pmap.c revision 88245
1169689Skan/*
2169689Skan * Copyright (c) 1991 Regents of the University of California.
3169689Skan * All rights reserved.
4169689Skan * Copyright (c) 1994 John S. Dyson
5169689Skan * All rights reserved.
6169689Skan * Copyright (c) 1994 David Greenman
7169689Skan * All rights reserved.
8169689Skan *
9169689Skan * This code is derived from software contributed to Berkeley by
10169689Skan * the Systems Programming Group of the University of Utah Computer
11169689Skan * Science Department and William Jolitz of UUNET Technologies Inc.
12169689Skan *
13169689Skan * Redistribution and use in source and binary forms, with or without
14169689Skan * modification, are permitted provided that the following conditions
15169689Skan * are met:
16169689Skan * 1. Redistributions of source code must retain the above copyright
17169689Skan *    notice, this list of conditions and the following disclaimer.
18169689Skan * 2. Redistributions in binary form must reproduce the above copyright
19169689Skan *    notice, this list of conditions and the following disclaimer in the
20169689Skan *    documentation and/or other materials provided with the distribution.
21169689Skan * 3. All advertising materials mentioning features or use of this software
22169689Skan *    must display the following acknowledgement:
23169689Skan *	This product includes software developed by the University of
24169689Skan *	California, Berkeley and its contributors.
25169689Skan * 4. Neither the name of the University nor the names of its contributors
26169689Skan *    may be used to endorse or promote products derived from this software
27169689Skan *    without specific prior written permission.
28169689Skan *
29169689Skan * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30169689Skan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31169689Skan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32169689Skan * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33169689Skan * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34169689Skan * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35169689Skan * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36169689Skan * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37169689Skan * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38169689Skan * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39169689Skan * SUCH DAMAGE.
40169689Skan *
41169689Skan *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42169689Skan * $FreeBSD: head/sys/i386/i386/pmap.c 88245 2001-12-20 05:29:59Z peter $
43169689Skan */
44169689Skan
45169689Skan/*
46169689Skan *	Manages physical address maps.
47169689Skan *
48169689Skan *	In addition to hardware address maps, this
49169689Skan *	module is called upon to provide software-use-only
50169689Skan *	maps which may or may not be stored in the same
51169689Skan *	form as hardware maps.  These pseudo-maps are
52169689Skan *	used to store intermediate results from copy
53169689Skan *	operations to and from address spaces.
54169689Skan *
55169689Skan *	Since the information managed by this module is
56169689Skan *	also stored by the logical address mapping module,
57169689Skan *	this module may throw away valid virtual-to-physical
58169689Skan *	mappings at almost any time.  However, invalidations
59169689Skan *	of virtual-to-physical mappings must be done as
60169689Skan *	requested.
61169689Skan *
62169689Skan *	In order to cope with hardware architectures which
63169689Skan *	make virtual-to-physical map invalidates expensive,
64169689Skan *	this module may delay invalidate or reduced protection
65169689Skan *	operations until such time as they are actually
66169689Skan *	necessary.  This module is given full information as
67169689Skan *	to which processors are currently using which maps,
68169689Skan *	and to when physical maps must be made correct.
69169689Skan */
70169689Skan
71169689Skan#include "opt_disable_pse.h"
72169689Skan#include "opt_pmap.h"
73169689Skan#include "opt_msgbuf.h"
74169689Skan#include "opt_kstack_pages.h"
75169689Skan
76169689Skan#include <sys/param.h>
77169689Skan#include <sys/systm.h>
78169689Skan#include <sys/kernel.h>
79169689Skan#include <sys/lock.h>
80169689Skan#include <sys/mman.h>
81169689Skan#include <sys/msgbuf.h>
82169689Skan#include <sys/mutex.h>
83169689Skan#include <sys/proc.h>
84169689Skan#include <sys/sx.h>
85169689Skan#include <sys/user.h>
86169689Skan#include <sys/vmmeter.h>
87169689Skan#include <sys/sysctl.h>
88169689Skan
89169689Skan#include <vm/vm.h>
90169689Skan#include <vm/vm_param.h>
91169689Skan#include <vm/vm_kern.h>
92169689Skan#include <vm/vm_page.h>
93169689Skan#include <vm/vm_map.h>
94169689Skan#include <vm/vm_object.h>
95169689Skan#include <vm/vm_extern.h>
96169689Skan#include <vm/vm_pageout.h>
97169689Skan#include <vm/vm_pager.h>
98169689Skan#include <vm/vm_zone.h>
99169689Skan
100169689Skan#include <machine/cputypes.h>
101169689Skan#include <machine/md_var.h>
102169689Skan#include <machine/specialreg.h>
103169689Skan#if defined(SMP) || defined(APIC_IO)
104169689Skan#include <machine/smp.h>
105169689Skan#include <machine/apic.h>
106169689Skan#include <machine/segments.h>
107169689Skan#include <machine/tss.h>
108169689Skan#endif /* SMP || APIC_IO */
109169689Skan
110169689Skan#define PMAP_KEEP_PDIRS
111169689Skan#ifndef PMAP_SHPGPERPROC
112169689Skan#define PMAP_SHPGPERPROC 200
113169689Skan#endif
114169689Skan
115169689Skan#if defined(DIAGNOSTIC)
116169689Skan#define PMAP_DIAGNOSTIC
117169689Skan#endif
118169689Skan
119169689Skan#define MINPV 2048
120169689Skan
121169689Skan#if !defined(PMAP_DIAGNOSTIC)
122169689Skan#define PMAP_INLINE __inline
123169689Skan#else
124169689Skan#define PMAP_INLINE
125169689Skan#endif
126169689Skan
127169689Skan/*
128169689Skan * Get PDEs and PTEs for user/kernel address space
129169689Skan */
130169689Skan#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131169689Skan#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
132169689Skan
133169689Skan#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
134169689Skan#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
135169689Skan#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
136169689Skan#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
137169689Skan#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
138169689Skan
139169689Skan#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
140169689Skan#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
141169689Skan
142169689Skan/*
143169689Skan * Given a map and a machine independent protection code,
144169689Skan * convert to a vax protection code.
145169689Skan */
146169689Skan#define pte_prot(m, p)	(protection_codes[p])
147169689Skanstatic int protection_codes[8];
148169689Skan
149169689Skanstatic struct pmap kernel_pmap_store;
150169689Skanpmap_t kernel_pmap;
151169689SkanLIST_HEAD(pmaplist, pmap);
152169689Skanstruct pmaplist allpmaps;
153169689Skan
154169689Skanvm_offset_t avail_start;	/* PA of first available physical page */
155169689Skanvm_offset_t avail_end;		/* PA of last available physical page */
156169689Skanvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
157169689Skanvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
158169689Skanstatic boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
159169689Skanstatic int pgeflag;		/* PG_G or-in */
160169689Skanstatic int pseflag;		/* PG_PS or-in */
161169689Skan
162169689Skanstatic vm_object_t kptobj;
163169689Skan
164169689Skanstatic int nkpt;
165169689Skanvm_offset_t kernel_vm_end;
166
167/*
168 * Data for the pv entry allocation mechanism
169 */
170static vm_zone_t pvzone;
171static struct vm_zone pvzone_store;
172static struct vm_object pvzone_obj;
173static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
174static int pmap_pagedaemon_waken = 0;
175static struct pv_entry *pvinit;
176
177/*
178 * All those kernel PT submaps that BSD is so fond of
179 */
180pt_entry_t *CMAP1 = 0;
181static pt_entry_t *CMAP2, *ptmmap;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2;
184static pt_entry_t *msgbufmap;
185struct msgbuf *msgbufp = 0;
186
187/*
188 * Crashdump maps.
189 */
190static pt_entry_t *pt_crashdumpmap;
191static caddr_t crashdumpmap;
192
193#ifdef SMP
194extern pt_entry_t *SMPpt;
195#endif
196static pt_entry_t *PMAP1 = 0;
197static pt_entry_t *PADDR1 = 0;
198
199static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
200static unsigned * get_ptbase __P((pmap_t pmap));
201static pv_entry_t get_pv_entry __P((void));
202static void	i386_protection_init __P((void));
203static __inline void	pmap_changebit __P((vm_page_t m, int bit, boolean_t setem));
204
205static void	pmap_remove_all __P((vm_page_t m));
206static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte));
208static int pmap_remove_pte __P((pmap_t pmap, unsigned *ptq, vm_offset_t sva));
209static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
210static int pmap_remove_entry __P((struct pmap *pmap, vm_page_t m,
211					vm_offset_t va));
212static boolean_t pmap_testbit __P((vm_page_t m, int bit));
213static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
214		vm_page_t mpte, vm_page_t m));
215
216static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
217
218static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
219static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
220static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
221static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
222static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
223static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
224
225static unsigned pdir4mb;
226
227/*
228 *	Routine:	pmap_pte
229 *	Function:
230 *		Extract the page table entry associated
231 *		with the given map/virtual_address pair.
232 */
233
234PMAP_INLINE unsigned *
235pmap_pte(pmap, va)
236	register pmap_t pmap;
237	vm_offset_t va;
238{
239	pd_entry_t *pdeaddr;
240
241	if (pmap) {
242		pdeaddr = pmap_pde(pmap, va);
243		if (*pdeaddr & PG_PS)
244			return pdeaddr;
245		if (*pdeaddr) {
246			return get_ptbase(pmap) + i386_btop(va);
247		}
248	}
249	return (0);
250}
251
252/*
253 * Move the kernel virtual free pointer to the next
254 * 4MB.  This is used to help improve performance
255 * by using a large (4MB) page for much of the kernel
256 * (.text, .data, .bss)
257 */
258static vm_offset_t
259pmap_kmem_choose(vm_offset_t addr)
260{
261	vm_offset_t newaddr = addr;
262#ifndef DISABLE_PSE
263	if (cpu_feature & CPUID_PSE) {
264		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
265	}
266#endif
267	return newaddr;
268}
269
270/*
271 *	Bootstrap the system enough to run with virtual memory.
272 *
273 *	On the i386 this is called after mapping has already been enabled
274 *	and just syncs the pmap module with what has already been done.
275 *	[We can't call it easily with mapping off since the kernel is not
276 *	mapped with PA == VA, hence we would have to relocate every address
277 *	from the linked base (virtual) address "KERNBASE" to the actual
278 *	(physical) address starting relative to 0]
279 */
280void
281pmap_bootstrap(firstaddr, loadaddr)
282	vm_offset_t firstaddr;
283	vm_offset_t loadaddr;
284{
285	vm_offset_t va;
286	pt_entry_t *pte;
287	int i;
288
289	avail_start = firstaddr;
290
291	/*
292	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
293	 * large. It should instead be correctly calculated in locore.s and
294	 * not based on 'first' (which is a physical address, not a virtual
295	 * address, for the start of unused physical memory). The kernel
296	 * page tables are NOT double mapped and thus should not be included
297	 * in this calculation.
298	 */
299	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
300	virtual_avail = pmap_kmem_choose(virtual_avail);
301
302	virtual_end = VM_MAX_KERNEL_ADDRESS;
303
304	/*
305	 * Initialize protection array.
306	 */
307	i386_protection_init();
308
309	/*
310	 * The kernel's pmap is statically allocated so we don't have to use
311	 * pmap_create, which is unlikely to work correctly at this part of
312	 * the boot sequence (XXX and which no longer exists).
313	 */
314	kernel_pmap = &kernel_pmap_store;
315
316	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
317	kernel_pmap->pm_count = 1;
318	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
319	TAILQ_INIT(&kernel_pmap->pm_pvlist);
320	LIST_INIT(&allpmaps);
321	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
322	nkpt = NKPT;
323
324	/*
325	 * Reserve some special page table entries/VA space for temporary
326	 * mapping of pages.
327	 */
328#define	SYSMAP(c, p, v, n)	\
329	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
330
331	va = virtual_avail;
332	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
333
334	/*
335	 * CMAP1/CMAP2 are used for zeroing and copying pages.
336	 */
337	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
338	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
339
340	/*
341	 * Crashdump maps.
342	 */
343	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
344
345	/*
346	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
347	 * XXX ptmmap is not used.
348	 */
349	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
350
351	/*
352	 * msgbufp is used to map the system message buffer.
353	 * XXX msgbufmap is not used.
