pmap.c revision 90947
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 90947 2002-02-20 01:05:57Z peter $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_kstack_pages.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mman.h>
81#include <sys/msgbuf.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/sx.h>
85#include <sys/user.h>
86#include <sys/vmmeter.h>
87#include <sys/sysctl.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103#if defined(SMP) || defined(APIC_IO)
104#include <machine/smp.h>
105#include <machine/apic.h>
106#include <machine/segments.h>
107#include <machine/tss.h>
108#endif /* SMP || APIC_IO */
109
110#define PMAP_KEEP_PDIRS
111#ifndef PMAP_SHPGPERPROC
112#define PMAP_SHPGPERPROC 200
113#endif
114
115#if defined(DIAGNOSTIC)
116#define PMAP_DIAGNOSTIC
117#endif
118
119#define MINPV 2048
120
121#if !defined(PMAP_DIAGNOSTIC)
122#define PMAP_INLINE __inline
123#else
124#define PMAP_INLINE
125#endif
126
127/*
128 * Get PDEs and PTEs for user/kernel address space
129 */
130#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
132
133#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
134#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
135#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
136#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
137#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
138
139#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
140#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
141
142/*
143 * Given a map and a machine independent protection code,
144 * convert to a vax protection code.
145 */
146#define pte_prot(m, p)	(protection_codes[p])
147static int protection_codes[8];
148
149static struct pmap kernel_pmap_store;
150pmap_t kernel_pmap;
151LIST_HEAD(pmaplist, pmap);
152struct pmaplist allpmaps;
153
154vm_offset_t avail_start;	/* PA of first available physical page */
155vm_offset_t avail_end;		/* PA of last available physical page */
156vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
157vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
158static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
159static int pgeflag;		/* PG_G or-in */
160static int pseflag;		/* PG_PS or-in */
161
162static vm_object_t kptobj;
163
164static int nkpt;
165vm_offset_t kernel_vm_end;
166
167/*
168 * Data for the pv entry allocation mechanism
169 */
170static vm_zone_t pvzone;
171static struct vm_zone pvzone_store;
172static struct vm_object pvzone_obj;
173static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
174static int pmap_pagedaemon_waken = 0;
175static struct pv_entry *pvinit;
176
177/*
178 * All those kernel PT submaps that BSD is so fond of
179 */
180pt_entry_t *CMAP1 = 0;
181static pt_entry_t *CMAP2, *ptmmap;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2;
184static pt_entry_t *msgbufmap;
185struct msgbuf *msgbufp = 0;
186
187/*
188 * Crashdump maps.
189 */
190static pt_entry_t *pt_crashdumpmap;
191static caddr_t crashdumpmap;
192
193#ifdef SMP
194extern pt_entry_t *SMPpt;
195#endif
196static pt_entry_t *PMAP1 = 0;
197static pt_entry_t *PADDR1 = 0;
198
199static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
200static pt_entry_t *get_ptbase __P((pmap_t pmap));
201static pv_entry_t get_pv_entry __P((void));
202static void	i386_protection_init __P((void));
203static __inline void	pmap_changebit __P((vm_page_t m, int bit, boolean_t setem));
204
205static void	pmap_remove_all __P((vm_page_t m));
206static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte));
208static int pmap_remove_pte __P((pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva));
209static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
210static int pmap_remove_entry __P((struct pmap *pmap, vm_page_t m,
211					vm_offset_t va));
212static boolean_t pmap_testbit __P((vm_page_t m, int bit));
213static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
214		vm_page_t mpte, vm_page_t m));
215
216static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
217
218static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
219static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
220static pt_entry_t *pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
221static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
222static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
223static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
224
225static pd_entry_t pdir4mb;
226
227/*
228 *	Routine:	pmap_pte
229 *	Function:
230 *		Extract the page table entry associated
231 *		with the given map/virtual_address pair.
232 */
233
234PMAP_INLINE pt_entry_t *
235pmap_pte(pmap, va)
236	register pmap_t pmap;
237	vm_offset_t va;
238{
239	pd_entry_t *pdeaddr;
240
241	if (pmap) {
242		pdeaddr = pmap_pde(pmap, va);
243		if (*pdeaddr & PG_PS)
244			return pdeaddr;
245		if (*pdeaddr) {
246			return get_ptbase(pmap) + i386_btop(va);
247		}
248	}
249	return (0);
250}
251
252/*
253 * Move the kernel virtual free pointer to the next
254 * 4MB.  This is used to help improve performance
255 * by using a large (4MB) page for much of the kernel
256 * (.text, .data, .bss)
257 */
258static vm_offset_t
259pmap_kmem_choose(vm_offset_t addr)
260{
261	vm_offset_t newaddr = addr;
262#ifndef DISABLE_PSE
263	if (cpu_feature & CPUID_PSE) {
264		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
265	}
266#endif
267	return newaddr;
268}
269
270/*
271 *	Bootstrap the system enough to run with virtual memory.
272 *
273 *	On the i386 this is called after mapping has already been enabled
274 *	and just syncs the pmap module with what has already been done.
275 *	[We can't call it easily with mapping off since the kernel is not
276 *	mapped with PA == VA, hence we would have to relocate every address
277 *	from the linked base (virtual) address "KERNBASE" to the actual
278 *	(physical) address starting relative to 0]
279 */
280void
281pmap_bootstrap(firstaddr, loadaddr)
282	vm_offset_t firstaddr;
283	vm_offset_t loadaddr;
284{
285	vm_offset_t va;
286	pt_entry_t *pte;
287	int i;
288
289	avail_start = firstaddr;
290
291	/*
292	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
293	 * large. It should instead be correctly calculated in locore.s and
294	 * not based on 'first' (which is a physical address, not a virtual
295	 * address, for the start of unused physical memory). The kernel
296	 * page tables are NOT double mapped and thus should not be included
297	 * in this calculation.
298	 */
299	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
300	virtual_avail = pmap_kmem_choose(virtual_avail);
301
302	virtual_end = VM_MAX_KERNEL_ADDRESS;
303
304	/*
305	 * Initialize protection array.
306	 */
307	i386_protection_init();
308
309	/*
310	 * The kernel's pmap is statically allocated so we don't have to use
311	 * pmap_create, which is unlikely to work correctly at this part of
312	 * the boot sequence (XXX and which no longer exists).
313	 */
314	kernel_pmap = &kernel_pmap_store;
315
316	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
317	kernel_pmap->pm_count = 1;
318	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
319	TAILQ_INIT(&kernel_pmap->pm_pvlist);
320	LIST_INIT(&allpmaps);
321	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
322	nkpt = NKPT;
323
324	/*
325	 * Reserve some special page table entries/VA space for temporary
326	 * mapping of pages.
327	 */
328#define	SYSMAP(c, p, v, n)	\
329	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
330
331	va = virtual_avail;
332	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
333
334	/*
335	 * CMAP1/CMAP2 are used for zeroing and copying pages.
336	 */
337	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
338	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
339
340	/*
341	 * Crashdump maps.
342	 */
343	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
344
345	/*
346	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
347	 * XXX ptmmap is not used.
348	 */
349	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
350
351	/*
352	 * msgbufp is used to map the system message buffer.
353	 * XXX msgbufmap is not used.
354	 */
355	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
356	       atop(round_page(MSGBUF_SIZE)))
357
358	/*
359	 * ptemap is used for pmap_pte_quick
360	 */
361	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
362
363	virtual_avail = va;
364
365	*CMAP1 = *CMAP2 = 0;
366	for (i = 0; i < NKPT; i++)
367		PTD[i] = 0;
368
369	pgeflag = 0;
370#if !defined(SMP)			/* XXX - see also mp_machdep.c */
371	if (cpu_feature & CPUID_PGE) {
372		pgeflag = PG_G;
373	}
374#endif
375
376/*
377 * Initialize the 4MB page size flag
378 */
379	pseflag = 0;
380/*
381 * The 4MB page version of the initial
382 * kernel page mapping.
383 */
384	pdir4mb = 0;
385
386#if !defined(DISABLE_PSE)
387	if (cpu_feature & CPUID_PSE) {
388		pd_entry_t ptditmp;
389		/*
390		 * Note that we have enabled PSE mode
391		 */
392		pseflag = PG_PS;
393		ptditmp = *(PTmap + i386_btop(KERNBASE));
394		ptditmp &= ~(NBPDR - 1);
395		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
396		pdir4mb = ptditmp;
397
398#if !defined(SMP)
399		/*
400		 * Enable the PSE mode.
401		 */
402		load_cr4(rcr4() | CR4_PSE);
403
404		/*
405		 * We can do the mapping here for the single processor
406		 * case.  We simply ignore the old page table page from
407		 * now on.
408		 */
409		/*
410		 * For SMP, we still need 4K pages to bootstrap APs,
411		 * PSE will be enabled as soon as all APs are up.
412		 */
413		PTD[KPTDI] = (pd_entry_t) ptditmp;
414		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
415		invltlb();
416#endif
417	}
418#endif
419
420#ifdef SMP
421	if (cpu_apic_address == 0)
422		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
423
424	/* local apic is mapped on last page */
425	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
426	    (cpu_apic_address & PG_FRAME));
427#endif
428
429	invltlb();
430}
431
432#ifdef SMP
433/*
434 * Set 4mb pdir for mp startup
435 */
436void
437pmap_set_opt(void)
438{
439	if (pseflag && (cpu_feature & CPUID_PSE)) {
440		load_cr4(rcr4() | CR4_PSE);
441		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
442			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
443			cpu_invltlb();
444		}
445	}
446}
447#endif
448
449/*
450 *	Initialize the pmap module.
451 *	Called by vm_init, to initialize any structures that the pmap
452 *	system needs to map virtual memory.
453 *	pmap_init has been enhanced to support in a fairly consistant
454 *	way, discontiguous physical memory.
455 */
456void
457pmap_init(phys_start, phys_end)
458	vm_offset_t phys_start, phys_end;
459{
460	int i;
461	int initial_pvs;
462
463	/*
464	 * object for kernel page table pages
465	 */
466	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
467
468	/*
469	 * Allocate memory for random pmap data structures.  Includes the
470	 * pv_head_table.
471	 */
472
473	for(i = 0; i < vm_page_array_size; i++) {
474		vm_page_t m;
475
476		m = &vm_page_array[i];
477		TAILQ_INIT(&m->md.pv_list);
478		m->md.pv_list_count = 0;
479	}
480
481	/*
482	 * init the pv free list
483	 */
484	initial_pvs = vm_page_array_size;
485	if (initial_pvs < MINPV)
486		initial_pvs = MINPV;
487	pvzone = &pvzone_store;
488	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
489		initial_pvs * sizeof (struct pv_entry));
490	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
491	    vm_page_array_size);
492
493	/*
494	 * Now it is safe to enable pv_table recording.
495	 */
496	pmap_initialized = TRUE;
497}
498
499/*
500 * Initialize the address space (zone) for the pv_entries.  Set a
501 * high water mark so that the system can recover from excessive
502 * numbers of pv entries.
503 */
504void
505pmap_init2()
506{
507	int shpgperproc = PMAP_SHPGPERPROC;
508
509	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
510	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
511	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
512	pv_entry_high_water = 9 * (pv_entry_max / 10);
513	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
514}
515
516
517/***************************************************
518 * Low level helper routines.....
519 ***************************************************/
520
521#if defined(PMAP_DIAGNOSTIC)
522
523/*
524 * This code checks for non-writeable/modified pages.
525 * This should be an invalid condition.
526 */
527static int
528pmap_nw_modified(pt_entry_t ptea)
529{
530	int pte;
531
532	pte = (int) ptea;
533
534	if ((pte & (PG_M|PG_RW)) == PG_M)
535		return 1;
536	else
537		return 0;
538}
539#endif
540
541
542/*
543 * this routine defines the region(s) of memory that should
544 * not be tested for the modified bit.
