pmap.c revision 99929
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 99929 2002-07-13 20:58:56Z peter $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176static int pmap_pagedaemon_waken = 0;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static void	pmap_remove_all(vm_page_t m);
207static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte);
209static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
210static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
211static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
212					vm_offset_t va);
213static boolean_t pmap_testbit(vm_page_t m, int bit);
214static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m);
216
217static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
218
219static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
220static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
221static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
222static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
223static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
226
227static pd_entry_t pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE pt_entry_t *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	pd_entry_t *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr)
262{
263	vm_offset_t newaddr = addr;
264
265#ifndef DISABLE_PSE
266	if (cpu_feature & CPUID_PSE)
267		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
268#endif
269	return newaddr;
270}
271
272/*
273 *	Bootstrap the system enough to run with virtual memory.
274 *
275 *	On the i386 this is called after mapping has already been enabled
276 *	and just syncs the pmap module with what has already been done.
277 *	[We can't call it easily with mapping off since the kernel is not
278 *	mapped with PA == VA, hence we would have to relocate every address
279 *	from the linked base (virtual) address "KERNBASE" to the actual
280 *	(physical) address starting relative to 0]
281 */
282void
283pmap_bootstrap(firstaddr, loadaddr)
284	vm_offset_t firstaddr;
285	vm_offset_t loadaddr;
286{
287	vm_offset_t va;
288	pt_entry_t *pte;
289	int i;
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * Initialize the kernel pmap (which is statically allocated).
313	 */
314	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
315	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
316	TAILQ_INIT(&kernel_pmap->pm_pvlist);
317	LIST_INIT(&allpmaps);
318	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 * CMAP3 is used for the idle process page zeroing.
334	 */
335	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
336	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
337	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
338
339	/*
340	 * Crashdump maps.
341	 */
342	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
343
344	/*
345	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
346	 * XXX ptmmap is not used.
347	 */
348	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
349
350	/*
351	 * msgbufp is used to map the system message buffer.
352	 * XXX msgbufmap is not used.
353	 */
354	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
355	       atop(round_page(MSGBUF_SIZE)))
356
357	/*
358	 * ptemap is used for pmap_pte_quick
359	 */
360	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
361
362	virtual_avail = va;
363
364	*CMAP1 = *CMAP2 = 0;
365	for (i = 0; i < NKPT; i++)
366		PTD[i] = 0;
367
368	pgeflag = 0;
369#ifndef DISABLE_PG_G
370	if (cpu_feature & CPUID_PGE)
371		pgeflag = PG_G;
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#ifndef DISABLE_PSE
385	if (cpu_feature & CPUID_PSE) {
386		pd_entry_t ptditmp;
387		/*
388		 * Note that we have enabled PSE mode
389		 */
390		pseflag = PG_PS;
391		ptditmp = *(PTmap + i386_btop(KERNBASE));
392		ptditmp &= ~(NBPDR - 1);
393		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
394		pdir4mb = ptditmp;
395	}
396#endif
397#ifndef SMP
398	/*
399	 * Turn on PGE/PSE.  SMP does this later on since the
400	 * 4K page tables are required for AP boot (for now).
401	 * XXX fixme.
402	 */
403	pmap_set_opt();
404#endif
405#ifdef SMP
406	if (cpu_apic_address == 0)
407		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
408
409	/* local apic is mapped on last page */
410	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
411	    (cpu_apic_address & PG_FRAME));
412#endif
413	invltlb();
414}
415
416/*
417 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
418 * BSP will run this after all the AP's have started up.
419 */
420void
421pmap_set_opt(void)
422{
423	pt_entry_t *pte;
424	vm_offset_t va, endva;
425
426	if (pgeflag && (cpu_feature & CPUID_PGE)) {
427		load_cr4(rcr4() | CR4_PGE);
428		invltlb();		/* Insurance */
429	}
430#ifndef DISABLE_PSE
431	if (pseflag && (cpu_feature & CPUID_PSE)) {
432		load_cr4(rcr4() | CR4_PSE);
433		invltlb();		/* Insurance */
434	}
435#endif
436	if (PCPU_GET(cpuid) == 0) {
437#ifndef DISABLE_PSE
438		if (pdir4mb) {
439			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
440			invltlb();	/* Insurance */
441		}
442#endif
443		if (pgeflag) {
444			/* Turn on PG_G for text, data, bss pages. */
445			va = (vm_offset_t)btext;
446			endva = KERNBASE + KERNend;
447			while (va < endva) {
448				pte = vtopte(va);
449				if (*pte)
450					*pte |= pgeflag;
451				va += PAGE_SIZE;
452			}
453			invltlb();	/* Insurance */
454		}
455		/*
456		 * We do not need to broadcast the invltlb here, because
457		 * each AP does it the moment it is released from the boot
458		 * lock.  See ap_init().
459		 */
460	}
461}
462
463void *
464pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
465{
466	*flags = UMA_SLAB_PRIV;
467	return (void *)kmem_alloc(kernel_map, bytes);
468}
469
470/*
471 *	Initialize the pmap module.
472 *	Called by vm_init, to initialize any structures that the pmap
473 *	system needs to map virtual memory.
474 *	pmap_init has been enhanced to support in a fairly consistant
475 *	way, discontiguous physical memory.
476 */
477void
478pmap_init(phys_start, phys_end)
479	vm_offset_t phys_start, phys_end;
480{
481	int i;
482	int initial_pvs;
483
484	/*
485	 * object for kernel page table pages
486	 */
487	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
488
489	/*
490	 * Allocate memory for random pmap data structures.  Includes the
491	 * pv_head_table.
492	 */
493
494	for(i = 0; i < vm_page_array_size; i++) {
495		vm_page_t m;
496
497		m = &vm_page_array[i];
498		TAILQ_INIT(&m->md.pv_list);
499		m->md.pv_list_count = 0;
500	}
501
502	/*
503	 * init the pv free list
504	 */
505	initial_pvs = vm_page_array_size;
506	if (initial_pvs < MINPV)
507		initial_pvs = MINPV;
508	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
509	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
510	uma_zone_set_allocf(pvzone, pmap_allocf);
511	uma_prealloc(pvzone, initial_pvs);
512
513	/*
514	 * Now it is safe to enable pv_table recording.
515	 */
516	pmap_initialized = TRUE;
517}
518
519/*
520 * Initialize the address space (zone) for the pv_entries.  Set a
521 * high water mark so that the system can recover from excessive
522 * numbers of pv entries.
523 */
524void
525pmap_init2()
526{
527	int shpgperproc = PMAP_SHPGPERPROC;
528
529	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
530	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
531	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
532	pv_entry_high_water = 9 * (pv_entry_max / 10);
533	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
534}
535
536
537/***************************************************
538 * Low level helper routines.....
539 ***************************************************/
540
541#if defined(PMAP_DIAGNOSTIC)
542
543/*
544 * This code checks for non-writeable/modified pages.
545 * This should be an invalid condition.
546 */
547static int
548pmap_nw_modified(pt_entry_t ptea)
549{
550	int pte;
551
552	pte = (int) ptea;
553
554	if ((pte & (PG_M|PG_RW)) == PG_M)
555		return 1;
556	else
557		return 0;
558}
559#endif
560
561
562/*
563 * this routine defines the region(s) of memory that should
564 * not be tested for the modified bit.
565 */
566static PMAP_INLINE int
567pmap_track_modified(vm_offset_t va)
568{
569	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
570		return 1;
571	else
572		return 0;
573}
574
575#ifdef I386_CPU
576/*
577 * i386 only has "invalidate everything" and no SMP to worry about.
578 */
579PMAP_INLINE void
580pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
581{
582
583	if (pmap == kernel_pmap || pmap->pm_active)
584		invltlb();
585}
586
587PMAP_INLINE void
588pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
589{
590
591	if (pmap == kernel_pmap || pmap->pm_active)
592		invltlb();
593}
594
595PMAP_INLINE void
596pmap_invalidate_all(pmap_t pmap)
597{
598
599	if (pmap == kernel_pmap || pmap->pm_active)
600		invltlb();
601}
602#else /* !I386_CPU */
603#ifdef SMP
604/*
605 * For SMP, these functions have to use the IPI mechanism for coherence.
606 */
607void
608pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
609{
610	u_int cpumask;
611	u_int other_cpus;
612
613	critical_enter();
614	/*
615	 * We need to disable interrupt preemption but MUST NOT have
616	 * interrupts disabled here.
617	 * XXX we may need to hold schedlock to get a coherent pm_active
618	 */
619	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
620		invlpg(va);
621		smp_invlpg(va);
622	} else {
623		cpumask = PCPU_GET(cpumask);
624		other_cpus = PCPU_GET(other_cpus);
625		if (pmap->pm_active & cpumask)
626			invlpg(va);
627		if (pmap->pm_active & other_cpus)
628			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
629	}
630	critical_exit();
631}
632
633void
634pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
635{
636	u_int cpumask;
637	u_int other_cpus;
638	vm_offset_t addr;
639
640	critical_enter();
641	/*
642	 * We need to disable interrupt preemption but MUST NOT have
643	 * interrupts disabled here.
644	 * XXX we may need to hold schedlock to get a coherent pm_active
645	 */
646	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
647		for (addr = sva; addr < eva; addr += PAGE_SIZE)
648			invlpg(addr);
649		smp_invlpg_range(sva, eva);
650	} else {
651		cpumask = PCPU_GET(cpumask);
652		other_cpus = PCPU_GET(other_cpus);
653		if (pmap->pm_active & cpumask)
654			for (addr = sva; addr < eva; addr += PAGE_SIZE)
655				invlpg(addr);
656		if (pmap->pm_active & other_cpus)
657			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
658			    sva, eva);
659	}
660	critical_exit();
661}
662
663void
664pmap_invalidate_all(pmap_t pmap)
665{
666	u_int cpumask;
667	u_int other_cpus;
668
669	critical_enter();
670	/*
671	 * We need to disable interrupt preemption but MUST NOT have
672	 * interrupts disabled here.
673	 * XXX we may need to hold schedlock to get a coherent pm_active
674	 */
675	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
676		invltlb();
677		smp_invltlb();
678	} else {
679		cpumask = PCPU_GET(cpumask);
680		other_cpus = PCPU_GET(other_cpus);
681		if (pmap->pm_active & cpumask)
682			invltlb();
683		if (pmap->pm_active & other_cpus)
684			smp_masked_invltlb(pmap->pm_active & other_cpus);
685	}
686	critical_exit();
687}
688#else /* !SMP */
689/*
690 * Normal, non-SMP, 486+ invalidation functions.
691 * We inline these within pmap.c for speed.
692 */
693PMAP_INLINE void
694pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
695{
696
697	if (pmap == kernel_pmap || pmap->pm_active)
698		invlpg(va);
699}
700
701PMAP_INLINE void
702pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
703{
704	vm_offset_t addr;
705
706	if (pmap == kernel_pmap || pmap->pm_active)
707		for (addr = sva; addr < eva; addr += PAGE_SIZE)
708			invlpg(addr);
709}
710
711PMAP_INLINE void
712pmap_invalidate_all(pmap_t pmap)
713{
714
715	if (pmap == kernel_pmap || pmap->pm_active)
716		invltlb();
717}
718#endif /* !SMP */
719#endif /* !I386_CPU */
720
721/*
722 * Return an address which is the base of the Virtual mapping of
723 * all the PTEs for the given pmap. Note this doesn't say that
724 * all the PTEs will be present or that the pages there are valid.