354	 */
355	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
356	       atop(round_page(MSGBUF_SIZE)))
357
358	/*
359	 * ptemap is used for pmap_pte_quick
360	 */
361	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
362
363	virtual_avail = va;
364
365	*CMAP1 = *CMAP2 = 0;
366	for (i = 0; i < NKPT; i++)
367		PTD[i] = 0;
368
369	pgeflag = 0;
370#if !defined(SMP)			/* XXX - see also mp_machdep.c */
371	if (cpu_feature & CPUID_PGE) {
372		pgeflag = PG_G;
373	}
374#endif
375
376/*
377 * Initialize the 4MB page size flag
378 */
379	pseflag = 0;
380/*
381 * The 4MB page version of the initial
382 * kernel page mapping.
383 */
384	pdir4mb = 0;
385
386#if !defined(DISABLE_PSE)
387	if (cpu_feature & CPUID_PSE) {
388		unsigned ptditmp;
389		/*
390		 * Note that we have enabled PSE mode
391		 */
392		pseflag = PG_PS;
393		ptditmp = *(PTmap + i386_btop(KERNBASE));
394		ptditmp &= ~(NBPDR - 1);
395		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
396		pdir4mb = ptditmp;
397
398#if !defined(SMP)
399		/*
400		 * Enable the PSE mode.
401		 */
402		load_cr4(rcr4() | CR4_PSE);
403
404		/*
405		 * We can do the mapping here for the single processor
406		 * case.  We simply ignore the old page table page from
407		 * now on.
408		 */
409		/*
410		 * For SMP, we still need 4K pages to bootstrap APs,
411		 * PSE will be enabled as soon as all APs are up.
412		 */
413		PTD[KPTDI] = (pd_entry_t) ptditmp;
414		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
415		invltlb();
416#endif
417	}
418#endif
419
420#ifdef SMP
421	if (cpu_apic_address == 0)
422		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
423
424	/* local apic is mapped on last page */
425	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
426	    (cpu_apic_address & PG_FRAME));
427#endif
428
429	invltlb();
430}
431
432#ifdef SMP
433/*
434 * Set 4mb pdir for mp startup
435 */
436void
437pmap_set_opt(void)
438{
439	if (pseflag && (cpu_feature & CPUID_PSE)) {
440		load_cr4(rcr4() | CR4_PSE);
441		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
442			kernel_pmap->pm_pdir[KPTDI] =
443			    PTD[KPTDI] = (pd_entry_t)pdir4mb;
444			cpu_invltlb();
445		}
446	}
447}
448#endif
449
450/*
451 *	Initialize the pmap module.
452 *	Called by vm_init, to initialize any structures that the pmap
453 *	system needs to map virtual memory.
454 *	pmap_init has been enhanced to support in a fairly consistant
455 *	way, discontiguous physical memory.
456 */
457void
458pmap_init(phys_start, phys_end)
459	vm_offset_t phys_start, phys_end;
460{
461	int i;
462	int initial_pvs;
463
464	/*
465	 * object for kernel page table pages
466	 */
467	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
468
469	/*
470	 * Allocate memory for random pmap data structures.  Includes the
471	 * pv_head_table.
472	 */
473
474	for(i = 0; i < vm_page_array_size; i++) {
475		vm_page_t m;
476
477		m = &vm_page_array[i];
478		TAILQ_INIT(&m->md.pv_list);
479		m->md.pv_list_count = 0;
480	}
481
482	/*
483	 * init the pv free list
484	 */
485	initial_pvs = vm_page_array_size;
486	if (initial_pvs < MINPV)
487		initial_pvs = MINPV;
488	pvzone = &pvzone_store;
489	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
490		initial_pvs * sizeof (struct pv_entry));
491	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
492	    vm_page_array_size);
493
494	/*
495	 * Now it is safe to enable pv_table recording.
496	 */
497	pmap_initialized = TRUE;
498}
499
500/*
501 * Initialize the address space (zone) for the pv_entries.  Set a
502 * high water mark so that the system can recover from excessive
503 * numbers of pv entries.
504 */
505void
506pmap_init2()
507{
508	int shpgperproc = PMAP_SHPGPERPROC;
509
510	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
511	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
512	pv_entry_high_water = 9 * (pv_entry_max / 10);
513	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
514}
515
516
517/***************************************************
518 * Low level helper routines.....
519 ***************************************************/
520
521#if defined(PMAP_DIAGNOSTIC)
522
523/*
524 * This code checks for non-writeable/modified pages.
525 * This should be an invalid condition.
526 */
527static int
528pmap_nw_modified(pt_entry_t ptea)
529{
530	int pte;
531
532	pte = (int) ptea;
533
534	if ((pte & (PG_M|PG_RW)) == PG_M)
535		return 1;
536	else
537		return 0;
538}
539#endif
540
541
542/*
543 * this routine defines the region(s) of memory that should
544 * not be tested for the modified bit.
545 */
546static PMAP_INLINE int
547pmap_track_modified(vm_offset_t va)
548{
549	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
550		return 1;
551	else
552		return 0;
553}
554
555static PMAP_INLINE void
556invltlb_1pg(vm_offset_t va)
557{
558#ifdef I386_CPU
559	invltlb();
560#else
561	invlpg(va);
562#endif
563}
564
565static __inline void
566pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
567{
568#if defined(SMP)
569	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
570		cpu_invlpg((void *)va);
571	if (pmap->pm_active & PCPU_GET(other_cpus))
572		smp_invltlb();
573#else
574	if (pmap->pm_active)
575		invltlb_1pg(va);
576#endif
577}
578
579static __inline void
580pmap_invalidate_all(pmap_t pmap)
581{
582#if defined(SMP)
583	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
584		cpu_invltlb();
585	if (pmap->pm_active & PCPU_GET(other_cpus))
586		smp_invltlb();
587#else
588	if (pmap->pm_active)
589		invltlb();
590#endif
591}
592
593/*
594 * Return an address which is the base of the Virtual mapping of
595 * all the PTEs for the given pmap. Note this doesn't say that
596 * all the PTEs will be present or that the pages there are valid.
597 * The PTEs are made available by the recursive mapping trick.
598 * It will map in the alternate PTE space if needed.
599 */
600static pt_entry_t *
601get_ptbase(pmap)
602	pmap_t pmap;
603{
604	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
605
606	/* are we current address space or kernel? */
607	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
608		return PTmap;
609	}
610	/* otherwise, we are alternate address space */
611	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
612		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
613#if defined(SMP)
614		/* The page directory is not shared between CPUs */
615		cpu_invltlb();
616#else
617		invltlb();
618#endif
619	}
620	return APTmap;
621}
622
623/*
624 * Super fast pmap_pte routine best used when scanning
625 * the pv lists.  This eliminates many coarse-grained
626 * invltlb calls.  Note that many of the pv list
627 * scans are across different pmaps.  It is very wasteful
628 * to do an entire invltlb for checking a single mapping.
629 */
630
631static pt_entry_t *
632pmap_pte_quick(pmap, va)
633	register pmap_t pmap;
634	vm_offset_t va;
635{
636	pd_entry_t pde, newpf;
637	if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
638		pd_entry_t frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
639		unsigned index = i386_btop(va);
640		/* are we current address space or kernel? */
641		if ((pmap == kernel_pmap) ||
642			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
643			return PTmap + index;
644		}
645		newpf = pde & PG_FRAME;
646		if (((*PMAP1) & PG_FRAME) != newpf) {
647			*PMAP1 = newpf | PG_RW | PG_V;
648			invltlb_1pg((vm_offset_t) PADDR1);
649		}
650		return PADDR1 + (index & (NPTEPG - 1));
651	}
652	return (0);
653}
654
655/*
656 *	Routine:	pmap_extract
657 *	Function:
658 *		Extract the physical page address associated
659 *		with the given map/virtual_address pair.
660 */
661vm_offset_t
662pmap_extract(pmap, va)
663	register pmap_t pmap;
664	vm_offset_t va;
665{
666	vm_offset_t rtval;	/* XXX FIXME */
667	vm_offset_t pdirindex;
668	pdirindex = va >> PDRSHIFT;
669	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
670		pt_entry_t *pte;
671		if ((rtval & PG_PS) != 0) {
672			rtval &= ~(NBPDR - 1);
673			rtval |= va & (NBPDR - 1);
674			return rtval;
675		}
676		pte = get_ptbase(pmap) + i386_btop(va);
677		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
678		return rtval;
679	}
680	return 0;
681
682}
683
684/***************************************************
685 * Low level mapping routines.....
686 ***************************************************/
687
688/*
689 * add a wired page to the kva
690 * note that in order for the mapping to take effect -- you
691 * should do a invltlb after doing the pmap_kenter...
692 */
693PMAP_INLINE void
694pmap_kenter(vm_offset_t va, vm_offset_t pa)
695{
696	pt_entry_t *pte;
697	pt_entry_t npte, opte;
698
699	npte = pa | PG_RW | PG_V | pgeflag;
700	pte = vtopte(va);
701	opte = *pte;
702	*pte = npte;
703	/*if (opte)*/
704		invltlb_1pg(va);	/* XXX what about SMP? */
705}
706
707/*
708 * remove a page from the kernel pagetables
709 */
710PMAP_INLINE void
711pmap_kremove(vm_offset_t va)
712{
713	register pt_entry_t *pte;
714
715	pte = vtopte(va);
716	*pte = 0;
717	invltlb_1pg(va);	/* XXX what about SMP? */
718}
719
720/*
721 *	Used to map a range of physical addresses into kernel
722 *	virtual address space.
723 *
724 *	The value passed in '*virt' is a suggested virtual address for
725 *	the mapping. Architectures which can support a direct-mapped
726 *	physical to virtual region can return the appropriate address
727 *	within that region, leaving '*virt' unchanged. Other
728 *	architectures should map the pages starting at '*virt' and
729 *	update '*virt' with the first usable address after the mapped
730 *	region.
731 */
732vm_offset_t
733pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
734{
735	vm_offset_t sva = *virt;
736	vm_offset_t va = sva;
737	while (start < end) {
738		pmap_kenter(va, start);
739		va += PAGE_SIZE;
740		start += PAGE_SIZE;
741	}
742	*virt = va;
743	return (sva);
744}
745
746
747/*
748 * Add a list of wired pages to the kva
749 * this routine is only used for temporary
750 * kernel mappings that do not need to have
751 * page modification or references recorded.
752 * Note that old mappings are simply written
753 * over.  The page *must* be wired.
754 */
755void
756pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
757{
758	vm_offset_t end_va;
759
760	end_va = va + count * PAGE_SIZE;
761
762	while (va < end_va) {
763		pt_entry_t *pte;
764
765		pte = vtopte(va);
766		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
767#ifdef SMP
768		cpu_invlpg((void *)va);
769#else
770		invltlb_1pg(va);
771#endif
772		va += PAGE_SIZE;
773		m++;
774	}
775#ifdef SMP
776	smp_invltlb();
777#endif
778}
779
780/*
781 * this routine jerks page mappings from the
782 * kernel -- it is meant only for temporary mappings.
783 */
784void
785pmap_qremove(vm_offset_t va, int count)
786{
787	vm_offset_t end_va;
788
789	end_va = va + count*PAGE_SIZE;
790
791	while (va < end_va) {
792		pt_entry_t *pte;
793
794		pte = vtopte(va);
795		*pte = 0;
796#ifdef SMP
797		cpu_invlpg((void *)va);
798#else
799		invltlb_1pg(va);
800#endif
801		va += PAGE_SIZE;
802	}
803#ifdef SMP
804	smp_invltlb();
805#endif
806}
807
808static vm_page_t
809pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
810{
811	vm_page_t m;
812retry:
813	m = vm_page_lookup(object, pindex);
814	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
815		goto retry;
816	return m;
817}
818
819/*
820 * Create the Uarea stack for a new process.
821 * This routine directly affects the fork perf for a process.
822 */
823void
824pmap_new_proc(struct proc *p)
825{
826#ifdef I386_CPU
827	int updateneeded = 0;
828#endif
829	int i;
830	vm_object_t upobj;
831	vm_offset_t up;
832	vm_page_t m;
833	pt_entry_t *ptek, oldpte;
834
835	/*
836	 * allocate object for the upages
837	 */
838	upobj = p->p_upages_obj;
839	if (upobj == NULL) {
840		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
841		p->p_upages_obj = upobj;
842	}
843
844	/* get a kernel virtual address for the U area for this thread */
845	up = (vm_offset_t)p->p_uarea;
846	if (up == 0) {
847		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
848		if (up == 0)
849			panic("pmap_new_proc: upage allocation failed");
850		p->p_uarea = (struct user *)up;
851	}
852
853	ptek = vtopte(up);
854
855	for (i = 0; i < UAREA_PAGES; i++) {
856		/*
857		 * Get a kernel stack page
858		 */
859		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
860
861		/*
862		 * Wire the page
863		 */
864		m->wire_count++;
865		cnt.v_wire_count++;
866
867		oldpte = *(ptek + i);
868		/*
869		 * Enter the page into the kernel address space.
