pmap.c revision 99381
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 99381 2002-07-03 20:47:50Z julian $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_kstack_pages.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mman.h>
81#include <sys/msgbuf.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/sx.h>
85#include <sys/user.h>
86#include <sys/vmmeter.h>
87#include <sys/sysctl.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/uma.h>
99
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103#if defined(SMP) || defined(APIC_IO)
104#include <machine/smp.h>
105#include <machine/apic.h>
106#include <machine/segments.h>
107#include <machine/tss.h>
108#endif /* SMP || APIC_IO */
109
110#define PMAP_KEEP_PDIRS
111#ifndef PMAP_SHPGPERPROC
112#define PMAP_SHPGPERPROC 200
113#endif
114
115#if defined(DIAGNOSTIC)
116#define PMAP_DIAGNOSTIC
117#endif
118
119#define MINPV 2048
120
121#if !defined(PMAP_DIAGNOSTIC)
122#define PMAP_INLINE __inline
123#else
124#define PMAP_INLINE
125#endif
126
127/*
128 * Get PDEs and PTEs for user/kernel address space
129 */
130#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
132
133#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
134#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
135#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
136#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
137#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
138
139#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
140#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
141
142/*
143 * Given a map and a machine independent protection code,
144 * convert to a vax protection code.
145 */
146#define pte_prot(m, p)	(protection_codes[p])
147static int protection_codes[8];
148
149struct pmap kernel_pmap_store;
150LIST_HEAD(pmaplist, pmap);
151struct pmaplist allpmaps;
152
153vm_offset_t avail_start;	/* PA of first available physical page */
154vm_offset_t avail_end;		/* PA of last available physical page */
155vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
156vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
157static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
158static int pgeflag;		/* PG_G or-in */
159static int pseflag;		/* PG_PS or-in */
160
161static vm_object_t kptobj;
162
163static int nkpt;
164vm_offset_t kernel_vm_end;
165
166/*
167 * Data for the pv entry allocation mechanism
168 */
169static uma_zone_t pvzone;
170static struct vm_object pvzone_obj;
171static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
172static int pmap_pagedaemon_waken = 0;
173
174/*
175 * All those kernel PT submaps that BSD is so fond of
176 */
177pt_entry_t *CMAP1 = 0;
178static pt_entry_t *CMAP2, *ptmmap;
179caddr_t CADDR1 = 0, ptvmmap = 0;
180static caddr_t CADDR2;
181static pt_entry_t *msgbufmap;
182struct msgbuf *msgbufp = 0;
183
184/*
185 * Crashdump maps.
186 */
187static pt_entry_t *pt_crashdumpmap;
188static caddr_t crashdumpmap;
189
190#ifdef SMP
191extern pt_entry_t *SMPpt;
192#endif
193static pt_entry_t *PMAP1 = 0;
194static pt_entry_t *PADDR1 = 0;
195
196static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
197static pt_entry_t *get_ptbase(pmap_t pmap);
198static pv_entry_t get_pv_entry(void);
199static void	i386_protection_init(void);
200static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
201
202static void	pmap_remove_all(vm_page_t m);
203static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
204				      vm_page_t m, vm_page_t mpte);
205static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
206static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
207static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
208					vm_offset_t va);
209static boolean_t pmap_testbit(vm_page_t m, int bit);
210static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
211		vm_page_t mpte, vm_page_t m);
212
213static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
214
215static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
216static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
217static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
218static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
219static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
220static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
221static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
222
223static pd_entry_t pdir4mb;
224
225/*
226 *	Routine:	pmap_pte
227 *	Function:
228 *		Extract the page table entry associated
229 *		with the given map/virtual_address pair.
230 */
231
232PMAP_INLINE pt_entry_t *
233pmap_pte(pmap, va)
234	register pmap_t pmap;
235	vm_offset_t va;
236{
237	pd_entry_t *pdeaddr;
238
239	if (pmap) {
240		pdeaddr = pmap_pde(pmap, va);
241		if (*pdeaddr & PG_PS)
242			return pdeaddr;
243		if (*pdeaddr) {
244			return get_ptbase(pmap) + i386_btop(va);
245		}
246	}
247	return (0);
248}
249
250/*
251 * Move the kernel virtual free pointer to the next
252 * 4MB.  This is used to help improve performance
253 * by using a large (4MB) page for much of the kernel
254 * (.text, .data, .bss)
255 */
256static vm_offset_t
257pmap_kmem_choose(vm_offset_t addr)
258{
259	vm_offset_t newaddr = addr;
260#ifndef DISABLE_PSE
261	if (cpu_feature & CPUID_PSE) {
262		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
263	}
264#endif
265	return newaddr;
266}
267
268/*
269 *	Bootstrap the system enough to run with virtual memory.
270 *
271 *	On the i386 this is called after mapping has already been enabled
272 *	and just syncs the pmap module with what has already been done.
273 *	[We can't call it easily with mapping off since the kernel is not
274 *	mapped with PA == VA, hence we would have to relocate every address
275 *	from the linked base (virtual) address "KERNBASE" to the actual
276 *	(physical) address starting relative to 0]
277 */
278void
279pmap_bootstrap(firstaddr, loadaddr)
280	vm_offset_t firstaddr;
281	vm_offset_t loadaddr;
282{
283	vm_offset_t va;
284	pt_entry_t *pte;
285	int i;
286
287	avail_start = firstaddr;
288
289	/*
290	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
291	 * large. It should instead be correctly calculated in locore.s and
292	 * not based on 'first' (which is a physical address, not a virtual
293	 * address, for the start of unused physical memory). The kernel
294	 * page tables are NOT double mapped and thus should not be included
295	 * in this calculation.
296	 */
297	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
298	virtual_avail = pmap_kmem_choose(virtual_avail);
299
300	virtual_end = VM_MAX_KERNEL_ADDRESS;
301
302	/*
303	 * Initialize protection array.
304	 */
305	i386_protection_init();
306
307	/*
308	 * Initialize the kernel pmap (which is statically allocated).
309	 */
310	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
311	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
312	TAILQ_INIT(&kernel_pmap->pm_pvlist);
313	LIST_INIT(&allpmaps);
314	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
315	nkpt = NKPT;
316
317	/*
318	 * Reserve some special page table entries/VA space for temporary
319	 * mapping of pages.
320	 */
321#define	SYSMAP(c, p, v, n)	\
322	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
323
324	va = virtual_avail;
325	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
326
327	/*
328	 * CMAP1/CMAP2 are used for zeroing and copying pages.
329	 */
330	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
331	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
332
333	/*
334	 * Crashdump maps.
335	 */
336	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
337
338	/*
339	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
340	 * XXX ptmmap is not used.
341	 */
342	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
343
344	/*
345	 * msgbufp is used to map the system message buffer.
346	 * XXX msgbufmap is not used.
347	 */
348	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
349	       atop(round_page(MSGBUF_SIZE)))
350
351	/*
352	 * ptemap is used for pmap_pte_quick
353	 */
354	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
355
356	virtual_avail = va;
357
358	*CMAP1 = *CMAP2 = 0;
359	for (i = 0; i < NKPT; i++)
360		PTD[i] = 0;
361
362	pgeflag = 0;
363#if !defined(SMP)			/* XXX - see also mp_machdep.c */
364	if (cpu_feature & CPUID_PGE) {
365		pgeflag = PG_G;
366	}
367#endif
368
369/*
370 * Initialize the 4MB page size flag
371 */
372	pseflag = 0;
373/*
374 * The 4MB page version of the initial
375 * kernel page mapping.
376 */
377	pdir4mb = 0;
378
379#if !defined(DISABLE_PSE)
380	if (cpu_feature & CPUID_PSE) {
381		pd_entry_t ptditmp;
382		/*
383		 * Note that we have enabled PSE mode
384		 */
385		pseflag = PG_PS;
386		ptditmp = *(PTmap + i386_btop(KERNBASE));
387		ptditmp &= ~(NBPDR - 1);
388		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
389		pdir4mb = ptditmp;
390
391#if !defined(SMP)
392		/*
393		 * Enable the PSE mode.
394		 */
395		load_cr4(rcr4() | CR4_PSE);
396
397		/*
398		 * We can do the mapping here for the single processor
399		 * case.  We simply ignore the old page table page from
400		 * now on.
401		 */
402		/*
403		 * For SMP, we still need 4K pages to bootstrap APs,
404		 * PSE will be enabled as soon as all APs are up.
405		 */
406		PTD[KPTDI] = (pd_entry_t) ptditmp;
407		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
408		invltlb();
409#endif
410	}
411#endif
412
413#ifdef SMP
414	if (cpu_apic_address == 0)
415		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
416
417	/* local apic is mapped on last page */
418	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
419	    (cpu_apic_address & PG_FRAME));
420#endif
421
422	invltlb();
423}
424
425#ifdef SMP
426/*
427 * Set 4mb pdir for mp startup
428 */
429void
430pmap_set_opt(void)
431{
432	if (pseflag && (cpu_feature & CPUID_PSE)) {
433		load_cr4(rcr4() | CR4_PSE);
434		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
435			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
436			cpu_invltlb();
437		}
438	}
439}
440#endif
441
442void *
443pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
444{
445	*flags = UMA_SLAB_PRIV;
446	return (void *)kmem_alloc(kernel_map, bytes);
447}
448
449/*
450 *	Initialize the pmap module.
451 *	Called by vm_init, to initialize any structures that the pmap
452 *	system needs to map virtual memory.
453 *	pmap_init has been enhanced to support in a fairly consistant
454 *	way, discontiguous physical memory.
455 */
456void
457pmap_init(phys_start, phys_end)
458	vm_offset_t phys_start, phys_end;
459{
460	int i;
461	int initial_pvs;
462
463	/*
464	 * object for kernel page table pages
465	 */
466	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
467
468	/*
469	 * Allocate memory for random pmap data structures.  Includes the
470	 * pv_head_table.
471	 */
472
473	for(i = 0; i < vm_page_array_size; i++) {
474		vm_page_t m;
475
476		m = &vm_page_array[i];
477		TAILQ_INIT(&m->md.pv_list);
478		m->md.pv_list_count = 0;
479	}
480
481	/*
482	 * init the pv free list
483	 */
484	initial_pvs = vm_page_array_size;
485	if (initial_pvs < MINPV)
486		initial_pvs = MINPV;
487	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
488	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
489	uma_zone_set_allocf(pvzone, pmap_allocf);
490	uma_prealloc(pvzone, initial_pvs);
491
492	/*
493	 * Now it is safe to enable pv_table recording.
494	 */
495	pmap_initialized = TRUE;
496}
497
498/*
499 * Initialize the address space (zone) for the pv_entries.  Set a
500 * high water mark so that the system can recover from excessive
501 * numbers of pv entries.
502 */
503void
504pmap_init2()
505{
506	int shpgperproc = PMAP_SHPGPERPROC;
507
508	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
509	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
510	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
511	pv_entry_high_water = 9 * (pv_entry_max / 10);
512	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
513}
514
515
516/***************************************************
517 * Low level helper routines.....
518 ***************************************************/
519
520#if defined(PMAP_DIAGNOSTIC)
521
522/*
523 * This code checks for non-writeable/modified pages.
524 * This should be an invalid condition.
525 */
526static int
527pmap_nw_modified(pt_entry_t ptea)
528{
529	int pte;
530
531	pte = (int) ptea;
532
533	if ((pte & (PG_M|PG_RW)) == PG_M)
534		return 1;
535	else
536		return 0;
537}
538#endif
539
540
541/*
542 * this routine defines the region(s) of memory that should
543 * not be tested for the modified bit.
