pmap.c revision 88240
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 88240 2001-12-20 03:49:31Z peter $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_kstack_pages.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mman.h>
81#include <sys/msgbuf.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/sx.h>
85#include <sys/user.h>
86#include <sys/vmmeter.h>
87#include <sys/sysctl.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103#if defined(SMP) || defined(APIC_IO)
104#include <machine/smp.h>
105#include <machine/apic.h>
106#include <machine/segments.h>
107#include <machine/tss.h>
108#endif /* SMP || APIC_IO */
109
110#define PMAP_KEEP_PDIRS
111#ifndef PMAP_SHPGPERPROC
112#define PMAP_SHPGPERPROC 200
113#endif
114
115#if defined(DIAGNOSTIC)
116#define PMAP_DIAGNOSTIC
117#endif
118
119#define MINPV 2048
120
121#if !defined(PMAP_DIAGNOSTIC)
122#define PMAP_INLINE __inline
123#else
124#define PMAP_INLINE
125#endif
126
127/*
128 * Get PDEs and PTEs for user/kernel address space
129 */
130#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
132
133#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
134#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
135#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
136#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
137#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
138
139#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
140#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
141
142/*
143 * Given a map and a machine independent protection code,
144 * convert to a vax protection code.
145 */
146#define pte_prot(m, p)	(protection_codes[p])
147static int protection_codes[8];
148
149static struct pmap kernel_pmap_store;
150pmap_t kernel_pmap;
151LIST_HEAD(pmaplist, pmap);
152struct pmaplist allpmaps;
153
154vm_offset_t avail_start;	/* PA of first available physical page */
155vm_offset_t avail_end;		/* PA of last available physical page */
156vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
157vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
158static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
159static int pgeflag;		/* PG_G or-in */
160static int pseflag;		/* PG_PS or-in */
161
162static vm_object_t kptobj;
163
164static int nkpt;
165vm_offset_t kernel_vm_end;
166
167/*
168 * Data for the pv entry allocation mechanism
169 */
170static vm_zone_t pvzone;
171static struct vm_zone pvzone_store;
172static struct vm_object pvzone_obj;
173static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
174static int pmap_pagedaemon_waken = 0;
175static struct pv_entry *pvinit;
176
177/*
178 * All those kernel PT submaps that BSD is so fond of
179 */
180pt_entry_t *CMAP1 = 0;
181static pt_entry_t *CMAP2, *ptmmap;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2;
184static pt_entry_t *msgbufmap;
185struct msgbuf *msgbufp = 0;
186
187/*
188 * Crashdump maps.
189 */
190static pt_entry_t *pt_crashdumpmap;
191static caddr_t crashdumpmap;
192
193#ifdef SMP
194extern pt_entry_t *SMPpt;
195#endif
196static pt_entry_t *PMAP1 = 0;
197static pt_entry_t *PADDR1 = 0;
198
199static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
200static unsigned * get_ptbase __P((pmap_t pmap));
201static pv_entry_t get_pv_entry __P((void));
202static void	i386_protection_init __P((void));
203static __inline void	pmap_changebit __P((vm_page_t m, int bit, boolean_t setem));
204
205static void	pmap_remove_all __P((vm_page_t m));
206static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte));
208static int pmap_remove_pte __P((pmap_t pmap, unsigned *ptq, vm_offset_t sva));
209static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
210static int pmap_remove_entry __P((struct pmap *pmap, vm_page_t m,
211					vm_offset_t va));
212static boolean_t pmap_testbit __P((vm_page_t m, int bit));
213static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
214		vm_page_t mpte, vm_page_t m));
215
216static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
217
218static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
219static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
220static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
221static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
222static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
223static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
224
225static unsigned pdir4mb;
226
227/*
228 *	Routine:	pmap_pte
229 *	Function:
230 *		Extract the page table entry associated
231 *		with the given map/virtual_address pair.
232 */
233
234PMAP_INLINE unsigned *
235pmap_pte(pmap, va)
236	register pmap_t pmap;
237	vm_offset_t va;
238{
239	pd_entry_t *pdeaddr;
240
241	if (pmap) {
242		pdeaddr = pmap_pde(pmap, va);
243		if (*pdeaddr & PG_PS)
244			return pdeaddr;
245		if (*pdeaddr) {
246			return get_ptbase(pmap) + i386_btop(va);
247		}
248	}
249	return (0);
250}
251
252/*
253 * Move the kernel virtual free pointer to the next
254 * 4MB.  This is used to help improve performance
255 * by using a large (4MB) page for much of the kernel
256 * (.text, .data, .bss)
257 */
258static vm_offset_t
259pmap_kmem_choose(vm_offset_t addr)
260{
261	vm_offset_t newaddr = addr;
262#ifndef DISABLE_PSE
263	if (cpu_feature & CPUID_PSE) {
264		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
265	}
266#endif
267	return newaddr;
268}
269
270/*
271 *	Bootstrap the system enough to run with virtual memory.
272 *
273 *	On the i386 this is called after mapping has already been enabled
274 *	and just syncs the pmap module with what has already been done.
275 *	[We can't call it easily with mapping off since the kernel is not
276 *	mapped with PA == VA, hence we would have to relocate every address
277 *	from the linked base (virtual) address "KERNBASE" to the actual
278 *	(physical) address starting relative to 0]
279 */
280void
281pmap_bootstrap(firstaddr, loadaddr)
282	vm_offset_t firstaddr;
283	vm_offset_t loadaddr;
284{
285	vm_offset_t va;
286	pt_entry_t *pte;
287	int i;
288
289	avail_start = firstaddr;
290
291	/*
292	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
293	 * large. It should instead be correctly calculated in locore.s and
294	 * not based on 'first' (which is a physical address, not a virtual
295	 * address, for the start of unused physical memory). The kernel
296	 * page tables are NOT double mapped and thus should not be included
297	 * in this calculation.
298	 */
299	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
300	virtual_avail = pmap_kmem_choose(virtual_avail);
301
302	virtual_end = VM_MAX_KERNEL_ADDRESS;
303
304	/*
305	 * Initialize protection array.
306	 */
307	i386_protection_init();
308
309	/*
310	 * The kernel's pmap is statically allocated so we don't have to use
311	 * pmap_create, which is unlikely to work correctly at this part of
312	 * the boot sequence (XXX and which no longer exists).
313	 */
314	kernel_pmap = &kernel_pmap_store;
315
316	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
317	kernel_pmap->pm_count = 1;
318	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
319	TAILQ_INIT(&kernel_pmap->pm_pvlist);
320	LIST_INIT(&allpmaps);
321	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
322	nkpt = NKPT;
323
324	/*
325	 * Reserve some special page table entries/VA space for temporary
326	 * mapping of pages.
327	 */
328#define	SYSMAP(c, p, v, n)	\
329	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
330
331	va = virtual_avail;
332	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
333
334	/*
335	 * CMAP1/CMAP2 are used for zeroing and copying pages.
336	 */
337	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
338	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
339
340	/*
341	 * Crashdump maps.
342	 */
343	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
344
345	/*
346	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
347	 * XXX ptmmap is not used.
348	 */
349	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
350
351	/*
352	 * msgbufp is used to map the system message buffer.
353	 * XXX msgbufmap is not used.
354	 */
355	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
356	       atop(round_page(MSGBUF_SIZE)))
357
358	/*
359	 * ptemap is used for pmap_pte_quick
360	 */
361	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
362
363	virtual_avail = va;
364
365	*CMAP1 = *CMAP2 = 0;
366	for (i = 0; i < NKPT; i++)
367		PTD[i] = 0;
368
369	pgeflag = 0;
370#if !defined(SMP)			/* XXX - see also mp_machdep.c */
371	if (cpu_feature & CPUID_PGE) {
372		pgeflag = PG_G;
373	}
374#endif
375
376/*
377 * Initialize the 4MB page size flag
378 */
379	pseflag = 0;
380/*
381 * The 4MB page version of the initial
382 * kernel page mapping.
383 */
384	pdir4mb = 0;
385
386#if !defined(DISABLE_PSE)
387	if (cpu_feature & CPUID_PSE) {
388		unsigned ptditmp;
389		/*
390		 * Note that we have enabled PSE mode
391		 */
392		pseflag = PG_PS;
393		ptditmp = *(PTmap + i386_btop(KERNBASE));
394		ptditmp &= ~(NBPDR - 1);
395		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
396		pdir4mb = ptditmp;
397
398#if !defined(SMP)
399		/*
400		 * Enable the PSE mode.
401		 */
402		load_cr4(rcr4() | CR4_PSE);
403
404		/*
405		 * We can do the mapping here for the single processor
406		 * case.  We simply ignore the old page table page from
407		 * now on.
408		 */
409		/*
410		 * For SMP, we still need 4K pages to bootstrap APs,
411		 * PSE will be enabled as soon as all APs are up.
412		 */
413		PTD[KPTDI] = (pd_entry_t) ptditmp;
414		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
415		invltlb();
416#endif
417	}
418#endif
419
420#ifdef SMP
421	if (cpu_apic_address == 0)
422		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
423
424	/* local apic is mapped on last page */
425	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
426	    (cpu_apic_address & PG_FRAME));
427#endif
428
429	invltlb();
430}
431
432#ifdef SMP
433/*
434 * Set 4mb pdir for mp startup
435 */
436void
437pmap_set_opt(void)
438{
439	if (pseflag && (cpu_feature & CPUID_PSE)) {
440		load_cr4(rcr4() | CR4_PSE);
441		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
442			kernel_pmap->pm_pdir[KPTDI] =
443			    PTD[KPTDI] = (pd_entry_t)pdir4mb;
444			cpu_invltlb();
445		}
446	}
447}
448#endif
449
450/*
451 *	Initialize the pmap module.