545 */
546static PMAP_INLINE int
547pmap_track_modified(vm_offset_t va)
548{
549	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
550		return 1;
551	else
552		return 0;
553}
554
555static PMAP_INLINE void
556invltlb_1pg(vm_offset_t va)
557{
558#ifdef I386_CPU
559	invltlb();
560#else
561	invlpg(va);
562#endif
563}
564
565static __inline void
566pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
567{
568#if defined(SMP)
569	if (pmap->pm_active & PCPU_GET(cpumask))
570		cpu_invlpg((void *)va);
571	if (pmap->pm_active & PCPU_GET(other_cpus))
572		smp_invltlb();
573#else
574	if (pmap->pm_active)
575		invltlb_1pg(va);
576#endif
577}
578
579static __inline void
580pmap_invalidate_all(pmap_t pmap)
581{
582#if defined(SMP)
583	if (pmap->pm_active & PCPU_GET(cpumask))
584		cpu_invltlb();
585	if (pmap->pm_active & PCPU_GET(other_cpus))
586		smp_invltlb();
587#else
588	if (pmap->pm_active)
589		invltlb();
590#endif
591}
592
593/*
594 * Return an address which is the base of the Virtual mapping of
595 * all the PTEs for the given pmap. Note this doesn't say that
596 * all the PTEs will be present or that the pages there are valid.
597 * The PTEs are made available by the recursive mapping trick.
598 * It will map in the alternate PTE space if needed.
599 */
600static pt_entry_t *
601get_ptbase(pmap)
602	pmap_t pmap;
603{
604	pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
605
606	/* are we current address space or kernel? */
607	if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
608		return PTmap;
609	/* otherwise, we are alternate address space */
610	if (frame != (APTDpde & PG_FRAME)) {
611		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
612#if defined(SMP)
613		/* The page directory is not shared between CPUs */
614		cpu_invltlb();
615#else
616		invltlb();
617#endif
618	}
619	return APTmap;
620}
621
622/*
623 * Super fast pmap_pte routine best used when scanning
624 * the pv lists.  This eliminates many coarse-grained
625 * invltlb calls.  Note that many of the pv list
626 * scans are across different pmaps.  It is very wasteful
627 * to do an entire invltlb for checking a single mapping.
628 */
629
630static pt_entry_t *
631pmap_pte_quick(pmap, va)
632	register pmap_t pmap;
633	vm_offset_t va;
634{
635	pd_entry_t pde, newpf;
636	pde = pmap->pm_pdir[va >> PDRSHIFT];
637	if (pde != 0) {
638		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
639		unsigned index = i386_btop(va);
640		/* are we current address space or kernel? */
641		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
642			return PTmap + index;
643		newpf = pde & PG_FRAME;
644		if (((*PMAP1) & PG_FRAME) != newpf) {
645			*PMAP1 = newpf | PG_RW | PG_V;
646			invltlb_1pg((vm_offset_t) PADDR1);
647		}
648		return PADDR1 + (index & (NPTEPG - 1));
649	}
650	return (0);
651}
652
653/*
654 *	Routine:	pmap_extract
655 *	Function:
656 *		Extract the physical page address associated
657 *		with the given map/virtual_address pair.
658 */
659vm_offset_t
660pmap_extract(pmap, va)
661	register pmap_t pmap;
662	vm_offset_t va;
663{
664	vm_offset_t rtval;	/* XXX FIXME */
665	vm_offset_t pdirindex;
666
667	if (pmap == 0)
668		return;
669	pdirindex = va >> PDRSHIFT;
670	rtval = pmap->pm_pdir[pdirindex];
671	if (rtval != 0) {
672		pt_entry_t *pte;
673		if ((rtval & PG_PS) != 0) {
674			rtval &= ~(NBPDR - 1);
675			rtval |= va & (NBPDR - 1);
676			return rtval;
677		}
678		pte = get_ptbase(pmap) + i386_btop(va);
679		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
680		return rtval;
681	}
682	return 0;
683
684}
685
686/***************************************************
687 * Low level mapping routines.....
688 ***************************************************/
689
690/*
691 * add a wired page to the kva
692 * note that in order for the mapping to take effect -- you
693 * should do a invltlb after doing the pmap_kenter...
694 */
695PMAP_INLINE void
696pmap_kenter(vm_offset_t va, vm_offset_t pa)
697{
698	pt_entry_t *pte;
699	pt_entry_t npte, opte;
700
701	npte = pa | PG_RW | PG_V | pgeflag;
702	pte = vtopte(va);
703	opte = *pte;
704	*pte = npte;
705	invltlb_1pg(va);
706}
707
708/*
709 * remove a page from the kernel pagetables
710 */
711PMAP_INLINE void
712pmap_kremove(vm_offset_t va)
713{
714	register pt_entry_t *pte;
715
716	pte = vtopte(va);
717	*pte = 0;
718	invltlb_1pg(va);
719}
720
721/*
722 *	Used to map a range of physical addresses into kernel
723 *	virtual address space.
724 *
725 *	The value passed in '*virt' is a suggested virtual address for
726 *	the mapping. Architectures which can support a direct-mapped
727 *	physical to virtual region can return the appropriate address
728 *	within that region, leaving '*virt' unchanged. Other
729 *	architectures should map the pages starting at '*virt' and
730 *	update '*virt' with the first usable address after the mapped
731 *	region.
732 */
733vm_offset_t
734pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
735{
736	vm_offset_t sva = *virt;
737	vm_offset_t va = sva;
738	while (start < end) {
739		pmap_kenter(va, start);
740		va += PAGE_SIZE;
741		start += PAGE_SIZE;
742	}
743	*virt = va;
744	return (sva);
745}
746
747
748/*
749 * Add a list of wired pages to the kva
750 * this routine is only used for temporary
751 * kernel mappings that do not need to have
752 * page modification or references recorded.
753 * Note that old mappings are simply written
754 * over.  The page *must* be wired.
755 */
756void
757pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
758{
759	vm_offset_t end_va;
760
761	end_va = va + count * PAGE_SIZE;
762
763	while (va < end_va) {
764		pt_entry_t *pte;
765
766		pte = vtopte(va);
767		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
768#ifdef SMP
769		cpu_invlpg((void *)va);
770#else
771		invltlb_1pg(va);
772#endif
773		va += PAGE_SIZE;
774		m++;
775	}
776#ifdef SMP
777	smp_invltlb();
778#endif
779}
780
781/*
782 * this routine jerks page mappings from the
783 * kernel -- it is meant only for temporary mappings.
784 */
785void
786pmap_qremove(vm_offset_t va, int count)
787{
788	vm_offset_t end_va;
789
790	end_va = va + count*PAGE_SIZE;
791
792	while (va < end_va) {
793		pt_entry_t *pte;
794
795		pte = vtopte(va);
796		*pte = 0;
797#ifdef SMP
798		cpu_invlpg((void *)va);
799#else
800		invltlb_1pg(va);
801#endif
802		va += PAGE_SIZE;
803	}
804#ifdef SMP
805	smp_invltlb();
806#endif
807}
808
809static vm_page_t
810pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
811{
812	vm_page_t m;
813retry:
814	m = vm_page_lookup(object, pindex);
815	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
816		goto retry;
817	return m;
818}
819
820/*
821 * Create the Uarea stack for a new process.
822 * This routine directly affects the fork perf for a process.
823 */
824void
825pmap_new_proc(struct proc *p)
826{
827#ifdef I386_CPU
828	int updateneeded = 0;
829#endif
830	int i;
831	vm_object_t upobj;
832	vm_offset_t up;
833	vm_page_t m;
834	pt_entry_t *ptek, oldpte;
835
836	/*
837	 * allocate object for the upages
838	 */
839	upobj = p->p_upages_obj;
840	if (upobj == NULL) {
841		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
842		p->p_upages_obj = upobj;
843	}
844
845	/* get a kernel virtual address for the U area for this thread */
846	up = (vm_offset_t)p->p_uarea;
847	if (up == 0) {
848		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
849		if (up == 0)
850			panic("pmap_new_proc: upage allocation failed");
851		p->p_uarea = (struct user *)up;
852	}
853
854	ptek = vtopte(up);
855
856	for (i = 0; i < UAREA_PAGES; i++) {
857		/*
858		 * Get a kernel stack page
859		 */
860		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
861
862		/*
863		 * Wire the page
864		 */
865		m->wire_count++;
866		cnt.v_wire_count++;
867
868		oldpte = *(ptek + i);
869		/*
870		 * Enter the page into the kernel address space.
871		 */
872		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
873		if (oldpte) {
874#ifdef I386_CPU
875			updateneeded = 1;
876#else
877			invlpg(up + i * PAGE_SIZE);
878#endif
879		}
880
881		vm_page_wakeup(m);
882		vm_page_flag_clear(m, PG_ZERO);
883		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
884		m->valid = VM_PAGE_BITS_ALL;
885	}
886#ifdef I386_CPU
887	if (updateneeded)
888		invltlb();
889#endif
890}
891
892/*
893 * Dispose the U-Area for a process that has exited.
894 * This routine directly impacts the exit perf of a process.
895 */
896void
897pmap_dispose_proc(p)
898	struct proc *p;
899{
900	int i;
901	vm_object_t upobj;
902	vm_offset_t up;
903	vm_page_t m;
904	pt_entry_t *ptek, oldpte;
905
906	upobj = p->p_upages_obj;
907	up = (vm_offset_t)p->p_uarea;
908	ptek = vtopte(up);
909	for (i = 0; i < UAREA_PAGES; i++) {
910		m = vm_page_lookup(upobj, i);
911		if (m == NULL)
912			panic("pmap_dispose_proc: upage already missing?");
913		vm_page_busy(m);
914		oldpte = *(ptek + i);
915		*(ptek + i) = 0;
916#ifndef I386_CPU
917		invlpg(up + i * PAGE_SIZE);
918#endif
919		vm_page_unwire(m, 0);
920		vm_page_free(m);
921	}
922#ifdef I386_CPU
923	invltlb();
924#endif
925}
926
927/*
928 * Allow the U_AREA for a process to be prejudicially paged out.
929 */
930void
931pmap_swapout_proc(p)
932	struct proc *p;
933{
934	int i;
935	vm_object_t upobj;
936	vm_offset_t up;
937	vm_page_t m;
938
939	upobj = p->p_upages_obj;
940	up = (vm_offset_t)p->p_uarea;
941	for (i = 0; i < UAREA_PAGES; i++) {
942		m = vm_page_lookup(upobj, i);
943		if (m == NULL)
944			panic("pmap_swapout_proc: upage already missing?");
945		vm_page_dirty(m);
946		vm_page_unwire(m, 0);
947		pmap_kremove(up + i * PAGE_SIZE);
948	}
949}
950
951/*
952 * Bring the U-Area for a specified process back in.
953 */
954void
955pmap_swapin_proc(p)
956	struct proc *p;
957{
958	int i, rv;
959	vm_object_t upobj;
960	vm_offset_t up;
961	vm_page_t m;
962
963	upobj = p->p_upages_obj;
964	up = (vm_offset_t)p->p_uarea;
965	for (i = 0; i < UAREA_PAGES; i++) {
966		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
967		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
968		if (m->valid != VM_PAGE_BITS_ALL) {
969			rv = vm_pager_get_pages(upobj, &m, 1, 0);
970			if (rv != VM_PAGER_OK)
971				panic("pmap_swapin_proc: cannot get upage for proc: %d\n", p->p_pid);
972			m = vm_page_lookup(upobj, i);
973			m->valid = VM_PAGE_BITS_ALL;
974		}
975		vm_page_wire(m);
976		vm_page_wakeup(m);
977		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
978	}
979}
980
981/*
982 * Create the kernel stack (including pcb for i386) for a new thread.
983 * This routine directly affects the fork perf for a process and
984 * create performance for a thread.
