table entry, this routine is used to
1146 * conditionally free the page, and manage the hold/wire counts.
1147 */
1148static int
1149pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1150{
1151	unsigned ptepindex;
1152	if (va >= VM_MAXUSER_ADDRESS)
1153		return 0;
1154
1155	if (mpte == NULL) {
1156		ptepindex = (va >> PDRSHIFT);
1157		if (pmap->pm_ptphint &&
1158			(pmap->pm_ptphint->pindex == ptepindex)) {
1159			mpte = pmap->pm_ptphint;
1160		} else {
1161			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1162			pmap->pm_ptphint = mpte;
1163		}
1164	}
1165
1166	return pmap_unwire_pte_hold(pmap, mpte);
1167}
1168
1169void
1170pmap_pinit0(pmap)
1171	struct pmap *pmap;
1172{
1173	pmap->pm_pdir =
1174		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1175	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1176#ifndef I386_CPU
1177	invlpg((vm_offset_t)pmap->pm_pdir);
1178#else
1179	invltlb();
1180#endif
1181	pmap->pm_ptphint = NULL;
1182	pmap->pm_active = 0;
1183	TAILQ_INIT(&pmap->pm_pvlist);
1184	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1185	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1186}
1187
1188/*
1189 * Initialize a preallocated and zeroed pmap structure,
1190 * such as one in a vmspace structure.
1191 */
1192void
1193pmap_pinit(pmap)
1194	register struct pmap *pmap;
1195{
1196	vm_page_t ptdpg;
1197
1198	/*
1199	 * No need to allocate page table space yet but we do need a valid
1200	 * page directory table.
1201	 */
1202	if (pmap->pm_pdir == NULL)
1203		pmap->pm_pdir =
1204			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1205
1206	/*
1207	 * allocate object for the ptes
1208	 */
1209	if (pmap->pm_pteobj == NULL)
1210		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1211
1212	/*
1213	 * allocate the page directory page
1214	 */
1215	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1216			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1217
1218	ptdpg->wire_count = 1;
1219	++cnt.v_wire_count;
1220
1221
1222	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1223	ptdpg->valid = VM_PAGE_BITS_ALL;
1224
1225	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1226	if ((ptdpg->flags & PG_ZERO) == 0)
1227		bzero(pmap->pm_pdir, PAGE_SIZE);
1228
1229	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1230	/* Wire in kernel global address entries. */
1231	/* XXX copies current process, does not fill in MPPTDI */
1232	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1233#ifdef SMP
1234	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1235#endif
1236
1237	/* install self-referential address mapping entry */
1238	pmap->pm_pdir[PTDPTDI] =
1239		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1240
1241	pmap->pm_active = 0;
1242	pmap->pm_ptphint = NULL;
1243	TAILQ_INIT(&pmap->pm_pvlist);
1244	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1245}
1246
1247/*
1248 * Wire in kernel global address entries.  To avoid a race condition
1249 * between pmap initialization and pmap_growkernel, this procedure
1250 * should be called after the vmspace is attached to the process
1251 * but before this pmap is activated.
1252 */
1253void
1254pmap_pinit2(pmap)
1255	struct pmap *pmap;
1256{
1257	/* XXX: Remove this stub when no longer called */
1258}
1259
1260static int
1261pmap_release_free_page(pmap_t pmap, vm_page_t p)
1262{
1263	pd_entry_t *pde = pmap->pm_pdir;
1264	/*
1265	 * This code optimizes the case of freeing non-busy
1266	 * page-table pages.  Those pages are zero now, and
1267	 * might as well be placed directly into the zero queue.
1268	 */
1269	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1270		return 0;
1271
1272	vm_page_busy(p);
1273
1274	/*
1275	 * Remove the page table page from the processes address space.
1276	 */
1277	pde[p->pindex] = 0;
1278	pmap->pm_stats.resident_count--;
1279
1280	if (p->hold_count)  {
1281		panic("pmap_release: freeing held page table page");
1282	}
1283	/*
1284	 * Page directory pages need to have the kernel
1285	 * stuff cleared, so they can go into the zero queue also.
1286	 */
1287	if (p->pindex == PTDPTDI) {
1288		bzero(pde + KPTDI, nkpt * PTESIZE);
1289#ifdef SMP
1290		pde[MPPTDI] = 0;
1291#endif
1292		pde[APTDPTDI] = 0;
1293		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1294	}
1295
1296	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1297		pmap->pm_ptphint = NULL;
1298
1299	p->wire_count--;
1300	cnt.v_wire_count--;
1301	vm_page_free_zero(p);
1302	return 1;
1303}
1304
1305/*
1306 * this routine is called if the page table page is not
1307 * mapped correctly.
1308 */
1309static vm_page_t
1310_pmap_allocpte(pmap, ptepindex)
1311	pmap_t	pmap;
1312	unsigned ptepindex;
1313{
1314	vm_offset_t pteva, ptepa;	/* XXXPA */
1315	vm_page_t m;
1316
1317	/*
1318	 * Find or fabricate a new pagetable page
1319	 */
1320	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1321			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1322
1323	KASSERT(m->queue == PQ_NONE,
1324		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1325
1326	if (m->wire_count == 0)
1327		cnt.v_wire_count++;
1328	m->wire_count++;
1329
1330	/*
1331	 * Increment the hold count for the page table page
1332	 * (denoting a new mapping.)
1333	 */
1334	m->hold_count++;
1335
1336	/*
1337	 * Map the pagetable page into the process address space, if
1338	 * it isn't already there.
1339	 */
1340
1341	pmap->pm_stats.resident_count++;
1342
1343	ptepa = VM_PAGE_TO_PHYS(m);
1344	pmap->pm_pdir[ptepindex] =
1345		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1346
1347	/*
1348	 * Set the page table hint
1349	 */
1350	pmap->pm_ptphint = m;
1351
1352	/*
1353	 * Try to use the new mapping, but if we cannot, then
1354	 * do it with the routine that maps the page explicitly.
1355	 */
1356	if ((m->flags & PG_ZERO) == 0) {
1357		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1358		    (PTDpde & PG_FRAME)) {
1359			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1360			bzero((caddr_t) pteva, PAGE_SIZE);
1361		} else {
1362			pmap_zero_page(m);
1363		}
1364	}
1365
1366	m->valid = VM_PAGE_BITS_ALL;
1367	vm_page_flag_clear(m, PG_ZERO);
1368	vm_page_flag_set(m, PG_MAPPED);
1369	vm_page_wakeup(m);
1370
1371	return m;
1372}
1373
1374static vm_page_t
1375pmap_allocpte(pmap_t pmap, vm_offset_t va)
1376{
1377	unsigned ptepindex;
1378	pd_entry_t ptepa;
1379	vm_page_t m;
1380
1381	/*
1382	 * Calculate pagetable page index
1383	 */
1384	ptepindex = va >> PDRSHIFT;
1385
1386	/*
1387	 * Get the page directory entry
1388	 */
1389	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1390
1391	/*
1392	 * This supports switching from a 4MB page to a
1393	 * normal 4K page.
1394	 */
1395	if (ptepa & PG_PS) {
1396		pmap->pm_pdir[ptepindex] = 0;
1397		ptepa = 0;
1398		pmap_invalidate_all(kernel_pmap);
1399	}
1400
1401	/*
1402	 * If the page table page is mapped, we just increment the
1403	 * hold count, and activate it.
1404	 */
1405	if (ptepa) {
1406		/*
1407		 * In order to get the page table page, try the
1408		 * hint first.
1409		 */
1410		if (pmap->pm_ptphint &&
1411			(pmap->pm_ptphint->pindex == ptepindex)) {
1412			m = pmap->pm_ptphint;
1413		} else {
1414			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1415			pmap->pm_ptphint = m;
1416		}
1417		m->hold_count++;
1418		return m;
1419	}
1420	/*
1421	 * Here if the pte page isn't mapped, or if it has been deallocated.
1422	 */
1423	return _pmap_allocpte(pmap, ptepindex);
1424}
1425
1426
1427/***************************************************
1428* Pmap allocation/deallocation routines.
1429 ***************************************************/
1430
1431/*
1432 * Release any resources held by the given physical map.
1433 * Called when a pmap initialized by pmap_pinit is being released.
1434 * Should only be called if the map contains no valid mappings.
