pmap.c revision 95710
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 95710 2002-04-29 07:43:16Z peter $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_kstack_pages.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mman.h>
81#include <sys/msgbuf.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/sx.h>
85#include <sys/user.h>
86#include <sys/vmmeter.h>
87#include <sys/sysctl.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/uma.h>
99
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103#if defined(SMP) || defined(APIC_IO)
104#include <machine/smp.h>
105#include <machine/apic.h>
106#include <machine/segments.h>
107#include <machine/tss.h>
108#endif /* SMP || APIC_IO */
109
110#define PMAP_KEEP_PDIRS
111#ifndef PMAP_SHPGPERPROC
112#define PMAP_SHPGPERPROC 200
113#endif
114
115#if defined(DIAGNOSTIC)
116#define PMAP_DIAGNOSTIC
117#endif
118
119#define MINPV 2048
120
121#if !defined(PMAP_DIAGNOSTIC)
122#define PMAP_INLINE __inline
123#else
124#define PMAP_INLINE
125#endif
126
127/*
128 * Get PDEs and PTEs for user/kernel address space
129 */
130#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
132
133#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
134#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
135#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
136#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
137#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
138
139#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
140#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
141
142/*
143 * Given a map and a machine independent protection code,
144 * convert to a vax protection code.
145 */
146#define pte_prot(m, p)	(protection_codes[p])
147static int protection_codes[8];
148
149struct pmap kernel_pmap_store;
150LIST_HEAD(pmaplist, pmap);
151struct pmaplist allpmaps;
152
153vm_offset_t avail_start;	/* PA of first available physical page */
154vm_offset_t avail_end;		/* PA of last available physical page */
155vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
156vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
157static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
158static int pgeflag;		/* PG_G or-in */
159static int pseflag;		/* PG_PS or-in */
160
161static vm_object_t kptobj;
162
163static int nkpt;
164vm_offset_t kernel_vm_end;
165
166/*
167 * Data for the pv entry allocation mechanism
168 */
169static uma_zone_t pvzone;
170static struct vm_object pvzone_obj;
171static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
172static int pmap_pagedaemon_waken = 0;
173
174/*
175 * All those kernel PT submaps that BSD is so fond of
176 */
177pt_entry_t *CMAP1 = 0;
178static pt_entry_t *CMAP2, *ptmmap;
179caddr_t CADDR1 = 0, ptvmmap = 0;
180static caddr_t CADDR2;
181static pt_entry_t *msgbufmap;
182struct msgbuf *msgbufp = 0;
183
184/*
185 * Crashdump maps.
186 */
187static pt_entry_t *pt_crashdumpmap;
188static caddr_t crashdumpmap;
189
190#ifdef SMP
191extern pt_entry_t *SMPpt;
192#endif
193static pt_entry_t *PMAP1 = 0;
194static pt_entry_t *PADDR1 = 0;
195
196static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
197static pt_entry_t *get_ptbase(pmap_t pmap);
198static pv_entry_t get_pv_entry(void);
199static void	i386_protection_init(void);
200static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
201
202static void	pmap_remove_all(vm_page_t m);
203static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
204				      vm_page_t m, vm_page_t mpte);
205static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
206static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
207static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
208					vm_offset_t va);
209static boolean_t pmap_testbit(vm_page_t m, int bit);
210static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
211		vm_page_t mpte, vm_page_t m);
212
213static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
214
215static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
216static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
217static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
218static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
219static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
220static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
221static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
222
223static pd_entry_t pdir4mb;
224
225/*
226 *	Routine:	pmap_pte
227 *	Function:
228 *		Extract the page table entry associated
229 *		with the given map/virtual_address pair.
230 */
231
232PMAP_INLINE pt_entry_t *
233pmap_pte(pmap, va)
234	register pmap_t pmap;
235	vm_offset_t va;
236{
237	pd_entry_t *pdeaddr;
238
239	if (pmap) {
240		pdeaddr = pmap_pde(pmap, va);
241		if (*pdeaddr & PG_PS)
242			return pdeaddr;
243		if (*pdeaddr) {
244			return get_ptbase(pmap) + i386_btop(va);
245		}
246	}
247	return (0);
248}
249
250/*
251 * Move the kernel virtual free pointer to the next
252 * 4MB.  This is used to help improve performance
253 * by using a large (4MB) page for much of the kernel
254 * (.text, .data, .bss)
255 */
256static vm_offset_t
257pmap_kmem_choose(vm_offset_t addr)
258{
259	vm_offset_t newaddr = addr;
260#ifndef DISABLE_PSE
261	if (cpu_feature & CPUID_PSE) {
262		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
263	}
264#endif
265	return newaddr;
266}
267
268/*
269 *	Bootstrap the system enough to run with virtual memory.
270 *
271 *	On the i386 this is called after mapping has already been enabled
272 *	and just syncs the pmap module with what has already been done.
273 *	[We can't call it easily with mapping off since the kernel is not
274 *	mapped with PA == VA, hence we would have to relocate every address
275 *	from the linked base (virtual) address "KERNBASE" to the actual
276 *	(physical) address starting relative to 0]
277 */
278void
279pmap_bootstrap(firstaddr, loadaddr)
280	vm_offset_t firstaddr;
281	vm_offset_t loadaddr;
282{
283	vm_offset_t va;
284	pt_entry_t *pte;
285	int i;
286
287	avail_start = firstaddr;
288
289	/*
290	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
291	 * large. It should instead be correctly calculated in locore.s and
292	 * not based on 'first' (which is a physical address, not a virtual
293	 * address, for the start of unused physical memory). The kernel
294	 * page tables are NOT double mapped and thus should not be included
295	 * in this calculation.
296	 */
297	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
298	virtual_avail = pmap_kmem_choose(virtual_avail);
299
300	virtual_end = VM_MAX_KERNEL_ADDRESS;
301
302	/*
303	 * Initialize protection array.
304	 */
305	i386_protection_init();
306
307	/*
308	 * Initialize the kernel pmap (which is statically allocated).
309	 */
310	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
311	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
312	TAILQ_INIT(&kernel_pmap->pm_pvlist);
313	LIST_INIT(&allpmaps);
314	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
315	nkpt = NKPT;
316
317	/*
318	 * Reserve some special page table entries/VA space for temporary
319	 * mapping of pages.
320	 */
321#define	SYSMAP(c, p, v, n)	\
322	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
323
324	va = virtual_avail;
325	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
326
327	/*
328	 * CMAP1/CMAP2 are used for zeroing and copying pages.
329	 */
330	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
331	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
332
333	/*
334	 * Crashdump maps.
335	 */
336	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
337
338	/*
339	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
340	 * XXX ptmmap is not used.
341	 */
342	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
343
344	/*
345	 * msgbufp is used to map the system message buffer.
346	 * XXX msgbufmap is not used.
347	 */
348	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
349	       atop(round_page(MSGBUF_SIZE)))
350
351	/*
352	 * ptemap is used for pmap_pte_quick
353	 */
354	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
355
356	virtual_avail = va;
357
358	*CMAP1 = *CMAP2 = 0;
359	for (i = 0; i < NKPT; i++)
360		PTD[i] = 0;
361
362	pgeflag = 0;
363#if !defined(SMP)			/* XXX - see also mp_machdep.c */
364	if (cpu_feature & CPUID_PGE) {
365		pgeflag = PG_G;
366	}
367#endif
368
369/*
370 * Initialize the 4MB page size flag
371 */
372	pseflag = 0;
373/*
374 * The 4MB page version of the initial
375 * kernel page mapping.
376 */
377	pdir4mb = 0;
378
379#if !defined(DISABLE_PSE)
380	if (cpu_feature & CPUID_PSE) {
381		pd_entry_t ptditmp;
382		/*
383		 * Note that we have enabled PSE mode
384		 */
385		pseflag = PG_PS;
386		ptditmp = *(PTmap + i386_btop(KERNBASE));
387		ptditmp &= ~(NBPDR - 1);
388		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
389		pdir4mb = ptditmp;
390
391#if !defined(SMP)
392		/*
393		 * Enable the PSE mode.
394		 */
395		load_cr4(rcr4() | CR4_PSE);
396
397		/*
398		 * We can do the mapping here for the single processor
399		 * case.  We simply ignore the old page table page from
400		 * now on.
401		 */
402		/*
403		 * For SMP, we still need 4K pages to bootstrap APs,
404		 * PSE will be enabled as soon as all APs are up.
405		 */
406		PTD[KPTDI] = (pd_entry_t) ptditmp;
407		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
408		invltlb();
409#endif
410	}
411#endif
412
413#ifdef SMP
414	if (cpu_apic_address == 0)
415		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
416
417	/* local apic is mapped on last page */
418	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
419	    (cpu_apic_address & PG_FRAME));
420#endif
421
422	invltlb();
423}
424
425#ifdef SMP
426/*
427 * Set 4mb pdir for mp startup
428 */
429void
430pmap_set_opt(void)
431{
432	if (pseflag && (cpu_feature & CPUID_PSE)) {
433		load_cr4(rcr4() | CR4_PSE);
434		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
435			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
436			cpu_invltlb();
437		}
438	}
439}
440#endif
441
442void *
443pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
444{
445	*flags = UMA_SLAB_PRIV;
446	return (void *)kmem_alloc(kernel_map, bytes);
447}
448
449/*
450 *	Initialize the pmap module.
451 *	Called by vm_init, to initialize any structures that the pmap
452 *	system needs to map virtual memory.
453 *	pmap_init has been enhanced to support in a fairly consistant
454 *	way, discontiguous physical memory.
455 */
456void
457pmap_init(phys_start, phys_end)
458	vm_offset_t phys_start, phys_end;
459{
460	int i;
461	int initial_pvs;
462
463	/*
464	 * object for kernel page table pages
465	 */
466	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
467
468	/*
469	 * Allocate memory for random pmap data structures.  Includes the
470	 * pv_head_table.
471	 */
472
473	for(i = 0; i < vm_page_array_size; i++) {
474		vm_page_t m;
475
476		m = &vm_page_array[i];
477		TAILQ_INIT(&m->md.pv_list);
478		m->md.pv_list_count = 0;
479	}
480
481	/*
482	 * init the pv free list
483	 */
484	initial_pvs = vm_page_array_size;
485	if (initial_pvs < MINPV)
486		initial_pvs = MINPV;
487	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
488	    NULL, NULL, UMA_ALIGN_PTR, 0);
489	uma_zone_set_allocf(pvzone, pmap_allocf);
490	uma_prealloc(pvzone, initial_pvs);
491
492	/*
493	 * Now it is safe to enable pv_table recording.
494	 */
495	pmap_initialized = TRUE;
496}
497
498/*
499 * Initialize the address space (zone) for the pv_entries.  Set a
500 * high water mark so that the system can recover from excessive
501 * numbers of pv entries.
502 */
503void
504pmap_init2()
505{
506	int shpgperproc = PMAP_SHPGPERPROC;
507
508	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
509	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
510	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
511	pv_entry_high_water = 9 * (pv_entry_max / 10);
512	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
513}
514
515
516/***************************************************
517 * Low level helper routines.....
518 ***************************************************/
519
520#if defined(PMAP_DIAGNOSTIC)
521
522/*
523 * This code checks for non-writeable/modified pages.
524 * This should be an invalid condition.
525 */
526static int
527pmap_nw_modified(pt_entry_t ptea)
528{
529	int pte;
530
531	pte = (int) ptea;
532
533	if ((pte & (PG_M|PG_RW)) == PG_M)
534		return 1;
535	else
536		return 0;
537}
538#endif
539
540
541/*
542 * this routine defines the region(s) of memory that should
543 * not be tested for the modified bit.
