pmap.c revision 99561
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 99561 2002-07-08 00:17:43Z peter $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_kstack_pages.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mman.h>
81#include <sys/msgbuf.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/sx.h>
85#include <sys/user.h>
86#include <sys/vmmeter.h>
87#include <sys/sysctl.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/uma.h>
99
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103#if defined(SMP) || defined(APIC_IO)
104#include <machine/smp.h>
105#include <machine/apic.h>
106#include <machine/segments.h>
107#include <machine/tss.h>
108#endif /* SMP || APIC_IO */
109
110#define PMAP_KEEP_PDIRS
111#ifndef PMAP_SHPGPERPROC
112#define PMAP_SHPGPERPROC 200
113#endif
114
115#if defined(DIAGNOSTIC)
116#define PMAP_DIAGNOSTIC
117#endif
118
119#define MINPV 2048
120
121#if !defined(PMAP_DIAGNOSTIC)
122#define PMAP_INLINE __inline
123#else
124#define PMAP_INLINE
125#endif
126
127/*
128 * Get PDEs and PTEs for user/kernel address space
129 */
130#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
132
133#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
134#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
135#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
136#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
137#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
138
139#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
140#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
141
142/*
143 * Given a map and a machine independent protection code,
144 * convert to a vax protection code.
145 */
146#define pte_prot(m, p)	(protection_codes[p])
147static int protection_codes[8];
148
149struct pmap kernel_pmap_store;
150LIST_HEAD(pmaplist, pmap);
151struct pmaplist allpmaps;
152
153vm_offset_t avail_start;	/* PA of first available physical page */
154vm_offset_t avail_end;		/* PA of last available physical page */
155vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
156vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
157static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
158static int pgeflag;		/* PG_G or-in */
159static int pseflag;		/* PG_PS or-in */
160
161static vm_object_t kptobj;
162
163static int nkpt;
164vm_offset_t kernel_vm_end;
165
166/*
167 * Data for the pv entry allocation mechanism
168 */
169static uma_zone_t pvzone;
170static struct vm_object pvzone_obj;
171static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
172static int pmap_pagedaemon_waken = 0;
173
174/*
175 * All those kernel PT submaps that BSD is so fond of
176 */
177pt_entry_t *CMAP1 = 0;
178static pt_entry_t *CMAP2, *ptmmap;
179caddr_t CADDR1 = 0, ptvmmap = 0;
180static caddr_t CADDR2;
181static pt_entry_t *msgbufmap;
182struct msgbuf *msgbufp = 0;
183
184/*
185 * Crashdump maps.
186 */
187static pt_entry_t *pt_crashdumpmap;
188static caddr_t crashdumpmap;
189
190#ifdef SMP
191extern pt_entry_t *SMPpt;
192#endif
193static pt_entry_t *PMAP1 = 0;
194static pt_entry_t *PADDR1 = 0;
195
196static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
197static pt_entry_t *get_ptbase(pmap_t pmap);
198static pv_entry_t get_pv_entry(void);
199static void	i386_protection_init(void);
200static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
201
202static void	pmap_remove_all(vm_page_t m);
203static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
204				      vm_page_t m, vm_page_t mpte);
205static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
206static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
207static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
208					vm_offset_t va);
209static boolean_t pmap_testbit(vm_page_t m, int bit);
210static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
211		vm_page_t mpte, vm_page_t m);
212
213static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
214
215static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
216static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
217static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
218static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
219static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
220static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
221static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
222
223static pd_entry_t pdir4mb;
224
225/*
226 *	Routine:	pmap_pte
227 *	Function:
228 *		Extract the page table entry associated
229 *		with the given map/virtual_address pair.
230 */
231
232PMAP_INLINE pt_entry_t *
233pmap_pte(pmap, va)
234	register pmap_t pmap;
235	vm_offset_t va;
236{
237	pd_entry_t *pdeaddr;
238
239	if (pmap) {
240		pdeaddr = pmap_pde(pmap, va);
241		if (*pdeaddr & PG_PS)
242			return pdeaddr;
243		if (*pdeaddr) {
244			return get_ptbase(pmap) + i386_btop(va);
245		}
246	}
247	return (0);
248}
249
250/*
251 * Move the kernel virtual free pointer to the next
252 * 4MB.  This is used to help improve performance
253 * by using a large (4MB) page for much of the kernel
254 * (.text, .data, .bss)
255 */
256static vm_offset_t
257pmap_kmem_choose(vm_offset_t addr)
258{
259	vm_offset_t newaddr = addr;
260#ifndef DISABLE_PSE
261	if (cpu_feature & CPUID_PSE) {
262		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
263	}
264#endif
265	return newaddr;
266}
267
268/*
269 *	Bootstrap the system enough to run with virtual memory.
270 *
271 *	On the i386 this is called after mapping has already been enabled
272 *	and just syncs the pmap module with what has already been done.
273 *	[We can't call it easily with mapping off since the kernel is not
274 *	mapped with PA == VA, hence we would have to relocate every address
275 *	from the linked base (virtual) address "KERNBASE" to the actual
276 *	(physical) address starting relative to 0]
277 */
278void
279pmap_bootstrap(firstaddr, loadaddr)
280	vm_offset_t firstaddr;
281	vm_offset_t loadaddr;
282{
283	vm_offset_t va;
284	pt_entry_t *pte;
285	int i;
286
287	avail_start = firstaddr;
288
289	/*
290	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
291	 * large. It should instead be correctly calculated in locore.s and
292	 * not based on 'first' (which is a physical address, not a virtual
293	 * address, for the start of unused physical memory). The kernel
294	 * page tables are NOT double mapped and thus should not be included
295	 * in this calculation.
296	 */
297	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
298	virtual_avail = pmap_kmem_choose(virtual_avail);
299
300	virtual_end = VM_MAX_KERNEL_ADDRESS;
301
302	/*
303	 * Initialize protection array.
304	 */
305	i386_protection_init();
306
307	/*
308	 * Initialize the kernel pmap (which is statically allocated).
309	 */
310	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
311	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
312	TAILQ_INIT(&kernel_pmap->pm_pvlist);
313	LIST_INIT(&allpmaps);
314	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
315	nkpt = NKPT;
316
317	/*
318	 * Reserve some special page table entries/VA space for temporary
319	 * mapping of pages.
320	 */
321#define	SYSMAP(c, p, v, n)	\
322	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
323
324	va = virtual_avail;
325	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
326
327	/*
328	 * CMAP1/CMAP2 are used for zeroing and copying pages.
329	 */
330	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
331	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
332
333	/*
334	 * Crashdump maps.
335	 */
336	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
337
338	/*
339	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
340	 * XXX ptmmap is not used.
341	 */
342	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
343
344	/*
345	 * msgbufp is used to map the system message buffer.
346	 * XXX msgbufmap is not used.
347	 */
348	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
349	       atop(round_page(MSGBUF_SIZE)))
350
351	/*
352	 * ptemap is used for pmap_pte_quick
353	 */
354	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
355
356	virtual_avail = va;
357
358	*CMAP1 = *CMAP2 = 0;
359	for (i = 0; i < NKPT; i++)
360		PTD[i] = 0;
361
362	pgeflag = 0;
363#if !defined(SMP)			/* XXX - see also mp_machdep.c */
364	if (cpu_feature & CPUID_PGE) {
365		pgeflag = PG_G;
366	}
367#endif
368
369/*
370 * Initialize the 4MB page size flag
371 */
372	pseflag = 0;
373/*
374 * The 4MB page version of the initial
375 * kernel page mapping.
376 */
377	pdir4mb = 0;
378
379#if !defined(DISABLE_PSE)
380	if (cpu_feature & CPUID_PSE) {
381		pd_entry_t ptditmp;
382		/*
383		 * Note that we have enabled PSE mode
384		 */
385		pseflag = PG_PS;
386		ptditmp = *(PTmap + i386_btop(KERNBASE));
387		ptditmp &= ~(NBPDR - 1);
388		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
389		pdir4mb = ptditmp;
390
391#if !defined(SMP)
392		/*
393		 * Enable the PSE mode.
394		 */
395		load_cr4(rcr4() | CR4_PSE);
396
397		/*
398		 * We can do the mapping here for the single processor
399		 * case.  We simply ignore the old page table page from
400		 * now on.
401		 */
402		/*
403		 * For SMP, we still need 4K pages to bootstrap APs,
404		 * PSE will be enabled as soon as all APs are up.
405		 */
406		PTD[KPTDI] = (pd_entry_t) ptditmp;
407		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
408		invltlb();
409#endif
410	}
411#endif
412
413#ifdef SMP
414	if (cpu_apic_address == 0)
415		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
416
417	/* local apic is mapped on last page */
418	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
419	    (cpu_apic_address & PG_FRAME));
420#endif
421
422	invltlb();
423}
424
425#ifdef SMP
426/*
427 * Set 4mb pdir for mp startup
428 */
429void
430pmap_set_opt(void)
431{
432	if (pseflag && (cpu_feature & CPUID_PSE)) {
433		load_cr4(rcr4() | CR4_PSE);
434		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
435			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
436			cpu_invltlb();
437		}
438	}
439}
440#endif
441
442void *
443pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
444{
445	*flags = UMA_SLAB_PRIV;
446	return (void *)kmem_alloc(kernel_map, bytes);
447}
448
449/*
450 *	Initialize the pmap module.
451 *	Called by vm_init, to initialize any structures that the pmap
452 *	system needs to map virtual memory.
453 *	pmap_init has been enhanced to support in a fairly consistant
454 *	way, discontiguous physical memory.
455 */
456void
457pmap_init(phys_start, phys_end)
458	vm_offset_t phys_start, phys_end;
459{
460	int i;
461	int initial_pvs;
462
463	/*
464	 * object for kernel page table pages
465	 */
466	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
467
468	/*
469	 * Allocate memory for random pmap data structures.  Includes the
470	 * pv_head_table.
471	 */
472
473	for(i = 0; i < vm_page_array_size; i++) {
474		vm_page_t m;
475
476		m = &vm_page_array[i];
477		TAILQ_INIT(&m->md.pv_list);
478		m->md.pv_list_count = 0;
479	}
480
481	/*
482	 * init the pv free list
483	 */
484	initial_pvs = vm_page_array_size;
485	if (initial_pvs < MINPV)
486		initial_pvs = MINPV;
487	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
488	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
489	uma_zone_set_allocf(pvzone, pmap_allocf);
490	uma_prealloc(pvzone, initial_pvs);
491
492	/*
493	 * Now it is safe to enable pv_table recording.
494	 */
495	pmap_initialized = TRUE;
496}
497
498/*
499 * Initialize the address space (zone) for the pv_entries.  Set a
500 * high water mark so that the system can recover from excessive
501 * numbers of pv entries.
502 */
503void
504pmap_init2()
505{
506	int shpgperproc = PMAP_SHPGPERPROC;
507
508	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
509	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
510	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
511	pv_entry_high_water = 9 * (pv_entry_max / 10);
512	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
513}
514
515
516/***************************************************
517 * Low level helper routines.....
518 ***************************************************/
519
520#if defined(PMAP_DIAGNOSTIC)
521
522/*
523 * This code checks for non-writeable/modified pages.
524 * This should be an invalid condition.