985 */
986void
987pmap_new_thread(struct thread *td)
988{
989#ifdef I386_CPU
990	int updateneeded = 0;
991#endif
992	int i;
993	vm_object_t ksobj;
994	vm_page_t m;
995	vm_offset_t ks;
996	pt_entry_t *ptek, oldpte;
997
998	/*
999	 * allocate object for the kstack
1000	 */
1001	ksobj = td->td_kstack_obj;
1002	if (ksobj == NULL) {
1003		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1004		td->td_kstack_obj = ksobj;
1005	}
1006
1007#ifdef KSTACK_GUARD
1008	/* get a kernel virtual address for the kstack for this thread */
1009	ks = td->td_kstack;
1010	if (ks == 0) {
1011		ks = kmem_alloc_nofault(kernel_map,
1012		    (KSTACK_PAGES + 1) * PAGE_SIZE);
1013		if (ks == 0)
1014			panic("pmap_new_thread: kstack allocation failed");
1015		ks += PAGE_SIZE;
1016		td->td_kstack = ks;
1017	}
1018
1019	ptek = vtopte(ks - PAGE_SIZE);
1020	oldpte = *ptek;
1021	*ptek = 0;
1022	if (oldpte) {
1023#ifdef I386_CPU
1024		updateneeded = 1;
1025#else
1026		invlpg(ks - PAGE_SIZE);
1027#endif
1028	}
1029	ptek++;
1030#else
1031	/* get a kernel virtual address for the kstack for this thread */
1032	ks = td->td_kstack;
1033	if (ks == 0) {
1034		ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
1035		if (ks == 0)
1036			panic("pmap_new_thread: kstack allocation failed");
1037		td->td_kstack = ks;
1038	}
1039	ptek = vtopte(ks);
1040#endif
1041	for (i = 0; i < KSTACK_PAGES; i++) {
1042		/*
1043		 * Get a kernel stack page
1044		 */
1045		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1046
1047		/*
1048		 * Wire the page
1049		 */
1050		m->wire_count++;
1051		cnt.v_wire_count++;
1052
1053		oldpte = *(ptek + i);
1054		/*
1055		 * Enter the page into the kernel address space.
1056		 */
1057		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1058		if (oldpte) {
1059#ifdef I386_CPU
1060			updateneeded = 1;
1061#else
1062			invlpg(ks + i * PAGE_SIZE);
1063#endif
1064		}
1065
1066		vm_page_wakeup(m);
1067		vm_page_flag_clear(m, PG_ZERO);
1068		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1069		m->valid = VM_PAGE_BITS_ALL;
1070	}
1071#ifdef I386_CPU
1072	if (updateneeded)
1073		invltlb();
1074#endif
1075}
1076
1077/*
1078 * Dispose the kernel stack for a thread that has exited.
1079 * This routine directly impacts the exit perf of a process and thread.
1080 */
1081void
1082pmap_dispose_thread(td)
1083	struct thread *td;
1084{
1085	int i;
1086	vm_object_t ksobj;
1087	vm_offset_t ks;
1088	vm_page_t m;
1089	pt_entry_t *ptek, oldpte;
1090
1091	ksobj = td->td_kstack_obj;
1092	ks = td->td_kstack;
1093	ptek = vtopte(ks);
1094	for (i = 0; i < KSTACK_PAGES; i++) {
1095		m = vm_page_lookup(ksobj, i);
1096		if (m == NULL)
1097			panic("pmap_dispose_thread: kstack already missing?");
1098		vm_page_busy(m);
1099		oldpte = *(ptek + i);
1100		*(ptek + i) = 0;
1101#ifndef I386_CPU
1102		invlpg(ks + i * PAGE_SIZE);
1103#endif
1104		vm_page_unwire(m, 0);
1105		vm_page_free(m);
1106	}
1107#ifdef I386_CPU
1108	invltlb();
1109#endif
1110}
1111
1112/*
1113 * Allow the Kernel stack for a thread to be prejudicially paged out.
1114 */
1115void
1116pmap_swapout_thread(td)
1117	struct thread *td;
1118{
1119	int i;
1120	vm_object_t ksobj;
1121	vm_offset_t ks;
1122	vm_page_t m;
1123
1124	ksobj = td->td_kstack_obj;
1125	ks = td->td_kstack;
1126	for (i = 0; i < KSTACK_PAGES; i++) {
1127		m = vm_page_lookup(ksobj, i);
1128		if (m == NULL)
1129			panic("pmap_swapout_thread: kstack already missing?");
1130		vm_page_dirty(m);
1131		vm_page_unwire(m, 0);
1132		pmap_kremove(ks + i * PAGE_SIZE);
1133	}
1134}
1135
1136/*
1137 * Bring the kernel stack for a specified thread back in.
1138 */
1139void
1140pmap_swapin_thread(td)
1141	struct thread *td;
1142{
1143	int i, rv;
1144	vm_object_t ksobj;
1145	vm_offset_t ks;
1146	vm_page_t m;
1147
1148	ksobj = td->td_kstack_obj;
1149	ks = td->td_kstack;
1150	for (i = 0; i < KSTACK_PAGES; i++) {
1151		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1152		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1153		if (m->valid != VM_PAGE_BITS_ALL) {
1154			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1155			if (rv != VM_PAGER_OK)
1156				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1157			m = vm_page_lookup(ksobj, i);
1158			m->valid = VM_PAGE_BITS_ALL;
1159		}
1160		vm_page_wire(m);
1161		vm_page_wakeup(m);
1162		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1163	}
1164}
1165
1166/***************************************************
1167 * Page table page management routines.....
1168 ***************************************************/
1169
1170/*
1171 * This routine unholds page table pages, and if the hold count
1172 * drops to zero, then it decrements the wire count.
1173 */
1174static int
1175_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1176{
1177
1178	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1179		;
1180
1181	if (m->hold_count == 0) {
1182		vm_offset_t pteva;
1183		/*
1184		 * unmap the page table page
1185		 */
1186		pmap->pm_pdir[m->pindex] = 0;
1187		--pmap->pm_stats.resident_count;
1188		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1189		    (PTDpde & PG_FRAME)) {
1190			/*
1191			 * Do a invltlb to make the invalidated mapping
1192			 * take effect immediately.
1193			 */
1194			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1195			pmap_invalidate_page(pmap, pteva);
1196		}
1197
1198		if (pmap->pm_ptphint == m)
1199			pmap->pm_ptphint = NULL;
1200
1201		/*
1202		 * If the page is finally unwired, simply free it.
1203		 */
1204		--m->wire_count;
1205		if (m->wire_count == 0) {
1206
1207			vm_page_flash(m);
1208			vm_page_busy(m);
1209			vm_page_free_zero(m);
1210			--cnt.v_wire_count;
1211		}
1212		return 1;
1213	}
1214	return 0;
1215}
1216
1217static PMAP_INLINE int
1218pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1219{
1220	vm_page_unhold(m);
1221	if (m->hold_count == 0)
1222		return _pmap_unwire_pte_hold(pmap, m);
1223	else
1224		return 0;
1225}
1226
1227/*
1228 * After removing a page table entry, this routine is used to
1229 * conditionally free the page, and manage the hold/wire counts.
1230 */
1231static int
1232pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1233{
1234	unsigned ptepindex;
1235	if (va >= VM_MAXUSER_ADDRESS)
1236		return 0;
1237
1238	if (mpte == NULL) {
1239		ptepindex = (va >> PDRSHIFT);
1240		if (pmap->pm_ptphint &&
1241			(pmap->pm_ptphint->pindex == ptepindex)) {
1242			mpte = pmap->pm_ptphint;
1243		} else {
1244			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1245			pmap->pm_ptphint = mpte;
1246		}
1247	}
1248
1249	return pmap_unwire_pte_hold(pmap, mpte);
1250}
1251
1252void
1253pmap_pinit0(pmap)
1254	struct pmap *pmap;
1255{
1256	pmap->pm_pdir =
1257		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1258	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1259	pmap->pm_count = 1;
1260	pmap->pm_ptphint = NULL;
1261	pmap->pm_active = 0;
1262	TAILQ_INIT(&pmap->pm_pvlist);
1263	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1264	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1265}
1266
1267/*
1268 * Initialize a preallocated and zeroed pmap structure,
1269 * such as one in a vmspace structure.
1270 */
1271void
1272pmap_pinit(pmap)
1273	register struct pmap *pmap;
1274{
1275	vm_page_t ptdpg;
1276
1277	/*
1278	 * No need to allocate page table space yet but we do need a valid
1279	 * page directory table.
1280	 */
1281	if (pmap->pm_pdir == NULL)
1282		pmap->pm_pdir =
1283			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1284
1285	/*
1286	 * allocate object for the ptes
1287	 */
1288	if (pmap->pm_pteobj == NULL)
1289		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1290
1291	/*
1292	 * allocate the page directory page
1293	 */
1294	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1295			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1296
1297	ptdpg->wire_count = 1;
1298	++cnt.v_wire_count;
1299
1300
1301	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1302	ptdpg->valid = VM_PAGE_BITS_ALL;
1303
1304	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1305	if ((ptdpg->flags & PG_ZERO) == 0)
1306		bzero(pmap->pm_pdir, PAGE_SIZE);
1307
1308	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1309	/* Wire in kernel global address entries. */
1310	/* XXX copies current process, does not fill in MPPTDI */
1311	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1312#ifdef SMP
1313	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1314#endif
1315
1316	/* install self-referential address mapping entry */
1317	pmap->pm_pdir[PTDPTDI] =
1318		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1319
1320	pmap->pm_count = 1;
1321	pmap->pm_active = 0;
1322	pmap->pm_ptphint = NULL;
1323	TAILQ_INIT(&pmap->pm_pvlist);
1324	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1325}
1326
1327/*
1328 * Wire in kernel global address entries.  To avoid a race condition
1329 * between pmap initialization and pmap_growkernel, this procedure
1330 * should be called after the vmspace is attached to the process
1331 * but before this pmap is activated.
1332 */
1333void
1334pmap_pinit2(pmap)
1335	struct pmap *pmap;
1336{
1337	/* XXX: Remove this stub when no longer called */
1338}
1339
1340static int
1341pmap_release_free_page(pmap_t pmap, vm_page_t p)
1342{
1343	pd_entry_t *pde = pmap->pm_pdir;
1344	/*
1345	 * This code optimizes the case of freeing non-busy
1346	 * page-table pages.  Those pages are zero now, and
1347	 * might as well be placed directly into the zero queue.
1348	 */
1349	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1350		return 0;
1351
1352	vm_page_busy(p);
1353
1354	/*
1355	 * Remove the page table page from the processes address space.
1356	 */
1357	pde[p->pindex] = 0;
1358	pmap->pm_stats.resident_count--;
1359
1360	if (p->hold_count)  {
1361		panic("pmap_release: freeing held page table page");
1362	}
1363	/*
1364	 * Page directory pages need to have the kernel
1365	 * stuff cleared, so they can go into the zero queue also.
1366	 */
1367	if (p->pindex == PTDPTDI) {
1368		bzero(pde + KPTDI, nkpt * PTESIZE);
1369#ifdef SMP
1370		pde[MPPTDI] = 0;
1371#endif
1372		pde[APTDPTDI] = 0;
1373		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1374	}
1375
1376	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1377		pmap->pm_ptphint = NULL;
1378
1379	p->wire_count--;
1380	cnt.v_wire_count--;
1381	vm_page_free_zero(p);
1382	return 1;
1383}
1384
1385/*
1386 * this routine is called if the page table page is not
1387 * mapped correctly.
1388 */
1389static vm_page_t
1390_pmap_allocpte(pmap, ptepindex)
1391	pmap_t	pmap;
1392	unsigned ptepindex;
1393{
1394	vm_offset_t pteva, ptepa;	/* XXXPA */
1395	vm_page_t m;
1396
1397	/*
1398	 * Find or fabricate a new pagetable page
1399	 */
1400	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1401			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1402
1403	KASSERT(m->queue == PQ_NONE,
1404		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1405
1406	if (m->wire_count == 0)
1407		cnt.v_wire_count++;
1408	m->wire_count++;
1409
1410	/*
1411	 * Increment the hold count for the page table page
1412	 * (denoting a new mapping.)