544 */
545static PMAP_INLINE int
546pmap_track_modified(vm_offset_t va)
547{
548	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
549		return 1;
550	else
551		return 0;
552}
553
554static PMAP_INLINE void
555invltlb_1pg(vm_offset_t va)
556{
557#ifdef I386_CPU
558	invltlb();
559#else
560	invlpg(va);
561#endif
562}
563
564static __inline void
565pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
566{
567#if defined(SMP)
568	if (pmap->pm_active & PCPU_GET(cpumask))
569		cpu_invlpg((void *)va);
570	if (pmap->pm_active & PCPU_GET(other_cpus))
571		smp_invltlb();
572#else
573	if (pmap->pm_active)
574		invltlb_1pg(va);
575#endif
576}
577
578static __inline void
579pmap_invalidate_all(pmap_t pmap)
580{
581#if defined(SMP)
582	if (pmap->pm_active & PCPU_GET(cpumask))
583		cpu_invltlb();
584	if (pmap->pm_active & PCPU_GET(other_cpus))
585		smp_invltlb();
586#else
587	if (pmap->pm_active)
588		invltlb();
589#endif
590}
591
592/*
593 * Return an address which is the base of the Virtual mapping of
594 * all the PTEs for the given pmap. Note this doesn't say that
595 * all the PTEs will be present or that the pages there are valid.
596 * The PTEs are made available by the recursive mapping trick.
597 * It will map in the alternate PTE space if needed.
598 */
599static pt_entry_t *
600get_ptbase(pmap)
601	pmap_t pmap;
602{
603	pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
604
605	/* are we current address space or kernel? */
606	if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
607		return PTmap;
608	/* otherwise, we are alternate address space */
609	if (frame != (APTDpde & PG_FRAME)) {
610		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
611#if defined(SMP)
612		/* The page directory is not shared between CPUs */
613		cpu_invltlb();
614#else
615		invltlb();
616#endif
617	}
618	return APTmap;
619}
620
621/*
622 * Super fast pmap_pte routine best used when scanning
623 * the pv lists.  This eliminates many coarse-grained
624 * invltlb calls.  Note that many of the pv list
625 * scans are across different pmaps.  It is very wasteful
626 * to do an entire invltlb for checking a single mapping.
627 */
628
629static pt_entry_t *
630pmap_pte_quick(pmap, va)
631	register pmap_t pmap;
632	vm_offset_t va;
633{
634	pd_entry_t pde, newpf;
635	pde = pmap->pm_pdir[va >> PDRSHIFT];
636	if (pde != 0) {
637		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
638		unsigned index = i386_btop(va);
639		/* are we current address space or kernel? */
640		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
641			return PTmap + index;
642		newpf = pde & PG_FRAME;
643		if (((*PMAP1) & PG_FRAME) != newpf) {
644			*PMAP1 = newpf | PG_RW | PG_V;
645			invltlb_1pg((vm_offset_t) PADDR1);
646		}
647		return PADDR1 + (index & (NPTEPG - 1));
648	}
649	return (0);
650}
651
652/*
653 *	Routine:	pmap_extract
654 *	Function:
655 *		Extract the physical page address associated
656 *		with the given map/virtual_address pair.
657 */
658vm_offset_t
659pmap_extract(pmap, va)
660	register pmap_t pmap;
661	vm_offset_t va;
662{
663	vm_offset_t rtval;	/* XXX FIXME */
664	vm_offset_t pdirindex;
665
666	if (pmap == 0)
667		return 0;
668	pdirindex = va >> PDRSHIFT;
669	rtval = pmap->pm_pdir[pdirindex];
670	if (rtval != 0) {
671		pt_entry_t *pte;
672		if ((rtval & PG_PS) != 0) {
673			rtval &= ~(NBPDR - 1);
674			rtval |= va & (NBPDR - 1);
675			return rtval;
676		}
677		pte = get_ptbase(pmap) + i386_btop(va);
678		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
679		return rtval;
680	}
681	return 0;
682
683}
684
685/***************************************************
686 * Low level mapping routines.....
687 ***************************************************/
688
689/*
690 * add a wired page to the kva
691 * note that in order for the mapping to take effect -- you
692 * should do a invltlb after doing the pmap_kenter...
693 */
694PMAP_INLINE void
695pmap_kenter(vm_offset_t va, vm_offset_t pa)
696{
697	pt_entry_t *pte;
698	pt_entry_t npte, opte;
699
700	npte = pa | PG_RW | PG_V | pgeflag;
701	pte = vtopte(va);
702	opte = *pte;
703	*pte = npte;
704	invltlb_1pg(va);
705}
706
707/*
708 * remove a page from the kernel pagetables
709 */
710PMAP_INLINE void
711pmap_kremove(vm_offset_t va)
712{
713	register pt_entry_t *pte;
714
715	pte = vtopte(va);
716	*pte = 0;
717	invltlb_1pg(va);
718}
719
720/*
721 *	Used to map a range of physical addresses into kernel
722 *	virtual address space.
723 *
724 *	The value passed in '*virt' is a suggested virtual address for
725 *	the mapping. Architectures which can support a direct-mapped
726 *	physical to virtual region can return the appropriate address
727 *	within that region, leaving '*virt' unchanged. Other
728 *	architectures should map the pages starting at '*virt' and
729 *	update '*virt' with the first usable address after the mapped
730 *	region.
731 */
732vm_offset_t
733pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
734{
735	vm_offset_t sva = *virt;
736	vm_offset_t va = sva;
737	while (start < end) {
738		pmap_kenter(va, start);
739		va += PAGE_SIZE;
740		start += PAGE_SIZE;
741	}
742	*virt = va;
743	return (sva);
744}
745
746
747/*
748 * Add a list of wired pages to the kva
749 * this routine is only used for temporary
750 * kernel mappings that do not need to have
751 * page modification or references recorded.
752 * Note that old mappings are simply written
753 * over.  The page *must* be wired.
754 */
755void
756pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
757{
758	vm_offset_t end_va;
759
760	end_va = va + count * PAGE_SIZE;
761
762	while (va < end_va) {
763		pt_entry_t *pte;
764
765		pte = vtopte(va);
766		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
767#ifdef SMP
768		cpu_invlpg((void *)va);
769#else
770		invltlb_1pg(va);
771#endif
772		va += PAGE_SIZE;
773		m++;
774	}
775#ifdef SMP
776	smp_invltlb();
777#endif
778}
779
780/*
781 * this routine jerks page mappings from the
782 * kernel -- it is meant only for temporary mappings.
783 */
784void
785pmap_qremove(vm_offset_t va, int count)
786{
787	vm_offset_t end_va;
788
789	end_va = va + count*PAGE_SIZE;
790
791	while (va < end_va) {
792		pt_entry_t *pte;
793
794		pte = vtopte(va);
795		*pte = 0;
796#ifdef SMP
797		cpu_invlpg((void *)va);
798#else
799		invltlb_1pg(va);
800#endif
801		va += PAGE_SIZE;
802	}
803#ifdef SMP
804	smp_invltlb();
805#endif
806}
807
808static vm_page_t
809pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
810{
811	vm_page_t m;
812retry:
813	m = vm_page_lookup(object, pindex);
814	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
815		goto retry;
816	return m;
817}
818
819/*
820 * Create the Uarea stack for a new process.
821 * This routine directly affects the fork perf for a process.
822 */
823void
824pmap_new_proc(struct proc *p)
825{
826#ifdef I386_CPU
827	int updateneeded = 0;
828#endif
829	int i;
830	vm_object_t upobj;
831	vm_offset_t up;
832	vm_page_t m;
833	pt_entry_t *ptek, oldpte;
834
835	/*
836	 * allocate object for the upages
837	 */
838	upobj = p->p_upages_obj;
839	if (upobj == NULL) {
840		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
841		p->p_upages_obj = upobj;
842	}
843
844	/* get a kernel virtual address for the U area for this thread */
845	up = (vm_offset_t)p->p_uarea;
846	if (up == 0) {
847		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
848		if (up == 0)
849			panic("pmap_new_proc: upage allocation failed");
850		p->p_uarea = (struct user *)up;
851	}
852
853	ptek = vtopte(up);
854
855	for (i = 0; i < UAREA_PAGES; i++) {
856		/*
857		 * Get a kernel stack page
858		 */
859		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
860
861		/*
862		 * Wire the page
863		 */
864		m->wire_count++;
865		cnt.v_wire_count++;
866
867		oldpte = *(ptek + i);
868		/*
869		 * Enter the page into the kernel address space.
870		 */
871		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
872		if (oldpte) {
873#ifdef I386_CPU
874			updateneeded = 1;
875#else
876			invlpg(up + i * PAGE_SIZE);
877#endif
878		}
879
880		vm_page_wakeup(m);
881		vm_page_flag_clear(m, PG_ZERO);
882		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
883		m->valid = VM_PAGE_BITS_ALL;
884	}
885#ifdef I386_CPU
886	if (updateneeded)
887		invltlb();
888#endif
889}
890
891/*
892 * Dispose the U-Area for a process that has exited.
893 * This routine directly impacts the exit perf of a process.
894 */
895void
896pmap_dispose_proc(p)
897	struct proc *p;
898{
899	int i;
900	vm_object_t upobj;
901	vm_offset_t up;
902	vm_page_t m;
903	pt_entry_t *ptek, oldpte;
904
905	upobj = p->p_upages_obj;
906	up = (vm_offset_t)p->p_uarea;
907	ptek = vtopte(up);
908	for (i = 0; i < UAREA_PAGES; i++) {
909		m = vm_page_lookup(upobj, i);
910		if (m == NULL)
911			panic("pmap_dispose_proc: upage already missing?");
912		vm_page_busy(m);
913		oldpte = *(ptek + i);
914		*(ptek + i) = 0;
915#ifndef I386_CPU
916		invlpg(up + i * PAGE_SIZE);
917#endif
918		vm_page_unwire(m, 0);
919		vm_page_free(m);
920	}
921#ifdef I386_CPU
922	invltlb();
923#endif
924
925	/*
926	 * If the process got swapped out some of its UPAGES might have gotten
927	 * swapped.  Just get rid of the object to clean up the swap use
928	 * proactively.  NOTE! might block waiting for paging I/O to complete.
929	 */
930	if (upobj->type == OBJT_SWAP) {
931		p->p_upages_obj = NULL;
932		vm_object_deallocate(upobj);
933	}
934}
935
936/*
937 * Allow the U_AREA for a process to be prejudicially paged out.
938 */
939void
940pmap_swapout_proc(p)
941	struct proc *p;
942{
943	int i;
944	vm_object_t upobj;
945	vm_offset_t up;
946	vm_page_t m;
947
948	upobj = p->p_upages_obj;
949	up = (vm_offset_t)p->p_uarea;
950	for (i = 0; i < UAREA_PAGES; i++) {
951		m = vm_page_lookup(upobj, i);
952		if (m == NULL)
953			panic("pmap_swapout_proc: upage already missing?");
954		vm_page_dirty(m);
955		vm_page_unwire(m, 0);
956		pmap_kremove(up + i * PAGE_SIZE);
957	}
958}
959
960/*
961 * Bring the U-Area for a specified process back in.
962 */
963void
964pmap_swapin_proc(p)
965	struct proc *p;
966{
967	int i, rv;
968	vm_object_t upobj;
969	vm_offset_t up;
970	vm_page_t m;
971
972	upobj = p->p_upages_obj;
973	up = (vm_offset_t)p->p_uarea;
974	for (i = 0; i < UAREA_PAGES; i++) {
975		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
976		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
977		if (m->valid != VM_PAGE_BITS_ALL) {
978			rv = vm_pager_get_pages(upobj, &m, 1, 0);
979			if (rv != VM_PAGER_OK)
980				panic("pmap_swapin_proc: cannot get upage for proc: %d\n", p->p_pid);
981			m = vm_page_lookup(upobj, i);
982			m->valid = VM_PAGE_BITS_ALL;
983		}
984		vm_page_wire(m);
985		vm_page_wakeup(m);
986		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
987	}
988}
989
990/*
991 * Create the kernel stack (including pcb for i386) for a new thread.