452 *	Called by vm_init, to initialize any structures that the pmap
453 *	system needs to map virtual memory.
454 *	pmap_init has been enhanced to support in a fairly consistant
455 *	way, discontiguous physical memory.
456 */
457void
458pmap_init(phys_start, phys_end)
459	vm_offset_t phys_start, phys_end;
460{
461	int i;
462	int initial_pvs;
463
464	/*
465	 * object for kernel page table pages
466	 */
467	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
468
469	/*
470	 * Allocate memory for random pmap data structures.  Includes the
471	 * pv_head_table.
472	 */
473
474	for(i = 0; i < vm_page_array_size; i++) {
475		vm_page_t m;
476
477		m = &vm_page_array[i];
478		TAILQ_INIT(&m->md.pv_list);
479		m->md.pv_list_count = 0;
480	}
481
482	/*
483	 * init the pv free list
484	 */
485	initial_pvs = vm_page_array_size;
486	if (initial_pvs < MINPV)
487		initial_pvs = MINPV;
488	pvzone = &pvzone_store;
489	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
490		initial_pvs * sizeof (struct pv_entry));
491	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
492	    vm_page_array_size);
493
494	/*
495	 * Now it is safe to enable pv_table recording.
496	 */
497	pmap_initialized = TRUE;
498}
499
500/*
501 * Initialize the address space (zone) for the pv_entries.  Set a
502 * high water mark so that the system can recover from excessive
503 * numbers of pv entries.
504 */
505void
506pmap_init2()
507{
508	int shpgperproc = PMAP_SHPGPERPROC;
509
510	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
511	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
512	pv_entry_high_water = 9 * (pv_entry_max / 10);
513	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
514}
515
516
517/***************************************************
518 * Low level helper routines.....
519 ***************************************************/
520
521#if defined(PMAP_DIAGNOSTIC)
522
523/*
524 * This code checks for non-writeable/modified pages.
525 * This should be an invalid condition.
526 */
527static int
528pmap_nw_modified(pt_entry_t ptea)
529{
530	int pte;
531
532	pte = (int) ptea;
533
534	if ((pte & (PG_M|PG_RW)) == PG_M)
535		return 1;
536	else
537		return 0;
538}
539#endif
540
541
542/*
543 * this routine defines the region(s) of memory that should
544 * not be tested for the modified bit.
545 */
546static PMAP_INLINE int
547pmap_track_modified(vm_offset_t va)
548{
549	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
550		return 1;
551	else
552		return 0;
553}
554
555static PMAP_INLINE void
556invltlb_1pg(vm_offset_t va)
557{
558#ifdef I386_CPU
559	invltlb();
560#else
561	invlpg(va);
562#endif
563}
564
565static __inline void
566pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
567{
568#if defined(SMP)
569	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
570		cpu_invlpg((void *)va);
571	if (pmap->pm_active & PCPU_GET(other_cpus))
572		smp_invltlb();
573#else
574	if (pmap->pm_active)
575		invltlb_1pg(va);
576#endif
577}
578
579static __inline void
580pmap_invalidate_all(pmap_t pmap)
581{
582#if defined(SMP)
583	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
584		cpu_invltlb();
585	if (pmap->pm_active & PCPU_GET(other_cpus))
586		smp_invltlb();
587#else
588	if (pmap->pm_active)
589		invltlb();
590#endif
591}
592
593/*
594 * Return an address which is the base of the Virtual mapping of
595 * all the PTEs for the given pmap. Note this doesn't say that
596 * all the PTEs will be present or that the pages there are valid.
597 * The PTEs are made available by the recursive mapping trick.
598 * It will map in the alternate PTE space if needed.
599 */
600static pt_entry_t *
601get_ptbase(pmap)
602	pmap_t pmap;
603{
604	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
605
606	/* are we current address space or kernel? */
607	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
608		return PTmap;
609	}
610	/* otherwise, we are alternate address space */
611	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
612		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
613#if defined(SMP)
614		/* The page directory is not shared between CPUs */
615		cpu_invltlb();
616#else
617		invltlb();
618#endif
619	}
620	return APTmap;
621}
622
623/*
624 * Super fast pmap_pte routine best used when scanning
625 * the pv lists.  This eliminates many coarse-grained
626 * invltlb calls.  Note that many of the pv list
627 * scans are across different pmaps.  It is very wasteful
628 * to do an entire invltlb for checking a single mapping.
629 */
630
631static pt_entry_t *
632pmap_pte_quick(pmap, va)
633	register pmap_t pmap;
634	vm_offset_t va;
635{
636	pd_entry_t pde, newpf;
637	if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
638		pd_entry_t frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
639		unsigned index = i386_btop(va);
640		/* are we current address space or kernel? */
641		if ((pmap == kernel_pmap) ||
642			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
643			return PTmap + index;
644		}
645		newpf = pde & PG_FRAME;
646		if (((*PMAP1) & PG_FRAME) != newpf) {
647			*PMAP1 = newpf | PG_RW | PG_V;
648			invltlb_1pg((vm_offset_t) PADDR1);
649		}
650		return PADDR1 + (index & (NPTEPG - 1));
651	}
652	return (0);
653}
654
655/*
656 *	Routine:	pmap_extract
657 *	Function:
658 *		Extract the physical page address associated
659 *		with the given map/virtual_address pair.
660 */
661vm_offset_t
662pmap_extract(pmap, va)
663	register pmap_t pmap;
664	vm_offset_t va;
665{
666	vm_offset_t rtval;	/* XXX FIXME */
667	vm_offset_t pdirindex;
668	pdirindex = va >> PDRSHIFT;
669	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
670		pt_entry_t *pte;
671		if ((rtval & PG_PS) != 0) {
672			rtval &= ~(NBPDR - 1);
673			rtval |= va & (NBPDR - 1);
674			return rtval;
675		}
676		pte = get_ptbase(pmap) + i386_btop(va);
677		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
678		return rtval;
679	}
680	return 0;
681
682}
683
684/***************************************************
685 * Low level mapping routines.....
686 ***************************************************/
687
688/*
689 * add a wired page to the kva
690 * note that in order for the mapping to take effect -- you
691 * should do a invltlb after doing the pmap_kenter...
692 */
693PMAP_INLINE void
694pmap_kenter(vm_offset_t va, vm_offset_t pa)
695{
696	pt_entry_t *pte;
697	pt_entry_t npte, opte;
698
699	npte = pa | PG_RW | PG_V | pgeflag;
700	pte = vtopte(va);
701	opte = *pte;
702	*pte = npte;
703	/*if (opte)*/
704		invltlb_1pg(va);	/* XXX what about SMP? */
705}
706
707/*
708 * remove a page from the kernel pagetables
709 */
710PMAP_INLINE void
711pmap_kremove(vm_offset_t va)
712{
713	register pt_entry_t *pte;
714
715	pte = vtopte(va);
716	*pte = 0;
717	invltlb_1pg(va);	/* XXX what about SMP? */
718}
719
720/*
721 *	Used to map a range of physical addresses into kernel
722 *	virtual address space.
723 *
724 *	The value passed in '*virt' is a suggested virtual address for
725 *	the mapping. Architectures which can support a direct-mapped
726 *	physical to virtual region can return the appropriate address
727 *	within that region, leaving '*virt' unchanged. Other
728 *	architectures should map the pages starting at '*virt' and
729 *	update '*virt' with the first usable address after the mapped
730 *	region.
731 */
732vm_offset_t
733pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
734{
735	vm_offset_t sva = *virt;
736	vm_offset_t va = sva;
737	while (start < end) {
738		pmap_kenter(va, start);
739		va += PAGE_SIZE;
740		start += PAGE_SIZE;
741	}
742	*virt = va;
743	return (sva);
744}
745
746
747/*
748 * Add a list of wired pages to the kva
749 * this routine is only used for temporary
750 * kernel mappings that do not need to have
751 * page modification or references recorded.
752 * Note that old mappings are simply written
753 * over.  The page *must* be wired.
754 */
755void
756pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
757{
758	vm_offset_t end_va;
759
760	end_va = va + count * PAGE_SIZE;
761
762	while (va < end_va) {
763		pt_entry_t *pte;
764
765		pte = vtopte(va);
766		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
767#ifdef SMP
768		cpu_invlpg((void *)va);
769#else
770		invltlb_1pg(va);
771#endif
772		va += PAGE_SIZE;
773		m++;
774	}
775#ifdef SMP
776	smp_invltlb();
777#endif
778}
779
780/*
781 * this routine jerks page mappings from the
782 * kernel -- it is meant only for temporary mappings.
783 */
784void
785pmap_qremove(vm_offset_t va, int count)
786{
787	vm_offset_t end_va;
788
789	end_va = va + count*PAGE_SIZE;
790
791	while (va < end_va) {
792		pt_entry_t *pte;
793
794		pte = vtopte(va);
795		*pte = 0;
796#ifdef SMP
797		cpu_invlpg((void *)va);
798#else
799		invltlb_1pg(va);
800#endif
801		va += PAGE_SIZE;
802	}
803#ifdef SMP
804	smp_invltlb();
805#endif
806}
807
808static vm_page_t
809pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
810{
811	vm_page_t m;
812retry:
813	m = vm_page_lookup(object, pindex);
814	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
815		goto retry;
816	return m;
817}
818
819/*
820 * Create the Uarea stack for a new process.
821 * This routine directly affects the fork perf for a process.