525 */
526static int
527pmap_nw_modified(pt_entry_t ptea)
528{
529	int pte;
530
531	pte = (int) ptea;
532
533	if ((pte & (PG_M|PG_RW)) == PG_M)
534		return 1;
535	else
536		return 0;
537}
538#endif
539
540
541/*
542 * this routine defines the region(s) of memory that should
543 * not be tested for the modified bit.
544 */
545static PMAP_INLINE int
546pmap_track_modified(vm_offset_t va)
547{
548	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
549		return 1;
550	else
551		return 0;
552}
553
554static PMAP_INLINE void
555invltlb_1pg(vm_offset_t va)
556{
557#ifdef I386_CPU
558	invltlb();
559#else
560	invlpg(va);
561#endif
562}
563
564static __inline void
565pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
566{
567#if defined(SMP)
568	if (pmap->pm_active & PCPU_GET(cpumask))
569		cpu_invlpg((void *)va);
570	if (pmap->pm_active & PCPU_GET(other_cpus))
571		smp_invltlb();
572#else
573	if (pmap->pm_active)
574		invltlb_1pg(va);
575#endif
576}
577
578static __inline void
579pmap_invalidate_all(pmap_t pmap)
580{
581#if defined(SMP)
582	if (pmap->pm_active & PCPU_GET(cpumask))
583		cpu_invltlb();
584	if (pmap->pm_active & PCPU_GET(other_cpus))
585		smp_invltlb();
586#else
587	if (pmap->pm_active)
588		invltlb();
589#endif
590}
591
592/*
593 * Return an address which is the base of the Virtual mapping of
594 * all the PTEs for the given pmap. Note this doesn't say that
595 * all the PTEs will be present or that the pages there are valid.
596 * The PTEs are made available by the recursive mapping trick.
597 * It will map in the alternate PTE space if needed.
598 */
599static pt_entry_t *
600get_ptbase(pmap)
601	pmap_t pmap;
602{
603	pd_entry_t frame;
604
605	/* are we current address space or kernel? */
606	if (pmap == kernel_pmap)
607		return PTmap;
608	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
609	if (frame == (PTDpde & PG_FRAME))
610		return PTmap;
611	/* otherwise, we are alternate address space */
612	if (frame != (APTDpde & PG_FRAME)) {
613		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
614#if defined(SMP)
615		/* The page directory is not shared between CPUs */
616		cpu_invltlb();
617#else
618		invltlb();
619#endif
620	}
621	return APTmap;
622}
623
624/*
625 * Super fast pmap_pte routine best used when scanning
626 * the pv lists.  This eliminates many coarse-grained
627 * invltlb calls.  Note that many of the pv list
628 * scans are across different pmaps.  It is very wasteful
629 * to do an entire invltlb for checking a single mapping.
630 */
631
632static pt_entry_t *
633pmap_pte_quick(pmap, va)
634	register pmap_t pmap;
635	vm_offset_t va;
636{
637	pd_entry_t pde, newpf;
638	pde = pmap->pm_pdir[va >> PDRSHIFT];
639	if (pde != 0) {
640		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
641		unsigned index = i386_btop(va);
642		/* are we current address space or kernel? */
643		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
644			return PTmap + index;
645		newpf = pde & PG_FRAME;
646		if (((*PMAP1) & PG_FRAME) != newpf) {
647			*PMAP1 = newpf | PG_RW | PG_V;
648			invltlb_1pg((vm_offset_t) PADDR1);
649		}
650		return PADDR1 + (index & (NPTEPG - 1));
651	}
652	return (0);
653}
654
655/*
656 *	Routine:	pmap_extract
657 *	Function:
658 *		Extract the physical page address associated
659 *		with the given map/virtual_address pair.
660 */
661vm_offset_t
662pmap_extract(pmap, va)
663	register pmap_t pmap;
664	vm_offset_t va;
665{
666	vm_offset_t rtval;	/* XXX FIXME */
667	vm_offset_t pdirindex;
668
669	if (pmap == 0)
670		return 0;
671	pdirindex = va >> PDRSHIFT;
672	rtval = pmap->pm_pdir[pdirindex];
673	if (rtval != 0) {
674		pt_entry_t *pte;
675		if ((rtval & PG_PS) != 0) {
676			rtval &= ~(NBPDR - 1);
677			rtval |= va & (NBPDR - 1);
678			return rtval;
679		}
680		pte = get_ptbase(pmap) + i386_btop(va);
681		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
682		return rtval;
683	}
684	return 0;
685
686}
687
688/***************************************************
689 * Low level mapping routines.....
690 ***************************************************/
691
692/*
693 * add a wired page to the kva
694 * note that in order for the mapping to take effect -- you
695 * should do a invltlb after doing the pmap_kenter...
696 */
697PMAP_INLINE void
698pmap_kenter(vm_offset_t va, vm_offset_t pa)
699{
700	pt_entry_t *pte;
701	pt_entry_t npte, opte;
702
703	npte = pa | PG_RW | PG_V | pgeflag;
704	pte = vtopte(va);
705	opte = *pte;
706	*pte = npte;
707	invltlb_1pg(va);
708}
709
710/*
711 * remove a page from the kernel pagetables
712 */
713PMAP_INLINE void
714pmap_kremove(vm_offset_t va)
715{
716	register pt_entry_t *pte;
717
718	pte = vtopte(va);
719	*pte = 0;
720	invltlb_1pg(va);
721}
722
723/*
724 *	Used to map a range of physical addresses into kernel
725 *	virtual address space.
726 *
727 *	The value passed in '*virt' is a suggested virtual address for
728 *	the mapping. Architectures which can support a direct-mapped
729 *	physical to virtual region can return the appropriate address
730 *	within that region, leaving '*virt' unchanged. Other
731 *	architectures should map the pages starting at '*virt' and
732 *	update '*virt' with the first usable address after the mapped
733 *	region.
734 */
735vm_offset_t
736pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
737{
738	vm_offset_t sva = *virt;
739	vm_offset_t va = sva;
740	while (start < end) {
741		pmap_kenter(va, start);
742		va += PAGE_SIZE;
743		start += PAGE_SIZE;
744	}
745	*virt = va;
746	return (sva);
747}
748
749
750/*
751 * Add a list of wired pages to the kva
752 * this routine is only used for temporary
753 * kernel mappings that do not need to have
754 * page modification or references recorded.
755 * Note that old mappings are simply written
756 * over.  The page *must* be wired.
757 */
758void
759pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
760{
761	vm_offset_t end_va;
762
763	end_va = va + count * PAGE_SIZE;
764
765	while (va < end_va) {
766		pt_entry_t *pte;
767
768		pte = vtopte(va);
769		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
770#ifdef SMP
771		cpu_invlpg((void *)va);
772#else
773		invltlb_1pg(va);
774#endif
775		va += PAGE_SIZE;
776		m++;
777	}
778#ifdef SMP
779	smp_invltlb();
780#endif
781}
782
783/*
784 * this routine jerks page mappings from the
785 * kernel -- it is meant only for temporary mappings.
786 */
787void
788pmap_qremove(vm_offset_t va, int count)
789{
790	vm_offset_t end_va;
791
792	end_va = va + count*PAGE_SIZE;
793
794	while (va < end_va) {
795		pt_entry_t *pte;
796
797		pte = vtopte(va);
798		*pte = 0;
799#ifdef SMP
800		cpu_invlpg((void *)va);
801#else
802		invltlb_1pg(va);
803#endif
804		va += PAGE_SIZE;
805	}
806#ifdef SMP
807	smp_invltlb();
808#endif
809}
810
811static vm_page_t
812pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
813{
814	vm_page_t m;
815retry:
816	m = vm_page_lookup(object, pindex);
817	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
818		goto retry;
819	return m;
820}
821
822/*
823 * Create the kernel stack (including pcb for i386) for a new thread.
824 * This routine directly affects the fork perf for a process and
825 * create performance for a thread.
826 */
827void
828pmap_new_thread(struct thread *td)
829{
830#ifdef I386_CPU
831	int updateneeded = 0;
832#endif
833	int i;
834	vm_object_t ksobj;
835	vm_page_t m;
836	vm_offset_t ks;
837	pt_entry_t *ptek, oldpte;
838
839	/*
840	 * allocate object for the kstack
841	 */
842	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
843	td->td_kstack_obj = ksobj;
844
845#ifdef KSTACK_GUARD
846	/* get a kernel virtual address for the kstack for this thread */
847	ks = kmem_alloc_nofault(kernel_map, (KSTACK_PAGES + 1) * PAGE_SIZE);
848	if (ks == 0)
849		panic("pmap_new_thread: kstack allocation failed");
850
851	/*
852	 * Set the first page to be the unmapped guard page.
853	 */
854	ptek = vtopte(ks);
855	oldpte = *ptek;
856	*ptek = 0;
857	if (oldpte) {
858#ifdef I386_CPU
859		updateneeded = 1;
860#else
861		invlpg(ks);
862#endif
863	}
864
865	/*
866	 * move to the next page, which is where the real stack starts.
867	 */
868	ks += PAGE_SIZE;
869	td->td_kstack = ks;
870	ptek++;
871#else
872	/* get a kernel virtual address for the kstack for this thread */
873	ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
874	if (ks == 0)
875		panic("pmap_new_thread: kstack allocation failed");
876	td->td_kstack = ks;
877	ptek = vtopte(ks);
878#endif
879	/*
880	 * For the length of the stack, link in a real page of ram for each
881	 * page of stack.
882	 */
883	for (i = 0; i < KSTACK_PAGES; i++) {
884		/*
885		 * Get a kernel stack page
886		 */
887		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
888
889		/*
890		 * Wire the page
891		 */
892		m->wire_count++;
893		cnt.v_wire_count++;
894
895		/*
896		 * Enter the page into the kernel address space.
897		 */
898		oldpte = ptek[i];
899		ptek[i] = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
900		if (oldpte) {
901#ifdef I386_CPU
902			updateneeded = 1;
903#else
904			invlpg(ks + (i * PAGE_SIZE));
905#endif
906		}
907
908		vm_page_wakeup(m);
909		vm_page_flag_clear(m, PG_ZERO);
910		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
911		m->valid = VM_PAGE_BITS_ALL;
912	}
913#ifdef I386_CPU
914	if (updateneeded)
915		invltlb();
916#endif
917}
918
919/*
920 * Dispose the kernel stack for a thread that has exited.
921 * This routine directly impacts the exit perf of a process and thread.
922 */
923void
924pmap_dispose_thread(td)
925	struct thread *td;
926{
927	int i;
928	vm_object_t ksobj;
929	vm_offset_t ks;
930	vm_page_t m;
931	pt_entry_t *ptek;
932
933	ksobj = td->td_kstack_obj;
934	ks = td->td_kstack;
935	ptek = vtopte(ks);
936	for (i = 0; i < KSTACK_PAGES; i++) {
937		m = vm_page_lookup(ksobj, i);
938		if (m == NULL)
939			panic("pmap_dispose_thread: kstack already missing?");
940		vm_page_busy(m);
941		ptek[i] = 0;
942#ifndef I386_CPU
943		invlpg(ks + (i * PAGE_SIZE));
944#endif
945		vm_page_unwire(m, 0);
946		vm_page_free(m);
947	}
948#ifdef I386_CPU
949	invltlb();
950#endif
951	/*
952	 * Free the space that this stack was mapped to in the kernel
953	 * address map.