992 * This routine directly affects the fork perf for a process and
993 * create performance for a thread.
994 */
995void
996pmap_new_thread(struct thread *td)
997{
998#ifdef I386_CPU
999	int updateneeded = 0;
1000#endif
1001	int i;
1002	vm_object_t ksobj;
1003	vm_page_t m;
1004	vm_offset_t ks;
1005	pt_entry_t *ptek, oldpte;
1006
1007	/*
1008	 * allocate object for the kstack
1009	 */
1010	ksobj = td->td_kstack_obj;
1011	if (ksobj == NULL) {
1012		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1013		td->td_kstack_obj = ksobj;
1014	}
1015
1016#ifdef KSTACK_GUARD
1017	/* get a kernel virtual address for the kstack for this thread */
1018	ks = td->td_kstack;
1019	if (ks == 0) {
1020		ks = kmem_alloc_nofault(kernel_map,
1021		    (KSTACK_PAGES + 1) * PAGE_SIZE);
1022		if (ks == 0)
1023			panic("pmap_new_thread: kstack allocation failed");
1024		ks += PAGE_SIZE;
1025		td->td_kstack = ks;
1026	}
1027
1028	ptek = vtopte(ks - PAGE_SIZE);
1029	oldpte = *ptek;
1030	*ptek = 0;
1031	if (oldpte) {
1032#ifdef I386_CPU
1033		updateneeded = 1;
1034#else
1035		invlpg(ks - PAGE_SIZE);
1036#endif
1037	}
1038	ptek++;
1039#else
1040	/* get a kernel virtual address for the kstack for this thread */
1041	ks = td->td_kstack;
1042	if (ks == 0) {
1043		ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
1044		if (ks == 0)
1045			panic("pmap_new_thread: kstack allocation failed");
1046		td->td_kstack = ks;
1047	}
1048	ptek = vtopte(ks);
1049#endif
1050	for (i = 0; i < KSTACK_PAGES; i++) {
1051		/*
1052		 * Get a kernel stack page
1053		 */
1054		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1055
1056		/*
1057		 * Wire the page
1058		 */
1059		m->wire_count++;
1060		cnt.v_wire_count++;
1061
1062		oldpte = *(ptek + i);
1063		/*
1064		 * Enter the page into the kernel address space.
1065		 */
1066		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1067		if (oldpte) {
1068#ifdef I386_CPU
1069			updateneeded = 1;
1070#else
1071			invlpg(ks + i * PAGE_SIZE);
1072#endif
1073		}
1074
1075		vm_page_wakeup(m);
1076		vm_page_flag_clear(m, PG_ZERO);
1077		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1078		m->valid = VM_PAGE_BITS_ALL;
1079	}
1080#ifdef I386_CPU
1081	if (updateneeded)
1082		invltlb();
1083#endif
1084}
1085
1086/*
1087 * Dispose the kernel stack for a thread that has exited.
1088 * This routine directly impacts the exit perf of a process and thread.
1089 */
1090void
1091pmap_dispose_thread(td)
1092	struct thread *td;
1093{
1094	int i;
1095	vm_object_t ksobj;
1096	vm_offset_t ks;
1097	vm_page_t m;
1098	pt_entry_t *ptek, oldpte;
1099
1100	ksobj = td->td_kstack_obj;
1101	ks = td->td_kstack;
1102	ptek = vtopte(ks);
1103	for (i = 0; i < KSTACK_PAGES; i++) {
1104		m = vm_page_lookup(ksobj, i);
1105		if (m == NULL)
1106			panic("pmap_dispose_thread: kstack already missing?");
1107		vm_page_busy(m);
1108		oldpte = *(ptek + i);
1109		*(ptek + i) = 0;
1110#ifndef I386_CPU
1111		invlpg(ks + i * PAGE_SIZE);
1112#endif
1113		vm_page_unwire(m, 0);
1114		vm_page_free(m);
1115	}
1116#ifdef I386_CPU
1117	invltlb();
1118#endif
1119
1120	/*
1121	 * If the thread got swapped out some of its KSTACK might have gotten
1122	 * swapped.  Just get rid of the object to clean up the swap use
1123	 * proactively.  NOTE! might block waiting for paging I/O to complete.
1124	 */
1125	if (ksobj->type == OBJT_SWAP) {
1126		td->td_kstack_obj = NULL;
1127		vm_object_deallocate(ksobj);
1128	}
1129}
1130
1131/*
1132 * Allow the Kernel stack for a thread to be prejudicially paged out.
1133 */
1134void
1135pmap_swapout_thread(td)
1136	struct thread *td;
1137{
1138	int i;
1139	vm_object_t ksobj;
1140	vm_offset_t ks;
1141	vm_page_t m;
1142
1143	ksobj = td->td_kstack_obj;
1144	ks = td->td_kstack;
1145	for (i = 0; i < KSTACK_PAGES; i++) {
1146		m = vm_page_lookup(ksobj, i);
1147		if (m == NULL)
1148			panic("pmap_swapout_thread: kstack already missing?");
1149		vm_page_dirty(m);
1150		vm_page_unwire(m, 0);
1151		pmap_kremove(ks + i * PAGE_SIZE);
1152	}
1153}
1154
1155/*
1156 * Bring the kernel stack for a specified thread back in.
1157 */
1158void
1159pmap_swapin_thread(td)
1160	struct thread *td;
1161{
1162	int i, rv;
1163	vm_object_t ksobj;
1164	vm_offset_t ks;
1165	vm_page_t m;
1166
1167	ksobj = td->td_kstack_obj;
1168	ks = td->td_kstack;
1169	for (i = 0; i < KSTACK_PAGES; i++) {
1170		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1171		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1172		if (m->valid != VM_PAGE_BITS_ALL) {
1173			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1174			if (rv != VM_PAGER_OK)
1175				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1176			m = vm_page_lookup(ksobj, i);
1177			m->valid = VM_PAGE_BITS_ALL;
1178		}
1179		vm_page_wire(m);
1180		vm_page_wakeup(m);
1181		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1182	}
1183}
1184
1185/***************************************************
1186 * Page table page management routines.....
1187 ***************************************************/
1188
1189/*
1190 * This routine unholds page table pages, and if the hold count
1191 * drops to zero, then it decrements the wire count.
1192 */
1193static int
1194_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1195{
1196
1197	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1198		;
1199
1200	if (m->hold_count == 0) {
1201		vm_offset_t pteva;
1202		/*
1203		 * unmap the page table page
1204		 */
1205		pmap->pm_pdir[m->pindex] = 0;
1206		--pmap->pm_stats.resident_count;
1207		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1208		    (PTDpde & PG_FRAME)) {
1209			/*
1210			 * Do a invltlb to make the invalidated mapping
1211			 * take effect immediately.
1212			 */
1213			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1214			pmap_invalidate_page(pmap, pteva);
1215		}
1216
1217		if (pmap->pm_ptphint == m)
1218			pmap->pm_ptphint = NULL;
1219
1220		/*
1221		 * If the page is finally unwired, simply free it.
1222		 */
1223		--m->wire_count;
1224		if (m->wire_count == 0) {
1225
1226			vm_page_flash(m);
1227			vm_page_busy(m);
1228			vm_page_free_zero(m);
1229			--cnt.v_wire_count;
1230		}
1231		return 1;
1232	}
1233	return 0;
1234}
1235
1236static PMAP_INLINE int
1237pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1238{
1239	vm_page_unhold(m);
1240	if (m->hold_count == 0)
1241		return _pmap_unwire_pte_hold(pmap, m);
1242	else
1243		return 0;
1244}
1245
1246/*
1247 * After removing a page table entry, this routine is used to
1248 * conditionally free the page, and manage the hold/wire counts.
1249 */
1250static int
1251pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1252{
1253	unsigned ptepindex;
1254	if (va >= VM_MAXUSER_ADDRESS)
1255		return 0;
1256
1257	if (mpte == NULL) {
1258		ptepindex = (va >> PDRSHIFT);
1259		if (pmap->pm_ptphint &&
1260			(pmap->pm_ptphint->pindex == ptepindex)) {
1261			mpte = pmap->pm_ptphint;
1262		} else {
1263			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1264			pmap->pm_ptphint = mpte;
1265		}
1266	}
1267
1268	return pmap_unwire_pte_hold(pmap, mpte);
1269}
1270
1271void
1272pmap_pinit0(pmap)
1273	struct pmap *pmap;
1274{
1275	pmap->pm_pdir =
1276		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1277	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1278	pmap->pm_ptphint = NULL;
1279	pmap->pm_active = 0;
1280	TAILQ_INIT(&pmap->pm_pvlist);
1281	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1282	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1283}
1284
1285/*
1286 * Initialize a preallocated and zeroed pmap structure,
1287 * such as one in a vmspace structure.
1288 */
1289void
1290pmap_pinit(pmap)
1291	register struct pmap *pmap;
1292{
1293	vm_page_t ptdpg;
1294
1295	/*
1296	 * No need to allocate page table space yet but we do need a valid
1297	 * page directory table.
1298	 */
1299	if (pmap->pm_pdir == NULL)
1300		pmap->pm_pdir =
1301			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1302
1303	/*
1304	 * allocate object for the ptes
1305	 */
1306	if (pmap->pm_pteobj == NULL)
1307		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1308
1309	/*
1310	 * allocate the page directory page
1311	 */
1312	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1313			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1314
1315	ptdpg->wire_count = 1;
1316	++cnt.v_wire_count;
1317
1318
1319	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1320	ptdpg->valid = VM_PAGE_BITS_ALL;
1321
1322	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1323	if ((ptdpg->flags & PG_ZERO) == 0)
1324		bzero(pmap->pm_pdir, PAGE_SIZE);
1325
1326	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1327	/* Wire in kernel global address entries. */
1328	/* XXX copies current process, does not fill in MPPTDI */
1329	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1330#ifdef SMP
1331	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1332#endif
1333
1334	/* install self-referential address mapping entry */
1335	pmap->pm_pdir[PTDPTDI] =
1336		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1337
1338	pmap->pm_active = 0;
1339	pmap->pm_ptphint = NULL;
1340	TAILQ_INIT(&pmap->pm_pvlist);
1341	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1342}
1343
1344/*
1345 * Wire in kernel global address entries.  To avoid a race condition
1346 * between pmap initialization and pmap_growkernel, this procedure
1347 * should be called after the vmspace is attached to the process
1348 * but before this pmap is activated.
1349 */
1350void
1351pmap_pinit2(pmap)
1352	struct pmap *pmap;
1353{
1354	/* XXX: Remove this stub when no longer called */
1355}
1356
1357static int
1358pmap_release_free_page(pmap_t pmap, vm_page_t p)
1359{
1360	pd_entry_t *pde = pmap->pm_pdir;
1361	/*
1362	 * This code optimizes the case of freeing non-busy
1363	 * page-table pages.  Those pages are zero now, and
1364	 * might as well be placed directly into the zero queue.
1365	 */
1366	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1367		return 0;
1368
1369	vm_page_busy(p);
1370
1371	/*
1372	 * Remove the page table page from the processes address space.
1373	 */
1374	pde[p->pindex] = 0;
1375	pmap->pm_stats.resident_count--;
1376
1377	if (p->hold_count)  {
1378		panic("pmap_release: freeing held page table page");
1379	}
1380	/*
1381	 * Page directory pages need to have the kernel
1382	 * stuff cleared, so they can go into the zero queue also.
1383	 */
1384	if (p->pindex == PTDPTDI) {
1385		bzero(pde + KPTDI, nkpt * PTESIZE);
1386#ifdef SMP
1387		pde[MPPTDI] = 0;
1388#endif
1389		pde[APTDPTDI] = 0;
1390		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1391	}
1392
1393	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1394		pmap->pm_ptphint = NULL;
1395
1396	p->wire_count--;
1397	cnt.v_wire_count--;
1398	vm_page_free_zero(p);
1399	return 1;
1400}
1401
1402/*
1403 * this routine is called if the page table page is not
1404 * mapped correctly.