725 * The PTEs are made available by the recursive mapping trick.
726 * It will map in the alternate PTE space if needed.
727 */
728static pt_entry_t *
729get_ptbase(pmap)
730	pmap_t pmap;
731{
732	pd_entry_t frame;
733
734	/* are we current address space or kernel? */
735	if (pmap == kernel_pmap)
736		return PTmap;
737	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
738	if (frame == (PTDpde & PG_FRAME))
739		return PTmap;
740	/* otherwise, we are alternate address space */
741	if (frame != (APTDpde & PG_FRAME)) {
742		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
743		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
744	}
745	return APTmap;
746}
747
748/*
749 * Super fast pmap_pte routine best used when scanning
750 * the pv lists.  This eliminates many coarse-grained
751 * invltlb calls.  Note that many of the pv list
752 * scans are across different pmaps.  It is very wasteful
753 * to do an entire invltlb for checking a single mapping.
754 */
755
756static pt_entry_t *
757pmap_pte_quick(pmap, va)
758	register pmap_t pmap;
759	vm_offset_t va;
760{
761	pd_entry_t pde, newpf;
762	pde = pmap->pm_pdir[va >> PDRSHIFT];
763	if (pde != 0) {
764		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
765		unsigned index = i386_btop(va);
766		/* are we current address space or kernel? */
767		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
768			return PTmap + index;
769		newpf = pde & PG_FRAME;
770		if (((*PMAP1) & PG_FRAME) != newpf) {
771			*PMAP1 = newpf | PG_RW | PG_V;
772			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
773		}
774		return PADDR1 + (index & (NPTEPG - 1));
775	}
776	return (0);
777}
778
779/*
780 *	Routine:	pmap_extract
781 *	Function:
782 *		Extract the physical page address associated
783 *		with the given map/virtual_address pair.
784 */
785vm_offset_t
786pmap_extract(pmap, va)
787	register pmap_t pmap;
788	vm_offset_t va;
789{
790	vm_offset_t rtval;	/* XXX FIXME */
791	vm_offset_t pdirindex;
792
793	if (pmap == 0)
794		return 0;
795	pdirindex = va >> PDRSHIFT;
796	rtval = pmap->pm_pdir[pdirindex];
797	if (rtval != 0) {
798		pt_entry_t *pte;
799		if ((rtval & PG_PS) != 0) {
800			rtval &= ~(NBPDR - 1);
801			rtval |= va & (NBPDR - 1);
802			return rtval;
803		}
804		pte = get_ptbase(pmap) + i386_btop(va);
805		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
806		return rtval;
807	}
808	return 0;
809
810}
811
812/***************************************************
813 * Low level mapping routines.....
814 ***************************************************/
815
816/*
817 * Add a wired page to the kva.
818 * Note: not SMP coherent.
819 */
820PMAP_INLINE void
821pmap_kenter(vm_offset_t va, vm_offset_t pa)
822{
823	pt_entry_t *pte;
824
825	pte = vtopte(va);
826	*pte = pa | PG_RW | PG_V | pgeflag;
827}
828
829/*
830 * Remove a page from the kernel pagetables.
831 * Note: not SMP coherent.
832 */
833PMAP_INLINE void
834pmap_kremove(vm_offset_t va)
835{
836	pt_entry_t *pte;
837
838	pte = vtopte(va);
839	*pte = 0;
840}
841
842/*
843 *	Used to map a range of physical addresses into kernel
844 *	virtual address space.
845 *
846 *	The value passed in '*virt' is a suggested virtual address for
847 *	the mapping. Architectures which can support a direct-mapped
848 *	physical to virtual region can return the appropriate address
849 *	within that region, leaving '*virt' unchanged. Other
850 *	architectures should map the pages starting at '*virt' and
851 *	update '*virt' with the first usable address after the mapped
852 *	region.
853 */
854vm_offset_t
855pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
856{
857	vm_offset_t va, sva;
858
859	va = sva = *virt;
860	while (start < end) {
861		pmap_kenter(va, start);
862		va += PAGE_SIZE;
863		start += PAGE_SIZE;
864	}
865	pmap_invalidate_range(kernel_pmap, sva, va);
866	*virt = va;
867	return (sva);
868}
869
870
871/*
872 * Add a list of wired pages to the kva
873 * this routine is only used for temporary
874 * kernel mappings that do not need to have
875 * page modification or references recorded.
876 * Note that old mappings are simply written
877 * over.  The page *must* be wired.
878 * Note: SMP coherent.  Uses a ranged shootdown IPI.
879 */
880void
881pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
882{
883	vm_offset_t va;
884
885	va = sva;
886	while (count-- > 0) {
887		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
888		va += PAGE_SIZE;
889		m++;
890	}
891	pmap_invalidate_range(kernel_pmap, sva, va);
892}
893
894/*
895 * This routine tears out page mappings from the
896 * kernel -- it is meant only for temporary mappings.
897 * Note: SMP coherent.  Uses a ranged shootdown IPI.
898 */
899void
900pmap_qremove(vm_offset_t sva, int count)
901{
902	vm_offset_t va;
903
904	va = sva;
905	while (count-- > 0) {
906		pmap_kremove(va);
907		va += PAGE_SIZE;
908	}
909	pmap_invalidate_range(kernel_pmap, sva, va);
910}
911
912static vm_page_t
913pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
914{
915	vm_page_t m;
916
917retry:
918	m = vm_page_lookup(object, pindex);
919	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
920		goto retry;
921	return m;
922}
923
924/*
925 * Create the kernel stack (including pcb for i386) for a new thread.
926 * This routine directly affects the fork perf for a process and
927 * create performance for a thread.
928 */
929void
930pmap_new_thread(struct thread *td)
931{
932	int i;
933	vm_page_t ma[KSTACK_PAGES];
934	vm_object_t ksobj;
935	vm_page_t m;
936	vm_offset_t ks;
937
938	/*
939	 * allocate object for the kstack
940	 */
941	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
942	td->td_kstack_obj = ksobj;
943
944	/* get a kernel virtual address for the kstack for this thread */
945#ifdef KSTACK_GUARD
946	ks = kmem_alloc_nofault(kernel_map, (KSTACK_PAGES + 1) * PAGE_SIZE);
947	if (ks == 0)
948		panic("pmap_new_thread: kstack allocation failed");
949	if (*vtopte(ks) != 0)
950		pmap_qremove(ks, 1);
951	ks += PAGE_SIZE;
952	td->td_kstack = ks;
953#else
954	/* get a kernel virtual address for the kstack for this thread */
955	ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
956	if (ks == 0)
957		panic("pmap_new_thread: kstack allocation failed");
958	td->td_kstack = ks;
959#endif
960	/*
961	 * For the length of the stack, link in a real page of ram for each
962	 * page of stack.
963	 */
964	for (i = 0; i < KSTACK_PAGES; i++) {
965		/*
966		 * Get a kernel stack page
967		 */
968		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
969		ma[i] = m;
970
971		/*
972		 * Wire the page
973		 */
974		m->wire_count++;
975		cnt.v_wire_count++;
976
977		vm_page_wakeup(m);
978		vm_page_flag_clear(m, PG_ZERO);
979		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
980		m->valid = VM_PAGE_BITS_ALL;
981	}
982	pmap_qenter(ks, ma, KSTACK_PAGES);
983}
984
985/*
986 * Dispose the kernel stack for a thread that has exited.
987 * This routine directly impacts the exit perf of a process and thread.
988 */
989void
990pmap_dispose_thread(td)
991	struct thread *td;
992{
993	int i;
994	vm_object_t ksobj;
995	vm_offset_t ks;
996	vm_page_t m;
997
998	ksobj = td->td_kstack_obj;
999	ks = td->td_kstack;
1000	pmap_qremove(ks, KSTACK_PAGES);
1001	for (i = 0; i < KSTACK_PAGES; i++) {
1002		m = vm_page_lookup(ksobj, i);
1003		if (m == NULL)
1004			panic("pmap_dispose_thread: kstack already missing?");
1005		vm_page_lock_queues();
1006		vm_page_busy(m);
1007		vm_page_unwire(m, 0);
1008		vm_page_free(m);
1009		vm_page_unlock_queues();
1010	}
1011	/*
1012	 * Free the space that this stack was mapped to in the kernel
1013	 * address map.
1014	 */
1015#ifdef KSTACK_GUARD
1016	kmem_free(kernel_map, ks - PAGE_SIZE, (KSTACK_PAGES + 1) * PAGE_SIZE);
1017#else
1018	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
1019#endif
1020	vm_object_deallocate(ksobj);
1021}
1022
1023/*
1024 * Allow the Kernel stack for a thread to be prejudicially paged out.
1025 */
1026void
1027pmap_swapout_thread(td)
1028	struct thread *td;
1029{
1030	int i;
1031	vm_object_t ksobj;
1032	vm_offset_t ks;
1033	vm_page_t m;
1034
1035	ksobj = td->td_kstack_obj;
1036	ks = td->td_kstack;
1037	pmap_qremove(ks, KSTACK_PAGES);
1038	for (i = 0; i < KSTACK_PAGES; i++) {
1039		m = vm_page_lookup(ksobj, i);
1040		if (m == NULL)
1041			panic("pmap_swapout_thread: kstack already missing?");
1042		vm_page_lock_queues();
1043		vm_page_dirty(m);
1044		vm_page_unwire(m, 0);
1045		vm_page_unlock_queues();
1046	}
1047}
1048
1049/*
1050 * Bring the kernel stack for a specified thread back in.
1051 */
1052void
1053pmap_swapin_thread(td)
1054	struct thread *td;
1055{
1056	int i, rv;
1057	vm_page_t ma[KSTACK_PAGES];
1058	vm_object_t ksobj;
1059	vm_offset_t ks;
1060	vm_page_t m;
1061
1062	ksobj = td->td_kstack_obj;
1063	ks = td->td_kstack;
1064	for (i = 0; i < KSTACK_PAGES; i++) {
1065		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1066		if (m->valid != VM_PAGE_BITS_ALL) {
1067			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1068			if (rv != VM_PAGER_OK)
1069				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1070			m = vm_page_lookup(ksobj, i);
1071			m->valid = VM_PAGE_BITS_ALL;
1072		}
1073		ma[i] = m;
1074		vm_page_wire(m);
1075		vm_page_wakeup(m);
1076		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1077	}
1078	pmap_qenter(ks, ma, KSTACK_PAGES);
1079}
1080
1081/***************************************************
1082 * Page table page management routines.....
1083 ***************************************************/
1084
1085/*
1086 * This routine unholds page table pages, and if the hold count
1087 * drops to zero, then it decrements the wire count.
