pmap.c revision 99072
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 99072 2002-06-29 17:26:22Z julian $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_kstack_pages.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mman.h>
81#include <sys/msgbuf.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/sx.h>
85#include <sys/user.h>
86#include <sys/vmmeter.h>
87#include <sys/sysctl.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/uma.h>
99
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103#if defined(SMP) || defined(APIC_IO)
104#include <machine/smp.h>
105#include <machine/apic.h>
106#include <machine/segments.h>
107#include <machine/tss.h>
108#endif /* SMP || APIC_IO */
109
110#define PMAP_KEEP_PDIRS
111#ifndef PMAP_SHPGPERPROC
112#define PMAP_SHPGPERPROC 200
113#endif
114
115#if defined(DIAGNOSTIC)
116#define PMAP_DIAGNOSTIC
117#endif
118
119#define MINPV 2048
120
121#if !defined(PMAP_DIAGNOSTIC)
122#define PMAP_INLINE __inline
123#else
124#define PMAP_INLINE
125#endif
126
127/*
128 * Get PDEs and PTEs for user/kernel address space
129 */
130#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
132
133#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
134#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
135#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
136#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
137#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
138
139#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
140#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
141
142/*
143 * Given a map and a machine independent protection code,
144 * convert to a vax protection code.
145 */
146#define pte_prot(m, p)	(protection_codes[p])
147static int protection_codes[8];
148
149struct pmap kernel_pmap_store;
150LIST_HEAD(pmaplist, pmap);
151struct pmaplist allpmaps;
152
153vm_offset_t avail_start;	/* PA of first available physical page */
154vm_offset_t avail_end;		/* PA of last available physical page */
155vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
156vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
157static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
158static int pgeflag;		/* PG_G or-in */
159static int pseflag;		/* PG_PS or-in */
160
161static vm_object_t kptobj;
162
163static int nkpt;
164vm_offset_t kernel_vm_end;
165
166/*
167 * Data for the pv entry allocation mechanism
168 */
169static uma_zone_t pvzone;
170static struct vm_object pvzone_obj;
171static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
172static int pmap_pagedaemon_waken = 0;
173
174/*
175 * All those kernel PT submaps that BSD is so fond of
176 */
177pt_entry_t *CMAP1 = 0;
178static pt_entry_t *CMAP2, *ptmmap;
179caddr_t CADDR1 = 0, ptvmmap = 0;
180static caddr_t CADDR2;
181static pt_entry_t *msgbufmap;
182struct msgbuf *msgbufp = 0;
183
184/*
185 * Crashdump maps.
186 */
187static pt_entry_t *pt_crashdumpmap;
188static caddr_t crashdumpmap;
189
190#ifdef SMP
191extern pt_entry_t *SMPpt;
192#endif
193static pt_entry_t *PMAP1 = 0;
194static pt_entry_t *PADDR1 = 0;
195
196static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
197static pt_entry_t *get_ptbase(pmap_t pmap);
198static pv_entry_t get_pv_entry(void);
199static void	i386_protection_init(void);
200static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
201
202static void	pmap_remove_all(vm_page_t m);
203static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
204				      vm_page_t m, vm_page_t mpte);
205static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
206static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
207static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
208					vm_offset_t va);
209static boolean_t pmap_testbit(vm_page_t m, int bit);
210static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
211		vm_page_t mpte, vm_page_t m);
212
213static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
214
215static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
216static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
217static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
218static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
219static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
220static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
221static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
222
223static pd_entry_t pdir4mb;
224
225/*
226 *	Routine:	pmap_pte
227 *	Function:
228 *		Extract the page table entry associated
229 *		with the given map/virtual_address pair.
230 */
231
232PMAP_INLINE pt_entry_t *
233pmap_pte(pmap, va)
234	register pmap_t pmap;
235	vm_offset_t va;
236{
237	pd_entry_t *pdeaddr;
238
239	if (pmap) {
240		pdeaddr = pmap_pde(pmap, va);
241		if (*pdeaddr & PG_PS)
242			return pdeaddr;
243		if (*pdeaddr) {
244			return get_ptbase(pmap) + i386_btop(va);
245		}
246	}
247	return (0);
248}
249
250/*
251 * Move the kernel virtual free pointer to the next
252 * 4MB.  This is used to help improve performance
253 * by using a large (4MB) page for much of the kernel
254 * (.text, .data, .bss)
255 */
256static vm_offset_t
257pmap_kmem_choose(vm_offset_t addr)
258{
259	vm_offset_t newaddr = addr;
260#ifndef DISABLE_PSE
261	if (cpu_feature & CPUID_PSE) {
262		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
263	}
264#endif
265	return newaddr;
266}
267
268/*
269 *	Bootstrap the system enough to run with virtual memory.
270 *
271 *	On the i386 this is called after mapping has already been enabled
272 *	and just syncs the pmap module with what has already been done.
273 *	[We can't call it easily with mapping off since the kernel is not
274 *	mapped with PA == VA, hence we would have to relocate every address
275 *	from the linked base (virtual) address "KERNBASE" to the actual
276 *	(physical) address starting relative to 0]
277 */
278void
279pmap_bootstrap(firstaddr, loadaddr)
280	vm_offset_t firstaddr;
281	vm_offset_t loadaddr;
282{
283	vm_offset_t va;
284	pt_entry_t *pte;
285	int i;
286
287	avail_start = firstaddr;
288
289	/*
290	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
291	 * large. It should instead be correctly calculated in locore.s and
292	 * not based on 'first' (which is a physical address, not a virtual
293	 * address, for the start of unused physical memory). The kernel
294	 * page tables are NOT double mapped and thus should not be included
295	 * in this calculation.
296	 */
297	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
298	virtual_avail = pmap_kmem_choose(virtual_avail);
299
300	virtual_end = VM_MAX_KERNEL_ADDRESS;
301
302	/*
303	 * Initialize protection array.
304	 */
305	i386_protection_init();
306
307	/*
308	 * Initialize the kernel pmap (which is statically allocated).
309	 */
310	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
311	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
312	TAILQ_INIT(&kernel_pmap->pm_pvlist);
313	LIST_INIT(&allpmaps);
314	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
315	nkpt = NKPT;
316
317	/*
318	 * Reserve some special page table entries/VA space for temporary
319	 * mapping of pages.
320	 */
321#define	SYSMAP(c, p, v, n)	\
322	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
323
324	va = virtual_avail;
325	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
326
327	/*
328	 * CMAP1/CMAP2 are used for zeroing and copying pages.
329	 */
330	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
331	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
332
333	/*
334	 * Crashdump maps.
335	 */
336	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
337
338	/*
339	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
340	 * XXX ptmmap is not used.
341	 */
342	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
343
344	/*
345	 * msgbufp is used to map the system message buffer.
346	 * XXX msgbufmap is not used.
347	 */
348	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
349	       atop(round_page(MSGBUF_SIZE)))
350
351	/*
352	 * ptemap is used for pmap_pte_quick
353	 */
354	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
355
356	virtual_avail = va;
357
358	*CMAP1 = *CMAP2 = 0;
359	for (i = 0; i < NKPT; i++)
360		PTD[i] = 0;
361
362	pgeflag = 0;
363#if !defined(SMP)			/* XXX - see also mp_machdep.c */
364	if (cpu_feature & CPUID_PGE) {
365		pgeflag = PG_G;
366	}
367#endif
368
369/*
370 * Initialize the 4MB page size flag
371 */
372	pseflag = 0;
373/*
374 * The 4MB page version of the initial
375 * kernel page mapping.
376 */
377	pdir4mb = 0;
378
379#if !defined(DISABLE_PSE)
380	if (cpu_feature & CPUID_PSE) {
381		pd_entry_t ptditmp;
382		/*
383		 * Note that we have enabled PSE mode
384		 */
385		pseflag = PG_PS;
386		ptditmp = *(PTmap + i386_btop(KERNBASE));
387		ptditmp &= ~(NBPDR - 1);
388		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
389		pdir4mb = ptditmp;
390
391#if !defined(SMP)
392		/*
393		 * Enable the PSE mode.
394		 */
395		load_cr4(rcr4() | CR4_PSE);
396
397		/*
398		 * We can do the mapping here for the single processor
399		 * case.  We simply ignore the old page table page from
400		 * now on.
401		 */
402		/*
403		 * For SMP, we still need 4K pages to bootstrap APs,
404		 * PSE will be enabled as soon as all APs are up.
405		 */
406		PTD[KPTDI] = (pd_entry_t) ptditmp;
407		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
408		invltlb();
409#endif
410	}
411#endif
412
413#ifdef SMP
414	if (cpu_apic_address == 0)
415		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
416
417	/* local apic is mapped on last page */
418	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
419	    (cpu_apic_address & PG_FRAME));
420#endif
421
422	invltlb();
423}
424
425#ifdef SMP
426/*
427 * Set 4mb pdir for mp startup
428 */
429void
430pmap_set_opt(void)
431{
432	if (pseflag && (cpu_feature & CPUID_PSE)) {
433		load_cr4(rcr4() | CR4_PSE);
434		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
435			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
436			cpu_invltlb();
437		}
438	}
439}
440#endif
441
442void *
443pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
444{
445	*flags = UMA_SLAB_PRIV;
446	return (void *)kmem_alloc(kernel_map, bytes);
447}
448
449/*
450 *	Initialize the pmap module.
451 *	Called by vm_init, to initialize any structures that the pmap
452 *	system needs to map virtual memory.
453 *	pmap_init has been enhanced to support in a fairly consistant
454 *	way, discontiguous physical memory.
455 */
456void
457pmap_init(phys_start, phys_end)
458	vm_offset_t phys_start, phys_end;
459{
460	int i;
461	int initial_pvs;
462
463	/*
464	 * object for kernel page table pages
465	 */
466	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
467
468	/*
469	 * Allocate memory for random pmap data structures.  Includes the
470	 * pv_head_table.
471	 */
472
473	for(i = 0; i < vm_page_array_size; i++) {
474		vm_page_t m;
475
476		m = &vm_page_array[i];
477		TAILQ_INIT(&m->md.pv_list);
478		m->md.pv_list_count = 0;
479	}
480
481	/*
482	 * init the pv free list
483	 */
484	initial_pvs = vm_page_array_size;
485	if (initial_pvs < MINPV)
486		initial_pvs = MINPV;
487	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
488	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
489	uma_zone_set_allocf(pvzone, pmap_allocf);
490	uma_prealloc(pvzone, initial_pvs);
491
492	/*
493	 * Now it is safe to enable pv_table recording.
494	 */
495	pmap_initialized = TRUE;
496}
497
498/*
499 * Initialize the address space (zone) for the pv_entries.  Set a
500 * high water mark so that the system can recover from excessive
501 * numbers of pv entries.
502 */
503void
504pmap_init2()
505{
506	int shpgperproc = PMAP_SHPGPERPROC;
507
508	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
509	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
510	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
511	pv_entry_high_water = 9 * (pv_entry_max / 10);
512	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
513}
514
515
516/***************************************************
517 * Low level helper routines.....
518 ***************************************************/
519
520#if defined(PMAP_DIAGNOSTIC)
521
522/*
523 * This code checks for non-writeable/modified pages.
524 * This should be an invalid condition.
525 */
526static int
527pmap_nw_modified(pt_entry_t ptea)
528{
529	int pte;
530
531	pte = (int) ptea;
532
533	if ((pte & (PG_M|PG_RW)) == PG_M)
534		return 1;
535	else
536		return 0;
537}
538#endif
539
540
541/*
542 * this routine defines the region(s) of memory that should
543 * not be tested for the modified bit.