1405 */
1406static vm_page_t
1407_pmap_allocpte(pmap, ptepindex)
1408	pmap_t	pmap;
1409	unsigned ptepindex;
1410{
1411	vm_offset_t pteva, ptepa;	/* XXXPA */
1412	vm_page_t m;
1413
1414	/*
1415	 * Find or fabricate a new pagetable page
1416	 */
1417	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1418			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1419
1420	KASSERT(m->queue == PQ_NONE,
1421		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1422
1423	if (m->wire_count == 0)
1424		cnt.v_wire_count++;
1425	m->wire_count++;
1426
1427	/*
1428	 * Increment the hold count for the page table page
1429	 * (denoting a new mapping.)
1430	 */
1431	m->hold_count++;
1432
1433	/*
1434	 * Map the pagetable page into the process address space, if
1435	 * it isn't already there.
1436	 */
1437
1438	pmap->pm_stats.resident_count++;
1439
1440	ptepa = VM_PAGE_TO_PHYS(m);
1441	pmap->pm_pdir[ptepindex] =
1442		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1443
1444	/*
1445	 * Set the page table hint
1446	 */
1447	pmap->pm_ptphint = m;
1448
1449	/*
1450	 * Try to use the new mapping, but if we cannot, then
1451	 * do it with the routine that maps the page explicitly.
1452	 */
1453	if ((m->flags & PG_ZERO) == 0) {
1454		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1455		    (PTDpde & PG_FRAME)) {
1456			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1457			bzero((caddr_t) pteva, PAGE_SIZE);
1458		} else {
1459			pmap_zero_page(m);
1460		}
1461	}
1462
1463	m->valid = VM_PAGE_BITS_ALL;
1464	vm_page_flag_clear(m, PG_ZERO);
1465	vm_page_flag_set(m, PG_MAPPED);
1466	vm_page_wakeup(m);
1467
1468	return m;
1469}
1470
1471static vm_page_t
1472pmap_allocpte(pmap_t pmap, vm_offset_t va)
1473{
1474	unsigned ptepindex;
1475	pd_entry_t ptepa;
1476	vm_page_t m;
1477
1478	/*
1479	 * Calculate pagetable page index
1480	 */
1481	ptepindex = va >> PDRSHIFT;
1482
1483	/*
1484	 * Get the page directory entry
1485	 */
1486	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1487
1488	/*
1489	 * This supports switching from a 4MB page to a
1490	 * normal 4K page.
1491	 */
1492	if (ptepa & PG_PS) {
1493		pmap->pm_pdir[ptepindex] = 0;
1494		ptepa = 0;
1495		invltlb();
1496	}
1497
1498	/*
1499	 * If the page table page is mapped, we just increment the
1500	 * hold count, and activate it.
1501	 */
1502	if (ptepa) {
1503		/*
1504		 * In order to get the page table page, try the
1505		 * hint first.
1506		 */
1507		if (pmap->pm_ptphint &&
1508			(pmap->pm_ptphint->pindex == ptepindex)) {
1509			m = pmap->pm_ptphint;
1510		} else {
1511			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1512			pmap->pm_ptphint = m;
1513		}
1514		m->hold_count++;
1515		return m;
1516	}
1517	/*
1518	 * Here if the pte page isn't mapped, or if it has been deallocated.
1519	 */
1520	return _pmap_allocpte(pmap, ptepindex);
1521}
1522
1523
1524/***************************************************
1525* Pmap allocation/deallocation routines.
1526 ***************************************************/
1527
1528/*
1529 * Release any resources held by the given physical map.
1530 * Called when a pmap initialized by pmap_pinit is being released.
1531 * Should only be called if the map contains no valid mappings.
1532 */
1533void
1534pmap_release(pmap_t pmap)
1535{
1536	vm_page_t p,n,ptdpg;
1537	vm_object_t object = pmap->pm_pteobj;
1538	int curgeneration;
1539
1540#if defined(DIAGNOSTIC)
1541	if (object->ref_count != 1)
1542		panic("pmap_release: pteobj reference count != 1");
1543#endif
1544
1545	ptdpg = NULL;
1546	LIST_REMOVE(pmap, pm_list);
1547retry:
1548	curgeneration = object->generation;
1549	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1550		n = TAILQ_NEXT(p, listq);
1551		if (p->pindex == PTDPTDI) {
1552			ptdpg = p;
1553			continue;
1554		}
1555		while (1) {
1556			if (!pmap_release_free_page(pmap, p) &&
1557				(object->generation != curgeneration))
1558				goto retry;
1559		}
1560	}
1561
1562	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1563		goto retry;
1564}
1565
1566static int
1567kvm_size(SYSCTL_HANDLER_ARGS)
1568{
1569	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1570
1571        return sysctl_handle_long(oidp, &ksize, 0, req);
1572}
1573SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1574    0, 0, kvm_size, "IU", "Size of KVM");
1575
1576static int
1577kvm_free(SYSCTL_HANDLER_ARGS)
1578{
1579	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1580
1581        return sysctl_handle_long(oidp, &kfree, 0, req);
1582}
1583SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1584    0, 0, kvm_free, "IU", "Amount of KVM free");
1585
1586/*
1587 * grow the number of kernel page table entries, if needed
1588 */
1589void
1590pmap_growkernel(vm_offset_t addr)
1591{
1592	struct pmap *pmap;
1593	int s;
1594	vm_offset_t ptppaddr;
1595	vm_page_t nkpg;
1596	pd_entry_t newpdir;
1597
1598	s = splhigh();
1599	if (kernel_vm_end == 0) {
1600		kernel_vm_end = KERNBASE;
1601		nkpt = 0;
1602		while (pdir_pde(PTD, kernel_vm_end)) {
1603			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1604			nkpt++;
1605		}
1606	}
1607	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1608	while (kernel_vm_end < addr) {
1609		if (pdir_pde(PTD, kernel_vm_end)) {
1610			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1611			continue;
1612		}
1613
1614		/*
1615		 * This index is bogus, but out of the way
1616		 */
1617		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1618		if (!nkpg)
1619			panic("pmap_growkernel: no memory to grow kernel");
1620
1621		nkpt++;
1622
1623		vm_page_wire(nkpg);
1624		pmap_zero_page(nkpg);
1625		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1626		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1627		pdir_pde(PTD, kernel_vm_end) = newpdir;
1628
1629		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1630			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1631		}
1632		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1633	}
1634	splx(s);
1635}
1636
1637
1638/***************************************************
1639 * page management routines.
1640 ***************************************************/
1641
1642/*
1643 * free the pv_entry back to the free list
1644 */
1645static PMAP_INLINE void
1646free_pv_entry(pv_entry_t pv)
1647{
1648	pv_entry_count--;
1649	uma_zfree(pvzone, pv);
1650}
1651
1652/*
1653 * get a new pv_entry, allocating a block from the system
1654 * when needed.
1655 * the memory allocation is performed bypassing the malloc code
1656 * because of the possibility of allocations at interrupt time.
1657 */
1658static pv_entry_t
1659get_pv_entry(void)
1660{
1661	pv_entry_count++;
1662	if (pv_entry_high_water &&
1663		(pv_entry_count > pv_entry_high_water) &&
1664		(pmap_pagedaemon_waken == 0)) {
1665		pmap_pagedaemon_waken = 1;
1666		wakeup (&vm_pages_needed);
1667	}
1668	return uma_zalloc(pvzone, M_NOWAIT);
1669}
1670
1671/*
1672 * This routine is very drastic, but can save the system
1673 * in a pinch.
1674 */
1675void
1676pmap_collect()
1677{
1678	int i;
1679	vm_page_t m;
1680	static int warningdone = 0;
1681
1682	if (pmap_pagedaemon_waken == 0)
1683		return;
1684
1685	if (warningdone < 5) {
1686		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1687		warningdone++;
1688	}
1689
1690	for(i = 0; i < vm_page_array_size; i++) {
1691		m = &vm_page_array[i];
1692		if (m->wire_count || m->hold_count || m->busy ||
1693		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1694			continue;
1695		pmap_remove_all(m);
1696	}
1697	pmap_pagedaemon_waken = 0;
1698}
1699
1700
1701/*
1702 * If it is the first entry on the list, it is actually
1703 * in the header and we must copy the following entry up
1704 * to the header.  Otherwise we must search the list for
1705 * the entry.  In either case we free the now unused entry.
1706 */
1707
1708static int
1709pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1710{
1711	pv_entry_t pv;
1712	int rtval;
1713	int s;
1714
1715	s = splvm();
1716	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1717		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1718			if (pmap == pv->pv_pmap && va == pv->pv_va)
1719				break;
1720		}
1721	} else {
1722		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1723			if (va == pv->pv_va)
1724				break;
1725		}
1726	}
1727
1728	rtval = 0;
1729	if (pv) {
1730		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1731		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1732		m->md.pv_list_count--;
1733		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1734			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1735
1736		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1737		free_pv_entry(pv);
1738	}
1739
1740	splx(s);
1741	return rtval;
1742}
1743
1744/*
1745 * Create a pv entry for page at pa for
1746 * (pmap, va).
1747 */
1748static void
1749pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1750{
1751
1752	int s;
1753	pv_entry_t pv;
1754
1755	s = splvm();
1756	pv = get_pv_entry();
1757	pv->pv_va = va;
1758	pv->pv_pmap = pmap;
1759	pv->pv_ptem = mpte;
1760
1761	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1762	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1763	m->md.pv_list_count++;
1764
1765	splx(s);
1766}
1767
1768/*
1769 * pmap_remove_pte: do the things to unmap a page in a process
1770 */
1771static int
1772pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1773{
1774	pt_entry_t oldpte;
1775	vm_page_t m;
1776
1777	oldpte = atomic_readandclear_int(ptq);
1778	if (oldpte & PG_W)
1779		pmap->pm_stats.wired_count -= 1;
1780	/*
1781	 * Machines that don't support invlpg, also don't support
1782	 * PG_G.
1783	 */
1784	if (oldpte & PG_G)
1785		invlpg(va);
1786	pmap->pm_stats.resident_count -= 1;
1787	if (oldpte & PG_MANAGED) {
1788		m = PHYS_TO_VM_PAGE(oldpte);
1789		if (oldpte & PG_M) {
1790#if defined(PMAP_DIAGNOSTIC)
1791			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1792				printf(
1793	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1794				    va, oldpte);
1795			}
1796#endif
1797			if (pmap_track_modified(va))
1798				vm_page_dirty(m);
1799		}
1800		if (oldpte & PG_A)
1801			vm_page_flag_set(m, PG_REFERENCED);
1802		return pmap_remove_entry(pmap, m, va);
1803	} else {
1804		return pmap_unuse_pt(pmap, va, NULL);
1805	}
1806
1807	return 0;
1808}
1809
1810/*
1811 * Remove a single page from a process address space
1812 */
1813static void
1814pmap_remove_page(pmap_t pmap, vm_offset_t va)
1815{
1816	register pt_entry_t *ptq;
1817
1818	/*
1819	 * if there is no pte for this address, just skip it!!!
1820	 */
1821	if (*pmap_pde(pmap, va) == 0) {
1822		return;
1823	}
1824
1825	/*
1826	 * get a local va for mappings for this pmap.
1827	 */
1828	ptq = get_ptbase(pmap) + i386_btop(va);
1829	if (*ptq) {
1830		(void) pmap_remove_pte(pmap, ptq, va);
1831		pmap_invalidate_page(pmap, va);
1832	}
1833	return;
1834}
1835
1836/*
1837 *	Remove the given range of addresses from the specified map.
1838 *
1839 *	It is assumed that the start and end are properly
1840 *	rounded to the page size.