1088 */
1089static int
1090_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1091{
1092
1093	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1094		;
1095
1096	if (m->hold_count == 0) {
1097		vm_offset_t pteva;
1098		/*
1099		 * unmap the page table page
1100		 */
1101		pmap->pm_pdir[m->pindex] = 0;
1102		--pmap->pm_stats.resident_count;
1103		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1104		    (PTDpde & PG_FRAME)) {
1105			/*
1106			 * Do a invltlb to make the invalidated mapping
1107			 * take effect immediately.
1108			 */
1109			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1110			pmap_invalidate_page(pmap, pteva);
1111		}
1112
1113		if (pmap->pm_ptphint == m)
1114			pmap->pm_ptphint = NULL;
1115
1116		/*
1117		 * If the page is finally unwired, simply free it.
1118		 */
1119		--m->wire_count;
1120		if (m->wire_count == 0) {
1121
1122			vm_page_flash(m);
1123			vm_page_busy(m);
1124			vm_page_free_zero(m);
1125			--cnt.v_wire_count;
1126		}
1127		return 1;
1128	}
1129	return 0;
1130}
1131
1132static PMAP_INLINE int
1133pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1134{
1135	vm_page_unhold(m);
1136	if (m->hold_count == 0)
1137		return _pmap_unwire_pte_hold(pmap, m);
1138	else
1139		return 0;
1140}
1141
1142/*
1143 * After removing a page table entry, this routine is used to
1144 * conditionally free the page, and manage the hold/wire counts.
1145 */
1146static int
1147pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1148{
1149	unsigned ptepindex;
1150	if (va >= VM_MAXUSER_ADDRESS)
1151		return 0;
1152
1153	if (mpte == NULL) {
1154		ptepindex = (va >> PDRSHIFT);
1155		if (pmap->pm_ptphint &&
1156			(pmap->pm_ptphint->pindex == ptepindex)) {
1157			mpte = pmap->pm_ptphint;
1158		} else {
1159			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1160			pmap->pm_ptphint = mpte;
1161		}
1162	}
1163
1164	return pmap_unwire_pte_hold(pmap, mpte);
1165}
1166
1167void
1168pmap_pinit0(pmap)
1169	struct pmap *pmap;
1170{
1171	pmap->pm_pdir =
1172		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1173	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1174	invlpg((vm_offset_t)pmap->pm_pdir);
1175	pmap->pm_ptphint = NULL;
1176	pmap->pm_active = 0;
1177	TAILQ_INIT(&pmap->pm_pvlist);
1178	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1179	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1180}
1181
1182/*
1183 * Initialize a preallocated and zeroed pmap structure,
1184 * such as one in a vmspace structure.
1185 */
1186void
1187pmap_pinit(pmap)
1188	register struct pmap *pmap;
1189{
1190	vm_page_t ptdpg;
1191
1192	/*
1193	 * No need to allocate page table space yet but we do need a valid
1194	 * page directory table.
1195	 */
1196	if (pmap->pm_pdir == NULL)
1197		pmap->pm_pdir =
1198			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1199
1200	/*
1201	 * allocate object for the ptes
1202	 */
1203	if (pmap->pm_pteobj == NULL)
1204		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1205
1206	/*
1207	 * allocate the page directory page
1208	 */
1209	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1210			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1211
1212	ptdpg->wire_count = 1;
1213	++cnt.v_wire_count;
1214
1215
1216	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1217	ptdpg->valid = VM_PAGE_BITS_ALL;
1218
1219	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1220	if ((ptdpg->flags & PG_ZERO) == 0)
1221		bzero(pmap->pm_pdir, PAGE_SIZE);
1222
1223	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1224	/* Wire in kernel global address entries. */
1225	/* XXX copies current process, does not fill in MPPTDI */
1226	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1227#ifdef SMP
1228	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1229#endif
1230
1231	/* install self-referential address mapping entry */
1232	pmap->pm_pdir[PTDPTDI] =
1233		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1234
1235	pmap->pm_active = 0;
1236	pmap->pm_ptphint = NULL;
1237	TAILQ_INIT(&pmap->pm_pvlist);
1238	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1239}
1240
1241/*
1242 * Wire in kernel global address entries.  To avoid a race condition
1243 * between pmap initialization and pmap_growkernel, this procedure
1244 * should be called after the vmspace is attached to the process
1245 * but before this pmap is activated.
1246 */
1247void
1248pmap_pinit2(pmap)
1249	struct pmap *pmap;
1250{
1251	/* XXX: Remove this stub when no longer called */
1252}
1253
1254static int
1255pmap_release_free_page(pmap_t pmap, vm_page_t p)
1256{
1257	pd_entry_t *pde = pmap->pm_pdir;
1258	/*
1259	 * This code optimizes the case of freeing non-busy
1260	 * page-table pages.  Those pages are zero now, and
1261	 * might as well be placed directly into the zero queue.
1262	 */
1263	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1264		return 0;
1265
1266	vm_page_busy(p);
1267
1268	/*
1269	 * Remove the page table page from the processes address space.
1270	 */
1271	pde[p->pindex] = 0;
1272	pmap->pm_stats.resident_count--;
1273
1274	if (p->hold_count)  {
1275		panic("pmap_release: freeing held page table page");
1276	}
1277	/*
1278	 * Page directory pages need to have the kernel
1279	 * stuff cleared, so they can go into the zero queue also.
1280	 */
1281	if (p->pindex == PTDPTDI) {
1282		bzero(pde + KPTDI, nkpt * PTESIZE);
1283#ifdef SMP
1284		pde[MPPTDI] = 0;
1285#endif
1286		pde[APTDPTDI] = 0;
1287		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1288	}
1289
1290	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1291		pmap->pm_ptphint = NULL;
1292
1293	p->wire_count--;
1294	cnt.v_wire_count--;
1295	vm_page_free_zero(p);
1296	return 1;
1297}
1298
1299/*
1300 * this routine is called if the page table page is not
1301 * mapped correctly.
1302 */
1303static vm_page_t
1304_pmap_allocpte(pmap, ptepindex)
1305	pmap_t	pmap;
1306	unsigned ptepindex;
1307{
1308	vm_offset_t pteva, ptepa;	/* XXXPA */
1309	vm_page_t m;
1310
1311	/*
1312	 * Find or fabricate a new pagetable page
1313	 */
1314	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1315			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1316
1317	KASSERT(m->queue == PQ_NONE,
1318		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1319
1320	if (m->wire_count == 0)
1321		cnt.v_wire_count++;
1322	m->wire_count++;
1323
1324	/*
1325	 * Increment the hold count for the page table page
1326	 * (denoting a new mapping.)
1327	 */
1328	m->hold_count++;
1329
1330	/*
1331	 * Map the pagetable page into the process address space, if
1332	 * it isn't already there.
1333	 */
1334
1335	pmap->pm_stats.resident_count++;
1336
1337	ptepa = VM_PAGE_TO_PHYS(m);
1338	pmap->pm_pdir[ptepindex] =
1339		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1340
1341	/*
1342	 * Set the page table hint
1343	 */
1344	pmap->pm_ptphint = m;
1345
1346	/*
1347	 * Try to use the new mapping, but if we cannot, then
1348	 * do it with the routine that maps the page explicitly.
1349	 */
1350	if ((m->flags & PG_ZERO) == 0) {
1351		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1352		    (PTDpde & PG_FRAME)) {
1353			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1354			bzero((caddr_t) pteva, PAGE_SIZE);
1355		} else {
1356			pmap_zero_page(m);
1357		}
1358	}
1359
1360	m->valid = VM_PAGE_BITS_ALL;
1361	vm_page_flag_clear(m, PG_ZERO);
1362	vm_page_flag_set(m, PG_MAPPED);
1363	vm_page_wakeup(m);
1364
1365	return m;
1366}
1367
1368static vm_page_t
1369pmap_allocpte(pmap_t pmap, vm_offset_t va)
1370{
1371	unsigned ptepindex;
1372	pd_entry_t ptepa;
1373	vm_page_t m;
1374
1375	/*
1376	 * Calculate pagetable page index
1377	 */
1378	ptepindex = va >> PDRSHIFT;
1379
1380	/*
1381	 * Get the page directory entry
1382	 */
1383	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1384
1385	/*
1386	 * This supports switching from a 4MB page to a
1387	 * normal 4K page.
1388	 */
1389	if (ptepa & PG_PS) {
1390		pmap->pm_pdir[ptepindex] = 0;
1391		ptepa = 0;
1392		pmap_invalidate_all(kernel_pmap);
1393	}
1394
1395	/*
1396	 * If the page table page is mapped, we just increment the
1397	 * hold count, and activate it.
1398	 */
1399	if (ptepa) {
1400		/*
1401		 * In order to get the page table page, try the
1402		 * hint first.
1403		 */
1404		if (pmap->pm_ptphint &&
1405			(pmap->pm_ptphint->pindex == ptepindex)) {
1406			m = pmap->pm_ptphint;
1407		} else {
1408			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1409			pmap->pm_ptphint = m;
1410		}
1411		m->hold_count++;
1412		return m;
1413	}
1414	/*
1415	 * Here if the pte page isn't mapped, or if it has been deallocated.
1416	 */
1417	return _pmap_allocpte(pmap, ptepindex);
1418}
1419
1420
1421/***************************************************
1422* Pmap allocation/deallocation routines.
1423 ***************************************************/
1424
1425/*
1426 * Release any resources held by the given physical map.
1427 * Called when a pmap initialized by pmap_pinit is being released.
1428 * Should only be called if the map contains no valid mappings.
1429 */
1430void
1431pmap_release(pmap_t pmap)
1432{
1433	vm_page_t p,n,ptdpg;
1434	vm_object_t object = pmap->pm_pteobj;
1435	int curgeneration;
1436
1437#if defined(DIAGNOSTIC)
1438	if (object->ref_count != 1)
1439		panic("pmap_release: pteobj reference count != 1");
1440#endif
1441
1442	ptdpg = NULL;
1443	LIST_REMOVE(pmap, pm_list);
1444retry:
1445	curgeneration = object->generation;
1446	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1447		n = TAILQ_NEXT(p, listq);
1448		if (p->pindex == PTDPTDI) {
1449			ptdpg = p;
1450			continue;
1451		}
1452		while (1) {
1453			if (!pmap_release_free_page(pmap, p) &&
1454				(object->generation != curgeneration))
1455				goto retry;
1456		}
1457	}
1458
1459	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1460		goto retry;
1461}
1462
1463static int
1464kvm_size(SYSCTL_HANDLER_ARGS)
1465{
1466	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1467
1468	return sysctl_handle_long(oidp, &ksize, 0, req);
1469}
1470SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1471    0, 0, kvm_size, "IU", "Size of KVM");
1472
1473static int
1474kvm_free(SYSCTL_HANDLER_ARGS)
1475{
1476	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1477
1478	return sysctl_handle_long(oidp, &kfree, 0, req);
1479}
1480SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1481    0, 0, kvm_free, "IU", "Amount of KVM free");
1482
1483/*
1484 * grow the number of kernel page table entries, if needed
1485 */
1486void
1487pmap_growkernel(vm_offset_t addr)
1488{
1489	struct pmap *pmap;
1490	int s;
1491	vm_offset_t ptppaddr;
1492	vm_page_t nkpg;
1493	pd_entry_t newpdir;
1494
1495	s = splhigh();
1496	if (kernel_vm_end == 0) {
1497		kernel_vm_end = KERNBASE;
1498		nkpt = 0;
1499		while (pdir_pde(PTD, kernel_vm_end)) {
1500			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1501			nkpt++;
1502		}
1503	}
1504	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1505	while (kernel_vm_end < addr) {
1506		if (pdir_pde(PTD, kernel_vm_end)) {
1507			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1508			continue;
1509		}
1510
1511		/*
1512		 * This index is bogus, but out of the way
1513		 */
1514		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1515		if (!nkpg)
1516			panic("pmap_growkernel: no memory to grow kernel");
1517
1518		nkpt++;
1519
1520		vm_page_wire(nkpg);
1521		pmap_zero_page(nkpg);
1522		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1523		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1524		pdir_pde(PTD, kernel_vm_end) = newpdir;
1525
1526		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1527			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1528		}
1529		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1530	}
1531	splx(s);
1532}
1533
1534
1535/***************************************************
1536 * page management routines.