544 */
545static PMAP_INLINE int
546pmap_track_modified(vm_offset_t va)
547{
548	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
549		return 1;
550	else
551		return 0;
552}
553
554static PMAP_INLINE void
555invltlb_1pg(vm_offset_t va)
556{
557#ifdef I386_CPU
558	invltlb();
559#else
560	invlpg(va);
561#endif
562}
563
564static __inline void
565pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
566{
567#if defined(SMP)
568	if (pmap->pm_active & PCPU_GET(cpumask))
569		cpu_invlpg((void *)va);
570	if (pmap->pm_active & PCPU_GET(other_cpus))
571		smp_invltlb();
572#else
573	if (pmap->pm_active)
574		invltlb_1pg(va);
575#endif
576}
577
578static __inline void
579pmap_invalidate_all(pmap_t pmap)
580{
581#if defined(SMP)
582	if (pmap->pm_active & PCPU_GET(cpumask))
583		cpu_invltlb();
584	if (pmap->pm_active & PCPU_GET(other_cpus))
585		smp_invltlb();
586#else
587	if (pmap->pm_active)
588		invltlb();
589#endif
590}
591
592/*
593 * Return an address which is the base of the Virtual mapping of
594 * all the PTEs for the given pmap. Note this doesn't say that
595 * all the PTEs will be present or that the pages there are valid.
596 * The PTEs are made available by the recursive mapping trick.
597 * It will map in the alternate PTE space if needed.
598 */
599static pt_entry_t *
600get_ptbase(pmap)
601	pmap_t pmap;
602{
603	pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
604
605	/* are we current address space or kernel? */
606	if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
607		return PTmap;
608	/* otherwise, we are alternate address space */
609	if (frame != (APTDpde & PG_FRAME)) {
610		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
611#if defined(SMP)
612		/* The page directory is not shared between CPUs */
613		cpu_invltlb();
614#else
615		invltlb();
616#endif
617	}
618	return APTmap;
619}
620
621/*
622 * Super fast pmap_pte routine best used when scanning
623 * the pv lists.  This eliminates many coarse-grained
624 * invltlb calls.  Note that many of the pv list
625 * scans are across different pmaps.  It is very wasteful
626 * to do an entire invltlb for checking a single mapping.
627 */
628
629static pt_entry_t *
630pmap_pte_quick(pmap, va)
631	register pmap_t pmap;
632	vm_offset_t va;
633{
634	pd_entry_t pde, newpf;
635	pde = pmap->pm_pdir[va >> PDRSHIFT];
636	if (pde != 0) {
637		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
638		unsigned index = i386_btop(va);
639		/* are we current address space or kernel? */
640		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
641			return PTmap + index;
642		newpf = pde & PG_FRAME;
643		if (((*PMAP1) & PG_FRAME) != newpf) {
644			*PMAP1 = newpf | PG_RW | PG_V;
645			invltlb_1pg((vm_offset_t) PADDR1);
646		}
647		return PADDR1 + (index & (NPTEPG - 1));
648	}
649	return (0);
650}
651
652/*
653 *	Routine:	pmap_extract
654 *	Function:
655 *		Extract the physical page address associated
656 *		with the given map/virtual_address pair.
657 */
658vm_offset_t
659pmap_extract(pmap, va)
660	register pmap_t pmap;
661	vm_offset_t va;
662{
663	vm_offset_t rtval;	/* XXX FIXME */
664	vm_offset_t pdirindex;
665
666	if (pmap == 0)
667		return 0;
668	pdirindex = va >> PDRSHIFT;
669	rtval = pmap->pm_pdir[pdirindex];
670	if (rtval != 0) {
671		pt_entry_t *pte;
672		if ((rtval & PG_PS) != 0) {
673			rtval &= ~(NBPDR - 1);
674			rtval |= va & (NBPDR - 1);
675			return rtval;
676		}
677		pte = get_ptbase(pmap) + i386_btop(va);
678		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
679		return rtval;
680	}
681	return 0;
682
683}
684
685/***************************************************
686 * Low level mapping routines.....
687 ***************************************************/
688
689/*
690 * add a wired page to the kva
691 * note that in order for the mapping to take effect -- you
692 * should do a invltlb after doing the pmap_kenter...
693 */
694PMAP_INLINE void
695pmap_kenter(vm_offset_t va, vm_offset_t pa)
696{
697	pt_entry_t *pte;
698	pt_entry_t npte, opte;
699
700	npte = pa | PG_RW | PG_V | pgeflag;
701	pte = vtopte(va);
702	opte = *pte;
703	*pte = npte;
704	invltlb_1pg(va);
705}
706
707/*
708 * remove a page from the kernel pagetables
709 */
710PMAP_INLINE void
711pmap_kremove(vm_offset_t va)
712{
713	register pt_entry_t *pte;
714
715	pte = vtopte(va);
716	*pte = 0;
717	invltlb_1pg(va);
718}
719
720/*
721 *	Used to map a range of physical addresses into kernel
722 *	virtual address space.
723 *
724 *	The value passed in '*virt' is a suggested virtual address for
725 *	the mapping. Architectures which can support a direct-mapped
726 *	physical to virtual region can return the appropriate address
727 *	within that region, leaving '*virt' unchanged. Other
728 *	architectures should map the pages starting at '*virt' and
729 *	update '*virt' with the first usable address after the mapped
730 *	region.
731 */
732vm_offset_t
733pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
734{
735	vm_offset_t sva = *virt;
736	vm_offset_t va = sva;
737	while (start < end) {
738		pmap_kenter(va, start);
739		va += PAGE_SIZE;
740		start += PAGE_SIZE;
741	}
742	*virt = va;
743	return (sva);
744}
745
746
747/*
748 * Add a list of wired pages to the kva
749 * this routine is only used for temporary
750 * kernel mappings that do not need to have
751 * page modification or references recorded.
752 * Note that old mappings are simply written
753 * over.  The page *must* be wired.
754 */
755void
756pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
757{
758	vm_offset_t end_va;
759
760	end_va = va + count * PAGE_SIZE;
761
762	while (va < end_va) {
763		pt_entry_t *pte;
764
765		pte = vtopte(va);
766		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
767#ifdef SMP
768		cpu_invlpg((void *)va);
769#else
770		invltlb_1pg(va);
771#endif
772		va += PAGE_SIZE;
773		m++;
774	}
775#ifdef SMP
776	smp_invltlb();
777#endif
778}
779
780/*
781 * this routine jerks page mappings from the
782 * kernel -- it is meant only for temporary mappings.
783 */
784void
785pmap_qremove(vm_offset_t va, int count)
786{
787	vm_offset_t end_va;
788
789	end_va = va + count*PAGE_SIZE;
790
791	while (va < end_va) {
792		pt_entry_t *pte;
793
794		pte = vtopte(va);
795		*pte = 0;
796#ifdef SMP
797		cpu_invlpg((void *)va);
798#else
799		invltlb_1pg(va);
800#endif
801		va += PAGE_SIZE;
802	}
803#ifdef SMP
804	smp_invltlb();
805#endif
806}
807
808static vm_page_t
809pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
810{
811	vm_page_t m;
812retry:
813	m = vm_page_lookup(object, pindex);
814	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
815		goto retry;
816	return m;
817}
818
819/*
820 * Create the Uarea stack for a new process.
821 * This routine directly affects the fork perf for a process.
822 */
823void
824pmap_new_proc(struct proc *p)
825{
826#ifdef I386_CPU
827	int updateneeded = 0;
828#endif
829	int i;
830	vm_object_t upobj;
831	vm_offset_t up;
832	vm_page_t m;
833	pt_entry_t *ptek, oldpte;
834
835	/*
836	 * allocate object for the upages
837	 */
838	upobj = p->p_upages_obj;
839	if (upobj == NULL) {
840		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
841		p->p_upages_obj = upobj;
842	}
843
844	/* get a kernel virtual address for the U area for this thread */
845	up = (vm_offset_t)p->p_uarea;
846	if (up == 0) {
847		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
848		if (up == 0)
849			panic("pmap_new_proc: upage allocation failed");
850		p->p_uarea = (struct user *)up;
851	}
852
853	ptek = vtopte(up);
854
855	for (i = 0; i < UAREA_PAGES; i++) {
856		/*
857		 * Get a kernel stack page
858		 */
859		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
860
861		/*
862		 * Wire the page
863		 */
864		m->wire_count++;
865		cnt.v_wire_count++;
866
867		oldpte = *(ptek + i);
868		/*
869		 * Enter the page into the kernel address space.
870		 */
871		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
872		if (oldpte) {
873#ifdef I386_CPU
874			updateneeded = 1;
875#else
876			invlpg(up + i * PAGE_SIZE);
877#endif
878		}
879
880		vm_page_wakeup(m);
881		vm_page_flag_clear(m, PG_ZERO);
882		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
883		m->valid = VM_PAGE_BITS_ALL;
884	}
885#ifdef I386_CPU
886	if (updateneeded)
887		invltlb();
888#endif
889}
890
891/*
892 * Dispose the U-Area for a process that has exited.
893 * This routine directly impacts the exit perf of a process.
894 */
895void
896pmap_dispose_proc(p)
897	struct proc *p;
898{
899	int i;
900	vm_object_t upobj;
901	vm_offset_t up;
902	vm_page_t m;
903	pt_entry_t *ptek, oldpte;
904
905	upobj = p->p_upages_obj;
906	up = (vm_offset_t)p->p_uarea;
907	ptek = vtopte(up);
908	for (i = 0; i < UAREA_PAGES; i++) {
909		m = vm_page_lookup(upobj, i);
910		if (m == NULL)
911			panic("pmap_dispose_proc: upage already missing?");
912		vm_page_busy(m);
913		oldpte = *(ptek + i);
914		*(ptek + i) = 0;
915#ifndef I386_CPU
916		invlpg(up + i * PAGE_SIZE);
917#endif
918		vm_page_unwire(m, 0);
919		vm_page_free(m);
920	}
921#ifdef I386_CPU
922	invltlb();
923#endif
924
925	/*
926	 * If the process got swapped out some of its UPAGES might have gotten
927	 * swapped.  Just get rid of the object to clean up the swap use
928	 * proactively.  NOTE! might block waiting for paging I/O to complete.
929	 */
930	if (upobj->type == OBJT_SWAP) {
931		p->p_upages_obj = NULL;
932		vm_object_deallocate(upobj);
933	}
934}
935
936/*
937 * Allow the U_AREA for a process to be prejudicially paged out.
938 */
939void
940pmap_swapout_proc(p)
941	struct proc *p;
942{
943	int i;
944	vm_object_t upobj;
945	vm_offset_t up;
946	vm_page_t m;
947
948	upobj = p->p_upages_obj;
949	up = (vm_offset_t)p->p_uarea;
950	for (i = 0; i < UAREA_PAGES; i++) {
951		m = vm_page_lookup(upobj, i);
952		if (m == NULL)
953			panic("pmap_swapout_proc: upage already missing?");
954		vm_page_dirty(m);
955		vm_page_unwire(m, 0);
956		pmap_kremove(up + i * PAGE_SIZE);
957	}
958}
959
960/*
961 * Bring the U-Area for a specified process back in.
962 */
963void
964pmap_swapin_proc(p)
965	struct proc *p;
966{
967	int i, rv;
968	vm_object_t upobj;
969	vm_offset_t up;
970	vm_page_t m;
971
972	upobj = p->p_upages_obj;
973	up = (vm_offset_t)p->p_uarea;
974	for (i = 0; i < UAREA_PAGES; i++) {
975		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
976		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
977		if (m->valid != VM_PAGE_BITS_ALL) {
978			rv = vm_pager_get_pages(upobj, &m, 1, 0);
979			if (rv != VM_PAGER_OK)
980				panic("pmap_swapin_proc: cannot get upage for proc: %d\n", p->p_pid);
981			m = vm_page_lookup(upobj, i);
982			m->valid = VM_PAGE_BITS_ALL;
983		}
984		vm_page_wire(m);
985		vm_page_wakeup(m);
986		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
987	}
988}
989
990/*
991 * Create the kernel stack (including pcb for i386) for a new thread.
992 * This routine directly affects the fork perf for a process and
993 * create performance for a thread.