1413	 */
1414	m->hold_count++;
1415
1416	/*
1417	 * Map the pagetable page into the process address space, if
1418	 * it isn't already there.
1419	 */
1420
1421	pmap->pm_stats.resident_count++;
1422
1423	ptepa = VM_PAGE_TO_PHYS(m);
1424	pmap->pm_pdir[ptepindex] =
1425		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1426
1427	/*
1428	 * Set the page table hint
1429	 */
1430	pmap->pm_ptphint = m;
1431
1432	/*
1433	 * Try to use the new mapping, but if we cannot, then
1434	 * do it with the routine that maps the page explicitly.
1435	 */
1436	if ((m->flags & PG_ZERO) == 0) {
1437		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1438		    (PTDpde & PG_FRAME)) {
1439			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1440			bzero((caddr_t) pteva, PAGE_SIZE);
1441		} else {
1442			pmap_zero_page(ptepa);
1443		}
1444	}
1445
1446	m->valid = VM_PAGE_BITS_ALL;
1447	vm_page_flag_clear(m, PG_ZERO);
1448	vm_page_flag_set(m, PG_MAPPED);
1449	vm_page_wakeup(m);
1450
1451	return m;
1452}
1453
1454static vm_page_t
1455pmap_allocpte(pmap_t pmap, vm_offset_t va)
1456{
1457	unsigned ptepindex;
1458	pd_entry_t ptepa;
1459	vm_page_t m;
1460
1461	/*
1462	 * Calculate pagetable page index
1463	 */
1464	ptepindex = va >> PDRSHIFT;
1465
1466	/*
1467	 * Get the page directory entry
1468	 */
1469	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1470
1471	/*
1472	 * This supports switching from a 4MB page to a
1473	 * normal 4K page.
1474	 */
1475	if (ptepa & PG_PS) {
1476		pmap->pm_pdir[ptepindex] = 0;
1477		ptepa = 0;
1478		invltlb();
1479	}
1480
1481	/*
1482	 * If the page table page is mapped, we just increment the
1483	 * hold count, and activate it.
1484	 */
1485	if (ptepa) {
1486		/*
1487		 * In order to get the page table page, try the
1488		 * hint first.
1489		 */
1490		if (pmap->pm_ptphint &&
1491			(pmap->pm_ptphint->pindex == ptepindex)) {
1492			m = pmap->pm_ptphint;
1493		} else {
1494			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1495			pmap->pm_ptphint = m;
1496		}
1497		m->hold_count++;
1498		return m;
1499	}
1500	/*
1501	 * Here if the pte page isn't mapped, or if it has been deallocated.
1502	 */
1503	return _pmap_allocpte(pmap, ptepindex);
1504}
1505
1506
1507/***************************************************
1508* Pmap allocation/deallocation routines.
1509 ***************************************************/
1510
1511/*
1512 * Release any resources held by the given physical map.
1513 * Called when a pmap initialized by pmap_pinit is being released.
1514 * Should only be called if the map contains no valid mappings.
1515 */
1516void
1517pmap_release(pmap_t pmap)
1518{
1519	vm_page_t p,n,ptdpg;
1520	vm_object_t object = pmap->pm_pteobj;
1521	int curgeneration;
1522
1523#if defined(DIAGNOSTIC)
1524	if (object->ref_count != 1)
1525		panic("pmap_release: pteobj reference count != 1");
1526#endif
1527
1528	ptdpg = NULL;
1529	LIST_REMOVE(pmap, pm_list);
1530retry:
1531	curgeneration = object->generation;
1532	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1533		n = TAILQ_NEXT(p, listq);
1534		if (p->pindex == PTDPTDI) {
1535			ptdpg = p;
1536			continue;
1537		}
1538		while (1) {
1539			if (!pmap_release_free_page(pmap, p) &&
1540				(object->generation != curgeneration))
1541				goto retry;
1542		}
1543	}
1544
1545	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1546		goto retry;
1547}
1548
1549static int
1550kvm_size(SYSCTL_HANDLER_ARGS)
1551{
1552	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1553
1554        return sysctl_handle_long(oidp, &ksize, 0, req);
1555}
1556SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1557    0, 0, kvm_size, "IU", "Size of KVM");
1558
1559static int
1560kvm_free(SYSCTL_HANDLER_ARGS)
1561{
1562	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1563
1564        return sysctl_handle_long(oidp, &kfree, 0, req);
1565}
1566SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1567    0, 0, kvm_free, "IU", "Amount of KVM free");
1568
1569/*
1570 * grow the number of kernel page table entries, if needed
1571 */
1572void
1573pmap_growkernel(vm_offset_t addr)
1574{
1575	struct pmap *pmap;
1576	int s;
1577	vm_offset_t ptppaddr;
1578	vm_page_t nkpg;
1579	pd_entry_t newpdir;
1580
1581	s = splhigh();
1582	if (kernel_vm_end == 0) {
1583		kernel_vm_end = KERNBASE;
1584		nkpt = 0;
1585		while (pdir_pde(PTD, kernel_vm_end)) {
1586			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1587			nkpt++;
1588		}
1589	}
1590	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1591	while (kernel_vm_end < addr) {
1592		if (pdir_pde(PTD, kernel_vm_end)) {
1593			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1594			continue;
1595		}
1596
1597		/*
1598		 * This index is bogus, but out of the way
1599		 */
1600		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1601		if (!nkpg)
1602			panic("pmap_growkernel: no memory to grow kernel");
1603
1604		nkpt++;
1605
1606		vm_page_wire(nkpg);
1607		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1608		pmap_zero_page(ptppaddr);
1609		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1610		pdir_pde(PTD, kernel_vm_end) = newpdir;
1611
1612		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1613			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1614		}
1615		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1616	}
1617	splx(s);
1618}
1619
1620/*
1621 *	Retire the given physical map from service.
1622 *	Should only be called if the map contains
1623 *	no valid mappings.
1624 */
1625void
1626pmap_destroy(pmap_t pmap)
1627{
1628	int count;
1629
1630	if (pmap == NULL)
1631		return;
1632
1633	count = --pmap->pm_count;
1634	if (count == 0) {
1635		pmap_release(pmap);
1636		panic("destroying a pmap is not yet implemented");
1637	}
1638}
1639
1640/*
1641 *	Add a reference to the specified pmap.
1642 */
1643void
1644pmap_reference(pmap_t pmap)
1645{
1646	if (pmap != NULL) {
1647		pmap->pm_count++;
1648	}
1649}
1650
1651/***************************************************
1652* page management routines.
1653 ***************************************************/
1654
1655/*
1656 * free the pv_entry back to the free list
1657 */
1658static PMAP_INLINE void
1659free_pv_entry(pv_entry_t pv)
1660{
1661	pv_entry_count--;
1662	zfree(pvzone, pv);
1663}
1664
1665/*
1666 * get a new pv_entry, allocating a block from the system
1667 * when needed.
1668 * the memory allocation is performed bypassing the malloc code
1669 * because of the possibility of allocations at interrupt time.
1670 */
1671static pv_entry_t
1672get_pv_entry(void)
1673{
1674	pv_entry_count++;
1675	if (pv_entry_high_water &&
1676		(pv_entry_count > pv_entry_high_water) &&
1677		(pmap_pagedaemon_waken == 0)) {
1678		pmap_pagedaemon_waken = 1;
1679		wakeup (&vm_pages_needed);
1680	}
1681	return zalloc(pvzone);
1682}
1683
1684/*
1685 * This routine is very drastic, but can save the system
1686 * in a pinch.
1687 */
1688void
1689pmap_collect()
1690{
1691	int i;
1692	vm_page_t m;
1693	static int warningdone = 0;
1694
1695	if (pmap_pagedaemon_waken == 0)
1696		return;
1697
1698	if (warningdone < 5) {
1699		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1700		warningdone++;
1701	}
1702
1703	for(i = 0; i < vm_page_array_size; i++) {
1704		m = &vm_page_array[i];
1705		if (m->wire_count || m->hold_count || m->busy ||
1706		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1707			continue;
1708		pmap_remove_all(m);
1709	}
1710	pmap_pagedaemon_waken = 0;
1711}
1712
1713
1714/*
1715 * If it is the first entry on the list, it is actually
1716 * in the header and we must copy the following entry up
1717 * to the header.  Otherwise we must search the list for
1718 * the entry.  In either case we free the now unused entry.
1719 */
1720
1721static int
1722pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1723{
1724	pv_entry_t pv;
1725	int rtval;
1726	int s;
1727
1728	s = splvm();
1729	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1730		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1731			if (pmap == pv->pv_pmap && va == pv->pv_va)
1732				break;
1733		}
1734	} else {
1735		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1736			if (va == pv->pv_va)
1737				break;
1738		}
1739	}
1740
1741	rtval = 0;
1742	if (pv) {
1743		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1744		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1745		m->md.pv_list_count--;
1746		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1747			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1748
1749		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1750		free_pv_entry(pv);
1751	}
1752
1753	splx(s);
1754	return rtval;
1755}
1756
1757/*
1758 * Create a pv entry for page at pa for
1759 * (pmap, va).
1760 */
1761static void
1762pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1763{
1764
1765	int s;
1766	pv_entry_t pv;
1767
1768	s = splvm();
1769	pv = get_pv_entry();
1770	pv->pv_va = va;
1771	pv->pv_pmap = pmap;
1772	pv->pv_ptem = mpte;
1773
1774	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1775	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1776	m->md.pv_list_count++;
1777
1778	splx(s);
1779}
1780
1781/*
1782 * pmap_remove_pte: do the things to unmap a page in a process
1783 */
1784static int
1785pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1786{
1787	pt_entry_t oldpte;
1788	vm_page_t m;
1789
1790	oldpte = atomic_readandclear_int(ptq);
1791	if (oldpte & PG_W)
1792		pmap->pm_stats.wired_count -= 1;
1793	/*
1794	 * Machines that don't support invlpg, also don't support
1795	 * PG_G.
1796	 */
1797	if (oldpte & PG_G)
1798		invlpg(va);
1799	pmap->pm_stats.resident_count -= 1;
1800	if (oldpte & PG_MANAGED) {
1801		m = PHYS_TO_VM_PAGE(oldpte);
1802		if (oldpte & PG_M) {
1803#if defined(PMAP_DIAGNOSTIC)
1804			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1805				printf(
1806	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1807				    va, oldpte);
1808			}
1809#endif
1810			if (pmap_track_modified(va))
1811				vm_page_dirty(m);
1812		}
1813		if (oldpte & PG_A)
1814			vm_page_flag_set(m, PG_REFERENCED);
1815		return pmap_remove_entry(pmap, m, va);
1816	} else {
1817		return pmap_unuse_pt(pmap, va, NULL);
1818	}
1819
1820	return 0;
1821}
1822
1823/*
1824 * Remove a single page from a process address space
1825 */
1826static void
1827pmap_remove_page(pmap_t pmap, vm_offset_t va)
1828{
1829	register pt_entry_t *ptq;
1830
1831	/*
1832	 * if there is no pte for this address, just skip it!!!
1833	 */
1834	if (*pmap_pde(pmap, va) == 0) {
1835		return;
1836	}
1837
1838	/*
1839	 * get a local va for mappings for this pmap.
1840	 */
1841	ptq = get_ptbase(pmap) + i386_btop(va);
1842	if (*ptq) {
1843		(void) pmap_remove_pte(pmap, ptq, va);
1844		pmap_invalidate_page(pmap, va);
1845	}
1846	return;
1847}
1848
1849/*
1850 *	Remove the given range of addresses from the specified map.