544 */
545static PMAP_INLINE int
546pmap_track_modified(vm_offset_t va)
547{
548	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
549		return 1;
550	else
551		return 0;
552}
553
554static PMAP_INLINE void
555invltlb_1pg(vm_offset_t va)
556{
557#ifdef I386_CPU
558	invltlb();
559#else
560	invlpg(va);
561#endif
562}
563
564static __inline void
565pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
566{
567#if defined(SMP)
568	if (pmap->pm_active & PCPU_GET(cpumask))
569		cpu_invlpg((void *)va);
570	if (pmap->pm_active & PCPU_GET(other_cpus))
571		smp_invltlb();
572#else
573	if (pmap->pm_active)
574		invltlb_1pg(va);
575#endif
576}
577
578static __inline void
579pmap_invalidate_all(pmap_t pmap)
580{
581#if defined(SMP)
582	if (pmap->pm_active & PCPU_GET(cpumask))
583		cpu_invltlb();
584	if (pmap->pm_active & PCPU_GET(other_cpus))
585		smp_invltlb();
586#else
587	if (pmap->pm_active)
588		invltlb();
589#endif
590}
591
592/*
593 * Return an address which is the base of the Virtual mapping of
594 * all the PTEs for the given pmap. Note this doesn't say that
595 * all the PTEs will be present or that the pages there are valid.
596 * The PTEs are made available by the recursive mapping trick.
597 * It will map in the alternate PTE space if needed.
598 */
599static pt_entry_t *
600get_ptbase(pmap)
601	pmap_t pmap;
602{
603	pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
604
605	/* are we current address space or kernel? */
606	if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
607		return PTmap;
608	/* otherwise, we are alternate address space */
609	if (frame != (APTDpde & PG_FRAME)) {
610		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
611#if defined(SMP)
612		/* The page directory is not shared between CPUs */
613		cpu_invltlb();
614#else
615		invltlb();
616#endif
617	}
618	return APTmap;
619}
620
621/*
622 * Super fast pmap_pte routine best used when scanning
623 * the pv lists.  This eliminates many coarse-grained
624 * invltlb calls.  Note that many of the pv list
625 * scans are across different pmaps.  It is very wasteful
626 * to do an entire invltlb for checking a single mapping.
627 */
628
629static pt_entry_t *
630pmap_pte_quick(pmap, va)
631	register pmap_t pmap;
632	vm_offset_t va;
633{
634	pd_entry_t pde, newpf;
635	pde = pmap->pm_pdir[va >> PDRSHIFT];
636	if (pde != 0) {
637		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
638		unsigned index = i386_btop(va);
639		/* are we current address space or kernel? */
640		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
641			return PTmap + index;
642		newpf = pde & PG_FRAME;
643		if (((*PMAP1) & PG_FRAME) != newpf) {
644			*PMAP1 = newpf | PG_RW | PG_V;
645			invltlb_1pg((vm_offset_t) PADDR1);
646		}
647		return PADDR1 + (index & (NPTEPG - 1));
648	}
649	return (0);
650}
651
652/*
653 *	Routine:	pmap_extract
654 *	Function:
655 *		Extract the physical page address associated
656 *		with the given map/virtual_address pair.
657 */
658vm_offset_t
659pmap_extract(pmap, va)
660	register pmap_t pmap;
661	vm_offset_t va;
662{
663	vm_offset_t rtval;	/* XXX FIXME */
664	vm_offset_t pdirindex;
665
666	if (pmap == 0)
667		return 0;
668	pdirindex = va >> PDRSHIFT;
669	rtval = pmap->pm_pdir[pdirindex];
670	if (rtval != 0) {
671		pt_entry_t *pte;
672		if ((rtval & PG_PS) != 0) {
673			rtval &= ~(NBPDR - 1);
674			rtval |= va & (NBPDR - 1);
675			return rtval;
676		}
677		pte = get_ptbase(pmap) + i386_btop(va);
678		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
679		return rtval;
680	}
681	return 0;
682
683}
684
685/***************************************************
686 * Low level mapping routines.....
687 ***************************************************/
688
689/*
690 * add a wired page to the kva
691 * note that in order for the mapping to take effect -- you
692 * should do a invltlb after doing the pmap_kenter...
693 */
694PMAP_INLINE void
695pmap_kenter(vm_offset_t va, vm_offset_t pa)
696{
697	pt_entry_t *pte;
698	pt_entry_t npte, opte;
699
700	npte = pa | PG_RW | PG_V | pgeflag;
701	pte = vtopte(va);
702	opte = *pte;
703	*pte = npte;
704	invltlb_1pg(va);
705}
706
707/*
708 * remove a page from the kernel pagetables
709 */
710PMAP_INLINE void
711pmap_kremove(vm_offset_t va)
712{
713	register pt_entry_t *pte;
714
715	pte = vtopte(va);
716	*pte = 0;
717	invltlb_1pg(va);
718}
719
720/*
721 *	Used to map a range of physical addresses into kernel
722 *	virtual address space.
723 *
724 *	The value passed in '*virt' is a suggested virtual address for
725 *	the mapping. Architectures which can support a direct-mapped
726 *	physical to virtual region can return the appropriate address
727 *	within that region, leaving '*virt' unchanged. Other
728 *	architectures should map the pages starting at '*virt' and
729 *	update '*virt' with the first usable address after the mapped
730 *	region.
731 */
732vm_offset_t
733pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
734{
735	vm_offset_t sva = *virt;
736	vm_offset_t va = sva;
737	while (start < end) {
738		pmap_kenter(va, start);
739		va += PAGE_SIZE;
740		start += PAGE_SIZE;
741	}
742	*virt = va;
743	return (sva);
744}
745
746
747/*
748 * Add a list of wired pages to the kva
749 * this routine is only used for temporary
750 * kernel mappings that do not need to have
751 * page modification or references recorded.
752 * Note that old mappings are simply written
753 * over.  The page *must* be wired.
754 */
755void
756pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
757{
758	vm_offset_t end_va;
759
760	end_va = va + count * PAGE_SIZE;
761
762	while (va < end_va) {
763		pt_entry_t *pte;
764
765		pte = vtopte(va);
766		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
767#ifdef SMP
768		cpu_invlpg((void *)va);
769#else
770		invltlb_1pg(va);
771#endif
772		va += PAGE_SIZE;
773		m++;
774	}
775#ifdef SMP
776	smp_invltlb();
777#endif
778}
779
780/*
781 * this routine jerks page mappings from the
782 * kernel -- it is meant only for temporary mappings.
783 */
784void
785pmap_qremove(vm_offset_t va, int count)
786{
787	vm_offset_t end_va;
788
789	end_va = va + count*PAGE_SIZE;
790
791	while (va < end_va) {
792		pt_entry_t *pte;
793
794		pte = vtopte(va);
795		*pte = 0;
796#ifdef SMP
797		cpu_invlpg((void *)va);
798#else
799		invltlb_1pg(va);
800#endif
801		va += PAGE_SIZE;
802	}
803#ifdef SMP
804	smp_invltlb();
805#endif
806}
807
808static vm_page_t
809pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
810{
811	vm_page_t m;
812retry:
813	m = vm_page_lookup(object, pindex);
814	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
815		goto retry;
816	return m;
817}
818
819/*
820 * Create the Uarea stack for a new process.
821 * This routine directly affects the fork perf for a process.
822 */
823void
824pmap_new_proc(struct proc *p)
825{
826#ifdef I386_CPU
827	int updateneeded = 0;
828#endif
829	int i;
830	vm_object_t upobj;
831	vm_offset_t up;
832	vm_page_t m;
833	pt_entry_t *ptek, oldpte;
834
835	/*
836	 * allocate object for the upages
837	 */
838	upobj = p->p_upages_obj;
839	if (upobj == NULL) {
840		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
841		p->p_upages_obj = upobj;
842	}
843
844	/* get a kernel virtual address for the U area for this thread */
845	up = (vm_offset_t)p->p_uarea;
846	if (up == 0) {
847		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
848		if (up == 0)
849			panic("pmap_new_proc: upage allocation failed");
850		p->p_uarea = (struct user *)up;
851	}
852
853	ptek = vtopte(up);
854
855	for (i = 0; i < UAREA_PAGES; i++) {
856		/*
857		 * Get a kernel stack page
858		 */
859		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
860
861		/*
862		 * Wire the page
863		 */
864		m->wire_count++;
865		cnt.v_wire_count++;
866
867		oldpte = *(ptek + i);
868		/*
869		 * Enter the page into the kernel address space.
870		 */
871		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
872		if (oldpte) {
873#ifdef I386_CPU
874			updateneeded = 1;
875#else
876			invlpg(up + i * PAGE_SIZE);
877#endif
878		}
879
880		vm_page_wakeup(m);
881		vm_page_flag_clear(m, PG_ZERO);
882		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
883		m->valid = VM_PAGE_BITS_ALL;
884	}
885#ifdef I386_CPU
886	if (updateneeded)
887		invltlb();
888#endif
889}
890
891/*
892 * Dispose the U-Area for a process that has exited.
893 * This routine directly impacts the exit perf of a process.
894 */
895void
896pmap_dispose_proc(p)
897	struct proc *p;
898{
899	int i;
900	vm_object_t upobj;
901	vm_offset_t up;
902	vm_page_t m;
903	pt_entry_t *ptek, oldpte;
904
905	upobj = p->p_upages_obj;
906	up = (vm_offset_t)p->p_uarea;
907	ptek = vtopte(up);
908	for (i = 0; i < UAREA_PAGES; i++) {
909		m = vm_page_lookup(upobj, i);
910		if (m == NULL)
911			panic("pmap_dispose_proc: upage already missing?");
912		vm_page_busy(m);
913		oldpte = *(ptek + i);
914		*(ptek + i) = 0;
915#ifndef I386_CPU
916		invlpg(up + i * PAGE_SIZE);
917#endif
918		vm_page_unwire(m, 0);
919		vm_page_free(m);
920	}
921#ifdef I386_CPU
922	invltlb();
923#endif
924
925	/*
926	 * If the process got swapped out some of its UPAGES might have gotten
927	 * swapped.  Just get rid of the object to clean up the swap use
928	 * proactively.  NOTE! might block waiting for paging I/O to complete.
929	 */
930	if (upobj->type == OBJT_SWAP) {
931		p->p_upages_obj = NULL;
932		vm_object_deallocate(upobj);
933	}
934}
935
936/*
937 * Allow the U_AREA for a process to be prejudicially paged out.
938 */
939void
940pmap_swapout_proc(p)
941	struct proc *p;
942{
943	int i;
944	vm_object_t upobj;
945	vm_offset_t up;
946	vm_page_t m;
947
948	upobj = p->p_upages_obj;
949	up = (vm_offset_t)p->p_uarea;
950	for (i = 0; i < UAREA_PAGES; i++) {
951		m = vm_page_lookup(upobj, i);
952		if (m == NULL)
953			panic("pmap_swapout_proc: upage already missing?");
954		vm_page_dirty(m);
955		vm_page_unwire(m, 0);
956		pmap_kremove(up + i * PAGE_SIZE);
957	}
958}
959
960/*
961 * Bring the U-Area for a specified process back in.
962 */
963void
964pmap_swapin_proc(p)
965	struct proc *p;
966{
967	int i, rv;
968	vm_object_t upobj;
969	vm_offset_t up;
970	vm_page_t m;
971
972	upobj = p->p_upages_obj;
973	up = (vm_offset_t)p->p_uarea;
974	for (i = 0; i < UAREA_PAGES; i++) {
975		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
976		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
977		if (m->valid != VM_PAGE_BITS_ALL) {
978			rv = vm_pager_get_pages(upobj, &m, 1, 0);
979			if (rv != VM_PAGER_OK)
980				panic("pmap_swapin_proc: cannot get upage for proc: %d\n", p->p_pid);
981			m = vm_page_lookup(upobj, i);
982			m->valid = VM_PAGE_BITS_ALL;
983		}
984		vm_page_wire(m);
985		vm_page_wakeup(m);
986		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
987	}
988}
989
990/*
991 * Create the kernel stack (including pcb for i386) for a new thread.
992 * This routine directly affects the fork perf for a process and
993 * create performance for a thread.