994 */
995void
996pmap_new_thread(struct thread *td)
997{
998#ifdef I386_CPU
999	int updateneeded = 0;
1000#endif
1001	int i;
1002	vm_object_t ksobj;
1003	vm_page_t m;
1004	vm_offset_t ks;
1005	pt_entry_t *ptek, oldpte;
1006
1007	/*
1008	 * allocate object for the kstack
1009	 */
1010	ksobj = td->td_kstack_obj;
1011	if (ksobj == NULL) {
1012		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1013		td->td_kstack_obj = ksobj;
1014	}
1015
1016#ifdef KSTACK_GUARD
1017	/* get a kernel virtual address for the kstack for this thread */
1018	ks = td->td_kstack;
1019	if (ks == 0) {
1020		ks = kmem_alloc_nofault(kernel_map,
1021		    (KSTACK_PAGES + 1) * PAGE_SIZE);
1022		if (ks == 0)
1023			panic("pmap_new_thread: kstack allocation failed");
1024		ks += PAGE_SIZE;
1025		td->td_kstack = ks;
1026	}
1027
1028	ptek = vtopte(ks - PAGE_SIZE);
1029	oldpte = *ptek;
1030	*ptek = 0;
1031	if (oldpte) {
1032#ifdef I386_CPU
1033		updateneeded = 1;
1034#else
1035		invlpg(ks - PAGE_SIZE);
1036#endif
1037	}
1038	ptek++;
1039#else
1040	/* get a kernel virtual address for the kstack for this thread */
1041	ks = td->td_kstack;
1042	if (ks == 0) {
1043		ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
1044		if (ks == 0)
1045			panic("pmap_new_thread: kstack allocation failed");
1046		td->td_kstack = ks;
1047	}
1048	ptek = vtopte(ks);
1049#endif
1050	for (i = 0; i < KSTACK_PAGES; i++) {
1051		/*
1052		 * Get a kernel stack page
1053		 */
1054		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1055
1056		/*
1057		 * Wire the page
1058		 */
1059		m->wire_count++;
1060		cnt.v_wire_count++;
1061
1062		oldpte = *(ptek + i);
1063		/*
1064		 * Enter the page into the kernel address space.
1065		 */
1066		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1067		if (oldpte) {
1068#ifdef I386_CPU
1069			updateneeded = 1;
1070#else
1071			invlpg(ks + i * PAGE_SIZE);
1072#endif
1073		}
1074
1075		vm_page_wakeup(m);
1076		vm_page_flag_clear(m, PG_ZERO);
1077		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1078		m->valid = VM_PAGE_BITS_ALL;
1079	}
1080#ifdef I386_CPU
1081	if (updateneeded)
1082		invltlb();
1083#endif
1084}
1085
1086/*
1087 * Dispose the kernel stack for a thread that has exited.
1088 * This routine directly impacts the exit perf of a process and thread.
1089 */
1090void
1091pmap_dispose_thread(td)
1092	struct thread *td;
1093{
1094	int i;
1095	vm_object_t ksobj;
1096	vm_offset_t ks;
1097	vm_page_t m;
1098	pt_entry_t *ptek, oldpte;
1099
1100	ksobj = td->td_kstack_obj;
1101	ks = td->td_kstack;
1102	ptek = vtopte(ks);
1103#ifdef KSTACK_GUARD
1104	ks -= PAGE_SIZE;
1105	for (i = 1; i < (KSTACK_PAGES + 1); i++) {
1106#else
1107	for (i = 0; i < KSTACK_PAGES; i++) {
1108#endif
1109		m = vm_page_lookup(ksobj, i);
1110		if (m == NULL)
1111			panic("pmap_dispose_thread: kstack already missing?");
1112		vm_page_busy(m);
1113		oldpte = *(ptek + i);
1114		*(ptek + i) = 0;
1115#ifndef I386_CPU
1116		invlpg(ks + i * PAGE_SIZE);
1117#endif
1118		vm_page_unwire(m, 0);
1119		vm_page_free(m);
1120	}
1121#ifdef I386_CPU
1122	invltlb();
1123#endif
1124	/*
1125	 * Free the space that this stack was mapped to in the kernel
1126	 * address map.
1127	 */
1128#ifdef KSTACK_GUARD
1129	kmem_free(kernel_map, ks, (KSTACK_PAGES + 1) * PAGE_SIZE);
1130#else
1131	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
1132#endif
1133	vm_object_deallocate(ksobj);
1134	td->td_kstack_obj = NULL; /* play it safe */
1135}
1136
1137/*
1138 * Allow the Kernel stack for a thread to be prejudicially paged out.
1139 */
1140void
1141pmap_swapout_thread(td)
1142	struct thread *td;
1143{
1144	int i;
1145	vm_object_t ksobj;
1146	vm_offset_t ks;
1147	vm_page_t m;
1148
1149	ksobj = td->td_kstack_obj;
1150	ks = td->td_kstack;
1151	for (i = 0; i < KSTACK_PAGES; i++) {
1152		m = vm_page_lookup(ksobj, i);
1153		if (m == NULL)
1154			panic("pmap_swapout_thread: kstack already missing?");
1155		vm_page_dirty(m);
1156		vm_page_unwire(m, 0);
1157		pmap_kremove(ks + i * PAGE_SIZE);
1158	}
1159}
1160
1161/*
1162 * Bring the kernel stack for a specified thread back in.
1163 */
1164void
1165pmap_swapin_thread(td)
1166	struct thread *td;
1167{
1168	int i, rv;
1169	vm_object_t ksobj;
1170	vm_offset_t ks;
1171	vm_page_t m;
1172
1173	ksobj = td->td_kstack_obj;
1174	ks = td->td_kstack;
1175	for (i = 0; i < KSTACK_PAGES; i++) {
1176		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1177		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1178		if (m->valid != VM_PAGE_BITS_ALL) {
1179			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1180			if (rv != VM_PAGER_OK)
1181				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1182			m = vm_page_lookup(ksobj, i);
1183			m->valid = VM_PAGE_BITS_ALL;
1184		}
1185		vm_page_wire(m);
1186		vm_page_wakeup(m);
1187		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1188	}
1189}
1190
1191/***************************************************
1192 * Page table page management routines.....
1193 ***************************************************/
1194
1195/*
1196 * This routine unholds page table pages, and if the hold count
1197 * drops to zero, then it decrements the wire count.
1198 */
1199static int
1200_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1201{
1202
1203	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1204		;
1205
1206	if (m->hold_count == 0) {
1207		vm_offset_t pteva;
1208		/*
1209		 * unmap the page table page
1210		 */
1211		pmap->pm_pdir[m->pindex] = 0;
1212		--pmap->pm_stats.resident_count;
1213		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1214		    (PTDpde & PG_FRAME)) {
1215			/*
1216			 * Do a invltlb to make the invalidated mapping
1217			 * take effect immediately.
1218			 */
1219			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1220			pmap_invalidate_page(pmap, pteva);
1221		}
1222
1223		if (pmap->pm_ptphint == m)
1224			pmap->pm_ptphint = NULL;
1225
1226		/*
1227		 * If the page is finally unwired, simply free it.
1228		 */
1229		--m->wire_count;
1230		if (m->wire_count == 0) {
1231
1232			vm_page_flash(m);
1233			vm_page_busy(m);
1234			vm_page_free_zero(m);
1235			--cnt.v_wire_count;
1236		}
1237		return 1;
1238	}
1239	return 0;
1240}
1241
1242static PMAP_INLINE int
1243pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1244{
1245	vm_page_unhold(m);
1246	if (m->hold_count == 0)
1247		return _pmap_unwire_pte_hold(pmap, m);
1248	else
1249		return 0;
1250}
1251
1252/*
1253 * After removing a page table entry, this routine is used to
1254 * conditionally free the page, and manage the hold/wire counts.
1255 */
1256static int
1257pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1258{
1259	unsigned ptepindex;
1260	if (va >= VM_MAXUSER_ADDRESS)
1261		return 0;
1262
1263	if (mpte == NULL) {
1264		ptepindex = (va >> PDRSHIFT);
1265		if (pmap->pm_ptphint &&
1266			(pmap->pm_ptphint->pindex == ptepindex)) {
1267			mpte = pmap->pm_ptphint;
1268		} else {
1269			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1270			pmap->pm_ptphint = mpte;
1271		}
1272	}
1273
1274	return pmap_unwire_pte_hold(pmap, mpte);
1275}
1276
1277void
1278pmap_pinit0(pmap)
1279	struct pmap *pmap;
1280{
1281	pmap->pm_pdir =
1282		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1283	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1284	pmap->pm_ptphint = NULL;
1285	pmap->pm_active = 0;
1286	TAILQ_INIT(&pmap->pm_pvlist);
1287	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1288	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1289}
1290
1291/*
1292 * Initialize a preallocated and zeroed pmap structure,
1293 * such as one in a vmspace structure.
1294 */
1295void
1296pmap_pinit(pmap)
1297	register struct pmap *pmap;
1298{
1299	vm_page_t ptdpg;
1300
1301	/*
1302	 * No need to allocate page table space yet but we do need a valid
1303	 * page directory table.
1304	 */
1305	if (pmap->pm_pdir == NULL)
1306		pmap->pm_pdir =
1307			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1308
1309	/*
1310	 * allocate object for the ptes
1311	 */
1312	if (pmap->pm_pteobj == NULL)
1313		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1314
1315	/*
1316	 * allocate the page directory page
1317	 */
1318	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1319			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1320
1321	ptdpg->wire_count = 1;
1322	++cnt.v_wire_count;
1323
1324
1325	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1326	ptdpg->valid = VM_PAGE_BITS_ALL;
1327
1328	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1329	if ((ptdpg->flags & PG_ZERO) == 0)
1330		bzero(pmap->pm_pdir, PAGE_SIZE);
1331
1332	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1333	/* Wire in kernel global address entries. */
1334	/* XXX copies current process, does not fill in MPPTDI */
1335	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1336#ifdef SMP
1337	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1338#endif
1339
1340	/* install self-referential address mapping entry */
1341	pmap->pm_pdir[PTDPTDI] =
1342		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1343
1344	pmap->pm_active = 0;
1345	pmap->pm_ptphint = NULL;
1346	TAILQ_INIT(&pmap->pm_pvlist);
1347	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1348}
1349
1350/*
1351 * Wire in kernel global address entries.  To avoid a race condition
1352 * between pmap initialization and pmap_growkernel, this procedure
1353 * should be called after the vmspace is attached to the process
1354 * but before this pmap is activated.
1355 */
1356void
1357pmap_pinit2(pmap)
1358	struct pmap *pmap;
1359{
1360	/* XXX: Remove this stub when no longer called */
1361}
1362
1363static int
1364pmap_release_free_page(pmap_t pmap, vm_page_t p)
1365{
1366	pd_entry_t *pde = pmap->pm_pdir;
1367	/*
1368	 * This code optimizes the case of freeing non-busy
1369	 * page-table pages.  Those pages are zero now, and
1370	 * might as well be placed directly into the zero queue.
1371	 */
1372	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1373		return 0;
1374
1375	vm_page_busy(p);
1376
1377	/*
1378	 * Remove the page table page from the processes address space.
1379	 */
1380	pde[p->pindex] = 0;
1381	pmap->pm_stats.resident_count--;
1382
1383	if (p->hold_count)  {
1384		panic("pmap_release: freeing held page table page");
1385	}
1386	/*
1387	 * Page directory pages need to have the kernel
1388	 * stuff cleared, so they can go into the zero queue also.
1389	 */
1390	if (p->pindex == PTDPTDI) {
1391		bzero(pde + KPTDI, nkpt * PTESIZE);
1392#ifdef SMP
1393		pde[MPPTDI] = 0;
1394#endif
1395		pde[APTDPTDI] = 0;
1396		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1397	}
1398
1399	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1400		pmap->pm_ptphint = NULL;
1401
1402	p->wire_count--;
1403	cnt.v_wire_count--;
1404	vm_page_free_zero(p);
1405	return 1;
1406}
1407
1408/*
1409 * this routine is called if the page table page is not
1410 * mapped correctly.