954	 */
955#ifdef KSTACK_GUARD
956	kmem_free(kernel_map, ks - PAGE_SIZE, (KSTACK_PAGES + 1) * PAGE_SIZE);
957#else
958	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
959#endif
960	vm_object_deallocate(ksobj);
961}
962
963/*
964 * Allow the Kernel stack for a thread to be prejudicially paged out.
965 */
966void
967pmap_swapout_thread(td)
968	struct thread *td;
969{
970	int i;
971	vm_object_t ksobj;
972	vm_offset_t ks;
973	vm_page_t m;
974
975	ksobj = td->td_kstack_obj;
976	ks = td->td_kstack;
977	for (i = 0; i < KSTACK_PAGES; i++) {
978		m = vm_page_lookup(ksobj, i);
979		if (m == NULL)
980			panic("pmap_swapout_thread: kstack already missing?");
981		vm_page_dirty(m);
982		vm_page_unwire(m, 0);
983		pmap_kremove(ks + i * PAGE_SIZE);
984	}
985}
986
987/*
988 * Bring the kernel stack for a specified thread back in.
989 */
990void
991pmap_swapin_thread(td)
992	struct thread *td;
993{
994	int i, rv;
995	vm_object_t ksobj;
996	vm_offset_t ks;
997	vm_page_t m;
998
999	ksobj = td->td_kstack_obj;
1000	ks = td->td_kstack;
1001	for (i = 0; i < KSTACK_PAGES; i++) {
1002		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1003		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1004		if (m->valid != VM_PAGE_BITS_ALL) {
1005			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1006			if (rv != VM_PAGER_OK)
1007				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1008			m = vm_page_lookup(ksobj, i);
1009			m->valid = VM_PAGE_BITS_ALL;
1010		}
1011		vm_page_wire(m);
1012		vm_page_wakeup(m);
1013		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1014	}
1015}
1016
1017/***************************************************
1018 * Page table page management routines.....
1019 ***************************************************/
1020
1021/*
1022 * This routine unholds page table pages, and if the hold count
1023 * drops to zero, then it decrements the wire count.
1024 */
1025static int
1026_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1027{
1028
1029	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1030		;
1031
1032	if (m->hold_count == 0) {
1033		vm_offset_t pteva;
1034		/*
1035		 * unmap the page table page
1036		 */
1037		pmap->pm_pdir[m->pindex] = 0;
1038		--pmap->pm_stats.resident_count;
1039		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1040		    (PTDpde & PG_FRAME)) {
1041			/*
1042			 * Do a invltlb to make the invalidated mapping
1043			 * take effect immediately.
1044			 */
1045			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1046			pmap_invalidate_page(pmap, pteva);
1047		}
1048
1049		if (pmap->pm_ptphint == m)
1050			pmap->pm_ptphint = NULL;
1051
1052		/*
1053		 * If the page is finally unwired, simply free it.
1054		 */
1055		--m->wire_count;
1056		if (m->wire_count == 0) {
1057
1058			vm_page_flash(m);
1059			vm_page_busy(m);
1060			vm_page_free_zero(m);
1061			--cnt.v_wire_count;
1062		}
1063		return 1;
1064	}
1065	return 0;
1066}
1067
1068static PMAP_INLINE int
1069pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1070{
1071	vm_page_unhold(m);
1072	if (m->hold_count == 0)
1073		return _pmap_unwire_pte_hold(pmap, m);
1074	else
1075		return 0;
1076}
1077
1078/*
1079 * After removing a page table entry, this routine is used to
1080 * conditionally free the page, and manage the hold/wire counts.
1081 */
1082static int
1083pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1084{
1085	unsigned ptepindex;
1086	if (va >= VM_MAXUSER_ADDRESS)
1087		return 0;
1088
1089	if (mpte == NULL) {
1090		ptepindex = (va >> PDRSHIFT);
1091		if (pmap->pm_ptphint &&
1092			(pmap->pm_ptphint->pindex == ptepindex)) {
1093			mpte = pmap->pm_ptphint;
1094		} else {
1095			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1096			pmap->pm_ptphint = mpte;
1097		}
1098	}
1099
1100	return pmap_unwire_pte_hold(pmap, mpte);
1101}
1102
1103void
1104pmap_pinit0(pmap)
1105	struct pmap *pmap;
1106{
1107	pmap->pm_pdir =
1108		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1109	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1110	pmap->pm_ptphint = NULL;
1111	pmap->pm_active = 0;
1112	TAILQ_INIT(&pmap->pm_pvlist);
1113	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1114	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1115}
1116
1117/*
1118 * Initialize a preallocated and zeroed pmap structure,
1119 * such as one in a vmspace structure.
1120 */
1121void
1122pmap_pinit(pmap)
1123	register struct pmap *pmap;
1124{
1125	vm_page_t ptdpg;
1126
1127	/*
1128	 * No need to allocate page table space yet but we do need a valid
1129	 * page directory table.
1130	 */
1131	if (pmap->pm_pdir == NULL)
1132		pmap->pm_pdir =
1133			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1134
1135	/*
1136	 * allocate object for the ptes
1137	 */
1138	if (pmap->pm_pteobj == NULL)
1139		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1140
1141	/*
1142	 * allocate the page directory page
1143	 */
1144	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1145			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1146
1147	ptdpg->wire_count = 1;
1148	++cnt.v_wire_count;
1149
1150
1151	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1152	ptdpg->valid = VM_PAGE_BITS_ALL;
1153
1154	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1155	if ((ptdpg->flags & PG_ZERO) == 0)
1156		bzero(pmap->pm_pdir, PAGE_SIZE);
1157
1158	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1159	/* Wire in kernel global address entries. */
1160	/* XXX copies current process, does not fill in MPPTDI */
1161	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1162#ifdef SMP
1163	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1164#endif
1165
1166	/* install self-referential address mapping entry */
1167	pmap->pm_pdir[PTDPTDI] =
1168		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1169
1170	pmap->pm_active = 0;
1171	pmap->pm_ptphint = NULL;
1172	TAILQ_INIT(&pmap->pm_pvlist);
1173	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1174}
1175
1176/*
1177 * Wire in kernel global address entries.  To avoid a race condition
1178 * between pmap initialization and pmap_growkernel, this procedure
1179 * should be called after the vmspace is attached to the process
1180 * but before this pmap is activated.
1181 */
1182void
1183pmap_pinit2(pmap)
1184	struct pmap *pmap;
1185{
1186	/* XXX: Remove this stub when no longer called */
1187}
1188
1189static int
1190pmap_release_free_page(pmap_t pmap, vm_page_t p)
1191{
1192	pd_entry_t *pde = pmap->pm_pdir;
1193	/*
1194	 * This code optimizes the case of freeing non-busy
1195	 * page-table pages.  Those pages are zero now, and
1196	 * might as well be placed directly into the zero queue.
1197	 */
1198	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1199		return 0;
1200
1201	vm_page_busy(p);
1202
1203	/*
1204	 * Remove the page table page from the processes address space.
1205	 */
1206	pde[p->pindex] = 0;
1207	pmap->pm_stats.resident_count--;
1208
1209	if (p->hold_count)  {
1210		panic("pmap_release: freeing held page table page");
1211	}
1212	/*
1213	 * Page directory pages need to have the kernel
1214	 * stuff cleared, so they can go into the zero queue also.
1215	 */
1216	if (p->pindex == PTDPTDI) {
1217		bzero(pde + KPTDI, nkpt * PTESIZE);
1218#ifdef SMP
1219		pde[MPPTDI] = 0;
1220#endif
1221		pde[APTDPTDI] = 0;
1222		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1223	}
1224
1225	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1226		pmap->pm_ptphint = NULL;
1227
1228	p->wire_count--;
1229	cnt.v_wire_count--;
1230	vm_page_free_zero(p);
1231	return 1;
1232}
1233
1234/*
1235 * this routine is called if the page table page is not
1236 * mapped correctly.
1237 */
1238static vm_page_t
1239_pmap_allocpte(pmap, ptepindex)
1240	pmap_t	pmap;
1241	unsigned ptepindex;
1242{
1243	vm_offset_t pteva, ptepa;	/* XXXPA */
1244	vm_page_t m;
1245
1246	/*
1247	 * Find or fabricate a new pagetable page
1248	 */
1249	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1250			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1251
1252	KASSERT(m->queue == PQ_NONE,
1253		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1254
1255	if (m->wire_count == 0)
1256		cnt.v_wire_count++;
1257	m->wire_count++;
1258
1259	/*
1260	 * Increment the hold count for the page table page
1261	 * (denoting a new mapping.)
1262	 */
1263	m->hold_count++;
1264
1265	/*
1266	 * Map the pagetable page into the process address space, if
1267	 * it isn't already there.
1268	 */
1269
1270	pmap->pm_stats.resident_count++;
1271
1272	ptepa = VM_PAGE_TO_PHYS(m);
1273	pmap->pm_pdir[ptepindex] =
1274		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1275
1276	/*
1277	 * Set the page table hint
1278	 */
1279	pmap->pm_ptphint = m;
1280
1281	/*
1282	 * Try to use the new mapping, but if we cannot, then
1283	 * do it with the routine that maps the page explicitly.
1284	 */
1285	if ((m->flags & PG_ZERO) == 0) {
1286		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1287		    (PTDpde & PG_FRAME)) {
1288			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1289			bzero((caddr_t) pteva, PAGE_SIZE);
1290		} else {
1291			pmap_zero_page(m);
1292		}
1293	}
1294
1295	m->valid = VM_PAGE_BITS_ALL;
1296	vm_page_flag_clear(m, PG_ZERO);
1297	vm_page_flag_set(m, PG_MAPPED);
1298	vm_page_wakeup(m);
1299
1300	return m;
1301}
1302
1303static vm_page_t
1304pmap_allocpte(pmap_t pmap, vm_offset_t va)
1305{
1306	unsigned ptepindex;
1307	pd_entry_t ptepa;
1308	vm_page_t m;
1309
1310	/*
1311	 * Calculate pagetable page index
1312	 */
1313	ptepindex = va >> PDRSHIFT;
1314
1315	/*
1316	 * Get the page directory entry
1317	 */
1318	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1319
1320	/*
1321	 * This supports switching from a 4MB page to a
1322	 * normal 4K page.
1323	 */
1324	if (ptepa & PG_PS) {
1325		pmap->pm_pdir[ptepindex] = 0;
1326		ptepa = 0;
1327		invltlb();
1328	}
1329
1330	/*
1331	 * If the page table page is mapped, we just increment the
1332	 * hold count, and activate it.
1333	 */
1334	if (ptepa) {
1335		/*
1336		 * In order to get the page table page, try the
1337		 * hint first.
1338		 */
1339		if (pmap->pm_ptphint &&
1340			(pmap->pm_ptphint->pindex == ptepindex)) {
1341			m = pmap->pm_ptphint;
1342		} else {
1343			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1344			pmap->pm_ptphint = m;
1345		}
1346		m->hold_count++;
1347		return m;
1348	}
1349	/*
1350	 * Here if the pte page isn't mapped, or if it has been deallocated.
1351	 */
1352	return _pmap_allocpte(pmap, ptepindex);
1353}
1354
1355
1356/***************************************************
1357* Pmap allocation/deallocation routines.