870		 */
871		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
872		if (oldpte) {
873#ifdef I386_CPU
874			updateneeded = 1;
875#else
876			invlpg(up + i * PAGE_SIZE);
877#endif
878		}
879
880		vm_page_wakeup(m);
881		vm_page_flag_clear(m, PG_ZERO);
882		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
883		m->valid = VM_PAGE_BITS_ALL;
884	}
885#ifdef I386_CPU
886	if (updateneeded)
887		invltlb();
888#endif
889}
890
891/*
892 * Dispose the U-Area for a process that has exited.
893 * This routine directly impacts the exit perf of a process.
894 */
895void
896pmap_dispose_proc(p)
897	struct proc *p;
898{
899	int i;
900	vm_object_t upobj;
901	vm_offset_t up;
902	vm_page_t m;
903	pt_entry_t *ptek, oldpte;
904
905	upobj = p->p_upages_obj;
906	up = (vm_offset_t)p->p_uarea;
907	ptek = vtopte(up);
908	for (i = 0; i < UAREA_PAGES; i++) {
909		m = vm_page_lookup(upobj, i);
910		if (m == NULL)
911			panic("pmap_dispose_proc: upage already missing?");
912		vm_page_busy(m);
913		oldpte = *(ptek + i);
914		*(ptek + i) = 0;
915#ifndef I386_CPU
916		invlpg(up + i * PAGE_SIZE);
917#endif
918		vm_page_unwire(m, 0);
919		vm_page_free(m);
920	}
921#ifdef I386_CPU
922	invltlb();
923#endif
924}
925
926/*
927 * Allow the U_AREA for a process to be prejudicially paged out.
928 */
929void
930pmap_swapout_proc(p)
931	struct proc *p;
932{
933	int i;
934	vm_object_t upobj;
935	vm_offset_t up;
936	vm_page_t m;
937
938	upobj = p->p_upages_obj;
939	up = (vm_offset_t)p->p_uarea;
940	for (i = 0; i < UAREA_PAGES; i++) {
941		m = vm_page_lookup(upobj, i);
942		if (m == NULL)
943			panic("pmap_swapout_proc: upage already missing?");
944		vm_page_dirty(m);
945		vm_page_unwire(m, 0);
946		pmap_kremove(up + i * PAGE_SIZE);
947	}
948}
949
950/*
951 * Bring the U-Area for a specified process back in.
952 */
953void
954pmap_swapin_proc(p)
955	struct proc *p;
956{
957	int i, rv;
958	vm_object_t upobj;
959	vm_offset_t up;
960	vm_page_t m;
961
962	upobj = p->p_upages_obj;
963	up = (vm_offset_t)p->p_uarea;
964	for (i = 0; i < UAREA_PAGES; i++) {
965		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
966		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
967		if (m->valid != VM_PAGE_BITS_ALL) {
968			rv = vm_pager_get_pages(upobj, &m, 1, 0);
969			if (rv != VM_PAGER_OK)
970				panic("pmap_swapin_proc: cannot get upage for proc: %d\n", p->p_pid);
971			m = vm_page_lookup(upobj, i);
972			m->valid = VM_PAGE_BITS_ALL;
973		}
974		vm_page_wire(m);
975		vm_page_wakeup(m);
976		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
977	}
978}
979
980/*
981 * Create the kernel stack (including pcb for i386) for a new thread.
982 * This routine directly affects the fork perf for a process and
983 * create performance for a thread.
984 */
985void
986pmap_new_thread(struct thread *td)
987{
988#ifdef I386_CPU
989	int updateneeded = 0;
990#endif
991	int i;
992	vm_object_t ksobj;
993	vm_page_t m;
994	vm_offset_t ks;
995	pt_entry_t *ptek, oldpte;
996
997	/*
998	 * allocate object for the kstack
999	 */
1000	ksobj = td->td_kstack_obj;
1001	if (ksobj == NULL) {
1002		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1003		td->td_kstack_obj = ksobj;
1004	}
1005
1006#ifdef KSTACK_GUARD
1007	/* get a kernel virtual address for the kstack for this thread */
1008	ks = td->td_kstack;
1009	if (ks == 0) {
1010		ks = kmem_alloc_nofault(kernel_map,
1011		    (KSTACK_PAGES + 1) * PAGE_SIZE);
1012		if (ks == 0)
1013			panic("pmap_new_thread: kstack allocation failed");
1014		ks += PAGE_SIZE;
1015		td->td_kstack = ks;
1016	}
1017
1018	ptek = vtopte(ks - PAGE_SIZE);
1019	oldpte = *ptek;
1020	*ptek = 0;
1021	if (oldpte) {
1022#ifdef I386_CPU
1023		updateneeded = 1;
1024#else
1025		invlpg(ks - PAGE_SIZE);
1026#endif
1027	}
1028	ptek++;
1029#else
1030	/* get a kernel virtual address for the kstack for this thread */
1031	ks = td->td_kstack;
1032	if (ks == 0) {
1033		ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
1034		if (ks == 0)
1035			panic("pmap_new_thread: kstack allocation failed");
1036		td->td_kstack = ks;
1037	}
1038	ptek = vtopte(ks);
1039#endif
1040	for (i = 0; i < KSTACK_PAGES; i++) {
1041		/*
1042		 * Get a kernel stack page
1043		 */
1044		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1045
1046		/*
1047		 * Wire the page
1048		 */
1049		m->wire_count++;
1050		cnt.v_wire_count++;
1051
1052		oldpte = *(ptek + i);
1053		/*
1054		 * Enter the page into the kernel address space.
1055		 */
1056		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1057		if (oldpte) {
1058#ifdef I386_CPU
1059			updateneeded = 1;
1060#else
1061			invlpg(ks + i * PAGE_SIZE);
1062#endif
1063		}
1064
1065		vm_page_wakeup(m);
1066		vm_page_flag_clear(m, PG_ZERO);
1067		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1068		m->valid = VM_PAGE_BITS_ALL;
1069	}
1070#ifdef I386_CPU
1071	if (updateneeded)
1072		invltlb();
1073#endif
1074}
1075
1076/*
1077 * Dispose the kernel stack for a thread that has exited.
1078 * This routine directly impacts the exit perf of a process and thread.
1079 */
1080void
1081pmap_dispose_thread(td)
1082	struct thread *td;
1083{
1084	int i;
1085	vm_object_t ksobj;
1086	vm_offset_t ks;
1087	vm_page_t m;
1088	pt_entry_t *ptek, oldpte;
1089
1090	ksobj = td->td_kstack_obj;
1091	ks = td->td_kstack;
1092	ptek = vtopte(ks);
1093	for (i = 0; i < KSTACK_PAGES; i++) {
1094		m = vm_page_lookup(ksobj, i);
1095		if (m == NULL)
1096			panic("pmap_dispose_thread: kstack already missing?");
1097		vm_page_busy(m);
1098		oldpte = *(ptek + i);
1099		*(ptek + i) = 0;
1100#ifndef I386_CPU
1101		invlpg(ks + i * PAGE_SIZE);
1102#endif
1103		vm_page_unwire(m, 0);
1104		vm_page_free(m);
1105	}
1106#ifdef I386_CPU
1107	invltlb();
1108#endif
1109}
1110
1111/*
1112 * Allow the Kernel stack for a thread to be prejudicially paged out.
1113 */
1114void
1115pmap_swapout_thread(td)
1116	struct thread *td;
1117{
1118	int i;
1119	vm_object_t ksobj;
1120	vm_offset_t ks;
1121	vm_page_t m;
1122
1123	ksobj = td->td_kstack_obj;
1124	ks = td->td_kstack;
1125	for (i = 0; i < KSTACK_PAGES; i++) {
1126		m = vm_page_lookup(ksobj, i);
1127		if (m == NULL)
1128			panic("pmap_swapout_thread: kstack already missing?");
1129		vm_page_dirty(m);
1130		vm_page_unwire(m, 0);
1131		pmap_kremove(ks + i * PAGE_SIZE);
1132	}
1133}
1134
1135/*
1136 * Bring the kernel stack for a specified thread back in.
1137 */
1138void
1139pmap_swapin_thread(td)
1140	struct thread *td;
1141{
1142	int i, rv;
1143	vm_object_t ksobj;
1144	vm_offset_t ks;
1145	vm_page_t m;
1146
1147	ksobj = td->td_kstack_obj;
1148	ks = td->td_kstack;
1149	for (i = 0; i < KSTACK_PAGES; i++) {
1150		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1151		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1152		if (m->valid != VM_PAGE_BITS_ALL) {
1153			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1154			if (rv != VM_PAGER_OK)
1155				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1156			m = vm_page_lookup(ksobj, i);
1157			m->valid = VM_PAGE_BITS_ALL;
1158		}
1159		vm_page_wire(m);
1160		vm_page_wakeup(m);
1161		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1162	}
1163}
1164
1165/***************************************************
1166 * Page table page management routines.....
1167 ***************************************************/
1168
1169/*
1170 * This routine unholds page table pages, and if the hold count
1171 * drops to zero, then it decrements the wire count.
1172 */
1173static int
1174_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1175{
1176
1177	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1178		;
1179
1180	if (m->hold_count == 0) {
1181		vm_offset_t pteva;
1182		/*
1183		 * unmap the page table page
1184		 */
1185		pmap->pm_pdir[m->pindex] = 0;
1186		--pmap->pm_stats.resident_count;
1187		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1188		    (PTDpde & PG_FRAME)) {
1189			/*
1190			 * Do a invltlb to make the invalidated mapping
1191			 * take effect immediately.
1192			 */
1193			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1194			pmap_invalidate_page(pmap, pteva);
1195		}
1196
1197		if (pmap->pm_ptphint == m)
1198			pmap->pm_ptphint = NULL;
1199
1200		/*
1201		 * If the page is finally unwired, simply free it.
1202		 */
1203		--m->wire_count;
1204		if (m->wire_count == 0) {
1205
1206			vm_page_flash(m);
1207			vm_page_busy(m);
1208			vm_page_free_zero(m);
1209			--cnt.v_wire_count;
1210		}
1211		return 1;
1212	}
1213	return 0;
1214}
1215
1216static PMAP_INLINE int
1217pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1218{
1219	vm_page_unhold(m);
1220	if (m->hold_count == 0)
1221		return _pmap_unwire_pte_hold(pmap, m);
1222	else
1223		return 0;
1224}
1225
1226/*
1227 * After removing a page table entry, this routine is used to
1228 * conditionally free the page, and manage the hold/wire counts.
1229 */
1230static int
1231pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1232{
1233	unsigned ptepindex;
1234	if (va >= VM_MAXUSER_ADDRESS)
1235		return 0;
1236
1237	if (mpte == NULL) {
1238		ptepindex = (va >> PDRSHIFT);
1239		if (pmap->pm_ptphint &&
1240			(pmap->pm_ptphint->pindex == ptepindex)) {
1241			mpte = pmap->pm_ptphint;
1242		} else {
1243			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1244			pmap->pm_ptphint = mpte;
1245		}
1246	}
1247
1248	return pmap_unwire_pte_hold(pmap, mpte);
1249}
1250
1251void
1252pmap_pinit0(pmap)
1253	struct pmap *pmap;
1254{
1255	pmap->pm_pdir =
1256		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1257	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1258	pmap->pm_count = 1;
1259	pmap->pm_ptphint = NULL;
1260	pmap->pm_active = 0;
1261	TAILQ_INIT(&pmap->pm_pvlist);
1262	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1263	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1264}
1265
1266/*
1267 * Initialize a preallocated and zeroed pmap structure,
1268 * such as one in a vmspace structure.
1269 */
1270void
1271pmap_pinit(pmap)
1272	register struct pmap *pmap;
1273{
1274	vm_page_t ptdpg;
1275
1276	/*
1277	 * No need to allocate page table space yet but we do need a valid
1278	 * page directory table.