1411 */
1412static vm_page_t
1413_pmap_allocpte(pmap, ptepindex)
1414	pmap_t	pmap;
1415	unsigned ptepindex;
1416{
1417	vm_offset_t pteva, ptepa;	/* XXXPA */
1418	vm_page_t m;
1419
1420	/*
1421	 * Find or fabricate a new pagetable page
1422	 */
1423	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1424			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1425
1426	KASSERT(m->queue == PQ_NONE,
1427		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1428
1429	if (m->wire_count == 0)
1430		cnt.v_wire_count++;
1431	m->wire_count++;
1432
1433	/*
1434	 * Increment the hold count for the page table page
1435	 * (denoting a new mapping.)
1436	 */
1437	m->hold_count++;
1438
1439	/*
1440	 * Map the pagetable page into the process address space, if
1441	 * it isn't already there.
1442	 */
1443
1444	pmap->pm_stats.resident_count++;
1445
1446	ptepa = VM_PAGE_TO_PHYS(m);
1447	pmap->pm_pdir[ptepindex] =
1448		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1449
1450	/*
1451	 * Set the page table hint
1452	 */
1453	pmap->pm_ptphint = m;
1454
1455	/*
1456	 * Try to use the new mapping, but if we cannot, then
1457	 * do it with the routine that maps the page explicitly.
1458	 */
1459	if ((m->flags & PG_ZERO) == 0) {
1460		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1461		    (PTDpde & PG_FRAME)) {
1462			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1463			bzero((caddr_t) pteva, PAGE_SIZE);
1464		} else {
1465			pmap_zero_page(m);
1466		}
1467	}
1468
1469	m->valid = VM_PAGE_BITS_ALL;
1470	vm_page_flag_clear(m, PG_ZERO);
1471	vm_page_flag_set(m, PG_MAPPED);
1472	vm_page_wakeup(m);
1473
1474	return m;
1475}
1476
1477static vm_page_t
1478pmap_allocpte(pmap_t pmap, vm_offset_t va)
1479{
1480	unsigned ptepindex;
1481	pd_entry_t ptepa;
1482	vm_page_t m;
1483
1484	/*
1485	 * Calculate pagetable page index
1486	 */
1487	ptepindex = va >> PDRSHIFT;
1488
1489	/*
1490	 * Get the page directory entry
1491	 */
1492	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1493
1494	/*
1495	 * This supports switching from a 4MB page to a
1496	 * normal 4K page.
1497	 */
1498	if (ptepa & PG_PS) {
1499		pmap->pm_pdir[ptepindex] = 0;
1500		ptepa = 0;
1501		invltlb();
1502	}
1503
1504	/*
1505	 * If the page table page is mapped, we just increment the
1506	 * hold count, and activate it.
1507	 */
1508	if (ptepa) {
1509		/*
1510		 * In order to get the page table page, try the
1511		 * hint first.
1512		 */
1513		if (pmap->pm_ptphint &&
1514			(pmap->pm_ptphint->pindex == ptepindex)) {
1515			m = pmap->pm_ptphint;
1516		} else {
1517			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1518			pmap->pm_ptphint = m;
1519		}
1520		m->hold_count++;
1521		return m;
1522	}
1523	/*
1524	 * Here if the pte page isn't mapped, or if it has been deallocated.
1525	 */
1526	return _pmap_allocpte(pmap, ptepindex);
1527}
1528
1529
1530/***************************************************
1531* Pmap allocation/deallocation routines.
1532 ***************************************************/
1533
1534/*
1535 * Release any resources held by the given physical map.
1536 * Called when a pmap initialized by pmap_pinit is being released.
1537 * Should only be called if the map contains no valid mappings.
1538 */
1539void
1540pmap_release(pmap_t pmap)
1541{
1542	vm_page_t p,n,ptdpg;
1543	vm_object_t object = pmap->pm_pteobj;
1544	int curgeneration;
1545
1546#if defined(DIAGNOSTIC)
1547	if (object->ref_count != 1)
1548		panic("pmap_release: pteobj reference count != 1");
1549#endif
1550
1551	ptdpg = NULL;
1552	LIST_REMOVE(pmap, pm_list);
1553retry:
1554	curgeneration = object->generation;
1555	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1556		n = TAILQ_NEXT(p, listq);
1557		if (p->pindex == PTDPTDI) {
1558			ptdpg = p;
1559			continue;
1560		}
1561		while (1) {
1562			if (!pmap_release_free_page(pmap, p) &&
1563				(object->generation != curgeneration))
1564				goto retry;
1565		}
1566	}
1567
1568	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1569		goto retry;
1570}
1571
1572static int
1573kvm_size(SYSCTL_HANDLER_ARGS)
1574{
1575	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1576
1577        return sysctl_handle_long(oidp, &ksize, 0, req);
1578}
1579SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1580    0, 0, kvm_size, "IU", "Size of KVM");
1581
1582static int
1583kvm_free(SYSCTL_HANDLER_ARGS)
1584{
1585	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1586
1587        return sysctl_handle_long(oidp, &kfree, 0, req);
1588}
1589SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1590    0, 0, kvm_free, "IU", "Amount of KVM free");
1591
1592/*
1593 * grow the number of kernel page table entries, if needed
1594 */
1595void
1596pmap_growkernel(vm_offset_t addr)
1597{
1598	struct pmap *pmap;
1599	int s;
1600	vm_offset_t ptppaddr;
1601	vm_page_t nkpg;
1602	pd_entry_t newpdir;
1603
1604	s = splhigh();
1605	if (kernel_vm_end == 0) {
1606		kernel_vm_end = KERNBASE;
1607		nkpt = 0;
1608		while (pdir_pde(PTD, kernel_vm_end)) {
1609			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1610			nkpt++;
1611		}
1612	}
1613	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1614	while (kernel_vm_end < addr) {
1615		if (pdir_pde(PTD, kernel_vm_end)) {
1616			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1617			continue;
1618		}
1619
1620		/*
1621		 * This index is bogus, but out of the way
1622		 */
1623		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1624		if (!nkpg)
1625			panic("pmap_growkernel: no memory to grow kernel");
1626
1627		nkpt++;
1628
1629		vm_page_wire(nkpg);
1630		pmap_zero_page(nkpg);
1631		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1632		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1633		pdir_pde(PTD, kernel_vm_end) = newpdir;
1634
1635		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1636			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1637		}
1638		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1639	}
1640	splx(s);
1641}
1642
1643
1644/***************************************************
1645 * page management routines.
1646 ***************************************************/
1647
1648/*
1649 * free the pv_entry back to the free list
1650 */
1651static PMAP_INLINE void
1652free_pv_entry(pv_entry_t pv)
1653{
1654	pv_entry_count--;
1655	uma_zfree(pvzone, pv);
1656}
1657
1658/*
1659 * get a new pv_entry, allocating a block from the system
1660 * when needed.
1661 * the memory allocation is performed bypassing the malloc code
1662 * because of the possibility of allocations at interrupt time.
1663 */
1664static pv_entry_t
1665get_pv_entry(void)
1666{
1667	pv_entry_count++;
1668	if (pv_entry_high_water &&
1669		(pv_entry_count > pv_entry_high_water) &&
1670		(pmap_pagedaemon_waken == 0)) {
1671		pmap_pagedaemon_waken = 1;
1672		wakeup (&vm_pages_needed);
1673	}
1674	return uma_zalloc(pvzone, M_NOWAIT);
1675}
1676
1677/*
1678 * This routine is very drastic, but can save the system
1679 * in a pinch.
1680 */
1681void
1682pmap_collect()
1683{
1684	int i;
1685	vm_page_t m;
1686	static int warningdone = 0;
1687
1688	if (pmap_pagedaemon_waken == 0)
1689		return;
1690
1691	if (warningdone < 5) {
1692		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1693		warningdone++;
1694	}
1695
1696	for(i = 0; i < vm_page_array_size; i++) {
1697		m = &vm_page_array[i];
1698		if (m->wire_count || m->hold_count || m->busy ||
1699		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1700			continue;
1701		pmap_remove_all(m);
1702	}
1703	pmap_pagedaemon_waken = 0;
1704}
1705
1706
1707/*
1708 * If it is the first entry on the list, it is actually
1709 * in the header and we must copy the following entry up
1710 * to the header.  Otherwise we must search the list for
1711 * the entry.  In either case we free the now unused entry.
1712 */
1713
1714static int
1715pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1716{
1717	pv_entry_t pv;
1718	int rtval;
1719	int s;
1720
1721	s = splvm();
1722	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1723		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1724			if (pmap == pv->pv_pmap && va == pv->pv_va)
1725				break;
1726		}
1727	} else {
1728		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1729			if (va == pv->pv_va)
1730				break;
1731		}
1732	}
1733
1734	rtval = 0;
1735	if (pv) {
1736		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1737		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1738		m->md.pv_list_count--;
1739		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1740			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1741
1742		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1743		free_pv_entry(pv);
1744	}
1745
1746	splx(s);
1747	return rtval;
1748}
1749
1750/*
1751 * Create a pv entry for page at pa for
1752 * (pmap, va).
1753 */
1754static void
1755pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1756{
1757
1758	int s;
1759	pv_entry_t pv;
1760
1761	s = splvm();
1762	pv = get_pv_entry();
1763	pv->pv_va = va;
1764	pv->pv_pmap = pmap;
1765	pv->pv_ptem = mpte;
1766
1767	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1768	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1769	m->md.pv_list_count++;
1770
1771	splx(s);
1772}
1773
1774/*
1775 * pmap_remove_pte: do the things to unmap a page in a process
1776 */
1777static int
1778pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1779{
1780	pt_entry_t oldpte;
1781	vm_page_t m;
1782
1783	oldpte = atomic_readandclear_int(ptq);
1784	if (oldpte & PG_W)
1785		pmap->pm_stats.wired_count -= 1;
1786	/*
1787	 * Machines that don't support invlpg, also don't support
1788	 * PG_G.
1789	 */
1790	if (oldpte & PG_G)
1791		invlpg(va);
1792	pmap->pm_stats.resident_count -= 1;
1793	if (oldpte & PG_MANAGED) {
1794		m = PHYS_TO_VM_PAGE(oldpte);
1795		if (oldpte & PG_M) {
1796#if defined(PMAP_DIAGNOSTIC)
1797			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1798				printf(
1799	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1800				    va, oldpte);
1801			}
1802#endif
1803			if (pmap_track_modified(va))
1804				vm_page_dirty(m);
1805		}
1806		if (oldpte & PG_A)
1807			vm_page_flag_set(m, PG_REFERENCED);
1808		return pmap_remove_entry(pmap, m, va);
1809	} else {
1810		return pmap_unuse_pt(pmap, va, NULL);
1811	}
1812
1813	return 0;
1814}
1815
1816/*
1817 * Remove a single page from a process address space
1818 */
1819static void
1820pmap_remove_page(pmap_t pmap, vm_offset_t va)
1821{
1822	register pt_entry_t *ptq;
1823
1824	/*
1825	 * if there is no pte for this address, just skip it!!!
1826	 */
1827	if (*pmap_pde(pmap, va) == 0) {
1828		return;
1829	}
1830
1831	/*
1832	 * get a local va for mappings for this pmap.
1833	 */
1834	ptq = get_ptbase(pmap) + i386_btop(va);
1835	if (*ptq) {
1836		(void) pmap_remove_pte(pmap, ptq, va);
1837		pmap_invalidate_page(pmap, va);
1838	}
1839	return;
1840}
1841
1842/*
1843 *	Remove the given range of addresses from the specified map.
1844 *
1845 *	It is assumed that the start and end are properly
1846 *	rounded to the page size.