1435 */
1436void
1437pmap_release(pmap_t pmap)
1438{
1439	vm_page_t p,n,ptdpg;
1440	vm_object_t object = pmap->pm_pteobj;
1441	int curgeneration;
1442
1443#if defined(DIAGNOSTIC)
1444	if (object->ref_count != 1)
1445		panic("pmap_release: pteobj reference count != 1");
1446#endif
1447
1448	ptdpg = NULL;
1449	LIST_REMOVE(pmap, pm_list);
1450retry:
1451	curgeneration = object->generation;
1452	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1453		n = TAILQ_NEXT(p, listq);
1454		if (p->pindex == PTDPTDI) {
1455			ptdpg = p;
1456			continue;
1457		}
1458		while (1) {
1459			if (!pmap_release_free_page(pmap, p) &&
1460				(object->generation != curgeneration))
1461				goto retry;
1462		}
1463	}
1464
1465	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1466		goto retry;
1467}
1468
1469static int
1470kvm_size(SYSCTL_HANDLER_ARGS)
1471{
1472	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1473
1474	return sysctl_handle_long(oidp, &ksize, 0, req);
1475}
1476SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1477    0, 0, kvm_size, "IU", "Size of KVM");
1478
1479static int
1480kvm_free(SYSCTL_HANDLER_ARGS)
1481{
1482	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1483
1484	return sysctl_handle_long(oidp, &kfree, 0, req);
1485}
1486SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1487    0, 0, kvm_free, "IU", "Amount of KVM free");
1488
1489/*
1490 * grow the number of kernel page table entries, if needed
1491 */
1492void
1493pmap_growkernel(vm_offset_t addr)
1494{
1495	struct pmap *pmap;
1496	int s;
1497	vm_offset_t ptppaddr;
1498	vm_page_t nkpg;
1499	pd_entry_t newpdir;
1500
1501	s = splhigh();
1502	if (kernel_vm_end == 0) {
1503		kernel_vm_end = KERNBASE;
1504		nkpt = 0;
1505		while (pdir_pde(PTD, kernel_vm_end)) {
1506			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1507			nkpt++;
1508		}
1509	}
1510	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1511	while (kernel_vm_end < addr) {
1512		if (pdir_pde(PTD, kernel_vm_end)) {
1513			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1514			continue;
1515		}
1516
1517		/*
1518		 * This index is bogus, but out of the way
1519		 */
1520		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1521		if (!nkpg)
1522			panic("pmap_growkernel: no memory to grow kernel");
1523
1524		nkpt++;
1525
1526		vm_page_lock_queues();
1527		vm_page_wire(nkpg);
1528		vm_page_unlock_queues();
1529		pmap_zero_page(nkpg);
1530		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1531		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1532		pdir_pde(PTD, kernel_vm_end) = newpdir;
1533
1534		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1535			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1536		}
1537		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1538	}
1539	splx(s);
1540}
1541
1542
1543/***************************************************
1544 * page management routines.
1545 ***************************************************/
1546
1547/*
1548 * free the pv_entry back to the free list
1549 */
1550static PMAP_INLINE void
1551free_pv_entry(pv_entry_t pv)
1552{
1553	pv_entry_count--;
1554	uma_zfree(pvzone, pv);
1555}
1556
1557/*
1558 * get a new pv_entry, allocating a block from the system
1559 * when needed.
1560 * the memory allocation is performed bypassing the malloc code
1561 * because of the possibility of allocations at interrupt time.
1562 */
1563static pv_entry_t
1564get_pv_entry(void)
1565{
1566	pv_entry_count++;
1567	if (pv_entry_high_water &&
1568		(pv_entry_count > pv_entry_high_water) &&
1569		(pmap_pagedaemon_waken == 0)) {
1570		pmap_pagedaemon_waken = 1;
1571		wakeup (&vm_pages_needed);
1572	}
1573	return uma_zalloc(pvzone, M_NOWAIT);
1574}
1575
1576/*
1577 * This routine is very drastic, but can save the system
1578 * in a pinch.
1579 */
1580void
1581pmap_collect()
1582{
1583	int i;
1584	vm_page_t m;
1585	static int warningdone = 0;
1586
1587	if (pmap_pagedaemon_waken == 0)
1588		return;
1589
1590	if (warningdone < 5) {
1591		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1592		warningdone++;
1593	}
1594
1595	for(i = 0; i < vm_page_array_size; i++) {
1596		m = &vm_page_array[i];
1597		if (m->wire_count || m->hold_count || m->busy ||
1598		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1599			continue;
1600		pmap_remove_all(m);
1601	}
1602	pmap_pagedaemon_waken = 0;
1603}
1604
1605
1606/*
1607 * If it is the first entry on the list, it is actually
1608 * in the header and we must copy the following entry up
1609 * to the header.  Otherwise we must search the list for
1610 * the entry.  In either case we free the now unused entry.
1611 */
1612
1613static int
1614pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1615{
1616	pv_entry_t pv;
1617	int rtval;
1618	int s;
1619
1620	s = splvm();
1621	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1622		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1623			if (pmap == pv->pv_pmap && va == pv->pv_va)
1624				break;
1625		}
1626	} else {
1627		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1628			if (va == pv->pv_va)
1629				break;
1630		}
1631	}
1632
1633	rtval = 0;
1634	if (pv) {
1635		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1636		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1637		m->md.pv_list_count--;
1638		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1639			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1640
1641		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1642		free_pv_entry(pv);
1643	}
1644
1645	splx(s);
1646	return rtval;
1647}
1648
1649/*
1650 * Create a pv entry for page at pa for
1651 * (pmap, va).
1652 */
1653static void
1654pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1655{
1656
1657	int s;
1658	pv_entry_t pv;
1659
1660	s = splvm();
1661	pv = get_pv_entry();
1662	pv->pv_va = va;
1663	pv->pv_pmap = pmap;
1664	pv->pv_ptem = mpte;
1665
1666	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1667	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1668	m->md.pv_list_count++;
1669
1670	splx(s);
1671}
1672
1673/*
1674 * pmap_remove_pte: do the things to unmap a page in a process
1675 */
1676static int
1677pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1678{
1679	pt_entry_t oldpte;
1680	vm_page_t m;
1681
1682	oldpte = atomic_readandclear_int(ptq);
1683	if (oldpte & PG_W)
1684		pmap->pm_stats.wired_count -= 1;
1685	/*
1686	 * Machines that don't support invlpg, also don't support
1687	 * PG_G.
1688	 */
1689	if (oldpte & PG_G)
1690		pmap_invalidate_page(kernel_pmap, va);
1691	pmap->pm_stats.resident_count -= 1;
1692	if (oldpte & PG_MANAGED) {
1693		m = PHYS_TO_VM_PAGE(oldpte);
1694		if (oldpte & PG_M) {
1695#if defined(PMAP_DIAGNOSTIC)
1696			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1697				printf(
1698	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1699				    va, oldpte);
1700			}
1701#endif
1702			if (pmap_track_modified(va))
1703				vm_page_dirty(m);
1704		}
1705		if (oldpte & PG_A)
1706			vm_page_flag_set(m, PG_REFERENCED);
1707		return pmap_remove_entry(pmap, m, va);
1708	} else {
1709		return pmap_unuse_pt(pmap, va, NULL);
1710	}
1711
1712	return 0;
1713}
1714
1715/*
1716 * Remove a single page from a process address space
1717 */
1718static void
1719pmap_remove_page(pmap_t pmap, vm_offset_t va)
1720{
1721	register pt_entry_t *ptq;
1722
1723	/*
1724	 * if there is no pte for this address, just skip it!!!
1725	 */
1726	if (*pmap_pde(pmap, va) == 0) {
1727		return;
1728	}
1729
1730	/*
1731	 * get a local va for mappings for this pmap.
1732	 */
1733	ptq = get_ptbase(pmap) + i386_btop(va);
1734	if (*ptq) {
1735		(void) pmap_remove_pte(pmap, ptq, va);
1736		pmap_invalidate_page(pmap, va);
1737	}
1738	return;
1739}
1740
1741/*
1742 *	Remove the given range of addresses from the specified map.
1743 *
1744 *	It is assumed that the start and end are properly
1745 *	rounded to the page size.