1279	 */
1280	if (pmap->pm_pdir == NULL)
1281		pmap->pm_pdir =
1282			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1283
1284	/*
1285	 * allocate object for the ptes
1286	 */
1287	if (pmap->pm_pteobj == NULL)
1288		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1289
1290	/*
1291	 * allocate the page directory page
1292	 */
1293	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1294			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1295
1296	ptdpg->wire_count = 1;
1297	++cnt.v_wire_count;
1298
1299
1300	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1301	ptdpg->valid = VM_PAGE_BITS_ALL;
1302
1303	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1304	if ((ptdpg->flags & PG_ZERO) == 0)
1305		bzero(pmap->pm_pdir, PAGE_SIZE);
1306
1307	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1308	/* Wire in kernel global address entries. */
1309	/* XXX copies current process, does not fill in MPPTDI */
1310	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1311#ifdef SMP
1312	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1313#endif
1314
1315	/* install self-referential address mapping entry */
1316	pmap->pm_pdir[PTDPTDI] =
1317		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1318
1319	pmap->pm_count = 1;
1320	pmap->pm_active = 0;
1321	pmap->pm_ptphint = NULL;
1322	TAILQ_INIT(&pmap->pm_pvlist);
1323	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1324}
1325
1326/*
1327 * Wire in kernel global address entries.  To avoid a race condition
1328 * between pmap initialization and pmap_growkernel, this procedure
1329 * should be called after the vmspace is attached to the process
1330 * but before this pmap is activated.
1331 */
1332void
1333pmap_pinit2(pmap)
1334	struct pmap *pmap;
1335{
1336	/* XXX: Remove this stub when no longer called */
1337}
1338
1339static int
1340pmap_release_free_page(pmap_t pmap, vm_page_t p)
1341{
1342	pd_entry_t *pde = pmap->pm_pdir;
1343	/*
1344	 * This code optimizes the case of freeing non-busy
1345	 * page-table pages.  Those pages are zero now, and
1346	 * might as well be placed directly into the zero queue.
1347	 */
1348	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1349		return 0;
1350
1351	vm_page_busy(p);
1352
1353	/*
1354	 * Remove the page table page from the processes address space.
1355	 */
1356	pde[p->pindex] = 0;
1357	pmap->pm_stats.resident_count--;
1358
1359	if (p->hold_count)  {
1360		panic("pmap_release: freeing held page table page");
1361	}
1362	/*
1363	 * Page directory pages need to have the kernel
1364	 * stuff cleared, so they can go into the zero queue also.
1365	 */
1366	if (p->pindex == PTDPTDI) {
1367		bzero(pde + KPTDI, nkpt * PTESIZE);
1368#ifdef SMP
1369		pde[MPPTDI] = 0;
1370#endif
1371		pde[APTDPTDI] = 0;
1372		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1373	}
1374
1375	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1376		pmap->pm_ptphint = NULL;
1377
1378	p->wire_count--;
1379	cnt.v_wire_count--;
1380	vm_page_free_zero(p);
1381	return 1;
1382}
1383
1384/*
1385 * this routine is called if the page table page is not
1386 * mapped correctly.
1387 */
1388static vm_page_t
1389_pmap_allocpte(pmap, ptepindex)
1390	pmap_t	pmap;
1391	unsigned ptepindex;
1392{
1393	vm_offset_t pteva, ptepa;	/* XXXPA */
1394	vm_page_t m;
1395
1396	/*
1397	 * Find or fabricate a new pagetable page
1398	 */
1399	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1400			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1401
1402	KASSERT(m->queue == PQ_NONE,
1403		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1404
1405	if (m->wire_count == 0)
1406		cnt.v_wire_count++;
1407	m->wire_count++;
1408
1409	/*
1410	 * Increment the hold count for the page table page
1411	 * (denoting a new mapping.)
1412	 */
1413	m->hold_count++;
1414
1415	/*
1416	 * Map the pagetable page into the process address space, if
1417	 * it isn't already there.
1418	 */
1419
1420	pmap->pm_stats.resident_count++;
1421
1422	ptepa = VM_PAGE_TO_PHYS(m);
1423	pmap->pm_pdir[ptepindex] =
1424		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1425
1426	/*
1427	 * Set the page table hint
1428	 */
1429	pmap->pm_ptphint = m;
1430
1431	/*
1432	 * Try to use the new mapping, but if we cannot, then
1433	 * do it with the routine that maps the page explicitly.
1434	 */
1435	if ((m->flags & PG_ZERO) == 0) {
1436		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1437		    (PTDpde & PG_FRAME)) {
1438			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1439			bzero((caddr_t) pteva, PAGE_SIZE);
1440		} else {
1441			pmap_zero_page(ptepa);
1442		}
1443	}
1444
1445	m->valid = VM_PAGE_BITS_ALL;
1446	vm_page_flag_clear(m, PG_ZERO);
1447	vm_page_flag_set(m, PG_MAPPED);
1448	vm_page_wakeup(m);
1449
1450	return m;
1451}
1452
1453static vm_page_t
1454pmap_allocpte(pmap_t pmap, vm_offset_t va)
1455{
1456	unsigned ptepindex;
1457	pd_entry_t ptepa;
1458	vm_page_t m;
1459
1460	/*
1461	 * Calculate pagetable page index
1462	 */
1463	ptepindex = va >> PDRSHIFT;
1464
1465	/*
1466	 * Get the page directory entry
1467	 */
1468	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1469
1470	/*
1471	 * This supports switching from a 4MB page to a
1472	 * normal 4K page.
1473	 */
1474	if (ptepa & PG_PS) {
1475		pmap->pm_pdir[ptepindex] = 0;
1476		ptepa = 0;
1477		invltlb();
1478	}
1479
1480	/*
1481	 * If the page table page is mapped, we just increment the
1482	 * hold count, and activate it.
1483	 */
1484	if (ptepa) {
1485		/*
1486		 * In order to get the page table page, try the
1487		 * hint first.
1488		 */
1489		if (pmap->pm_ptphint &&
1490			(pmap->pm_ptphint->pindex == ptepindex)) {
1491			m = pmap->pm_ptphint;
1492		} else {
1493			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1494			pmap->pm_ptphint = m;
1495		}
1496		m->hold_count++;
1497		return m;
1498	}
1499	/*
1500	 * Here if the pte page isn't mapped, or if it has been deallocated.
1501	 */
1502	return _pmap_allocpte(pmap, ptepindex);
1503}
1504
1505
1506/***************************************************
1507* Pmap allocation/deallocation routines.
1508 ***************************************************/
1509
1510/*
1511 * Release any resources held by the given physical map.
1512 * Called when a pmap initialized by pmap_pinit is being released.
1513 * Should only be called if the map contains no valid mappings.
1514 */
1515void
1516pmap_release(pmap_t pmap)
1517{
1518	vm_page_t p,n,ptdpg;
1519	vm_object_t object = pmap->pm_pteobj;
1520	int curgeneration;
1521
1522#if defined(DIAGNOSTIC)
1523	if (object->ref_count != 1)
1524		panic("pmap_release: pteobj reference count != 1");
1525#endif
1526
1527	ptdpg = NULL;
1528	LIST_REMOVE(pmap, pm_list);
1529retry:
1530	curgeneration = object->generation;
1531	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1532		n = TAILQ_NEXT(p, listq);
1533		if (p->pindex == PTDPTDI) {
1534			ptdpg = p;
1535			continue;
1536		}
1537		while (1) {
1538			if (!pmap_release_free_page(pmap, p) &&
1539				(object->generation != curgeneration))
1540				goto retry;
1541		}
1542	}
1543
1544	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1545		goto retry;
1546}
1547
1548static int
1549kvm_size(SYSCTL_HANDLER_ARGS)
1550{
1551	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1552
1553        return sysctl_handle_long(oidp, &ksize, 0, req);
1554}
1555SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1556    0, 0, kvm_size, "IU", "Size of KVM");
1557
1558static int
1559kvm_free(SYSCTL_HANDLER_ARGS)
1560{
1561	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1562
1563        return sysctl_handle_long(oidp, &kfree, 0, req);
1564}
1565SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1566    0, 0, kvm_free, "IU", "Amount of KVM free");
1567
1568/*
1569 * grow the number of kernel page table entries, if needed
1570 */
1571void
1572pmap_growkernel(vm_offset_t addr)
1573{
1574	struct pmap *pmap;
1575	int s;
1576	vm_offset_t ptppaddr;
1577	vm_page_t nkpg;
1578	pd_entry_t newpdir;
1579
1580	s = splhigh();
1581	if (kernel_vm_end == 0) {
1582		kernel_vm_end = KERNBASE;
1583		nkpt = 0;
1584		while (pdir_pde(PTD, kernel_vm_end)) {
1585			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1586			nkpt++;
1587		}
1588	}
1589	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1590	while (kernel_vm_end < addr) {
1591		if (pdir_pde(PTD, kernel_vm_end)) {
1592			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1593			continue;
1594		}
1595
1596		/*
1597		 * This index is bogus, but out of the way
1598		 */
1599		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1600		if (!nkpg)
1601			panic("pmap_growkernel: no memory to grow kernel");
1602
1603		nkpt++;
1604
1605		vm_page_wire(nkpg);
1606		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1607		pmap_zero_page(ptppaddr);
1608		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1609		pdir_pde(PTD, kernel_vm_end) = newpdir;
1610
1611		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1612			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1613		}
1614		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1615	}
1616	splx(s);
1617}
1618
1619/*
1620 *	Retire the given physical map from service.
1621 *	Should only be called if the map contains
1622 *	no valid mappings.
1623 */
1624void
1625pmap_destroy(pmap_t pmap)
1626{
1627	int count;
1628
1629	if (pmap == NULL)
1630		return;
1631
1632	count = --pmap->pm_count;
1633	if (count == 0) {
1634		pmap_release(pmap);
1635		panic("destroying a pmap is not yet implemented");
1636	}
1637}
1638
1639/*
1640 *	Add a reference to the specified pmap.
1641 */
1642void
1643pmap_reference(pmap_t pmap)
1644{
1645	if (pmap != NULL) {
1646		pmap->pm_count++;
1647	}
1648}
1649
1650/***************************************************
1651* page management routines.
1652 ***************************************************/
1653
1654/*
1655 * free the pv_entry back to the free list
1656 */
1657static PMAP_INLINE void
1658free_pv_entry(pv_entry_t pv)
1659{
1660	pv_entry_count--;
1661	zfree(pvzone, pv);
1662}
1663
1664/*
1665 * get a new pv_entry, allocating a block from the system
1666 * when needed.
1667 * the memory allocation is performed bypassing the malloc code
1668 * because of the possibility of allocations at interrupt time.
1669 */
1670static pv_entry_t
1671get_pv_entry(void)
1672{
1673	pv_entry_count++;
1674	if (pv_entry_high_water &&
1675		(pv_entry_count > pv_entry_high_water) &&
1676		(pmap_pagedaemon_waken == 0)) {
1677		pmap_pagedaemon_waken = 1;
1678		wakeup (&vm_pages_needed);
1679	}
1680	return zalloc(pvzone);
1681}
1682
1683/*
1684 * This routine is very drastic, but can save the system
1685 * in a pinch.
1686 */
1687void
1688pmap_collect()
1689{
1690	int i;
1691	vm_page_t m;
1692	static int warningdone = 0;
1693
1694	if (pmap_pagedaemon_waken == 0)
1695		return;
1696
1697	if (warningdone < 5) {
1698		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1699		warningdone++;
1700	}
1701
1702	for(i = 0; i < vm_page_array_size; i++) {
1703		m = &vm_page_array[i];
1704		if (m->wire_count || m->hold_count || m->busy ||
1705		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1706			continue;
1707		pmap_remove_all(m);
1708	}
1709	pmap_pagedaemon_waken = 0;
1710}
1711
1712
1713/*
1714 * If it is the first entry on the list, it is actually
1715 * in the header and we must copy the following entry up
1716 * to the header.  Otherwise we must search the list for
1717 * the entry.  In either case we free the now unused entry.
1718 */
1719
1720static int
1721pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1722{
1723	pv_entry_t pv;
1724	int rtval;
1725	int s;
1726
1727	s = splvm();
1728	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1729		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1730			if (pmap == pv->pv_pmap && va == pv->pv_va)
1731				break;
1732		}
1733	} else {
1734		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1735			if (va == pv->pv_va)
1736				break;
1737		}
1738	}
1739
1740	rtval = 0;
1741	if (pv) {
1742		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1743		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1744		m->md.pv_list_count--;
1745		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1746			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1747
1748		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1749		free_pv_entry(pv);
1750	}
1751
1752	splx(s);
1753	return rtval;
1754}
1755
1756/*
1757 * Create a pv entry for page at pa for
1758 * (pmap, va).