1358 ***************************************************/
1359
1360/*
1361 * Release any resources held by the given physical map.
1362 * Called when a pmap initialized by pmap_pinit is being released.
1363 * Should only be called if the map contains no valid mappings.
1364 */
1365void
1366pmap_release(pmap_t pmap)
1367{
1368	vm_page_t p,n,ptdpg;
1369	vm_object_t object = pmap->pm_pteobj;
1370	int curgeneration;
1371
1372#if defined(DIAGNOSTIC)
1373	if (object->ref_count != 1)
1374		panic("pmap_release: pteobj reference count != 1");
1375#endif
1376
1377	ptdpg = NULL;
1378	LIST_REMOVE(pmap, pm_list);
1379retry:
1380	curgeneration = object->generation;
1381	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1382		n = TAILQ_NEXT(p, listq);
1383		if (p->pindex == PTDPTDI) {
1384			ptdpg = p;
1385			continue;
1386		}
1387		while (1) {
1388			if (!pmap_release_free_page(pmap, p) &&
1389				(object->generation != curgeneration))
1390				goto retry;
1391		}
1392	}
1393
1394	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1395		goto retry;
1396}
1397
1398static int
1399kvm_size(SYSCTL_HANDLER_ARGS)
1400{
1401	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1402
1403        return sysctl_handle_long(oidp, &ksize, 0, req);
1404}
1405SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1406    0, 0, kvm_size, "IU", "Size of KVM");
1407
1408static int
1409kvm_free(SYSCTL_HANDLER_ARGS)
1410{
1411	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1412
1413        return sysctl_handle_long(oidp, &kfree, 0, req);
1414}
1415SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1416    0, 0, kvm_free, "IU", "Amount of KVM free");
1417
1418/*
1419 * grow the number of kernel page table entries, if needed
1420 */
1421void
1422pmap_growkernel(vm_offset_t addr)
1423{
1424	struct pmap *pmap;
1425	int s;
1426	vm_offset_t ptppaddr;
1427	vm_page_t nkpg;
1428	pd_entry_t newpdir;
1429
1430	s = splhigh();
1431	if (kernel_vm_end == 0) {
1432		kernel_vm_end = KERNBASE;
1433		nkpt = 0;
1434		while (pdir_pde(PTD, kernel_vm_end)) {
1435			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1436			nkpt++;
1437		}
1438	}
1439	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1440	while (kernel_vm_end < addr) {
1441		if (pdir_pde(PTD, kernel_vm_end)) {
1442			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1443			continue;
1444		}
1445
1446		/*
1447		 * This index is bogus, but out of the way
1448		 */
1449		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1450		if (!nkpg)
1451			panic("pmap_growkernel: no memory to grow kernel");
1452
1453		nkpt++;
1454
1455		vm_page_wire(nkpg);
1456		pmap_zero_page(nkpg);
1457		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1458		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1459		pdir_pde(PTD, kernel_vm_end) = newpdir;
1460
1461		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1462			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1463		}
1464		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1465	}
1466	splx(s);
1467}
1468
1469
1470/***************************************************
1471 * page management routines.
1472 ***************************************************/
1473
1474/*
1475 * free the pv_entry back to the free list
1476 */
1477static PMAP_INLINE void
1478free_pv_entry(pv_entry_t pv)
1479{
1480	pv_entry_count--;
1481	uma_zfree(pvzone, pv);
1482}
1483
1484/*
1485 * get a new pv_entry, allocating a block from the system
1486 * when needed.
1487 * the memory allocation is performed bypassing the malloc code
1488 * because of the possibility of allocations at interrupt time.
1489 */
1490static pv_entry_t
1491get_pv_entry(void)
1492{
1493	pv_entry_count++;
1494	if (pv_entry_high_water &&
1495		(pv_entry_count > pv_entry_high_water) &&
1496		(pmap_pagedaemon_waken == 0)) {
1497		pmap_pagedaemon_waken = 1;
1498		wakeup (&vm_pages_needed);
1499	}
1500	return uma_zalloc(pvzone, M_NOWAIT);
1501}
1502
1503/*
1504 * This routine is very drastic, but can save the system
1505 * in a pinch.
1506 */
1507void
1508pmap_collect()
1509{
1510	int i;
1511	vm_page_t m;
1512	static int warningdone = 0;
1513
1514	if (pmap_pagedaemon_waken == 0)
1515		return;
1516
1517	if (warningdone < 5) {
1518		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1519		warningdone++;
1520	}
1521
1522	for(i = 0; i < vm_page_array_size; i++) {
1523		m = &vm_page_array[i];
1524		if (m->wire_count || m->hold_count || m->busy ||
1525		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1526			continue;
1527		pmap_remove_all(m);
1528	}
1529	pmap_pagedaemon_waken = 0;
1530}
1531
1532
1533/*
1534 * If it is the first entry on the list, it is actually
1535 * in the header and we must copy the following entry up
1536 * to the header.  Otherwise we must search the list for
1537 * the entry.  In either case we free the now unused entry.
1538 */
1539
1540static int
1541pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1542{
1543	pv_entry_t pv;
1544	int rtval;
1545	int s;
1546
1547	s = splvm();
1548	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1549		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1550			if (pmap == pv->pv_pmap && va == pv->pv_va)
1551				break;
1552		}
1553	} else {
1554		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1555			if (va == pv->pv_va)
1556				break;
1557		}
1558	}
1559
1560	rtval = 0;
1561	if (pv) {
1562		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1563		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1564		m->md.pv_list_count--;
1565		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1566			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1567
1568		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1569		free_pv_entry(pv);
1570	}
1571
1572	splx(s);
1573	return rtval;
1574}
1575
1576/*
1577 * Create a pv entry for page at pa for
1578 * (pmap, va).
1579 */
1580static void
1581pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1582{
1583
1584	int s;
1585	pv_entry_t pv;
1586
1587	s = splvm();
1588	pv = get_pv_entry();
1589	pv->pv_va = va;
1590	pv->pv_pmap = pmap;
1591	pv->pv_ptem = mpte;
1592
1593	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1594	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1595	m->md.pv_list_count++;
1596
1597	splx(s);
1598}
1599
1600/*
1601 * pmap_remove_pte: do the things to unmap a page in a process
1602 */
1603static int
1604pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1605{
1606	pt_entry_t oldpte;
1607	vm_page_t m;
1608
1609	oldpte = atomic_readandclear_int(ptq);
1610	if (oldpte & PG_W)
1611		pmap->pm_stats.wired_count -= 1;
1612	/*
1613	 * Machines that don't support invlpg, also don't support
1614	 * PG_G.
1615	 */
1616	if (oldpte & PG_G)
1617		invlpg(va);
1618	pmap->pm_stats.resident_count -= 1;
1619	if (oldpte & PG_MANAGED) {
1620		m = PHYS_TO_VM_PAGE(oldpte);
1621		if (oldpte & PG_M) {
1622#if defined(PMAP_DIAGNOSTIC)
1623			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1624				printf(
1625	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1626				    va, oldpte);
1627			}
1628#endif
1629			if (pmap_track_modified(va))
1630				vm_page_dirty(m);
1631		}
1632		if (oldpte & PG_A)
1633			vm_page_flag_set(m, PG_REFERENCED);
1634		return pmap_remove_entry(pmap, m, va);
1635	} else {
1636		return pmap_unuse_pt(pmap, va, NULL);
1637	}
1638
1639	return 0;
1640}
1641
1642/*
1643 * Remove a single page from a process address space
1644 */
1645static void
1646pmap_remove_page(pmap_t pmap, vm_offset_t va)
1647{
1648	register pt_entry_t *ptq;
1649
1650	/*
1651	 * if there is no pte for this address, just skip it!!!
1652	 */
1653	if (*pmap_pde(pmap, va) == 0) {
1654		return;
1655	}
1656
1657	/*
1658	 * get a local va for mappings for this pmap.
1659	 */
1660	ptq = get_ptbase(pmap) + i386_btop(va);
1661	if (*ptq) {
1662		(void) pmap_remove_pte(pmap, ptq, va);
1663		pmap_invalidate_page(pmap, va);
1664	}
1665	return;
1666}
1667
1668/*
1669 *	Remove the given range of addresses from the specified map.
1670 *
1671 *	It is assumed that the start and end are properly
1672 *	rounded to the page size.
1673 */
1674void
1675pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1676{
1677	register pt_entry_t *ptbase;
1678	vm_offset_t pdnxt;
1679	pd_entry_t ptpaddr;
1680	vm_offset_t sindex, eindex;
1681	int anyvalid;
1682
1683	if (pmap == NULL)
1684		return;
1685
1686	if (pmap->pm_stats.resident_count == 0)
1687		return;
1688
1689	/*
1690	 * special handling of removing one page.  a very
1691	 * common operation and easy to short circuit some
1692	 * code.
1693	 */
1694	if ((sva + PAGE_SIZE == eva) &&
1695	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1696		pmap_remove_page(pmap, sva);
1697		return;
1698	}
1699
1700	anyvalid = 0;
1701
1702	/*
1703	 * Get a local virtual address for the mappings that are being
1704	 * worked with.
1705	 */
1706	ptbase = get_ptbase(pmap);
1707
1708	sindex = i386_btop(sva);
1709	eindex = i386_btop(eva);
1710
1711	for (; sindex < eindex; sindex = pdnxt) {
1712		unsigned pdirindex;
1713
1714		/*
1715		 * Calculate index for next page table.
1716		 */
1717		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1718		if (pmap->pm_stats.resident_count == 0)
1719			break;
1720
1721		pdirindex = sindex / NPDEPG;
1722		ptpaddr = pmap->pm_pdir[pdirindex];
1723		if ((ptpaddr & PG_PS) != 0) {
1724			pmap->pm_pdir[pdirindex] = 0;
1725			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1726			anyvalid++;
1727			continue;
1728		}
1729
1730		/*
1731		 * Weed out invalid mappings. Note: we assume that the page
1732		 * directory table is always allocated, and in kernel virtual.
1733		 */
1734		if (ptpaddr == 0)
1735			continue;
1736
1737		/*
1738		 * Limit our scan to either the end of the va represented
1739		 * by the current page table page, or to the end of the
1740		 * range being removed.
1741		 */
1742		if (pdnxt > eindex) {
1743			pdnxt = eindex;
1744		}
1745
1746		for (; sindex != pdnxt; sindex++) {
1747			vm_offset_t va;
1748			if (ptbase[sindex] == 0) {
1749				continue;
1750			}
1751			va = i386_ptob(sindex);
1752
1753			anyvalid++;
1754			if (pmap_remove_pte(pmap,
1755				ptbase + sindex, va))
1756				break;
1757		}
1758	}
1759
1760	if (anyvalid)
1761		pmap_invalidate_all(pmap);
1762}
1763
1764/*
1765 *	Routine:	pmap_remove_all
1766 *	Function:
1767 *		Removes this physical page from
1768 *		all physical maps in which it resides.
1769 *		Reflects back modify bits to the pager.
1770 *
1771 *	Notes:
1772 *		Original versions of this routine were very
1773 *		inefficient because they iteratively called
1774 *		pmap_remove (slow...)