1851 *
1852 *	It is assumed that the start and end are properly
1853 *	rounded to the page size.
1854 */
1855void
1856pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1857{
1858	register pt_entry_t *ptbase;
1859	vm_offset_t pdnxt;
1860	pd_entry_t ptpaddr;
1861	vm_offset_t sindex, eindex;
1862	int anyvalid;
1863
1864	if (pmap == NULL)
1865		return;
1866
1867	if (pmap->pm_stats.resident_count == 0)
1868		return;
1869
1870	/*
1871	 * special handling of removing one page.  a very
1872	 * common operation and easy to short circuit some
1873	 * code.
1874	 */
1875	if ((sva + PAGE_SIZE == eva) &&
1876	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1877		pmap_remove_page(pmap, sva);
1878		return;
1879	}
1880
1881	anyvalid = 0;
1882
1883	/*
1884	 * Get a local virtual address for the mappings that are being
1885	 * worked with.
1886	 */
1887	ptbase = get_ptbase(pmap);
1888
1889	sindex = i386_btop(sva);
1890	eindex = i386_btop(eva);
1891
1892	for (; sindex < eindex; sindex = pdnxt) {
1893		unsigned pdirindex;
1894
1895		/*
1896		 * Calculate index for next page table.
1897		 */
1898		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1899		if (pmap->pm_stats.resident_count == 0)
1900			break;
1901
1902		pdirindex = sindex / NPDEPG;
1903		ptpaddr = pmap->pm_pdir[pdirindex];
1904		if ((ptpaddr & PG_PS) != 0) {
1905			pmap->pm_pdir[pdirindex] = 0;
1906			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1907			anyvalid++;
1908			continue;
1909		}
1910
1911		/*
1912		 * Weed out invalid mappings. Note: we assume that the page
1913		 * directory table is always allocated, and in kernel virtual.
1914		 */
1915		if (ptpaddr == 0)
1916			continue;
1917
1918		/*
1919		 * Limit our scan to either the end of the va represented
1920		 * by the current page table page, or to the end of the
1921		 * range being removed.
1922		 */
1923		if (pdnxt > eindex) {
1924			pdnxt = eindex;
1925		}
1926
1927		for (; sindex != pdnxt; sindex++) {
1928			vm_offset_t va;
1929			if (ptbase[sindex] == 0) {
1930				continue;
1931			}
1932			va = i386_ptob(sindex);
1933
1934			anyvalid++;
1935			if (pmap_remove_pte(pmap,
1936				ptbase + sindex, va))
1937				break;
1938		}
1939	}
1940
1941	if (anyvalid)
1942		pmap_invalidate_all(pmap);
1943}
1944
1945/*
1946 *	Routine:	pmap_remove_all
1947 *	Function:
1948 *		Removes this physical page from
1949 *		all physical maps in which it resides.
1950 *		Reflects back modify bits to the pager.
1951 *
1952 *	Notes:
1953 *		Original versions of this routine were very
1954 *		inefficient because they iteratively called
1955 *		pmap_remove (slow...)
1956 */
1957
1958static void
1959pmap_remove_all(vm_page_t m)
1960{
1961	register pv_entry_t pv;
1962	pt_entry_t *pte, tpte;
1963	int s;
1964
1965#if defined(PMAP_DIAGNOSTIC)
1966	/*
1967	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1968	 * pages!
1969	 */
1970	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1971		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1972	}
1973#endif
1974
1975	s = splvm();
1976	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1977		pv->pv_pmap->pm_stats.resident_count--;
1978
1979		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1980
1981		tpte = atomic_readandclear_int(pte);
1982		if (tpte & PG_W)
1983			pv->pv_pmap->pm_stats.wired_count--;
1984
1985		if (tpte & PG_A)
1986			vm_page_flag_set(m, PG_REFERENCED);
1987
1988		/*
1989		 * Update the vm_page_t clean and reference bits.
1990		 */
1991		if (tpte & PG_M) {
1992#if defined(PMAP_DIAGNOSTIC)
1993			if (pmap_nw_modified((pt_entry_t) tpte)) {
1994				printf(
1995	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1996				    pv->pv_va, tpte);
1997			}
1998#endif
1999			if (pmap_track_modified(pv->pv_va))
2000				vm_page_dirty(m);
2001		}
2002		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2003
2004		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2005		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2006		m->md.pv_list_count--;
2007		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2008		free_pv_entry(pv);
2009	}
2010
2011	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2012
2013	splx(s);
2014}
2015
2016/*
2017 *	Set the physical protection on the
2018 *	specified range of this map as requested.
2019 */
2020void
2021pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2022{
2023	register pt_entry_t *ptbase;
2024	vm_offset_t pdnxt;
2025	pd_entry_t ptpaddr;
2026	vm_pindex_t sindex, eindex;
2027	int anychanged;
2028
2029	if (pmap == NULL)
2030		return;
2031
2032	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2033		pmap_remove(pmap, sva, eva);
2034		return;
2035	}
2036
2037	if (prot & VM_PROT_WRITE)
2038		return;
2039
2040	anychanged = 0;
2041
2042	ptbase = get_ptbase(pmap);
2043
2044	sindex = i386_btop(sva);
2045	eindex = i386_btop(eva);
2046
2047	for (; sindex < eindex; sindex = pdnxt) {
2048
2049		unsigned pdirindex;
2050
2051		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2052
2053		pdirindex = sindex / NPDEPG;
2054		ptpaddr = pmap->pm_pdir[pdirindex];
2055		if ((ptpaddr & PG_PS) != 0) {
2056			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2057			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2058			anychanged++;
2059			continue;
2060		}
2061
2062		/*
2063		 * Weed out invalid mappings. Note: we assume that the page
2064		 * directory table is always allocated, and in kernel virtual.
2065		 */
2066		if (ptpaddr == 0)
2067			continue;
2068
2069		if (pdnxt > eindex) {
2070			pdnxt = eindex;
2071		}
2072
2073		for (; sindex != pdnxt; sindex++) {
2074
2075			pt_entry_t pbits;
2076			vm_page_t m;
2077
2078			pbits = ptbase[sindex];
2079
2080			if (pbits & PG_MANAGED) {
2081				m = NULL;
2082				if (pbits & PG_A) {
2083					m = PHYS_TO_VM_PAGE(pbits);
2084					vm_page_flag_set(m, PG_REFERENCED);
2085					pbits &= ~PG_A;
2086				}
2087				if (pbits & PG_M) {
2088					if (pmap_track_modified(i386_ptob(sindex))) {
2089						if (m == NULL)
2090							m = PHYS_TO_VM_PAGE(pbits);
2091						vm_page_dirty(m);
2092						pbits &= ~PG_M;
2093					}
2094				}
2095			}
2096
2097			pbits &= ~PG_RW;
2098
2099			if (pbits != ptbase[sindex]) {
2100				ptbase[sindex] = pbits;
2101				anychanged = 1;
2102			}
2103		}
2104	}
2105	if (anychanged)
2106		pmap_invalidate_all(pmap);
2107}
2108
2109/*
2110 *	Insert the given physical page (p) at
2111 *	the specified virtual address (v) in the
2112 *	target physical map with the protection requested.
2113 *
2114 *	If specified, the page will be wired down, meaning
2115 *	that the related pte can not be reclaimed.
2116 *
2117 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2118 *	or lose information.  That is, this routine must actually
2119 *	insert this page into the given map NOW.
2120 */
2121void
2122pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2123	   boolean_t wired)
2124{
2125	vm_offset_t pa;
2126	register pt_entry_t *pte;
2127	vm_offset_t opa;
2128	pt_entry_t origpte, newpte;
2129	vm_page_t mpte;
2130
2131	if (pmap == NULL)
2132		return;
2133
2134	va &= PG_FRAME;
2135#ifdef PMAP_DIAGNOSTIC
2136	if (va > VM_MAX_KERNEL_ADDRESS)
2137		panic("pmap_enter: toobig");
2138	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2139		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2140#endif
2141
2142	mpte = NULL;
2143	/*
2144	 * In the case that a page table page is not
2145	 * resident, we are creating it here.
2146	 */
2147	if (va < VM_MAXUSER_ADDRESS) {
2148		mpte = pmap_allocpte(pmap, va);
2149	}
2150#if 0 && defined(PMAP_DIAGNOSTIC)
2151	else {
2152		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2153		origpte = *pdeaddr;
2154		if ((origpte & PG_V) == 0) {
2155			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2156				pmap->pm_pdir[PTDPTDI], origpte, va);
2157		}
2158	}
2159#endif
2160
2161	pte = pmap_pte(pmap, va);
2162
2163	/*
2164	 * Page Directory table entry not valid, we need a new PT page
2165	 */
2166	if (pte == NULL) {
2167		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2168			(void *)pmap->pm_pdir[PTDPTDI], va);
2169	}
2170
2171	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2172	origpte = *(vm_offset_t *)pte;
2173	opa = origpte & PG_FRAME;
2174
2175	if (origpte & PG_PS)
2176		panic("pmap_enter: attempted pmap_enter on 4MB page");
2177
2178	/*
2179	 * Mapping has not changed, must be protection or wiring change.
2180	 */
2181	if (origpte && (opa == pa)) {
2182		/*
2183		 * Wiring change, just update stats. We don't worry about
2184		 * wiring PT pages as they remain resident as long as there
2185		 * are valid mappings in them. Hence, if a user page is wired,
2186		 * the PT page will be also.
2187		 */
2188		if (wired && ((origpte & PG_W) == 0))
2189			pmap->pm_stats.wired_count++;
2190		else if (!wired && (origpte & PG_W))
2191			pmap->pm_stats.wired_count--;
2192
2193#if defined(PMAP_DIAGNOSTIC)
2194		if (pmap_nw_modified((pt_entry_t) origpte)) {
2195			printf(
2196	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2197			    va, origpte);
2198		}
2199#endif
2200
2201		/*
2202		 * Remove extra pte reference
2203		 */
2204		if (mpte)
2205			mpte->hold_count--;
2206
2207		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2208			if ((origpte & PG_RW) == 0) {
2209				*pte |= PG_RW;
2210#ifdef SMP
2211				cpu_invlpg((void *)va);
2212				if (pmap->pm_active & PCPU_GET(other_cpus))
2213					smp_invltlb();
2214#else
2215				invltlb_1pg(va);
2216#endif
2217			}
2218			return;
2219		}
2220
2221		/*
2222		 * We might be turning off write access to the page,
2223		 * so we go ahead and sense modify status.
2224		 */
2225		if (origpte & PG_MANAGED) {
2226			if ((origpte & PG_M) && pmap_track_modified(va)) {
2227				vm_page_t om;
2228				om = PHYS_TO_VM_PAGE(opa);
2229				vm_page_dirty(om);
2230			}
2231			pa |= PG_MANAGED;
2232		}
2233		goto validate;
2234	}
2235	/*
2236	 * Mapping has changed, invalidate old range and fall through to
2237	 * handle validating new mapping.
2238	 */
2239	if (opa) {
2240		int err;
2241		err = pmap_remove_pte(pmap, pte, va);
2242		if (err)
2243			panic("pmap_enter: pte vanished, va: 0x%x", va);
2244	}
2245
2246	/*
2247	 * Enter on the PV list if part of our managed memory. Note that we
2248	 * raise IPL while manipulating pv_table since pmap_enter can be
2249	 * called at interrupt time.
2250	 */
2251	if (pmap_initialized &&
2252	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2253		pmap_insert_entry(pmap, va, mpte, m);
2254		pa |= PG_MANAGED;
2255	}
2256
2257	/*
2258	 * Increment counters
2259	 */
2260	pmap->pm_stats.resident_count++;
2261	if (wired)
2262		pmap->pm_stats.wired_count++;
2263
2264validate:
2265	/*
2266	 * Now validate mapping with desired protection/wiring.