822 */
823void
824pmap_new_proc(struct proc *p)
825{
826#ifdef I386_CPU
827	int updateneeded = 0;
828#endif
829	int i;
830	vm_object_t upobj;
831	vm_offset_t up;
832	vm_page_t m;
833	pt_entry_t *ptek, oldpte;
834
835	/*
836	 * allocate object for the upages
837	 */
838	upobj = p->p_upages_obj;
839	if (upobj == NULL) {
840		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
841		p->p_upages_obj = upobj;
842	}
843
844	/* get a kernel virtual address for the U area for this thread */
845	up = (vm_offset_t)p->p_uarea;
846	if (up == 0) {
847		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
848		if (up == 0)
849			panic("pmap_new_proc: upage allocation failed");
850		p->p_uarea = (struct user *)up;
851	}
852
853	ptek = vtopte(up);
854
855	for (i = 0; i < UAREA_PAGES; i++) {
856		/*
857		 * Get a kernel stack page
858		 */
859		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
860
861		/*
862		 * Wire the page
863		 */
864		m->wire_count++;
865		cnt.v_wire_count++;
866
867		oldpte = *(ptek + i);
868		/*
869		 * Enter the page into the kernel address space.
870		 */
871		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
872		if (oldpte) {
873#ifdef I386_CPU
874			updateneeded = 1;
875#else
876			invlpg(up + i * PAGE_SIZE);
877#endif
878		}
879
880		vm_page_wakeup(m);
881		vm_page_flag_clear(m, PG_ZERO);
882		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
883		m->valid = VM_PAGE_BITS_ALL;
884	}
885#ifdef I386_CPU
886	if (updateneeded)
887		invltlb();
888#endif
889}
890
891/*
892 * Dispose the U-Area for a process that has exited.
893 * This routine directly impacts the exit perf of a process.
894 */
895void
896pmap_dispose_proc(p)
897	struct proc *p;
898{
899	int i;
900	vm_object_t upobj;
901	vm_offset_t up;
902	vm_page_t m;
903	pt_entry_t *ptek, oldpte;
904
905	upobj = p->p_upages_obj;
906	up = (vm_offset_t)p->p_uarea;
907	ptek = vtopte(up);
908	for (i = 0; i < UAREA_PAGES; i++) {
909		m = vm_page_lookup(upobj, i);
910		if (m == NULL)
911			panic("pmap_dispose_proc: upage already missing?");
912		vm_page_busy(m);
913		oldpte = *(ptek + i);
914		*(ptek + i) = 0;
915#ifndef I386_CPU
916		invlpg(up + i * PAGE_SIZE);
917#endif
918		vm_page_unwire(m, 0);
919		vm_page_free(m);
920	}
921#ifdef I386_CPU
922	invltlb();
923#endif
924}
925
926/*
927 * Allow the U_AREA for a process to be prejudicially paged out.
928 */
929void
930pmap_swapout_proc(p)
931	struct proc *p;
932{
933	int i;
934	vm_object_t upobj;
935	vm_offset_t up;
936	vm_page_t m;
937
938	upobj = p->p_upages_obj;
939	up = (vm_offset_t)p->p_uarea;
940	for (i = 0; i < UAREA_PAGES; i++) {
941		m = vm_page_lookup(upobj, i);
942		if (m == NULL)
943			panic("pmap_swapout_proc: upage already missing?");
944		vm_page_dirty(m);
945		vm_page_unwire(m, 0);
946		pmap_kremove(up + i * PAGE_SIZE);
947	}
948}
949
950/*
951 * Bring the U-Area for a specified process back in.
952 */
953void
954pmap_swapin_proc(p)
955	struct proc *p;
956{
957	int i, rv;
958	vm_object_t upobj;
959	vm_offset_t up;
960	vm_page_t m;
961
962	upobj = p->p_upages_obj;
963	up = (vm_offset_t)p->p_uarea;
964	for (i = 0; i < UAREA_PAGES; i++) {
965		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
966		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
967		if (m->valid != VM_PAGE_BITS_ALL) {
968			rv = vm_pager_get_pages(upobj, &m, 1, 0);
969			if (rv != VM_PAGER_OK)
970				panic("pmap_swapin_proc: cannot get upage for proc: %d\n", p->p_pid);
971			m = vm_page_lookup(upobj, i);
972			m->valid = VM_PAGE_BITS_ALL;
973		}
974		vm_page_wire(m);
975		vm_page_wakeup(m);
976		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
977	}
978}
979
980/*
981 * Create the kernel stack (including pcb for i386) for a new thread.
982 * This routine directly affects the fork perf for a process and
983 * create performance for a thread.
984 */
985void
986pmap_new_thread(struct thread *td)
987{
988#ifdef I386_CPU
989	int updateneeded = 0;
990#endif
991	int i;
992	vm_object_t ksobj;
993	vm_page_t m;
994	vm_offset_t ks;
995	pt_entry_t *ptek, oldpte;
996
997	/*
998	 * allocate object for the kstack
999	 */
1000	ksobj = td->td_kstack_obj;
1001	if (ksobj == NULL) {
1002		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1003		td->td_kstack_obj = ksobj;
1004	}
1005
1006#ifdef KSTACK_GUARD
1007	/* get a kernel virtual address for the kstack for this thread */
1008	ks = td->td_kstack;
1009	if (ks == 0) {
1010		ks = kmem_alloc_nofault(kernel_map,
1011		    (KSTACK_PAGES + 1) * PAGE_SIZE);
1012		if (ks == 0)
1013			panic("pmap_new_thread: kstack allocation failed");
1014		ks += PAGE_SIZE;
1015		td->td_kstack = ks;
1016	}
1017
1018	ptek = vtopte(ks - PAGE_SIZE);
1019	oldpte = *ptek;
1020	*ptek = 0;
1021	if (oldpte) {
1022#ifdef I386_CPU
1023		updateneeded = 1;
1024#else
1025		invlpg(ks - PAGE_SIZE);
1026#endif
1027	}
1028	ptek++;
1029#else
1030	/* get a kernel virtual address for the kstack for this thread */
1031	ks = td->td_kstack;
1032	if (ks == 0) {
1033		ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
1034		if (ks == 0)
1035			panic("pmap_new_thread: kstack allocation failed");
1036		td->td_kstack = ks;
1037	}
1038	ptek = vtopte(ks);
1039#endif
1040	for (i = 0; i < KSTACK_PAGES; i++) {
1041		/*
1042		 * Get a kernel stack page
1043		 */
1044		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1045
1046		/*
1047		 * Wire the page
1048		 */
1049		m->wire_count++;
1050		cnt.v_wire_count++;
1051
1052		oldpte = *(ptek + i);
1053		/*
1054		 * Enter the page into the kernel address space.
1055		 */
1056		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1057		if (oldpte) {
1058#ifdef I386_CPU
1059			updateneeded = 1;
1060#else
1061			invlpg(ks + i * PAGE_SIZE);
1062#endif
1063		}
1064
1065		vm_page_wakeup(m);
1066		vm_page_flag_clear(m, PG_ZERO);
1067		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1068		m->valid = VM_PAGE_BITS_ALL;
1069	}
1070#ifdef I386_CPU
1071	if (updateneeded)
1072		invltlb();
1073#endif
1074}
1075
1076/*
1077 * Dispose the kernel stack for a thread that has exited.
1078 * This routine directly impacts the exit perf of a process and thread.
1079 */
1080void
1081pmap_dispose_thread(td)
1082	struct thread *td;
1083{
1084	int i;
1085	vm_object_t ksobj;
1086	vm_offset_t ks;
1087	vm_page_t m;
1088	pt_entry_t *ptek, oldpte;
1089
1090	ksobj = td->td_kstack_obj;
1091	ks = td->td_kstack;
1092	ptek = vtopte(ks);
1093	for (i = 0; i < KSTACK_PAGES; i++) {
1094		m = vm_page_lookup(ksobj, i);
1095		if (m == NULL)
1096			panic("pmap_dispose_thread: kstack already missing?");
1097		vm_page_busy(m);
1098		oldpte = *(ptek + i);
1099		*(ptek + i) = 0;
1100#ifndef I386_CPU
1101		invlpg(ks + i * PAGE_SIZE);
1102#endif
1103		vm_page_unwire(m, 0);
1104		vm_page_free(m);
1105	}
1106#ifdef I386_CPU
1107	invltlb();
1108#endif
1109}
1110
1111/*
1112 * Allow the Kernel stack for a thread to be prejudicially paged out.
1113 */
1114void
1115pmap_swapout_thread(td)
1116	struct thread *td;
1117{
1118	int i;
1119	vm_object_t ksobj;
1120	vm_offset_t ks;
1121	vm_page_t m;
1122
1123	ksobj = td->td_kstack_obj;
1124	ks = td->td_kstack;
1125	for (i = 0; i < KSTACK_PAGES; i++) {
1126		m = vm_page_lookup(ksobj, i);
1127		if (m == NULL)
1128			panic("pmap_swapout_thread: kstack already missing?");
1129		vm_page_dirty(m);
1130		vm_page_unwire(m, 0);
1131		pmap_kremove(ks + i * PAGE_SIZE);
1132	}
1133}
1134
1135/*
1136 * Bring the kernel stack for a specified thread back in.
1137 */
1138void
1139pmap_swapin_thread(td)
1140	struct thread *td;
1141{
1142	int i, rv;
1143	vm_object_t ksobj;
1144	vm_offset_t ks;
1145	vm_page_t m;
1146
1147	ksobj = td->td_kstack_obj;
1148	ks = td->td_kstack;
1149	for (i = 0; i < KSTACK_PAGES; i++) {
1150		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1151		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1152		if (m->valid != VM_PAGE_BITS_ALL) {
1153			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1154			if (rv != VM_PAGER_OK)
1155				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1156			m = vm_page_lookup(ksobj, i);
1157			m->valid = VM_PAGE_BITS_ALL;
1158		}
1159		vm_page_wire(m);
1160		vm_page_wakeup(m);
1161		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1162	}
1163}
1164
1165/***************************************************
1166 * Page table page management routines.....