1775 */
1776
1777static void
1778pmap_remove_all(vm_page_t m)
1779{
1780	register pv_entry_t pv;
1781	pt_entry_t *pte, tpte;
1782	int s;
1783
1784#if defined(PMAP_DIAGNOSTIC)
1785	/*
1786	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1787	 * pages!
1788	 */
1789	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1790		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1791	}
1792#endif
1793
1794	s = splvm();
1795	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1796		pv->pv_pmap->pm_stats.resident_count--;
1797
1798		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1799
1800		tpte = atomic_readandclear_int(pte);
1801		if (tpte & PG_W)
1802			pv->pv_pmap->pm_stats.wired_count--;
1803
1804		if (tpte & PG_A)
1805			vm_page_flag_set(m, PG_REFERENCED);
1806
1807		/*
1808		 * Update the vm_page_t clean and reference bits.
1809		 */
1810		if (tpte & PG_M) {
1811#if defined(PMAP_DIAGNOSTIC)
1812			if (pmap_nw_modified((pt_entry_t) tpte)) {
1813				printf(
1814	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1815				    pv->pv_va, tpte);
1816			}
1817#endif
1818			if (pmap_track_modified(pv->pv_va))
1819				vm_page_dirty(m);
1820		}
1821		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1822
1823		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1824		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1825		m->md.pv_list_count--;
1826		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1827		free_pv_entry(pv);
1828	}
1829
1830	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1831
1832	splx(s);
1833}
1834
1835/*
1836 *	Set the physical protection on the
1837 *	specified range of this map as requested.
1838 */
1839void
1840pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1841{
1842	register pt_entry_t *ptbase;
1843	vm_offset_t pdnxt;
1844	pd_entry_t ptpaddr;
1845	vm_offset_t sindex, eindex;
1846	int anychanged;
1847
1848	if (pmap == NULL)
1849		return;
1850
1851	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1852		pmap_remove(pmap, sva, eva);
1853		return;
1854	}
1855
1856	if (prot & VM_PROT_WRITE)
1857		return;
1858
1859	anychanged = 0;
1860
1861	ptbase = get_ptbase(pmap);
1862
1863	sindex = i386_btop(sva);
1864	eindex = i386_btop(eva);
1865
1866	for (; sindex < eindex; sindex = pdnxt) {
1867
1868		unsigned pdirindex;
1869
1870		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1871
1872		pdirindex = sindex / NPDEPG;
1873		ptpaddr = pmap->pm_pdir[pdirindex];
1874		if ((ptpaddr & PG_PS) != 0) {
1875			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1876			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1877			anychanged++;
1878			continue;
1879		}
1880
1881		/*
1882		 * Weed out invalid mappings. Note: we assume that the page
1883		 * directory table is always allocated, and in kernel virtual.
1884		 */
1885		if (ptpaddr == 0)
1886			continue;
1887
1888		if (pdnxt > eindex) {
1889			pdnxt = eindex;
1890		}
1891
1892		for (; sindex != pdnxt; sindex++) {
1893
1894			pt_entry_t pbits;
1895			vm_page_t m;
1896
1897			pbits = ptbase[sindex];
1898
1899			if (pbits & PG_MANAGED) {
1900				m = NULL;
1901				if (pbits & PG_A) {
1902					m = PHYS_TO_VM_PAGE(pbits);
1903					vm_page_flag_set(m, PG_REFERENCED);
1904					pbits &= ~PG_A;
1905				}
1906				if (pbits & PG_M) {
1907					if (pmap_track_modified(i386_ptob(sindex))) {
1908						if (m == NULL)
1909							m = PHYS_TO_VM_PAGE(pbits);
1910						vm_page_dirty(m);
1911						pbits &= ~PG_M;
1912					}
1913				}
1914			}
1915
1916			pbits &= ~PG_RW;
1917
1918			if (pbits != ptbase[sindex]) {
1919				ptbase[sindex] = pbits;
1920				anychanged = 1;
1921			}
1922		}
1923	}
1924	if (anychanged)
1925		pmap_invalidate_all(pmap);
1926}
1927
1928/*
1929 *	Insert the given physical page (p) at
1930 *	the specified virtual address (v) in the
1931 *	target physical map with the protection requested.
1932 *
1933 *	If specified, the page will be wired down, meaning
1934 *	that the related pte can not be reclaimed.
1935 *
1936 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1937 *	or lose information.  That is, this routine must actually
1938 *	insert this page into the given map NOW.
1939 */
1940void
1941pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1942	   boolean_t wired)
1943{
1944	vm_offset_t pa;
1945	register pt_entry_t *pte;
1946	vm_offset_t opa;
1947	pt_entry_t origpte, newpte;
1948	vm_page_t mpte;
1949
1950	if (pmap == NULL)
1951		return;
1952
1953	va &= PG_FRAME;
1954#ifdef PMAP_DIAGNOSTIC
1955	if (va > VM_MAX_KERNEL_ADDRESS)
1956		panic("pmap_enter: toobig");
1957	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1958		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1959#endif
1960
1961	mpte = NULL;
1962	/*
1963	 * In the case that a page table page is not
1964	 * resident, we are creating it here.
1965	 */
1966	if (va < VM_MAXUSER_ADDRESS) {
1967		mpte = pmap_allocpte(pmap, va);
1968	}
1969#if 0 && defined(PMAP_DIAGNOSTIC)
1970	else {
1971		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1972		origpte = *pdeaddr;
1973		if ((origpte & PG_V) == 0) {
1974			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1975				pmap->pm_pdir[PTDPTDI], origpte, va);
1976		}
1977	}
1978#endif
1979
1980	pte = pmap_pte(pmap, va);
1981
1982	/*
1983	 * Page Directory table entry not valid, we need a new PT page
1984	 */
1985	if (pte == NULL) {
1986		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
1987			(void *)pmap->pm_pdir[PTDPTDI], va);
1988	}
1989
1990	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1991	origpte = *(vm_offset_t *)pte;
1992	opa = origpte & PG_FRAME;
1993
1994	if (origpte & PG_PS)
1995		panic("pmap_enter: attempted pmap_enter on 4MB page");
1996
1997	/*
1998	 * Mapping has not changed, must be protection or wiring change.
1999	 */
2000	if (origpte && (opa == pa)) {
2001		/*
2002		 * Wiring change, just update stats. We don't worry about
2003		 * wiring PT pages as they remain resident as long as there
2004		 * are valid mappings in them. Hence, if a user page is wired,
2005		 * the PT page will be also.
2006		 */
2007		if (wired && ((origpte & PG_W) == 0))
2008			pmap->pm_stats.wired_count++;
2009		else if (!wired && (origpte & PG_W))
2010			pmap->pm_stats.wired_count--;
2011
2012#if defined(PMAP_DIAGNOSTIC)
2013		if (pmap_nw_modified((pt_entry_t) origpte)) {
2014			printf(
2015	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2016			    va, origpte);
2017		}
2018#endif
2019
2020		/*
2021		 * Remove extra pte reference
2022		 */
2023		if (mpte)
2024			mpte->hold_count--;
2025
2026		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2027			if ((origpte & PG_RW) == 0) {
2028				*pte |= PG_RW;
2029#ifdef SMP
2030				cpu_invlpg((void *)va);
2031				if (pmap->pm_active & PCPU_GET(other_cpus))
2032					smp_invltlb();
2033#else
2034				invltlb_1pg(va);
2035#endif
2036			}
2037			return;
2038		}
2039
2040		/*
2041		 * We might be turning off write access to the page,
2042		 * so we go ahead and sense modify status.
2043		 */
2044		if (origpte & PG_MANAGED) {
2045			if ((origpte & PG_M) && pmap_track_modified(va)) {
2046				vm_page_t om;
2047				om = PHYS_TO_VM_PAGE(opa);
2048				vm_page_dirty(om);
2049			}
2050			pa |= PG_MANAGED;
2051		}
2052		goto validate;
2053	}
2054	/*
2055	 * Mapping has changed, invalidate old range and fall through to
2056	 * handle validating new mapping.
2057	 */
2058	if (opa) {
2059		int err;
2060		err = pmap_remove_pte(pmap, pte, va);
2061		if (err)
2062			panic("pmap_enter: pte vanished, va: 0x%x", va);
2063	}
2064
2065	/*
2066	 * Enter on the PV list if part of our managed memory. Note that we
2067	 * raise IPL while manipulating pv_table since pmap_enter can be
2068	 * called at interrupt time.
2069	 */
2070	if (pmap_initialized &&
2071	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2072		pmap_insert_entry(pmap, va, mpte, m);
2073		pa |= PG_MANAGED;
2074	}
2075
2076	/*
2077	 * Increment counters
2078	 */
2079	pmap->pm_stats.resident_count++;
2080	if (wired)
2081		pmap->pm_stats.wired_count++;
2082
2083validate:
2084	/*
2085	 * Now validate mapping with desired protection/wiring.
2086	 */
2087	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2088
2089	if (wired)
2090		newpte |= PG_W;
2091	if (va < VM_MAXUSER_ADDRESS)
2092		newpte |= PG_U;
2093	if (pmap == kernel_pmap)
2094		newpte |= pgeflag;
2095
2096	/*
2097	 * if the mapping or permission bits are different, we need
2098	 * to update the pte.
2099	 */
2100	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2101		*pte = newpte | PG_A;
2102		/*if (origpte)*/ {
2103#ifdef SMP
2104			cpu_invlpg((void *)va);
2105			if (pmap->pm_active & PCPU_GET(other_cpus))
2106				smp_invltlb();
2107#else
2108			invltlb_1pg(va);
2109#endif
2110		}
2111	}
2112}
2113
2114/*
2115 * this code makes some *MAJOR* assumptions:
2116 * 1. Current pmap & pmap exists.
2117 * 2. Not wired.
2118 * 3. Read access.
2119 * 4. No page table pages.
2120 * 5. Tlbflush is deferred to calling procedure.
2121 * 6. Page IS managed.
2122 * but is *MUCH* faster than pmap_enter...
2123 */
2124
2125static vm_page_t
2126pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2127{
2128	pt_entry_t *pte;
2129	vm_offset_t pa;
2130
2131	/*
2132	 * In the case that a page table page is not
2133	 * resident, we are creating it here.
2134	 */
2135	if (va < VM_MAXUSER_ADDRESS) {
2136		unsigned ptepindex;
2137		pd_entry_t ptepa;
2138
2139		/*
2140		 * Calculate pagetable page index
2141		 */
2142		ptepindex = va >> PDRSHIFT;
2143		if (mpte && (mpte->pindex == ptepindex)) {
2144			mpte->hold_count++;
2145		} else {
2146retry:
2147			/*
2148			 * Get the page directory entry
2149			 */
2150			ptepa = pmap->pm_pdir[ptepindex];
2151
2152			/*
2153			 * If the page table page is mapped, we just increment
2154			 * the hold count, and activate it.
2155			 */
2156			if (ptepa) {
2157				if (ptepa & PG_PS)
2158					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2159				if (pmap->pm_ptphint &&
2160					(pmap->pm_ptphint->pindex == ptepindex)) {
2161					mpte = pmap->pm_ptphint;
2162				} else {
2163					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2164					pmap->pm_ptphint = mpte;
2165				}
2166				if (mpte == NULL)
2167					goto retry;
2168				mpte->hold_count++;
2169			} else {
2170				mpte = _pmap_allocpte(pmap, ptepindex);
2171			}
2172		}
2173	} else {
2174		mpte = NULL;
2175	}
2176
2177	/*
2178	 * This call to vtopte makes the assumption that we are
2179	 * entering the page into the current pmap.  In order to support
2180	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2181	 * But that isn't as quick as vtopte.