2267	 */
2268	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2269
2270	if (wired)
2271		newpte |= PG_W;
2272	if (va < VM_MAXUSER_ADDRESS)
2273		newpte |= PG_U;
2274	if (pmap == kernel_pmap)
2275		newpte |= pgeflag;
2276
2277	/*
2278	 * if the mapping or permission bits are different, we need
2279	 * to update the pte.
2280	 */
2281	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2282		*pte = newpte | PG_A;
2283		/*if (origpte)*/ {
2284#ifdef SMP
2285			cpu_invlpg((void *)va);
2286			if (pmap->pm_active & PCPU_GET(other_cpus))
2287				smp_invltlb();
2288#else
2289			invltlb_1pg(va);
2290#endif
2291		}
2292	}
2293}
2294
2295/*
2296 * this code makes some *MAJOR* assumptions:
2297 * 1. Current pmap & pmap exists.
2298 * 2. Not wired.
2299 * 3. Read access.
2300 * 4. No page table pages.
2301 * 5. Tlbflush is deferred to calling procedure.
2302 * 6. Page IS managed.
2303 * but is *MUCH* faster than pmap_enter...
2304 */
2305
2306static vm_page_t
2307pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2308{
2309	pt_entry_t *pte;
2310	vm_offset_t pa;
2311
2312	/*
2313	 * In the case that a page table page is not
2314	 * resident, we are creating it here.
2315	 */
2316	if (va < VM_MAXUSER_ADDRESS) {
2317		unsigned ptepindex;
2318		pd_entry_t ptepa;
2319
2320		/*
2321		 * Calculate pagetable page index
2322		 */
2323		ptepindex = va >> PDRSHIFT;
2324		if (mpte && (mpte->pindex == ptepindex)) {
2325			mpte->hold_count++;
2326		} else {
2327retry:
2328			/*
2329			 * Get the page directory entry
2330			 */
2331			ptepa = pmap->pm_pdir[ptepindex];
2332
2333			/*
2334			 * If the page table page is mapped, we just increment
2335			 * the hold count, and activate it.
2336			 */
2337			if (ptepa) {
2338				if (ptepa & PG_PS)
2339					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2340				if (pmap->pm_ptphint &&
2341					(pmap->pm_ptphint->pindex == ptepindex)) {
2342					mpte = pmap->pm_ptphint;
2343				} else {
2344					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2345					pmap->pm_ptphint = mpte;
2346				}
2347				if (mpte == NULL)
2348					goto retry;
2349				mpte->hold_count++;
2350			} else {
2351				mpte = _pmap_allocpte(pmap, ptepindex);
2352			}
2353		}
2354	} else {
2355		mpte = NULL;
2356	}
2357
2358	/*
2359	 * This call to vtopte makes the assumption that we are
2360	 * entering the page into the current pmap.  In order to support
2361	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2362	 * But that isn't as quick as vtopte.
2363	 */
2364	pte = vtopte(va);
2365	if (*pte) {
2366		if (mpte)
2367			pmap_unwire_pte_hold(pmap, mpte);
2368		return 0;
2369	}
2370
2371	/*
2372	 * Enter on the PV list if part of our managed memory. Note that we
2373	 * raise IPL while manipulating pv_table since pmap_enter can be
2374	 * called at interrupt time.
2375	 */
2376	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2377		pmap_insert_entry(pmap, va, mpte, m);
2378
2379	/*
2380	 * Increment counters
2381	 */
2382	pmap->pm_stats.resident_count++;
2383
2384	pa = VM_PAGE_TO_PHYS(m);
2385
2386	/*
2387	 * Now validate mapping with RO protection
2388	 */
2389	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2390		*pte = pa | PG_V | PG_U;
2391	else
2392		*pte = pa | PG_V | PG_U | PG_MANAGED;
2393
2394	return mpte;
2395}
2396
2397/*
2398 * Make a temporary mapping for a physical address.  This is only intended
2399 * to be used for panic dumps.
2400 */
2401void *
2402pmap_kenter_temporary(vm_offset_t pa, int i)
2403{
2404	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2405	return ((void *)crashdumpmap);
2406}
2407
2408#define MAX_INIT_PT (96)
2409/*
2410 * pmap_object_init_pt preloads the ptes for a given object
2411 * into the specified pmap.  This eliminates the blast of soft
2412 * faults on process startup and immediately after an mmap.
2413 */
2414void
2415pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2416		    vm_object_t object, vm_pindex_t pindex,
2417		    vm_size_t size, int limit)
2418{
2419	vm_offset_t tmpidx;
2420	int psize;
2421	vm_page_t p, mpte;
2422	int objpgs;
2423
2424	if (pmap == NULL || object == NULL)
2425		return;
2426
2427	/*
2428	 * This code maps large physical mmap regions into the
2429	 * processor address space.  Note that some shortcuts
2430	 * are taken, but the code works.
2431	 */
2432	if (pseflag && (object->type == OBJT_DEVICE) &&
2433	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2434		int i;
2435		vm_page_t m[1];
2436		unsigned int ptepindex;
2437		int npdes;
2438		pd_entry_t ptepa;
2439
2440		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2441			return;
2442
2443retry:
2444		p = vm_page_lookup(object, pindex);
2445		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2446			goto retry;
2447
2448		if (p == NULL) {
2449			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2450			if (p == NULL)
2451				return;
2452			m[0] = p;
2453
2454			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2455				vm_page_free(p);
2456				return;
2457			}
2458
2459			p = vm_page_lookup(object, pindex);
2460			vm_page_wakeup(p);
2461		}
2462
2463		ptepa = VM_PAGE_TO_PHYS(p);
2464		if (ptepa & (NBPDR - 1)) {
2465			return;
2466		}
2467
2468		p->valid = VM_PAGE_BITS_ALL;
2469
2470		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2471		npdes = size >> PDRSHIFT;
2472		for(i = 0; i < npdes; i++) {
2473			pmap->pm_pdir[ptepindex] =
2474			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2475			ptepa += NBPDR;
2476			ptepindex += 1;
2477		}
2478		vm_page_flag_set(p, PG_MAPPED);
2479		invltlb();
2480		return;
2481	}
2482
2483	psize = i386_btop(size);
2484
2485	if ((object->type != OBJT_VNODE) ||
2486	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2487	     (object->resident_page_count > MAX_INIT_PT))) {
2488		return;
2489	}
2490
2491	if (psize + pindex > object->size) {
2492		if (object->size < pindex)
2493			return;
2494		psize = object->size - pindex;
2495	}
2496
2497	mpte = NULL;
2498	/*
2499	 * if we are processing a major portion of the object, then scan the
2500	 * entire thing.
2501	 */
2502	if (psize > (object->resident_page_count >> 2)) {
2503		objpgs = psize;
2504
2505		for (p = TAILQ_FIRST(&object->memq);
2506		    ((objpgs > 0) && (p != NULL));
2507		    p = TAILQ_NEXT(p, listq)) {
2508
2509			tmpidx = p->pindex;
2510			if (tmpidx < pindex) {
2511				continue;
2512			}
2513			tmpidx -= pindex;
2514			if (tmpidx >= psize) {
2515				continue;
2516			}
2517			/*
2518			 * don't allow an madvise to blow away our really
2519			 * free pages allocating pv entries.
2520			 */
2521			if ((limit & MAP_PREFAULT_MADVISE) &&
2522			    cnt.v_free_count < cnt.v_free_reserved) {
2523				break;
2524			}
2525			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2526				(p->busy == 0) &&
2527			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2528				if ((p->queue - p->pc) == PQ_CACHE)
2529					vm_page_deactivate(p);
2530				vm_page_busy(p);
2531				mpte = pmap_enter_quick(pmap,
2532					addr + i386_ptob(tmpidx), p, mpte);
2533				vm_page_flag_set(p, PG_MAPPED);
2534				vm_page_wakeup(p);
2535			}
2536			objpgs -= 1;
2537		}
2538	} else {
2539		/*
2540		 * else lookup the pages one-by-one.
2541		 */
2542		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2543			/*
2544			 * don't allow an madvise to blow away our really
2545			 * free pages allocating pv entries.
2546			 */
2547			if ((limit & MAP_PREFAULT_MADVISE) &&
2548			    cnt.v_free_count < cnt.v_free_reserved) {
2549				break;
2550			}
2551			p = vm_page_lookup(object, tmpidx + pindex);
2552			if (p &&
2553			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2554				(p->busy == 0) &&
2555			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2556				if ((p->queue - p->pc) == PQ_CACHE)
2557					vm_page_deactivate(p);
2558				vm_page_busy(p);
2559				mpte = pmap_enter_quick(pmap,
2560					addr + i386_ptob(tmpidx), p, mpte);
2561				vm_page_flag_set(p, PG_MAPPED);
2562				vm_page_wakeup(p);
2563			}
2564		}
2565	}
2566	return;
2567}
2568
2569/*
2570 * pmap_prefault provides a quick way of clustering
2571 * pagefaults into a processes address space.  It is a "cousin"
2572 * of pmap_object_init_pt, except it runs at page fault time instead
2573 * of mmap time.
2574 */
2575#define PFBAK 4
2576#define PFFOR 4
2577#define PAGEORDER_SIZE (PFBAK+PFFOR)
2578
2579static int pmap_prefault_pageorder[] = {
2580	-PAGE_SIZE, PAGE_SIZE,
2581	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2582	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2583	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2584};
2585
2586void
2587pmap_prefault(pmap, addra, entry)
2588	pmap_t pmap;
2589	vm_offset_t addra;
2590	vm_map_entry_t entry;
2591{
2592	int i;
2593	vm_offset_t starta;
2594	vm_offset_t addr;
2595	vm_pindex_t pindex;
2596	vm_page_t m, mpte;
2597	vm_object_t object;
2598
2599	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2600		return;
2601
2602	object = entry->object.vm_object;
2603
2604	starta = addra - PFBAK * PAGE_SIZE;
2605	if (starta < entry->start) {
2606		starta = entry->start;
2607	} else if (starta > addra) {
2608		starta = 0;
2609	}
2610
2611	mpte = NULL;
2612	for (i = 0; i < PAGEORDER_SIZE; i++) {
2613		vm_object_t lobject;
2614		pt_entry_t *pte;
2615
2616		addr = addra + pmap_prefault_pageorder[i];
2617		if (addr > addra + (PFFOR * PAGE_SIZE))
2618			addr = 0;
2619
2620		if (addr < starta || addr >= entry->end)
2621			continue;
2622
2623		if ((*pmap_pde(pmap, addr)) == NULL)
2624			continue;
2625
2626		pte = vtopte(addr);
2627		if (*pte)
2628			continue;
2629
2630		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2631		lobject = object;
2632		for (m = vm_page_lookup(lobject, pindex);
2633		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2634		    lobject = lobject->backing_object) {
2635			if (lobject->backing_object_offset & PAGE_MASK)
2636				break;
2637			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2638			m = vm_page_lookup(lobject->backing_object, pindex);
2639		}
2640
2641		/*
2642		 * give-up when a page is not in memory
2643		 */
2644		if (m == NULL)
2645			break;
2646
2647		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2648			(m->busy == 0) &&
2649		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2650
2651			if ((m->queue - m->pc) == PQ_CACHE) {
2652				vm_page_deactivate(m);
2653			}
2654			vm_page_busy(m);
2655			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2656			vm_page_flag_set(m, PG_MAPPED);
2657			vm_page_wakeup(m);
2658		}
2659	}
2660}
2661
2662/*
2663 *	Routine:	pmap_change_wiring
2664 *	Function:	Change the wiring attribute for a map/virtual-address
2665 *			pair.
2666 *	In/out conditions:
2667 *			The mapping must already exist in the pmap.