1746 */
1747void
1748pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1749{
1750	register pt_entry_t *ptbase;
1751	vm_offset_t pdnxt;
1752	pd_entry_t ptpaddr;
1753	vm_offset_t sindex, eindex;
1754	int anyvalid;
1755
1756	if (pmap == NULL)
1757		return;
1758
1759	if (pmap->pm_stats.resident_count == 0)
1760		return;
1761
1762	/*
1763	 * special handling of removing one page.  a very
1764	 * common operation and easy to short circuit some
1765	 * code.
1766	 */
1767	if ((sva + PAGE_SIZE == eva) &&
1768	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1769		pmap_remove_page(pmap, sva);
1770		return;
1771	}
1772
1773	anyvalid = 0;
1774
1775	/*
1776	 * Get a local virtual address for the mappings that are being
1777	 * worked with.
1778	 */
1779	ptbase = get_ptbase(pmap);
1780
1781	sindex = i386_btop(sva);
1782	eindex = i386_btop(eva);
1783
1784	for (; sindex < eindex; sindex = pdnxt) {
1785		unsigned pdirindex;
1786
1787		/*
1788		 * Calculate index for next page table.
1789		 */
1790		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1791		if (pmap->pm_stats.resident_count == 0)
1792			break;
1793
1794		pdirindex = sindex / NPDEPG;
1795		ptpaddr = pmap->pm_pdir[pdirindex];
1796		if ((ptpaddr & PG_PS) != 0) {
1797			pmap->pm_pdir[pdirindex] = 0;
1798			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1799			anyvalid++;
1800			continue;
1801		}
1802
1803		/*
1804		 * Weed out invalid mappings. Note: we assume that the page
1805		 * directory table is always allocated, and in kernel virtual.
1806		 */
1807		if (ptpaddr == 0)
1808			continue;
1809
1810		/*
1811		 * Limit our scan to either the end of the va represented
1812		 * by the current page table page, or to the end of the
1813		 * range being removed.
1814		 */
1815		if (pdnxt > eindex) {
1816			pdnxt = eindex;
1817		}
1818
1819		for (; sindex != pdnxt; sindex++) {
1820			vm_offset_t va;
1821			if (ptbase[sindex] == 0) {
1822				continue;
1823			}
1824			va = i386_ptob(sindex);
1825
1826			anyvalid++;
1827			if (pmap_remove_pte(pmap,
1828				ptbase + sindex, va))
1829				break;
1830		}
1831	}
1832
1833	if (anyvalid)
1834		pmap_invalidate_all(pmap);
1835}
1836
1837/*
1838 *	Routine:	pmap_remove_all
1839 *	Function:
1840 *		Removes this physical page from
1841 *		all physical maps in which it resides.
1842 *		Reflects back modify bits to the pager.
1843 *
1844 *	Notes:
1845 *		Original versions of this routine were very
1846 *		inefficient because they iteratively called
1847 *		pmap_remove (slow...)
1848 */
1849
1850static void
1851pmap_remove_all(vm_page_t m)
1852{
1853	register pv_entry_t pv;
1854	pt_entry_t *pte, tpte;
1855	int s;
1856
1857#if defined(PMAP_DIAGNOSTIC)
1858	/*
1859	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1860	 * pages!
1861	 */
1862	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1863		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1864	}
1865#endif
1866
1867	s = splvm();
1868	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1869		pv->pv_pmap->pm_stats.resident_count--;
1870
1871		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1872
1873		tpte = atomic_readandclear_int(pte);
1874		if (tpte & PG_W)
1875			pv->pv_pmap->pm_stats.wired_count--;
1876
1877		if (tpte & PG_A)
1878			vm_page_flag_set(m, PG_REFERENCED);
1879
1880		/*
1881		 * Update the vm_page_t clean and reference bits.
1882		 */
1883		if (tpte & PG_M) {
1884#if defined(PMAP_DIAGNOSTIC)
1885			if (pmap_nw_modified((pt_entry_t) tpte)) {
1886				printf(
1887	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1888				    pv->pv_va, tpte);
1889			}
1890#endif
1891			if (pmap_track_modified(pv->pv_va))
1892				vm_page_dirty(m);
1893		}
1894		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1895
1896		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1897		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1898		m->md.pv_list_count--;
1899		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1900		free_pv_entry(pv);
1901	}
1902
1903	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1904
1905	splx(s);
1906}
1907
1908/*
1909 *	Set the physical protection on the
1910 *	specified range of this map as requested.
1911 */
1912void
1913pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1914{
1915	register pt_entry_t *ptbase;
1916	vm_offset_t pdnxt;
1917	pd_entry_t ptpaddr;
1918	vm_offset_t sindex, eindex;
1919	int anychanged;
1920
1921	if (pmap == NULL)
1922		return;
1923
1924	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1925		pmap_remove(pmap, sva, eva);
1926		return;
1927	}
1928
1929	if (prot & VM_PROT_WRITE)
1930		return;
1931
1932	anychanged = 0;
1933
1934	ptbase = get_ptbase(pmap);
1935
1936	sindex = i386_btop(sva);
1937	eindex = i386_btop(eva);
1938
1939	for (; sindex < eindex; sindex = pdnxt) {
1940
1941		unsigned pdirindex;
1942
1943		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1944
1945		pdirindex = sindex / NPDEPG;
1946		ptpaddr = pmap->pm_pdir[pdirindex];
1947		if ((ptpaddr & PG_PS) != 0) {
1948			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1949			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1950			anychanged++;
1951			continue;
1952		}
1953
1954		/*
1955		 * Weed out invalid mappings. Note: we assume that the page
1956		 * directory table is always allocated, and in kernel virtual.
1957		 */
1958		if (ptpaddr == 0)
1959			continue;
1960
1961		if (pdnxt > eindex) {
1962			pdnxt = eindex;
1963		}
1964
1965		for (; sindex != pdnxt; sindex++) {
1966
1967			pt_entry_t pbits;
1968			vm_page_t m;
1969
1970			pbits = ptbase[sindex];
1971
1972			if (pbits & PG_MANAGED) {
1973				m = NULL;
1974				if (pbits & PG_A) {
1975					m = PHYS_TO_VM_PAGE(pbits);
1976					vm_page_flag_set(m, PG_REFERENCED);
1977					pbits &= ~PG_A;
1978				}
1979				if (pbits & PG_M) {
1980					if (pmap_track_modified(i386_ptob(sindex))) {
1981						if (m == NULL)
1982							m = PHYS_TO_VM_PAGE(pbits);
1983						vm_page_dirty(m);
1984						pbits &= ~PG_M;
1985					}
1986				}
1987			}
1988
1989			pbits &= ~PG_RW;
1990
1991			if (pbits != ptbase[sindex]) {
1992				ptbase[sindex] = pbits;
1993				anychanged = 1;
1994			}
1995		}
1996	}
1997	if (anychanged)
1998		pmap_invalidate_all(pmap);
1999}
2000
2001/*
2002 *	Insert the given physical page (p) at
2003 *	the specified virtual address (v) in the
2004 *	target physical map with the protection requested.
2005 *
2006 *	If specified, the page will be wired down, meaning
2007 *	that the related pte can not be reclaimed.
2008 *
2009 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2010 *	or lose information.  That is, this routine must actually
2011 *	insert this page into the given map NOW.
2012 */
2013void
2014pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2015	   boolean_t wired)
2016{
2017	vm_offset_t pa;
2018	register pt_entry_t *pte;
2019	vm_offset_t opa;
2020	pt_entry_t origpte, newpte;
2021	vm_page_t mpte;
2022
2023	if (pmap == NULL)
2024		return;
2025
2026	va &= PG_FRAME;
2027#ifdef PMAP_DIAGNOSTIC
2028	if (va > VM_MAX_KERNEL_ADDRESS)
2029		panic("pmap_enter: toobig");
2030	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2031		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2032#endif
2033
2034	mpte = NULL;
2035	/*
2036	 * In the case that a page table page is not
2037	 * resident, we are creating it here.