1537 ***************************************************/
1538
1539/*
1540 * free the pv_entry back to the free list
1541 */
1542static PMAP_INLINE void
1543free_pv_entry(pv_entry_t pv)
1544{
1545	pv_entry_count--;
1546	uma_zfree(pvzone, pv);
1547}
1548
1549/*
1550 * get a new pv_entry, allocating a block from the system
1551 * when needed.
1552 * the memory allocation is performed bypassing the malloc code
1553 * because of the possibility of allocations at interrupt time.
1554 */
1555static pv_entry_t
1556get_pv_entry(void)
1557{
1558	pv_entry_count++;
1559	if (pv_entry_high_water &&
1560		(pv_entry_count > pv_entry_high_water) &&
1561		(pmap_pagedaemon_waken == 0)) {
1562		pmap_pagedaemon_waken = 1;
1563		wakeup (&vm_pages_needed);
1564	}
1565	return uma_zalloc(pvzone, M_NOWAIT);
1566}
1567
1568/*
1569 * This routine is very drastic, but can save the system
1570 * in a pinch.
1571 */
1572void
1573pmap_collect()
1574{
1575	int i;
1576	vm_page_t m;
1577	static int warningdone = 0;
1578
1579	if (pmap_pagedaemon_waken == 0)
1580		return;
1581
1582	if (warningdone < 5) {
1583		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1584		warningdone++;
1585	}
1586
1587	for(i = 0; i < vm_page_array_size; i++) {
1588		m = &vm_page_array[i];
1589		if (m->wire_count || m->hold_count || m->busy ||
1590		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1591			continue;
1592		pmap_remove_all(m);
1593	}
1594	pmap_pagedaemon_waken = 0;
1595}
1596
1597
1598/*
1599 * If it is the first entry on the list, it is actually
1600 * in the header and we must copy the following entry up
1601 * to the header.  Otherwise we must search the list for
1602 * the entry.  In either case we free the now unused entry.
1603 */
1604
1605static int
1606pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1607{
1608	pv_entry_t pv;
1609	int rtval;
1610	int s;
1611
1612	s = splvm();
1613	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1614		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1615			if (pmap == pv->pv_pmap && va == pv->pv_va)
1616				break;
1617		}
1618	} else {
1619		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1620			if (va == pv->pv_va)
1621				break;
1622		}
1623	}
1624
1625	rtval = 0;
1626	if (pv) {
1627		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1628		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1629		m->md.pv_list_count--;
1630		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1631			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1632
1633		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1634		free_pv_entry(pv);
1635	}
1636
1637	splx(s);
1638	return rtval;
1639}
1640
1641/*
1642 * Create a pv entry for page at pa for
1643 * (pmap, va).
1644 */
1645static void
1646pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1647{
1648
1649	int s;
1650	pv_entry_t pv;
1651
1652	s = splvm();
1653	pv = get_pv_entry();
1654	pv->pv_va = va;
1655	pv->pv_pmap = pmap;
1656	pv->pv_ptem = mpte;
1657
1658	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1659	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1660	m->md.pv_list_count++;
1661
1662	splx(s);
1663}
1664
1665/*
1666 * pmap_remove_pte: do the things to unmap a page in a process
1667 */
1668static int
1669pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1670{
1671	pt_entry_t oldpte;
1672	vm_page_t m;
1673
1674	oldpte = atomic_readandclear_int(ptq);
1675	if (oldpte & PG_W)
1676		pmap->pm_stats.wired_count -= 1;
1677	/*
1678	 * Machines that don't support invlpg, also don't support
1679	 * PG_G.
1680	 */
1681	if (oldpte & PG_G)
1682		pmap_invalidate_page(kernel_pmap, va);
1683	pmap->pm_stats.resident_count -= 1;
1684	if (oldpte & PG_MANAGED) {
1685		m = PHYS_TO_VM_PAGE(oldpte);
1686		if (oldpte & PG_M) {
1687#if defined(PMAP_DIAGNOSTIC)
1688			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1689				printf(
1690	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1691				    va, oldpte);
1692			}
1693#endif
1694			if (pmap_track_modified(va))
1695				vm_page_dirty(m);
1696		}
1697		if (oldpte & PG_A)
1698			vm_page_flag_set(m, PG_REFERENCED);
1699		return pmap_remove_entry(pmap, m, va);
1700	} else {
1701		return pmap_unuse_pt(pmap, va, NULL);
1702	}
1703
1704	return 0;
1705}
1706
1707/*
1708 * Remove a single page from a process address space
1709 */
1710static void
1711pmap_remove_page(pmap_t pmap, vm_offset_t va)
1712{
1713	register pt_entry_t *ptq;
1714
1715	/*
1716	 * if there is no pte for this address, just skip it!!!
1717	 */
1718	if (*pmap_pde(pmap, va) == 0) {
1719		return;
1720	}
1721
1722	/*
1723	 * get a local va for mappings for this pmap.
1724	 */
1725	ptq = get_ptbase(pmap) + i386_btop(va);
1726	if (*ptq) {
1727		(void) pmap_remove_pte(pmap, ptq, va);
1728		pmap_invalidate_page(pmap, va);
1729	}
1730	return;
1731}
1732
1733/*
1734 *	Remove the given range of addresses from the specified map.
1735 *
1736 *	It is assumed that the start and end are properly
1737 *	rounded to the page size.
1738 */
1739void
1740pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1741{
1742	register pt_entry_t *ptbase;
1743	vm_offset_t pdnxt;
1744	pd_entry_t ptpaddr;
1745	vm_offset_t sindex, eindex;
1746	int anyvalid;
1747
1748	if (pmap == NULL)
1749		return;
1750
1751	if (pmap->pm_stats.resident_count == 0)
1752		return;
1753
1754	/*
1755	 * special handling of removing one page.  a very
1756	 * common operation and easy to short circuit some
1757	 * code.
1758	 */
1759	if ((sva + PAGE_SIZE == eva) &&
1760	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1761		pmap_remove_page(pmap, sva);
1762		return;
1763	}
1764
1765	anyvalid = 0;
1766
1767	/*
1768	 * Get a local virtual address for the mappings that are being
1769	 * worked with.
1770	 */
1771	ptbase = get_ptbase(pmap);
1772
1773	sindex = i386_btop(sva);
1774	eindex = i386_btop(eva);
1775
1776	for (; sindex < eindex; sindex = pdnxt) {
1777		unsigned pdirindex;
1778
1779		/*
1780		 * Calculate index for next page table.
1781		 */
1782		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1783		if (pmap->pm_stats.resident_count == 0)
1784			break;
1785
1786		pdirindex = sindex / NPDEPG;
1787		ptpaddr = pmap->pm_pdir[pdirindex];
1788		if ((ptpaddr & PG_PS) != 0) {
1789			pmap->pm_pdir[pdirindex] = 0;
1790			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1791			anyvalid++;
1792			continue;
1793		}
1794
1795		/*
1796		 * Weed out invalid mappings. Note: we assume that the page
1797		 * directory table is always allocated, and in kernel virtual.
1798		 */
1799		if (ptpaddr == 0)
1800			continue;
1801
1802		/*
1803		 * Limit our scan to either the end of the va represented
1804		 * by the current page table page, or to the end of the
1805		 * range being removed.
1806		 */
1807		if (pdnxt > eindex) {
1808			pdnxt = eindex;
1809		}
1810
1811		for (; sindex != pdnxt; sindex++) {
1812			vm_offset_t va;
1813			if (ptbase[sindex] == 0) {
1814				continue;
1815			}
1816			va = i386_ptob(sindex);
1817
1818			anyvalid++;
1819			if (pmap_remove_pte(pmap,
1820				ptbase + sindex, va))
1821				break;
1822		}
1823	}
1824
1825	if (anyvalid)
1826		pmap_invalidate_all(pmap);
1827}
1828
1829/*
1830 *	Routine:	pmap_remove_all
1831 *	Function:
1832 *		Removes this physical page from
1833 *		all physical maps in which it resides.
1834 *		Reflects back modify bits to the pager.
1835 *
1836 *	Notes:
1837 *		Original versions of this routine were very
1838 *		inefficient because they iteratively called
1839 *		pmap_remove (slow...)
1840 */
1841
1842static void
1843pmap_remove_all(vm_page_t m)
1844{
1845	register pv_entry_t pv;
1846	pt_entry_t *pte, tpte;
1847	int s;
1848
1849#if defined(PMAP_DIAGNOSTIC)
1850	/*
1851	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1852	 * pages!
1853	 */
1854	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1855		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1856	}
1857#endif
1858
1859	s = splvm();
1860	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1861		pv->pv_pmap->pm_stats.resident_count--;
1862
1863		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1864
1865		tpte = atomic_readandclear_int(pte);
1866		if (tpte & PG_W)
1867			pv->pv_pmap->pm_stats.wired_count--;
1868
1869		if (tpte & PG_A)
1870			vm_page_flag_set(m, PG_REFERENCED);
1871
1872		/*
1873		 * Update the vm_page_t clean and reference bits.
1874		 */
1875		if (tpte & PG_M) {
1876#if defined(PMAP_DIAGNOSTIC)
1877			if (pmap_nw_modified((pt_entry_t) tpte)) {
1878				printf(
1879	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1880				    pv->pv_va, tpte);
1881			}
1882#endif
1883			if (pmap_track_modified(pv->pv_va))
1884				vm_page_dirty(m);
1885		}
1886		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1887
1888		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1889		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1890		m->md.pv_list_count--;
1891		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1892		free_pv_entry(pv);
1893	}
1894
1895	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1896
1897	splx(s);
1898}
1899
1900/*
1901 *	Set the physical protection on the
1902 *	specified range of this map as requested.