994 */
995void
996pmap_new_thread(struct thread *td)
997{
998#ifdef I386_CPU
999	int updateneeded = 0;
1000#endif
1001	int i;
1002	vm_object_t ksobj;
1003	vm_page_t m;
1004	vm_offset_t ks;
1005	pt_entry_t *ptek, oldpte;
1006
1007	/*
1008	 * allocate object for the kstack
1009	 */
1010	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1011	td->td_kstack_obj = ksobj;
1012
1013#ifdef KSTACK_GUARD
1014	/* get a kernel virtual address for the kstack for this thread */
1015	ks = kmem_alloc_nofault(kernel_map, (KSTACK_PAGES + 1) * PAGE_SIZE);
1016	if (ks == 0)
1017		panic("pmap_new_thread: kstack allocation failed");
1018
1019	/*
1020	 * Set the first page to be the unmapped guard page.
1021	 */
1022	ptek = vtopte(ks);
1023	oldpte = *ptek;
1024	*ptek = 0;
1025	if (oldpte) {
1026#ifdef I386_CPU
1027		updateneeded = 1;
1028#else
1029		invlpg(ks);
1030#endif
1031	}
1032
1033	/*
1034	 * move to the next page, which is where the real stack starts.
1035	 */
1036	ks += PAGE_SIZE;
1037	td->td_kstack = ks;
1038	ptek++;
1039#else
1040	/* get a kernel virtual address for the kstack for this thread */
1041	ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
1042	if (ks == 0)
1043		panic("pmap_new_thread: kstack allocation failed");
1044	td->td_kstack = ks;
1045	ptek = vtopte(ks);
1046#endif
1047	/*
1048	 * For the length of the stack, link in a real page of ram for each
1049	 * page of stack.
1050	 */
1051	for (i = 0; i < KSTACK_PAGES; i++) {
1052		/*
1053		 * Get a kernel stack page
1054		 */
1055		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1056
1057		/*
1058		 * Wire the page
1059		 */
1060		m->wire_count++;
1061		cnt.v_wire_count++;
1062
1063		/*
1064		 * Enter the page into the kernel address space.
1065		 */
1066		oldpte = ptek[i];
1067		ptek[i] = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1068		if (oldpte) {
1069#ifdef I386_CPU
1070			updateneeded = 1;
1071#else
1072			invlpg(ks + (i * PAGE_SIZE));
1073#endif
1074		}
1075
1076		vm_page_wakeup(m);
1077		vm_page_flag_clear(m, PG_ZERO);
1078		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1079		m->valid = VM_PAGE_BITS_ALL;
1080	}
1081#ifdef I386_CPU
1082	if (updateneeded)
1083		invltlb();
1084#endif
1085}
1086
1087/*
1088 * Dispose the kernel stack for a thread that has exited.
1089 * This routine directly impacts the exit perf of a process and thread.
1090 */
1091void
1092pmap_dispose_thread(td)
1093	struct thread *td;
1094{
1095	int i;
1096	vm_object_t ksobj;
1097	vm_offset_t ks;
1098	vm_page_t m;
1099	pt_entry_t *ptek, oldpte;
1100
1101	ksobj = td->td_kstack_obj;
1102	ks = td->td_kstack;
1103	ptek = vtopte(ks);
1104#ifdef KSTACK_GUARD
1105	ks -= PAGE_SIZE;
1106	for (i = 1; i < (KSTACK_PAGES + 1); i++) {
1107#else
1108	for (i = 0; i < KSTACK_PAGES; i++) {
1109#endif
1110		m = vm_page_lookup(ksobj, i);
1111		if (m == NULL)
1112			panic("pmap_dispose_thread: kstack already missing?");
1113		vm_page_busy(m);
1114		oldpte = *(ptek + i);
1115		*(ptek + i) = 0;
1116#ifndef I386_CPU
1117		invlpg(ks + i * PAGE_SIZE);
1118#endif
1119		vm_page_unwire(m, 0);
1120		vm_page_free(m);
1121	}
1122#ifdef I386_CPU
1123	invltlb();
1124#endif
1125	/*
1126	 * Free the space that this stack was mapped to in the kernel
1127	 * address map.
1128	 */
1129#ifdef KSTACK_GUARD
1130	kmem_free(kernel_map, ks, (KSTACK_PAGES + 1) * PAGE_SIZE);
1131#else
1132	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
1133#endif
1134	vm_object_deallocate(ksobj);
1135	td->td_kstack_obj = NULL; /* play it safe */
1136}
1137
1138/*
1139 * Allow the Kernel stack for a thread to be prejudicially paged out.
1140 */
1141void
1142pmap_swapout_thread(td)
1143	struct thread *td;
1144{
1145	int i;
1146	vm_object_t ksobj;
1147	vm_offset_t ks;
1148	vm_page_t m;
1149
1150	ksobj = td->td_kstack_obj;
1151	ks = td->td_kstack;
1152	for (i = 0; i < KSTACK_PAGES; i++) {
1153		m = vm_page_lookup(ksobj, i);
1154		if (m == NULL)
1155			panic("pmap_swapout_thread: kstack already missing?");
1156		vm_page_dirty(m);
1157		vm_page_unwire(m, 0);
1158		pmap_kremove(ks + i * PAGE_SIZE);
1159	}
1160}
1161
1162/*
1163 * Bring the kernel stack for a specified thread back in.
1164 */
1165void
1166pmap_swapin_thread(td)
1167	struct thread *td;
1168{
1169	int i, rv;
1170	vm_object_t ksobj;
1171	vm_offset_t ks;
1172	vm_page_t m;
1173
1174	ksobj = td->td_kstack_obj;
1175	ks = td->td_kstack;
1176	for (i = 0; i < KSTACK_PAGES; i++) {
1177		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1178		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1179		if (m->valid != VM_PAGE_BITS_ALL) {
1180			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1181			if (rv != VM_PAGER_OK)
1182				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1183			m = vm_page_lookup(ksobj, i);
1184			m->valid = VM_PAGE_BITS_ALL;
1185		}
1186		vm_page_wire(m);
1187		vm_page_wakeup(m);
1188		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1189	}
1190}
1191
1192/***************************************************
1193 * Page table page management routines.....
1194 ***************************************************/
1195
1196/*
1197 * This routine unholds page table pages, and if the hold count
1198 * drops to zero, then it decrements the wire count.
1199 */
1200static int
1201_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1202{
1203
1204	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1205		;
1206
1207	if (m->hold_count == 0) {
1208		vm_offset_t pteva;
1209		/*
1210		 * unmap the page table page
1211		 */
1212		pmap->pm_pdir[m->pindex] = 0;
1213		--pmap->pm_stats.resident_count;
1214		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1215		    (PTDpde & PG_FRAME)) {
1216			/*
1217			 * Do a invltlb to make the invalidated mapping
1218			 * take effect immediately.
1219			 */
1220			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1221			pmap_invalidate_page(pmap, pteva);
1222		}
1223
1224		if (pmap->pm_ptphint == m)
1225			pmap->pm_ptphint = NULL;
1226
1227		/*
1228		 * If the page is finally unwired, simply free it.
1229		 */
1230		--m->wire_count;
1231		if (m->wire_count == 0) {
1232
1233			vm_page_flash(m);
1234			vm_page_busy(m);
1235			vm_page_free_zero(m);
1236			--cnt.v_wire_count;
1237		}
1238		return 1;
1239	}
1240	return 0;
1241}
1242
1243static PMAP_INLINE int
1244pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1245{
1246	vm_page_unhold(m);
1247	if (m->hold_count == 0)
1248		return _pmap_unwire_pte_hold(pmap, m);
1249	else
1250		return 0;
1251}
1252
1253/*
1254 * After removing a page table entry, this routine is used to
1255 * conditionally free the page, and manage the hold/wire counts.
1256 */
1257static int
1258pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1259{
1260	unsigned ptepindex;
1261	if (va >= VM_MAXUSER_ADDRESS)
1262		return 0;
1263
1264	if (mpte == NULL) {
1265		ptepindex = (va >> PDRSHIFT);
1266		if (pmap->pm_ptphint &&
1267			(pmap->pm_ptphint->pindex == ptepindex)) {
1268			mpte = pmap->pm_ptphint;
1269		} else {
1270			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1271			pmap->pm_ptphint = mpte;
1272		}
1273	}
1274
1275	return pmap_unwire_pte_hold(pmap, mpte);
1276}
1277
1278void
1279pmap_pinit0(pmap)
1280	struct pmap *pmap;
1281{
1282	pmap->pm_pdir =
1283		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1284	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1285	pmap->pm_ptphint = NULL;
1286	pmap->pm_active = 0;
1287	TAILQ_INIT(&pmap->pm_pvlist);
1288	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1289	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1290}
1291
1292/*
1293 * Initialize a preallocated and zeroed pmap structure,
1294 * such as one in a vmspace structure.
1295 */
1296void
1297pmap_pinit(pmap)
1298	register struct pmap *pmap;
1299{
1300	vm_page_t ptdpg;
1301
1302	/*
1303	 * No need to allocate page table space yet but we do need a valid
1304	 * page directory table.
1305	 */
1306	if (pmap->pm_pdir == NULL)
1307		pmap->pm_pdir =
1308			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1309
1310	/*
1311	 * allocate object for the ptes
1312	 */
1313	if (pmap->pm_pteobj == NULL)
1314		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1315
1316	/*
1317	 * allocate the page directory page
1318	 */
1319	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1320			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1321
1322	ptdpg->wire_count = 1;
1323	++cnt.v_wire_count;
1324
1325
1326	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1327	ptdpg->valid = VM_PAGE_BITS_ALL;
1328
1329	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1330	if ((ptdpg->flags & PG_ZERO) == 0)
1331		bzero(pmap->pm_pdir, PAGE_SIZE);
1332
1333	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1334	/* Wire in kernel global address entries. */
1335	/* XXX copies current process, does not fill in MPPTDI */
1336	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1337#ifdef SMP
1338	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1339#endif
1340
1341	/* install self-referential address mapping entry */
1342	pmap->pm_pdir[PTDPTDI] =
1343		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1344
1345	pmap->pm_active = 0;
1346	pmap->pm_ptphint = NULL;
1347	TAILQ_INIT(&pmap->pm_pvlist);
1348	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1349}
1350
1351/*
1352 * Wire in kernel global address entries.  To avoid a race condition
1353 * between pmap initialization and pmap_growkernel, this procedure
1354 * should be called after the vmspace is attached to the process
1355 * but before this pmap is activated.
1356 */
1357void
1358pmap_pinit2(pmap)
1359	struct pmap *pmap;
1360{
1361	/* XXX: Remove this stub when no longer called */
1362}
1363
1364static int
1365pmap_release_free_page(pmap_t pmap, vm_page_t p)
1366{
1367	pd_entry_t *pde = pmap->pm_pdir;
1368	/*
1369	 * This code optimizes the case of freeing non-busy
1370	 * page-table pages.  Those pages are zero now, and
1371	 * might as well be placed directly into the zero queue.
1372	 */
1373	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1374		return 0;
1375
1376	vm_page_busy(p);
1377
1378	/*
1379	 * Remove the page table page from the processes address space.
1380	 */
1381	pde[p->pindex] = 0;
1382	pmap->pm_stats.resident_count--;
1383
1384	if (p->hold_count)  {
1385		panic("pmap_release: freeing held page table page");
1386	}
1387	/*
1388	 * Page directory pages need to have the kernel
1389	 * stuff cleared, so they can go into the zero queue also.
1390	 */
1391	if (p->pindex == PTDPTDI) {
1392		bzero(pde + KPTDI, nkpt * PTESIZE);
1393#ifdef SMP
1394		pde[MPPTDI] = 0;
1395#endif
1396		pde[APTDPTDI] = 0;
1397		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1398	}
1399
1400	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1401		pmap->pm_ptphint = NULL;
1402
1403	p->wire_count--;
1404	cnt.v_wire_count--;
1405	vm_page_free_zero(p);
1406	return 1;
1407}
1408
1409/*
1410 * this routine is called if the page table page is not
1411 * mapped correctly.