2038	 */
2039	if (va < VM_MAXUSER_ADDRESS) {
2040		mpte = pmap_allocpte(pmap, va);
2041	}
2042#if 0 && defined(PMAP_DIAGNOSTIC)
2043	else {
2044		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2045		origpte = *pdeaddr;
2046		if ((origpte & PG_V) == 0) {
2047			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2048				pmap->pm_pdir[PTDPTDI], origpte, va);
2049		}
2050	}
2051#endif
2052
2053	pte = pmap_pte(pmap, va);
2054
2055	/*
2056	 * Page Directory table entry not valid, we need a new PT page
2057	 */
2058	if (pte == NULL) {
2059		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2060			(void *)pmap->pm_pdir[PTDPTDI], va);
2061	}
2062
2063	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2064	origpte = *(vm_offset_t *)pte;
2065	opa = origpte & PG_FRAME;
2066
2067	if (origpte & PG_PS)
2068		panic("pmap_enter: attempted pmap_enter on 4MB page");
2069
2070	/*
2071	 * Mapping has not changed, must be protection or wiring change.
2072	 */
2073	if (origpte && (opa == pa)) {
2074		/*
2075		 * Wiring change, just update stats. We don't worry about
2076		 * wiring PT pages as they remain resident as long as there
2077		 * are valid mappings in them. Hence, if a user page is wired,
2078		 * the PT page will be also.
2079		 */
2080		if (wired && ((origpte & PG_W) == 0))
2081			pmap->pm_stats.wired_count++;
2082		else if (!wired && (origpte & PG_W))
2083			pmap->pm_stats.wired_count--;
2084
2085#if defined(PMAP_DIAGNOSTIC)
2086		if (pmap_nw_modified((pt_entry_t) origpte)) {
2087			printf(
2088	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2089			    va, origpte);
2090		}
2091#endif
2092
2093		/*
2094		 * Remove extra pte reference
2095		 */
2096		if (mpte)
2097			mpte->hold_count--;
2098
2099		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2100			if ((origpte & PG_RW) == 0) {
2101				*pte |= PG_RW;
2102				pmap_invalidate_page(pmap, va);
2103			}
2104			return;
2105		}
2106
2107		/*
2108		 * We might be turning off write access to the page,
2109		 * so we go ahead and sense modify status.
2110		 */
2111		if (origpte & PG_MANAGED) {
2112			if ((origpte & PG_M) && pmap_track_modified(va)) {
2113				vm_page_t om;
2114				om = PHYS_TO_VM_PAGE(opa);
2115				vm_page_dirty(om);
2116			}
2117			pa |= PG_MANAGED;
2118		}
2119		goto validate;
2120	}
2121	/*
2122	 * Mapping has changed, invalidate old range and fall through to
2123	 * handle validating new mapping.
2124	 */
2125	if (opa) {
2126		int err;
2127		err = pmap_remove_pte(pmap, pte, va);
2128		if (err)
2129			panic("pmap_enter: pte vanished, va: 0x%x", va);
2130	}
2131
2132	/*
2133	 * Enter on the PV list if part of our managed memory. Note that we
2134	 * raise IPL while manipulating pv_table since pmap_enter can be
2135	 * called at interrupt time.
2136	 */
2137	if (pmap_initialized &&
2138	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2139		pmap_insert_entry(pmap, va, mpte, m);
2140		pa |= PG_MANAGED;
2141	}
2142
2143	/*
2144	 * Increment counters
2145	 */
2146	pmap->pm_stats.resident_count++;
2147	if (wired)
2148		pmap->pm_stats.wired_count++;
2149
2150validate:
2151	/*
2152	 * Now validate mapping with desired protection/wiring.
2153	 */
2154	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2155
2156	if (wired)
2157		newpte |= PG_W;
2158	if (va < VM_MAXUSER_ADDRESS)
2159		newpte |= PG_U;
2160	if (pmap == kernel_pmap)
2161		newpte |= pgeflag;
2162
2163	/*
2164	 * if the mapping or permission bits are different, we need
2165	 * to update the pte.
2166	 */
2167	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2168		*pte = newpte | PG_A;
2169		/*if (origpte)*/ {
2170			pmap_invalidate_page(pmap, va);
2171		}
2172	}
2173}
2174
2175/*
2176 * this code makes some *MAJOR* assumptions:
2177 * 1. Current pmap & pmap exists.
2178 * 2. Not wired.
2179 * 3. Read access.
2180 * 4. No page table pages.
2181 * 5. Tlbflush is deferred to calling procedure.
2182 * 6. Page IS managed.
2183 * but is *MUCH* faster than pmap_enter...
2184 */
2185
2186static vm_page_t
2187pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2188{
2189	pt_entry_t *pte;
2190	vm_offset_t pa;
2191
2192	/*
2193	 * In the case that a page table page is not
2194	 * resident, we are creating it here.
2195	 */
2196	if (va < VM_MAXUSER_ADDRESS) {
2197		unsigned ptepindex;
2198		pd_entry_t ptepa;
2199
2200		/*
2201		 * Calculate pagetable page index
2202		 */
2203		ptepindex = va >> PDRSHIFT;
2204		if (mpte && (mpte->pindex == ptepindex)) {
2205			mpte->hold_count++;
2206		} else {
2207retry:
2208			/*
2209			 * Get the page directory entry
2210			 */
2211			ptepa = pmap->pm_pdir[ptepindex];
2212
2213			/*
2214			 * If the page table page is mapped, we just increment
2215			 * the hold count, and activate it.
2216			 */
2217			if (ptepa) {
2218				if (ptepa & PG_PS)
2219					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2220				if (pmap->pm_ptphint &&
2221					(pmap->pm_ptphint->pindex == ptepindex)) {
2222					mpte = pmap->pm_ptphint;
2223				} else {
2224					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2225					pmap->pm_ptphint = mpte;
2226				}
2227				if (mpte == NULL)
2228					goto retry;
2229				mpte->hold_count++;
2230			} else {
2231				mpte = _pmap_allocpte(pmap, ptepindex);
2232			}
2233		}
2234	} else {
2235		mpte = NULL;
2236	}
2237
2238	/*
2239	 * This call to vtopte makes the assumption that we are
2240	 * entering the page into the current pmap.  In order to support
2241	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2242	 * But that isn't as quick as vtopte.
2243	 */
2244	pte = vtopte(va);
2245	if (*pte) {
2246		if (mpte)
2247			pmap_unwire_pte_hold(pmap, mpte);
2248		return 0;
2249	}
2250
2251	/*
2252	 * Enter on the PV list if part of our managed memory. Note that we
2253	 * raise IPL while manipulating pv_table since pmap_enter can be
2254	 * called at interrupt time.
2255	 */
2256	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2257		pmap_insert_entry(pmap, va, mpte, m);
2258
2259	/*
2260	 * Increment counters
2261	 */
2262	pmap->pm_stats.resident_count++;
2263
2264	pa = VM_PAGE_TO_PHYS(m);
2265
2266	/*
2267	 * Now validate mapping with RO protection
2268	 */
2269	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2270		*pte = pa | PG_V | PG_U;
2271	else
2272		*pte = pa | PG_V | PG_U | PG_MANAGED;
2273
2274	return mpte;
2275}
2276
2277/*
2278 * Make a temporary mapping for a physical address.  This is only intended
2279 * to be used for panic dumps.
2280 */
2281void *
2282pmap_kenter_temporary(vm_offset_t pa, int i)
2283{
2284	vm_offset_t va;
2285
2286	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2287	pmap_kenter(va, pa);
2288#ifndef I386_CPU
2289	invlpg(va);
2290#else
2291	invltlb();
2292#endif
2293	return ((void *)crashdumpmap);
2294}
2295
2296#define MAX_INIT_PT (96)
2297/*
2298 * pmap_object_init_pt preloads the ptes for a given object
2299 * into the specified pmap.  This eliminates the blast of soft
2300 * faults on process startup and immediately after an mmap.
2301 */
2302void
2303pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2304		    vm_object_t object, vm_pindex_t pindex,
2305		    vm_size_t size, int limit)
2306{
2307	vm_offset_t tmpidx;
2308	int psize;
2309	vm_page_t p, mpte;
2310	int objpgs;
2311
2312	if (pmap == NULL || object == NULL)
2313		return;
2314
2315	/*
2316	 * This code maps large physical mmap regions into the
2317	 * processor address space.  Note that some shortcuts
2318	 * are taken, but the code works.