1903 */
1904void
1905pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1906{
1907	register pt_entry_t *ptbase;
1908	vm_offset_t pdnxt;
1909	pd_entry_t ptpaddr;
1910	vm_offset_t sindex, eindex;
1911	int anychanged;
1912
1913	if (pmap == NULL)
1914		return;
1915
1916	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1917		pmap_remove(pmap, sva, eva);
1918		return;
1919	}
1920
1921	if (prot & VM_PROT_WRITE)
1922		return;
1923
1924	anychanged = 0;
1925
1926	ptbase = get_ptbase(pmap);
1927
1928	sindex = i386_btop(sva);
1929	eindex = i386_btop(eva);
1930
1931	for (; sindex < eindex; sindex = pdnxt) {
1932
1933		unsigned pdirindex;
1934
1935		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1936
1937		pdirindex = sindex / NPDEPG;
1938		ptpaddr = pmap->pm_pdir[pdirindex];
1939		if ((ptpaddr & PG_PS) != 0) {
1940			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1941			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1942			anychanged++;
1943			continue;
1944		}
1945
1946		/*
1947		 * Weed out invalid mappings. Note: we assume that the page
1948		 * directory table is always allocated, and in kernel virtual.
1949		 */
1950		if (ptpaddr == 0)
1951			continue;
1952
1953		if (pdnxt > eindex) {
1954			pdnxt = eindex;
1955		}
1956
1957		for (; sindex != pdnxt; sindex++) {
1958
1959			pt_entry_t pbits;
1960			vm_page_t m;
1961
1962			pbits = ptbase[sindex];
1963
1964			if (pbits & PG_MANAGED) {
1965				m = NULL;
1966				if (pbits & PG_A) {
1967					m = PHYS_TO_VM_PAGE(pbits);
1968					vm_page_flag_set(m, PG_REFERENCED);
1969					pbits &= ~PG_A;
1970				}
1971				if (pbits & PG_M) {
1972					if (pmap_track_modified(i386_ptob(sindex))) {
1973						if (m == NULL)
1974							m = PHYS_TO_VM_PAGE(pbits);
1975						vm_page_dirty(m);
1976						pbits &= ~PG_M;
1977					}
1978				}
1979			}
1980
1981			pbits &= ~PG_RW;
1982
1983			if (pbits != ptbase[sindex]) {
1984				ptbase[sindex] = pbits;
1985				anychanged = 1;
1986			}
1987		}
1988	}
1989	if (anychanged)
1990		pmap_invalidate_all(pmap);
1991}
1992
1993/*
1994 *	Insert the given physical page (p) at
1995 *	the specified virtual address (v) in the
1996 *	target physical map with the protection requested.
1997 *
1998 *	If specified, the page will be wired down, meaning
1999 *	that the related pte can not be reclaimed.
2000 *
2001 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2002 *	or lose information.  That is, this routine must actually
2003 *	insert this page into the given map NOW.
2004 */
2005void
2006pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2007	   boolean_t wired)
2008{
2009	vm_offset_t pa;
2010	register pt_entry_t *pte;
2011	vm_offset_t opa;
2012	pt_entry_t origpte, newpte;
2013	vm_page_t mpte;
2014
2015	if (pmap == NULL)
2016		return;
2017
2018	va &= PG_FRAME;
2019#ifdef PMAP_DIAGNOSTIC
2020	if (va > VM_MAX_KERNEL_ADDRESS)
2021		panic("pmap_enter: toobig");
2022	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2023		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2024#endif
2025
2026	mpte = NULL;
2027	/*
2028	 * In the case that a page table page is not
2029	 * resident, we are creating it here.
2030	 */
2031	if (va < VM_MAXUSER_ADDRESS) {
2032		mpte = pmap_allocpte(pmap, va);
2033	}
2034#if 0 && defined(PMAP_DIAGNOSTIC)
2035	else {
2036		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2037		origpte = *pdeaddr;
2038		if ((origpte & PG_V) == 0) {
2039			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2040				pmap->pm_pdir[PTDPTDI], origpte, va);
2041		}
2042	}
2043#endif
2044
2045	pte = pmap_pte(pmap, va);
2046
2047	/*
2048	 * Page Directory table entry not valid, we need a new PT page
2049	 */
2050	if (pte == NULL) {
2051		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2052			(void *)pmap->pm_pdir[PTDPTDI], va);
2053	}
2054
2055	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2056	origpte = *(vm_offset_t *)pte;
2057	opa = origpte & PG_FRAME;
2058
2059	if (origpte & PG_PS)
2060		panic("pmap_enter: attempted pmap_enter on 4MB page");
2061
2062	/*
2063	 * Mapping has not changed, must be protection or wiring change.
2064	 */
2065	if (origpte && (opa == pa)) {
2066		/*
2067		 * Wiring change, just update stats. We don't worry about
2068		 * wiring PT pages as they remain resident as long as there
2069		 * are valid mappings in them. Hence, if a user page is wired,
2070		 * the PT page will be also.
2071		 */
2072		if (wired && ((origpte & PG_W) == 0))
2073			pmap->pm_stats.wired_count++;
2074		else if (!wired && (origpte & PG_W))
2075			pmap->pm_stats.wired_count--;
2076
2077#if defined(PMAP_DIAGNOSTIC)
2078		if (pmap_nw_modified((pt_entry_t) origpte)) {
2079			printf(
2080	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2081			    va, origpte);
2082		}
2083#endif
2084
2085		/*
2086		 * Remove extra pte reference
2087		 */
2088		if (mpte)
2089			mpte->hold_count--;
2090
2091		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2092			if ((origpte & PG_RW) == 0) {
2093				*pte |= PG_RW;
2094				pmap_invalidate_page(pmap, va);
2095			}
2096			return;
2097		}
2098
2099		/*
2100		 * We might be turning off write access to the page,
2101		 * so we go ahead and sense modify status.
2102		 */
2103		if (origpte & PG_MANAGED) {
2104			if ((origpte & PG_M) && pmap_track_modified(va)) {
2105				vm_page_t om;
2106				om = PHYS_TO_VM_PAGE(opa);
2107				vm_page_dirty(om);
2108			}
2109			pa |= PG_MANAGED;
2110		}
2111		goto validate;
2112	}
2113	/*
2114	 * Mapping has changed, invalidate old range and fall through to
2115	 * handle validating new mapping.
2116	 */
2117	if (opa) {
2118		int err;
2119		err = pmap_remove_pte(pmap, pte, va);
2120		if (err)
2121			panic("pmap_enter: pte vanished, va: 0x%x", va);
2122	}
2123
2124	/*
2125	 * Enter on the PV list if part of our managed memory. Note that we
2126	 * raise IPL while manipulating pv_table since pmap_enter can be
2127	 * called at interrupt time.
2128	 */
2129	if (pmap_initialized &&
2130	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2131		pmap_insert_entry(pmap, va, mpte, m);
2132		pa |= PG_MANAGED;
2133	}
2134
2135	/*
2136	 * Increment counters
2137	 */
2138	pmap->pm_stats.resident_count++;
2139	if (wired)
2140		pmap->pm_stats.wired_count++;
2141
2142validate:
2143	/*
2144	 * Now validate mapping with desired protection/wiring.
2145	 */
2146	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2147
2148	if (wired)
2149		newpte |= PG_W;
2150	if (va < VM_MAXUSER_ADDRESS)
2151		newpte |= PG_U;
2152	if (pmap == kernel_pmap)
2153		newpte |= pgeflag;
2154
2155	/*
2156	 * if the mapping or permission bits are different, we need
2157	 * to update the pte.
2158	 */
2159	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2160		*pte = newpte | PG_A;
2161		/*if (origpte)*/ {
2162			pmap_invalidate_page(pmap, va);
2163		}
2164	}
2165}
2166
2167/*
2168 * this code makes some *MAJOR* assumptions:
2169 * 1. Current pmap & pmap exists.
2170 * 2. Not wired.
2171 * 3. Read access.
2172 * 4. No page table pages.
2173 * 5. Tlbflush is deferred to calling procedure.
2174 * 6. Page IS managed.
2175 * but is *MUCH* faster than pmap_enter...
2176 */
2177
2178static vm_page_t
2179pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2180{
2181	pt_entry_t *pte;
2182	vm_offset_t pa;
2183
2184	/*
2185	 * In the case that a page table page is not
2186	 * resident, we are creating it here.
2187	 */
2188	if (va < VM_MAXUSER_ADDRESS) {
2189		unsigned ptepindex;
2190		pd_entry_t ptepa;
2191
2192		/*
2193		 * Calculate pagetable page index
2194		 */
2195		ptepindex = va >> PDRSHIFT;
2196		if (mpte && (mpte->pindex == ptepindex)) {
2197			mpte->hold_count++;
2198		} else {
2199retry:
2200			/*
2201			 * Get the page directory entry
2202			 */
2203			ptepa = pmap->pm_pdir[ptepindex];
2204
2205			/*
2206			 * If the page table page is mapped, we just increment
2207			 * the hold count, and activate it.
2208			 */
2209			if (ptepa) {
2210				if (ptepa & PG_PS)
2211					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2212				if (pmap->pm_ptphint &&
2213					(pmap->pm_ptphint->pindex == ptepindex)) {
2214					mpte = pmap->pm_ptphint;
2215				} else {
2216					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2217					pmap->pm_ptphint = mpte;
2218				}
2219				if (mpte == NULL)
2220					goto retry;
2221				mpte->hold_count++;
2222			} else {
2223				mpte = _pmap_allocpte(pmap, ptepindex);
2224			}
2225		}
2226	} else {
2227		mpte = NULL;
2228	}
2229
2230	/*
2231	 * This call to vtopte makes the assumption that we are
2232	 * entering the page into the current pmap.  In order to support
2233	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2234	 * But that isn't as quick as vtopte.
2235	 */
2236	pte = vtopte(va);
2237	if (*pte) {
2238		if (mpte)
2239			pmap_unwire_pte_hold(pmap, mpte);
2240		return 0;
2241	}
2242
2243	/*
2244	 * Enter on the PV list if part of our managed memory. Note that we
2245	 * raise IPL while manipulating pv_table since pmap_enter can be
2246	 * called at interrupt time.
2247	 */
2248	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2249		pmap_insert_entry(pmap, va, mpte, m);
2250
2251	/*
2252	 * Increment counters
2253	 */
2254	pmap->pm_stats.resident_count++;
2255
2256	pa = VM_PAGE_TO_PHYS(m);
2257
2258	/*
2259	 * Now validate mapping with RO protection
2260	 */
2261	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2262		*pte = pa | PG_V | PG_U;
2263	else
2264		*pte = pa | PG_V | PG_U | PG_MANAGED;
2265
2266	return mpte;
2267}
2268
2269/*
2270 * Make a temporary mapping for a physical address.  This is only intended
2271 * to be used for panic dumps.
2272 */
2273void *
2274pmap_kenter_temporary(vm_offset_t pa, int i)
2275{
2276	vm_offset_t va;
2277
2278	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2279	pmap_kenter(va, pa);
2280	invlpg(va);
2281	return ((void *)crashdumpmap);
2282}
2283
2284#define MAX_INIT_PT (96)
2285/*
2286 * pmap_object_init_pt preloads the ptes for a given object
2287 * into the specified pmap.  This eliminates the blast of soft
2288 * faults on process startup and immediately after an mmap.
2289 */
2290void
2291pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2292		    vm_object_t object, vm_pindex_t pindex,
2293		    vm_size_t size, int limit)
2294{
2295	vm_offset_t tmpidx;
2296	int psize;
2297	vm_page_t p, mpte;
2298	int objpgs;
2299
2300	if (pmap == NULL || object == NULL)
2301		return;
2302
2303	/*
2304	 * This code maps large physical mmap regions into the
2305	 * processor address space.  Note that some shortcuts
2306	 * are taken, but the code works.