1841 */
1842void
1843pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1844{
1845	register pt_entry_t *ptbase;
1846	vm_offset_t pdnxt;
1847	pd_entry_t ptpaddr;
1848	vm_offset_t sindex, eindex;
1849	int anyvalid;
1850
1851	if (pmap == NULL)
1852		return;
1853
1854	if (pmap->pm_stats.resident_count == 0)
1855		return;
1856
1857	/*
1858	 * special handling of removing one page.  a very
1859	 * common operation and easy to short circuit some
1860	 * code.
1861	 */
1862	if ((sva + PAGE_SIZE == eva) &&
1863	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1864		pmap_remove_page(pmap, sva);
1865		return;
1866	}
1867
1868	anyvalid = 0;
1869
1870	/*
1871	 * Get a local virtual address for the mappings that are being
1872	 * worked with.
1873	 */
1874	ptbase = get_ptbase(pmap);
1875
1876	sindex = i386_btop(sva);
1877	eindex = i386_btop(eva);
1878
1879	for (; sindex < eindex; sindex = pdnxt) {
1880		unsigned pdirindex;
1881
1882		/*
1883		 * Calculate index for next page table.
1884		 */
1885		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1886		if (pmap->pm_stats.resident_count == 0)
1887			break;
1888
1889		pdirindex = sindex / NPDEPG;
1890		ptpaddr = pmap->pm_pdir[pdirindex];
1891		if ((ptpaddr & PG_PS) != 0) {
1892			pmap->pm_pdir[pdirindex] = 0;
1893			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1894			anyvalid++;
1895			continue;
1896		}
1897
1898		/*
1899		 * Weed out invalid mappings. Note: we assume that the page
1900		 * directory table is always allocated, and in kernel virtual.
1901		 */
1902		if (ptpaddr == 0)
1903			continue;
1904
1905		/*
1906		 * Limit our scan to either the end of the va represented
1907		 * by the current page table page, or to the end of the
1908		 * range being removed.
1909		 */
1910		if (pdnxt > eindex) {
1911			pdnxt = eindex;
1912		}
1913
1914		for (; sindex != pdnxt; sindex++) {
1915			vm_offset_t va;
1916			if (ptbase[sindex] == 0) {
1917				continue;
1918			}
1919			va = i386_ptob(sindex);
1920
1921			anyvalid++;
1922			if (pmap_remove_pte(pmap,
1923				ptbase + sindex, va))
1924				break;
1925		}
1926	}
1927
1928	if (anyvalid)
1929		pmap_invalidate_all(pmap);
1930}
1931
1932/*
1933 *	Routine:	pmap_remove_all
1934 *	Function:
1935 *		Removes this physical page from
1936 *		all physical maps in which it resides.
1937 *		Reflects back modify bits to the pager.
1938 *
1939 *	Notes:
1940 *		Original versions of this routine were very
1941 *		inefficient because they iteratively called
1942 *		pmap_remove (slow...)
1943 */
1944
1945static void
1946pmap_remove_all(vm_page_t m)
1947{
1948	register pv_entry_t pv;
1949	pt_entry_t *pte, tpte;
1950	int s;
1951
1952#if defined(PMAP_DIAGNOSTIC)
1953	/*
1954	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1955	 * pages!
1956	 */
1957	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1958		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1959	}
1960#endif
1961
1962	s = splvm();
1963	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1964		pv->pv_pmap->pm_stats.resident_count--;
1965
1966		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1967
1968		tpte = atomic_readandclear_int(pte);
1969		if (tpte & PG_W)
1970			pv->pv_pmap->pm_stats.wired_count--;
1971
1972		if (tpte & PG_A)
1973			vm_page_flag_set(m, PG_REFERENCED);
1974
1975		/*
1976		 * Update the vm_page_t clean and reference bits.
1977		 */
1978		if (tpte & PG_M) {
1979#if defined(PMAP_DIAGNOSTIC)
1980			if (pmap_nw_modified((pt_entry_t) tpte)) {
1981				printf(
1982	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1983				    pv->pv_va, tpte);
1984			}
1985#endif
1986			if (pmap_track_modified(pv->pv_va))
1987				vm_page_dirty(m);
1988		}
1989		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1990
1991		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1992		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1993		m->md.pv_list_count--;
1994		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1995		free_pv_entry(pv);
1996	}
1997
1998	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1999
2000	splx(s);
2001}
2002
2003/*
2004 *	Set the physical protection on the
2005 *	specified range of this map as requested.
2006 */
2007void
2008pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2009{
2010	register pt_entry_t *ptbase;
2011	vm_offset_t pdnxt;
2012	pd_entry_t ptpaddr;
2013	vm_pindex_t sindex, eindex;
2014	int anychanged;
2015
2016	if (pmap == NULL)
2017		return;
2018
2019	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2020		pmap_remove(pmap, sva, eva);
2021		return;
2022	}
2023
2024	if (prot & VM_PROT_WRITE)
2025		return;
2026
2027	anychanged = 0;
2028
2029	ptbase = get_ptbase(pmap);
2030
2031	sindex = i386_btop(sva);
2032	eindex = i386_btop(eva);
2033
2034	for (; sindex < eindex; sindex = pdnxt) {
2035
2036		unsigned pdirindex;
2037
2038		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2039
2040		pdirindex = sindex / NPDEPG;
2041		ptpaddr = pmap->pm_pdir[pdirindex];
2042		if ((ptpaddr & PG_PS) != 0) {
2043			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2044			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2045			anychanged++;
2046			continue;
2047		}
2048
2049		/*
2050		 * Weed out invalid mappings. Note: we assume that the page
2051		 * directory table is always allocated, and in kernel virtual.
2052		 */
2053		if (ptpaddr == 0)
2054			continue;
2055
2056		if (pdnxt > eindex) {
2057			pdnxt = eindex;
2058		}
2059
2060		for (; sindex != pdnxt; sindex++) {
2061
2062			pt_entry_t pbits;
2063			vm_page_t m;
2064
2065			pbits = ptbase[sindex];
2066
2067			if (pbits & PG_MANAGED) {
2068				m = NULL;
2069				if (pbits & PG_A) {
2070					m = PHYS_TO_VM_PAGE(pbits);
2071					vm_page_flag_set(m, PG_REFERENCED);
2072					pbits &= ~PG_A;
2073				}
2074				if (pbits & PG_M) {
2075					if (pmap_track_modified(i386_ptob(sindex))) {
2076						if (m == NULL)
2077							m = PHYS_TO_VM_PAGE(pbits);
2078						vm_page_dirty(m);
2079						pbits &= ~PG_M;
2080					}
2081				}
2082			}
2083
2084			pbits &= ~PG_RW;
2085
2086			if (pbits != ptbase[sindex]) {
2087				ptbase[sindex] = pbits;
2088				anychanged = 1;
2089			}
2090		}
2091	}
2092	if (anychanged)
2093		pmap_invalidate_all(pmap);
2094}
2095
2096/*
2097 *	Insert the given physical page (p) at
2098 *	the specified virtual address (v) in the
2099 *	target physical map with the protection requested.
2100 *
2101 *	If specified, the page will be wired down, meaning
2102 *	that the related pte can not be reclaimed.
2103 *
2104 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2105 *	or lose information.  That is, this routine must actually
2106 *	insert this page into the given map NOW.
2107 */
2108void
2109pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2110	   boolean_t wired)
2111{
2112	vm_offset_t pa;
2113	register pt_entry_t *pte;
2114	vm_offset_t opa;
2115	pt_entry_t origpte, newpte;
2116	vm_page_t mpte;
2117
2118	if (pmap == NULL)
2119		return;
2120
2121	va &= PG_FRAME;
2122#ifdef PMAP_DIAGNOSTIC
2123	if (va > VM_MAX_KERNEL_ADDRESS)
2124		panic("pmap_enter: toobig");
2125	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2126		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2127#endif
2128
2129	mpte = NULL;
2130	/*
2131	 * In the case that a page table page is not
2132	 * resident, we are creating it here.
2133	 */
2134	if (va < VM_MAXUSER_ADDRESS) {
2135		mpte = pmap_allocpte(pmap, va);
2136	}
2137#if 0 && defined(PMAP_DIAGNOSTIC)
2138	else {
2139		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2140		origpte = *pdeaddr;
2141		if ((origpte & PG_V) == 0) {
2142			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2143				pmap->pm_pdir[PTDPTDI], origpte, va);
2144		}
2145	}
2146#endif
2147
2148	pte = pmap_pte(pmap, va);
2149
2150	/*
2151	 * Page Directory table entry not valid, we need a new PT page
2152	 */
2153	if (pte == NULL) {
2154		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2155			(void *)pmap->pm_pdir[PTDPTDI], va);
2156	}
2157
2158	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2159	origpte = *(vm_offset_t *)pte;
2160	opa = origpte & PG_FRAME;
2161
2162	if (origpte & PG_PS)
2163		panic("pmap_enter: attempted pmap_enter on 4MB page");
2164
2165	/*
2166	 * Mapping has not changed, must be protection or wiring change.
2167	 */
2168	if (origpte && (opa == pa)) {
2169		/*
2170		 * Wiring change, just update stats. We don't worry about
2171		 * wiring PT pages as they remain resident as long as there
2172		 * are valid mappings in them. Hence, if a user page is wired,
2173		 * the PT page will be also.
2174		 */
2175		if (wired && ((origpte & PG_W) == 0))
2176			pmap->pm_stats.wired_count++;
2177		else if (!wired && (origpte & PG_W))
2178			pmap->pm_stats.wired_count--;
2179
2180#if defined(PMAP_DIAGNOSTIC)
2181		if (pmap_nw_modified((pt_entry_t) origpte)) {
2182			printf(
2183	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2184			    va, origpte);
2185		}
2186#endif
2187
2188		/*
2189		 * Remove extra pte reference
2190		 */
2191		if (mpte)
2192			mpte->hold_count--;
2193
2194		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2195			if ((origpte & PG_RW) == 0) {
2196				*pte |= PG_RW;
2197#ifdef SMP
2198				cpu_invlpg((void *)va);
2199				if (pmap->pm_active & PCPU_GET(other_cpus))
2200					smp_invltlb();
2201#else
2202				invltlb_1pg(va);
2203#endif
2204			}
2205			return;
2206		}
2207
2208		/*
2209		 * We might be turning off write access to the page,
2210		 * so we go ahead and sense modify status.
2211		 */
2212		if (origpte & PG_MANAGED) {
2213			if ((origpte & PG_M) && pmap_track_modified(va)) {
2214				vm_page_t om;
2215				om = PHYS_TO_VM_PAGE(opa);
2216				vm_page_dirty(om);
2217			}
2218			pa |= PG_MANAGED;
2219		}
2220		goto validate;
2221	}
2222	/*
2223	 * Mapping has changed, invalidate old range and fall through to
2224	 * handle validating new mapping.
2225	 */
2226	if (opa) {
2227		int err;
2228		err = pmap_remove_pte(pmap, pte, va);
2229		if (err)
2230			panic("pmap_enter: pte vanished, va: 0x%x", va);
2231	}
2232
2233	/*
2234	 * Enter on the PV list if part of our managed memory. Note that we
2235	 * raise IPL while manipulating pv_table since pmap_enter can be
2236	 * called at interrupt time.
2237	 */
2238	if (pmap_initialized &&
2239	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2240		pmap_insert_entry(pmap, va, mpte, m);
2241		pa |= PG_MANAGED;
2242	}
2243
2244	/*
2245	 * Increment counters
2246	 */
2247	pmap->pm_stats.resident_count++;
2248	if (wired)
2249		pmap->pm_stats.wired_count++;
2250
2251validate:
2252	/*
2253	 * Now validate mapping with desired protection/wiring.
2254	 */
2255	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2256
2257	if (wired)
2258		newpte |= PG_W;
2259	if (va < VM_MAXUSER_ADDRESS)
2260		newpte |= PG_U;
2261	if (pmap == kernel_pmap)
2262		newpte |= pgeflag;
2263
2264	/*
2265	 * if the mapping or permission bits are different, we need
2266	 * to update the pte.