2319	 */
2320	if (pseflag && (object->type == OBJT_DEVICE) &&
2321	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2322		int i;
2323		vm_page_t m[1];
2324		unsigned int ptepindex;
2325		int npdes;
2326		pd_entry_t ptepa;
2327
2328		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2329			return;
2330
2331retry:
2332		p = vm_page_lookup(object, pindex);
2333		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2334			goto retry;
2335
2336		if (p == NULL) {
2337			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2338			if (p == NULL)
2339				return;
2340			m[0] = p;
2341
2342			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2343				vm_page_free(p);
2344				return;
2345			}
2346
2347			p = vm_page_lookup(object, pindex);
2348			vm_page_wakeup(p);
2349		}
2350
2351		ptepa = VM_PAGE_TO_PHYS(p);
2352		if (ptepa & (NBPDR - 1)) {
2353			return;
2354		}
2355
2356		p->valid = VM_PAGE_BITS_ALL;
2357
2358		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2359		npdes = size >> PDRSHIFT;
2360		for(i = 0; i < npdes; i++) {
2361			pmap->pm_pdir[ptepindex] =
2362			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2363			ptepa += NBPDR;
2364			ptepindex += 1;
2365		}
2366		vm_page_flag_set(p, PG_MAPPED);
2367		pmap_invalidate_all(kernel_pmap);
2368		return;
2369	}
2370
2371	psize = i386_btop(size);
2372
2373	if ((object->type != OBJT_VNODE) ||
2374	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2375	     (object->resident_page_count > MAX_INIT_PT))) {
2376		return;
2377	}
2378
2379	if (psize + pindex > object->size) {
2380		if (object->size < pindex)
2381			return;
2382		psize = object->size - pindex;
2383	}
2384
2385	mpte = NULL;
2386	/*
2387	 * if we are processing a major portion of the object, then scan the
2388	 * entire thing.
2389	 */
2390	if (psize > (object->resident_page_count >> 2)) {
2391		objpgs = psize;
2392
2393		for (p = TAILQ_FIRST(&object->memq);
2394		    ((objpgs > 0) && (p != NULL));
2395		    p = TAILQ_NEXT(p, listq)) {
2396
2397			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2398				continue;
2399			}
2400			tmpidx = p->pindex - pindex;
2401			/*
2402			 * don't allow an madvise to blow away our really
2403			 * free pages allocating pv entries.
2404			 */
2405			if ((limit & MAP_PREFAULT_MADVISE) &&
2406			    cnt.v_free_count < cnt.v_free_reserved) {
2407				break;
2408			}
2409			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2410				(p->busy == 0) &&
2411			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2412				if ((p->queue - p->pc) == PQ_CACHE)
2413					vm_page_deactivate(p);
2414				vm_page_busy(p);
2415				mpte = pmap_enter_quick(pmap,
2416					addr + i386_ptob(tmpidx), p, mpte);
2417				vm_page_flag_set(p, PG_MAPPED);
2418				vm_page_wakeup(p);
2419			}
2420			objpgs -= 1;
2421		}
2422	} else {
2423		/*
2424		 * else lookup the pages one-by-one.
2425		 */
2426		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2427			/*
2428			 * don't allow an madvise to blow away our really
2429			 * free pages allocating pv entries.
2430			 */
2431			if ((limit & MAP_PREFAULT_MADVISE) &&
2432			    cnt.v_free_count < cnt.v_free_reserved) {
2433				break;
2434			}
2435			p = vm_page_lookup(object, tmpidx + pindex);
2436			if (p &&
2437			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2438				(p->busy == 0) &&
2439			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2440				if ((p->queue - p->pc) == PQ_CACHE)
2441					vm_page_deactivate(p);
2442				vm_page_busy(p);
2443				mpte = pmap_enter_quick(pmap,
2444					addr + i386_ptob(tmpidx), p, mpte);
2445				vm_page_flag_set(p, PG_MAPPED);
2446				vm_page_wakeup(p);
2447			}
2448		}
2449	}
2450	return;
2451}
2452
2453/*
2454 * pmap_prefault provides a quick way of clustering
2455 * pagefaults into a processes address space.  It is a "cousin"
2456 * of pmap_object_init_pt, except it runs at page fault time instead
2457 * of mmap time.
2458 */
2459#define PFBAK 4
2460#define PFFOR 4
2461#define PAGEORDER_SIZE (PFBAK+PFFOR)
2462
2463static int pmap_prefault_pageorder[] = {
2464	-PAGE_SIZE, PAGE_SIZE,
2465	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2466	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2467	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2468};
2469
2470void
2471pmap_prefault(pmap, addra, entry)
2472	pmap_t pmap;
2473	vm_offset_t addra;
2474	vm_map_entry_t entry;
2475{
2476	int i;
2477	vm_offset_t starta;
2478	vm_offset_t addr;
2479	vm_pindex_t pindex;
2480	vm_page_t m, mpte;
2481	vm_object_t object;
2482
2483	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2484		return;
2485
2486	object = entry->object.vm_object;
2487
2488	starta = addra - PFBAK * PAGE_SIZE;
2489	if (starta < entry->start) {
2490		starta = entry->start;
2491	} else if (starta > addra) {
2492		starta = 0;
2493	}
2494
2495	mpte = NULL;
2496	for (i = 0; i < PAGEORDER_SIZE; i++) {
2497		vm_object_t lobject;
2498		pt_entry_t *pte;
2499
2500		addr = addra + pmap_prefault_pageorder[i];
2501		if (addr > addra + (PFFOR * PAGE_SIZE))
2502			addr = 0;
2503
2504		if (addr < starta || addr >= entry->end)
2505			continue;
2506
2507		if ((*pmap_pde(pmap, addr)) == NULL)
2508			continue;
2509
2510		pte = vtopte(addr);
2511		if (*pte)
2512			continue;
2513
2514		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2515		lobject = object;
2516		for (m = vm_page_lookup(lobject, pindex);
2517		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2518		    lobject = lobject->backing_object) {
2519			if (lobject->backing_object_offset & PAGE_MASK)
2520				break;
2521			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2522			m = vm_page_lookup(lobject->backing_object, pindex);
2523		}
2524
2525		/*
2526		 * give-up when a page is not in memory
2527		 */
2528		if (m == NULL)
2529			break;
2530
2531		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2532			(m->busy == 0) &&
2533		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2534
2535			if ((m->queue - m->pc) == PQ_CACHE) {
2536				vm_page_deactivate(m);
2537			}
2538			vm_page_busy(m);
2539			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2540			vm_page_flag_set(m, PG_MAPPED);
2541			vm_page_wakeup(m);
2542		}
2543	}
2544}
2545
2546/*
2547 *	Routine:	pmap_change_wiring
2548 *	Function:	Change the wiring attribute for a map/virtual-address
2549 *			pair.
2550 *	In/out conditions:
2551 *			The mapping must already exist in the pmap.
2552 */
2553void
2554pmap_change_wiring(pmap, va, wired)
2555	register pmap_t pmap;
2556	vm_offset_t va;
2557	boolean_t wired;
2558{
2559	register pt_entry_t *pte;
2560
2561	if (pmap == NULL)
2562		return;
2563
2564	pte = pmap_pte(pmap, va);
2565
2566	if (wired && !pmap_pte_w(pte))
2567		pmap->pm_stats.wired_count++;
2568	else if (!wired && pmap_pte_w(pte))
2569		pmap->pm_stats.wired_count--;
2570
2571	/*
2572	 * Wiring is not a hardware characteristic so there is no need to
2573	 * invalidate TLB.
2574	 */
2575	pmap_pte_set_w(pte, wired);
2576}
2577
2578
2579
2580/*
2581 *	Copy the range specified by src_addr/len
2582 *	from the source map to the range dst_addr/len
2583 *	in the destination map.
2584 *
2585 *	This routine is only advisory and need not do anything.
2586 */
2587
2588void
2589pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2590	  vm_offset_t src_addr)
2591{
2592	vm_offset_t addr;
2593	vm_offset_t end_addr = src_addr + len;
2594	vm_offset_t pdnxt;
2595	pd_entry_t src_frame, dst_frame;
2596	vm_page_t m;
2597
2598	if (dst_addr != src_addr)
2599		return;
2600
2601	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2602	if (src_frame != (PTDpde & PG_FRAME))
2603		return;
2604
2605	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2606	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2607		pt_entry_t *src_pte, *dst_pte;
2608		vm_page_t dstmpte, srcmpte;
2609		pd_entry_t srcptepaddr;
2610		unsigned ptepindex;
2611
2612		if (addr >= UPT_MIN_ADDRESS)
2613			panic("pmap_copy: invalid to pmap_copy page tables\n");
2614
2615		/*
2616		 * Don't let optional prefaulting of pages make us go
2617		 * way below the low water mark of free pages or way
2618		 * above high water mark of used pv entries.