1412 */
1413static vm_page_t
1414_pmap_allocpte(pmap, ptepindex)
1415	pmap_t	pmap;
1416	unsigned ptepindex;
1417{
1418	vm_offset_t pteva, ptepa;	/* XXXPA */
1419	vm_page_t m;
1420
1421	/*
1422	 * Find or fabricate a new pagetable page
1423	 */
1424	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1425			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1426
1427	KASSERT(m->queue == PQ_NONE,
1428		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1429
1430	if (m->wire_count == 0)
1431		cnt.v_wire_count++;
1432	m->wire_count++;
1433
1434	/*
1435	 * Increment the hold count for the page table page
1436	 * (denoting a new mapping.)
1437	 */
1438	m->hold_count++;
1439
1440	/*
1441	 * Map the pagetable page into the process address space, if
1442	 * it isn't already there.
1443	 */
1444
1445	pmap->pm_stats.resident_count++;
1446
1447	ptepa = VM_PAGE_TO_PHYS(m);
1448	pmap->pm_pdir[ptepindex] =
1449		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1450
1451	/*
1452	 * Set the page table hint
1453	 */
1454	pmap->pm_ptphint = m;
1455
1456	/*
1457	 * Try to use the new mapping, but if we cannot, then
1458	 * do it with the routine that maps the page explicitly.
1459	 */
1460	if ((m->flags & PG_ZERO) == 0) {
1461		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1462		    (PTDpde & PG_FRAME)) {
1463			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1464			bzero((caddr_t) pteva, PAGE_SIZE);
1465		} else {
1466			pmap_zero_page(m);
1467		}
1468	}
1469
1470	m->valid = VM_PAGE_BITS_ALL;
1471	vm_page_flag_clear(m, PG_ZERO);
1472	vm_page_flag_set(m, PG_MAPPED);
1473	vm_page_wakeup(m);
1474
1475	return m;
1476}
1477
1478static vm_page_t
1479pmap_allocpte(pmap_t pmap, vm_offset_t va)
1480{
1481	unsigned ptepindex;
1482	pd_entry_t ptepa;
1483	vm_page_t m;
1484
1485	/*
1486	 * Calculate pagetable page index
1487	 */
1488	ptepindex = va >> PDRSHIFT;
1489
1490	/*
1491	 * Get the page directory entry
1492	 */
1493	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1494
1495	/*
1496	 * This supports switching from a 4MB page to a
1497	 * normal 4K page.
1498	 */
1499	if (ptepa & PG_PS) {
1500		pmap->pm_pdir[ptepindex] = 0;
1501		ptepa = 0;
1502		invltlb();
1503	}
1504
1505	/*
1506	 * If the page table page is mapped, we just increment the
1507	 * hold count, and activate it.
1508	 */
1509	if (ptepa) {
1510		/*
1511		 * In order to get the page table page, try the
1512		 * hint first.
1513		 */
1514		if (pmap->pm_ptphint &&
1515			(pmap->pm_ptphint->pindex == ptepindex)) {
1516			m = pmap->pm_ptphint;
1517		} else {
1518			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1519			pmap->pm_ptphint = m;
1520		}
1521		m->hold_count++;
1522		return m;
1523	}
1524	/*
1525	 * Here if the pte page isn't mapped, or if it has been deallocated.
1526	 */
1527	return _pmap_allocpte(pmap, ptepindex);
1528}
1529
1530
1531/***************************************************
1532* Pmap allocation/deallocation routines.
1533 ***************************************************/
1534
1535/*
1536 * Release any resources held by the given physical map.
1537 * Called when a pmap initialized by pmap_pinit is being released.
1538 * Should only be called if the map contains no valid mappings.
1539 */
1540void
1541pmap_release(pmap_t pmap)
1542{
1543	vm_page_t p,n,ptdpg;
1544	vm_object_t object = pmap->pm_pteobj;
1545	int curgeneration;
1546
1547#if defined(DIAGNOSTIC)
1548	if (object->ref_count != 1)
1549		panic("pmap_release: pteobj reference count != 1");
1550#endif
1551
1552	ptdpg = NULL;
1553	LIST_REMOVE(pmap, pm_list);
1554retry:
1555	curgeneration = object->generation;
1556	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1557		n = TAILQ_NEXT(p, listq);
1558		if (p->pindex == PTDPTDI) {
1559			ptdpg = p;
1560			continue;
1561		}
1562		while (1) {
1563			if (!pmap_release_free_page(pmap, p) &&
1564				(object->generation != curgeneration))
1565				goto retry;
1566		}
1567	}
1568
1569	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1570		goto retry;
1571}
1572
1573static int
1574kvm_size(SYSCTL_HANDLER_ARGS)
1575{
1576	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1577
1578        return sysctl_handle_long(oidp, &ksize, 0, req);
1579}
1580SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1581    0, 0, kvm_size, "IU", "Size of KVM");
1582
1583static int
1584kvm_free(SYSCTL_HANDLER_ARGS)
1585{
1586	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1587
1588        return sysctl_handle_long(oidp, &kfree, 0, req);
1589}
1590SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1591    0, 0, kvm_free, "IU", "Amount of KVM free");
1592
1593/*
1594 * grow the number of kernel page table entries, if needed
1595 */
1596void
1597pmap_growkernel(vm_offset_t addr)
1598{
1599	struct pmap *pmap;
1600	int s;
1601	vm_offset_t ptppaddr;
1602	vm_page_t nkpg;
1603	pd_entry_t newpdir;
1604
1605	s = splhigh();
1606	if (kernel_vm_end == 0) {
1607		kernel_vm_end = KERNBASE;
1608		nkpt = 0;
1609		while (pdir_pde(PTD, kernel_vm_end)) {
1610			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1611			nkpt++;
1612		}
1613	}
1614	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1615	while (kernel_vm_end < addr) {
1616		if (pdir_pde(PTD, kernel_vm_end)) {
1617			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1618			continue;
1619		}
1620
1621		/*
1622		 * This index is bogus, but out of the way
1623		 */
1624		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1625		if (!nkpg)
1626			panic("pmap_growkernel: no memory to grow kernel");
1627
1628		nkpt++;
1629
1630		vm_page_wire(nkpg);
1631		pmap_zero_page(nkpg);
1632		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1633		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1634		pdir_pde(PTD, kernel_vm_end) = newpdir;
1635
1636		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1637			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1638		}
1639		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1640	}
1641	splx(s);
1642}
1643
1644
1645/***************************************************
1646 * page management routines.
1647 ***************************************************/
1648
1649/*
1650 * free the pv_entry back to the free list
1651 */
1652static PMAP_INLINE void
1653free_pv_entry(pv_entry_t pv)
1654{
1655	pv_entry_count--;
1656	uma_zfree(pvzone, pv);
1657}
1658
1659/*
1660 * get a new pv_entry, allocating a block from the system
1661 * when needed.
1662 * the memory allocation is performed bypassing the malloc code
1663 * because of the possibility of allocations at interrupt time.
1664 */
1665static pv_entry_t
1666get_pv_entry(void)
1667{
1668	pv_entry_count++;
1669	if (pv_entry_high_water &&
1670		(pv_entry_count > pv_entry_high_water) &&
1671		(pmap_pagedaemon_waken == 0)) {
1672		pmap_pagedaemon_waken = 1;
1673		wakeup (&vm_pages_needed);
1674	}
1675	return uma_zalloc(pvzone, M_NOWAIT);
1676}
1677
1678/*
1679 * This routine is very drastic, but can save the system
1680 * in a pinch.
1681 */
1682void
1683pmap_collect()
1684{
1685	int i;
1686	vm_page_t m;
1687	static int warningdone = 0;
1688
1689	if (pmap_pagedaemon_waken == 0)
1690		return;
1691
1692	if (warningdone < 5) {
1693		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1694		warningdone++;
1695	}
1696
1697	for(i = 0; i < vm_page_array_size; i++) {
1698		m = &vm_page_array[i];
1699		if (m->wire_count || m->hold_count || m->busy ||
1700		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1701			continue;
1702		pmap_remove_all(m);
1703	}
1704	pmap_pagedaemon_waken = 0;
1705}
1706
1707
1708/*
1709 * If it is the first entry on the list, it is actually
1710 * in the header and we must copy the following entry up
1711 * to the header.  Otherwise we must search the list for
1712 * the entry.  In either case we free the now unused entry.
1713 */
1714
1715static int
1716pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1717{
1718	pv_entry_t pv;
1719	int rtval;
1720	int s;
1721
1722	s = splvm();
1723	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1724		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1725			if (pmap == pv->pv_pmap && va == pv->pv_va)
1726				break;
1727		}
1728	} else {
1729		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1730			if (va == pv->pv_va)
1731				break;
1732		}
1733	}
1734
1735	rtval = 0;
1736	if (pv) {
1737		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1738		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1739		m->md.pv_list_count--;
1740		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1741			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1742
1743		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1744		free_pv_entry(pv);
1745	}
1746
1747	splx(s);
1748	return rtval;
1749}
1750
1751/*
1752 * Create a pv entry for page at pa for
1753 * (pmap, va).
1754 */
1755static void
1756pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1757{
1758
1759	int s;
1760	pv_entry_t pv;
1761
1762	s = splvm();
1763	pv = get_pv_entry();
1764	pv->pv_va = va;
1765	pv->pv_pmap = pmap;
1766	pv->pv_ptem = mpte;
1767
1768	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1769	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1770	m->md.pv_list_count++;
1771
1772	splx(s);
1773}
1774
1775/*
1776 * pmap_remove_pte: do the things to unmap a page in a process
1777 */
1778static int
1779pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1780{
1781	pt_entry_t oldpte;
1782	vm_page_t m;
1783
1784	oldpte = atomic_readandclear_int(ptq);
1785	if (oldpte & PG_W)
1786		pmap->pm_stats.wired_count -= 1;
1787	/*
1788	 * Machines that don't support invlpg, also don't support
1789	 * PG_G.
1790	 */
1791	if (oldpte & PG_G)
1792		invlpg(va);
1793	pmap->pm_stats.resident_count -= 1;
1794	if (oldpte & PG_MANAGED) {
1795		m = PHYS_TO_VM_PAGE(oldpte);
1796		if (oldpte & PG_M) {
1797#if defined(PMAP_DIAGNOSTIC)
1798			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1799				printf(
1800	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1801				    va, oldpte);
1802			}
1803#endif
1804			if (pmap_track_modified(va))
1805				vm_page_dirty(m);
1806		}
1807		if (oldpte & PG_A)
1808			vm_page_flag_set(m, PG_REFERENCED);
1809		return pmap_remove_entry(pmap, m, va);
1810	} else {
1811		return pmap_unuse_pt(pmap, va, NULL);
1812	}
1813
1814	return 0;
1815}
1816
1817/*
1818 * Remove a single page from a process address space
1819 */
1820static void
1821pmap_remove_page(pmap_t pmap, vm_offset_t va)
1822{
1823	register pt_entry_t *ptq;
1824
1825	/*
1826	 * if there is no pte for this address, just skip it!!!
1827	 */
1828	if (*pmap_pde(pmap, va) == 0) {
1829		return;
1830	}
1831
1832	/*
1833	 * get a local va for mappings for this pmap.
1834	 */
1835	ptq = get_ptbase(pmap) + i386_btop(va);
1836	if (*ptq) {
1837		(void) pmap_remove_pte(pmap, ptq, va);
1838		pmap_invalidate_page(pmap, va);
1839	}
1840	return;
1841}
1842
1843/*
1844 *	Remove the given range of addresses from the specified map.
1845 *
1846 *	It is assumed that the start and end are properly
1847 *	rounded to the page size.