1847 */
1848void
1849pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1850{
1851	register pt_entry_t *ptbase;
1852	vm_offset_t pdnxt;
1853	pd_entry_t ptpaddr;
1854	vm_offset_t sindex, eindex;
1855	int anyvalid;
1856
1857	if (pmap == NULL)
1858		return;
1859
1860	if (pmap->pm_stats.resident_count == 0)
1861		return;
1862
1863	/*
1864	 * special handling of removing one page.  a very
1865	 * common operation and easy to short circuit some
1866	 * code.
1867	 */
1868	if ((sva + PAGE_SIZE == eva) &&
1869	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1870		pmap_remove_page(pmap, sva);
1871		return;
1872	}
1873
1874	anyvalid = 0;
1875
1876	/*
1877	 * Get a local virtual address for the mappings that are being
1878	 * worked with.
1879	 */
1880	ptbase = get_ptbase(pmap);
1881
1882	sindex = i386_btop(sva);
1883	eindex = i386_btop(eva);
1884
1885	for (; sindex < eindex; sindex = pdnxt) {
1886		unsigned pdirindex;
1887
1888		/*
1889		 * Calculate index for next page table.
1890		 */
1891		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1892		if (pmap->pm_stats.resident_count == 0)
1893			break;
1894
1895		pdirindex = sindex / NPDEPG;
1896		ptpaddr = pmap->pm_pdir[pdirindex];
1897		if ((ptpaddr & PG_PS) != 0) {
1898			pmap->pm_pdir[pdirindex] = 0;
1899			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1900			anyvalid++;
1901			continue;
1902		}
1903
1904		/*
1905		 * Weed out invalid mappings. Note: we assume that the page
1906		 * directory table is always allocated, and in kernel virtual.
1907		 */
1908		if (ptpaddr == 0)
1909			continue;
1910
1911		/*
1912		 * Limit our scan to either the end of the va represented
1913		 * by the current page table page, or to the end of the
1914		 * range being removed.
1915		 */
1916		if (pdnxt > eindex) {
1917			pdnxt = eindex;
1918		}
1919
1920		for (; sindex != pdnxt; sindex++) {
1921			vm_offset_t va;
1922			if (ptbase[sindex] == 0) {
1923				continue;
1924			}
1925			va = i386_ptob(sindex);
1926
1927			anyvalid++;
1928			if (pmap_remove_pte(pmap,
1929				ptbase + sindex, va))
1930				break;
1931		}
1932	}
1933
1934	if (anyvalid)
1935		pmap_invalidate_all(pmap);
1936}
1937
1938/*
1939 *	Routine:	pmap_remove_all
1940 *	Function:
1941 *		Removes this physical page from
1942 *		all physical maps in which it resides.
1943 *		Reflects back modify bits to the pager.
1944 *
1945 *	Notes:
1946 *		Original versions of this routine were very
1947 *		inefficient because they iteratively called
1948 *		pmap_remove (slow...)
1949 */
1950
1951static void
1952pmap_remove_all(vm_page_t m)
1953{
1954	register pv_entry_t pv;
1955	pt_entry_t *pte, tpte;
1956	int s;
1957
1958#if defined(PMAP_DIAGNOSTIC)
1959	/*
1960	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1961	 * pages!
1962	 */
1963	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1964		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1965	}
1966#endif
1967
1968	s = splvm();
1969	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1970		pv->pv_pmap->pm_stats.resident_count--;
1971
1972		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1973
1974		tpte = atomic_readandclear_int(pte);
1975		if (tpte & PG_W)
1976			pv->pv_pmap->pm_stats.wired_count--;
1977
1978		if (tpte & PG_A)
1979			vm_page_flag_set(m, PG_REFERENCED);
1980
1981		/*
1982		 * Update the vm_page_t clean and reference bits.
1983		 */
1984		if (tpte & PG_M) {
1985#if defined(PMAP_DIAGNOSTIC)
1986			if (pmap_nw_modified((pt_entry_t) tpte)) {
1987				printf(
1988	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1989				    pv->pv_va, tpte);
1990			}
1991#endif
1992			if (pmap_track_modified(pv->pv_va))
1993				vm_page_dirty(m);
1994		}
1995		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1996
1997		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1998		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1999		m->md.pv_list_count--;
2000		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2001		free_pv_entry(pv);
2002	}
2003
2004	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2005
2006	splx(s);
2007}
2008
2009/*
2010 *	Set the physical protection on the
2011 *	specified range of this map as requested.
2012 */
2013void
2014pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2015{
2016	register pt_entry_t *ptbase;
2017	vm_offset_t pdnxt;
2018	pd_entry_t ptpaddr;
2019	vm_offset_t sindex, eindex;
2020	int anychanged;
2021
2022	if (pmap == NULL)
2023		return;
2024
2025	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2026		pmap_remove(pmap, sva, eva);
2027		return;
2028	}
2029
2030	if (prot & VM_PROT_WRITE)
2031		return;
2032
2033	anychanged = 0;
2034
2035	ptbase = get_ptbase(pmap);
2036
2037	sindex = i386_btop(sva);
2038	eindex = i386_btop(eva);
2039
2040	for (; sindex < eindex; sindex = pdnxt) {
2041
2042		unsigned pdirindex;
2043
2044		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2045
2046		pdirindex = sindex / NPDEPG;
2047		ptpaddr = pmap->pm_pdir[pdirindex];
2048		if ((ptpaddr & PG_PS) != 0) {
2049			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2050			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2051			anychanged++;
2052			continue;
2053		}
2054
2055		/*
2056		 * Weed out invalid mappings. Note: we assume that the page
2057		 * directory table is always allocated, and in kernel virtual.
2058		 */
2059		if (ptpaddr == 0)
2060			continue;
2061
2062		if (pdnxt > eindex) {
2063			pdnxt = eindex;
2064		}
2065
2066		for (; sindex != pdnxt; sindex++) {
2067
2068			pt_entry_t pbits;
2069			vm_page_t m;
2070
2071			pbits = ptbase[sindex];
2072
2073			if (pbits & PG_MANAGED) {
2074				m = NULL;
2075				if (pbits & PG_A) {
2076					m = PHYS_TO_VM_PAGE(pbits);
2077					vm_page_flag_set(m, PG_REFERENCED);
2078					pbits &= ~PG_A;
2079				}
2080				if (pbits & PG_M) {
2081					if (pmap_track_modified(i386_ptob(sindex))) {
2082						if (m == NULL)
2083							m = PHYS_TO_VM_PAGE(pbits);
2084						vm_page_dirty(m);
2085						pbits &= ~PG_M;
2086					}
2087				}
2088			}
2089
2090			pbits &= ~PG_RW;
2091
2092			if (pbits != ptbase[sindex]) {
2093				ptbase[sindex] = pbits;
2094				anychanged = 1;
2095			}
2096		}
2097	}
2098	if (anychanged)
2099		pmap_invalidate_all(pmap);
2100}
2101
2102/*
2103 *	Insert the given physical page (p) at
2104 *	the specified virtual address (v) in the
2105 *	target physical map with the protection requested.
2106 *
2107 *	If specified, the page will be wired down, meaning
2108 *	that the related pte can not be reclaimed.
2109 *
2110 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2111 *	or lose information.  That is, this routine must actually
2112 *	insert this page into the given map NOW.
2113 */
2114void
2115pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2116	   boolean_t wired)
2117{
2118	vm_offset_t pa;
2119	register pt_entry_t *pte;
2120	vm_offset_t opa;
2121	pt_entry_t origpte, newpte;
2122	vm_page_t mpte;
2123
2124	if (pmap == NULL)
2125		return;
2126
2127	va &= PG_FRAME;
2128#ifdef PMAP_DIAGNOSTIC
2129	if (va > VM_MAX_KERNEL_ADDRESS)
2130		panic("pmap_enter: toobig");
2131	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2132		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2133#endif
2134
2135	mpte = NULL;
2136	/*
2137	 * In the case that a page table page is not
2138	 * resident, we are creating it here.
2139	 */
2140	if (va < VM_MAXUSER_ADDRESS) {
2141		mpte = pmap_allocpte(pmap, va);
2142	}
2143#if 0 && defined(PMAP_DIAGNOSTIC)
2144	else {
2145		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2146		origpte = *pdeaddr;
2147		if ((origpte & PG_V) == 0) {
2148			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2149				pmap->pm_pdir[PTDPTDI], origpte, va);
2150		}
2151	}
2152#endif
2153
2154	pte = pmap_pte(pmap, va);
2155
2156	/*
2157	 * Page Directory table entry not valid, we need a new PT page
2158	 */
2159	if (pte == NULL) {
2160		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2161			(void *)pmap->pm_pdir[PTDPTDI], va);
2162	}
2163
2164	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2165	origpte = *(vm_offset_t *)pte;
2166	opa = origpte & PG_FRAME;
2167
2168	if (origpte & PG_PS)
2169		panic("pmap_enter: attempted pmap_enter on 4MB page");
2170
2171	/*
2172	 * Mapping has not changed, must be protection or wiring change.
2173	 */
2174	if (origpte && (opa == pa)) {
2175		/*
2176		 * Wiring change, just update stats. We don't worry about
2177		 * wiring PT pages as they remain resident as long as there
2178		 * are valid mappings in them. Hence, if a user page is wired,
2179		 * the PT page will be also.
2180		 */
2181		if (wired && ((origpte & PG_W) == 0))
2182			pmap->pm_stats.wired_count++;
2183		else if (!wired && (origpte & PG_W))
2184			pmap->pm_stats.wired_count--;
2185
2186#if defined(PMAP_DIAGNOSTIC)
2187		if (pmap_nw_modified((pt_entry_t) origpte)) {
2188			printf(
2189	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2190			    va, origpte);
2191		}
2192#endif
2193
2194		/*
2195		 * Remove extra pte reference
2196		 */
2197		if (mpte)
2198			mpte->hold_count--;
2199
2200		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2201			if ((origpte & PG_RW) == 0) {
2202				*pte |= PG_RW;
2203#ifdef SMP
2204				cpu_invlpg((void *)va);
2205				if (pmap->pm_active & PCPU_GET(other_cpus))
2206					smp_invltlb();
2207#else
2208				invltlb_1pg(va);
2209#endif
2210			}
2211			return;
2212		}
2213
2214		/*
2215		 * We might be turning off write access to the page,
2216		 * so we go ahead and sense modify status.
2217		 */
2218		if (origpte & PG_MANAGED) {
2219			if ((origpte & PG_M) && pmap_track_modified(va)) {
2220				vm_page_t om;
2221				om = PHYS_TO_VM_PAGE(opa);
2222				vm_page_dirty(om);
2223			}
2224			pa |= PG_MANAGED;
2225		}
2226		goto validate;
2227	}
2228	/*
2229	 * Mapping has changed, invalidate old range and fall through to
2230	 * handle validating new mapping.
2231	 */
2232	if (opa) {
2233		int err;
2234		err = pmap_remove_pte(pmap, pte, va);
2235		if (err)
2236			panic("pmap_enter: pte vanished, va: 0x%x", va);
2237	}
2238
2239	/*
2240	 * Enter on the PV list if part of our managed memory. Note that we
2241	 * raise IPL while manipulating pv_table since pmap_enter can be
2242	 * called at interrupt time.
2243	 */
2244	if (pmap_initialized &&
2245	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2246		pmap_insert_entry(pmap, va, mpte, m);
2247		pa |= PG_MANAGED;
2248	}
2249
2250	/*
2251	 * Increment counters
2252	 */
2253	pmap->pm_stats.resident_count++;
2254	if (wired)
2255		pmap->pm_stats.wired_count++;
2256
2257validate:
2258	/*
2259	 * Now validate mapping with desired protection/wiring.