2619		 */
2620		if (cnt.v_free_count < cnt.v_free_reserved ||
2621		    pv_entry_count > pv_entry_high_water)
2622			break;
2623
2624		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2625		ptepindex = addr >> PDRSHIFT;
2626
2627		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2628		if (srcptepaddr == 0)
2629			continue;
2630
2631		if (srcptepaddr & PG_PS) {
2632			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2633				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2634				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2635			}
2636			continue;
2637		}
2638
2639		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2640		if ((srcmpte == NULL) ||
2641		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2642			continue;
2643
2644		if (pdnxt > end_addr)
2645			pdnxt = end_addr;
2646
2647		/*
2648		 * Have to recheck this before every avtopte() call below
2649		 * in case we have blocked and something else used APTDpde.
2650		 */
2651		if (dst_frame != (APTDpde & PG_FRAME)) {
2652			APTDpde = dst_frame | PG_RW | PG_V;
2653			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2654		}
2655		src_pte = vtopte(addr);
2656		dst_pte = avtopte(addr);
2657		while (addr < pdnxt) {
2658			pt_entry_t ptetemp;
2659			ptetemp = *src_pte;
2660			/*
2661			 * we only virtual copy managed pages
2662			 */
2663			if ((ptetemp & PG_MANAGED) != 0) {
2664				/*
2665				 * We have to check after allocpte for the
2666				 * pte still being around...  allocpte can
2667				 * block.
2668				 */
2669				dstmpte = pmap_allocpte(dst_pmap, addr);
2670				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2671					/*
2672					 * Clear the modified and
2673					 * accessed (referenced) bits
2674					 * during the copy.
2675					 */
2676					m = PHYS_TO_VM_PAGE(ptetemp);
2677					*dst_pte = ptetemp & ~(PG_M | PG_A);
2678					dst_pmap->pm_stats.resident_count++;
2679					pmap_insert_entry(dst_pmap, addr,
2680						dstmpte, m);
2681	 			} else {
2682					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2683				}
2684				if (dstmpte->hold_count >= srcmpte->hold_count)
2685					break;
2686			}
2687			addr += PAGE_SIZE;
2688			src_pte++;
2689			dst_pte++;
2690		}
2691	}
2692}
2693
2694#ifdef SMP
2695
2696/*
2697 *	pmap_zpi_switchin*()
2698 *
2699 *	These functions allow us to avoid doing IPIs alltogether in certain
2700 *	temporary page-mapping situations (page zeroing).  Instead to deal
2701 *	with being preempted and moved onto a different cpu we invalidate
2702 *	the page when the scheduler switches us in.  This does not occur
2703 *	very often so we remain relatively optimal with very little effort.
2704 */
2705static void
2706pmap_zpi_switchin12(void)
2707{
2708	invlpg((u_int)CADDR1);
2709	invlpg((u_int)CADDR2);
2710}
2711
2712static void
2713pmap_zpi_switchin2(void)
2714{
2715	invlpg((u_int)CADDR2);
2716}
2717
2718static void
2719pmap_zpi_switchin3(void)
2720{
2721	invlpg((u_int)CADDR3);
2722}
2723
2724#endif
2725
2726/*
2727 *	pmap_zero_page zeros the specified hardware page by mapping
2728 *	the page into KVM and using bzero to clear its contents.
2729 */
2730void
2731pmap_zero_page(vm_page_t m)
2732{
2733	vm_offset_t phys;
2734
2735	phys = VM_PAGE_TO_PHYS(m);
2736	if (*CMAP2)
2737		panic("pmap_zero_page: CMAP2 busy");
2738	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2739#ifdef I386_CPU
2740	invltlb();
2741#else
2742#ifdef SMP
2743	curthread->td_switchin = pmap_zpi_switchin2;
2744#endif
2745	invlpg((u_int)CADDR2);
2746#endif
2747#if defined(I686_CPU)
2748	if (cpu_class == CPUCLASS_686)
2749		i686_pagezero(CADDR2);
2750	else
2751#endif
2752		bzero(CADDR2, PAGE_SIZE);
2753#ifdef SMP
2754	curthread->td_switchin = NULL;
2755#endif
2756	*CMAP2 = 0;
2757}
2758
2759/*
2760 *	pmap_zero_page_area zeros the specified hardware page by mapping
2761 *	the page into KVM and using bzero to clear its contents.
2762 *
2763 *	off and size may not cover an area beyond a single hardware page.
2764 */
2765void
2766pmap_zero_page_area(vm_page_t m, int off, int size)
2767{
2768	vm_offset_t phys;
2769
2770	phys = VM_PAGE_TO_PHYS(m);
2771	if (*CMAP2)
2772		panic("pmap_zero_page: CMAP2 busy");
2773	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2774#ifdef I386_CPU
2775	invltlb();
2776#else
2777#ifdef SMP
2778	curthread->td_switchin = pmap_zpi_switchin2;
2779#endif
2780	invlpg((u_int)CADDR2);
2781#endif
2782#if defined(I686_CPU)
2783	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2784		i686_pagezero(CADDR2);
2785	else
2786#endif
2787		bzero((char *)CADDR2 + off, size);
2788#ifdef SMP
2789	curthread->td_switchin = NULL;
2790#endif
2791	*CMAP2 = 0;
2792}
2793
2794/*
2795 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2796 *	the page into KVM and using bzero to clear its contents.  This
2797 *	is intended to be called from the vm_pagezero process only and
2798 *	outside of Giant.
2799 */
2800void
2801pmap_zero_page_idle(vm_page_t m)
2802{
2803	vm_offset_t phys;
2804
2805	phys = VM_PAGE_TO_PHYS(m);
2806	if (*CMAP3)
2807		panic("pmap_zero_page: CMAP3 busy");
2808	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2809#ifdef I386_CPU
2810	invltlb();
2811#else
2812#ifdef SMP
2813	curthread->td_switchin = pmap_zpi_switchin3;
2814#endif
2815	invlpg((u_int)CADDR3);
2816#endif
2817#if defined(I686_CPU)
2818	if (cpu_class == CPUCLASS_686)
2819		i686_pagezero(CADDR3);
2820	else
2821#endif
2822		bzero(CADDR3, PAGE_SIZE);
2823#ifdef SMP
2824	curthread->td_switchin = NULL;
2825#endif
2826	*CMAP3 = 0;
2827}
2828
2829/*
2830 *	pmap_copy_page copies the specified (machine independent)
2831 *	page by mapping the page into virtual memory and using
2832 *	bcopy to copy the page, one machine dependent page at a
2833 *	time.
2834 */
2835void
2836pmap_copy_page(vm_page_t src, vm_page_t dst)
2837{
2838
2839	if (*CMAP1)
2840		panic("pmap_copy_page: CMAP1 busy");
2841	if (*CMAP2)
2842		panic("pmap_copy_page: CMAP2 busy");
2843	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2844	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2845#ifdef I386_CPU
2846	invltlb();
2847#else
2848#ifdef SMP
2849	curthread->td_switchin = pmap_zpi_switchin12;
2850#endif
2851	invlpg((u_int)CADDR1);
2852	invlpg((u_int)CADDR2);
2853#endif
2854	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2855#ifdef SMP
2856	curthread->td_switchin = NULL;
2857#endif
2858	*CMAP1 = 0;
2859	*CMAP2 = 0;
2860}
2861
2862
2863/*
2864 *	Routine:	pmap_pageable
2865 *	Function:
2866 *		Make the specified pages (by pmap, offset)
2867 *		pageable (or not) as requested.
2868 *
2869 *		A page which is not pageable may not take
2870 *		a fault; therefore, its page table entry
2871 *		must remain valid for the duration.
2872 *
2873 *		This routine is merely advisory; pmap_enter
2874 *		will specify that these pages are to be wired
2875 *		down (or not) as appropriate.
2876 */
2877void
2878pmap_pageable(pmap, sva, eva, pageable)
2879	pmap_t pmap;
2880	vm_offset_t sva, eva;
2881	boolean_t pageable;
2882{
2883}
2884
2885/*
2886 * Returns true if the pmap's pv is one of the first
2887 * 16 pvs linked to from this page.  This count may
2888 * be changed upwards or downwards in the future; it
2889 * is only necessary that true be returned for a small
2890 * subset of pmaps for proper page aging.