1167 ***************************************************/
1168
1169/*
1170 * This routine unholds page table pages, and if the hold count
1171 * drops to zero, then it decrements the wire count.
1172 */
1173static int
1174_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1175{
1176
1177	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1178		;
1179
1180	if (m->hold_count == 0) {
1181		vm_offset_t pteva;
1182		/*
1183		 * unmap the page table page
1184		 */
1185		pmap->pm_pdir[m->pindex] = 0;
1186		--pmap->pm_stats.resident_count;
1187		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1188		    (PTDpde & PG_FRAME)) {
1189			/*
1190			 * Do a invltlb to make the invalidated mapping
1191			 * take effect immediately.
1192			 */
1193			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1194			pmap_invalidate_page(pmap, pteva);
1195		}
1196
1197		if (pmap->pm_ptphint == m)
1198			pmap->pm_ptphint = NULL;
1199
1200		/*
1201		 * If the page is finally unwired, simply free it.
1202		 */
1203		--m->wire_count;
1204		if (m->wire_count == 0) {
1205
1206			vm_page_flash(m);
1207			vm_page_busy(m);
1208			vm_page_free_zero(m);
1209			--cnt.v_wire_count;
1210		}
1211		return 1;
1212	}
1213	return 0;
1214}
1215
1216static PMAP_INLINE int
1217pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1218{
1219	vm_page_unhold(m);
1220	if (m->hold_count == 0)
1221		return _pmap_unwire_pte_hold(pmap, m);
1222	else
1223		return 0;
1224}
1225
1226/*
1227 * After removing a page table entry, this routine is used to
1228 * conditionally free the page, and manage the hold/wire counts.
1229 */
1230static int
1231pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1232{
1233	unsigned ptepindex;
1234	if (va >= VM_MAXUSER_ADDRESS)
1235		return 0;
1236
1237	if (mpte == NULL) {
1238		ptepindex = (va >> PDRSHIFT);
1239		if (pmap->pm_ptphint &&
1240			(pmap->pm_ptphint->pindex == ptepindex)) {
1241			mpte = pmap->pm_ptphint;
1242		} else {
1243			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1244			pmap->pm_ptphint = mpte;
1245		}
1246	}
1247
1248	return pmap_unwire_pte_hold(pmap, mpte);
1249}
1250
1251void
1252pmap_pinit0(pmap)
1253	struct pmap *pmap;
1254{
1255	pmap->pm_pdir =
1256		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1257	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1258	pmap->pm_count = 1;
1259	pmap->pm_ptphint = NULL;
1260	pmap->pm_active = 0;
1261	TAILQ_INIT(&pmap->pm_pvlist);
1262	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1263	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1264}
1265
1266/*
1267 * Initialize a preallocated and zeroed pmap structure,
1268 * such as one in a vmspace structure.
1269 */
1270void
1271pmap_pinit(pmap)
1272	register struct pmap *pmap;
1273{
1274	vm_page_t ptdpg;
1275
1276	/*
1277	 * No need to allocate page table space yet but we do need a valid
1278	 * page directory table.
1279	 */
1280	if (pmap->pm_pdir == NULL)
1281		pmap->pm_pdir =
1282			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1283
1284	/*
1285	 * allocate object for the ptes
1286	 */
1287	if (pmap->pm_pteobj == NULL)
1288		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1289
1290	/*
1291	 * allocate the page directory page
1292	 */
1293	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1294			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1295
1296	ptdpg->wire_count = 1;
1297	++cnt.v_wire_count;
1298
1299
1300	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1301	ptdpg->valid = VM_PAGE_BITS_ALL;
1302
1303	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1304	if ((ptdpg->flags & PG_ZERO) == 0)
1305		bzero(pmap->pm_pdir, PAGE_SIZE);
1306
1307	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1308	/* Wire in kernel global address entries. */
1309	/* XXX copies current process, does not fill in MPPTDI */
1310	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1311#ifdef SMP
1312	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1313#endif
1314
1315	/* install self-referential address mapping entry */
1316	pmap->pm_pdir[PTDPTDI] =
1317		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1318
1319	pmap->pm_count = 1;
1320	pmap->pm_active = 0;
1321	pmap->pm_ptphint = NULL;
1322	TAILQ_INIT(&pmap->pm_pvlist);
1323	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1324}
1325
1326/*
1327 * Wire in kernel global address entries.  To avoid a race condition
1328 * between pmap initialization and pmap_growkernel, this procedure
1329 * should be called after the vmspace is attached to the process
1330 * but before this pmap is activated.
1331 */
1332void
1333pmap_pinit2(pmap)
1334	struct pmap *pmap;
1335{
1336	/* XXX: Remove this stub when no longer called */
1337}
1338
1339static int
1340pmap_release_free_page(pmap_t pmap, vm_page_t p)
1341{
1342	pd_entry_t *pde = pmap->pm_pdir;
1343	/*
1344	 * This code optimizes the case of freeing non-busy
1345	 * page-table pages.  Those pages are zero now, and
1346	 * might as well be placed directly into the zero queue.
1347	 */
1348	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1349		return 0;
1350
1351	vm_page_busy(p);
1352
1353	/*
1354	 * Remove the page table page from the processes address space.
1355	 */
1356	pde[p->pindex] = 0;
1357	pmap->pm_stats.resident_count--;
1358
1359	if (p->hold_count)  {
1360		panic("pmap_release: freeing held page table page");
1361	}
1362	/*
1363	 * Page directory pages need to have the kernel
1364	 * stuff cleared, so they can go into the zero queue also.
1365	 */
1366	if (p->pindex == PTDPTDI) {
1367		bzero(pde + KPTDI, nkpt * PTESIZE);
1368#ifdef SMP
1369		pde[MPPTDI] = 0;
1370#endif
1371		pde[APTDPTDI] = 0;
1372		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1373	}
1374
1375	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1376		pmap->pm_ptphint = NULL;
1377
1378	p->wire_count--;
1379	cnt.v_wire_count--;
1380	vm_page_free_zero(p);
1381	return 1;
1382}
1383
1384/*
1385 * this routine is called if the page table page is not
1386 * mapped correctly.
1387 */
1388static vm_page_t
1389_pmap_allocpte(pmap, ptepindex)
1390	pmap_t	pmap;
1391	unsigned ptepindex;
1392{
1393	vm_offset_t pteva, ptepa;	/* XXXPA */
1394	vm_page_t m;
1395
1396	/*
1397	 * Find or fabricate a new pagetable page
1398	 */
1399	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1400			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1401
1402	KASSERT(m->queue == PQ_NONE,
1403		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1404
1405	if (m->wire_count == 0)
1406		cnt.v_wire_count++;
1407	m->wire_count++;
1408
1409	/*
1410	 * Increment the hold count for the page table page
1411	 * (denoting a new mapping.)
1412	 */
1413	m->hold_count++;
1414
1415	/*
1416	 * Map the pagetable page into the process address space, if
1417	 * it isn't already there.
1418	 */
1419
1420	pmap->pm_stats.resident_count++;
1421
1422	ptepa = VM_PAGE_TO_PHYS(m);
1423	pmap->pm_pdir[ptepindex] =
1424		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1425
1426	/*
1427	 * Set the page table hint
1428	 */
1429	pmap->pm_ptphint = m;
1430
1431	/*
1432	 * Try to use the new mapping, but if we cannot, then
1433	 * do it with the routine that maps the page explicitly.
1434	 */
1435	if ((m->flags & PG_ZERO) == 0) {
1436		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1437		    (PTDpde & PG_FRAME)) {
1438			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1439			bzero((caddr_t) pteva, PAGE_SIZE);
1440		} else {
1441			pmap_zero_page(ptepa);
1442		}
1443	}
1444
1445	m->valid = VM_PAGE_BITS_ALL;
1446	vm_page_flag_clear(m, PG_ZERO);
1447	vm_page_flag_set(m, PG_MAPPED);
1448	vm_page_wakeup(m);
1449
1450	return m;
1451}
1452
1453static vm_page_t
1454pmap_allocpte(pmap_t pmap, vm_offset_t va)
1455{
1456	unsigned ptepindex;
1457	pd_entry_t ptepa;
1458	vm_page_t m;
1459
1460	/*
1461	 * Calculate pagetable page index
1462	 */
1463	ptepindex = va >> PDRSHIFT;
1464
1465	/*
1466	 * Get the page directory entry
1467	 */
1468	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1469
1470	/*
1471	 * This supports switching from a 4MB page to a
1472	 * normal 4K page.
1473	 */
1474	if (ptepa & PG_PS) {
1475		pmap->pm_pdir[ptepindex] = 0;
1476		ptepa = 0;
1477		invltlb();
1478	}
1479
1480	/*
1481	 * If the page table page is mapped, we just increment the
1482	 * hold count, and activate it.
1483	 */
1484	if (ptepa) {
1485		/*
1486		 * In order to get the page table page, try the
1487		 * hint first.
1488		 */
1489		if (pmap->pm_ptphint &&
1490			(pmap->pm_ptphint->pindex == ptepindex)) {
1491			m = pmap->pm_ptphint;
1492		} else {
1493			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1494			pmap->pm_ptphint = m;
1495		}
1496		m->hold_count++;
1497		return m;
1498	}
1499	/*
1500	 * Here if the pte page isn't mapped, or if it has been deallocated.