2267	 */
2268	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2269		*pte = newpte | PG_A;
2270		/*if (origpte)*/ {
2271#ifdef SMP
2272			cpu_invlpg((void *)va);
2273			if (pmap->pm_active & PCPU_GET(other_cpus))
2274				smp_invltlb();
2275#else
2276			invltlb_1pg(va);
2277#endif
2278		}
2279	}
2280}
2281
2282/*
2283 * this code makes some *MAJOR* assumptions:
2284 * 1. Current pmap & pmap exists.
2285 * 2. Not wired.
2286 * 3. Read access.
2287 * 4. No page table pages.
2288 * 5. Tlbflush is deferred to calling procedure.
2289 * 6. Page IS managed.
2290 * but is *MUCH* faster than pmap_enter...
2291 */
2292
2293static vm_page_t
2294pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2295{
2296	pt_entry_t *pte;
2297	vm_offset_t pa;
2298
2299	/*
2300	 * In the case that a page table page is not
2301	 * resident, we are creating it here.
2302	 */
2303	if (va < VM_MAXUSER_ADDRESS) {
2304		unsigned ptepindex;
2305		pd_entry_t ptepa;
2306
2307		/*
2308		 * Calculate pagetable page index
2309		 */
2310		ptepindex = va >> PDRSHIFT;
2311		if (mpte && (mpte->pindex == ptepindex)) {
2312			mpte->hold_count++;
2313		} else {
2314retry:
2315			/*
2316			 * Get the page directory entry
2317			 */
2318			ptepa = pmap->pm_pdir[ptepindex];
2319
2320			/*
2321			 * If the page table page is mapped, we just increment
2322			 * the hold count, and activate it.
2323			 */
2324			if (ptepa) {
2325				if (ptepa & PG_PS)
2326					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2327				if (pmap->pm_ptphint &&
2328					(pmap->pm_ptphint->pindex == ptepindex)) {
2329					mpte = pmap->pm_ptphint;
2330				} else {
2331					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2332					pmap->pm_ptphint = mpte;
2333				}
2334				if (mpte == NULL)
2335					goto retry;
2336				mpte->hold_count++;
2337			} else {
2338				mpte = _pmap_allocpte(pmap, ptepindex);
2339			}
2340		}
2341	} else {
2342		mpte = NULL;
2343	}
2344
2345	/*
2346	 * This call to vtopte makes the assumption that we are
2347	 * entering the page into the current pmap.  In order to support
2348	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2349	 * But that isn't as quick as vtopte.
2350	 */
2351	pte = vtopte(va);
2352	if (*pte) {
2353		if (mpte)
2354			pmap_unwire_pte_hold(pmap, mpte);
2355		return 0;
2356	}
2357
2358	/*
2359	 * Enter on the PV list if part of our managed memory. Note that we
2360	 * raise IPL while manipulating pv_table since pmap_enter can be
2361	 * called at interrupt time.
2362	 */
2363	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2364		pmap_insert_entry(pmap, va, mpte, m);
2365
2366	/*
2367	 * Increment counters
2368	 */
2369	pmap->pm_stats.resident_count++;
2370
2371	pa = VM_PAGE_TO_PHYS(m);
2372
2373	/*
2374	 * Now validate mapping with RO protection
2375	 */
2376	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2377		*pte = pa | PG_V | PG_U;
2378	else
2379		*pte = pa | PG_V | PG_U | PG_MANAGED;
2380
2381	return mpte;
2382}
2383
2384/*
2385 * Make a temporary mapping for a physical address.  This is only intended
2386 * to be used for panic dumps.
2387 */
2388void *
2389pmap_kenter_temporary(vm_offset_t pa, int i)
2390{
2391	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2392	return ((void *)crashdumpmap);
2393}
2394
2395#define MAX_INIT_PT (96)
2396/*
2397 * pmap_object_init_pt preloads the ptes for a given object
2398 * into the specified pmap.  This eliminates the blast of soft
2399 * faults on process startup and immediately after an mmap.
2400 */
2401void
2402pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2403		    vm_object_t object, vm_pindex_t pindex,
2404		    vm_size_t size, int limit)
2405{
2406	vm_offset_t tmpidx;
2407	int psize;
2408	vm_page_t p, mpte;
2409	int objpgs;
2410
2411	if (pmap == NULL || object == NULL)
2412		return;
2413
2414	/*
2415	 * This code maps large physical mmap regions into the
2416	 * processor address space.  Note that some shortcuts
2417	 * are taken, but the code works.
2418	 */
2419	if (pseflag && (object->type == OBJT_DEVICE) &&
2420	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2421		int i;
2422		vm_page_t m[1];
2423		unsigned int ptepindex;
2424		int npdes;
2425		pd_entry_t ptepa;
2426
2427		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2428			return;
2429
2430retry:
2431		p = vm_page_lookup(object, pindex);
2432		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2433			goto retry;
2434
2435		if (p == NULL) {
2436			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2437			if (p == NULL)
2438				return;
2439			m[0] = p;
2440
2441			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2442				vm_page_free(p);
2443				return;
2444			}
2445
2446			p = vm_page_lookup(object, pindex);
2447			vm_page_wakeup(p);
2448		}
2449
2450		ptepa = VM_PAGE_TO_PHYS(p);
2451		if (ptepa & (NBPDR - 1)) {
2452			return;
2453		}
2454
2455		p->valid = VM_PAGE_BITS_ALL;
2456
2457		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2458		npdes = size >> PDRSHIFT;
2459		for(i = 0; i < npdes; i++) {
2460			pmap->pm_pdir[ptepindex] =
2461			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2462			ptepa += NBPDR;
2463			ptepindex += 1;
2464		}
2465		vm_page_flag_set(p, PG_MAPPED);
2466		invltlb();
2467		return;
2468	}
2469
2470	psize = i386_btop(size);
2471
2472	if ((object->type != OBJT_VNODE) ||
2473	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2474	     (object->resident_page_count > MAX_INIT_PT))) {
2475		return;
2476	}
2477
2478	if (psize + pindex > object->size) {
2479		if (object->size < pindex)
2480			return;
2481		psize = object->size - pindex;
2482	}
2483
2484	mpte = NULL;
2485	/*
2486	 * if we are processing a major portion of the object, then scan the
2487	 * entire thing.
2488	 */
2489	if (psize > (object->resident_page_count >> 2)) {
2490		objpgs = psize;
2491
2492		for (p = TAILQ_FIRST(&object->memq);
2493		    ((objpgs > 0) && (p != NULL));
2494		    p = TAILQ_NEXT(p, listq)) {
2495
2496			tmpidx = p->pindex;
2497			if (tmpidx < pindex) {
2498				continue;
2499			}
2500			tmpidx -= pindex;
2501			if (tmpidx >= psize) {
2502				continue;
2503			}
2504			/*
2505			 * don't allow an madvise to blow away our really
2506			 * free pages allocating pv entries.
2507			 */
2508			if ((limit & MAP_PREFAULT_MADVISE) &&
2509			    cnt.v_free_count < cnt.v_free_reserved) {
2510				break;
2511			}
2512			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2513				(p->busy == 0) &&
2514			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2515				if ((p->queue - p->pc) == PQ_CACHE)
2516					vm_page_deactivate(p);
2517				vm_page_busy(p);
2518				mpte = pmap_enter_quick(pmap,
2519					addr + i386_ptob(tmpidx), p, mpte);
2520				vm_page_flag_set(p, PG_MAPPED);
2521				vm_page_wakeup(p);
2522			}
2523			objpgs -= 1;
2524		}
2525	} else {
2526		/*
2527		 * else lookup the pages one-by-one.
2528		 */
2529		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2530			/*
2531			 * don't allow an madvise to blow away our really
2532			 * free pages allocating pv entries.
2533			 */
2534			if ((limit & MAP_PREFAULT_MADVISE) &&
2535			    cnt.v_free_count < cnt.v_free_reserved) {
2536				break;
2537			}
2538			p = vm_page_lookup(object, tmpidx + pindex);
2539			if (p &&
2540			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2541				(p->busy == 0) &&
2542			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2543				if ((p->queue - p->pc) == PQ_CACHE)
2544					vm_page_deactivate(p);
2545				vm_page_busy(p);
2546				mpte = pmap_enter_quick(pmap,
2547					addr + i386_ptob(tmpidx), p, mpte);
2548				vm_page_flag_set(p, PG_MAPPED);
2549				vm_page_wakeup(p);
2550			}
2551		}
2552	}
2553	return;
2554}
2555
2556/*
2557 * pmap_prefault provides a quick way of clustering
2558 * pagefaults into a processes address space.  It is a "cousin"
2559 * of pmap_object_init_pt, except it runs at page fault time instead
2560 * of mmap time.
2561 */
2562#define PFBAK 4
2563#define PFFOR 4
2564#define PAGEORDER_SIZE (PFBAK+PFFOR)
2565
2566static int pmap_prefault_pageorder[] = {
2567	-PAGE_SIZE, PAGE_SIZE,
2568	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2569	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2570	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2571};
2572
2573void
2574pmap_prefault(pmap, addra, entry)
2575	pmap_t pmap;
2576	vm_offset_t addra;
2577	vm_map_entry_t entry;
2578{
2579	int i;
2580	vm_offset_t starta;
2581	vm_offset_t addr;
2582	vm_pindex_t pindex;
2583	vm_page_t m, mpte;
2584	vm_object_t object;
2585
2586	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2587		return;
2588
2589	object = entry->object.vm_object;
2590
2591	starta = addra - PFBAK * PAGE_SIZE;
2592	if (starta < entry->start) {
2593		starta = entry->start;
2594	} else if (starta > addra) {
2595		starta = 0;
2596	}
2597
2598	mpte = NULL;
2599	for (i = 0; i < PAGEORDER_SIZE; i++) {
2600		vm_object_t lobject;
2601		pt_entry_t *pte;
2602
2603		addr = addra + pmap_prefault_pageorder[i];
2604		if (addr > addra + (PFFOR * PAGE_SIZE))
2605			addr = 0;
2606
2607		if (addr < starta || addr >= entry->end)
2608			continue;
2609
2610		if ((*pmap_pde(pmap, addr)) == NULL)
2611			continue;
2612
2613		pte = vtopte(addr);
2614		if (*pte)
2615			continue;
2616
2617		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2618		lobject = object;
2619		for (m = vm_page_lookup(lobject, pindex);
2620		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2621		    lobject = lobject->backing_object) {
2622			if (lobject->backing_object_offset & PAGE_MASK)
2623				break;
2624			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2625			m = vm_page_lookup(lobject->backing_object, pindex);
2626		}
2627
2628		/*
2629		 * give-up when a page is not in memory
2630		 */
2631		if (m == NULL)
2632			break;
2633
2634		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2635			(m->busy == 0) &&
2636		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2637
2638			if ((m->queue - m->pc) == PQ_CACHE) {
2639				vm_page_deactivate(m);
2640			}
2641			vm_page_busy(m);
2642			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2643			vm_page_flag_set(m, PG_MAPPED);
2644			vm_page_wakeup(m);
2645		}
2646	}
2647}
2648
2649/*
2650 *	Routine:	pmap_change_wiring
2651 *	Function:	Change the wiring attribute for a map/virtual-address
2652 *			pair.
2653 *	In/out conditions:
2654 *			The mapping must already exist in the pmap.
2655 */
2656void
2657pmap_change_wiring(pmap, va, wired)
2658	register pmap_t pmap;
2659	vm_offset_t va;
2660	boolean_t wired;
2661{
2662	register pt_entry_t *pte;
2663
2664	if (pmap == NULL)
2665		return;
2666
2667	pte = pmap_pte(pmap, va);
2668
2669	if (wired && !pmap_pte_w(pte))
2670		pmap->pm_stats.wired_count++;
2671	else if (!wired && pmap_pte_w(pte))
2672		pmap->pm_stats.wired_count--;
2673
2674	/*
2675	 * Wiring is not a hardware characteristic so there is no need to
2676	 * invalidate TLB.