2260	 */
2261	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2262
2263	if (wired)
2264		newpte |= PG_W;
2265	if (va < VM_MAXUSER_ADDRESS)
2266		newpte |= PG_U;
2267	if (pmap == kernel_pmap)
2268		newpte |= pgeflag;
2269
2270	/*
2271	 * if the mapping or permission bits are different, we need
2272	 * to update the pte.
2273	 */
2274	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2275		*pte = newpte | PG_A;
2276		/*if (origpte)*/ {
2277#ifdef SMP
2278			cpu_invlpg((void *)va);
2279			if (pmap->pm_active & PCPU_GET(other_cpus))
2280				smp_invltlb();
2281#else
2282			invltlb_1pg(va);
2283#endif
2284		}
2285	}
2286}
2287
2288/*
2289 * this code makes some *MAJOR* assumptions:
2290 * 1. Current pmap & pmap exists.
2291 * 2. Not wired.
2292 * 3. Read access.
2293 * 4. No page table pages.
2294 * 5. Tlbflush is deferred to calling procedure.
2295 * 6. Page IS managed.
2296 * but is *MUCH* faster than pmap_enter...
2297 */
2298
2299static vm_page_t
2300pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2301{
2302	pt_entry_t *pte;
2303	vm_offset_t pa;
2304
2305	/*
2306	 * In the case that a page table page is not
2307	 * resident, we are creating it here.
2308	 */
2309	if (va < VM_MAXUSER_ADDRESS) {
2310		unsigned ptepindex;
2311		pd_entry_t ptepa;
2312
2313		/*
2314		 * Calculate pagetable page index
2315		 */
2316		ptepindex = va >> PDRSHIFT;
2317		if (mpte && (mpte->pindex == ptepindex)) {
2318			mpte->hold_count++;
2319		} else {
2320retry:
2321			/*
2322			 * Get the page directory entry
2323			 */
2324			ptepa = pmap->pm_pdir[ptepindex];
2325
2326			/*
2327			 * If the page table page is mapped, we just increment
2328			 * the hold count, and activate it.
2329			 */
2330			if (ptepa) {
2331				if (ptepa & PG_PS)
2332					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2333				if (pmap->pm_ptphint &&
2334					(pmap->pm_ptphint->pindex == ptepindex)) {
2335					mpte = pmap->pm_ptphint;
2336				} else {
2337					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2338					pmap->pm_ptphint = mpte;
2339				}
2340				if (mpte == NULL)
2341					goto retry;
2342				mpte->hold_count++;
2343			} else {
2344				mpte = _pmap_allocpte(pmap, ptepindex);
2345			}
2346		}
2347	} else {
2348		mpte = NULL;
2349	}
2350
2351	/*
2352	 * This call to vtopte makes the assumption that we are
2353	 * entering the page into the current pmap.  In order to support
2354	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2355	 * But that isn't as quick as vtopte.
2356	 */
2357	pte = vtopte(va);
2358	if (*pte) {
2359		if (mpte)
2360			pmap_unwire_pte_hold(pmap, mpte);
2361		return 0;
2362	}
2363
2364	/*
2365	 * Enter on the PV list if part of our managed memory. Note that we
2366	 * raise IPL while manipulating pv_table since pmap_enter can be
2367	 * called at interrupt time.
2368	 */
2369	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2370		pmap_insert_entry(pmap, va, mpte, m);
2371
2372	/*
2373	 * Increment counters
2374	 */
2375	pmap->pm_stats.resident_count++;
2376
2377	pa = VM_PAGE_TO_PHYS(m);
2378
2379	/*
2380	 * Now validate mapping with RO protection
2381	 */
2382	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2383		*pte = pa | PG_V | PG_U;
2384	else
2385		*pte = pa | PG_V | PG_U | PG_MANAGED;
2386
2387	return mpte;
2388}
2389
2390/*
2391 * Make a temporary mapping for a physical address.  This is only intended
2392 * to be used for panic dumps.
2393 */
2394void *
2395pmap_kenter_temporary(vm_offset_t pa, int i)
2396{
2397	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2398	return ((void *)crashdumpmap);
2399}
2400
2401#define MAX_INIT_PT (96)
2402/*
2403 * pmap_object_init_pt preloads the ptes for a given object
2404 * into the specified pmap.  This eliminates the blast of soft
2405 * faults on process startup and immediately after an mmap.
2406 */
2407void
2408pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2409		    vm_object_t object, vm_pindex_t pindex,
2410		    vm_size_t size, int limit)
2411{
2412	vm_offset_t tmpidx;
2413	int psize;
2414	vm_page_t p, mpte;
2415	int objpgs;
2416
2417	if (pmap == NULL || object == NULL)
2418		return;
2419
2420	/*
2421	 * This code maps large physical mmap regions into the
2422	 * processor address space.  Note that some shortcuts
2423	 * are taken, but the code works.
2424	 */
2425	if (pseflag && (object->type == OBJT_DEVICE) &&
2426	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2427		int i;
2428		vm_page_t m[1];
2429		unsigned int ptepindex;
2430		int npdes;
2431		pd_entry_t ptepa;
2432
2433		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2434			return;
2435
2436retry:
2437		p = vm_page_lookup(object, pindex);
2438		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2439			goto retry;
2440
2441		if (p == NULL) {
2442			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2443			if (p == NULL)
2444				return;
2445			m[0] = p;
2446
2447			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2448				vm_page_free(p);
2449				return;
2450			}
2451
2452			p = vm_page_lookup(object, pindex);
2453			vm_page_wakeup(p);
2454		}
2455
2456		ptepa = VM_PAGE_TO_PHYS(p);
2457		if (ptepa & (NBPDR - 1)) {
2458			return;
2459		}
2460
2461		p->valid = VM_PAGE_BITS_ALL;
2462
2463		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2464		npdes = size >> PDRSHIFT;
2465		for(i = 0; i < npdes; i++) {
2466			pmap->pm_pdir[ptepindex] =
2467			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2468			ptepa += NBPDR;
2469			ptepindex += 1;
2470		}
2471		vm_page_flag_set(p, PG_MAPPED);
2472		invltlb();
2473		return;
2474	}
2475
2476	psize = i386_btop(size);
2477
2478	if ((object->type != OBJT_VNODE) ||
2479	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2480	     (object->resident_page_count > MAX_INIT_PT))) {
2481		return;
2482	}
2483
2484	if (psize + pindex > object->size) {
2485		if (object->size < pindex)
2486			return;
2487		psize = object->size - pindex;
2488	}
2489
2490	mpte = NULL;
2491	/*
2492	 * if we are processing a major portion of the object, then scan the
2493	 * entire thing.
2494	 */
2495	if (psize > (object->resident_page_count >> 2)) {
2496		objpgs = psize;
2497
2498		for (p = TAILQ_FIRST(&object->memq);
2499		    ((objpgs > 0) && (p != NULL));
2500		    p = TAILQ_NEXT(p, listq)) {
2501
2502			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2503				continue;
2504			}
2505			tmpidx = p->pindex - pindex;
2506			/*
2507			 * don't allow an madvise to blow away our really
2508			 * free pages allocating pv entries.
2509			 */
2510			if ((limit & MAP_PREFAULT_MADVISE) &&
2511			    cnt.v_free_count < cnt.v_free_reserved) {
2512				break;
2513			}
2514			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2515				(p->busy == 0) &&
2516			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2517				if ((p->queue - p->pc) == PQ_CACHE)
2518					vm_page_deactivate(p);
2519				vm_page_busy(p);
2520				mpte = pmap_enter_quick(pmap,
2521					addr + i386_ptob(tmpidx), p, mpte);
2522				vm_page_flag_set(p, PG_MAPPED);
2523				vm_page_wakeup(p);
2524			}
2525			objpgs -= 1;
2526		}
2527	} else {
2528		/*
2529		 * else lookup the pages one-by-one.
2530		 */
2531		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2532			/*
2533			 * don't allow an madvise to blow away our really
2534			 * free pages allocating pv entries.
2535			 */
2536			if ((limit & MAP_PREFAULT_MADVISE) &&
2537			    cnt.v_free_count < cnt.v_free_reserved) {
2538				break;
2539			}
2540			p = vm_page_lookup(object, tmpidx + pindex);
2541			if (p &&
2542			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2543				(p->busy == 0) &&
2544			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2545				if ((p->queue - p->pc) == PQ_CACHE)
2546					vm_page_deactivate(p);
2547				vm_page_busy(p);
2548				mpte = pmap_enter_quick(pmap,
2549					addr + i386_ptob(tmpidx), p, mpte);
2550				vm_page_flag_set(p, PG_MAPPED);
2551				vm_page_wakeup(p);
2552			}
2553		}
2554	}
2555	return;
2556}
2557
2558/*
2559 * pmap_prefault provides a quick way of clustering
2560 * pagefaults into a processes address space.  It is a "cousin"
2561 * of pmap_object_init_pt, except it runs at page fault time instead
2562 * of mmap time.
2563 */
2564#define PFBAK 4
2565#define PFFOR 4
2566#define PAGEORDER_SIZE (PFBAK+PFFOR)
2567
2568static int pmap_prefault_pageorder[] = {
2569	-PAGE_SIZE, PAGE_SIZE,
2570	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2571	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2572	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2573};
2574
2575void
2576pmap_prefault(pmap, addra, entry)
2577	pmap_t pmap;
2578	vm_offset_t addra;
2579	vm_map_entry_t entry;
2580{
2581	int i;
2582	vm_offset_t starta;
2583	vm_offset_t addr;
2584	vm_pindex_t pindex;
2585	vm_page_t m, mpte;
2586	vm_object_t object;
2587
2588	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2589		return;
2590
2591	object = entry->object.vm_object;
2592
2593	starta = addra - PFBAK * PAGE_SIZE;
2594	if (starta < entry->start) {
2595		starta = entry->start;
2596	} else if (starta > addra) {
2597		starta = 0;
2598	}
2599
2600	mpte = NULL;
2601	for (i = 0; i < PAGEORDER_SIZE; i++) {
2602		vm_object_t lobject;
2603		pt_entry_t *pte;
2604
2605		addr = addra + pmap_prefault_pageorder[i];
2606		if (addr > addra + (PFFOR * PAGE_SIZE))
2607			addr = 0;
2608
2609		if (addr < starta || addr >= entry->end)
2610			continue;
2611
2612		if ((*pmap_pde(pmap, addr)) == NULL)
2613			continue;
2614
2615		pte = vtopte(addr);
2616		if (*pte)
2617			continue;
2618
2619		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2620		lobject = object;
2621		for (m = vm_page_lookup(lobject, pindex);
2622		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2623		    lobject = lobject->backing_object) {
2624			if (lobject->backing_object_offset & PAGE_MASK)
2625				break;
2626			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2627			m = vm_page_lookup(lobject->backing_object, pindex);
2628		}
2629
2630		/*
2631		 * give-up when a page is not in memory
2632		 */
2633		if (m == NULL)
2634			break;
2635
2636		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2637			(m->busy == 0) &&
2638		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2639
2640			if ((m->queue - m->pc) == PQ_CACHE) {
2641				vm_page_deactivate(m);
2642			}
2643			vm_page_busy(m);
2644			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2645			vm_page_flag_set(m, PG_MAPPED);
2646			vm_page_wakeup(m);
2647		}
2648	}
2649}
2650
2651/*
2652 *	Routine:	pmap_change_wiring
2653 *	Function:	Change the wiring attribute for a map/virtual-address
2654 *			pair.
2655 *	In/out conditions:
2656 *			The mapping must already exist in the pmap.
2657 */
2658void
2659pmap_change_wiring(pmap, va, wired)
2660	register pmap_t pmap;
2661	vm_offset_t va;
2662	boolean_t wired;
2663{
2664	register pt_entry_t *pte;
2665
2666	if (pmap == NULL)
2667		return;
2668
2669	pte = pmap_pte(pmap, va);
2670
2671	if (wired && !pmap_pte_w(pte))
2672		pmap->pm_stats.wired_count++;
2673	else if (!wired && pmap_pte_w(pte))
2674		pmap->pm_stats.wired_count--;
2675
2676	/*
2677	 * Wiring is not a hardware characteristic so there is no need to
2678	 * invalidate TLB.