1501	 */
1502	return _pmap_allocpte(pmap, ptepindex);
1503}
1504
1505
1506/***************************************************
1507* Pmap allocation/deallocation routines.
1508 ***************************************************/
1509
1510/*
1511 * Release any resources held by the given physical map.
1512 * Called when a pmap initialized by pmap_pinit is being released.
1513 * Should only be called if the map contains no valid mappings.
1514 */
1515void
1516pmap_release(pmap_t pmap)
1517{
1518	vm_page_t p,n,ptdpg;
1519	vm_object_t object = pmap->pm_pteobj;
1520	int curgeneration;
1521
1522#if defined(DIAGNOSTIC)
1523	if (object->ref_count != 1)
1524		panic("pmap_release: pteobj reference count != 1");
1525#endif
1526
1527	ptdpg = NULL;
1528	LIST_REMOVE(pmap, pm_list);
1529retry:
1530	curgeneration = object->generation;
1531	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1532		n = TAILQ_NEXT(p, listq);
1533		if (p->pindex == PTDPTDI) {
1534			ptdpg = p;
1535			continue;
1536		}
1537		while (1) {
1538			if (!pmap_release_free_page(pmap, p) &&
1539				(object->generation != curgeneration))
1540				goto retry;
1541		}
1542	}
1543
1544	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1545		goto retry;
1546}
1547
1548static int
1549kvm_size(SYSCTL_HANDLER_ARGS)
1550{
1551	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1552
1553        return sysctl_handle_long(oidp, &ksize, 0, req);
1554}
1555SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1556    0, 0, kvm_size, "IU", "Size of KVM");
1557
1558static int
1559kvm_free(SYSCTL_HANDLER_ARGS)
1560{
1561	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1562
1563        return sysctl_handle_long(oidp, &kfree, 0, req);
1564}
1565SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1566    0, 0, kvm_free, "IU", "Amount of KVM free");
1567
1568/*
1569 * grow the number of kernel page table entries, if needed
1570 */
1571void
1572pmap_growkernel(vm_offset_t addr)
1573{
1574	struct pmap *pmap;
1575	int s;
1576	vm_offset_t ptppaddr;
1577	vm_page_t nkpg;
1578	pd_entry_t newpdir;
1579
1580	s = splhigh();
1581	if (kernel_vm_end == 0) {
1582		kernel_vm_end = KERNBASE;
1583		nkpt = 0;
1584		while (pdir_pde(PTD, kernel_vm_end)) {
1585			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1586			nkpt++;
1587		}
1588	}
1589	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1590	while (kernel_vm_end < addr) {
1591		if (pdir_pde(PTD, kernel_vm_end)) {
1592			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1593			continue;
1594		}
1595
1596		/*
1597		 * This index is bogus, but out of the way
1598		 */
1599		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1600		if (!nkpg)
1601			panic("pmap_growkernel: no memory to grow kernel");
1602
1603		nkpt++;
1604
1605		vm_page_wire(nkpg);
1606		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1607		pmap_zero_page(ptppaddr);
1608		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1609		pdir_pde(PTD, kernel_vm_end) = newpdir;
1610
1611		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1612			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1613		}
1614		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1615	}
1616	splx(s);
1617}
1618
1619/*
1620 *	Retire the given physical map from service.
1621 *	Should only be called if the map contains
1622 *	no valid mappings.
1623 */
1624void
1625pmap_destroy(pmap_t pmap)
1626{
1627	int count;
1628
1629	if (pmap == NULL)
1630		return;
1631
1632	count = --pmap->pm_count;
1633	if (count == 0) {
1634		pmap_release(pmap);
1635		panic("destroying a pmap is not yet implemented");
1636	}
1637}
1638
1639/*
1640 *	Add a reference to the specified pmap.
1641 */
1642void
1643pmap_reference(pmap_t pmap)
1644{
1645	if (pmap != NULL) {
1646		pmap->pm_count++;
1647	}
1648}
1649
1650/***************************************************
1651* page management routines.
1652 ***************************************************/
1653
1654/*
1655 * free the pv_entry back to the free list
1656 */
1657static PMAP_INLINE void
1658free_pv_entry(pv_entry_t pv)
1659{
1660	pv_entry_count--;
1661	zfree(pvzone, pv);
1662}
1663
1664/*
1665 * get a new pv_entry, allocating a block from the system
1666 * when needed.
1667 * the memory allocation is performed bypassing the malloc code
1668 * because of the possibility of allocations at interrupt time.
1669 */
1670static pv_entry_t
1671get_pv_entry(void)
1672{
1673	pv_entry_count++;
1674	if (pv_entry_high_water &&
1675		(pv_entry_count > pv_entry_high_water) &&
1676		(pmap_pagedaemon_waken == 0)) {
1677		pmap_pagedaemon_waken = 1;
1678		wakeup (&vm_pages_needed);
1679	}
1680	return zalloc(pvzone);
1681}
1682
1683/*
1684 * This routine is very drastic, but can save the system
1685 * in a pinch.
1686 */
1687void
1688pmap_collect()
1689{
1690	int i;
1691	vm_page_t m;
1692	static int warningdone = 0;
1693
1694	if (pmap_pagedaemon_waken == 0)
1695		return;
1696
1697	if (warningdone < 5) {
1698		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1699		warningdone++;
1700	}
1701
1702	for(i = 0; i < vm_page_array_size; i++) {
1703		m = &vm_page_array[i];
1704		if (m->wire_count || m->hold_count || m->busy ||
1705		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1706			continue;
1707		pmap_remove_all(m);
1708	}
1709	pmap_pagedaemon_waken = 0;
1710}
1711
1712
1713/*
1714 * If it is the first entry on the list, it is actually
1715 * in the header and we must copy the following entry up
1716 * to the header.  Otherwise we must search the list for
1717 * the entry.  In either case we free the now unused entry.
1718 */
1719
1720static int
1721pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1722{
1723	pv_entry_t pv;
1724	int rtval;
1725	int s;
1726
1727	s = splvm();
1728	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1729		for (pv = TAILQ_FIRST(&m->md.pv_list);
1730			pv;
1731			pv = TAILQ_NEXT(pv, pv_list)) {
1732			if (pmap == pv->pv_pmap && va == pv->pv_va)
1733				break;
1734		}
1735	} else {
1736		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1737			pv;
1738			pv = TAILQ_NEXT(pv, pv_plist)) {
1739			if (va == pv->pv_va)
1740				break;
1741		}
1742	}
1743
1744	rtval = 0;
1745	if (pv) {
1746		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1747		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1748		m->md.pv_list_count--;
1749		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1750			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1751
1752		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1753		free_pv_entry(pv);
1754	}
1755
1756	splx(s);
1757	return rtval;
1758}
1759
1760/*
1761 * Create a pv entry for page at pa for
1762 * (pmap, va).
1763 */
1764static void
1765pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1766{
1767
1768	int s;
1769	pv_entry_t pv;
1770
1771	s = splvm();
1772	pv = get_pv_entry();
1773	pv->pv_va = va;
1774	pv->pv_pmap = pmap;
1775	pv->pv_ptem = mpte;
1776
1777	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1778	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1779	m->md.pv_list_count++;
1780
1781	splx(s);
1782}
1783
1784/*
1785 * pmap_remove_pte: do the things to unmap a page in a process
1786 */
1787static int
1788pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1789{
1790	pt_entry_t oldpte;
1791	vm_page_t m;
1792
1793	oldpte = atomic_readandclear_int(ptq);
1794	if (oldpte & PG_W)
1795		pmap->pm_stats.wired_count -= 1;
1796	/*
1797	 * Machines that don't support invlpg, also don't support
1798	 * PG_G.
1799	 */
1800	if (oldpte & PG_G)
1801		invlpg(va);
1802	pmap->pm_stats.resident_count -= 1;
1803	if (oldpte & PG_MANAGED) {
1804		m = PHYS_TO_VM_PAGE(oldpte);
1805		if (oldpte & PG_M) {
1806#if defined(PMAP_DIAGNOSTIC)
1807			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1808				printf(
1809	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1810				    va, oldpte);
1811			}
1812#endif
1813			if (pmap_track_modified(va))
1814				vm_page_dirty(m);
1815		}
1816		if (oldpte & PG_A)
1817			vm_page_flag_set(m, PG_REFERENCED);
1818		return pmap_remove_entry(pmap, m, va);
1819	} else {
1820		return pmap_unuse_pt(pmap, va, NULL);
1821	}
1822
1823	return 0;
1824}
1825
1826/*
1827 * Remove a single page from a process address space
1828 */
1829static void
1830pmap_remove_page(pmap_t pmap, vm_offset_t va)
1831{
1832	register pt_entry_t *ptq;
1833
1834	/*
1835	 * if there is no pte for this address, just skip it!!!
1836	 */
1837	if (*pmap_pde(pmap, va) == 0) {
1838		return;
1839	}
1840
1841	/*
1842	 * get a local va for mappings for this pmap.
1843	 */
1844	ptq = get_ptbase(pmap) + i386_btop(va);
1845	if (*ptq) {
1846		(void) pmap_remove_pte(pmap, ptq, va);
1847		pmap_invalidate_page(pmap, va);
1848	}
1849	return;
1850}
1851
1852/*
1853 *	Remove the given range of addresses from the specified map.
1854 *
1855 *	It is assumed that the start and end are properly
1856 *	rounded to the page size.
1857 */
1858void
1859pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1860{
1861	register pt_entry_t *ptbase;
1862	vm_offset_t pdnxt;
1863	pd_entry_t ptpaddr;
1864	vm_offset_t sindex, eindex;
1865	int anyvalid;
1866
1867	if (pmap == NULL)
1868		return;
1869
1870	if (pmap->pm_stats.resident_count == 0)
1871		return;
1872
1873	/*
1874	 * special handling of removing one page.  a very
1875	 * common operation and easy to short circuit some
1876	 * code.