2677	 */
2678	pmap_pte_set_w(pte, wired);
2679}
2680
2681
2682
2683/*
2684 *	Copy the range specified by src_addr/len
2685 *	from the source map to the range dst_addr/len
2686 *	in the destination map.
2687 *
2688 *	This routine is only advisory and need not do anything.
2689 */
2690
2691void
2692pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2693	  vm_offset_t src_addr)
2694{
2695	vm_offset_t addr;
2696	vm_offset_t end_addr = src_addr + len;
2697	vm_offset_t pdnxt;
2698	pd_entry_t src_frame, dst_frame;
2699	vm_page_t m;
2700	pd_entry_t saved_pde;
2701
2702	if (dst_addr != src_addr)
2703		return;
2704
2705	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2706	if (src_frame != (PTDpde & PG_FRAME))
2707		return;
2708
2709	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2710	if (dst_frame != (APTDpde & PG_FRAME)) {
2711		APTDpde = dst_frame | PG_RW | PG_V;
2712#if defined(SMP)
2713		/* The page directory is not shared between CPUs */
2714		cpu_invltlb();
2715#else
2716		invltlb();
2717#endif
2718	}
2719 	saved_pde = APTDpde & (PG_FRAME | PG_RW | PG_V);
2720	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2721		pt_entry_t *src_pte, *dst_pte;
2722		vm_page_t dstmpte, srcmpte;
2723		pd_entry_t srcptepaddr;
2724		unsigned ptepindex;
2725
2726		if (addr >= UPT_MIN_ADDRESS)
2727			panic("pmap_copy: invalid to pmap_copy page tables\n");
2728
2729		/*
2730		 * Don't let optional prefaulting of pages make us go
2731		 * way below the low water mark of free pages or way
2732		 * above high water mark of used pv entries.
2733		 */
2734		if (cnt.v_free_count < cnt.v_free_reserved ||
2735		    pv_entry_count > pv_entry_high_water)
2736			break;
2737
2738		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2739		ptepindex = addr >> PDRSHIFT;
2740
2741		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2742		if (srcptepaddr == 0)
2743			continue;
2744
2745		if (srcptepaddr & PG_PS) {
2746			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2747				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2748				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2749			}
2750			continue;
2751		}
2752
2753		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2754		if ((srcmpte == NULL) ||
2755		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2756			continue;
2757
2758		if (pdnxt > end_addr)
2759			pdnxt = end_addr;
2760
2761		src_pte = vtopte(addr);
2762		dst_pte = avtopte(addr);
2763		while (addr < pdnxt) {
2764			pt_entry_t ptetemp;
2765			ptetemp = *src_pte;
2766			/*
2767			 * we only virtual copy managed pages
2768			 */
2769			if ((ptetemp & PG_MANAGED) != 0) {
2770				/*
2771				 * We have to check after allocpte for the
2772				 * pte still being around...  allocpte can
2773				 * block.
2774				 */
2775				dstmpte = pmap_allocpte(dst_pmap, addr);
2776				if ((APTDpde & PG_FRAME) !=
2777				    (saved_pde & PG_FRAME)) {
2778					APTDpde = saved_pde;
2779printf ("IT HAPPENNED!");
2780#if defined(SMP)
2781					cpu_invltlb();
2782#else
2783					invltlb();
2784#endif
2785				}
2786				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2787					/*
2788					 * Clear the modified and
2789					 * accessed (referenced) bits
2790					 * during the copy.
2791					 */
2792					m = PHYS_TO_VM_PAGE(ptetemp);
2793					*dst_pte = ptetemp & ~(PG_M | PG_A);
2794					dst_pmap->pm_stats.resident_count++;
2795					pmap_insert_entry(dst_pmap, addr,
2796						dstmpte, m);
2797	 			} else {
2798					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2799				}
2800				if (dstmpte->hold_count >= srcmpte->hold_count)
2801					break;
2802			}
2803			addr += PAGE_SIZE;
2804			src_pte++;
2805			dst_pte++;
2806		}
2807	}
2808}
2809
2810/*
2811 *	pmap_zero_page zeros the specified hardware page by mapping
2812 *	the page into KVM and using bzero to clear its contents.
2813 */
2814void
2815pmap_zero_page(vm_page_t m)
2816{
2817	vm_offset_t phys = VM_PAGE_TO_PHYS(m);
2818
2819	if (*CMAP2)
2820		panic("pmap_zero_page: CMAP2 busy");
2821
2822	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2823	invltlb_1pg((vm_offset_t)CADDR2);
2824
2825#if defined(I686_CPU)
2826	if (cpu_class == CPUCLASS_686)
2827		i686_pagezero(CADDR2);
2828	else
2829#endif
2830		bzero(CADDR2, PAGE_SIZE);
2831	*CMAP2 = 0;
2832}
2833
2834/*
2835 *	pmap_zero_page_area zeros the specified hardware page by mapping
2836 *	the page into KVM and using bzero to clear its contents.
2837 *
2838 *	off and size may not cover an area beyond a single hardware page.
2839 */
2840void
2841pmap_zero_page_area(vm_page_t m, int off, int size)
2842{
2843	vm_offset_t phys = VM_PAGE_TO_PHYS(m);
2844
2845	if (*CMAP2)
2846		panic("pmap_zero_page: CMAP2 busy");
2847
2848	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2849	invltlb_1pg((vm_offset_t)CADDR2);
2850
2851#if defined(I686_CPU)
2852	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2853		i686_pagezero(CADDR2);
2854	else
2855#endif
2856		bzero((char *)CADDR2 + off, size);
2857	*CMAP2 = 0;
2858}
2859
2860/*
2861 *	pmap_copy_page copies the specified (machine independent)
2862 *	page by mapping the page into virtual memory and using
2863 *	bcopy to copy the page, one machine dependent page at a
2864 *	time.
2865 */
2866void
2867pmap_copy_page(vm_page_t src, vm_page_t dst)
2868{
2869
2870	if (*CMAP1)
2871		panic("pmap_copy_page: CMAP1 busy");
2872	if (*CMAP2)
2873		panic("pmap_copy_page: CMAP2 busy");
2874
2875	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2876	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2877#ifdef I386_CPU
2878	invltlb();
2879#else
2880	invlpg((u_int)CADDR1);
2881	invlpg((u_int)CADDR2);
2882#endif
2883
2884	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2885
2886	*CMAP1 = 0;
2887	*CMAP2 = 0;
2888}
2889
2890
2891/*
2892 *	Routine:	pmap_pageable
2893 *	Function:
2894 *		Make the specified pages (by pmap, offset)
2895 *		pageable (or not) as requested.
2896 *
2897 *		A page which is not pageable may not take
2898 *		a fault; therefore, its page table entry
2899 *		must remain valid for the duration.
2900 *
2901 *		This routine is merely advisory; pmap_enter
2902 *		will specify that these pages are to be wired
2903 *		down (or not) as appropriate.
2904 */
2905void
2906pmap_pageable(pmap, sva, eva, pageable)
2907	pmap_t pmap;
2908	vm_offset_t sva, eva;
2909	boolean_t pageable;
2910{
2911}
2912
2913/*
2914 * Returns true if the pmap's pv is one of the first
2915 * 16 pvs linked to from this page.  This count may
2916 * be changed upwards or downwards in the future; it
2917 * is only necessary that true be returned for a small
2918 * subset of pmaps for proper page aging.
2919 */
2920boolean_t
2921pmap_page_exists_quick(pmap, m)
2922	pmap_t pmap;
2923	vm_page_t m;
2924{
2925	pv_entry_t pv;
2926	int loops = 0;
2927	int s;
2928
2929	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2930		return FALSE;
2931
2932	s = splvm();
2933
2934	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2935		if (pv->pv_pmap == pmap) {
2936			splx(s);
2937			return TRUE;
2938		}
2939		loops++;
2940		if (loops >= 16)
2941			break;
2942	}
2943	splx(s);
2944	return (FALSE);
2945}
2946
2947#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2948/*
2949 * Remove all pages from specified address space
2950 * this aids process exit speeds.  Also, this code
2951 * is special cased for current process only, but
2952 * can have the more generic (and slightly slower)
2953 * mode enabled.  This is much faster than pmap_remove
2954 * in the case of running down an entire address space.
2955 */
2956void
2957pmap_remove_pages(pmap, sva, eva)
2958	pmap_t pmap;
2959	vm_offset_t sva, eva;
2960{
2961	pt_entry_t *pte, tpte;
2962	vm_page_t m;
2963	pv_entry_t pv, npv;
2964	int s;
2965
2966#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2967	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2968		printf("warning: pmap_remove_pages called with non-current pmap\n");
2969		return;
2970	}
2971#endif
2972
2973	s = splvm();
2974	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2975
2976		if (pv->pv_va >= eva || pv->pv_va < sva) {
2977			npv = TAILQ_NEXT(pv, pv_plist);
2978			continue;
2979		}
2980
2981#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2982		pte = vtopte(pv->pv_va);
2983#else
2984		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2985#endif
2986		tpte = *pte;
2987
2988		if (tpte == 0) {
2989			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2990							pte, pv->pv_va);
2991			panic("bad pte");
2992		}
2993
2994/*
2995 * We cannot remove wired pages from a process' mapping at this time
2996 */
2997		if (tpte & PG_W) {
2998			npv = TAILQ_NEXT(pv, pv_plist);
2999			continue;
3000		}
3001
3002		m = PHYS_TO_VM_PAGE(tpte);
3003		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3004		    ("vm_page_t %p phys_addr mismatch %08x %08x",
3005		    m, m->phys_addr, tpte));
3006
3007		KASSERT(m < &vm_page_array[vm_page_array_size],
3008			("pmap_remove_pages: bad tpte %x", tpte));
3009
3010		pv->pv_pmap->pm_stats.resident_count--;
3011
3012		*pte = 0;
3013
3014		/*
3015		 * Update the vm_page_t clean and reference bits.
3016		 */
3017		if (tpte & PG_M) {
3018			vm_page_dirty(m);
3019		}
3020
3021		npv = TAILQ_NEXT(pv, pv_plist);
3022		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3023
3024		m->md.pv_list_count--;
3025		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3026		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3027			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3028		}
3029
3030		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3031		free_pv_entry(pv);
3032	}
3033	splx(s);
3034	pmap_invalidate_all(pmap);
3035}
3036
3037/*
3038 * pmap_testbit tests bits in pte's
3039 * note that the testbit/changebit routines are inline,
3040 * and a lot of things compile-time evaluate.
3041 */
3042static boolean_t
3043pmap_testbit(m, bit)
3044	vm_page_t m;
3045	int bit;
3046{
3047	pv_entry_t pv;
3048	pt_entry_t *pte;
3049	int s;
3050
3051	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3052		return FALSE;
3053
3054	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3055		return FALSE;
3056
3057	s = splvm();
3058
3059	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3060		/*
3061		 * if the bit being tested is the modified bit, then
3062		 * mark clean_map and ptes as never
3063		 * modified.
3064		 */
3065		if (bit & (PG_A|PG_M)) {
3066			if (!pmap_track_modified(pv->pv_va))
3067				continue;
3068		}
3069
3070#if defined(PMAP_DIAGNOSTIC)
3071		if (!pv->pv_pmap) {
3072			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3073			continue;
3074		}
3075#endif
3076		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3077		if (*pte & bit) {
3078			splx(s);
3079			return TRUE;
3080		}
3081	}
3082	splx(s);
3083	return (FALSE);
3084}
3085
3086/*
3087 * this routine is used to modify bits in ptes
3088 */
3089static __inline void
3090pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3091{
3092	register pv_entry_t pv;
3093	register pt_entry_t *pte;
3094	int s;
3095
3096	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3097		return;
3098
3099	s = splvm();
3100
3101	/*
3102	 * Loop over all current mappings setting/clearing as appropos If
3103	 * setting RO do we need to clear the VAC?