2182	 */
2183	pte = vtopte(va);
2184	if (*pte) {
2185		if (mpte)
2186			pmap_unwire_pte_hold(pmap, mpte);
2187		return 0;
2188	}
2189
2190	/*
2191	 * Enter on the PV list if part of our managed memory. Note that we
2192	 * raise IPL while manipulating pv_table since pmap_enter can be
2193	 * called at interrupt time.
2194	 */
2195	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2196		pmap_insert_entry(pmap, va, mpte, m);
2197
2198	/*
2199	 * Increment counters
2200	 */
2201	pmap->pm_stats.resident_count++;
2202
2203	pa = VM_PAGE_TO_PHYS(m);
2204
2205	/*
2206	 * Now validate mapping with RO protection
2207	 */
2208	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2209		*pte = pa | PG_V | PG_U;
2210	else
2211		*pte = pa | PG_V | PG_U | PG_MANAGED;
2212
2213	return mpte;
2214}
2215
2216/*
2217 * Make a temporary mapping for a physical address.  This is only intended
2218 * to be used for panic dumps.
2219 */
2220void *
2221pmap_kenter_temporary(vm_offset_t pa, int i)
2222{
2223	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2224	return ((void *)crashdumpmap);
2225}
2226
2227#define MAX_INIT_PT (96)
2228/*
2229 * pmap_object_init_pt preloads the ptes for a given object
2230 * into the specified pmap.  This eliminates the blast of soft
2231 * faults on process startup and immediately after an mmap.
2232 */
2233void
2234pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2235		    vm_object_t object, vm_pindex_t pindex,
2236		    vm_size_t size, int limit)
2237{
2238	vm_offset_t tmpidx;
2239	int psize;
2240	vm_page_t p, mpte;
2241	int objpgs;
2242
2243	if (pmap == NULL || object == NULL)
2244		return;
2245
2246	/*
2247	 * This code maps large physical mmap regions into the
2248	 * processor address space.  Note that some shortcuts
2249	 * are taken, but the code works.
2250	 */
2251	if (pseflag && (object->type == OBJT_DEVICE) &&
2252	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2253		int i;
2254		vm_page_t m[1];
2255		unsigned int ptepindex;
2256		int npdes;
2257		pd_entry_t ptepa;
2258
2259		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2260			return;
2261
2262retry:
2263		p = vm_page_lookup(object, pindex);
2264		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2265			goto retry;
2266
2267		if (p == NULL) {
2268			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2269			if (p == NULL)
2270				return;
2271			m[0] = p;
2272
2273			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2274				vm_page_free(p);
2275				return;
2276			}
2277
2278			p = vm_page_lookup(object, pindex);
2279			vm_page_wakeup(p);
2280		}
2281
2282		ptepa = VM_PAGE_TO_PHYS(p);
2283		if (ptepa & (NBPDR - 1)) {
2284			return;
2285		}
2286
2287		p->valid = VM_PAGE_BITS_ALL;
2288
2289		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2290		npdes = size >> PDRSHIFT;
2291		for(i = 0; i < npdes; i++) {
2292			pmap->pm_pdir[ptepindex] =
2293			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2294			ptepa += NBPDR;
2295			ptepindex += 1;
2296		}
2297		vm_page_flag_set(p, PG_MAPPED);
2298		invltlb();
2299		return;
2300	}
2301
2302	psize = i386_btop(size);
2303
2304	if ((object->type != OBJT_VNODE) ||
2305	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2306	     (object->resident_page_count > MAX_INIT_PT))) {
2307		return;
2308	}
2309
2310	if (psize + pindex > object->size) {
2311		if (object->size < pindex)
2312			return;
2313		psize = object->size - pindex;
2314	}
2315
2316	mpte = NULL;
2317	/*
2318	 * if we are processing a major portion of the object, then scan the
2319	 * entire thing.
2320	 */
2321	if (psize > (object->resident_page_count >> 2)) {
2322		objpgs = psize;
2323
2324		for (p = TAILQ_FIRST(&object->memq);
2325		    ((objpgs > 0) && (p != NULL));
2326		    p = TAILQ_NEXT(p, listq)) {
2327
2328			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2329				continue;
2330			}
2331			tmpidx = p->pindex - pindex;
2332			/*
2333			 * don't allow an madvise to blow away our really
2334			 * free pages allocating pv entries.
2335			 */
2336			if ((limit & MAP_PREFAULT_MADVISE) &&
2337			    cnt.v_free_count < cnt.v_free_reserved) {
2338				break;
2339			}
2340			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2341				(p->busy == 0) &&
2342			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2343				if ((p->queue - p->pc) == PQ_CACHE)
2344					vm_page_deactivate(p);
2345				vm_page_busy(p);
2346				mpte = pmap_enter_quick(pmap,
2347					addr + i386_ptob(tmpidx), p, mpte);
2348				vm_page_flag_set(p, PG_MAPPED);
2349				vm_page_wakeup(p);
2350			}
2351			objpgs -= 1;
2352		}
2353	} else {
2354		/*
2355		 * else lookup the pages one-by-one.
2356		 */
2357		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2358			/*
2359			 * don't allow an madvise to blow away our really
2360			 * free pages allocating pv entries.
2361			 */
2362			if ((limit & MAP_PREFAULT_MADVISE) &&
2363			    cnt.v_free_count < cnt.v_free_reserved) {
2364				break;
2365			}
2366			p = vm_page_lookup(object, tmpidx + pindex);
2367			if (p &&
2368			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2369				(p->busy == 0) &&
2370			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2371				if ((p->queue - p->pc) == PQ_CACHE)
2372					vm_page_deactivate(p);
2373				vm_page_busy(p);
2374				mpte = pmap_enter_quick(pmap,
2375					addr + i386_ptob(tmpidx), p, mpte);
2376				vm_page_flag_set(p, PG_MAPPED);
2377				vm_page_wakeup(p);
2378			}
2379		}
2380	}
2381	return;
2382}
2383
2384/*
2385 * pmap_prefault provides a quick way of clustering
2386 * pagefaults into a processes address space.  It is a "cousin"
2387 * of pmap_object_init_pt, except it runs at page fault time instead
2388 * of mmap time.
2389 */
2390#define PFBAK 4
2391#define PFFOR 4
2392#define PAGEORDER_SIZE (PFBAK+PFFOR)
2393
2394static int pmap_prefault_pageorder[] = {
2395	-PAGE_SIZE, PAGE_SIZE,
2396	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2397	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2398	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2399};
2400
2401void
2402pmap_prefault(pmap, addra, entry)
2403	pmap_t pmap;
2404	vm_offset_t addra;
2405	vm_map_entry_t entry;
2406{
2407	int i;
2408	vm_offset_t starta;
2409	vm_offset_t addr;
2410	vm_pindex_t pindex;
2411	vm_page_t m, mpte;
2412	vm_object_t object;
2413
2414	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2415		return;
2416
2417	object = entry->object.vm_object;
2418
2419	starta = addra - PFBAK * PAGE_SIZE;
2420	if (starta < entry->start) {
2421		starta = entry->start;
2422	} else if (starta > addra) {
2423		starta = 0;
2424	}
2425
2426	mpte = NULL;
2427	for (i = 0; i < PAGEORDER_SIZE; i++) {
2428		vm_object_t lobject;
2429		pt_entry_t *pte;
2430
2431		addr = addra + pmap_prefault_pageorder[i];
2432		if (addr > addra + (PFFOR * PAGE_SIZE))
2433			addr = 0;
2434
2435		if (addr < starta || addr >= entry->end)
2436			continue;
2437
2438		if ((*pmap_pde(pmap, addr)) == NULL)
2439			continue;
2440
2441		pte = vtopte(addr);
2442		if (*pte)
2443			continue;
2444
2445		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2446		lobject = object;
2447		for (m = vm_page_lookup(lobject, pindex);
2448		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2449		    lobject = lobject->backing_object) {
2450			if (lobject->backing_object_offset & PAGE_MASK)
2451				break;
2452			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2453			m = vm_page_lookup(lobject->backing_object, pindex);
2454		}
2455
2456		/*
2457		 * give-up when a page is not in memory
2458		 */
2459		if (m == NULL)
2460			break;
2461
2462		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2463			(m->busy == 0) &&
2464		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2465
2466			if ((m->queue - m->pc) == PQ_CACHE) {
2467				vm_page_deactivate(m);
2468			}
2469			vm_page_busy(m);
2470			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2471			vm_page_flag_set(m, PG_MAPPED);
2472			vm_page_wakeup(m);
2473		}
2474	}
2475}
2476
2477/*
2478 *	Routine:	pmap_change_wiring
2479 *	Function:	Change the wiring attribute for a map/virtual-address
2480 *			pair.
2481 *	In/out conditions:
2482 *			The mapping must already exist in the pmap.
2483 */
2484void
2485pmap_change_wiring(pmap, va, wired)
2486	register pmap_t pmap;
2487	vm_offset_t va;
2488	boolean_t wired;
2489{
2490	register pt_entry_t *pte;
2491
2492	if (pmap == NULL)
2493		return;
2494
2495	pte = pmap_pte(pmap, va);
2496
2497	if (wired && !pmap_pte_w(pte))
2498		pmap->pm_stats.wired_count++;
2499	else if (!wired && pmap_pte_w(pte))
2500		pmap->pm_stats.wired_count--;
2501
2502	/*
2503	 * Wiring is not a hardware characteristic so there is no need to
2504	 * invalidate TLB.
2505	 */
2506	pmap_pte_set_w(pte, wired);
2507}
2508
2509
2510
2511/*
2512 *	Copy the range specified by src_addr/len
2513 *	from the source map to the range dst_addr/len
2514 *	in the destination map.
2515 *
2516 *	This routine is only advisory and need not do anything.
2517 */
2518
2519void
2520pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2521	  vm_offset_t src_addr)
2522{
2523	vm_offset_t addr;
2524	vm_offset_t end_addr = src_addr + len;
2525	vm_offset_t pdnxt;
2526	pd_entry_t src_frame, dst_frame;
2527	vm_page_t m;
2528	pd_entry_t saved_pde;
2529
2530	if (dst_addr != src_addr)
2531		return;
2532
2533	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2534	if (src_frame != (PTDpde & PG_FRAME))
2535		return;
2536
2537	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2538	if (dst_frame != (APTDpde & PG_FRAME)) {
2539		APTDpde = dst_frame | PG_RW | PG_V;
2540#if defined(SMP)
2541		/* The page directory is not shared between CPUs */
2542		cpu_invltlb();
2543#else
2544		invltlb();
2545#endif
2546	}
2547 	saved_pde = APTDpde & (PG_FRAME | PG_RW | PG_V);
2548	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2549		pt_entry_t *src_pte, *dst_pte;
2550		vm_page_t dstmpte, srcmpte;
2551		pd_entry_t srcptepaddr;
2552		unsigned ptepindex;
2553
2554		if (addr >= UPT_MIN_ADDRESS)
2555			panic("pmap_copy: invalid to pmap_copy page tables\n");
2556
2557		/*
2558		 * Don't let optional prefaulting of pages make us go
2559		 * way below the low water mark of free pages or way
2560		 * above high water mark of used pv entries.