2891 */
2892boolean_t
2893pmap_page_exists_quick(pmap, m)
2894	pmap_t pmap;
2895	vm_page_t m;
2896{
2897	pv_entry_t pv;
2898	int loops = 0;
2899	int s;
2900
2901	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2902		return FALSE;
2903
2904	s = splvm();
2905
2906	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2907		if (pv->pv_pmap == pmap) {
2908			splx(s);
2909			return TRUE;
2910		}
2911		loops++;
2912		if (loops >= 16)
2913			break;
2914	}
2915	splx(s);
2916	return (FALSE);
2917}
2918
2919#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2920/*
2921 * Remove all pages from specified address space
2922 * this aids process exit speeds.  Also, this code
2923 * is special cased for current process only, but
2924 * can have the more generic (and slightly slower)
2925 * mode enabled.  This is much faster than pmap_remove
2926 * in the case of running down an entire address space.
2927 */
2928void
2929pmap_remove_pages(pmap, sva, eva)
2930	pmap_t pmap;
2931	vm_offset_t sva, eva;
2932{
2933	pt_entry_t *pte, tpte;
2934	vm_page_t m;
2935	pv_entry_t pv, npv;
2936	int s;
2937
2938#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2939	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2940		printf("warning: pmap_remove_pages called with non-current pmap\n");
2941		return;
2942	}
2943#endif
2944
2945	s = splvm();
2946	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2947
2948		if (pv->pv_va >= eva || pv->pv_va < sva) {
2949			npv = TAILQ_NEXT(pv, pv_plist);
2950			continue;
2951		}
2952
2953#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2954		pte = vtopte(pv->pv_va);
2955#else
2956		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2957#endif
2958		tpte = *pte;
2959
2960		if (tpte == 0) {
2961			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2962							pte, pv->pv_va);
2963			panic("bad pte");
2964		}
2965
2966/*
2967 * We cannot remove wired pages from a process' mapping at this time
2968 */
2969		if (tpte & PG_W) {
2970			npv = TAILQ_NEXT(pv, pv_plist);
2971			continue;
2972		}
2973
2974		m = PHYS_TO_VM_PAGE(tpte);
2975		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2976		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2977		    m, m->phys_addr, tpte));
2978
2979		KASSERT(m < &vm_page_array[vm_page_array_size],
2980			("pmap_remove_pages: bad tpte %x", tpte));
2981
2982		pv->pv_pmap->pm_stats.resident_count--;
2983
2984		*pte = 0;
2985
2986		/*
2987		 * Update the vm_page_t clean and reference bits.
2988		 */
2989		if (tpte & PG_M) {
2990			vm_page_dirty(m);
2991		}
2992
2993		npv = TAILQ_NEXT(pv, pv_plist);
2994		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2995
2996		m->md.pv_list_count--;
2997		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2998		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2999			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3000		}
3001
3002		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3003		free_pv_entry(pv);
3004	}
3005	splx(s);
3006	pmap_invalidate_all(pmap);
3007}
3008
3009/*
3010 * pmap_testbit tests bits in pte's
3011 * note that the testbit/changebit routines are inline,
3012 * and a lot of things compile-time evaluate.
3013 */
3014static boolean_t
3015pmap_testbit(m, bit)
3016	vm_page_t m;
3017	int bit;
3018{
3019	pv_entry_t pv;
3020	pt_entry_t *pte;
3021	int s;
3022
3023	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3024		return FALSE;
3025
3026	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3027		return FALSE;
3028
3029	s = splvm();
3030
3031	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3032		/*
3033		 * if the bit being tested is the modified bit, then
3034		 * mark clean_map and ptes as never
3035		 * modified.
3036		 */
3037		if (bit & (PG_A|PG_M)) {
3038			if (!pmap_track_modified(pv->pv_va))
3039				continue;
3040		}
3041
3042#if defined(PMAP_DIAGNOSTIC)
3043		if (!pv->pv_pmap) {
3044			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3045			continue;
3046		}
3047#endif
3048		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3049		if (*pte & bit) {
3050			splx(s);
3051			return TRUE;
3052		}
3053	}
3054	splx(s);
3055	return (FALSE);
3056}
3057
3058/*
3059 * this routine is used to modify bits in ptes
3060 */
3061static __inline void
3062pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3063{
3064	register pv_entry_t pv;
3065	register pt_entry_t *pte;
3066	int s;
3067
3068	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3069		return;
3070
3071	s = splvm();
3072
3073	/*
3074	 * Loop over all current mappings setting/clearing as appropos If
3075	 * setting RO do we need to clear the VAC?
3076	 */
3077	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3078		/*
3079		 * don't write protect pager mappings
3080		 */
3081		if (!setem && (bit == PG_RW)) {
3082			if (!pmap_track_modified(pv->pv_va))
3083				continue;
3084		}
3085
3086#if defined(PMAP_DIAGNOSTIC)
3087		if (!pv->pv_pmap) {
3088			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3089			continue;
3090		}
3091#endif
3092
3093		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3094
3095		if (setem) {
3096			*pte |= bit;
3097			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3098		} else {
3099			pt_entry_t pbits = *pte;
3100			if (pbits & bit) {
3101				if (bit == PG_RW) {
3102					if (pbits & PG_M) {
3103						vm_page_dirty(m);
3104					}
3105					*pte = pbits & ~(PG_M|PG_RW);
3106				} else {
3107					*pte = pbits & ~bit;
3108				}
3109				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3110			}
3111		}
3112	}
3113	splx(s);
3114}
3115
3116/*
3117 *      pmap_page_protect:
3118 *
3119 *      Lower the permission for all mappings to a given page.
3120 */
3121void
3122pmap_page_protect(vm_page_t m, vm_prot_t prot)
3123{
3124	if ((prot & VM_PROT_WRITE) == 0) {
3125		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3126			pmap_changebit(m, PG_RW, FALSE);
3127		} else {
3128			pmap_remove_all(m);
3129		}
3130	}
3131}
3132
3133vm_offset_t
3134pmap_phys_address(ppn)
3135	int ppn;
3136{
3137	return (i386_ptob(ppn));
3138}
3139
3140/*
3141 *	pmap_ts_referenced:
3142 *
3143 *	Return a count of reference bits for a page, clearing those bits.
3144 *	It is not necessary for every reference bit to be cleared, but it
3145 *	is necessary that 0 only be returned when there are truly no
3146 *	reference bits set.
3147 *
3148 *	XXX: The exact number of bits to check and clear is a matter that
3149 *	should be tested and standardized at some point in the future for
3150 *	optimal aging of shared pages.
3151 */
3152int
3153pmap_ts_referenced(vm_page_t m)
3154{
3155	register pv_entry_t pv, pvf, pvn;
3156	pt_entry_t *pte;
3157	int s;
3158	int rtval = 0;
3159
3160	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3161		return (rtval);
3162
3163	s = splvm();
3164
3165	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3166
3167		pvf = pv;
3168
3169		do {
3170			pvn = TAILQ_NEXT(pv, pv_list);
3171
3172			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3173
3174			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3175
3176			if (!pmap_track_modified(pv->pv_va))
3177				continue;
3178
3179			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3180
3181			if (pte && (*pte & PG_A)) {
3182				*pte &= ~PG_A;
3183
3184				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3185
3186				rtval++;
3187				if (rtval > 4) {
3188					break;
3189				}
3190			}
3191		} while ((pv = pvn) != NULL && pv != pvf);
3192	}
3193	splx(s);
3194
3195	return (rtval);
3196}
3197
3198/*
3199 *	pmap_is_modified:
3200 *
3201 *	Return whether or not the specified physical page was modified
3202 *	in any physical maps.
3203 */
3204boolean_t
3205pmap_is_modified(vm_page_t m)
3206{
3207	return pmap_testbit(m, PG_M);
3208}
3209
3210/*
3211 *	Clear the modify bits on the specified physical page.
3212 */
3213void
3214pmap_clear_modify(vm_page_t m)
3215{
3216	pmap_changebit(m, PG_M, FALSE);
3217}
3218
3219/*
3220 *	pmap_clear_reference:
3221 *
3222 *	Clear the reference bit on the specified physical page.