1877	 */
1878	if ((sva + PAGE_SIZE == eva) &&
1879	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1880		pmap_remove_page(pmap, sva);
1881		return;
1882	}
1883
1884	anyvalid = 0;
1885
1886	/*
1887	 * Get a local virtual address for the mappings that are being
1888	 * worked with.
1889	 */
1890	ptbase = get_ptbase(pmap);
1891
1892	sindex = i386_btop(sva);
1893	eindex = i386_btop(eva);
1894
1895	for (; sindex < eindex; sindex = pdnxt) {
1896		unsigned pdirindex;
1897
1898		/*
1899		 * Calculate index for next page table.
1900		 */
1901		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1902		if (pmap->pm_stats.resident_count == 0)
1903			break;
1904
1905		pdirindex = sindex / NPDEPG;
1906		ptpaddr = pmap->pm_pdir[pdirindex];
1907		if ((ptpaddr & PG_PS) != 0) {
1908			pmap->pm_pdir[pdirindex] = 0;
1909			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1910			anyvalid++;
1911			continue;
1912		}
1913
1914		/*
1915		 * Weed out invalid mappings. Note: we assume that the page
1916		 * directory table is always allocated, and in kernel virtual.
1917		 */
1918		if (ptpaddr == 0)
1919			continue;
1920
1921		/*
1922		 * Limit our scan to either the end of the va represented
1923		 * by the current page table page, or to the end of the
1924		 * range being removed.
1925		 */
1926		if (pdnxt > eindex) {
1927			pdnxt = eindex;
1928		}
1929
1930		for (; sindex != pdnxt; sindex++) {
1931			vm_offset_t va;
1932			if (ptbase[sindex] == 0) {
1933				continue;
1934			}
1935			va = i386_ptob(sindex);
1936
1937			anyvalid++;
1938			if (pmap_remove_pte(pmap,
1939				ptbase + sindex, va))
1940				break;
1941		}
1942	}
1943
1944	if (anyvalid)
1945		pmap_invalidate_all(pmap);
1946}
1947
1948/*
1949 *	Routine:	pmap_remove_all
1950 *	Function:
1951 *		Removes this physical page from
1952 *		all physical maps in which it resides.
1953 *		Reflects back modify bits to the pager.
1954 *
1955 *	Notes:
1956 *		Original versions of this routine were very
1957 *		inefficient because they iteratively called
1958 *		pmap_remove (slow...)
1959 */
1960
1961static void
1962pmap_remove_all(vm_page_t m)
1963{
1964	register pv_entry_t pv;
1965	pt_entry_t *pte, tpte;
1966	int s;
1967
1968#if defined(PMAP_DIAGNOSTIC)
1969	/*
1970	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1971	 * pages!
1972	 */
1973	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1974		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1975	}
1976#endif
1977
1978	s = splvm();
1979	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1980		pv->pv_pmap->pm_stats.resident_count--;
1981
1982		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1983
1984		tpte = atomic_readandclear_int(pte);
1985		if (tpte & PG_W)
1986			pv->pv_pmap->pm_stats.wired_count--;
1987
1988		if (tpte & PG_A)
1989			vm_page_flag_set(m, PG_REFERENCED);
1990
1991		/*
1992		 * Update the vm_page_t clean and reference bits.
1993		 */
1994		if (tpte & PG_M) {
1995#if defined(PMAP_DIAGNOSTIC)
1996			if (pmap_nw_modified((pt_entry_t) tpte)) {
1997				printf(
1998	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1999				    pv->pv_va, tpte);
2000			}
2001#endif
2002			if (pmap_track_modified(pv->pv_va))
2003				vm_page_dirty(m);
2004		}
2005		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2006
2007		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2008		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2009		m->md.pv_list_count--;
2010		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2011		free_pv_entry(pv);
2012	}
2013
2014	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2015
2016	splx(s);
2017}
2018
2019/*
2020 *	Set the physical protection on the
2021 *	specified range of this map as requested.
2022 */
2023void
2024pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2025{
2026	register pt_entry_t *ptbase;
2027	vm_offset_t pdnxt;
2028	pd_entry_t ptpaddr;
2029	vm_pindex_t sindex, eindex;
2030	int anychanged;
2031
2032	if (pmap == NULL)
2033		return;
2034
2035	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2036		pmap_remove(pmap, sva, eva);
2037		return;
2038	}
2039
2040	if (prot & VM_PROT_WRITE)
2041		return;
2042
2043	anychanged = 0;
2044
2045	ptbase = get_ptbase(pmap);
2046
2047	sindex = i386_btop(sva);
2048	eindex = i386_btop(eva);
2049
2050	for (; sindex < eindex; sindex = pdnxt) {
2051
2052		unsigned pdirindex;
2053
2054		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2055
2056		pdirindex = sindex / NPDEPG;
2057		ptpaddr = pmap->pm_pdir[pdirindex];
2058		if ((ptpaddr & PG_PS) != 0) {
2059			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2060			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2061			anychanged++;
2062			continue;
2063		}
2064
2065		/*
2066		 * Weed out invalid mappings. Note: we assume that the page
2067		 * directory table is always allocated, and in kernel virtual.
2068		 */
2069		if (ptpaddr == 0)
2070			continue;
2071
2072		if (pdnxt > eindex) {
2073			pdnxt = eindex;
2074		}
2075
2076		for (; sindex != pdnxt; sindex++) {
2077
2078			pt_entry_t pbits;
2079			vm_page_t m;
2080
2081			pbits = ptbase[sindex];
2082
2083			if (pbits & PG_MANAGED) {
2084				m = NULL;
2085				if (pbits & PG_A) {
2086					m = PHYS_TO_VM_PAGE(pbits);
2087					vm_page_flag_set(m, PG_REFERENCED);
2088					pbits &= ~PG_A;
2089				}
2090				if (pbits & PG_M) {
2091					if (pmap_track_modified(i386_ptob(sindex))) {
2092						if (m == NULL)
2093							m = PHYS_TO_VM_PAGE(pbits);
2094						vm_page_dirty(m);
2095						pbits &= ~PG_M;
2096					}
2097				}
2098			}
2099
2100			pbits &= ~PG_RW;
2101
2102			if (pbits != ptbase[sindex]) {
2103				ptbase[sindex] = pbits;
2104				anychanged = 1;
2105			}
2106		}
2107	}
2108	if (anychanged)
2109		pmap_invalidate_all(pmap);
2110}
2111
2112/*
2113 *	Insert the given physical page (p) at
2114 *	the specified virtual address (v) in the
2115 *	target physical map with the protection requested.
2116 *
2117 *	If specified, the page will be wired down, meaning
2118 *	that the related pte can not be reclaimed.
2119 *
2120 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2121 *	or lose information.  That is, this routine must actually
2122 *	insert this page into the given map NOW.
2123 */
2124void
2125pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2126	   boolean_t wired)
2127{
2128	vm_offset_t pa;
2129	register pt_entry_t *pte;
2130	vm_offset_t opa;
2131	pt_entry_t origpte, newpte;
2132	vm_page_t mpte;
2133
2134	if (pmap == NULL)
2135		return;
2136
2137	va &= PG_FRAME;
2138#ifdef PMAP_DIAGNOSTIC
2139	if (va > VM_MAX_KERNEL_ADDRESS)
2140		panic("pmap_enter: toobig");
2141	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2142		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2143#endif
2144
2145	mpte = NULL;
2146	/*
2147	 * In the case that a page table page is not
2148	 * resident, we are creating it here.
2149	 */
2150	if (va < VM_MAXUSER_ADDRESS) {
2151		mpte = pmap_allocpte(pmap, va);
2152	}
2153#if 0 && defined(PMAP_DIAGNOSTIC)
2154	else {
2155		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2156		if (((origpte = *pdeaddr) & PG_V) == 0) {
2157			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2158				pmap->pm_pdir[PTDPTDI], origpte, va);
2159		}
2160	}
2161#endif
2162
2163	pte = pmap_pte(pmap, va);
2164
2165	/*
2166	 * Page Directory table entry not valid, we need a new PT page
2167	 */
2168	if (pte == NULL) {
2169		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2170			(void *)pmap->pm_pdir[PTDPTDI], va);
2171	}
2172
2173	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2174	origpte = *(vm_offset_t *)pte;
2175	opa = origpte & PG_FRAME;
2176
2177	if (origpte & PG_PS)
2178		panic("pmap_enter: attempted pmap_enter on 4MB page");
2179
2180	/*
2181	 * Mapping has not changed, must be protection or wiring change.
2182	 */
2183	if (origpte && (opa == pa)) {
2184		/*
2185		 * Wiring change, just update stats. We don't worry about
2186		 * wiring PT pages as they remain resident as long as there
2187		 * are valid mappings in them. Hence, if a user page is wired,
2188		 * the PT page will be also.
2189		 */
2190		if (wired && ((origpte & PG_W) == 0))
2191			pmap->pm_stats.wired_count++;
2192		else if (!wired && (origpte & PG_W))
2193			pmap->pm_stats.wired_count--;
2194
2195#if defined(PMAP_DIAGNOSTIC)
2196		if (pmap_nw_modified((pt_entry_t) origpte)) {
2197			printf(
2198	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2199			    va, origpte);
2200		}
2201#endif
2202
2203		/*
2204		 * Remove extra pte reference
2205		 */
2206		if (mpte)
2207			mpte->hold_count--;
2208
2209		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2210			if ((origpte & PG_RW) == 0) {
2211				*pte |= PG_RW;
2212#ifdef SMP
2213				cpu_invlpg((void *)va);
2214				if (pmap->pm_active & PCPU_GET(other_cpus))
2215					smp_invltlb();
2216#else
2217				invltlb_1pg(va);
2218#endif
2219			}
2220			return;
2221		}
2222
2223		/*
2224		 * We might be turning off write access to the page,
2225		 * so we go ahead and sense modify status.