2561		 */
2562		if (cnt.v_free_count < cnt.v_free_reserved ||
2563		    pv_entry_count > pv_entry_high_water)
2564			break;
2565
2566		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2567		ptepindex = addr >> PDRSHIFT;
2568
2569		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2570		if (srcptepaddr == 0)
2571			continue;
2572
2573		if (srcptepaddr & PG_PS) {
2574			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2575				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2576				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2577			}
2578			continue;
2579		}
2580
2581		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2582		if ((srcmpte == NULL) ||
2583		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2584			continue;
2585
2586		if (pdnxt > end_addr)
2587			pdnxt = end_addr;
2588
2589		src_pte = vtopte(addr);
2590		dst_pte = avtopte(addr);
2591		while (addr < pdnxt) {
2592			pt_entry_t ptetemp;
2593			ptetemp = *src_pte;
2594			/*
2595			 * we only virtual copy managed pages
2596			 */
2597			if ((ptetemp & PG_MANAGED) != 0) {
2598				/*
2599				 * We have to check after allocpte for the
2600				 * pte still being around...  allocpte can
2601				 * block.
2602				 */
2603				dstmpte = pmap_allocpte(dst_pmap, addr);
2604				if ((APTDpde & PG_FRAME) !=
2605				    (saved_pde & PG_FRAME)) {
2606					APTDpde = saved_pde;
2607printf ("IT HAPPENNED!");
2608#if defined(SMP)
2609					cpu_invltlb();
2610#else
2611					invltlb();
2612#endif
2613				}
2614				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2615					/*
2616					 * Clear the modified and
2617					 * accessed (referenced) bits
2618					 * during the copy.
2619					 */
2620					m = PHYS_TO_VM_PAGE(ptetemp);
2621					*dst_pte = ptetemp & ~(PG_M | PG_A);
2622					dst_pmap->pm_stats.resident_count++;
2623					pmap_insert_entry(dst_pmap, addr,
2624						dstmpte, m);
2625	 			} else {
2626					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2627				}
2628				if (dstmpte->hold_count >= srcmpte->hold_count)
2629					break;
2630			}
2631			addr += PAGE_SIZE;
2632			src_pte++;
2633			dst_pte++;
2634		}
2635	}
2636}
2637
2638/*
2639 *	pmap_zero_page zeros the specified hardware page by mapping
2640 *	the page into KVM and using bzero to clear its contents.
2641 */
2642void
2643pmap_zero_page(vm_page_t m)
2644{
2645	vm_offset_t phys = VM_PAGE_TO_PHYS(m);
2646
2647	if (*CMAP2)
2648		panic("pmap_zero_page: CMAP2 busy");
2649
2650	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2651	invltlb_1pg((vm_offset_t)CADDR2);
2652
2653#if defined(I686_CPU)
2654	if (cpu_class == CPUCLASS_686)
2655		i686_pagezero(CADDR2);
2656	else
2657#endif
2658		bzero(CADDR2, PAGE_SIZE);
2659	*CMAP2 = 0;
2660}
2661
2662/*
2663 *	pmap_zero_page_area zeros the specified hardware page by mapping
2664 *	the page into KVM and using bzero to clear its contents.
2665 *
2666 *	off and size may not cover an area beyond a single hardware page.
2667 */
2668void
2669pmap_zero_page_area(vm_page_t m, int off, int size)
2670{
2671	vm_offset_t phys = VM_PAGE_TO_PHYS(m);
2672
2673	if (*CMAP2)
2674		panic("pmap_zero_page: CMAP2 busy");
2675
2676	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2677	invltlb_1pg((vm_offset_t)CADDR2);
2678
2679#if defined(I686_CPU)
2680	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2681		i686_pagezero(CADDR2);
2682	else
2683#endif
2684		bzero((char *)CADDR2 + off, size);
2685	*CMAP2 = 0;
2686}
2687
2688/*
2689 *	pmap_copy_page copies the specified (machine independent)
2690 *	page by mapping the page into virtual memory and using
2691 *	bcopy to copy the page, one machine dependent page at a
2692 *	time.
2693 */
2694void
2695pmap_copy_page(vm_page_t src, vm_page_t dst)
2696{
2697
2698	if (*CMAP1)
2699		panic("pmap_copy_page: CMAP1 busy");
2700	if (*CMAP2)
2701		panic("pmap_copy_page: CMAP2 busy");
2702
2703	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2704	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2705#ifdef I386_CPU
2706	invltlb();
2707#else
2708	invlpg((u_int)CADDR1);
2709	invlpg((u_int)CADDR2);
2710#endif
2711
2712	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2713
2714	*CMAP1 = 0;
2715	*CMAP2 = 0;
2716}
2717
2718
2719/*
2720 *	Routine:	pmap_pageable
2721 *	Function:
2722 *		Make the specified pages (by pmap, offset)
2723 *		pageable (or not) as requested.
2724 *
2725 *		A page which is not pageable may not take
2726 *		a fault; therefore, its page table entry
2727 *		must remain valid for the duration.
2728 *
2729 *		This routine is merely advisory; pmap_enter
2730 *		will specify that these pages are to be wired
2731 *		down (or not) as appropriate.
2732 */
2733void
2734pmap_pageable(pmap, sva, eva, pageable)
2735	pmap_t pmap;
2736	vm_offset_t sva, eva;
2737	boolean_t pageable;
2738{
2739}
2740
2741/*
2742 * Returns true if the pmap's pv is one of the first
2743 * 16 pvs linked to from this page.  This count may
2744 * be changed upwards or downwards in the future; it
2745 * is only necessary that true be returned for a small
2746 * subset of pmaps for proper page aging.
2747 */
2748boolean_t
2749pmap_page_exists_quick(pmap, m)
2750	pmap_t pmap;
2751	vm_page_t m;
2752{
2753	pv_entry_t pv;
2754	int loops = 0;
2755	int s;
2756
2757	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2758		return FALSE;
2759
2760	s = splvm();
2761
2762	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2763		if (pv->pv_pmap == pmap) {
2764			splx(s);
2765			return TRUE;
2766		}
2767		loops++;
2768		if (loops >= 16)
2769			break;
2770	}
2771	splx(s);
2772	return (FALSE);
2773}
2774
2775#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2776/*
2777 * Remove all pages from specified address space
2778 * this aids process exit speeds.  Also, this code
2779 * is special cased for current process only, but
2780 * can have the more generic (and slightly slower)
2781 * mode enabled.  This is much faster than pmap_remove
2782 * in the case of running down an entire address space.
2783 */
2784void
2785pmap_remove_pages(pmap, sva, eva)
2786	pmap_t pmap;
2787	vm_offset_t sva, eva;
2788{
2789	pt_entry_t *pte, tpte;
2790	vm_page_t m;
2791	pv_entry_t pv, npv;
2792	int s;
2793
2794#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2795	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2796		printf("warning: pmap_remove_pages called with non-current pmap\n");
2797		return;
2798	}
2799#endif
2800
2801	s = splvm();
2802	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2803
2804		if (pv->pv_va >= eva || pv->pv_va < sva) {
2805			npv = TAILQ_NEXT(pv, pv_plist);
2806			continue;
2807		}
2808
2809#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2810		pte = vtopte(pv->pv_va);
2811#else
2812		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2813#endif
2814		tpte = *pte;
2815
2816		if (tpte == 0) {
2817			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2818							pte, pv->pv_va);
2819			panic("bad pte");
2820		}
2821
2822/*
2823 * We cannot remove wired pages from a process' mapping at this time
2824 */
2825		if (tpte & PG_W) {
2826			npv = TAILQ_NEXT(pv, pv_plist);
2827			continue;
2828		}
2829
2830		m = PHYS_TO_VM_PAGE(tpte);
2831		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2832		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2833		    m, m->phys_addr, tpte));
2834
2835		KASSERT(m < &vm_page_array[vm_page_array_size],
2836			("pmap_remove_pages: bad tpte %x", tpte));
2837
2838		pv->pv_pmap->pm_stats.resident_count--;
2839
2840		*pte = 0;
2841
2842		/*
2843		 * Update the vm_page_t clean and reference bits.
2844		 */
2845		if (tpte & PG_M) {
2846			vm_page_dirty(m);
2847		}
2848
2849		npv = TAILQ_NEXT(pv, pv_plist);
2850		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2851
2852		m->md.pv_list_count--;
2853		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2854		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2855			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2856		}
2857
2858		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2859		free_pv_entry(pv);
2860	}
2861	splx(s);
2862	pmap_invalidate_all(pmap);
2863}
2864
2865/*
2866 * pmap_testbit tests bits in pte's
2867 * note that the testbit/changebit routines are inline,
2868 * and a lot of things compile-time evaluate.
2869 */
2870static boolean_t
2871pmap_testbit(m, bit)
2872	vm_page_t m;
2873	int bit;
2874{
2875	pv_entry_t pv;
2876	pt_entry_t *pte;
2877	int s;
2878
2879	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2880		return FALSE;
2881
2882	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2883		return FALSE;
2884
2885	s = splvm();
2886
2887	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2888		/*
2889		 * if the bit being tested is the modified bit, then
2890		 * mark clean_map and ptes as never
2891		 * modified.
2892		 */
2893		if (bit & (PG_A|PG_M)) {
2894			if (!pmap_track_modified(pv->pv_va))
2895				continue;
2896		}
2897
2898#if defined(PMAP_DIAGNOSTIC)
2899		if (!pv->pv_pmap) {
2900			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2901			continue;
2902		}
2903#endif
2904		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2905		if (*pte & bit) {
2906			splx(s);
2907			return TRUE;
2908		}
2909	}
2910	splx(s);
2911	return (FALSE);
2912}
2913
2914/*
2915 * this routine is used to modify bits in ptes
2916 */
2917static __inline void
2918pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2919{
2920	register pv_entry_t pv;
2921	register pt_entry_t *pte;
2922	int s;
2923
2924	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2925		return;
2926
2927	s = splvm();
2928
2929	/*
2930	 * Loop over all current mappings setting/clearing as appropos If
2931	 * setting RO do we need to clear the VAC?
2932	 */
2933	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2934		/*
2935		 * don't write protect pager mappings
2936		 */
2937		if (!setem && (bit == PG_RW)) {
2938			if (!pmap_track_modified(pv->pv_va))
2939				continue;
2940		}
2941
2942#if defined(PMAP_DIAGNOSTIC)
2943		if (!pv->pv_pmap) {
2944			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2945			continue;
2946		}
2947#endif
2948
2949		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2950
2951		if (setem) {
2952			*pte |= bit;
2953			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2954		} else {
2955			pt_entry_t pbits = *pte;
2956			if (pbits & bit) {
2957				if (bit == PG_RW) {
2958					if (pbits & PG_M) {
2959						vm_page_dirty(m);
2960					}
2961					*pte = pbits & ~(PG_M|PG_RW);
2962				} else {
2963					*pte = pbits & ~bit;
2964				}
2965				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2966			}
2967		}
2968	}
2969	splx(s);
2970}
2971
2972/*
2973 *      pmap_page_protect:
2974 *
2975 *      Lower the permission for all mappings to a given page.