1848 */
1849void
1850pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1851{
1852	register pt_entry_t *ptbase;
1853	vm_offset_t pdnxt;
1854	pd_entry_t ptpaddr;
1855	vm_offset_t sindex, eindex;
1856	int anyvalid;
1857
1858	if (pmap == NULL)
1859		return;
1860
1861	if (pmap->pm_stats.resident_count == 0)
1862		return;
1863
1864	/*
1865	 * special handling of removing one page.  a very
1866	 * common operation and easy to short circuit some
1867	 * code.
1868	 */
1869	if ((sva + PAGE_SIZE == eva) &&
1870	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1871		pmap_remove_page(pmap, sva);
1872		return;
1873	}
1874
1875	anyvalid = 0;
1876
1877	/*
1878	 * Get a local virtual address for the mappings that are being
1879	 * worked with.
1880	 */
1881	ptbase = get_ptbase(pmap);
1882
1883	sindex = i386_btop(sva);
1884	eindex = i386_btop(eva);
1885
1886	for (; sindex < eindex; sindex = pdnxt) {
1887		unsigned pdirindex;
1888
1889		/*
1890		 * Calculate index for next page table.
1891		 */
1892		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1893		if (pmap->pm_stats.resident_count == 0)
1894			break;
1895
1896		pdirindex = sindex / NPDEPG;
1897		ptpaddr = pmap->pm_pdir[pdirindex];
1898		if ((ptpaddr & PG_PS) != 0) {
1899			pmap->pm_pdir[pdirindex] = 0;
1900			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1901			anyvalid++;
1902			continue;
1903		}
1904
1905		/*
1906		 * Weed out invalid mappings. Note: we assume that the page
1907		 * directory table is always allocated, and in kernel virtual.
1908		 */
1909		if (ptpaddr == 0)
1910			continue;
1911
1912		/*
1913		 * Limit our scan to either the end of the va represented
1914		 * by the current page table page, or to the end of the
1915		 * range being removed.
1916		 */
1917		if (pdnxt > eindex) {
1918			pdnxt = eindex;
1919		}
1920
1921		for (; sindex != pdnxt; sindex++) {
1922			vm_offset_t va;
1923			if (ptbase[sindex] == 0) {
1924				continue;
1925			}
1926			va = i386_ptob(sindex);
1927
1928			anyvalid++;
1929			if (pmap_remove_pte(pmap,
1930				ptbase + sindex, va))
1931				break;
1932		}
1933	}
1934
1935	if (anyvalid)
1936		pmap_invalidate_all(pmap);
1937}
1938
1939/*
1940 *	Routine:	pmap_remove_all
1941 *	Function:
1942 *		Removes this physical page from
1943 *		all physical maps in which it resides.
1944 *		Reflects back modify bits to the pager.
1945 *
1946 *	Notes:
1947 *		Original versions of this routine were very
1948 *		inefficient because they iteratively called
1949 *		pmap_remove (slow...)
1950 */
1951
1952static void
1953pmap_remove_all(vm_page_t m)
1954{
1955	register pv_entry_t pv;
1956	pt_entry_t *pte, tpte;
1957	int s;
1958
1959#if defined(PMAP_DIAGNOSTIC)
1960	/*
1961	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1962	 * pages!
1963	 */
1964	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1965		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1966	}
1967#endif
1968
1969	s = splvm();
1970	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1971		pv->pv_pmap->pm_stats.resident_count--;
1972
1973		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1974
1975		tpte = atomic_readandclear_int(pte);
1976		if (tpte & PG_W)
1977			pv->pv_pmap->pm_stats.wired_count--;
1978
1979		if (tpte & PG_A)
1980			vm_page_flag_set(m, PG_REFERENCED);
1981
1982		/*
1983		 * Update the vm_page_t clean and reference bits.
1984		 */
1985		if (tpte & PG_M) {
1986#if defined(PMAP_DIAGNOSTIC)
1987			if (pmap_nw_modified((pt_entry_t) tpte)) {
1988				printf(
1989	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1990				    pv->pv_va, tpte);
1991			}
1992#endif
1993			if (pmap_track_modified(pv->pv_va))
1994				vm_page_dirty(m);
1995		}
1996		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1997
1998		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1999		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2000		m->md.pv_list_count--;
2001		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2002		free_pv_entry(pv);
2003	}
2004
2005	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2006
2007	splx(s);
2008}
2009
2010/*
2011 *	Set the physical protection on the
2012 *	specified range of this map as requested.
2013 */
2014void
2015pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2016{
2017	register pt_entry_t *ptbase;
2018	vm_offset_t pdnxt;
2019	pd_entry_t ptpaddr;
2020	vm_offset_t sindex, eindex;
2021	int anychanged;
2022
2023	if (pmap == NULL)
2024		return;
2025
2026	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2027		pmap_remove(pmap, sva, eva);
2028		return;
2029	}
2030
2031	if (prot & VM_PROT_WRITE)
2032		return;
2033
2034	anychanged = 0;
2035
2036	ptbase = get_ptbase(pmap);
2037
2038	sindex = i386_btop(sva);
2039	eindex = i386_btop(eva);
2040
2041	for (; sindex < eindex; sindex = pdnxt) {
2042
2043		unsigned pdirindex;
2044
2045		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2046
2047		pdirindex = sindex / NPDEPG;
2048		ptpaddr = pmap->pm_pdir[pdirindex];
2049		if ((ptpaddr & PG_PS) != 0) {
2050			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2051			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2052			anychanged++;
2053			continue;
2054		}
2055
2056		/*
2057		 * Weed out invalid mappings. Note: we assume that the page
2058		 * directory table is always allocated, and in kernel virtual.
2059		 */
2060		if (ptpaddr == 0)
2061			continue;
2062
2063		if (pdnxt > eindex) {
2064			pdnxt = eindex;
2065		}
2066
2067		for (; sindex != pdnxt; sindex++) {
2068
2069			pt_entry_t pbits;
2070			vm_page_t m;
2071
2072			pbits = ptbase[sindex];
2073
2074			if (pbits & PG_MANAGED) {
2075				m = NULL;
2076				if (pbits & PG_A) {
2077					m = PHYS_TO_VM_PAGE(pbits);
2078					vm_page_flag_set(m, PG_REFERENCED);
2079					pbits &= ~PG_A;
2080				}
2081				if (pbits & PG_M) {
2082					if (pmap_track_modified(i386_ptob(sindex))) {
2083						if (m == NULL)
2084							m = PHYS_TO_VM_PAGE(pbits);
2085						vm_page_dirty(m);
2086						pbits &= ~PG_M;
2087					}
2088				}
2089			}
2090
2091			pbits &= ~PG_RW;
2092
2093			if (pbits != ptbase[sindex]) {
2094				ptbase[sindex] = pbits;
2095				anychanged = 1;
2096			}
2097		}
2098	}
2099	if (anychanged)
2100		pmap_invalidate_all(pmap);
2101}
2102
2103/*
2104 *	Insert the given physical page (p) at
2105 *	the specified virtual address (v) in the
2106 *	target physical map with the protection requested.
2107 *
2108 *	If specified, the page will be wired down, meaning
2109 *	that the related pte can not be reclaimed.
2110 *
2111 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2112 *	or lose information.  That is, this routine must actually
2113 *	insert this page into the given map NOW.
2114 */
2115void
2116pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2117	   boolean_t wired)
2118{
2119	vm_offset_t pa;
2120	register pt_entry_t *pte;
2121	vm_offset_t opa;
2122	pt_entry_t origpte, newpte;
2123	vm_page_t mpte;
2124
2125	if (pmap == NULL)
2126		return;
2127
2128	va &= PG_FRAME;
2129#ifdef PMAP_DIAGNOSTIC
2130	if (va > VM_MAX_KERNEL_ADDRESS)
2131		panic("pmap_enter: toobig");
2132	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2133		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2134#endif
2135
2136	mpte = NULL;
2137	/*
2138	 * In the case that a page table page is not
2139	 * resident, we are creating it here.
2140	 */
2141	if (va < VM_MAXUSER_ADDRESS) {
2142		mpte = pmap_allocpte(pmap, va);
2143	}
2144#if 0 && defined(PMAP_DIAGNOSTIC)
2145	else {
2146		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2147		origpte = *pdeaddr;
2148		if ((origpte & PG_V) == 0) {
2149			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2150				pmap->pm_pdir[PTDPTDI], origpte, va);
2151		}
2152	}
2153#endif
2154
2155	pte = pmap_pte(pmap, va);
2156
2157	/*
2158	 * Page Directory table entry not valid, we need a new PT page
2159	 */
2160	if (pte == NULL) {
2161		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2162			(void *)pmap->pm_pdir[PTDPTDI], va);
2163	}
2164
2165	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2166	origpte = *(vm_offset_t *)pte;
2167	opa = origpte & PG_FRAME;
2168
2169	if (origpte & PG_PS)
2170		panic("pmap_enter: attempted pmap_enter on 4MB page");
2171
2172	/*
2173	 * Mapping has not changed, must be protection or wiring change.
2174	 */
2175	if (origpte && (opa == pa)) {
2176		/*
2177		 * Wiring change, just update stats. We don't worry about
2178		 * wiring PT pages as they remain resident as long as there
2179		 * are valid mappings in them. Hence, if a user page is wired,
2180		 * the PT page will be also.
2181		 */
2182		if (wired && ((origpte & PG_W) == 0))
2183			pmap->pm_stats.wired_count++;
2184		else if (!wired && (origpte & PG_W))
2185			pmap->pm_stats.wired_count--;
2186
2187#if defined(PMAP_DIAGNOSTIC)
2188		if (pmap_nw_modified((pt_entry_t) origpte)) {
2189			printf(
2190	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2191			    va, origpte);
2192		}
2193#endif
2194
2195		/*
2196		 * Remove extra pte reference
2197		 */
2198		if (mpte)
2199			mpte->hold_count--;
2200
2201		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2202			if ((origpte & PG_RW) == 0) {
2203				*pte |= PG_RW;
2204#ifdef SMP
2205				cpu_invlpg((void *)va);
2206				if (pmap->pm_active & PCPU_GET(other_cpus))
2207					smp_invltlb();
2208#else
2209				invltlb_1pg(va);
2210#endif
2211			}
2212			return;
2213		}
2214
2215		/*
2216		 * We might be turning off write access to the page,
2217		 * so we go ahead and sense modify status.
2218		 */
2219		if (origpte & PG_MANAGED) {
2220			if ((origpte & PG_M) && pmap_track_modified(va)) {
2221				vm_page_t om;
2222				om = PHYS_TO_VM_PAGE(opa);
2223				vm_page_dirty(om);
2224			}
2225			pa |= PG_MANAGED;
2226		}
2227		goto validate;
2228	}
2229	/*
2230	 * Mapping has changed, invalidate old range and fall through to
2231	 * handle validating new mapping.
2232	 */
2233	if (opa) {
2234		int err;
2235		err = pmap_remove_pte(pmap, pte, va);
2236		if (err)
2237			panic("pmap_enter: pte vanished, va: 0x%x", va);
2238	}
2239
2240	/*
2241	 * Enter on the PV list if part of our managed memory. Note that we
2242	 * raise IPL while manipulating pv_table since pmap_enter can be
2243	 * called at interrupt time.
2244	 */
2245	if (pmap_initialized &&
2246	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2247		pmap_insert_entry(pmap, va, mpte, m);
2248		pa |= PG_MANAGED;
2249	}
2250
2251	/*
2252	 * Increment counters
2253	 */
2254	pmap->pm_stats.resident_count++;
2255	if (wired)
2256		pmap->pm_stats.wired_count++;
2257
2258validate:
2259	/*
2260	 * Now validate mapping with desired protection/wiring.