1759 */
1760static void
1761pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1762{
1763
1764	int s;
1765	pv_entry_t pv;
1766
1767	s = splvm();
1768	pv = get_pv_entry();
1769	pv->pv_va = va;
1770	pv->pv_pmap = pmap;
1771	pv->pv_ptem = mpte;
1772
1773	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1774	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1775	m->md.pv_list_count++;
1776
1777	splx(s);
1778}
1779
1780/*
1781 * pmap_remove_pte: do the things to unmap a page in a process
1782 */
1783static int
1784pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1785{
1786	pt_entry_t oldpte;
1787	vm_page_t m;
1788
1789	oldpte = atomic_readandclear_int(ptq);
1790	if (oldpte & PG_W)
1791		pmap->pm_stats.wired_count -= 1;
1792	/*
1793	 * Machines that don't support invlpg, also don't support
1794	 * PG_G.
1795	 */
1796	if (oldpte & PG_G)
1797		invlpg(va);
1798	pmap->pm_stats.resident_count -= 1;
1799	if (oldpte & PG_MANAGED) {
1800		m = PHYS_TO_VM_PAGE(oldpte);
1801		if (oldpte & PG_M) {
1802#if defined(PMAP_DIAGNOSTIC)
1803			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1804				printf(
1805	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1806				    va, oldpte);
1807			}
1808#endif
1809			if (pmap_track_modified(va))
1810				vm_page_dirty(m);
1811		}
1812		if (oldpte & PG_A)
1813			vm_page_flag_set(m, PG_REFERENCED);
1814		return pmap_remove_entry(pmap, m, va);
1815	} else {
1816		return pmap_unuse_pt(pmap, va, NULL);
1817	}
1818
1819	return 0;
1820}
1821
1822/*
1823 * Remove a single page from a process address space
1824 */
1825static void
1826pmap_remove_page(pmap_t pmap, vm_offset_t va)
1827{
1828	register pt_entry_t *ptq;
1829
1830	/*
1831	 * if there is no pte for this address, just skip it!!!
1832	 */
1833	if (*pmap_pde(pmap, va) == 0) {
1834		return;
1835	}
1836
1837	/*
1838	 * get a local va for mappings for this pmap.
1839	 */
1840	ptq = get_ptbase(pmap) + i386_btop(va);
1841	if (*ptq) {
1842		(void) pmap_remove_pte(pmap, ptq, va);
1843		pmap_invalidate_page(pmap, va);
1844	}
1845	return;
1846}
1847
1848/*
1849 *	Remove the given range of addresses from the specified map.
1850 *
1851 *	It is assumed that the start and end are properly
1852 *	rounded to the page size.
1853 */
1854void
1855pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1856{
1857	register pt_entry_t *ptbase;
1858	vm_offset_t pdnxt;
1859	pd_entry_t ptpaddr;
1860	vm_offset_t sindex, eindex;
1861	int anyvalid;
1862
1863	if (pmap == NULL)
1864		return;
1865
1866	if (pmap->pm_stats.resident_count == 0)
1867		return;
1868
1869	/*
1870	 * special handling of removing one page.  a very
1871	 * common operation and easy to short circuit some
1872	 * code.
1873	 */
1874	if ((sva + PAGE_SIZE == eva) &&
1875	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1876		pmap_remove_page(pmap, sva);
1877		return;
1878	}
1879
1880	anyvalid = 0;
1881
1882	/*
1883	 * Get a local virtual address for the mappings that are being
1884	 * worked with.
1885	 */
1886	ptbase = get_ptbase(pmap);
1887
1888	sindex = i386_btop(sva);
1889	eindex = i386_btop(eva);
1890
1891	for (; sindex < eindex; sindex = pdnxt) {
1892		unsigned pdirindex;
1893
1894		/*
1895		 * Calculate index for next page table.
1896		 */
1897		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1898		if (pmap->pm_stats.resident_count == 0)
1899			break;
1900
1901		pdirindex = sindex / NPDEPG;
1902		ptpaddr = pmap->pm_pdir[pdirindex];
1903		if ((ptpaddr & PG_PS) != 0) {
1904			pmap->pm_pdir[pdirindex] = 0;
1905			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1906			anyvalid++;
1907			continue;
1908		}
1909
1910		/*
1911		 * Weed out invalid mappings. Note: we assume that the page
1912		 * directory table is always allocated, and in kernel virtual.
1913		 */
1914		if (ptpaddr == 0)
1915			continue;
1916
1917		/*
1918		 * Limit our scan to either the end of the va represented
1919		 * by the current page table page, or to the end of the
1920		 * range being removed.
1921		 */
1922		if (pdnxt > eindex) {
1923			pdnxt = eindex;
1924		}
1925
1926		for (; sindex != pdnxt; sindex++) {
1927			vm_offset_t va;
1928			if (ptbase[sindex] == 0) {
1929				continue;
1930			}
1931			va = i386_ptob(sindex);
1932
1933			anyvalid++;
1934			if (pmap_remove_pte(pmap,
1935				ptbase + sindex, va))
1936				break;
1937		}
1938	}
1939
1940	if (anyvalid)
1941		pmap_invalidate_all(pmap);
1942}
1943
1944/*
1945 *	Routine:	pmap_remove_all
1946 *	Function:
1947 *		Removes this physical page from
1948 *		all physical maps in which it resides.
1949 *		Reflects back modify bits to the pager.
1950 *
1951 *	Notes:
1952 *		Original versions of this routine were very
1953 *		inefficient because they iteratively called
1954 *		pmap_remove (slow...)
1955 */
1956
1957static void
1958pmap_remove_all(vm_page_t m)
1959{
1960	register pv_entry_t pv;
1961	pt_entry_t *pte, tpte;
1962	int s;
1963
1964#if defined(PMAP_DIAGNOSTIC)
1965	/*
1966	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1967	 * pages!
1968	 */
1969	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1970		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1971	}
1972#endif
1973
1974	s = splvm();
1975	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1976		pv->pv_pmap->pm_stats.resident_count--;
1977
1978		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1979
1980		tpte = atomic_readandclear_int(pte);
1981		if (tpte & PG_W)
1982			pv->pv_pmap->pm_stats.wired_count--;
1983
1984		if (tpte & PG_A)
1985			vm_page_flag_set(m, PG_REFERENCED);
1986
1987		/*
1988		 * Update the vm_page_t clean and reference bits.
1989		 */
1990		if (tpte & PG_M) {
1991#if defined(PMAP_DIAGNOSTIC)
1992			if (pmap_nw_modified((pt_entry_t) tpte)) {
1993				printf(
1994	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1995				    pv->pv_va, tpte);
1996			}
1997#endif
1998			if (pmap_track_modified(pv->pv_va))
1999				vm_page_dirty(m);
2000		}
2001		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2002
2003		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2004		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2005		m->md.pv_list_count--;
2006		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2007		free_pv_entry(pv);
2008	}
2009
2010	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2011
2012	splx(s);
2013}
2014
2015/*
2016 *	Set the physical protection on the
2017 *	specified range of this map as requested.
2018 */
2019void
2020pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2021{
2022	register pt_entry_t *ptbase;
2023	vm_offset_t pdnxt;
2024	pd_entry_t ptpaddr;
2025	vm_pindex_t sindex, eindex;
2026	int anychanged;
2027
2028	if (pmap == NULL)
2029		return;
2030
2031	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2032		pmap_remove(pmap, sva, eva);
2033		return;
2034	}
2035
2036	if (prot & VM_PROT_WRITE)
2037		return;
2038
2039	anychanged = 0;
2040
2041	ptbase = get_ptbase(pmap);
2042
2043	sindex = i386_btop(sva);
2044	eindex = i386_btop(eva);
2045
2046	for (; sindex < eindex; sindex = pdnxt) {
2047
2048		unsigned pdirindex;
2049
2050		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2051
2052		pdirindex = sindex / NPDEPG;
2053		ptpaddr = pmap->pm_pdir[pdirindex];
2054		if ((ptpaddr & PG_PS) != 0) {
2055			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2056			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2057			anychanged++;
2058			continue;
2059		}
2060
2061		/*
2062		 * Weed out invalid mappings. Note: we assume that the page
2063		 * directory table is always allocated, and in kernel virtual.
2064		 */
2065		if (ptpaddr == 0)
2066			continue;
2067
2068		if (pdnxt > eindex) {
2069			pdnxt = eindex;
2070		}
2071
2072		for (; sindex != pdnxt; sindex++) {
2073
2074			pt_entry_t pbits;
2075			vm_page_t m;
2076
2077			pbits = ptbase[sindex];
2078
2079			if (pbits & PG_MANAGED) {
2080				m = NULL;
2081				if (pbits & PG_A) {
2082					m = PHYS_TO_VM_PAGE(pbits);
2083					vm_page_flag_set(m, PG_REFERENCED);
2084					pbits &= ~PG_A;
2085				}
2086				if (pbits & PG_M) {
2087					if (pmap_track_modified(i386_ptob(sindex))) {
2088						if (m == NULL)
2089							m = PHYS_TO_VM_PAGE(pbits);
2090						vm_page_dirty(m);
2091						pbits &= ~PG_M;
2092					}
2093				}
2094			}
2095
2096			pbits &= ~PG_RW;
2097
2098			if (pbits != ptbase[sindex]) {
2099				ptbase[sindex] = pbits;
2100				anychanged = 1;
2101			}
2102		}
2103	}
2104	if (anychanged)
2105		pmap_invalidate_all(pmap);
2106}
2107
2108/*
2109 *	Insert the given physical page (p) at
2110 *	the specified virtual address (v) in the
2111 *	target physical map with the protection requested.
2112 *
2113 *	If specified, the page will be wired down, meaning
2114 *	that the related pte can not be reclaimed.
2115 *
2116 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2117 *	or lose information.  That is, this routine must actually
2118 *	insert this page into the given map NOW.
2119 */
2120void
2121pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2122	   boolean_t wired)
2123{
2124	vm_offset_t pa;
2125	register pt_entry_t *pte;
2126	vm_offset_t opa;
2127	pt_entry_t origpte, newpte;
2128	vm_page_t mpte;
2129
2130	if (pmap == NULL)
2131		return;
2132
2133	va &= PG_FRAME;
2134#ifdef PMAP_DIAGNOSTIC
2135	if (va > VM_MAX_KERNEL_ADDRESS)
2136		panic("pmap_enter: toobig");
2137	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2138		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2139#endif
2140
2141	mpte = NULL;
2142	/*
2143	 * In the case that a page table page is not
2144	 * resident, we are creating it here.
2145	 */
2146	if (va < VM_MAXUSER_ADDRESS) {
2147		mpte = pmap_allocpte(pmap, va);
2148	}
2149#if 0 && defined(PMAP_DIAGNOSTIC)
2150	else {
2151		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2152		if (((origpte = *pdeaddr) & PG_V) == 0) {
2153			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2154				pmap->pm_pdir[PTDPTDI], origpte, va);
2155		}
2156	}
2157#endif
2158
2159	pte = pmap_pte(pmap, va);
2160
2161	/*
2162	 * Page Directory table entry not valid, we need a new PT page
2163	 */
2164	if (pte == NULL) {
2165		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2166			(void *)pmap->pm_pdir[PTDPTDI], va);
2167	}
2168
2169	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2170	origpte = *(vm_offset_t *)pte;
2171	opa = origpte & PG_FRAME;
2172
2173	if (origpte & PG_PS)
2174		panic("pmap_enter: attempted pmap_enter on 4MB page");
2175
2176	/*
2177	 * Mapping has not changed, must be protection or wiring change.
2178	 */
2179	if (origpte && (opa == pa)) {
2180		/*
2181		 * Wiring change, just update stats. We don't worry about
2182		 * wiring PT pages as they remain resident as long as there
2183		 * are valid mappings in them. Hence, if a user page is wired,
2184		 * the PT page will be also.
2185		 */
2186		if (wired && ((origpte & PG_W) == 0))
2187			pmap->pm_stats.wired_count++;
2188		else if (!wired && (origpte & PG_W))
2189			pmap->pm_stats.wired_count--;
2190
2191#if defined(PMAP_DIAGNOSTIC)
2192		if (pmap_nw_modified((pt_entry_t) origpte)) {
2193			printf(
2194	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2195			    va, origpte);
2196		}
2197#endif
2198
2199		/*
2200		 * Remove extra pte reference
2201		 */
2202		if (mpte)
2203			mpte->hold_count--;
2204
2205		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2206			if ((origpte & PG_RW) == 0) {
2207				*pte |= PG_RW;
2208#ifdef SMP
2209				cpu_invlpg((void *)va);
2210				if (pmap->pm_active & PCPU_GET(other_cpus))
2211					smp_invltlb();
2212#else
2213				invltlb_1pg(va);
2214#endif
2215			}
2216			return;
2217		}
2218
2219		/*
2220		 * We might be turning off write access to the page,
2221		 * so we go ahead and sense modify status.