2679	 */
2680	pmap_pte_set_w(pte, wired);
2681}
2682
2683
2684
2685/*
2686 *	Copy the range specified by src_addr/len
2687 *	from the source map to the range dst_addr/len
2688 *	in the destination map.
2689 *
2690 *	This routine is only advisory and need not do anything.
2691 */
2692
2693void
2694pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2695	  vm_offset_t src_addr)
2696{
2697	vm_offset_t addr;
2698	vm_offset_t end_addr = src_addr + len;
2699	vm_offset_t pdnxt;
2700	pd_entry_t src_frame, dst_frame;
2701	vm_page_t m;
2702	pd_entry_t saved_pde;
2703
2704	if (dst_addr != src_addr)
2705		return;
2706
2707	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2708	if (src_frame != (PTDpde & PG_FRAME))
2709		return;
2710
2711	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2712	if (dst_frame != (APTDpde & PG_FRAME)) {
2713		APTDpde = dst_frame | PG_RW | PG_V;
2714#if defined(SMP)
2715		/* The page directory is not shared between CPUs */
2716		cpu_invltlb();
2717#else
2718		invltlb();
2719#endif
2720	}
2721 	saved_pde = APTDpde & (PG_FRAME | PG_RW | PG_V);
2722	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2723		pt_entry_t *src_pte, *dst_pte;
2724		vm_page_t dstmpte, srcmpte;
2725		pd_entry_t srcptepaddr;
2726		unsigned ptepindex;
2727
2728		if (addr >= UPT_MIN_ADDRESS)
2729			panic("pmap_copy: invalid to pmap_copy page tables\n");
2730
2731		/*
2732		 * Don't let optional prefaulting of pages make us go
2733		 * way below the low water mark of free pages or way
2734		 * above high water mark of used pv entries.
2735		 */
2736		if (cnt.v_free_count < cnt.v_free_reserved ||
2737		    pv_entry_count > pv_entry_high_water)
2738			break;
2739
2740		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2741		ptepindex = addr >> PDRSHIFT;
2742
2743		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2744		if (srcptepaddr == 0)
2745			continue;
2746
2747		if (srcptepaddr & PG_PS) {
2748			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2749				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2750				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2751			}
2752			continue;
2753		}
2754
2755		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2756		if ((srcmpte == NULL) ||
2757		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2758			continue;
2759
2760		if (pdnxt > end_addr)
2761			pdnxt = end_addr;
2762
2763		src_pte = vtopte(addr);
2764		dst_pte = avtopte(addr);
2765		while (addr < pdnxt) {
2766			pt_entry_t ptetemp;
2767			ptetemp = *src_pte;
2768			/*
2769			 * we only virtual copy managed pages
2770			 */
2771			if ((ptetemp & PG_MANAGED) != 0) {
2772				/*
2773				 * We have to check after allocpte for the
2774				 * pte still being around...  allocpte can
2775				 * block.
2776				 */
2777				dstmpte = pmap_allocpte(dst_pmap, addr);
2778				if ((APTDpde & PG_FRAME) !=
2779				    (saved_pde & PG_FRAME)) {
2780					APTDpde = saved_pde;
2781printf ("IT HAPPENNED!");
2782#if defined(SMP)
2783					cpu_invltlb();
2784#else
2785					invltlb();
2786#endif
2787				}
2788				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2789					/*
2790					 * Clear the modified and
2791					 * accessed (referenced) bits
2792					 * during the copy.
2793					 */
2794					m = PHYS_TO_VM_PAGE(ptetemp);
2795					*dst_pte = ptetemp & ~(PG_M | PG_A);
2796					dst_pmap->pm_stats.resident_count++;
2797					pmap_insert_entry(dst_pmap, addr,
2798						dstmpte, m);
2799	 			} else {
2800					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2801				}
2802				if (dstmpte->hold_count >= srcmpte->hold_count)
2803					break;
2804			}
2805			addr += PAGE_SIZE;
2806			src_pte++;
2807			dst_pte++;
2808		}
2809	}
2810}
2811
2812/*
2813 *	pmap_zero_page zeros the specified hardware page by mapping
2814 *	the page into KVM and using bzero to clear its contents.
2815 */
2816void
2817pmap_zero_page(vm_page_t m)
2818{
2819	vm_offset_t phys = VM_PAGE_TO_PHYS(m);
2820
2821	if (*CMAP2)
2822		panic("pmap_zero_page: CMAP2 busy");
2823
2824	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2825	invltlb_1pg((vm_offset_t)CADDR2);
2826
2827#if defined(I686_CPU)
2828	if (cpu_class == CPUCLASS_686)
2829		i686_pagezero(CADDR2);
2830	else
2831#endif
2832		bzero(CADDR2, PAGE_SIZE);
2833	*CMAP2 = 0;
2834}
2835
2836/*
2837 *	pmap_zero_page_area zeros the specified hardware page by mapping
2838 *	the page into KVM and using bzero to clear its contents.
2839 *
2840 *	off and size may not cover an area beyond a single hardware page.
2841 */
2842void
2843pmap_zero_page_area(vm_page_t m, int off, int size)
2844{
2845	vm_offset_t phys = VM_PAGE_TO_PHYS(m);
2846
2847	if (*CMAP2)
2848		panic("pmap_zero_page: CMAP2 busy");
2849
2850	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2851	invltlb_1pg((vm_offset_t)CADDR2);
2852
2853#if defined(I686_CPU)
2854	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2855		i686_pagezero(CADDR2);
2856	else
2857#endif
2858		bzero((char *)CADDR2 + off, size);
2859	*CMAP2 = 0;
2860}
2861
2862/*
2863 *	pmap_copy_page copies the specified (machine independent)
2864 *	page by mapping the page into virtual memory and using
2865 *	bcopy to copy the page, one machine dependent page at a
2866 *	time.
2867 */
2868void
2869pmap_copy_page(vm_page_t src, vm_page_t dst)
2870{
2871
2872	if (*CMAP1)
2873		panic("pmap_copy_page: CMAP1 busy");
2874	if (*CMAP2)
2875		panic("pmap_copy_page: CMAP2 busy");
2876
2877	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2878	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2879#ifdef I386_CPU
2880	invltlb();
2881#else
2882	invlpg((u_int)CADDR1);
2883	invlpg((u_int)CADDR2);
2884#endif
2885
2886	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2887
2888	*CMAP1 = 0;
2889	*CMAP2 = 0;
2890}
2891
2892
2893/*
2894 *	Routine:	pmap_pageable
2895 *	Function:
2896 *		Make the specified pages (by pmap, offset)
2897 *		pageable (or not) as requested.
2898 *
2899 *		A page which is not pageable may not take
2900 *		a fault; therefore, its page table entry
2901 *		must remain valid for the duration.
2902 *
2903 *		This routine is merely advisory; pmap_enter
2904 *		will specify that these pages are to be wired
2905 *		down (or not) as appropriate.
2906 */
2907void
2908pmap_pageable(pmap, sva, eva, pageable)
2909	pmap_t pmap;
2910	vm_offset_t sva, eva;
2911	boolean_t pageable;
2912{
2913}
2914
2915/*
2916 * Returns true if the pmap's pv is one of the first
2917 * 16 pvs linked to from this page.  This count may
2918 * be changed upwards or downwards in the future; it
2919 * is only necessary that true be returned for a small
2920 * subset of pmaps for proper page aging.
2921 */
2922boolean_t
2923pmap_page_exists_quick(pmap, m)
2924	pmap_t pmap;
2925	vm_page_t m;
2926{
2927	pv_entry_t pv;
2928	int loops = 0;
2929	int s;
2930
2931	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2932		return FALSE;
2933
2934	s = splvm();
2935
2936	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2937		if (pv->pv_pmap == pmap) {
2938			splx(s);
2939			return TRUE;
2940		}
2941		loops++;
2942		if (loops >= 16)
2943			break;
2944	}
2945	splx(s);
2946	return (FALSE);
2947}
2948
2949#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2950/*
2951 * Remove all pages from specified address space
2952 * this aids process exit speeds.  Also, this code
2953 * is special cased for current process only, but
2954 * can have the more generic (and slightly slower)
2955 * mode enabled.  This is much faster than pmap_remove
2956 * in the case of running down an entire address space.
2957 */
2958void
2959pmap_remove_pages(pmap, sva, eva)
2960	pmap_t pmap;
2961	vm_offset_t sva, eva;
2962{
2963	pt_entry_t *pte, tpte;
2964	vm_page_t m;
2965	pv_entry_t pv, npv;
2966	int s;
2967
2968#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2969	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2970		printf("warning: pmap_remove_pages called with non-current pmap\n");
2971		return;
2972	}
2973#endif
2974
2975	s = splvm();
2976	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2977
2978		if (pv->pv_va >= eva || pv->pv_va < sva) {
2979			npv = TAILQ_NEXT(pv, pv_plist);
2980			continue;
2981		}
2982
2983#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2984		pte = vtopte(pv->pv_va);
2985#else
2986		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2987#endif
2988		tpte = *pte;
2989
2990		if (tpte == 0) {
2991			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2992							pte, pv->pv_va);
2993			panic("bad pte");
2994		}
2995
2996/*
2997 * We cannot remove wired pages from a process' mapping at this time
2998 */
2999		if (tpte & PG_W) {
3000			npv = TAILQ_NEXT(pv, pv_plist);
3001			continue;
3002		}
3003
3004		m = PHYS_TO_VM_PAGE(tpte);
3005		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3006		    ("vm_page_t %p phys_addr mismatch %08x %08x",
3007		    m, m->phys_addr, tpte));
3008
3009		KASSERT(m < &vm_page_array[vm_page_array_size],
3010			("pmap_remove_pages: bad tpte %x", tpte));
3011
3012		pv->pv_pmap->pm_stats.resident_count--;
3013
3014		*pte = 0;
3015
3016		/*
3017		 * Update the vm_page_t clean and reference bits.
3018		 */
3019		if (tpte & PG_M) {
3020			vm_page_dirty(m);
3021		}
3022
3023		npv = TAILQ_NEXT(pv, pv_plist);
3024		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3025
3026		m->md.pv_list_count--;
3027		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3028		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3029			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3030		}
3031
3032		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3033		free_pv_entry(pv);
3034	}
3035	splx(s);
3036	pmap_invalidate_all(pmap);
3037}
3038
3039/*
3040 * pmap_testbit tests bits in pte's
3041 * note that the testbit/changebit routines are inline,
3042 * and a lot of things compile-time evaluate.
3043 */
3044static boolean_t
3045pmap_testbit(m, bit)
3046	vm_page_t m;
3047	int bit;
3048{
3049	pv_entry_t pv;
3050	pt_entry_t *pte;
3051	int s;
3052
3053	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3054		return FALSE;
3055
3056	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3057		return FALSE;
3058
3059	s = splvm();
3060
3061	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3062		/*
3063		 * if the bit being tested is the modified bit, then
3064		 * mark clean_map and ptes as never
3065		 * modified.
3066		 */
3067		if (bit & (PG_A|PG_M)) {
3068			if (!pmap_track_modified(pv->pv_va))
3069				continue;
3070		}
3071
3072#if defined(PMAP_DIAGNOSTIC)
3073		if (!pv->pv_pmap) {
3074			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3075			continue;
3076		}
3077#endif
3078		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3079		if (*pte & bit) {
3080			splx(s);
3081			return TRUE;
3082		}
3083	}
3084	splx(s);
3085	return (FALSE);
3086}
3087
3088/*
3089 * this routine is used to modify bits in ptes
3090 */
3091static __inline void
3092pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3093{
3094	register pv_entry_t pv;
3095	register pt_entry_t *pte;
3096	int s;
3097
3098	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3099		return;
3100
3101	s = splvm();
3102
3103	/*
3104	 * Loop over all current mappings setting/clearing as appropos If
3105	 * setting RO do we need to clear the VAC?