2261	 */
2262	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2263
2264	if (wired)
2265		newpte |= PG_W;
2266	if (va < VM_MAXUSER_ADDRESS)
2267		newpte |= PG_U;
2268	if (pmap == kernel_pmap)
2269		newpte |= pgeflag;
2270
2271	/*
2272	 * if the mapping or permission bits are different, we need
2273	 * to update the pte.
2274	 */
2275	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2276		*pte = newpte | PG_A;
2277		/*if (origpte)*/ {
2278#ifdef SMP
2279			cpu_invlpg((void *)va);
2280			if (pmap->pm_active & PCPU_GET(other_cpus))
2281				smp_invltlb();
2282#else
2283			invltlb_1pg(va);
2284#endif
2285		}
2286	}
2287}
2288
2289/*
2290 * this code makes some *MAJOR* assumptions:
2291 * 1. Current pmap & pmap exists.
2292 * 2. Not wired.
2293 * 3. Read access.
2294 * 4. No page table pages.
2295 * 5. Tlbflush is deferred to calling procedure.
2296 * 6. Page IS managed.
2297 * but is *MUCH* faster than pmap_enter...
2298 */
2299
2300static vm_page_t
2301pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2302{
2303	pt_entry_t *pte;
2304	vm_offset_t pa;
2305
2306	/*
2307	 * In the case that a page table page is not
2308	 * resident, we are creating it here.
2309	 */
2310	if (va < VM_MAXUSER_ADDRESS) {
2311		unsigned ptepindex;
2312		pd_entry_t ptepa;
2313
2314		/*
2315		 * Calculate pagetable page index
2316		 */
2317		ptepindex = va >> PDRSHIFT;
2318		if (mpte && (mpte->pindex == ptepindex)) {
2319			mpte->hold_count++;
2320		} else {
2321retry:
2322			/*
2323			 * Get the page directory entry
2324			 */
2325			ptepa = pmap->pm_pdir[ptepindex];
2326
2327			/*
2328			 * If the page table page is mapped, we just increment
2329			 * the hold count, and activate it.
2330			 */
2331			if (ptepa) {
2332				if (ptepa & PG_PS)
2333					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2334				if (pmap->pm_ptphint &&
2335					(pmap->pm_ptphint->pindex == ptepindex)) {
2336					mpte = pmap->pm_ptphint;
2337				} else {
2338					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2339					pmap->pm_ptphint = mpte;
2340				}
2341				if (mpte == NULL)
2342					goto retry;
2343				mpte->hold_count++;
2344			} else {
2345				mpte = _pmap_allocpte(pmap, ptepindex);
2346			}
2347		}
2348	} else {
2349		mpte = NULL;
2350	}
2351
2352	/*
2353	 * This call to vtopte makes the assumption that we are
2354	 * entering the page into the current pmap.  In order to support
2355	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2356	 * But that isn't as quick as vtopte.
2357	 */
2358	pte = vtopte(va);
2359	if (*pte) {
2360		if (mpte)
2361			pmap_unwire_pte_hold(pmap, mpte);
2362		return 0;
2363	}
2364
2365	/*
2366	 * Enter on the PV list if part of our managed memory. Note that we
2367	 * raise IPL while manipulating pv_table since pmap_enter can be
2368	 * called at interrupt time.
2369	 */
2370	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2371		pmap_insert_entry(pmap, va, mpte, m);
2372
2373	/*
2374	 * Increment counters
2375	 */
2376	pmap->pm_stats.resident_count++;
2377
2378	pa = VM_PAGE_TO_PHYS(m);
2379
2380	/*
2381	 * Now validate mapping with RO protection
2382	 */
2383	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2384		*pte = pa | PG_V | PG_U;
2385	else
2386		*pte = pa | PG_V | PG_U | PG_MANAGED;
2387
2388	return mpte;
2389}
2390
2391/*
2392 * Make a temporary mapping for a physical address.  This is only intended
2393 * to be used for panic dumps.
2394 */
2395void *
2396pmap_kenter_temporary(vm_offset_t pa, int i)
2397{
2398	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2399	return ((void *)crashdumpmap);
2400}
2401
2402#define MAX_INIT_PT (96)
2403/*
2404 * pmap_object_init_pt preloads the ptes for a given object
2405 * into the specified pmap.  This eliminates the blast of soft
2406 * faults on process startup and immediately after an mmap.
2407 */
2408void
2409pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2410		    vm_object_t object, vm_pindex_t pindex,
2411		    vm_size_t size, int limit)
2412{
2413	vm_offset_t tmpidx;
2414	int psize;
2415	vm_page_t p, mpte;
2416	int objpgs;
2417
2418	if (pmap == NULL || object == NULL)
2419		return;
2420
2421	/*
2422	 * This code maps large physical mmap regions into the
2423	 * processor address space.  Note that some shortcuts
2424	 * are taken, but the code works.
2425	 */
2426	if (pseflag && (object->type == OBJT_DEVICE) &&
2427	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2428		int i;
2429		vm_page_t m[1];
2430		unsigned int ptepindex;
2431		int npdes;
2432		pd_entry_t ptepa;
2433
2434		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2435			return;
2436
2437retry:
2438		p = vm_page_lookup(object, pindex);
2439		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2440			goto retry;
2441
2442		if (p == NULL) {
2443			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2444			if (p == NULL)
2445				return;
2446			m[0] = p;
2447
2448			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2449				vm_page_free(p);
2450				return;
2451			}
2452
2453			p = vm_page_lookup(object, pindex);
2454			vm_page_wakeup(p);
2455		}
2456
2457		ptepa = VM_PAGE_TO_PHYS(p);
2458		if (ptepa & (NBPDR - 1)) {
2459			return;
2460		}
2461
2462		p->valid = VM_PAGE_BITS_ALL;
2463
2464		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2465		npdes = size >> PDRSHIFT;
2466		for(i = 0; i < npdes; i++) {
2467			pmap->pm_pdir[ptepindex] =
2468			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2469			ptepa += NBPDR;
2470			ptepindex += 1;
2471		}
2472		vm_page_flag_set(p, PG_MAPPED);
2473		invltlb();
2474		return;
2475	}
2476
2477	psize = i386_btop(size);
2478
2479	if ((object->type != OBJT_VNODE) ||
2480	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2481	     (object->resident_page_count > MAX_INIT_PT))) {
2482		return;
2483	}
2484
2485	if (psize + pindex > object->size) {
2486		if (object->size < pindex)
2487			return;
2488		psize = object->size - pindex;
2489	}
2490
2491	mpte = NULL;
2492	/*
2493	 * if we are processing a major portion of the object, then scan the
2494	 * entire thing.
2495	 */
2496	if (psize > (object->resident_page_count >> 2)) {
2497		objpgs = psize;
2498
2499		for (p = TAILQ_FIRST(&object->memq);
2500		    ((objpgs > 0) && (p != NULL));
2501		    p = TAILQ_NEXT(p, listq)) {
2502
2503			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2504				continue;
2505			}
2506			tmpidx = p->pindex - pindex;
2507			/*
2508			 * don't allow an madvise to blow away our really
2509			 * free pages allocating pv entries.
2510			 */
2511			if ((limit & MAP_PREFAULT_MADVISE) &&
2512			    cnt.v_free_count < cnt.v_free_reserved) {
2513				break;
2514			}
2515			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2516				(p->busy == 0) &&
2517			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2518				if ((p->queue - p->pc) == PQ_CACHE)
2519					vm_page_deactivate(p);
2520				vm_page_busy(p);
2521				mpte = pmap_enter_quick(pmap,
2522					addr + i386_ptob(tmpidx), p, mpte);
2523				vm_page_flag_set(p, PG_MAPPED);
2524				vm_page_wakeup(p);
2525			}
2526			objpgs -= 1;
2527		}
2528	} else {
2529		/*
2530		 * else lookup the pages one-by-one.
2531		 */
2532		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2533			/*
2534			 * don't allow an madvise to blow away our really
2535			 * free pages allocating pv entries.
2536			 */
2537			if ((limit & MAP_PREFAULT_MADVISE) &&
2538			    cnt.v_free_count < cnt.v_free_reserved) {
2539				break;
2540			}
2541			p = vm_page_lookup(object, tmpidx + pindex);
2542			if (p &&
2543			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2544				(p->busy == 0) &&
2545			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2546				if ((p->queue - p->pc) == PQ_CACHE)
2547					vm_page_deactivate(p);
2548				vm_page_busy(p);
2549				mpte = pmap_enter_quick(pmap,
2550					addr + i386_ptob(tmpidx), p, mpte);
2551				vm_page_flag_set(p, PG_MAPPED);
2552				vm_page_wakeup(p);
2553			}
2554		}
2555	}
2556	return;
2557}
2558
2559/*
2560 * pmap_prefault provides a quick way of clustering
2561 * pagefaults into a processes address space.  It is a "cousin"
2562 * of pmap_object_init_pt, except it runs at page fault time instead
2563 * of mmap time.
2564 */
2565#define PFBAK 4
2566#define PFFOR 4
2567#define PAGEORDER_SIZE (PFBAK+PFFOR)
2568
2569static int pmap_prefault_pageorder[] = {
2570	-PAGE_SIZE, PAGE_SIZE,
2571	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2572	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2573	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2574};
2575
2576void
2577pmap_prefault(pmap, addra, entry)
2578	pmap_t pmap;
2579	vm_offset_t addra;
2580	vm_map_entry_t entry;
2581{
2582	int i;
2583	vm_offset_t starta;
2584	vm_offset_t addr;
2585	vm_pindex_t pindex;
2586	vm_page_t m, mpte;
2587	vm_object_t object;
2588
2589	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2590		return;
2591
2592	object = entry->object.vm_object;
2593
2594	starta = addra - PFBAK * PAGE_SIZE;
2595	if (starta < entry->start) {
2596		starta = entry->start;
2597	} else if (starta > addra) {
2598		starta = 0;
2599	}
2600
2601	mpte = NULL;
2602	for (i = 0; i < PAGEORDER_SIZE; i++) {
2603		vm_object_t lobject;
2604		pt_entry_t *pte;
2605
2606		addr = addra + pmap_prefault_pageorder[i];
2607		if (addr > addra + (PFFOR * PAGE_SIZE))
2608			addr = 0;
2609
2610		if (addr < starta || addr >= entry->end)
2611			continue;
2612
2613		if ((*pmap_pde(pmap, addr)) == NULL)
2614			continue;
2615
2616		pte = vtopte(addr);
2617		if (*pte)
2618			continue;
2619
2620		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2621		lobject = object;
2622		for (m = vm_page_lookup(lobject, pindex);
2623		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2624		    lobject = lobject->backing_object) {
2625			if (lobject->backing_object_offset & PAGE_MASK)
2626				break;
2627			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2628			m = vm_page_lookup(lobject->backing_object, pindex);
2629		}
2630
2631		/*
2632		 * give-up when a page is not in memory
2633		 */
2634		if (m == NULL)
2635			break;
2636
2637		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2638			(m->busy == 0) &&
2639		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2640
2641			if ((m->queue - m->pc) == PQ_CACHE) {
2642				vm_page_deactivate(m);
2643			}
2644			vm_page_busy(m);
2645			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2646			vm_page_flag_set(m, PG_MAPPED);
2647			vm_page_wakeup(m);
2648		}
2649	}
2650}
2651
2652/*
2653 *	Routine:	pmap_change_wiring
2654 *	Function:	Change the wiring attribute for a map/virtual-address
2655 *			pair.
2656 *	In/out conditions:
2657 *			The mapping must already exist in the pmap.
2658 */
2659void
2660pmap_change_wiring(pmap, va, wired)
2661	register pmap_t pmap;
2662	vm_offset_t va;
2663	boolean_t wired;
2664{
2665	register pt_entry_t *pte;
2666
2667	if (pmap == NULL)
2668		return;
2669
2670	pte = pmap_pte(pmap, va);
2671
2672	if (wired && !pmap_pte_w(pte))
2673		pmap->pm_stats.wired_count++;
2674	else if (!wired && pmap_pte_w(pte))
2675		pmap->pm_stats.wired_count--;
2676
2677	/*
2678	 * Wiring is not a hardware characteristic so there is no need to
2679	 * invalidate TLB.