3104	 */
3105	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3106		/*
3107		 * don't write protect pager mappings
3108		 */
3109		if (!setem && (bit == PG_RW)) {
3110			if (!pmap_track_modified(pv->pv_va))
3111				continue;
3112		}
3113
3114#if defined(PMAP_DIAGNOSTIC)
3115		if (!pv->pv_pmap) {
3116			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3117			continue;
3118		}
3119#endif
3120
3121		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3122
3123		if (setem) {
3124			*pte |= bit;
3125			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3126		} else {
3127			pt_entry_t pbits = *pte;
3128			if (pbits & bit) {
3129				if (bit == PG_RW) {
3130					if (pbits & PG_M) {
3131						vm_page_dirty(m);
3132					}
3133					*pte = pbits & ~(PG_M|PG_RW);
3134				} else {
3135					*pte = pbits & ~bit;
3136				}
3137				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3138			}
3139		}
3140	}
3141	splx(s);
3142}
3143
3144/*
3145 *      pmap_page_protect:
3146 *
3147 *      Lower the permission for all mappings to a given page.
3148 */
3149void
3150pmap_page_protect(vm_page_t m, vm_prot_t prot)
3151{
3152	if ((prot & VM_PROT_WRITE) == 0) {
3153		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3154			pmap_changebit(m, PG_RW, FALSE);
3155		} else {
3156			pmap_remove_all(m);
3157		}
3158	}
3159}
3160
3161vm_offset_t
3162pmap_phys_address(ppn)
3163	int ppn;
3164{
3165	return (i386_ptob(ppn));
3166}
3167
3168/*
3169 *	pmap_ts_referenced:
3170 *
3171 *	Return a count of reference bits for a page, clearing those bits.
3172 *	It is not necessary for every reference bit to be cleared, but it
3173 *	is necessary that 0 only be returned when there are truly no
3174 *	reference bits set.
3175 *
3176 *	XXX: The exact number of bits to check and clear is a matter that
3177 *	should be tested and standardized at some point in the future for
3178 *	optimal aging of shared pages.
3179 */
3180int
3181pmap_ts_referenced(vm_page_t m)
3182{
3183	register pv_entry_t pv, pvf, pvn;
3184	pt_entry_t *pte;
3185	int s;
3186	int rtval = 0;
3187
3188	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3189		return (rtval);
3190
3191	s = splvm();
3192
3193	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3194
3195		pvf = pv;
3196
3197		do {
3198			pvn = TAILQ_NEXT(pv, pv_list);
3199
3200			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3201
3202			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3203
3204			if (!pmap_track_modified(pv->pv_va))
3205				continue;
3206
3207			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3208
3209			if (pte && (*pte & PG_A)) {
3210				*pte &= ~PG_A;
3211
3212				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3213
3214				rtval++;
3215				if (rtval > 4) {
3216					break;
3217				}
3218			}
3219		} while ((pv = pvn) != NULL && pv != pvf);
3220	}
3221	splx(s);
3222
3223	return (rtval);
3224}
3225
3226/*
3227 *	pmap_is_modified:
3228 *
3229 *	Return whether or not the specified physical page was modified
3230 *	in any physical maps.
3231 */
3232boolean_t
3233pmap_is_modified(vm_page_t m)
3234{
3235	return pmap_testbit(m, PG_M);
3236}
3237
3238/*
3239 *	Clear the modify bits on the specified physical page.
3240 */
3241void
3242pmap_clear_modify(vm_page_t m)
3243{
3244	pmap_changebit(m, PG_M, FALSE);
3245}
3246
3247/*
3248 *	pmap_clear_reference:
3249 *
3250 *	Clear the reference bit on the specified physical page.
3251 */
3252void
3253pmap_clear_reference(vm_page_t m)
3254{
3255	pmap_changebit(m, PG_A, FALSE);
3256}
3257
3258/*
3259 * Miscellaneous support routines follow
3260 */
3261
3262static void
3263i386_protection_init()
3264{
3265	register int *kp, prot;
3266
3267	kp = protection_codes;
3268	for (prot = 0; prot < 8; prot++) {
3269		switch (prot) {
3270		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3271			/*
3272			 * Read access is also 0. There isn't any execute bit,
3273			 * so just make it readable.
3274			 */
3275		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3276		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3277		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3278			*kp++ = 0;
3279			break;
3280		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3281		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3282		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3283		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3284			*kp++ = PG_RW;
3285			break;
3286		}
3287	}
3288}
3289
3290/*
3291 * Map a set of physical memory pages into the kernel virtual
3292 * address space. Return a pointer to where it is mapped. This
3293 * routine is intended to be used for mapping device memory,
3294 * NOT real memory.
3295 */
3296void *
3297pmap_mapdev(pa, size)
3298	vm_offset_t pa;
3299	vm_size_t size;
3300{
3301	vm_offset_t va, tmpva, offset;
3302	pt_entry_t *pte;
3303
3304	offset = pa & PAGE_MASK;
3305	size = roundup(offset + size, PAGE_SIZE);
3306
3307	GIANT_REQUIRED;
3308
3309	va = kmem_alloc_pageable(kernel_map, size);
3310	if (!va)
3311		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3312
3313	pa = pa & PG_FRAME;
3314	for (tmpva = va; size > 0;) {
3315		pte = vtopte(tmpva);
3316		*pte = pa | PG_RW | PG_V | pgeflag;
3317		size -= PAGE_SIZE;
3318		tmpva += PAGE_SIZE;
3319		pa += PAGE_SIZE;
3320	}
3321	invltlb();
3322
3323	return ((void *)(va + offset));
3324}
3325
3326void
3327pmap_unmapdev(va, size)
3328	vm_offset_t va;
3329	vm_size_t size;
3330{
3331	vm_offset_t base, offset;
3332
3333	base = va & PG_FRAME;
3334	offset = va & PAGE_MASK;
3335	size = roundup(offset + size, PAGE_SIZE);
3336	kmem_free(kernel_map, base, size);
3337}
3338
3339/*
3340 * perform the pmap work for mincore
3341 */
3342int
3343pmap_mincore(pmap, addr)
3344	pmap_t pmap;
3345	vm_offset_t addr;
3346{
3347	pt_entry_t *ptep, pte;
3348	vm_page_t m;
3349	int val = 0;
3350
3351	ptep = pmap_pte(pmap, addr);
3352	if (ptep == 0) {
3353		return 0;
3354	}
3355
3356	if ((pte = *ptep) != 0) {
3357		vm_offset_t pa;
3358
3359		val = MINCORE_INCORE;
3360		if ((pte & PG_MANAGED) == 0)
3361			return val;
3362
3363		pa = pte & PG_FRAME;
3364
3365		m = PHYS_TO_VM_PAGE(pa);
3366
3367		/*
3368		 * Modified by us
3369		 */
3370		if (pte & PG_M)
3371			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3372		/*
3373		 * Modified by someone
3374		 */
3375		else if (m->dirty || pmap_is_modified(m))
3376			val |= MINCORE_MODIFIED_OTHER;
3377		/*
3378		 * Referenced by us
3379		 */
3380		if (pte & PG_A)
3381			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3382
3383		/*
3384		 * Referenced by someone
3385		 */
3386		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3387			val |= MINCORE_REFERENCED_OTHER;
3388			vm_page_flag_set(m, PG_REFERENCED);
3389		}
3390	}
3391	return val;
3392}
3393
3394void
3395pmap_activate(struct thread *td)
3396{
3397	struct proc *p = td->td_proc;
3398	pmap_t	pmap;
3399	u_int32_t  cr3;
3400
3401	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3402#if defined(SMP)
3403	pmap->pm_active |= PCPU_GET(cpumask);
3404#else
3405	pmap->pm_active |= 1;
3406#endif
3407#if defined(SWTCH_OPTIM_STATS)
3408	tlb_flush_count++;
3409#endif
3410	cr3 = vtophys(pmap->pm_pdir);
3411	/* XXXKSE this is wrong.
3412	 * pmap_activate is for the current thread on the current cpu
3413	 */
3414	if (p->p_flag & P_KSES) {
3415		/* Make sure all other cr3 entries are updated. */
3416		/* what if they are running?  XXXKSE (maybe abort them) */
3417		FOREACH_THREAD_IN_PROC(p, td) {
3418			td->td_pcb->pcb_cr3 = cr3;
3419		}
3420	} else {
3421		td->td_pcb->pcb_cr3 = cr3;
3422	}
3423	load_cr3(cr3);
3424}
3425
3426vm_offset_t
3427pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3428{
3429
3430	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3431		return addr;
3432	}
3433
3434	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3435	return addr;
3436}
3437
3438
3439#if defined(PMAP_DEBUG)
3440pmap_pid_dump(int pid)
3441{
3442	pmap_t pmap;
3443	struct proc *p;
3444	int npte = 0;
3445	int index;
3446
3447	sx_slock(&allproc_lock);
3448	LIST_FOREACH(p, &allproc, p_list) {
3449		if (p->p_pid != pid)
3450			continue;
3451
3452		if (p->p_vmspace) {
3453			int i,j;
3454			index = 0;
3455			pmap = vmspace_pmap(p->p_vmspace);
3456			for (i = 0; i < NPDEPG; i++) {
3457				pd_entry_t *pde;
3458				pt_entry_t *pte;
3459				vm_offset_t base = i << PDRSHIFT;
3460
3461				pde = &pmap->pm_pdir[i];
3462				if (pde && pmap_pde_v(pde)) {
3463					for (j = 0; j < NPTEPG; j++) {
3464						vm_offset_t va = base + (j << PAGE_SHIFT);
3465						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3466							if (index) {
3467								index = 0;
3468								printf("\n");
3469							}
3470							sx_sunlock(&allproc_lock);
3471							return npte;
3472						}
3473						pte = pmap_pte_quick(pmap, va);
3474						if (pte && pmap_pte_v(pte)) {
3475							pt_entry_t pa;
3476							vm_page_t m;
3477							pa = *pte;
3478							m = PHYS_TO_VM_PAGE(pa);
3479							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3480								va, pa, m->hold_count, m->wire_count, m->flags);
3481							npte++;
3482							index++;
3483							if (index >= 2) {
3484								index = 0;
3485								printf("\n");
3486							} else {
3487								printf(" ");
3488							}
3489						}
3490					}
3491				}
3492			}
3493		}
3494	}
3495	sx_sunlock(&allproc_lock);
3496	return npte;
3497}
3498#endif
3499
3500#if defined(DEBUG)
3501
3502static void	pads(pmap_t pm);
3503void		pmap_pvdump(vm_offset_t pa);
3504
3505/* print address space of pmap*/
3506static void
3507pads(pm)
3508	pmap_t pm;
3509{
3510	int i, j;
3511	vm_offset_t va;
3512	pt_entry_t *ptep;
3513
3514	if (pm == kernel_pmap)
3515		return;
3516	for (i = 0; i < NPDEPG; i++)
3517		if (pm->pm_pdir[i])
3518			for (j = 0; j < NPTEPG; j++) {
3519				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3520				if (pm == kernel_pmap && va < KERNBASE)
3521					continue;
3522				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3523					continue;
3524				ptep = pmap_pte_quick(pm, va);
3525				if (pmap_pte_v(ptep))
3526					printf("%x:%x ", va, *ptep);
3527			};
3528
3529}
3530
3531void
3532pmap_pvdump(pa)
3533	vm_offset_t pa;
3534{
3535	pv_entry_t pv;
3536	vm_page_t m;
3537
3538	printf("pa %x", pa);
3539	m = PHYS_TO_VM_PAGE(pa);
3540	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3541		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3542		pads(pv->pv_pmap);
3543	}
3544	printf(" ");
3545}
3546#endif
3547