3106	 */
3107	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3108		/*
3109		 * don't write protect pager mappings
3110		 */
3111		if (!setem && (bit == PG_RW)) {
3112			if (!pmap_track_modified(pv->pv_va))
3113				continue;
3114		}
3115
3116#if defined(PMAP_DIAGNOSTIC)
3117		if (!pv->pv_pmap) {
3118			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3119			continue;
3120		}
3121#endif
3122
3123		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3124
3125		if (setem) {
3126			*pte |= bit;
3127			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3128		} else {
3129			pt_entry_t pbits = *pte;
3130			if (pbits & bit) {
3131				if (bit == PG_RW) {
3132					if (pbits & PG_M) {
3133						vm_page_dirty(m);
3134					}
3135					*pte = pbits & ~(PG_M|PG_RW);
3136				} else {
3137					*pte = pbits & ~bit;
3138				}
3139				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3140			}
3141		}
3142	}
3143	splx(s);
3144}
3145
3146/*
3147 *      pmap_page_protect:
3148 *
3149 *      Lower the permission for all mappings to a given page.
3150 */
3151void
3152pmap_page_protect(vm_page_t m, vm_prot_t prot)
3153{
3154	if ((prot & VM_PROT_WRITE) == 0) {
3155		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3156			pmap_changebit(m, PG_RW, FALSE);
3157		} else {
3158			pmap_remove_all(m);
3159		}
3160	}
3161}
3162
3163vm_offset_t
3164pmap_phys_address(ppn)
3165	int ppn;
3166{
3167	return (i386_ptob(ppn));
3168}
3169
3170/*
3171 *	pmap_ts_referenced:
3172 *
3173 *	Return a count of reference bits for a page, clearing those bits.
3174 *	It is not necessary for every reference bit to be cleared, but it
3175 *	is necessary that 0 only be returned when there are truly no
3176 *	reference bits set.
3177 *
3178 *	XXX: The exact number of bits to check and clear is a matter that
3179 *	should be tested and standardized at some point in the future for
3180 *	optimal aging of shared pages.
3181 */
3182int
3183pmap_ts_referenced(vm_page_t m)
3184{
3185	register pv_entry_t pv, pvf, pvn;
3186	pt_entry_t *pte;
3187	int s;
3188	int rtval = 0;
3189
3190	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3191		return (rtval);
3192
3193	s = splvm();
3194
3195	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3196
3197		pvf = pv;
3198
3199		do {
3200			pvn = TAILQ_NEXT(pv, pv_list);
3201
3202			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3203
3204			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3205
3206			if (!pmap_track_modified(pv->pv_va))
3207				continue;
3208
3209			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3210
3211			if (pte && (*pte & PG_A)) {
3212				*pte &= ~PG_A;
3213
3214				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3215
3216				rtval++;
3217				if (rtval > 4) {
3218					break;
3219				}
3220			}
3221		} while ((pv = pvn) != NULL && pv != pvf);
3222	}
3223	splx(s);
3224
3225	return (rtval);
3226}
3227
3228/*
3229 *	pmap_is_modified:
3230 *
3231 *	Return whether or not the specified physical page was modified
3232 *	in any physical maps.
3233 */
3234boolean_t
3235pmap_is_modified(vm_page_t m)
3236{
3237	return pmap_testbit(m, PG_M);
3238}
3239
3240/*
3241 *	Clear the modify bits on the specified physical page.
3242 */
3243void
3244pmap_clear_modify(vm_page_t m)
3245{
3246	pmap_changebit(m, PG_M, FALSE);
3247}
3248
3249/*
3250 *	pmap_clear_reference:
3251 *
3252 *	Clear the reference bit on the specified physical page.
3253 */
3254void
3255pmap_clear_reference(vm_page_t m)
3256{
3257	pmap_changebit(m, PG_A, FALSE);
3258}
3259
3260/*
3261 * Miscellaneous support routines follow
3262 */
3263
3264static void
3265i386_protection_init()
3266{
3267	register int *kp, prot;
3268
3269	kp = protection_codes;
3270	for (prot = 0; prot < 8; prot++) {
3271		switch (prot) {
3272		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3273			/*
3274			 * Read access is also 0. There isn't any execute bit,
3275			 * so just make it readable.
3276			 */
3277		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3278		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3279		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3280			*kp++ = 0;
3281			break;
3282		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3283		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3284		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3285		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3286			*kp++ = PG_RW;
3287			break;
3288		}
3289	}
3290}
3291
3292/*
3293 * Map a set of physical memory pages into the kernel virtual
3294 * address space. Return a pointer to where it is mapped. This
3295 * routine is intended to be used for mapping device memory,
3296 * NOT real memory.
3297 */
3298void *
3299pmap_mapdev(pa, size)
3300	vm_offset_t pa;
3301	vm_size_t size;
3302{
3303	vm_offset_t va, tmpva, offset;
3304	pt_entry_t *pte;
3305
3306	offset = pa & PAGE_MASK;
3307	size = roundup(offset + size, PAGE_SIZE);
3308
3309	GIANT_REQUIRED;
3310
3311	va = kmem_alloc_pageable(kernel_map, size);
3312	if (!va)
3313		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3314
3315	pa = pa & PG_FRAME;
3316	for (tmpva = va; size > 0;) {
3317		pte = vtopte(tmpva);
3318		*pte = pa | PG_RW | PG_V | pgeflag;
3319		size -= PAGE_SIZE;
3320		tmpva += PAGE_SIZE;
3321		pa += PAGE_SIZE;
3322	}
3323	invltlb();
3324
3325	return ((void *)(va + offset));
3326}
3327
3328void
3329pmap_unmapdev(va, size)
3330	vm_offset_t va;
3331	vm_size_t size;
3332{
3333	vm_offset_t base, offset;
3334
3335	base = va & PG_FRAME;
3336	offset = va & PAGE_MASK;
3337	size = roundup(offset + size, PAGE_SIZE);
3338	kmem_free(kernel_map, base, size);
3339}
3340
3341/*
3342 * perform the pmap work for mincore
3343 */
3344int
3345pmap_mincore(pmap, addr)
3346	pmap_t pmap;
3347	vm_offset_t addr;
3348{
3349	pt_entry_t *ptep, pte;
3350	vm_page_t m;
3351	int val = 0;
3352
3353	ptep = pmap_pte(pmap, addr);
3354	if (ptep == 0) {
3355		return 0;
3356	}
3357
3358	if ((pte = *ptep) != 0) {
3359		vm_offset_t pa;
3360
3361		val = MINCORE_INCORE;
3362		if ((pte & PG_MANAGED) == 0)
3363			return val;
3364
3365		pa = pte & PG_FRAME;
3366
3367		m = PHYS_TO_VM_PAGE(pa);
3368
3369		/*
3370		 * Modified by us
3371		 */
3372		if (pte & PG_M)
3373			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3374		/*
3375		 * Modified by someone
3376		 */
3377		else if (m->dirty || pmap_is_modified(m))
3378			val |= MINCORE_MODIFIED_OTHER;
3379		/*
3380		 * Referenced by us
3381		 */
3382		if (pte & PG_A)
3383			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3384
3385		/*
3386		 * Referenced by someone
3387		 */
3388		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3389			val |= MINCORE_REFERENCED_OTHER;
3390			vm_page_flag_set(m, PG_REFERENCED);
3391		}
3392	}
3393	return val;
3394}
3395
3396void
3397pmap_activate(struct thread *td)
3398{
3399	struct proc *p = td->td_proc;
3400	pmap_t	pmap;
3401	u_int32_t  cr3;
3402
3403	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3404#if defined(SMP)
3405	pmap->pm_active |= PCPU_GET(cpumask);
3406#else
3407	pmap->pm_active |= 1;
3408#endif
3409#if defined(SWTCH_OPTIM_STATS)
3410	tlb_flush_count++;
3411#endif
3412	cr3 = vtophys(pmap->pm_pdir);
3413	/* XXXKSE this is wrong.
3414	 * pmap_activate is for the current thread on the current cpu
3415	 */
3416	if (p->p_flag & P_KSES) {
3417		/* Make sure all other cr3 entries are updated. */
3418		/* what if they are running?  XXXKSE (maybe abort them) */
3419		FOREACH_THREAD_IN_PROC(p, td) {
3420			td->td_pcb->pcb_cr3 = cr3;
3421		}
3422	} else {
3423		td->td_pcb->pcb_cr3 = cr3;
3424	}
3425	load_cr3(cr3);
3426}
3427
3428vm_offset_t
3429pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3430{
3431
3432	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3433		return addr;
3434	}
3435
3436	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3437	return addr;
3438}
3439
3440
3441#if defined(PMAP_DEBUG)
3442pmap_pid_dump(int pid)
3443{
3444	pmap_t pmap;
3445	struct proc *p;
3446	int npte = 0;
3447	int index;
3448
3449	sx_slock(&allproc_lock);
3450	LIST_FOREACH(p, &allproc, p_list) {
3451		if (p->p_pid != pid)
3452			continue;
3453
3454		if (p->p_vmspace) {
3455			int i,j;
3456			index = 0;
3457			pmap = vmspace_pmap(p->p_vmspace);
3458			for (i = 0; i < NPDEPG; i++) {
3459				pd_entry_t *pde;
3460				pt_entry_t *pte;
3461				vm_offset_t base = i << PDRSHIFT;
3462
3463				pde = &pmap->pm_pdir[i];
3464				if (pde && pmap_pde_v(pde)) {
3465					for (j = 0; j < NPTEPG; j++) {
3466						vm_offset_t va = base + (j << PAGE_SHIFT);
3467						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3468							if (index) {
3469								index = 0;
3470								printf("\n");
3471							}
3472							sx_sunlock(&allproc_lock);
3473							return npte;
3474						}
3475						pte = pmap_pte_quick(pmap, va);
3476						if (pte && pmap_pte_v(pte)) {
3477							pt_entry_t pa;
3478							vm_page_t m;
3479							pa = *pte;
3480							m = PHYS_TO_VM_PAGE(pa);
3481							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3482								va, pa, m->hold_count, m->wire_count, m->flags);
3483							npte++;
3484							index++;
3485							if (index >= 2) {
3486								index = 0;
3487								printf("\n");
3488							} else {
3489								printf(" ");
3490							}
3491						}
3492					}
3493				}
3494			}
3495		}
3496	}
3497	sx_sunlock(&allproc_lock);
3498	return npte;
3499}
3500#endif
3501
3502#if defined(DEBUG)
3503
3504static void	pads(pmap_t pm);
3505void		pmap_pvdump(vm_offset_t pa);
3506
3507/* print address space of pmap*/
3508static void
3509pads(pm)
3510	pmap_t pm;
3511{
3512	int i, j;
3513	vm_offset_t va;
3514	pt_entry_t *ptep;
3515
3516	if (pm == kernel_pmap)
3517		return;
3518	for (i = 0; i < NPDEPG; i++)
3519		if (pm->pm_pdir[i])
3520			for (j = 0; j < NPTEPG; j++) {
3521				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3522				if (pm == kernel_pmap && va < KERNBASE)
3523					continue;
3524				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3525					continue;
3526				ptep = pmap_pte_quick(pm, va);
3527				if (pmap_pte_v(ptep))
3528					printf("%x:%x ", va, *ptep);
3529			};
3530
3531}
3532
3533void
3534pmap_pvdump(pa)
3535	vm_offset_t pa;
3536{
3537	pv_entry_t pv;
3538	vm_page_t m;
3539
3540	printf("pa %x", pa);
3541	m = PHYS_TO_VM_PAGE(pa);
3542	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3543		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3544		pads(pv->pv_pmap);
3545	}
3546	printf(" ");
3547}
3548#endif
3549