3223 */
3224void
3225pmap_clear_reference(vm_page_t m)
3226{
3227	pmap_changebit(m, PG_A, FALSE);
3228}
3229
3230/*
3231 * Miscellaneous support routines follow
3232 */
3233
3234static void
3235i386_protection_init()
3236{
3237	register int *kp, prot;
3238
3239	kp = protection_codes;
3240	for (prot = 0; prot < 8; prot++) {
3241		switch (prot) {
3242		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3243			/*
3244			 * Read access is also 0. There isn't any execute bit,
3245			 * so just make it readable.
3246			 */
3247		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3248		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3249		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3250			*kp++ = 0;
3251			break;
3252		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3253		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3254		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3255		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3256			*kp++ = PG_RW;
3257			break;
3258		}
3259	}
3260}
3261
3262/*
3263 * Map a set of physical memory pages into the kernel virtual
3264 * address space. Return a pointer to where it is mapped. This
3265 * routine is intended to be used for mapping device memory,
3266 * NOT real memory.
3267 */
3268void *
3269pmap_mapdev(pa, size)
3270	vm_offset_t pa;
3271	vm_size_t size;
3272{
3273	vm_offset_t va, tmpva, offset;
3274	pt_entry_t *pte;
3275
3276	offset = pa & PAGE_MASK;
3277	size = roundup(offset + size, PAGE_SIZE);
3278
3279	GIANT_REQUIRED;
3280
3281	va = kmem_alloc_pageable(kernel_map, size);
3282	if (!va)
3283		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3284
3285	pa = pa & PG_FRAME;
3286	for (tmpva = va; size > 0; ) {
3287		pte = vtopte(tmpva);
3288		*pte = pa | PG_RW | PG_V | pgeflag;
3289		size -= PAGE_SIZE;
3290		tmpva += PAGE_SIZE;
3291		pa += PAGE_SIZE;
3292	}
3293	pmap_invalidate_range(kernel_pmap, va, tmpva);
3294	return ((void *)(va + offset));
3295}
3296
3297void
3298pmap_unmapdev(va, size)
3299	vm_offset_t va;
3300	vm_size_t size;
3301{
3302	vm_offset_t base, offset, tmpva;
3303	pt_entry_t *pte;
3304
3305	base = va & PG_FRAME;
3306	offset = va & PAGE_MASK;
3307	size = roundup(offset + size, PAGE_SIZE);
3308	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3309		pte = vtopte(tmpva);
3310		*pte = 0;
3311	}
3312	pmap_invalidate_range(kernel_pmap, va, tmpva);
3313	kmem_free(kernel_map, base, size);
3314}
3315
3316/*
3317 * perform the pmap work for mincore
3318 */
3319int
3320pmap_mincore(pmap, addr)
3321	pmap_t pmap;
3322	vm_offset_t addr;
3323{
3324	pt_entry_t *ptep, pte;
3325	vm_page_t m;
3326	int val = 0;
3327
3328	ptep = pmap_pte(pmap, addr);
3329	if (ptep == 0) {
3330		return 0;
3331	}
3332
3333	if ((pte = *ptep) != 0) {
3334		vm_offset_t pa;
3335
3336		val = MINCORE_INCORE;
3337		if ((pte & PG_MANAGED) == 0)
3338			return val;
3339
3340		pa = pte & PG_FRAME;
3341
3342		m = PHYS_TO_VM_PAGE(pa);
3343
3344		/*
3345		 * Modified by us
3346		 */
3347		if (pte & PG_M)
3348			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3349		/*
3350		 * Modified by someone
3351		 */
3352		else if (m->dirty || pmap_is_modified(m))
3353			val |= MINCORE_MODIFIED_OTHER;
3354		/*
3355		 * Referenced by us
3356		 */
3357		if (pte & PG_A)
3358			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3359
3360		/*
3361		 * Referenced by someone
3362		 */
3363		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3364			val |= MINCORE_REFERENCED_OTHER;
3365			vm_page_flag_set(m, PG_REFERENCED);
3366		}
3367	}
3368	return val;
3369}
3370
3371void
3372pmap_activate(struct thread *td)
3373{
3374	struct proc *p = td->td_proc;
3375	pmap_t	pmap;
3376	u_int32_t  cr3;
3377
3378	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3379#if defined(SMP)
3380	pmap->pm_active |= PCPU_GET(cpumask);
3381#else
3382	pmap->pm_active |= 1;
3383#endif
3384#if defined(SWTCH_OPTIM_STATS)
3385	tlb_flush_count++;
3386#endif
3387	cr3 = vtophys(pmap->pm_pdir);
3388	/* XXXKSE this is wrong.
3389	 * pmap_activate is for the current thread on the current cpu
3390	 */
3391	if (p->p_flag & P_KSES) {
3392		/* Make sure all other cr3 entries are updated. */
3393		/* what if they are running?  XXXKSE (maybe abort them) */
3394		FOREACH_THREAD_IN_PROC(p, td) {
3395			td->td_pcb->pcb_cr3 = cr3;
3396		}
3397	} else {
3398		td->td_pcb->pcb_cr3 = cr3;
3399	}
3400	load_cr3(cr3);
3401}
3402
3403vm_offset_t
3404pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3405{
3406
3407	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3408		return addr;
3409	}
3410
3411	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3412	return addr;
3413}
3414
3415
3416#if defined(PMAP_DEBUG)
3417pmap_pid_dump(int pid)
3418{
3419	pmap_t pmap;
3420	struct proc *p;
3421	int npte = 0;
3422	int index;
3423
3424	sx_slock(&allproc_lock);
3425	LIST_FOREACH(p, &allproc, p_list) {
3426		if (p->p_pid != pid)
3427			continue;
3428
3429		if (p->p_vmspace) {
3430			int i,j;
3431			index = 0;
3432			pmap = vmspace_pmap(p->p_vmspace);
3433			for (i = 0; i < NPDEPG; i++) {
3434				pd_entry_t *pde;
3435				pt_entry_t *pte;
3436				vm_offset_t base = i << PDRSHIFT;
3437
3438				pde = &pmap->pm_pdir[i];
3439				if (pde && pmap_pde_v(pde)) {
3440					for (j = 0; j < NPTEPG; j++) {
3441						vm_offset_t va = base + (j << PAGE_SHIFT);
3442						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3443							if (index) {
3444								index = 0;
3445								printf("\n");
3446							}
3447							sx_sunlock(&allproc_lock);
3448							return npte;
3449						}
3450						pte = pmap_pte_quick(pmap, va);
3451						if (pte && pmap_pte_v(pte)) {
3452							pt_entry_t pa;
3453							vm_page_t m;
3454							pa = *pte;
3455							m = PHYS_TO_VM_PAGE(pa);
3456							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3457								va, pa, m->hold_count, m->wire_count, m->flags);
3458							npte++;
3459							index++;
3460							if (index >= 2) {
3461								index = 0;
3462								printf("\n");
3463							} else {
3464								printf(" ");
3465							}
3466						}
3467					}
3468				}
3469			}
3470		}
3471	}
3472	sx_sunlock(&allproc_lock);
3473	return npte;
3474}
3475#endif
3476
3477#if defined(DEBUG)
3478
3479static void	pads(pmap_t pm);
3480void		pmap_pvdump(vm_offset_t pa);
3481
3482/* print address space of pmap*/
3483static void
3484pads(pm)
3485	pmap_t pm;
3486{
3487	int i, j;
3488	vm_offset_t va;
3489	pt_entry_t *ptep;
3490
3491	if (pm == kernel_pmap)
3492		return;
3493	for (i = 0; i < NPDEPG; i++)
3494		if (pm->pm_pdir[i])
3495			for (j = 0; j < NPTEPG; j++) {
3496				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3497				if (pm == kernel_pmap && va < KERNBASE)
3498					continue;
3499				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3500					continue;
3501				ptep = pmap_pte_quick(pm, va);
3502				if (pmap_pte_v(ptep))
3503					printf("%x:%x ", va, *ptep);
3504			};
3505
3506}
3507
3508void
3509pmap_pvdump(pa)
3510	vm_offset_t pa;
3511{
3512	pv_entry_t pv;
3513	vm_page_t m;
3514
3515	printf("pa %x", pa);
3516	m = PHYS_TO_VM_PAGE(pa);
3517	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3518		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3519		pads(pv->pv_pmap);
3520	}
3521	printf(" ");
3522}
3523#endif
3524