2976 */
2977void
2978pmap_page_protect(vm_page_t m, vm_prot_t prot)
2979{
2980	if ((prot & VM_PROT_WRITE) == 0) {
2981		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2982			pmap_changebit(m, PG_RW, FALSE);
2983		} else {
2984			pmap_remove_all(m);
2985		}
2986	}
2987}
2988
2989vm_offset_t
2990pmap_phys_address(ppn)
2991	int ppn;
2992{
2993	return (i386_ptob(ppn));
2994}
2995
2996/*
2997 *	pmap_ts_referenced:
2998 *
2999 *	Return a count of reference bits for a page, clearing those bits.
3000 *	It is not necessary for every reference bit to be cleared, but it
3001 *	is necessary that 0 only be returned when there are truly no
3002 *	reference bits set.
3003 *
3004 *	XXX: The exact number of bits to check and clear is a matter that
3005 *	should be tested and standardized at some point in the future for
3006 *	optimal aging of shared pages.
3007 */
3008int
3009pmap_ts_referenced(vm_page_t m)
3010{
3011	register pv_entry_t pv, pvf, pvn;
3012	pt_entry_t *pte;
3013	int s;
3014	int rtval = 0;
3015
3016	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3017		return (rtval);
3018
3019	s = splvm();
3020
3021	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3022
3023		pvf = pv;
3024
3025		do {
3026			pvn = TAILQ_NEXT(pv, pv_list);
3027
3028			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3029
3030			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3031
3032			if (!pmap_track_modified(pv->pv_va))
3033				continue;
3034
3035			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3036
3037			if (pte && (*pte & PG_A)) {
3038				*pte &= ~PG_A;
3039
3040				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3041
3042				rtval++;
3043				if (rtval > 4) {
3044					break;
3045				}
3046			}
3047		} while ((pv = pvn) != NULL && pv != pvf);
3048	}
3049	splx(s);
3050
3051	return (rtval);
3052}
3053
3054/*
3055 *	pmap_is_modified:
3056 *
3057 *	Return whether or not the specified physical page was modified
3058 *	in any physical maps.
3059 */
3060boolean_t
3061pmap_is_modified(vm_page_t m)
3062{
3063	return pmap_testbit(m, PG_M);
3064}
3065
3066/*
3067 *	Clear the modify bits on the specified physical page.
3068 */
3069void
3070pmap_clear_modify(vm_page_t m)
3071{
3072	pmap_changebit(m, PG_M, FALSE);
3073}
3074
3075/*
3076 *	pmap_clear_reference:
3077 *
3078 *	Clear the reference bit on the specified physical page.
3079 */
3080void
3081pmap_clear_reference(vm_page_t m)
3082{
3083	pmap_changebit(m, PG_A, FALSE);
3084}
3085
3086/*
3087 * Miscellaneous support routines follow
3088 */
3089
3090static void
3091i386_protection_init()
3092{
3093	register int *kp, prot;
3094
3095	kp = protection_codes;
3096	for (prot = 0; prot < 8; prot++) {
3097		switch (prot) {
3098		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3099			/*
3100			 * Read access is also 0. There isn't any execute bit,
3101			 * so just make it readable.
3102			 */
3103		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3104		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3105		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3106			*kp++ = 0;
3107			break;
3108		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3109		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3110		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3111		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3112			*kp++ = PG_RW;
3113			break;
3114		}
3115	}
3116}
3117
3118/*
3119 * Map a set of physical memory pages into the kernel virtual
3120 * address space. Return a pointer to where it is mapped. This
3121 * routine is intended to be used for mapping device memory,
3122 * NOT real memory.
3123 */
3124void *
3125pmap_mapdev(pa, size)
3126	vm_offset_t pa;
3127	vm_size_t size;
3128{
3129	vm_offset_t va, tmpva, offset;
3130	pt_entry_t *pte;
3131
3132	offset = pa & PAGE_MASK;
3133	size = roundup(offset + size, PAGE_SIZE);
3134
3135	GIANT_REQUIRED;
3136
3137	va = kmem_alloc_pageable(kernel_map, size);
3138	if (!va)
3139		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3140
3141	pa = pa & PG_FRAME;
3142	for (tmpva = va; size > 0; ) {
3143		pte = vtopte(tmpva);
3144		*pte = pa | PG_RW | PG_V | pgeflag;
3145#ifdef SMP
3146		cpu_invlpg((void *)tmpva);
3147#else
3148		invltlb_1pg(tmpva);
3149#endif
3150		size -= PAGE_SIZE;
3151		tmpva += PAGE_SIZE;
3152		pa += PAGE_SIZE;
3153	}
3154#ifdef SMP
3155	smp_invltlb();
3156#endif
3157	return ((void *)(va + offset));
3158}
3159
3160void
3161pmap_unmapdev(va, size)
3162	vm_offset_t va;
3163	vm_size_t size;
3164{
3165	vm_offset_t base, offset, tmpva;
3166	pt_entry_t *pte;
3167
3168	base = va & PG_FRAME;
3169	offset = va & PAGE_MASK;
3170	size = roundup(offset + size, PAGE_SIZE);
3171	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3172		pte = vtopte(tmpva);
3173		*pte = 0;
3174#ifdef SMP
3175		cpu_invlpg((void *)tmpva);
3176#else
3177		invltlb_1pg(tmpva);
3178#endif
3179	}
3180#ifdef SMP
3181	smp_invltlb();
3182#endif
3183	kmem_free(kernel_map, base, size);
3184}
3185
3186/*
3187 * perform the pmap work for mincore
3188 */
3189int
3190pmap_mincore(pmap, addr)
3191	pmap_t pmap;
3192	vm_offset_t addr;
3193{
3194	pt_entry_t *ptep, pte;
3195	vm_page_t m;
3196	int val = 0;
3197
3198	ptep = pmap_pte(pmap, addr);
3199	if (ptep == 0) {
3200		return 0;
3201	}
3202
3203	if ((pte = *ptep) != 0) {
3204		vm_offset_t pa;
3205
3206		val = MINCORE_INCORE;
3207		if ((pte & PG_MANAGED) == 0)
3208			return val;
3209
3210		pa = pte & PG_FRAME;
3211
3212		m = PHYS_TO_VM_PAGE(pa);
3213
3214		/*
3215		 * Modified by us
3216		 */
3217		if (pte & PG_M)
3218			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3219		/*
3220		 * Modified by someone
3221		 */
3222		else if (m->dirty || pmap_is_modified(m))
3223			val |= MINCORE_MODIFIED_OTHER;
3224		/*
3225		 * Referenced by us
3226		 */
3227		if (pte & PG_A)
3228			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3229
3230		/*
3231		 * Referenced by someone
3232		 */
3233		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3234			val |= MINCORE_REFERENCED_OTHER;
3235			vm_page_flag_set(m, PG_REFERENCED);
3236		}
3237	}
3238	return val;
3239}
3240
3241void
3242pmap_activate(struct thread *td)
3243{
3244	struct proc *p = td->td_proc;
3245	pmap_t	pmap;
3246	u_int32_t  cr3;
3247
3248	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3249#if defined(SMP)
3250	pmap->pm_active |= PCPU_GET(cpumask);
3251#else
3252	pmap->pm_active |= 1;
3253#endif
3254#if defined(SWTCH_OPTIM_STATS)
3255	tlb_flush_count++;
3256#endif
3257	cr3 = vtophys(pmap->pm_pdir);
3258	/* XXXKSE this is wrong.
3259	 * pmap_activate is for the current thread on the current cpu
3260	 */
3261	if (p->p_flag & P_KSES) {
3262		/* Make sure all other cr3 entries are updated. */
3263		/* what if they are running?  XXXKSE (maybe abort them) */
3264		FOREACH_THREAD_IN_PROC(p, td) {
3265			td->td_pcb->pcb_cr3 = cr3;
3266		}
3267	} else {
3268		td->td_pcb->pcb_cr3 = cr3;
3269	}
3270	load_cr3(cr3);
3271}
3272
3273vm_offset_t
3274pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3275{
3276
3277	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3278		return addr;
3279	}
3280
3281	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3282	return addr;
3283}
3284
3285
3286#if defined(PMAP_DEBUG)
3287pmap_pid_dump(int pid)
3288{
3289	pmap_t pmap;
3290	struct proc *p;
3291	int npte = 0;
3292	int index;
3293
3294	sx_slock(&allproc_lock);
3295	LIST_FOREACH(p, &allproc, p_list) {
3296		if (p->p_pid != pid)
3297			continue;
3298
3299		if (p->p_vmspace) {
3300			int i,j;
3301			index = 0;
3302			pmap = vmspace_pmap(p->p_vmspace);
3303			for (i = 0; i < NPDEPG; i++) {
3304				pd_entry_t *pde;
3305				pt_entry_t *pte;
3306				vm_offset_t base = i << PDRSHIFT;
3307
3308				pde = &pmap->pm_pdir[i];
3309				if (pde && pmap_pde_v(pde)) {
3310					for (j = 0; j < NPTEPG; j++) {
3311						vm_offset_t va = base + (j << PAGE_SHIFT);
3312						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3313							if (index) {
3314								index = 0;
3315								printf("\n");
3316							}
3317							sx_sunlock(&allproc_lock);
3318							return npte;
3319						}
3320						pte = pmap_pte_quick(pmap, va);
3321						if (pte && pmap_pte_v(pte)) {
3322							pt_entry_t pa;
3323							vm_page_t m;
3324							pa = *pte;
3325							m = PHYS_TO_VM_PAGE(pa);
3326							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3327								va, pa, m->hold_count, m->wire_count, m->flags);
3328							npte++;
3329							index++;
3330							if (index >= 2) {
3331								index = 0;
3332								printf("\n");
3333							} else {
3334								printf(" ");
3335							}
3336						}
3337					}
3338				}
3339			}
3340		}
3341	}
3342	sx_sunlock(&allproc_lock);
3343	return npte;
3344}
3345#endif
3346
3347#if defined(DEBUG)
3348
3349static void	pads(pmap_t pm);
3350void		pmap_pvdump(vm_offset_t pa);
3351
3352/* print address space of pmap*/
3353static void
3354pads(pm)
3355	pmap_t pm;
3356{
3357	int i, j;
3358	vm_offset_t va;
3359	pt_entry_t *ptep;
3360
3361	if (pm == kernel_pmap)
3362		return;
3363	for (i = 0; i < NPDEPG; i++)
3364		if (pm->pm_pdir[i])
3365			for (j = 0; j < NPTEPG; j++) {
3366				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3367				if (pm == kernel_pmap && va < KERNBASE)
3368					continue;
3369				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3370					continue;
3371				ptep = pmap_pte_quick(pm, va);
3372				if (pmap_pte_v(ptep))
3373					printf("%x:%x ", va, *ptep);
3374			};
3375
3376}
3377
3378void
3379pmap_pvdump(pa)
3380	vm_offset_t pa;
3381{
3382	pv_entry_t pv;
3383	vm_page_t m;
3384
3385	printf("pa %x", pa);
3386	m = PHYS_TO_VM_PAGE(pa);
3387	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3388		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3389		pads(pv->pv_pmap);
3390	}
3391	printf(" ");
3392}
3393#endif
3394