2307	 */
2308	if (pseflag && (object->type == OBJT_DEVICE) &&
2309	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2310		int i;
2311		vm_page_t m[1];
2312		unsigned int ptepindex;
2313		int npdes;
2314		pd_entry_t ptepa;
2315
2316		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2317			return;
2318
2319retry:
2320		p = vm_page_lookup(object, pindex);
2321		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2322			goto retry;
2323
2324		if (p == NULL) {
2325			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2326			if (p == NULL)
2327				return;
2328			m[0] = p;
2329
2330			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2331				vm_page_free(p);
2332				return;
2333			}
2334
2335			p = vm_page_lookup(object, pindex);
2336			vm_page_wakeup(p);
2337		}
2338
2339		ptepa = VM_PAGE_TO_PHYS(p);
2340		if (ptepa & (NBPDR - 1)) {
2341			return;
2342		}
2343
2344		p->valid = VM_PAGE_BITS_ALL;
2345
2346		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2347		npdes = size >> PDRSHIFT;
2348		for(i = 0; i < npdes; i++) {
2349			pmap->pm_pdir[ptepindex] =
2350			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2351			ptepa += NBPDR;
2352			ptepindex += 1;
2353		}
2354		vm_page_flag_set(p, PG_MAPPED);
2355		pmap_invalidate_all(kernel_pmap);
2356		return;
2357	}
2358
2359	psize = i386_btop(size);
2360
2361	if ((object->type != OBJT_VNODE) ||
2362	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2363	     (object->resident_page_count > MAX_INIT_PT))) {
2364		return;
2365	}
2366
2367	if (psize + pindex > object->size) {
2368		if (object->size < pindex)
2369			return;
2370		psize = object->size - pindex;
2371	}
2372
2373	mpte = NULL;
2374	/*
2375	 * if we are processing a major portion of the object, then scan the
2376	 * entire thing.
2377	 */
2378	if (psize > (object->resident_page_count >> 2)) {
2379		objpgs = psize;
2380
2381		for (p = TAILQ_FIRST(&object->memq);
2382		    ((objpgs > 0) && (p != NULL));
2383		    p = TAILQ_NEXT(p, listq)) {
2384
2385			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2386				continue;
2387			}
2388			tmpidx = p->pindex - pindex;
2389			/*
2390			 * don't allow an madvise to blow away our really
2391			 * free pages allocating pv entries.
2392			 */
2393			if ((limit & MAP_PREFAULT_MADVISE) &&
2394			    cnt.v_free_count < cnt.v_free_reserved) {
2395				break;
2396			}
2397			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2398				(p->busy == 0) &&
2399			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2400				if ((p->queue - p->pc) == PQ_CACHE)
2401					vm_page_deactivate(p);
2402				vm_page_busy(p);
2403				mpte = pmap_enter_quick(pmap,
2404					addr + i386_ptob(tmpidx), p, mpte);
2405				vm_page_flag_set(p, PG_MAPPED);
2406				vm_page_wakeup(p);
2407			}
2408			objpgs -= 1;
2409		}
2410	} else {
2411		/*
2412		 * else lookup the pages one-by-one.
2413		 */
2414		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2415			/*
2416			 * don't allow an madvise to blow away our really
2417			 * free pages allocating pv entries.
2418			 */
2419			if ((limit & MAP_PREFAULT_MADVISE) &&
2420			    cnt.v_free_count < cnt.v_free_reserved) {
2421				break;
2422			}
2423			p = vm_page_lookup(object, tmpidx + pindex);
2424			if (p &&
2425			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2426				(p->busy == 0) &&
2427			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2428				if ((p->queue - p->pc) == PQ_CACHE)
2429					vm_page_deactivate(p);
2430				vm_page_busy(p);
2431				mpte = pmap_enter_quick(pmap,
2432					addr + i386_ptob(tmpidx), p, mpte);
2433				vm_page_flag_set(p, PG_MAPPED);
2434				vm_page_wakeup(p);
2435			}
2436		}
2437	}
2438	return;
2439}
2440
2441/*
2442 * pmap_prefault provides a quick way of clustering
2443 * pagefaults into a processes address space.  It is a "cousin"
2444 * of pmap_object_init_pt, except it runs at page fault time instead
2445 * of mmap time.
2446 */
2447#define PFBAK 4
2448#define PFFOR 4
2449#define PAGEORDER_SIZE (PFBAK+PFFOR)
2450
2451static int pmap_prefault_pageorder[] = {
2452	-PAGE_SIZE, PAGE_SIZE,
2453	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2454	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2455	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2456};
2457
2458void
2459pmap_prefault(pmap, addra, entry)
2460	pmap_t pmap;
2461	vm_offset_t addra;
2462	vm_map_entry_t entry;
2463{
2464	int i;
2465	vm_offset_t starta;
2466	vm_offset_t addr;
2467	vm_pindex_t pindex;
2468	vm_page_t m, mpte;
2469	vm_object_t object;
2470
2471	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2472		return;
2473
2474	object = entry->object.vm_object;
2475
2476	starta = addra - PFBAK * PAGE_SIZE;
2477	if (starta < entry->start) {
2478		starta = entry->start;
2479	} else if (starta > addra) {
2480		starta = 0;
2481	}
2482
2483	mpte = NULL;
2484	for (i = 0; i < PAGEORDER_SIZE; i++) {
2485		vm_object_t lobject;
2486		pt_entry_t *pte;
2487
2488		addr = addra + pmap_prefault_pageorder[i];
2489		if (addr > addra + (PFFOR * PAGE_SIZE))
2490			addr = 0;
2491
2492		if (addr < starta || addr >= entry->end)
2493			continue;
2494
2495		if ((*pmap_pde(pmap, addr)) == NULL)
2496			continue;
2497
2498		pte = vtopte(addr);
2499		if (*pte)
2500			continue;
2501
2502		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2503		lobject = object;
2504		for (m = vm_page_lookup(lobject, pindex);
2505		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2506		    lobject = lobject->backing_object) {
2507			if (lobject->backing_object_offset & PAGE_MASK)
2508				break;
2509			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2510			m = vm_page_lookup(lobject->backing_object, pindex);
2511		}
2512
2513		/*
2514		 * give-up when a page is not in memory
2515		 */
2516		if (m == NULL)
2517			break;
2518
2519		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2520			(m->busy == 0) &&
2521		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2522
2523			if ((m->queue - m->pc) == PQ_CACHE) {
2524				vm_page_deactivate(m);
2525			}
2526			vm_page_busy(m);
2527			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2528			vm_page_flag_set(m, PG_MAPPED);
2529			vm_page_wakeup(m);
2530		}
2531	}
2532}
2533
2534/*
2535 *	Routine:	pmap_change_wiring
2536 *	Function:	Change the wiring attribute for a map/virtual-address
2537 *			pair.
2538 *	In/out conditions:
2539 *			The mapping must already exist in the pmap.
2540 */
2541void
2542pmap_change_wiring(pmap, va, wired)
2543	register pmap_t pmap;
2544	vm_offset_t va;
2545	boolean_t wired;
2546{
2547	register pt_entry_t *pte;
2548
2549	if (pmap == NULL)
2550		return;
2551
2552	pte = pmap_pte(pmap, va);
2553
2554	if (wired && !pmap_pte_w(pte))
2555		pmap->pm_stats.wired_count++;
2556	else if (!wired && pmap_pte_w(pte))
2557		pmap->pm_stats.wired_count--;
2558
2559	/*
2560	 * Wiring is not a hardware characteristic so there is no need to
2561	 * invalidate TLB.
2562	 */
2563	pmap_pte_set_w(pte, wired);
2564}
2565
2566
2567
2568/*
2569 *	Copy the range specified by src_addr/len
2570 *	from the source map to the range dst_addr/len
2571 *	in the destination map.
2572 *
2573 *	This routine is only advisory and need not do anything.
2574 */
2575
2576void
2577pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2578	  vm_offset_t src_addr)
2579{
2580	vm_offset_t addr;
2581	vm_offset_t end_addr = src_addr + len;
2582	vm_offset_t pdnxt;
2583	pd_entry_t src_frame, dst_frame;
2584	vm_page_t m;
2585
2586	if (dst_addr != src_addr)
2587		return;
2588
2589	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2590	if (src_frame != (PTDpde & PG_FRAME))
2591		return;
2592
2593	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2594	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2595		pt_entry_t *src_pte, *dst_pte;
2596		vm_page_t dstmpte, srcmpte;
2597		pd_entry_t srcptepaddr;
2598		unsigned ptepindex;
2599
2600		if (addr >= UPT_MIN_ADDRESS)
2601			panic("pmap_copy: invalid to pmap_copy page tables\n");
2602
2603		/*
2604		 * Don't let optional prefaulting of pages make us go
2605		 * way below the low water mark of free pages or way
2606		 * above high water mark of used pv entries.
2607		 */
2608		if (cnt.v_free_count < cnt.v_free_reserved ||
2609		    pv_entry_count > pv_entry_high_water)
2610			break;
2611
2612		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2613		ptepindex = addr >> PDRSHIFT;
2614
2615		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2616		if (srcptepaddr == 0)
2617			continue;
2618
2619		if (srcptepaddr & PG_PS) {
2620			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2621				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2622				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2623			}
2624			continue;
2625		}
2626
2627		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2628		if ((srcmpte == NULL) ||
2629		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2630			continue;
2631
2632		if (pdnxt > end_addr)
2633			pdnxt = end_addr;
2634
2635		/*
2636		 * Have to recheck this before every avtopte() call below
2637		 * in case we have blocked and something else used APTDpde.
2638		 */
2639		if (dst_frame != (APTDpde & PG_FRAME)) {
2640			APTDpde = dst_frame | PG_RW | PG_V;
2641			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2642		}
2643		src_pte = vtopte(addr);
2644		dst_pte = avtopte(addr);
2645		while (addr < pdnxt) {
2646			pt_entry_t ptetemp;
2647			ptetemp = *src_pte;
2648			/*
2649			 * we only virtual copy managed pages
2650			 */
2651			if ((ptetemp & PG_MANAGED) != 0) {
2652				/*
2653				 * We have to check after allocpte for the
2654				 * pte still being around...  allocpte can
2655				 * block.
2656				 */
2657				dstmpte = pmap_allocpte(dst_pmap, addr);
2658				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2659					/*
2660					 * Clear the modified and
2661					 * accessed (referenced) bits
2662					 * during the copy.
2663					 */
2664					m = PHYS_TO_VM_PAGE(ptetemp);
2665					*dst_pte = ptetemp & ~(PG_M | PG_A);
2666					dst_pmap->pm_stats.resident_count++;
2667					pmap_insert_entry(dst_pmap, addr,
2668						dstmpte, m);
2669	 			} else {
2670					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2671				}
2672				if (dstmpte->hold_count >= srcmpte->hold_count)
2673					break;
2674			}
2675			addr += PAGE_SIZE;
2676			src_pte++;
2677			dst_pte++;
2678		}
2679	}
2680}
2681
2682#ifdef SMP
2683
2684/*
2685 *	pmap_zpi_switchin*()
2686 *
2687 *	These functions allow us to avoid doing IPIs alltogether in certain
2688 *	temporary page-mapping situations (page zeroing).  Instead to deal
2689 *	with being preempted and moved onto a different cpu we invalidate
2690 *	the page when the scheduler switches us in.  This does not occur
2691 *	very often so we remain relatively optimal with very little effort.