2222		 */
2223		if (origpte & PG_MANAGED) {
2224			if ((origpte & PG_M) && pmap_track_modified(va)) {
2225				vm_page_t om;
2226				om = PHYS_TO_VM_PAGE(opa);
2227				vm_page_dirty(om);
2228			}
2229			pa |= PG_MANAGED;
2230		}
2231		goto validate;
2232	}
2233	/*
2234	 * Mapping has changed, invalidate old range and fall through to
2235	 * handle validating new mapping.
2236	 */
2237	if (opa) {
2238		int err;
2239		err = pmap_remove_pte(pmap, pte, va);
2240		if (err)
2241			panic("pmap_enter: pte vanished, va: 0x%x", va);
2242	}
2243
2244	/*
2245	 * Enter on the PV list if part of our managed memory. Note that we
2246	 * raise IPL while manipulating pv_table since pmap_enter can be
2247	 * called at interrupt time.
2248	 */
2249	if (pmap_initialized &&
2250	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2251		pmap_insert_entry(pmap, va, mpte, m);
2252		pa |= PG_MANAGED;
2253	}
2254
2255	/*
2256	 * Increment counters
2257	 */
2258	pmap->pm_stats.resident_count++;
2259	if (wired)
2260		pmap->pm_stats.wired_count++;
2261
2262validate:
2263	/*
2264	 * Now validate mapping with desired protection/wiring.
2265	 */
2266	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2267
2268	if (wired)
2269		newpte |= PG_W;
2270	if (va < VM_MAXUSER_ADDRESS)
2271		newpte |= PG_U;
2272	if (pmap == kernel_pmap)
2273		newpte |= pgeflag;
2274
2275	/*
2276	 * if the mapping or permission bits are different, we need
2277	 * to update the pte.
2278	 */
2279	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2280		*pte = newpte | PG_A;
2281		/*if (origpte)*/ {
2282#ifdef SMP
2283			cpu_invlpg((void *)va);
2284			if (pmap->pm_active & PCPU_GET(other_cpus))
2285				smp_invltlb();
2286#else
2287			invltlb_1pg(va);
2288#endif
2289		}
2290	}
2291}
2292
2293/*
2294 * this code makes some *MAJOR* assumptions:
2295 * 1. Current pmap & pmap exists.
2296 * 2. Not wired.
2297 * 3. Read access.
2298 * 4. No page table pages.
2299 * 5. Tlbflush is deferred to calling procedure.
2300 * 6. Page IS managed.
2301 * but is *MUCH* faster than pmap_enter...
2302 */
2303
2304static vm_page_t
2305pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2306{
2307	pt_entry_t *pte;
2308	vm_offset_t pa;
2309
2310	/*
2311	 * In the case that a page table page is not
2312	 * resident, we are creating it here.
2313	 */
2314	if (va < VM_MAXUSER_ADDRESS) {
2315		unsigned ptepindex;
2316		pd_entry_t ptepa;
2317
2318		/*
2319		 * Calculate pagetable page index
2320		 */
2321		ptepindex = va >> PDRSHIFT;
2322		if (mpte && (mpte->pindex == ptepindex)) {
2323			mpte->hold_count++;
2324		} else {
2325retry:
2326			/*
2327			 * Get the page directory entry
2328			 */
2329			ptepa = pmap->pm_pdir[ptepindex];
2330
2331			/*
2332			 * If the page table page is mapped, we just increment
2333			 * the hold count, and activate it.
2334			 */
2335			if (ptepa) {
2336				if (ptepa & PG_PS)
2337					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2338				if (pmap->pm_ptphint &&
2339					(pmap->pm_ptphint->pindex == ptepindex)) {
2340					mpte = pmap->pm_ptphint;
2341				} else {
2342					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2343					pmap->pm_ptphint = mpte;
2344				}
2345				if (mpte == NULL)
2346					goto retry;
2347				mpte->hold_count++;
2348			} else {
2349				mpte = _pmap_allocpte(pmap, ptepindex);
2350			}
2351		}
2352	} else {
2353		mpte = NULL;
2354	}
2355
2356	/*
2357	 * This call to vtopte makes the assumption that we are
2358	 * entering the page into the current pmap.  In order to support
2359	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2360	 * But that isn't as quick as vtopte.
2361	 */
2362	pte = vtopte(va);
2363	if (*pte) {
2364		if (mpte)
2365			pmap_unwire_pte_hold(pmap, mpte);
2366		return 0;
2367	}
2368
2369	/*
2370	 * Enter on the PV list if part of our managed memory. Note that we
2371	 * raise IPL while manipulating pv_table since pmap_enter can be
2372	 * called at interrupt time.
2373	 */
2374	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2375		pmap_insert_entry(pmap, va, mpte, m);
2376
2377	/*
2378	 * Increment counters
2379	 */
2380	pmap->pm_stats.resident_count++;
2381
2382	pa = VM_PAGE_TO_PHYS(m);
2383
2384	/*
2385	 * Now validate mapping with RO protection
2386	 */
2387	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2388		*pte = pa | PG_V | PG_U;
2389	else
2390		*pte = pa | PG_V | PG_U | PG_MANAGED;
2391
2392	return mpte;
2393}
2394
2395/*
2396 * Make a temporary mapping for a physical address.  This is only intended
2397 * to be used for panic dumps.
2398 */
2399void *
2400pmap_kenter_temporary(vm_offset_t pa, int i)
2401{
2402	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2403	return ((void *)crashdumpmap);
2404}
2405
2406#define MAX_INIT_PT (96)
2407/*
2408 * pmap_object_init_pt preloads the ptes for a given object
2409 * into the specified pmap.  This eliminates the blast of soft
2410 * faults on process startup and immediately after an mmap.
2411 */
2412void
2413pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2414		    vm_object_t object, vm_pindex_t pindex,
2415		    vm_size_t size, int limit)
2416{
2417	vm_offset_t tmpidx;
2418	int psize;
2419	vm_page_t p, mpte;
2420	int objpgs;
2421
2422	if (pmap == NULL || object == NULL)
2423		return;
2424
2425	/*
2426	 * This code maps large physical mmap regions into the
2427	 * processor address space.  Note that some shortcuts
2428	 * are taken, but the code works.
2429	 */
2430	if (pseflag && (object->type == OBJT_DEVICE) &&
2431	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2432		int i;
2433		vm_page_t m[1];
2434		unsigned int ptepindex;
2435		int npdes;
2436		pd_entry_t ptepa;
2437
2438		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2439			return;
2440
2441retry:
2442		p = vm_page_lookup(object, pindex);
2443		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2444			goto retry;
2445
2446		if (p == NULL) {
2447			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2448			if (p == NULL)
2449				return;
2450			m[0] = p;
2451
2452			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2453				vm_page_free(p);
2454				return;
2455			}
2456
2457			p = vm_page_lookup(object, pindex);
2458			vm_page_wakeup(p);
2459		}
2460
2461		ptepa = VM_PAGE_TO_PHYS(p);
2462		if (ptepa & (NBPDR - 1)) {
2463			return;
2464		}
2465
2466		p->valid = VM_PAGE_BITS_ALL;
2467
2468		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2469		npdes = size >> PDRSHIFT;
2470		for(i = 0; i < npdes; i++) {
2471			pmap->pm_pdir[ptepindex] =
2472			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2473			ptepa += NBPDR;
2474			ptepindex += 1;
2475		}
2476		vm_page_flag_set(p, PG_MAPPED);
2477		invltlb();
2478		return;
2479	}
2480
2481	psize = i386_btop(size);
2482
2483	if ((object->type != OBJT_VNODE) ||
2484		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2485			(object->resident_page_count > MAX_INIT_PT))) {
2486		return;
2487	}
2488
2489	if (psize + pindex > object->size) {
2490		if (object->size < pindex)
2491			return;
2492		psize = object->size - pindex;
2493	}
2494
2495	mpte = NULL;
2496	/*
2497	 * if we are processing a major portion of the object, then scan the
2498	 * entire thing.
2499	 */
2500	if (psize > (object->resident_page_count >> 2)) {
2501		objpgs = psize;
2502
2503		for (p = TAILQ_FIRST(&object->memq);
2504		    ((objpgs > 0) && (p != NULL));
2505		    p = TAILQ_NEXT(p, listq)) {
2506
2507			tmpidx = p->pindex;
2508			if (tmpidx < pindex) {
2509				continue;
2510			}
2511			tmpidx -= pindex;
2512			if (tmpidx >= psize) {
2513				continue;
2514			}
2515			/*
2516			 * don't allow an madvise to blow away our really
2517			 * free pages allocating pv entries.
2518			 */
2519			if ((limit & MAP_PREFAULT_MADVISE) &&
2520			    cnt.v_free_count < cnt.v_free_reserved) {
2521				break;
2522			}
2523			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2524				(p->busy == 0) &&
2525			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2526				if ((p->queue - p->pc) == PQ_CACHE)
2527					vm_page_deactivate(p);
2528				vm_page_busy(p);
2529				mpte = pmap_enter_quick(pmap,
2530					addr + i386_ptob(tmpidx), p, mpte);
2531				vm_page_flag_set(p, PG_MAPPED);
2532				vm_page_wakeup(p);
2533			}
2534			objpgs -= 1;
2535		}
2536	} else {
2537		/*
2538		 * else lookup the pages one-by-one.
2539		 */
2540		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2541			/*
2542			 * don't allow an madvise to blow away our really
2543			 * free pages allocating pv entries.
2544			 */
2545			if ((limit & MAP_PREFAULT_MADVISE) &&
2546			    cnt.v_free_count < cnt.v_free_reserved) {
2547				break;
2548			}
2549			p = vm_page_lookup(object, tmpidx + pindex);
2550			if (p &&
2551			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2552				(p->busy == 0) &&
2553			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2554				if ((p->queue - p->pc) == PQ_CACHE)
2555					vm_page_deactivate(p);
2556				vm_page_busy(p);
2557				mpte = pmap_enter_quick(pmap,
2558					addr + i386_ptob(tmpidx), p, mpte);
2559				vm_page_flag_set(p, PG_MAPPED);
2560				vm_page_wakeup(p);
2561			}
2562		}
2563	}
2564	return;
2565}
2566
2567/*
2568 * pmap_prefault provides a quick way of clustering
2569 * pagefaults into a processes address space.  It is a "cousin"
2570 * of pmap_object_init_pt, except it runs at page fault time instead
2571 * of mmap time.
2572 */
2573#define PFBAK 4
2574#define PFFOR 4
2575#define PAGEORDER_SIZE (PFBAK+PFFOR)
2576
2577static int pmap_prefault_pageorder[] = {
2578	-PAGE_SIZE, PAGE_SIZE,
2579	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2580	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2581	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2582};
2583
2584void
2585pmap_prefault(pmap, addra, entry)
2586	pmap_t pmap;
2587	vm_offset_t addra;
2588	vm_map_entry_t entry;
2589{
2590	int i;
2591	vm_offset_t starta;
2592	vm_offset_t addr;
2593	vm_pindex_t pindex;
2594	vm_page_t m, mpte;
2595	vm_object_t object;
2596
2597	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2598		return;
2599
2600	object = entry->object.vm_object;
2601
2602	starta = addra - PFBAK * PAGE_SIZE;
2603	if (starta < entry->start) {
2604		starta = entry->start;
2605	} else if (starta > addra) {
2606		starta = 0;
2607	}
2608
2609	mpte = NULL;
2610	for (i = 0; i < PAGEORDER_SIZE; i++) {
2611		vm_object_t lobject;
2612		pt_entry_t *pte;
2613
2614		addr = addra + pmap_prefault_pageorder[i];
2615		if (addr > addra + (PFFOR * PAGE_SIZE))
2616			addr = 0;
2617
2618		if (addr < starta || addr >= entry->end)
2619			continue;
2620
2621		if ((*pmap_pde(pmap, addr)) == NULL)
2622			continue;
2623
2624		pte = vtopte(addr);
2625		if (*pte)
2626			continue;
2627
2628		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2629		lobject = object;
2630		for (m = vm_page_lookup(lobject, pindex);
2631		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2632		    lobject = lobject->backing_object) {
2633			if (lobject->backing_object_offset & PAGE_MASK)
2634				break;
2635			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2636			m = vm_page_lookup(lobject->backing_object, pindex);
2637		}
2638
2639		/*
2640		 * give-up when a page is not in memory
2641		 */
2642		if (m == NULL)
2643			break;
2644
2645		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2646			(m->busy == 0) &&
2647		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2648
2649			if ((m->queue - m->pc) == PQ_CACHE) {
2650				vm_page_deactivate(m);
2651			}
2652			vm_page_busy(m);
2653			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2654			vm_page_flag_set(m, PG_MAPPED);
2655			vm_page_wakeup(m);
2656		}
2657	}
2658}
2659
2660/*
2661 *	Routine:	pmap_change_wiring
2662 *	Function:	Change the wiring attribute for a map/virtual-address
2663 *			pair.