2680	 */
2681	pmap_pte_set_w(pte, wired);
2682}
2683
2684
2685
2686/*
2687 *	Copy the range specified by src_addr/len
2688 *	from the source map to the range dst_addr/len
2689 *	in the destination map.
2690 *
2691 *	This routine is only advisory and need not do anything.
2692 */
2693
2694void
2695pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2696	  vm_offset_t src_addr)
2697{
2698	vm_offset_t addr;
2699	vm_offset_t end_addr = src_addr + len;
2700	vm_offset_t pdnxt;
2701	pd_entry_t src_frame, dst_frame;
2702	vm_page_t m;
2703	pd_entry_t saved_pde;
2704
2705	if (dst_addr != src_addr)
2706		return;
2707
2708	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2709	if (src_frame != (PTDpde & PG_FRAME))
2710		return;
2711
2712	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2713	if (dst_frame != (APTDpde & PG_FRAME)) {
2714		APTDpde = dst_frame | PG_RW | PG_V;
2715#if defined(SMP)
2716		/* The page directory is not shared between CPUs */
2717		cpu_invltlb();
2718#else
2719		invltlb();
2720#endif
2721	}
2722 	saved_pde = APTDpde & (PG_FRAME | PG_RW | PG_V);
2723	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2724		pt_entry_t *src_pte, *dst_pte;
2725		vm_page_t dstmpte, srcmpte;
2726		pd_entry_t srcptepaddr;
2727		unsigned ptepindex;
2728
2729		if (addr >= UPT_MIN_ADDRESS)
2730			panic("pmap_copy: invalid to pmap_copy page tables\n");
2731
2732		/*
2733		 * Don't let optional prefaulting of pages make us go
2734		 * way below the low water mark of free pages or way
2735		 * above high water mark of used pv entries.
2736		 */
2737		if (cnt.v_free_count < cnt.v_free_reserved ||
2738		    pv_entry_count > pv_entry_high_water)
2739			break;
2740
2741		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2742		ptepindex = addr >> PDRSHIFT;
2743
2744		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2745		if (srcptepaddr == 0)
2746			continue;
2747
2748		if (srcptepaddr & PG_PS) {
2749			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2750				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2751				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2752			}
2753			continue;
2754		}
2755
2756		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2757		if ((srcmpte == NULL) ||
2758		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2759			continue;
2760
2761		if (pdnxt > end_addr)
2762			pdnxt = end_addr;
2763
2764		src_pte = vtopte(addr);
2765		dst_pte = avtopte(addr);
2766		while (addr < pdnxt) {
2767			pt_entry_t ptetemp;
2768			ptetemp = *src_pte;
2769			/*
2770			 * we only virtual copy managed pages
2771			 */
2772			if ((ptetemp & PG_MANAGED) != 0) {
2773				/*
2774				 * We have to check after allocpte for the
2775				 * pte still being around...  allocpte can
2776				 * block.
2777				 */
2778				dstmpte = pmap_allocpte(dst_pmap, addr);
2779				if ((APTDpde & PG_FRAME) !=
2780				    (saved_pde & PG_FRAME)) {
2781					APTDpde = saved_pde;
2782printf ("IT HAPPENNED!");
2783#if defined(SMP)
2784					cpu_invltlb();
2785#else
2786					invltlb();
2787#endif
2788				}
2789				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2790					/*
2791					 * Clear the modified and
2792					 * accessed (referenced) bits
2793					 * during the copy.
2794					 */
2795					m = PHYS_TO_VM_PAGE(ptetemp);
2796					*dst_pte = ptetemp & ~(PG_M | PG_A);
2797					dst_pmap->pm_stats.resident_count++;
2798					pmap_insert_entry(dst_pmap, addr,
2799						dstmpte, m);
2800	 			} else {
2801					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2802				}
2803				if (dstmpte->hold_count >= srcmpte->hold_count)
2804					break;
2805			}
2806			addr += PAGE_SIZE;
2807			src_pte++;
2808			dst_pte++;
2809		}
2810	}
2811}
2812
2813/*
2814 *	pmap_zero_page zeros the specified hardware page by mapping
2815 *	the page into KVM and using bzero to clear its contents.
2816 */
2817void
2818pmap_zero_page(vm_page_t m)
2819{
2820	vm_offset_t phys = VM_PAGE_TO_PHYS(m);
2821
2822	if (*CMAP2)
2823		panic("pmap_zero_page: CMAP2 busy");
2824
2825	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2826	invltlb_1pg((vm_offset_t)CADDR2);
2827
2828#if defined(I686_CPU)
2829	if (cpu_class == CPUCLASS_686)
2830		i686_pagezero(CADDR2);
2831	else
2832#endif
2833		bzero(CADDR2, PAGE_SIZE);
2834	*CMAP2 = 0;
2835}
2836
2837/*
2838 *	pmap_zero_page_area zeros the specified hardware page by mapping
2839 *	the page into KVM and using bzero to clear its contents.
2840 *
2841 *	off and size may not cover an area beyond a single hardware page.
2842 */
2843void
2844pmap_zero_page_area(vm_page_t m, int off, int size)
2845{
2846	vm_offset_t phys = VM_PAGE_TO_PHYS(m);
2847
2848	if (*CMAP2)
2849		panic("pmap_zero_page: CMAP2 busy");
2850
2851	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2852	invltlb_1pg((vm_offset_t)CADDR2);
2853
2854#if defined(I686_CPU)
2855	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2856		i686_pagezero(CADDR2);
2857	else
2858#endif
2859		bzero((char *)CADDR2 + off, size);
2860	*CMAP2 = 0;
2861}
2862
2863/*
2864 *	pmap_copy_page copies the specified (machine independent)
2865 *	page by mapping the page into virtual memory and using
2866 *	bcopy to copy the page, one machine dependent page at a
2867 *	time.
2868 */
2869void
2870pmap_copy_page(vm_page_t src, vm_page_t dst)
2871{
2872
2873	if (*CMAP1)
2874		panic("pmap_copy_page: CMAP1 busy");
2875	if (*CMAP2)
2876		panic("pmap_copy_page: CMAP2 busy");
2877
2878	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2879	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2880#ifdef I386_CPU
2881	invltlb();
2882#else
2883	invlpg((u_int)CADDR1);
2884	invlpg((u_int)CADDR2);
2885#endif
2886
2887	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2888
2889	*CMAP1 = 0;
2890	*CMAP2 = 0;
2891}
2892
2893
2894/*
2895 *	Routine:	pmap_pageable
2896 *	Function:
2897 *		Make the specified pages (by pmap, offset)
2898 *		pageable (or not) as requested.
2899 *
2900 *		A page which is not pageable may not take
2901 *		a fault; therefore, its page table entry
2902 *		must remain valid for the duration.
2903 *
2904 *		This routine is merely advisory; pmap_enter
2905 *		will specify that these pages are to be wired
2906 *		down (or not) as appropriate.
2907 */
2908void
2909pmap_pageable(pmap, sva, eva, pageable)
2910	pmap_t pmap;
2911	vm_offset_t sva, eva;
2912	boolean_t pageable;
2913{
2914}
2915
2916/*
2917 * Returns true if the pmap's pv is one of the first
2918 * 16 pvs linked to from this page.  This count may
2919 * be changed upwards or downwards in the future; it
2920 * is only necessary that true be returned for a small
2921 * subset of pmaps for proper page aging.
2922 */
2923boolean_t
2924pmap_page_exists_quick(pmap, m)
2925	pmap_t pmap;
2926	vm_page_t m;
2927{
2928	pv_entry_t pv;
2929	int loops = 0;
2930	int s;
2931
2932	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2933		return FALSE;
2934
2935	s = splvm();
2936
2937	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2938		if (pv->pv_pmap == pmap) {
2939			splx(s);
2940			return TRUE;
2941		}
2942		loops++;
2943		if (loops >= 16)
2944			break;
2945	}
2946	splx(s);
2947	return (FALSE);
2948}
2949
2950#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2951/*
2952 * Remove all pages from specified address space
2953 * this aids process exit speeds.  Also, this code
2954 * is special cased for current process only, but
2955 * can have the more generic (and slightly slower)
2956 * mode enabled.  This is much faster than pmap_remove
2957 * in the case of running down an entire address space.
2958 */
2959void
2960pmap_remove_pages(pmap, sva, eva)
2961	pmap_t pmap;
2962	vm_offset_t sva, eva;
2963{
2964	pt_entry_t *pte, tpte;
2965	vm_page_t m;
2966	pv_entry_t pv, npv;
2967	int s;
2968
2969#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2970	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2971		printf("warning: pmap_remove_pages called with non-current pmap\n");
2972		return;
2973	}
2974#endif
2975
2976	s = splvm();
2977	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2978
2979		if (pv->pv_va >= eva || pv->pv_va < sva) {
2980			npv = TAILQ_NEXT(pv, pv_plist);
2981			continue;
2982		}
2983
2984#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2985		pte = vtopte(pv->pv_va);
2986#else
2987		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2988#endif
2989		tpte = *pte;
2990
2991		if (tpte == 0) {
2992			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2993							pte, pv->pv_va);
2994			panic("bad pte");
2995		}
2996
2997/*
2998 * We cannot remove wired pages from a process' mapping at this time
2999 */
3000		if (tpte & PG_W) {
3001			npv = TAILQ_NEXT(pv, pv_plist);
3002			continue;
3003		}
3004
3005		m = PHYS_TO_VM_PAGE(tpte);
3006		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3007		    ("vm_page_t %p phys_addr mismatch %08x %08x",
3008		    m, m->phys_addr, tpte));
3009
3010		KASSERT(m < &vm_page_array[vm_page_array_size],
3011			("pmap_remove_pages: bad tpte %x", tpte));
3012
3013		pv->pv_pmap->pm_stats.resident_count--;
3014
3015		*pte = 0;
3016
3017		/*
3018		 * Update the vm_page_t clean and reference bits.
3019		 */
3020		if (tpte & PG_M) {
3021			vm_page_dirty(m);
3022		}
3023
3024		npv = TAILQ_NEXT(pv, pv_plist);
3025		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3026
3027		m->md.pv_list_count--;
3028		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3029		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3030			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3031		}
3032
3033		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3034		free_pv_entry(pv);
3035	}
3036	splx(s);
3037	pmap_invalidate_all(pmap);
3038}
3039
3040/*
3041 * pmap_testbit tests bits in pte's
3042 * note that the testbit/changebit routines are inline,
3043 * and a lot of things compile-time evaluate.
3044 */
3045static boolean_t
3046pmap_testbit(m, bit)
3047	vm_page_t m;
3048	int bit;
3049{
3050	pv_entry_t pv;
3051	pt_entry_t *pte;
3052	int s;
3053
3054	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3055		return FALSE;
3056
3057	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3058		return FALSE;
3059
3060	s = splvm();
3061
3062	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3063		/*
3064		 * if the bit being tested is the modified bit, then
3065		 * mark clean_map and ptes as never
3066		 * modified.
3067		 */
3068		if (bit & (PG_A|PG_M)) {
3069			if (!pmap_track_modified(pv->pv_va))
3070				continue;
3071		}
3072
3073#if defined(PMAP_DIAGNOSTIC)
3074		if (!pv->pv_pmap) {
3075			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3076			continue;
3077		}
3078#endif
3079		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3080		if (*pte & bit) {
3081			splx(s);
3082			return TRUE;
3083		}
3084	}
3085	splx(s);
3086	return (FALSE);
3087}
3088
3089/*
3090 * this routine is used to modify bits in ptes
3091 */
3092static __inline void
3093pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3094{
3095	register pv_entry_t pv;
3096	register pt_entry_t *pte;
3097	int s;
3098
3099	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3100		return;
3101
3102	s = splvm();
3103
3104	/*
3105	 * Loop over all current mappings setting/clearing as appropos If
3106	 * setting RO do we need to clear the VAC?