2692 */
2693static void
2694pmap_zpi_switchin12(void)
2695{
2696	invlpg((u_int)CADDR1);
2697	invlpg((u_int)CADDR2);
2698}
2699
2700static void
2701pmap_zpi_switchin2(void)
2702{
2703	invlpg((u_int)CADDR2);
2704}
2705
2706static void
2707pmap_zpi_switchin3(void)
2708{
2709	invlpg((u_int)CADDR3);
2710}
2711
2712#endif
2713
2714/*
2715 *	pmap_zero_page zeros the specified hardware page by mapping
2716 *	the page into KVM and using bzero to clear its contents.
2717 */
2718void
2719pmap_zero_page(vm_page_t m)
2720{
2721	vm_offset_t phys;
2722
2723	phys = VM_PAGE_TO_PHYS(m);
2724	if (*CMAP2)
2725		panic("pmap_zero_page: CMAP2 busy");
2726	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2727#ifdef SMP
2728	curthread->td_switchin = pmap_zpi_switchin2;
2729#endif
2730	invlpg((u_int)CADDR2);
2731#if defined(I686_CPU)
2732	if (cpu_class == CPUCLASS_686)
2733		i686_pagezero(CADDR2);
2734	else
2735#endif
2736		bzero(CADDR2, PAGE_SIZE);
2737#ifdef SMP
2738	curthread->td_switchin = NULL;
2739#endif
2740	*CMAP2 = 0;
2741}
2742
2743/*
2744 *	pmap_zero_page_area zeros the specified hardware page by mapping
2745 *	the page into KVM and using bzero to clear its contents.
2746 *
2747 *	off and size may not cover an area beyond a single hardware page.
2748 */
2749void
2750pmap_zero_page_area(vm_page_t m, int off, int size)
2751{
2752	vm_offset_t phys;
2753
2754	phys = VM_PAGE_TO_PHYS(m);
2755	if (*CMAP2)
2756		panic("pmap_zero_page: CMAP2 busy");
2757	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2758#ifdef SMP
2759	curthread->td_switchin = pmap_zpi_switchin2;
2760#endif
2761	invlpg((u_int)CADDR2);
2762#if defined(I686_CPU)
2763	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2764		i686_pagezero(CADDR2);
2765	else
2766#endif
2767		bzero((char *)CADDR2 + off, size);
2768#ifdef SMP
2769	curthread->td_switchin = NULL;
2770#endif
2771	*CMAP2 = 0;
2772}
2773
2774/*
2775 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2776 *	the page into KVM and using bzero to clear its contents.  This
2777 *	is intended to be called from the vm_pagezero process only and
2778 *	outside of Giant.
2779 */
2780void
2781pmap_zero_page_idle(vm_page_t m)
2782{
2783	vm_offset_t phys;
2784
2785	phys = VM_PAGE_TO_PHYS(m);
2786	if (*CMAP3)
2787		panic("pmap_zero_page: CMAP3 busy");
2788	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2789#ifdef SMP
2790	curthread->td_switchin = pmap_zpi_switchin3;
2791#endif
2792	invlpg((u_int)CADDR3);
2793#if defined(I686_CPU)
2794	if (cpu_class == CPUCLASS_686)
2795		i686_pagezero(CADDR3);
2796	else
2797#endif
2798		bzero(CADDR3, PAGE_SIZE);
2799#ifdef SMP
2800	curthread->td_switchin = NULL;
2801#endif
2802	*CMAP3 = 0;
2803}
2804
2805/*
2806 *	pmap_copy_page copies the specified (machine independent)
2807 *	page by mapping the page into virtual memory and using
2808 *	bcopy to copy the page, one machine dependent page at a
2809 *	time.
2810 */
2811void
2812pmap_copy_page(vm_page_t src, vm_page_t dst)
2813{
2814
2815	if (*CMAP1)
2816		panic("pmap_copy_page: CMAP1 busy");
2817	if (*CMAP2)
2818		panic("pmap_copy_page: CMAP2 busy");
2819	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2820	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2821#ifdef I386_CPU
2822	invltlb();
2823#else
2824#ifdef SMP
2825	curthread->td_switchin = pmap_zpi_switchin12;
2826#endif
2827	invlpg((u_int)CADDR1);
2828	invlpg((u_int)CADDR2);
2829#endif
2830	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2831
2832#ifdef SMP
2833	curthread->td_switchin = NULL;
2834#endif
2835	*CMAP1 = 0;
2836	*CMAP2 = 0;
2837}
2838
2839
2840/*
2841 *	Routine:	pmap_pageable
2842 *	Function:
2843 *		Make the specified pages (by pmap, offset)
2844 *		pageable (or not) as requested.
2845 *
2846 *		A page which is not pageable may not take
2847 *		a fault; therefore, its page table entry
2848 *		must remain valid for the duration.
2849 *
2850 *		This routine is merely advisory; pmap_enter
2851 *		will specify that these pages are to be wired
2852 *		down (or not) as appropriate.
2853 */
2854void
2855pmap_pageable(pmap, sva, eva, pageable)
2856	pmap_t pmap;
2857	vm_offset_t sva, eva;
2858	boolean_t pageable;
2859{
2860}
2861
2862/*
2863 * Returns true if the pmap's pv is one of the first
2864 * 16 pvs linked to from this page.  This count may
2865 * be changed upwards or downwards in the future; it
2866 * is only necessary that true be returned for a small
2867 * subset of pmaps for proper page aging.
2868 */
2869boolean_t
2870pmap_page_exists_quick(pmap, m)
2871	pmap_t pmap;
2872	vm_page_t m;
2873{
2874	pv_entry_t pv;
2875	int loops = 0;
2876	int s;
2877
2878	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2879		return FALSE;
2880
2881	s = splvm();
2882
2883	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2884		if (pv->pv_pmap == pmap) {
2885			splx(s);
2886			return TRUE;
2887		}
2888		loops++;
2889		if (loops >= 16)
2890			break;
2891	}
2892	splx(s);
2893	return (FALSE);
2894}
2895
2896#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2897/*
2898 * Remove all pages from specified address space
2899 * this aids process exit speeds.  Also, this code
2900 * is special cased for current process only, but
2901 * can have the more generic (and slightly slower)
2902 * mode enabled.  This is much faster than pmap_remove
2903 * in the case of running down an entire address space.
2904 */
2905void
2906pmap_remove_pages(pmap, sva, eva)
2907	pmap_t pmap;
2908	vm_offset_t sva, eva;
2909{
2910	pt_entry_t *pte, tpte;
2911	vm_page_t m;
2912	pv_entry_t pv, npv;
2913	int s;
2914
2915#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2916	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2917		printf("warning: pmap_remove_pages called with non-current pmap\n");
2918		return;
2919	}
2920#endif
2921
2922	s = splvm();
2923	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2924
2925		if (pv->pv_va >= eva || pv->pv_va < sva) {
2926			npv = TAILQ_NEXT(pv, pv_plist);
2927			continue;
2928		}
2929
2930#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2931		pte = vtopte(pv->pv_va);
2932#else
2933		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2934#endif
2935		tpte = *pte;
2936
2937		if (tpte == 0) {
2938			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2939							pte, pv->pv_va);
2940			panic("bad pte");
2941		}
2942
2943/*
2944 * We cannot remove wired pages from a process' mapping at this time
2945 */
2946		if (tpte & PG_W) {
2947			npv = TAILQ_NEXT(pv, pv_plist);
2948			continue;
2949		}
2950
2951		m = PHYS_TO_VM_PAGE(tpte);
2952		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2953		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2954		    m, m->phys_addr, tpte));
2955
2956		KASSERT(m < &vm_page_array[vm_page_array_size],
2957			("pmap_remove_pages: bad tpte %x", tpte));
2958
2959		pv->pv_pmap->pm_stats.resident_count--;
2960
2961		*pte = 0;
2962
2963		/*
2964		 * Update the vm_page_t clean and reference bits.
2965		 */
2966		if (tpte & PG_M) {
2967			vm_page_dirty(m);
2968		}
2969
2970		npv = TAILQ_NEXT(pv, pv_plist);
2971		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2972
2973		m->md.pv_list_count--;
2974		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2975		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2976			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2977		}
2978
2979		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2980		free_pv_entry(pv);
2981	}
2982	splx(s);
2983	pmap_invalidate_all(pmap);
2984}
2985
2986/*
2987 * pmap_testbit tests bits in pte's
2988 * note that the testbit/changebit routines are inline,
2989 * and a lot of things compile-time evaluate.
2990 */
2991static boolean_t
2992pmap_testbit(m, bit)
2993	vm_page_t m;
2994	int bit;
2995{
2996	pv_entry_t pv;
2997	pt_entry_t *pte;
2998	int s;
2999
3000	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3001		return FALSE;
3002
3003	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3004		return FALSE;
3005
3006	s = splvm();
3007
3008	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3009		/*
3010		 * if the bit being tested is the modified bit, then
3011		 * mark clean_map and ptes as never
3012		 * modified.
3013		 */
3014		if (bit & (PG_A|PG_M)) {
3015			if (!pmap_track_modified(pv->pv_va))
3016				continue;
3017		}
3018
3019#if defined(PMAP_DIAGNOSTIC)
3020		if (!pv->pv_pmap) {
3021			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3022			continue;
3023		}
3024#endif
3025		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3026		if (*pte & bit) {
3027			splx(s);
3028			return TRUE;
3029		}
3030	}
3031	splx(s);
3032	return (FALSE);
3033}
3034
3035/*
3036 * this routine is used to modify bits in ptes
3037 */
3038static __inline void
3039pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3040{
3041	register pv_entry_t pv;
3042	register pt_entry_t *pte;
3043	int s;
3044
3045	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3046		return;
3047
3048	s = splvm();
3049
3050	/*
3051	 * Loop over all current mappings setting/clearing as appropos If
3052	 * setting RO do we need to clear the VAC?
3053	 */
3054	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3055		/*
3056		 * don't write protect pager mappings
3057		 */
3058		if (!setem && (bit == PG_RW)) {
3059			if (!pmap_track_modified(pv->pv_va))
3060				continue;
3061		}
3062
3063#if defined(PMAP_DIAGNOSTIC)
3064		if (!pv->pv_pmap) {
3065			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3066			continue;
3067		}
3068#endif
3069
3070		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3071
3072		if (setem) {
3073			*pte |= bit;
3074			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3075		} else {
3076			pt_entry_t pbits = *pte;
3077			if (pbits & bit) {
3078				if (bit == PG_RW) {
3079					if (pbits & PG_M) {
3080						vm_page_dirty(m);
3081					}
3082					*pte = pbits & ~(PG_M|PG_RW);
3083				} else {
3084					*pte = pbits & ~bit;
3085				}
3086				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3087			}
3088		}
3089	}
3090	splx(s);
3091}
3092
3093/*
3094 *      pmap_page_protect:
3095 *
3096 *      Lower the permission for all mappings to a given page.