2226		 */
2227		if (origpte & PG_MANAGED) {
2228			if ((origpte & PG_M) && pmap_track_modified(va)) {
2229				vm_page_t om;
2230				om = PHYS_TO_VM_PAGE(opa);
2231				vm_page_dirty(om);
2232			}
2233			pa |= PG_MANAGED;
2234		}
2235		goto validate;
2236	}
2237	/*
2238	 * Mapping has changed, invalidate old range and fall through to
2239	 * handle validating new mapping.
2240	 */
2241	if (opa) {
2242		int err;
2243		err = pmap_remove_pte(pmap, pte, va);
2244		if (err)
2245			panic("pmap_enter: pte vanished, va: 0x%x", va);
2246	}
2247
2248	/*
2249	 * Enter on the PV list if part of our managed memory. Note that we
2250	 * raise IPL while manipulating pv_table since pmap_enter can be
2251	 * called at interrupt time.
2252	 */
2253	if (pmap_initialized &&
2254	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2255		pmap_insert_entry(pmap, va, mpte, m);
2256		pa |= PG_MANAGED;
2257	}
2258
2259	/*
2260	 * Increment counters
2261	 */
2262	pmap->pm_stats.resident_count++;
2263	if (wired)
2264		pmap->pm_stats.wired_count++;
2265
2266validate:
2267	/*
2268	 * Now validate mapping with desired protection/wiring.
2269	 */
2270	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2271
2272	if (wired)
2273		newpte |= PG_W;
2274	if (va < VM_MAXUSER_ADDRESS)
2275		newpte |= PG_U;
2276	if (pmap == kernel_pmap)
2277		newpte |= pgeflag;
2278
2279	/*
2280	 * if the mapping or permission bits are different, we need
2281	 * to update the pte.
2282	 */
2283	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2284		*pte = newpte | PG_A;
2285		/*if (origpte)*/ {
2286#ifdef SMP
2287			cpu_invlpg((void *)va);
2288			if (pmap->pm_active & PCPU_GET(other_cpus))
2289				smp_invltlb();
2290#else
2291			invltlb_1pg(va);
2292#endif
2293		}
2294	}
2295}
2296
2297/*
2298 * this code makes some *MAJOR* assumptions:
2299 * 1. Current pmap & pmap exists.
2300 * 2. Not wired.
2301 * 3. Read access.
2302 * 4. No page table pages.
2303 * 5. Tlbflush is deferred to calling procedure.
2304 * 6. Page IS managed.
2305 * but is *MUCH* faster than pmap_enter...
2306 */
2307
2308static vm_page_t
2309pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2310{
2311	pt_entry_t *pte;
2312	vm_offset_t pa;
2313
2314	/*
2315	 * In the case that a page table page is not
2316	 * resident, we are creating it here.
2317	 */
2318	if (va < VM_MAXUSER_ADDRESS) {
2319		unsigned ptepindex;
2320		pd_entry_t ptepa;
2321
2322		/*
2323		 * Calculate pagetable page index
2324		 */
2325		ptepindex = va >> PDRSHIFT;
2326		if (mpte && (mpte->pindex == ptepindex)) {
2327			mpte->hold_count++;
2328		} else {
2329retry:
2330			/*
2331			 * Get the page directory entry
2332			 */
2333			ptepa = pmap->pm_pdir[ptepindex];
2334
2335			/*
2336			 * If the page table page is mapped, we just increment
2337			 * the hold count, and activate it.
2338			 */
2339			if (ptepa) {
2340				if (ptepa & PG_PS)
2341					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2342				if (pmap->pm_ptphint &&
2343					(pmap->pm_ptphint->pindex == ptepindex)) {
2344					mpte = pmap->pm_ptphint;
2345				} else {
2346					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2347					pmap->pm_ptphint = mpte;
2348				}
2349				if (mpte == NULL)
2350					goto retry;
2351				mpte->hold_count++;
2352			} else {
2353				mpte = _pmap_allocpte(pmap, ptepindex);
2354			}
2355		}
2356	} else {
2357		mpte = NULL;
2358	}
2359
2360	/*
2361	 * This call to vtopte makes the assumption that we are
2362	 * entering the page into the current pmap.  In order to support
2363	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2364	 * But that isn't as quick as vtopte.
2365	 */
2366	pte = vtopte(va);
2367	if (*pte) {
2368		if (mpte)
2369			pmap_unwire_pte_hold(pmap, mpte);
2370		return 0;
2371	}
2372
2373	/*
2374	 * Enter on the PV list if part of our managed memory. Note that we
2375	 * raise IPL while manipulating pv_table since pmap_enter can be
2376	 * called at interrupt time.
2377	 */
2378	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2379		pmap_insert_entry(pmap, va, mpte, m);
2380
2381	/*
2382	 * Increment counters
2383	 */
2384	pmap->pm_stats.resident_count++;
2385
2386	pa = VM_PAGE_TO_PHYS(m);
2387
2388	/*
2389	 * Now validate mapping with RO protection
2390	 */
2391	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2392		*pte = pa | PG_V | PG_U;
2393	else
2394		*pte = pa | PG_V | PG_U | PG_MANAGED;
2395
2396	return mpte;
2397}
2398
2399/*
2400 * Make a temporary mapping for a physical address.  This is only intended
2401 * to be used for panic dumps.
2402 */
2403void *
2404pmap_kenter_temporary(vm_offset_t pa, int i)
2405{
2406	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2407	return ((void *)crashdumpmap);
2408}
2409
2410#define MAX_INIT_PT (96)
2411/*
2412 * pmap_object_init_pt preloads the ptes for a given object
2413 * into the specified pmap.  This eliminates the blast of soft
2414 * faults on process startup and immediately after an mmap.
2415 */
2416void
2417pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2418		    vm_object_t object, vm_pindex_t pindex,
2419		    vm_size_t size, int limit)
2420{
2421	vm_offset_t tmpidx;
2422	int psize;
2423	vm_page_t p, mpte;
2424	int objpgs;
2425
2426	if (pmap == NULL || object == NULL)
2427		return;
2428
2429	/*
2430	 * This code maps large physical mmap regions into the
2431	 * processor address space.  Note that some shortcuts
2432	 * are taken, but the code works.
2433	 */
2434	if (pseflag && (object->type == OBJT_DEVICE) &&
2435	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2436		int i;
2437		vm_page_t m[1];
2438		unsigned int ptepindex;
2439		int npdes;
2440		pd_entry_t ptepa;
2441
2442		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2443			return;
2444
2445retry:
2446		p = vm_page_lookup(object, pindex);
2447		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2448			goto retry;
2449
2450		if (p == NULL) {
2451			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2452			if (p == NULL)
2453				return;
2454			m[0] = p;
2455
2456			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2457				vm_page_free(p);
2458				return;
2459			}
2460
2461			p = vm_page_lookup(object, pindex);
2462			vm_page_wakeup(p);
2463		}
2464
2465		ptepa = VM_PAGE_TO_PHYS(p);
2466		if (ptepa & (NBPDR - 1)) {
2467			return;
2468		}
2469
2470		p->valid = VM_PAGE_BITS_ALL;
2471
2472		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2473		npdes = size >> PDRSHIFT;
2474		for(i = 0; i < npdes; i++) {
2475			pmap->pm_pdir[ptepindex] =
2476			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2477			ptepa += NBPDR;
2478			ptepindex += 1;
2479		}
2480		vm_page_flag_set(p, PG_MAPPED);
2481		invltlb();
2482		return;
2483	}
2484
2485	psize = i386_btop(size);
2486
2487	if ((object->type != OBJT_VNODE) ||
2488		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2489			(object->resident_page_count > MAX_INIT_PT))) {
2490		return;
2491	}
2492
2493	if (psize + pindex > object->size) {
2494		if (object->size < pindex)
2495			return;
2496		psize = object->size - pindex;
2497	}
2498
2499	mpte = NULL;
2500	/*
2501	 * if we are processing a major portion of the object, then scan the
2502	 * entire thing.
2503	 */
2504	if (psize > (object->resident_page_count >> 2)) {
2505		objpgs = psize;
2506
2507		for (p = TAILQ_FIRST(&object->memq);
2508		    ((objpgs > 0) && (p != NULL));
2509		    p = TAILQ_NEXT(p, listq)) {
2510
2511			tmpidx = p->pindex;
2512			if (tmpidx < pindex) {
2513				continue;
2514			}
2515			tmpidx -= pindex;
2516			if (tmpidx >= psize) {
2517				continue;
2518			}
2519			/*
2520			 * don't allow an madvise to blow away our really
2521			 * free pages allocating pv entries.
2522			 */
2523			if ((limit & MAP_PREFAULT_MADVISE) &&
2524			    cnt.v_free_count < cnt.v_free_reserved) {
2525				break;
2526			}
2527			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2528				(p->busy == 0) &&
2529			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2530				if ((p->queue - p->pc) == PQ_CACHE)
2531					vm_page_deactivate(p);
2532				vm_page_busy(p);
2533				mpte = pmap_enter_quick(pmap,
2534					addr + i386_ptob(tmpidx), p, mpte);
2535				vm_page_flag_set(p, PG_MAPPED);
2536				vm_page_wakeup(p);
2537			}
2538			objpgs -= 1;
2539		}
2540	} else {
2541		/*
2542		 * else lookup the pages one-by-one.