2668 */
2669void
2670pmap_change_wiring(pmap, va, wired)
2671	register pmap_t pmap;
2672	vm_offset_t va;
2673	boolean_t wired;
2674{
2675	register pt_entry_t *pte;
2676
2677	if (pmap == NULL)
2678		return;
2679
2680	pte = pmap_pte(pmap, va);
2681
2682	if (wired && !pmap_pte_w(pte))
2683		pmap->pm_stats.wired_count++;
2684	else if (!wired && pmap_pte_w(pte))
2685		pmap->pm_stats.wired_count--;
2686
2687	/*
2688	 * Wiring is not a hardware characteristic so there is no need to
2689	 * invalidate TLB.
2690	 */
2691	pmap_pte_set_w(pte, wired);
2692}
2693
2694
2695
2696/*
2697 *	Copy the range specified by src_addr/len
2698 *	from the source map to the range dst_addr/len
2699 *	in the destination map.
2700 *
2701 *	This routine is only advisory and need not do anything.
2702 */
2703
2704void
2705pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2706	  vm_offset_t src_addr)
2707{
2708	vm_offset_t addr;
2709	vm_offset_t end_addr = src_addr + len;
2710	vm_offset_t pdnxt;
2711	pd_entry_t src_frame, dst_frame;
2712	vm_page_t m;
2713	pd_entry_t saved_pde;
2714
2715	if (dst_addr != src_addr)
2716		return;
2717
2718	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2719	if (src_frame != (PTDpde & PG_FRAME))
2720		return;
2721
2722	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2723	if (dst_frame != (APTDpde & PG_FRAME)) {
2724		APTDpde = dst_frame | PG_RW | PG_V;
2725#if defined(SMP)
2726		/* The page directory is not shared between CPUs */
2727		cpu_invltlb();
2728#else
2729		invltlb();
2730#endif
2731	}
2732 	saved_pde = APTDpde & (PG_FRAME | PG_RW | PG_V);
2733	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2734		pt_entry_t *src_pte, *dst_pte;
2735		vm_page_t dstmpte, srcmpte;
2736		pd_entry_t srcptepaddr;
2737		unsigned ptepindex;
2738
2739		if (addr >= UPT_MIN_ADDRESS)
2740			panic("pmap_copy: invalid to pmap_copy page tables\n");
2741
2742		/*
2743		 * Don't let optional prefaulting of pages make us go
2744		 * way below the low water mark of free pages or way
2745		 * above high water mark of used pv entries.
2746		 */
2747		if (cnt.v_free_count < cnt.v_free_reserved ||
2748		    pv_entry_count > pv_entry_high_water)
2749			break;
2750
2751		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2752		ptepindex = addr >> PDRSHIFT;
2753
2754		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2755		if (srcptepaddr == 0)
2756			continue;
2757
2758		if (srcptepaddr & PG_PS) {
2759			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2760				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2761				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2762			}
2763			continue;
2764		}
2765
2766		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2767		if ((srcmpte == NULL) ||
2768		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2769			continue;
2770
2771		if (pdnxt > end_addr)
2772			pdnxt = end_addr;
2773
2774		src_pte = vtopte(addr);
2775		dst_pte = avtopte(addr);
2776		while (addr < pdnxt) {
2777			pt_entry_t ptetemp;
2778			ptetemp = *src_pte;
2779			/*
2780			 * we only virtual copy managed pages
2781			 */
2782			if ((ptetemp & PG_MANAGED) != 0) {
2783				/*
2784				 * We have to check after allocpte for the
2785				 * pte still being around...  allocpte can
2786				 * block.
2787				 */
2788				dstmpte = pmap_allocpte(dst_pmap, addr);
2789				if ((APTDpde & PG_FRAME) !=
2790				    (saved_pde & PG_FRAME)) {
2791					APTDpde = saved_pde;
2792printf ("IT HAPPENNED!");
2793#if defined(SMP)
2794					cpu_invltlb();
2795#else
2796					invltlb();
2797#endif
2798				}
2799				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2800					/*
2801					 * Clear the modified and
2802					 * accessed (referenced) bits
2803					 * during the copy.
2804					 */
2805					m = PHYS_TO_VM_PAGE(ptetemp);
2806					*dst_pte = ptetemp & ~(PG_M | PG_A);
2807					dst_pmap->pm_stats.resident_count++;
2808					pmap_insert_entry(dst_pmap, addr,
2809						dstmpte, m);
2810	 			} else {
2811					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2812				}
2813				if (dstmpte->hold_count >= srcmpte->hold_count)
2814					break;
2815			}
2816			addr += PAGE_SIZE;
2817			src_pte++;
2818			dst_pte++;
2819		}
2820	}
2821}
2822
2823/*
2824 *	Routine:	pmap_kernel
2825 *	Function:
2826 *		Returns the physical map handle for the kernel.
2827 */
2828pmap_t
2829pmap_kernel()
2830{
2831	return (kernel_pmap);
2832}
2833
2834/*
2835 *	pmap_zero_page zeros the specified hardware page by mapping
2836 *	the page into KVM and using bzero to clear its contents.
2837 */
2838void
2839pmap_zero_page(vm_offset_t phys)
2840{
2841
2842	if (*CMAP2)
2843		panic("pmap_zero_page: CMAP2 busy");
2844
2845	*CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2846	invltlb_1pg((vm_offset_t)CADDR2);
2847
2848#if defined(I686_CPU)
2849	if (cpu_class == CPUCLASS_686)
2850		i686_pagezero(CADDR2);
2851	else
2852#endif
2853		bzero(CADDR2, PAGE_SIZE);
2854	*CMAP2 = 0;
2855}
2856
2857/*
2858 *	pmap_zero_page_area zeros the specified hardware page by mapping
2859 *	the page into KVM and using bzero to clear its contents.
2860 *
2861 *	off and size may not cover an area beyond a single hardware page.
2862 */
2863void
2864pmap_zero_page_area(vm_offset_t phys, int off, int size)
2865{
2866
2867	if (*CMAP2)
2868		panic("pmap_zero_page: CMAP2 busy");
2869
2870	*CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2871	invltlb_1pg((vm_offset_t)CADDR2);
2872
2873#if defined(I686_CPU)
2874	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2875		i686_pagezero(CADDR2);
2876	else
2877#endif
2878		bzero((char *)CADDR2 + off, size);
2879	*CMAP2 = 0;
2880}
2881
2882/*
2883 *	pmap_copy_page copies the specified (machine independent)
2884 *	page by mapping the page into virtual memory and using
2885 *	bcopy to copy the page, one machine dependent page at a
2886 *	time.
2887 */
2888void
2889pmap_copy_page(vm_offset_t src, vm_offset_t dst)
2890{
2891
2892	if (*CMAP1)
2893		panic("pmap_copy_page: CMAP1 busy");
2894	if (*CMAP2)
2895		panic("pmap_copy_page: CMAP2 busy");
2896
2897	*CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2898	*CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2899#ifdef I386_CPU
2900	invltlb();
2901#else
2902	invlpg((u_int)CADDR1);
2903	invlpg((u_int)CADDR2);
2904#endif
2905
2906	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2907
2908	*CMAP1 = 0;
2909	*CMAP2 = 0;
2910}
2911
2912
2913/*
2914 *	Routine:	pmap_pageable
2915 *	Function:
2916 *		Make the specified pages (by pmap, offset)
2917 *		pageable (or not) as requested.
2918 *
2919 *		A page which is not pageable may not take
2920 *		a fault; therefore, its page table entry
2921 *		must remain valid for the duration.
2922 *
2923 *		This routine is merely advisory; pmap_enter
2924 *		will specify that these pages are to be wired
2925 *		down (or not) as appropriate.
2926 */
2927void
2928pmap_pageable(pmap, sva, eva, pageable)
2929	pmap_t pmap;
2930	vm_offset_t sva, eva;
2931	boolean_t pageable;
2932{
2933}
2934
2935/*
2936 * this routine returns true if a physical page resides
2937 * in the given pmap.
2938 */
2939boolean_t
2940pmap_page_exists(pmap, m)
2941	pmap_t pmap;
2942	vm_page_t m;
2943{
2944	register pv_entry_t pv;
2945	int s;
2946
2947	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2948		return FALSE;
2949
2950	s = splvm();
2951
2952	/*
2953	 * Not found, check current mappings returning immediately if found.
2954	 */
2955	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2956		if (pv->pv_pmap == pmap) {
2957			splx(s);
2958			return TRUE;
2959		}
2960	}
2961	splx(s);
2962	return (FALSE);
2963}
2964
2965#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2966/*
2967 * Remove all pages from specified address space
2968 * this aids process exit speeds.  Also, this code
2969 * is special cased for current process only, but
2970 * can have the more generic (and slightly slower)
2971 * mode enabled.  This is much faster than pmap_remove
2972 * in the case of running down an entire address space.
2973 */
2974void
2975pmap_remove_pages(pmap, sva, eva)
2976	pmap_t pmap;
2977	vm_offset_t sva, eva;
2978{
2979	pt_entry_t *pte, tpte;
2980	vm_page_t m;
2981	pv_entry_t pv, npv;
2982	int s;
2983
2984#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2985	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2986		printf("warning: pmap_remove_pages called with non-current pmap\n");
2987		return;
2988	}
2989#endif
2990
2991	s = splvm();
2992	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2993
2994		if (pv->pv_va >= eva || pv->pv_va < sva) {
2995			npv = TAILQ_NEXT(pv, pv_plist);
2996			continue;
2997		}
2998
2999#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3000		pte = vtopte(pv->pv_va);
3001#else
3002		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3003#endif
3004		tpte = *pte;
3005
3006		if (tpte == 0) {
3007			printf("TPTE at %p  IS ZERO @ VA %08x\n",
3008							pte, pv->pv_va);
3009			panic("bad pte");
3010		}
3011
3012/*
3013 * We cannot remove wired pages from a process' mapping at this time
3014 */
3015		if (tpte & PG_W) {
3016			npv = TAILQ_NEXT(pv, pv_plist);
3017			continue;
3018		}
3019
3020		m = PHYS_TO_VM_PAGE(tpte);
3021		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3022		    ("vm_page_t %p phys_addr mismatch %08x %08x",
3023		    m, m->phys_addr, tpte));
3024
3025		KASSERT(m < &vm_page_array[vm_page_array_size],
3026			("pmap_remove_pages: bad tpte %x", tpte));
3027
3028		pv->pv_pmap->pm_stats.resident_count--;
3029
3030		*pte = 0;
3031
3032		/*
3033		 * Update the vm_page_t clean and reference bits.
3034		 */
3035		if (tpte & PG_M) {
3036			vm_page_dirty(m);
3037		}
3038
3039		npv = TAILQ_NEXT(pv, pv_plist);
3040		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3041
3042		m->md.pv_list_count--;
3043		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3044		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3045			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3046		}
3047
3048		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3049		free_pv_entry(pv);
3050	}
3051	splx(s);
3052	pmap_invalidate_all(pmap);
3053}
3054
3055/*
3056 * pmap_testbit tests bits in pte's
3057 * note that the testbit/changebit routines are inline,
3058 * and a lot of things compile-time evaluate.
3059 */
3060static boolean_t
3061pmap_testbit(m, bit)
3062	vm_page_t m;
3063	int bit;
3064{
3065	pv_entry_t pv;
3066	pt_entry_t *pte;
3067	int s;
3068
3069	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3070		return FALSE;
3071
3072	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3073		return FALSE;
3074
3075	s = splvm();
3076
3077	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3078		/*
3079		 * if the bit being tested is the modified bit, then
3080		 * mark clean_map and ptes as never
3081		 * modified.