3097 */
3098void
3099pmap_page_protect(vm_page_t m, vm_prot_t prot)
3100{
3101	if ((prot & VM_PROT_WRITE) == 0) {
3102		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3103			pmap_changebit(m, PG_RW, FALSE);
3104		} else {
3105			pmap_remove_all(m);
3106		}
3107	}
3108}
3109
3110vm_offset_t
3111pmap_phys_address(ppn)
3112	int ppn;
3113{
3114	return (i386_ptob(ppn));
3115}
3116
3117/*
3118 *	pmap_ts_referenced:
3119 *
3120 *	Return a count of reference bits for a page, clearing those bits.
3121 *	It is not necessary for every reference bit to be cleared, but it
3122 *	is necessary that 0 only be returned when there are truly no
3123 *	reference bits set.
3124 *
3125 *	XXX: The exact number of bits to check and clear is a matter that
3126 *	should be tested and standardized at some point in the future for
3127 *	optimal aging of shared pages.
3128 */
3129int
3130pmap_ts_referenced(vm_page_t m)
3131{
3132	register pv_entry_t pv, pvf, pvn;
3133	pt_entry_t *pte;
3134	int s;
3135	int rtval = 0;
3136
3137	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3138		return (rtval);
3139
3140	s = splvm();
3141
3142	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3143
3144		pvf = pv;
3145
3146		do {
3147			pvn = TAILQ_NEXT(pv, pv_list);
3148
3149			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3150
3151			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3152
3153			if (!pmap_track_modified(pv->pv_va))
3154				continue;
3155
3156			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3157
3158			if (pte && (*pte & PG_A)) {
3159				*pte &= ~PG_A;
3160
3161				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3162
3163				rtval++;
3164				if (rtval > 4) {
3165					break;
3166				}
3167			}
3168		} while ((pv = pvn) != NULL && pv != pvf);
3169	}
3170	splx(s);
3171
3172	return (rtval);
3173}
3174
3175/*
3176 *	pmap_is_modified:
3177 *
3178 *	Return whether or not the specified physical page was modified
3179 *	in any physical maps.
3180 */
3181boolean_t
3182pmap_is_modified(vm_page_t m)
3183{
3184	return pmap_testbit(m, PG_M);
3185}
3186
3187/*
3188 *	Clear the modify bits on the specified physical page.
3189 */
3190void
3191pmap_clear_modify(vm_page_t m)
3192{
3193	pmap_changebit(m, PG_M, FALSE);
3194}
3195
3196/*
3197 *	pmap_clear_reference:
3198 *
3199 *	Clear the reference bit on the specified physical page.
3200 */
3201void
3202pmap_clear_reference(vm_page_t m)
3203{
3204	pmap_changebit(m, PG_A, FALSE);
3205}
3206
3207/*
3208 * Miscellaneous support routines follow
3209 */
3210
3211static void
3212i386_protection_init()
3213{
3214	register int *kp, prot;
3215
3216	kp = protection_codes;
3217	for (prot = 0; prot < 8; prot++) {
3218		switch (prot) {
3219		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3220			/*
3221			 * Read access is also 0. There isn't any execute bit,
3222			 * so just make it readable.
3223			 */
3224		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3225		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3226		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3227			*kp++ = 0;
3228			break;
3229		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3230		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3231		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3232		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3233			*kp++ = PG_RW;
3234			break;
3235		}
3236	}
3237}
3238
3239/*
3240 * Map a set of physical memory pages into the kernel virtual
3241 * address space. Return a pointer to where it is mapped. This
3242 * routine is intended to be used for mapping device memory,
3243 * NOT real memory.
3244 */
3245void *
3246pmap_mapdev(pa, size)
3247	vm_offset_t pa;
3248	vm_size_t size;
3249{
3250	vm_offset_t va, tmpva, offset;
3251	pt_entry_t *pte;
3252
3253	offset = pa & PAGE_MASK;
3254	size = roundup(offset + size, PAGE_SIZE);
3255
3256	GIANT_REQUIRED;
3257
3258	va = kmem_alloc_pageable(kernel_map, size);
3259	if (!va)
3260		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3261
3262	pa = pa & PG_FRAME;
3263	for (tmpva = va; size > 0; ) {
3264		pte = vtopte(tmpva);
3265		*pte = pa | PG_RW | PG_V | pgeflag;
3266		size -= PAGE_SIZE;
3267		tmpva += PAGE_SIZE;
3268		pa += PAGE_SIZE;
3269	}
3270	pmap_invalidate_range(kernel_pmap, va, tmpva);
3271	return ((void *)(va + offset));
3272}
3273
3274void
3275pmap_unmapdev(va, size)
3276	vm_offset_t va;
3277	vm_size_t size;
3278{
3279	vm_offset_t base, offset, tmpva;
3280	pt_entry_t *pte;
3281
3282	base = va & PG_FRAME;
3283	offset = va & PAGE_MASK;
3284	size = roundup(offset + size, PAGE_SIZE);
3285	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3286		pte = vtopte(tmpva);
3287		*pte = 0;
3288	}
3289	pmap_invalidate_range(kernel_pmap, va, tmpva);
3290	kmem_free(kernel_map, base, size);
3291}
3292
3293/*
3294 * perform the pmap work for mincore
3295 */
3296int
3297pmap_mincore(pmap, addr)
3298	pmap_t pmap;
3299	vm_offset_t addr;
3300{
3301	pt_entry_t *ptep, pte;
3302	vm_page_t m;
3303	int val = 0;
3304
3305	ptep = pmap_pte(pmap, addr);
3306	if (ptep == 0) {
3307		return 0;
3308	}
3309
3310	if ((pte = *ptep) != 0) {
3311		vm_offset_t pa;
3312
3313		val = MINCORE_INCORE;
3314		if ((pte & PG_MANAGED) == 0)
3315			return val;
3316
3317		pa = pte & PG_FRAME;
3318
3319		m = PHYS_TO_VM_PAGE(pa);
3320
3321		/*
3322		 * Modified by us
3323		 */
3324		if (pte & PG_M)
3325			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3326		/*
3327		 * Modified by someone
3328		 */
3329		else if (m->dirty || pmap_is_modified(m))
3330			val |= MINCORE_MODIFIED_OTHER;
3331		/*
3332		 * Referenced by us
3333		 */
3334		if (pte & PG_A)
3335			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3336
3337		/*
3338		 * Referenced by someone
3339		 */
3340		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3341			val |= MINCORE_REFERENCED_OTHER;
3342			vm_page_flag_set(m, PG_REFERENCED);
3343		}
3344	}
3345	return val;
3346}
3347
3348void
3349pmap_activate(struct thread *td)
3350{
3351	struct proc *p = td->td_proc;
3352	pmap_t	pmap;
3353	u_int32_t  cr3;
3354
3355	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3356#if defined(SMP)
3357	pmap->pm_active |= PCPU_GET(cpumask);
3358#else
3359	pmap->pm_active |= 1;
3360#endif
3361#if defined(SWTCH_OPTIM_STATS)
3362	tlb_flush_count++;
3363#endif
3364	cr3 = vtophys(pmap->pm_pdir);
3365	/* XXXKSE this is wrong.
3366	 * pmap_activate is for the current thread on the current cpu
3367	 */
3368	if (p->p_flag & P_KSES) {
3369		/* Make sure all other cr3 entries are updated. */
3370		/* what if they are running?  XXXKSE (maybe abort them) */
3371		FOREACH_THREAD_IN_PROC(p, td) {
3372			td->td_pcb->pcb_cr3 = cr3;
3373		}
3374	} else {
3375		td->td_pcb->pcb_cr3 = cr3;
3376	}
3377	load_cr3(cr3);
3378}
3379
3380vm_offset_t
3381pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3382{
3383
3384	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3385		return addr;
3386	}
3387
3388	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3389	return addr;
3390}
3391
3392
3393#if defined(PMAP_DEBUG)
3394pmap_pid_dump(int pid)
3395{
3396	pmap_t pmap;
3397	struct proc *p;
3398	int npte = 0;
3399	int index;
3400
3401	sx_slock(&allproc_lock);
3402	LIST_FOREACH(p, &allproc, p_list) {
3403		if (p->p_pid != pid)
3404			continue;
3405
3406		if (p->p_vmspace) {
3407			int i,j;
3408			index = 0;
3409			pmap = vmspace_pmap(p->p_vmspace);
3410			for (i = 0; i < NPDEPG; i++) {
3411				pd_entry_t *pde;
3412				pt_entry_t *pte;
3413				vm_offset_t base = i << PDRSHIFT;
3414
3415				pde = &pmap->pm_pdir[i];
3416				if (pde && pmap_pde_v(pde)) {
3417					for (j = 0; j < NPTEPG; j++) {
3418						vm_offset_t va = base + (j << PAGE_SHIFT);
3419						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3420							if (index) {
3421								index = 0;
3422								printf("\n");
3423							}
3424							sx_sunlock(&allproc_lock);
3425							return npte;
3426						}
3427						pte = pmap_pte_quick(pmap, va);
3428						if (pte && pmap_pte_v(pte)) {
3429							pt_entry_t pa;
3430							vm_page_t m;
3431							pa = *pte;
3432							m = PHYS_TO_VM_PAGE(pa);
3433							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3434								va, pa, m->hold_count, m->wire_count, m->flags);
3435							npte++;
3436							index++;
3437							if (index >= 2) {
3438								index = 0;
3439								printf("\n");
3440							} else {
3441								printf(" ");
3442							}
3443						}
3444					}
3445				}
3446			}
3447		}
3448	}
3449	sx_sunlock(&allproc_lock);
3450	return npte;
3451}
3452#endif
3453
3454#if defined(DEBUG)
3455
3456static void	pads(pmap_t pm);
3457void		pmap_pvdump(vm_offset_t pa);
3458
3459/* print address space of pmap*/
3460static void
3461pads(pm)
3462	pmap_t pm;
3463{
3464	int i, j;
3465	vm_offset_t va;
3466	pt_entry_t *ptep;
3467
3468	if (pm == kernel_pmap)
3469		return;
3470	for (i = 0; i < NPDEPG; i++)
3471		if (pm->pm_pdir[i])
3472			for (j = 0; j < NPTEPG; j++) {
3473				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3474				if (pm == kernel_pmap && va < KERNBASE)
3475					continue;
3476				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3477					continue;
3478				ptep = pmap_pte_quick(pm, va);
3479				if (pmap_pte_v(ptep))
3480					printf("%x:%x ", va, *ptep);
3481			};
3482
3483}
3484
3485void
3486pmap_pvdump(pa)
3487	vm_offset_t pa;
3488{
3489	pv_entry_t pv;
3490	vm_page_t m;
3491
3492	printf("pa %x", pa);
3493	m = PHYS_TO_VM_PAGE(pa);
3494	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3495		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3496		pads(pv->pv_pmap);
3497	}
3498	printf(" ");
3499}
3500#endif
3501