2664 *	In/out conditions:
2665 *			The mapping must already exist in the pmap.
2666 */
2667void
2668pmap_change_wiring(pmap, va, wired)
2669	register pmap_t pmap;
2670	vm_offset_t va;
2671	boolean_t wired;
2672{
2673	register pt_entry_t *pte;
2674
2675	if (pmap == NULL)
2676		return;
2677
2678	pte = pmap_pte(pmap, va);
2679
2680	if (wired && !pmap_pte_w(pte))
2681		pmap->pm_stats.wired_count++;
2682	else if (!wired && pmap_pte_w(pte))
2683		pmap->pm_stats.wired_count--;
2684
2685	/*
2686	 * Wiring is not a hardware characteristic so there is no need to
2687	 * invalidate TLB.
2688	 */
2689	pmap_pte_set_w(pte, wired);
2690}
2691
2692
2693
2694/*
2695 *	Copy the range specified by src_addr/len
2696 *	from the source map to the range dst_addr/len
2697 *	in the destination map.
2698 *
2699 *	This routine is only advisory and need not do anything.
2700 */
2701
2702void
2703pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2704	  vm_offset_t src_addr)
2705{
2706	vm_offset_t addr;
2707	vm_offset_t end_addr = src_addr + len;
2708	vm_offset_t pdnxt;
2709	pd_entry_t src_frame, dst_frame;
2710	vm_page_t m;
2711	pd_entry_t saved_pde;
2712
2713	if (dst_addr != src_addr)
2714		return;
2715
2716	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2717	if (src_frame != (PTDpde & PG_FRAME))
2718		return;
2719
2720	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2721	if (dst_frame != (APTDpde & PG_FRAME)) {
2722		APTDpde = dst_frame | PG_RW | PG_V;
2723#if defined(SMP)
2724		/* The page directory is not shared between CPUs */
2725		cpu_invltlb();
2726#else
2727		invltlb();
2728#endif
2729	}
2730 	saved_pde = APTDpde & (PG_FRAME | PG_RW | PG_V);
2731	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2732		pt_entry_t *src_pte, *dst_pte;
2733		vm_page_t dstmpte, srcmpte;
2734		pd_entry_t srcptepaddr;
2735		unsigned ptepindex;
2736
2737		if (addr >= UPT_MIN_ADDRESS)
2738			panic("pmap_copy: invalid to pmap_copy page tables\n");
2739
2740		/*
2741		 * Don't let optional prefaulting of pages make us go
2742		 * way below the low water mark of free pages or way
2743		 * above high water mark of used pv entries.
2744		 */
2745		if (cnt.v_free_count < cnt.v_free_reserved ||
2746		    pv_entry_count > pv_entry_high_water)
2747			break;
2748
2749		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2750		ptepindex = addr >> PDRSHIFT;
2751
2752		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2753		if (srcptepaddr == 0)
2754			continue;
2755
2756		if (srcptepaddr & PG_PS) {
2757			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2758				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2759				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2760			}
2761			continue;
2762		}
2763
2764		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2765		if ((srcmpte == NULL) ||
2766		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2767			continue;
2768
2769		if (pdnxt > end_addr)
2770			pdnxt = end_addr;
2771
2772		src_pte = vtopte(addr);
2773		dst_pte = avtopte(addr);
2774		while (addr < pdnxt) {
2775			pt_entry_t ptetemp;
2776			ptetemp = *src_pte;
2777			/*
2778			 * we only virtual copy managed pages
2779			 */
2780			if ((ptetemp & PG_MANAGED) != 0) {
2781				/*
2782				 * We have to check after allocpte for the
2783				 * pte still being around...  allocpte can
2784				 * block.
2785				 */
2786				dstmpte = pmap_allocpte(dst_pmap, addr);
2787				if ((APTDpde & PG_FRAME) !=
2788				    (saved_pde & PG_FRAME)) {
2789					APTDpde = saved_pde;
2790printf ("IT HAPPENNED!");
2791#if defined(SMP)
2792					cpu_invltlb();
2793#else
2794					invltlb();
2795#endif
2796				}
2797				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2798					/*
2799					 * Clear the modified and
2800					 * accessed (referenced) bits
2801					 * during the copy.
2802					 */
2803					m = PHYS_TO_VM_PAGE(ptetemp);
2804					*dst_pte = ptetemp & ~(PG_M | PG_A);
2805					dst_pmap->pm_stats.resident_count++;
2806					pmap_insert_entry(dst_pmap, addr,
2807						dstmpte, m);
2808	 			} else {
2809					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2810				}
2811				if (dstmpte->hold_count >= srcmpte->hold_count)
2812					break;
2813			}
2814			addr += PAGE_SIZE;
2815			src_pte++;
2816			dst_pte++;
2817		}
2818	}
2819}
2820
2821/*
2822 *	Routine:	pmap_kernel
2823 *	Function:
2824 *		Returns the physical map handle for the kernel.
2825 */
2826pmap_t
2827pmap_kernel()
2828{
2829	return (kernel_pmap);
2830}
2831
2832/*
2833 *	pmap_zero_page zeros the specified hardware page by mapping
2834 *	the page into KVM and using bzero to clear its contents.
2835 */
2836void
2837pmap_zero_page(vm_offset_t phys)
2838{
2839
2840	if (*CMAP2)
2841		panic("pmap_zero_page: CMAP2 busy");
2842
2843	*CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2844	invltlb_1pg((vm_offset_t)CADDR2);
2845
2846#if defined(I686_CPU)
2847	if (cpu_class == CPUCLASS_686)
2848		i686_pagezero(CADDR2);
2849	else
2850#endif
2851		bzero(CADDR2, PAGE_SIZE);
2852	*CMAP2 = 0;
2853}
2854
2855/*
2856 *	pmap_zero_page_area zeros the specified hardware page by mapping
2857 *	the page into KVM and using bzero to clear its contents.
2858 *
2859 *	off and size may not cover an area beyond a single hardware page.
2860 */
2861void
2862pmap_zero_page_area(vm_offset_t phys, int off, int size)
2863{
2864
2865	if (*CMAP2)
2866		panic("pmap_zero_page: CMAP2 busy");
2867
2868	*CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2869	invltlb_1pg((vm_offset_t)CADDR2);
2870
2871#if defined(I686_CPU)
2872	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2873		i686_pagezero(CADDR2);
2874	else
2875#endif
2876		bzero((char *)CADDR2 + off, size);
2877	*CMAP2 = 0;
2878}
2879
2880/*
2881 *	pmap_copy_page copies the specified (machine independent)
2882 *	page by mapping the page into virtual memory and using
2883 *	bcopy to copy the page, one machine dependent page at a
2884 *	time.
2885 */
2886void
2887pmap_copy_page(vm_offset_t src, vm_offset_t dst)
2888{
2889
2890	if (*CMAP1)
2891		panic("pmap_copy_page: CMAP1 busy");
2892	if (*CMAP2)
2893		panic("pmap_copy_page: CMAP2 busy");
2894
2895	*CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2896	*CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2897#ifdef I386_CPU
2898	invltlb();
2899#else
2900	invlpg((u_int)CADDR1);
2901	invlpg((u_int)CADDR2);
2902#endif
2903
2904	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2905
2906	*CMAP1 = 0;
2907	*CMAP2 = 0;
2908}
2909
2910
2911/*
2912 *	Routine:	pmap_pageable
2913 *	Function:
2914 *		Make the specified pages (by pmap, offset)
2915 *		pageable (or not) as requested.
2916 *
2917 *		A page which is not pageable may not take
2918 *		a fault; therefore, its page table entry
2919 *		must remain valid for the duration.
2920 *
2921 *		This routine is merely advisory; pmap_enter
2922 *		will specify that these pages are to be wired
2923 *		down (or not) as appropriate.
2924 */
2925void
2926pmap_pageable(pmap, sva, eva, pageable)
2927	pmap_t pmap;
2928	vm_offset_t sva, eva;
2929	boolean_t pageable;
2930{
2931}
2932
2933/*
2934 * this routine returns true if a physical page resides
2935 * in the given pmap.
2936 */
2937boolean_t
2938pmap_page_exists(pmap, m)
2939	pmap_t pmap;
2940	vm_page_t m;
2941{
2942	register pv_entry_t pv;
2943	int s;
2944
2945	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2946		return FALSE;
2947
2948	s = splvm();
2949
2950	/*
2951	 * Not found, check current mappings returning immediately if found.
2952	 */
2953	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2954		if (pv->pv_pmap == pmap) {
2955			splx(s);
2956			return TRUE;
2957		}
2958	}
2959	splx(s);
2960	return (FALSE);
2961}
2962
2963#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2964/*
2965 * Remove all pages from specified address space
2966 * this aids process exit speeds.  Also, this code
2967 * is special cased for current process only, but
2968 * can have the more generic (and slightly slower)
2969 * mode enabled.  This is much faster than pmap_remove
2970 * in the case of running down an entire address space.
2971 */
2972void
2973pmap_remove_pages(pmap, sva, eva)
2974	pmap_t pmap;
2975	vm_offset_t sva, eva;
2976{
2977	pt_entry_t *pte, tpte;
2978	vm_page_t m;
2979	pv_entry_t pv, npv;
2980	int s;
2981
2982#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2983	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2984		printf("warning: pmap_remove_pages called with non-current pmap\n");
2985		return;
2986	}
2987#endif
2988
2989	s = splvm();
2990	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2991
2992		if (pv->pv_va >= eva || pv->pv_va < sva) {
2993			npv = TAILQ_NEXT(pv, pv_plist);
2994			continue;
2995		}
2996
2997#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2998		pte = vtopte(pv->pv_va);
2999#else
3000		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3001#endif
3002		tpte = *pte;
3003
3004		if (tpte == 0) {
3005			printf("TPTE at %p  IS ZERO @ VA %08x\n",
3006							pte, pv->pv_va);
3007			panic("bad pte");
3008		}
3009
3010/*
3011 * We cannot remove wired pages from a process' mapping at this time
3012 */
3013		if (tpte & PG_W) {
3014			npv = TAILQ_NEXT(pv, pv_plist);
3015			continue;
3016		}
3017
3018		m = PHYS_TO_VM_PAGE(tpte);
3019		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3020		    ("vm_page_t %p phys_addr mismatch %08x %08x",
3021		    m, m->phys_addr, tpte));
3022
3023		KASSERT(m < &vm_page_array[vm_page_array_size],
3024			("pmap_remove_pages: bad tpte %x", tpte));
3025
3026		pv->pv_pmap->pm_stats.resident_count--;
3027
3028		*pte = 0;
3029
3030		/*
3031		 * Update the vm_page_t clean and reference bits.
3032		 */
3033		if (tpte & PG_M) {
3034			vm_page_dirty(m);
3035		}
3036
3037		npv = TAILQ_NEXT(pv, pv_plist);
3038		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3039
3040		m->md.pv_list_count--;
3041		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3042		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3043			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3044		}
3045
3046		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3047		free_pv_entry(pv);
3048	}
3049	splx(s);
3050	pmap_invalidate_all(pmap);
3051}
3052
3053/*
3054 * pmap_testbit tests bits in pte's
3055 * note that the testbit/changebit routines are inline,
3056 * and a lot of things compile-time evaluate.
3057 */
3058static boolean_t
3059pmap_testbit(m, bit)
3060	vm_page_t m;
3061	int bit;
3062{
3063	pv_entry_t pv;
3064	pt_entry_t *pte;
3065	int s;
3066
3067	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3068		return FALSE;
3069
3070	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3071		return FALSE;
3072
3073	s = splvm();
3074
3075	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3076		/*
3077		 * if the bit being tested is the modified bit, then
3078		 * mark clean_map and ptes as never
3079		 * modified.