3082		 */
3083		if (bit & (PG_A|PG_M)) {
3084			if (!pmap_track_modified(pv->pv_va))
3085				continue;
3086		}
3087
3088#if defined(PMAP_DIAGNOSTIC)
3089		if (!pv->pv_pmap) {
3090			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3091			continue;
3092		}
3093#endif
3094		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3095		if (*pte & bit) {
3096			splx(s);
3097			return TRUE;
3098		}
3099	}
3100	splx(s);
3101	return (FALSE);
3102}
3103
3104/*
3105 * this routine is used to modify bits in ptes
3106 */
3107static __inline void
3108pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3109{
3110	register pv_entry_t pv;
3111	register pt_entry_t *pte;
3112	int s;
3113
3114	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3115		return;
3116
3117	s = splvm();
3118
3119	/*
3120	 * Loop over all current mappings setting/clearing as appropos If
3121	 * setting RO do we need to clear the VAC?
3122	 */
3123	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3124		/*
3125		 * don't write protect pager mappings
3126		 */
3127		if (!setem && (bit == PG_RW)) {
3128			if (!pmap_track_modified(pv->pv_va))
3129				continue;
3130		}
3131
3132#if defined(PMAP_DIAGNOSTIC)
3133		if (!pv->pv_pmap) {
3134			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3135			continue;
3136		}
3137#endif
3138
3139		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3140
3141		if (setem) {
3142			*pte |= bit;
3143			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3144		} else {
3145			pt_entry_t pbits = *pte;
3146			if (pbits & bit) {
3147				if (bit == PG_RW) {
3148					if (pbits & PG_M) {
3149						vm_page_dirty(m);
3150					}
3151					*pte = pbits & ~(PG_M|PG_RW);
3152				} else {
3153					*pte = pbits & ~bit;
3154				}
3155				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3156			}
3157		}
3158	}
3159	splx(s);
3160}
3161
3162/*
3163 *      pmap_page_protect:
3164 *
3165 *      Lower the permission for all mappings to a given page.
3166 */
3167void
3168pmap_page_protect(vm_page_t m, vm_prot_t prot)
3169{
3170	if ((prot & VM_PROT_WRITE) == 0) {
3171		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3172			pmap_changebit(m, PG_RW, FALSE);
3173		} else {
3174			pmap_remove_all(m);
3175		}
3176	}
3177}
3178
3179vm_offset_t
3180pmap_phys_address(ppn)
3181	int ppn;
3182{
3183	return (i386_ptob(ppn));
3184}
3185
3186/*
3187 *	pmap_ts_referenced:
3188 *
3189 *	Return the count of reference bits for a page, clearing all of them.
3190 */
3191int
3192pmap_ts_referenced(vm_page_t m)
3193{
3194	register pv_entry_t pv, pvf, pvn;
3195	pt_entry_t *pte;
3196	int s;
3197	int rtval = 0;
3198
3199	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3200		return (rtval);
3201
3202	s = splvm();
3203
3204	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3205
3206		pvf = pv;
3207
3208		do {
3209			pvn = TAILQ_NEXT(pv, pv_list);
3210
3211			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3212
3213			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3214
3215			if (!pmap_track_modified(pv->pv_va))
3216				continue;
3217
3218			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3219
3220			if (pte && (*pte & PG_A)) {
3221				*pte &= ~PG_A;
3222
3223				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3224
3225				rtval++;
3226				if (rtval > 4) {
3227					break;
3228				}
3229			}
3230		} while ((pv = pvn) != NULL && pv != pvf);
3231	}
3232	splx(s);
3233
3234	return (rtval);
3235}
3236
3237/*
3238 *	pmap_is_modified:
3239 *
3240 *	Return whether or not the specified physical page was modified
3241 *	in any physical maps.
3242 */
3243boolean_t
3244pmap_is_modified(vm_page_t m)
3245{
3246	return pmap_testbit(m, PG_M);
3247}
3248
3249/*
3250 *	Clear the modify bits on the specified physical page.
3251 */
3252void
3253pmap_clear_modify(vm_page_t m)
3254{
3255	pmap_changebit(m, PG_M, FALSE);
3256}
3257
3258/*
3259 *	pmap_clear_reference:
3260 *
3261 *	Clear the reference bit on the specified physical page.
3262 */
3263void
3264pmap_clear_reference(vm_page_t m)
3265{
3266	pmap_changebit(m, PG_A, FALSE);
3267}
3268
3269/*
3270 * Miscellaneous support routines follow
3271 */
3272
3273static void
3274i386_protection_init()
3275{
3276	register int *kp, prot;
3277
3278	kp = protection_codes;
3279	for (prot = 0; prot < 8; prot++) {
3280		switch (prot) {
3281		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3282			/*
3283			 * Read access is also 0. There isn't any execute bit,
3284			 * so just make it readable.
3285			 */
3286		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3287		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3288		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3289			*kp++ = 0;
3290			break;
3291		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3292		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3293		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3294		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3295			*kp++ = PG_RW;
3296			break;
3297		}
3298	}
3299}
3300
3301/*
3302 * Map a set of physical memory pages into the kernel virtual
3303 * address space. Return a pointer to where it is mapped. This
3304 * routine is intended to be used for mapping device memory,
3305 * NOT real memory.
3306 */
3307void *
3308pmap_mapdev(pa, size)
3309	vm_offset_t pa;
3310	vm_size_t size;
3311{
3312	vm_offset_t va, tmpva, offset;
3313	pt_entry_t *pte;
3314
3315	offset = pa & PAGE_MASK;
3316	size = roundup(offset + size, PAGE_SIZE);
3317
3318	GIANT_REQUIRED;
3319
3320	va = kmem_alloc_pageable(kernel_map, size);
3321	if (!va)
3322		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3323
3324	pa = pa & PG_FRAME;
3325	for (tmpva = va; size > 0;) {
3326		pte = vtopte(tmpva);
3327		*pte = pa | PG_RW | PG_V | pgeflag;
3328		size -= PAGE_SIZE;
3329		tmpva += PAGE_SIZE;
3330		pa += PAGE_SIZE;
3331	}
3332	invltlb();
3333
3334	return ((void *)(va + offset));
3335}
3336
3337void
3338pmap_unmapdev(va, size)
3339	vm_offset_t va;
3340	vm_size_t size;
3341{
3342	vm_offset_t base, offset;
3343
3344	base = va & PG_FRAME;
3345	offset = va & PAGE_MASK;
3346	size = roundup(offset + size, PAGE_SIZE);
3347	kmem_free(kernel_map, base, size);
3348}
3349
3350/*
3351 * perform the pmap work for mincore
3352 */
3353int
3354pmap_mincore(pmap, addr)
3355	pmap_t pmap;
3356	vm_offset_t addr;
3357{
3358	pt_entry_t *ptep, pte;
3359	vm_page_t m;
3360	int val = 0;
3361
3362	ptep = pmap_pte(pmap, addr);
3363	if (ptep == 0) {
3364		return 0;
3365	}
3366
3367	if ((pte = *ptep) != 0) {
3368		vm_offset_t pa;
3369
3370		val = MINCORE_INCORE;
3371		if ((pte & PG_MANAGED) == 0)
3372			return val;
3373
3374		pa = pte & PG_FRAME;
3375
3376		m = PHYS_TO_VM_PAGE(pa);
3377
3378		/*
3379		 * Modified by us
3380		 */
3381		if (pte & PG_M)
3382			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3383		/*
3384		 * Modified by someone
3385		 */
3386		else if (m->dirty || pmap_is_modified(m))
3387			val |= MINCORE_MODIFIED_OTHER;
3388		/*
3389		 * Referenced by us
3390		 */
3391		if (pte & PG_A)
3392			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3393
3394		/*
3395		 * Referenced by someone
3396		 */
3397		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3398			val |= MINCORE_REFERENCED_OTHER;
3399			vm_page_flag_set(m, PG_REFERENCED);
3400		}
3401	}
3402	return val;
3403}
3404
3405void
3406pmap_activate(struct thread *td)
3407{
3408	struct proc *p = td->td_proc;
3409	pmap_t	pmap;
3410	u_int32_t  cr3;
3411
3412	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3413#if defined(SMP)
3414	pmap->pm_active |= PCPU_GET(cpumask);
3415#else
3416	pmap->pm_active |= 1;
3417#endif
3418#if defined(SWTCH_OPTIM_STATS)
3419	tlb_flush_count++;
3420#endif
3421	cr3 = vtophys(pmap->pm_pdir);
3422	/* XXXKSE this is wrong.
3423	 * pmap_activate is for the current thread on the current cpu
3424	 */
3425	if (p->p_flag & P_KSES) {
3426		/* Make sure all other cr3 entries are updated. */
3427		/* what if they are running?  XXXKSE (maybe abort them) */
3428		FOREACH_THREAD_IN_PROC(p, td) {
3429			td->td_pcb->pcb_cr3 = cr3;
3430		}
3431	} else {
3432		td->td_pcb->pcb_cr3 = cr3;
3433	}
3434	load_cr3(cr3);
3435}
3436
3437vm_offset_t
3438pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3439{
3440
3441	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3442		return addr;
3443	}
3444
3445	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3446	return addr;
3447}
3448
3449
3450#if defined(PMAP_DEBUG)
3451pmap_pid_dump(int pid)
3452{
3453	pmap_t pmap;
3454	struct proc *p;
3455	int npte = 0;
3456	int index;
3457
3458	sx_slock(&allproc_lock);
3459	LIST_FOREACH(p, &allproc, p_list) {
3460		if (p->p_pid != pid)
3461			continue;
3462
3463		if (p->p_vmspace) {
3464			int i,j;
3465			index = 0;
3466			pmap = vmspace_pmap(p->p_vmspace);
3467			for (i = 0; i < NPDEPG; i++) {
3468				pd_entry_t *pde;
3469				pt_entry_t *pte;
3470				vm_offset_t base = i << PDRSHIFT;
3471
3472				pde = &pmap->pm_pdir[i];
3473				if (pde && pmap_pde_v(pde)) {
3474					for (j = 0; j < NPTEPG; j++) {
3475						vm_offset_t va = base + (j << PAGE_SHIFT);
3476						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3477							if (index) {
3478								index = 0;
3479								printf("\n");
3480							}
3481							sx_sunlock(&allproc_lock);
3482							return npte;
3483						}
3484						pte = pmap_pte_quick(pmap, va);
3485						if (pte && pmap_pte_v(pte)) {
3486							pt_entry_t pa;
3487							vm_page_t m;
3488							pa = *pte;
3489							m = PHYS_TO_VM_PAGE(pa);
3490							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3491								va, pa, m->hold_count, m->wire_count, m->flags);
3492							npte++;
3493							index++;
3494							if (index >= 2) {
3495								index = 0;
3496								printf("\n");
3497							} else {
3498								printf(" ");
3499							}
3500						}
3501					}
3502				}
3503			}
3504		}
3505	}
3506	sx_sunlock(&allproc_lock);
3507	return npte;
3508}
3509#endif
3510
3511#if defined(DEBUG)
3512
3513static void	pads __P((pmap_t pm));
3514void		pmap_pvdump __P((vm_offset_t pa));
3515
3516/* print address space of pmap*/
3517static void
3518pads(pm)
3519	pmap_t pm;
3520{
3521	int i, j;
3522	vm_offset_t va;
3523	pt_entry_t *ptep;
3524
3525	if (pm == kernel_pmap)
3526		return;
3527	for (i = 0; i < NPDEPG; i++)
3528		if (pm->pm_pdir[i])
3529			for (j = 0; j < NPTEPG; j++) {
3530				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3531				if (pm == kernel_pmap && va < KERNBASE)
3532					continue;
3533				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3534					continue;
3535				ptep = pmap_pte_quick(pm, va);
3536				if (pmap_pte_v(ptep))
3537					printf("%x:%x ", va, *ptep);
3538			};
3539
3540}
3541
3542void
3543pmap_pvdump(pa)
3544	vm_offset_t pa;
3545{
3546	pv_entry_t pv;
3547	vm_page_t m;
3548
3549	printf("pa %x", pa);
3550	m = PHYS_TO_VM_PAGE(pa);
3551	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3552		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3553		pads(pv->pv_pmap);
3554	}
3555	printf(" ");
3556}
3557#endif
3558