3107	 */
3108	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3109		/*
3110		 * don't write protect pager mappings
3111		 */
3112		if (!setem && (bit == PG_RW)) {
3113			if (!pmap_track_modified(pv->pv_va))
3114				continue;
3115		}
3116
3117#if defined(PMAP_DIAGNOSTIC)
3118		if (!pv->pv_pmap) {
3119			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3120			continue;
3121		}
3122#endif
3123
3124		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3125
3126		if (setem) {
3127			*pte |= bit;
3128			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3129		} else {
3130			pt_entry_t pbits = *pte;
3131			if (pbits & bit) {
3132				if (bit == PG_RW) {
3133					if (pbits & PG_M) {
3134						vm_page_dirty(m);
3135					}
3136					*pte = pbits & ~(PG_M|PG_RW);
3137				} else {
3138					*pte = pbits & ~bit;
3139				}
3140				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3141			}
3142		}
3143	}
3144	splx(s);
3145}
3146
3147/*
3148 *      pmap_page_protect:
3149 *
3150 *      Lower the permission for all mappings to a given page.
3151 */
3152void
3153pmap_page_protect(vm_page_t m, vm_prot_t prot)
3154{
3155	if ((prot & VM_PROT_WRITE) == 0) {
3156		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3157			pmap_changebit(m, PG_RW, FALSE);
3158		} else {
3159			pmap_remove_all(m);
3160		}
3161	}
3162}
3163
3164vm_offset_t
3165pmap_phys_address(ppn)
3166	int ppn;
3167{
3168	return (i386_ptob(ppn));
3169}
3170
3171/*
3172 *	pmap_ts_referenced:
3173 *
3174 *	Return a count of reference bits for a page, clearing those bits.
3175 *	It is not necessary for every reference bit to be cleared, but it
3176 *	is necessary that 0 only be returned when there are truly no
3177 *	reference bits set.
3178 *
3179 *	XXX: The exact number of bits to check and clear is a matter that
3180 *	should be tested and standardized at some point in the future for
3181 *	optimal aging of shared pages.
3182 */
3183int
3184pmap_ts_referenced(vm_page_t m)
3185{
3186	register pv_entry_t pv, pvf, pvn;
3187	pt_entry_t *pte;
3188	int s;
3189	int rtval = 0;
3190
3191	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3192		return (rtval);
3193
3194	s = splvm();
3195
3196	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3197
3198		pvf = pv;
3199
3200		do {
3201			pvn = TAILQ_NEXT(pv, pv_list);
3202
3203			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3204
3205			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3206
3207			if (!pmap_track_modified(pv->pv_va))
3208				continue;
3209
3210			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3211
3212			if (pte && (*pte & PG_A)) {
3213				*pte &= ~PG_A;
3214
3215				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3216
3217				rtval++;
3218				if (rtval > 4) {
3219					break;
3220				}
3221			}
3222		} while ((pv = pvn) != NULL && pv != pvf);
3223	}
3224	splx(s);
3225
3226	return (rtval);
3227}
3228
3229/*
3230 *	pmap_is_modified:
3231 *
3232 *	Return whether or not the specified physical page was modified
3233 *	in any physical maps.
3234 */
3235boolean_t
3236pmap_is_modified(vm_page_t m)
3237{
3238	return pmap_testbit(m, PG_M);
3239}
3240
3241/*
3242 *	Clear the modify bits on the specified physical page.
3243 */
3244void
3245pmap_clear_modify(vm_page_t m)
3246{
3247	pmap_changebit(m, PG_M, FALSE);
3248}
3249
3250/*
3251 *	pmap_clear_reference:
3252 *
3253 *	Clear the reference bit on the specified physical page.
3254 */
3255void
3256pmap_clear_reference(vm_page_t m)
3257{
3258	pmap_changebit(m, PG_A, FALSE);
3259}
3260
3261/*
3262 * Miscellaneous support routines follow
3263 */
3264
3265static void
3266i386_protection_init()
3267{
3268	register int *kp, prot;
3269
3270	kp = protection_codes;
3271	for (prot = 0; prot < 8; prot++) {
3272		switch (prot) {
3273		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3274			/*
3275			 * Read access is also 0. There isn't any execute bit,
3276			 * so just make it readable.
3277			 */
3278		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3279		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3280		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3281			*kp++ = 0;
3282			break;
3283		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3284		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3285		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3286		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3287			*kp++ = PG_RW;
3288			break;
3289		}
3290	}
3291}
3292
3293/*
3294 * Map a set of physical memory pages into the kernel virtual
3295 * address space. Return a pointer to where it is mapped. This
3296 * routine is intended to be used for mapping device memory,
3297 * NOT real memory.
3298 */
3299void *
3300pmap_mapdev(pa, size)
3301	vm_offset_t pa;
3302	vm_size_t size;
3303{
3304	vm_offset_t va, tmpva, offset;
3305	pt_entry_t *pte;
3306
3307	offset = pa & PAGE_MASK;
3308	size = roundup(offset + size, PAGE_SIZE);
3309
3310	GIANT_REQUIRED;
3311
3312	va = kmem_alloc_pageable(kernel_map, size);
3313	if (!va)
3314		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3315
3316	pa = pa & PG_FRAME;
3317	for (tmpva = va; size > 0;) {
3318		pte = vtopte(tmpva);
3319		*pte = pa | PG_RW | PG_V | pgeflag;
3320		size -= PAGE_SIZE;
3321		tmpva += PAGE_SIZE;
3322		pa += PAGE_SIZE;
3323	}
3324	invltlb();
3325
3326	return ((void *)(va + offset));
3327}
3328
3329void
3330pmap_unmapdev(va, size)
3331	vm_offset_t va;
3332	vm_size_t size;
3333{
3334	vm_offset_t base, offset;
3335
3336	base = va & PG_FRAME;
3337	offset = va & PAGE_MASK;
3338	size = roundup(offset + size, PAGE_SIZE);
3339	kmem_free(kernel_map, base, size);
3340}
3341
3342/*
3343 * perform the pmap work for mincore
3344 */
3345int
3346pmap_mincore(pmap, addr)
3347	pmap_t pmap;
3348	vm_offset_t addr;
3349{
3350	pt_entry_t *ptep, pte;
3351	vm_page_t m;
3352	int val = 0;
3353
3354	ptep = pmap_pte(pmap, addr);
3355	if (ptep == 0) {
3356		return 0;
3357	}
3358
3359	if ((pte = *ptep) != 0) {
3360		vm_offset_t pa;
3361
3362		val = MINCORE_INCORE;
3363		if ((pte & PG_MANAGED) == 0)
3364			return val;
3365
3366		pa = pte & PG_FRAME;
3367
3368		m = PHYS_TO_VM_PAGE(pa);
3369
3370		/*
3371		 * Modified by us
3372		 */
3373		if (pte & PG_M)
3374			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3375		/*
3376		 * Modified by someone
3377		 */
3378		else if (m->dirty || pmap_is_modified(m))
3379			val |= MINCORE_MODIFIED_OTHER;
3380		/*
3381		 * Referenced by us
3382		 */
3383		if (pte & PG_A)
3384			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3385
3386		/*
3387		 * Referenced by someone
3388		 */
3389		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3390			val |= MINCORE_REFERENCED_OTHER;
3391			vm_page_flag_set(m, PG_REFERENCED);
3392		}
3393	}
3394	return val;
3395}
3396
3397void
3398pmap_activate(struct thread *td)
3399{
3400	struct proc *p = td->td_proc;
3401	pmap_t	pmap;
3402	u_int32_t  cr3;
3403
3404	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3405#if defined(SMP)
3406	pmap->pm_active |= PCPU_GET(cpumask);
3407#else
3408	pmap->pm_active |= 1;
3409#endif
3410#if defined(SWTCH_OPTIM_STATS)
3411	tlb_flush_count++;
3412#endif
3413	cr3 = vtophys(pmap->pm_pdir);
3414	/* XXXKSE this is wrong.
3415	 * pmap_activate is for the current thread on the current cpu
3416	 */
3417	if (p->p_flag & P_KSES) {
3418		/* Make sure all other cr3 entries are updated. */
3419		/* what if they are running?  XXXKSE (maybe abort them) */
3420		FOREACH_THREAD_IN_PROC(p, td) {
3421			td->td_pcb->pcb_cr3 = cr3;
3422		}
3423	} else {
3424		td->td_pcb->pcb_cr3 = cr3;
3425	}
3426	load_cr3(cr3);
3427}
3428
3429vm_offset_t
3430pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3431{
3432
3433	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3434		return addr;
3435	}
3436
3437	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3438	return addr;
3439}
3440
3441
3442#if defined(PMAP_DEBUG)
3443pmap_pid_dump(int pid)
3444{
3445	pmap_t pmap;
3446	struct proc *p;
3447	int npte = 0;
3448	int index;
3449
3450	sx_slock(&allproc_lock);
3451	LIST_FOREACH(p, &allproc, p_list) {
3452		if (p->p_pid != pid)
3453			continue;
3454
3455		if (p->p_vmspace) {
3456			int i,j;
3457			index = 0;
3458			pmap = vmspace_pmap(p->p_vmspace);
3459			for (i = 0; i < NPDEPG; i++) {
3460				pd_entry_t *pde;
3461				pt_entry_t *pte;
3462				vm_offset_t base = i << PDRSHIFT;
3463
3464				pde = &pmap->pm_pdir[i];
3465				if (pde && pmap_pde_v(pde)) {
3466					for (j = 0; j < NPTEPG; j++) {
3467						vm_offset_t va = base + (j << PAGE_SHIFT);
3468						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3469							if (index) {
3470								index = 0;
3471								printf("\n");
3472							}
3473							sx_sunlock(&allproc_lock);
3474							return npte;
3475						}
3476						pte = pmap_pte_quick(pmap, va);
3477						if (pte && pmap_pte_v(pte)) {
3478							pt_entry_t pa;
3479							vm_page_t m;
3480							pa = *pte;
3481							m = PHYS_TO_VM_PAGE(pa);
3482							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3483								va, pa, m->hold_count, m->wire_count, m->flags);
3484							npte++;
3485							index++;
3486							if (index >= 2) {
3487								index = 0;
3488								printf("\n");
3489							} else {
3490								printf(" ");
3491							}
3492						}
3493					}
3494				}
3495			}
3496		}
3497	}
3498	sx_sunlock(&allproc_lock);
3499	return npte;
3500}
3501#endif
3502
3503#if defined(DEBUG)
3504
3505static void	pads(pmap_t pm);
3506void		pmap_pvdump(vm_offset_t pa);
3507
3508/* print address space of pmap*/
3509static void
3510pads(pm)
3511	pmap_t pm;
3512{
3513	int i, j;
3514	vm_offset_t va;
3515	pt_entry_t *ptep;
3516
3517	if (pm == kernel_pmap)
3518		return;
3519	for (i = 0; i < NPDEPG; i++)
3520		if (pm->pm_pdir[i])
3521			for (j = 0; j < NPTEPG; j++) {
3522				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3523				if (pm == kernel_pmap && va < KERNBASE)
3524					continue;
3525				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3526					continue;
3527				ptep = pmap_pte_quick(pm, va);
3528				if (pmap_pte_v(ptep))
3529					printf("%x:%x ", va, *ptep);
3530			};
3531
3532}
3533
3534void
3535pmap_pvdump(pa)
3536	vm_offset_t pa;
3537{
3538	pv_entry_t pv;
3539	vm_page_t m;
3540
3541	printf("pa %x", pa);
3542	m = PHYS_TO_VM_PAGE(pa);
3543	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3544		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3545		pads(pv->pv_pmap);
3546	}
3547	printf(" ");
3548}
3549#endif
3550