3080		 */
3081		if (bit & (PG_A|PG_M)) {
3082			if (!pmap_track_modified(pv->pv_va))
3083				continue;
3084		}
3085
3086#if defined(PMAP_DIAGNOSTIC)
3087		if (!pv->pv_pmap) {
3088			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3089			continue;
3090		}
3091#endif
3092		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3093		if (*pte & bit) {
3094			splx(s);
3095			return TRUE;
3096		}
3097	}
3098	splx(s);
3099	return (FALSE);
3100}
3101
3102/*
3103 * this routine is used to modify bits in ptes
3104 */
3105static __inline void
3106pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3107{
3108	register pv_entry_t pv;
3109	register pt_entry_t *pte;
3110	int s;
3111
3112	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3113		return;
3114
3115	s = splvm();
3116
3117	/*
3118	 * Loop over all current mappings setting/clearing as appropos If
3119	 * setting RO do we need to clear the VAC?
3120	 */
3121	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3122		/*
3123		 * don't write protect pager mappings
3124		 */
3125		if (!setem && (bit == PG_RW)) {
3126			if (!pmap_track_modified(pv->pv_va))
3127				continue;
3128		}
3129
3130#if defined(PMAP_DIAGNOSTIC)
3131		if (!pv->pv_pmap) {
3132			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3133			continue;
3134		}
3135#endif
3136
3137		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3138
3139		if (setem) {
3140			*pte |= bit;
3141			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3142		} else {
3143			pt_entry_t pbits = *pte;
3144			if (pbits & bit) {
3145				if (bit == PG_RW) {
3146					if (pbits & PG_M) {
3147						vm_page_dirty(m);
3148					}
3149					*pte = pbits & ~(PG_M|PG_RW);
3150				} else {
3151					*pte = pbits & ~bit;
3152				}
3153				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3154			}
3155		}
3156	}
3157	splx(s);
3158}
3159
3160/*
3161 *      pmap_page_protect:
3162 *
3163 *      Lower the permission for all mappings to a given page.
3164 */
3165void
3166pmap_page_protect(vm_page_t m, vm_prot_t prot)
3167{
3168	if ((prot & VM_PROT_WRITE) == 0) {
3169		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3170			pmap_changebit(m, PG_RW, FALSE);
3171		} else {
3172			pmap_remove_all(m);
3173		}
3174	}
3175}
3176
3177vm_offset_t
3178pmap_phys_address(ppn)
3179	int ppn;
3180{
3181	return (i386_ptob(ppn));
3182}
3183
3184/*
3185 *	pmap_ts_referenced:
3186 *
3187 *	Return the count of reference bits for a page, clearing all of them.
3188 */
3189int
3190pmap_ts_referenced(vm_page_t m)
3191{
3192	register pv_entry_t pv, pvf, pvn;
3193	pt_entry_t *pte;
3194	int s;
3195	int rtval = 0;
3196
3197	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3198		return (rtval);
3199
3200	s = splvm();
3201
3202	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3203
3204		pvf = pv;
3205
3206		do {
3207			pvn = TAILQ_NEXT(pv, pv_list);
3208
3209			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3210
3211			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3212
3213			if (!pmap_track_modified(pv->pv_va))
3214				continue;
3215
3216			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3217
3218			if (pte && (*pte & PG_A)) {
3219				*pte &= ~PG_A;
3220
3221				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3222
3223				rtval++;
3224				if (rtval > 4) {
3225					break;
3226				}
3227			}
3228		} while ((pv = pvn) != NULL && pv != pvf);
3229	}
3230	splx(s);
3231
3232	return (rtval);
3233}
3234
3235/*
3236 *	pmap_is_modified:
3237 *
3238 *	Return whether or not the specified physical page was modified
3239 *	in any physical maps.
3240 */
3241boolean_t
3242pmap_is_modified(vm_page_t m)
3243{
3244	return pmap_testbit(m, PG_M);
3245}
3246
3247/*
3248 *	Clear the modify bits on the specified physical page.
3249 */
3250void
3251pmap_clear_modify(vm_page_t m)
3252{
3253	pmap_changebit(m, PG_M, FALSE);
3254}
3255
3256/*
3257 *	pmap_clear_reference:
3258 *
3259 *	Clear the reference bit on the specified physical page.
3260 */
3261void
3262pmap_clear_reference(vm_page_t m)
3263{
3264	pmap_changebit(m, PG_A, FALSE);
3265}
3266
3267/*
3268 * Miscellaneous support routines follow
3269 */
3270
3271static void
3272i386_protection_init()
3273{
3274	register int *kp, prot;
3275
3276	kp = protection_codes;
3277	for (prot = 0; prot < 8; prot++) {
3278		switch (prot) {
3279		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3280			/*
3281			 * Read access is also 0. There isn't any execute bit,
3282			 * so just make it readable.
3283			 */
3284		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3285		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3286		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3287			*kp++ = 0;
3288			break;
3289		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3290		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3291		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3292		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3293			*kp++ = PG_RW;
3294			break;
3295		}
3296	}
3297}
3298
3299/*
3300 * Map a set of physical memory pages into the kernel virtual
3301 * address space. Return a pointer to where it is mapped. This
3302 * routine is intended to be used for mapping device memory,
3303 * NOT real memory.
3304 */
3305void *
3306pmap_mapdev(pa, size)
3307	vm_offset_t pa;
3308	vm_size_t size;
3309{
3310	vm_offset_t va, tmpva, offset;
3311	pt_entry_t *pte;
3312
3313	offset = pa & PAGE_MASK;
3314	size = roundup(offset + size, PAGE_SIZE);
3315
3316	GIANT_REQUIRED;
3317
3318	va = kmem_alloc_pageable(kernel_map, size);
3319	if (!va)
3320		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3321
3322	pa = pa & PG_FRAME;
3323	for (tmpva = va; size > 0;) {
3324		pte = vtopte(tmpva);
3325		*pte = pa | PG_RW | PG_V | pgeflag;
3326		size -= PAGE_SIZE;
3327		tmpva += PAGE_SIZE;
3328		pa += PAGE_SIZE;
3329	}
3330	invltlb();
3331
3332	return ((void *)(va + offset));
3333}
3334
3335void
3336pmap_unmapdev(va, size)
3337	vm_offset_t va;
3338	vm_size_t size;
3339{
3340	vm_offset_t base, offset;
3341
3342	base = va & PG_FRAME;
3343	offset = va & PAGE_MASK;
3344	size = roundup(offset + size, PAGE_SIZE);
3345	kmem_free(kernel_map, base, size);
3346}
3347
3348/*
3349 * perform the pmap work for mincore
3350 */
3351int
3352pmap_mincore(pmap, addr)
3353	pmap_t pmap;
3354	vm_offset_t addr;
3355{
3356	pt_entry_t *ptep, pte;
3357	vm_page_t m;
3358	int val = 0;
3359
3360	ptep = pmap_pte(pmap, addr);
3361	if (ptep == 0) {
3362		return 0;
3363	}
3364
3365	if ((pte = *ptep) != 0) {
3366		vm_offset_t pa;
3367
3368		val = MINCORE_INCORE;
3369		if ((pte & PG_MANAGED) == 0)
3370			return val;
3371
3372		pa = pte & PG_FRAME;
3373
3374		m = PHYS_TO_VM_PAGE(pa);
3375
3376		/*
3377		 * Modified by us
3378		 */
3379		if (pte & PG_M)
3380			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3381		/*
3382		 * Modified by someone
3383		 */
3384		else if (m->dirty || pmap_is_modified(m))
3385			val |= MINCORE_MODIFIED_OTHER;
3386		/*
3387		 * Referenced by us
3388		 */
3389		if (pte & PG_A)
3390			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3391
3392		/*
3393		 * Referenced by someone
3394		 */
3395		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3396			val |= MINCORE_REFERENCED_OTHER;
3397			vm_page_flag_set(m, PG_REFERENCED);
3398		}
3399	}
3400	return val;
3401}
3402
3403void
3404pmap_activate(struct thread *td)
3405{
3406	struct proc *p = td->td_proc;
3407	pmap_t	pmap;
3408	u_int32_t  cr3;
3409
3410	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3411#if defined(SMP)
3412	pmap->pm_active |= 1 << PCPU_GET(cpuid);
3413#else
3414	pmap->pm_active |= 1;
3415#endif
3416#if defined(SWTCH_OPTIM_STATS)
3417	tlb_flush_count++;
3418#endif
3419	cr3 = vtophys(pmap->pm_pdir);
3420	/* XXXKSE this is wrong.
3421	 * pmap_activate is for the current thread on the current cpu
3422	 */
3423	if (p->p_flag & P_KSES) {
3424		/* Make sure all other cr3 entries are updated. */
3425		/* what if they are running?  XXXKSE (maybe abort them) */
3426		FOREACH_THREAD_IN_PROC(p, td) {
3427			td->td_pcb->pcb_cr3 = cr3;
3428		}
3429	} else {
3430		td->td_pcb->pcb_cr3 = cr3;
3431	}
3432	load_cr3(cr3);
3433}
3434
3435vm_offset_t
3436pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3437{
3438
3439	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3440		return addr;
3441	}
3442
3443	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3444	return addr;
3445}
3446
3447
3448#if defined(PMAP_DEBUG)
3449pmap_pid_dump(int pid)
3450{
3451	pmap_t pmap;
3452	struct proc *p;
3453	int npte = 0;
3454	int index;
3455
3456	sx_slock(&allproc_lock);
3457	LIST_FOREACH(p, &allproc, p_list) {
3458		if (p->p_pid != pid)
3459			continue;
3460
3461		if (p->p_vmspace) {
3462			int i,j;
3463			index = 0;
3464			pmap = vmspace_pmap(p->p_vmspace);
3465			for (i = 0; i < NPDEPG; i++) {
3466				pd_entry_t *pde;
3467				pt_entry_t *pte;
3468				vm_offset_t base = i << PDRSHIFT;
3469
3470				pde = &pmap->pm_pdir[i];
3471				if (pde && pmap_pde_v(pde)) {
3472					for (j = 0; j < NPTEPG; j++) {
3473						vm_offset_t va = base + (j << PAGE_SHIFT);
3474						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3475							if (index) {
3476								index = 0;
3477								printf("\n");
3478							}
3479							sx_sunlock(&allproc_lock);
3480							return npte;
3481						}
3482						pte = pmap_pte_quick(pmap, va);
3483						if (pte && pmap_pte_v(pte)) {
3484							pt_entry_t pa;
3485							vm_page_t m;
3486							pa = *pte;
3487							m = PHYS_TO_VM_PAGE(pa);
3488							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3489								va, pa, m->hold_count, m->wire_count, m->flags);
3490							npte++;
3491							index++;
3492							if (index >= 2) {
3493								index = 0;
3494								printf("\n");
3495							} else {
3496								printf(" ");
3497							}
3498						}
3499					}
3500				}
3501			}
3502		}
3503	}
3504	sx_sunlock(&allproc_lock);
3505	return npte;
3506}
3507#endif
3508
3509#if defined(DEBUG)
3510
3511static void	pads __P((pmap_t pm));
3512void		pmap_pvdump __P((vm_offset_t pa));
3513
3514/* print address space of pmap*/
3515static void
3516pads(pm)
3517	pmap_t pm;
3518{
3519	int i, j;
3520	vm_offset_t va;
3521	pt_entry_t *ptep;
3522
3523	if (pm == kernel_pmap)
3524		return;
3525	for (i = 0; i < NPDEPG; i++)
3526		if (pm->pm_pdir[i])
3527			for (j = 0; j < NPTEPG; j++) {
3528				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3529				if (pm == kernel_pmap && va < KERNBASE)
3530					continue;
3531				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3532					continue;
3533				ptep = pmap_pte_quick(pm, va);
3534				if (pmap_pte_v(ptep))
3535					printf("%x:%x ", va, *ptep);
3536			};
3537
3538}
3539
3540void
3541pmap_pvdump(pa)
3542	vm_offset_t pa;
3543{
3544	pv_entry_t pv;
3545	vm_page_t m;
3546
3547	printf("pa %x", pa);
3548	m = PHYS_TO_VM_PAGE(pa);
3549	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3550		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3551		pads(pv->pv_pmap);
3552	}
3553	printf(" ");
3554}
3555#endif
3556