2543		 */
2544		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2545			/*
2546			 * don't allow an madvise to blow away our really
2547			 * free pages allocating pv entries.
2548			 */
2549			if ((limit & MAP_PREFAULT_MADVISE) &&
2550			    cnt.v_free_count < cnt.v_free_reserved) {
2551				break;
2552			}
2553			p = vm_page_lookup(object, tmpidx + pindex);
2554			if (p &&
2555			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2556				(p->busy == 0) &&
2557			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2558				if ((p->queue - p->pc) == PQ_CACHE)
2559					vm_page_deactivate(p);
2560				vm_page_busy(p);
2561				mpte = pmap_enter_quick(pmap,
2562					addr + i386_ptob(tmpidx), p, mpte);
2563				vm_page_flag_set(p, PG_MAPPED);
2564				vm_page_wakeup(p);
2565			}
2566		}
2567	}
2568	return;
2569}
2570
2571/*
2572 * pmap_prefault provides a quick way of clustering
2573 * pagefaults into a processes address space.  It is a "cousin"
2574 * of pmap_object_init_pt, except it runs at page fault time instead
2575 * of mmap time.
2576 */
2577#define PFBAK 4
2578#define PFFOR 4
2579#define PAGEORDER_SIZE (PFBAK+PFFOR)
2580
2581static int pmap_prefault_pageorder[] = {
2582	-PAGE_SIZE, PAGE_SIZE,
2583	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2584	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2585	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2586};
2587
2588void
2589pmap_prefault(pmap, addra, entry)
2590	pmap_t pmap;
2591	vm_offset_t addra;
2592	vm_map_entry_t entry;
2593{
2594	int i;
2595	vm_offset_t starta;
2596	vm_offset_t addr;
2597	vm_pindex_t pindex;
2598	vm_page_t m, mpte;
2599	vm_object_t object;
2600
2601	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2602		return;
2603
2604	object = entry->object.vm_object;
2605
2606	starta = addra - PFBAK * PAGE_SIZE;
2607	if (starta < entry->start) {
2608		starta = entry->start;
2609	} else if (starta > addra) {
2610		starta = 0;
2611	}
2612
2613	mpte = NULL;
2614	for (i = 0; i < PAGEORDER_SIZE; i++) {
2615		vm_object_t lobject;
2616		pt_entry_t *pte;
2617
2618		addr = addra + pmap_prefault_pageorder[i];
2619		if (addr > addra + (PFFOR * PAGE_SIZE))
2620			addr = 0;
2621
2622		if (addr < starta || addr >= entry->end)
2623			continue;
2624
2625		if ((*pmap_pde(pmap, addr)) == NULL)
2626			continue;
2627
2628		pte = vtopte(addr);
2629		if (*pte)
2630			continue;
2631
2632		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2633		lobject = object;
2634		for (m = vm_page_lookup(lobject, pindex);
2635		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2636		    lobject = lobject->backing_object) {
2637			if (lobject->backing_object_offset & PAGE_MASK)
2638				break;
2639			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2640			m = vm_page_lookup(lobject->backing_object, pindex);
2641		}
2642
2643		/*
2644		 * give-up when a page is not in memory
2645		 */
2646		if (m == NULL)
2647			break;
2648
2649		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2650			(m->busy == 0) &&
2651		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2652
2653			if ((m->queue - m->pc) == PQ_CACHE) {
2654				vm_page_deactivate(m);
2655			}
2656			vm_page_busy(m);
2657			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2658			vm_page_flag_set(m, PG_MAPPED);
2659			vm_page_wakeup(m);
2660		}
2661	}
2662}
2663
2664/*
2665 *	Routine:	pmap_change_wiring
2666 *	Function:	Change the wiring attribute for a map/virtual-address
2667 *			pair.
2668 *	In/out conditions:
2669 *			The mapping must already exist in the pmap.
2670 */
2671void
2672pmap_change_wiring(pmap, va, wired)
2673	register pmap_t pmap;
2674	vm_offset_t va;
2675	boolean_t wired;
2676{
2677	register pt_entry_t *pte;
2678
2679	if (pmap == NULL)
2680		return;
2681
2682	pte = pmap_pte(pmap, va);
2683
2684	if (wired && !pmap_pte_w(pte))
2685		pmap->pm_stats.wired_count++;
2686	else if (!wired && pmap_pte_w(pte))
2687		pmap->pm_stats.wired_count--;
2688
2689	/*
2690	 * Wiring is not a hardware characteristic so there is no need to
2691	 * invalidate TLB.
2692	 */
2693	pmap_pte_set_w(pte, wired);
2694}
2695
2696
2697
2698/*
2699 *	Copy the range specified by src_addr/len
2700 *	from the source map to the range dst_addr/len
2701 *	in the destination map.
2702 *
2703 *	This routine is only advisory and need not do anything.
2704 */
2705
2706void
2707pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2708	  vm_offset_t src_addr)
2709{
2710	vm_offset_t addr;
2711	vm_offset_t end_addr = src_addr + len;
2712	vm_offset_t pdnxt;
2713	pd_entry_t src_frame, dst_frame;
2714	vm_page_t m;
2715	pd_entry_t saved_pde;
2716
2717	if (dst_addr != src_addr)
2718		return;
2719
2720	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2721	if (src_frame != (PTDpde & PG_FRAME))
2722		return;
2723
2724	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2725	if (dst_frame != (APTDpde & PG_FRAME)) {
2726		APTDpde = dst_frame | PG_RW | PG_V;
2727#if defined(SMP)
2728		/* The page directory is not shared between CPUs */
2729		cpu_invltlb();
2730#else
2731		invltlb();
2732#endif
2733	}
2734 	saved_pde = APTDpde & (PG_FRAME | PG_RW | PG_V);
2735	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2736		pt_entry_t *src_pte, *dst_pte;
2737		vm_page_t dstmpte, srcmpte;
2738		pd_entry_t srcptepaddr;
2739		unsigned ptepindex;
2740
2741		if (addr >= UPT_MIN_ADDRESS)
2742			panic("pmap_copy: invalid to pmap_copy page tables\n");
2743
2744		/*
2745		 * Don't let optional prefaulting of pages make us go
2746		 * way below the low water mark of free pages or way
2747		 * above high water mark of used pv entries.
2748		 */
2749		if (cnt.v_free_count < cnt.v_free_reserved ||
2750		    pv_entry_count > pv_entry_high_water)
2751			break;
2752
2753		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2754		ptepindex = addr >> PDRSHIFT;
2755
2756		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2757		if (srcptepaddr == 0)
2758			continue;
2759
2760		if (srcptepaddr & PG_PS) {
2761			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2762				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2763				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2764			}
2765			continue;
2766		}
2767
2768		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2769		if ((srcmpte == NULL) ||
2770		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2771			continue;
2772
2773		if (pdnxt > end_addr)
2774			pdnxt = end_addr;
2775
2776		src_pte = vtopte(addr);
2777		dst_pte = avtopte(addr);
2778		while (addr < pdnxt) {
2779			pt_entry_t ptetemp;
2780			ptetemp = *src_pte;
2781			/*
2782			 * we only virtual copy managed pages
2783			 */
2784			if ((ptetemp & PG_MANAGED) != 0) {
2785				/*
2786				 * We have to check after allocpte for the
2787				 * pte still being around...  allocpte can
2788				 * block.
2789				 */
2790				dstmpte = pmap_allocpte(dst_pmap, addr);
2791				if ((APTDpde & PG_FRAME) !=
2792				    (saved_pde & PG_FRAME)) {
2793					APTDpde = saved_pde;
2794printf ("IT HAPPENNED!");
2795#if defined(SMP)
2796					cpu_invltlb();
2797#else
2798					invltlb();
2799#endif
2800				}
2801				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2802					/*
2803					 * Clear the modified and
2804					 * accessed (referenced) bits
2805					 * during the copy.
2806					 */
2807					m = PHYS_TO_VM_PAGE(ptetemp);
2808					*dst_pte = ptetemp & ~(PG_M | PG_A);
2809					dst_pmap->pm_stats.resident_count++;
2810					pmap_insert_entry(dst_pmap, addr,
2811						dstmpte, m);
2812	 			} else {
2813					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2814				}
2815				if (dstmpte->hold_count >= srcmpte->hold_count)
2816					break;
2817			}
2818			addr += PAGE_SIZE;
2819			src_pte++;
2820			dst_pte++;
2821		}
2822	}
2823}
2824
2825/*
2826 *	Routine:	pmap_kernel
2827 *	Function:
2828 *		Returns the physical map handle for the kernel.
2829 */
2830pmap_t
2831pmap_kernel()
2832{
2833	return (kernel_pmap);
2834}
2835
2836/*
2837 *	pmap_zero_page zeros the specified hardware page by mapping
2838 *	the page into KVM and using bzero to clear its contents.
2839 */
2840void
2841pmap_zero_page(vm_offset_t phys)
2842{
2843
2844	if (*CMAP2)
2845		panic("pmap_zero_page: CMAP2 busy");
2846
2847	*CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2848	invltlb_1pg((vm_offset_t)CADDR2);
2849
2850#if defined(I686_CPU)
2851	if (cpu_class == CPUCLASS_686)
2852		i686_pagezero(CADDR2);
2853	else
2854#endif
2855		bzero(CADDR2, PAGE_SIZE);
2856	*CMAP2 = 0;
2857}
2858
2859/*
2860 *	pmap_zero_page_area zeros the specified hardware page by mapping
2861 *	the page into KVM and using bzero to clear its contents.
2862 *
2863 *	off and size may not cover an area beyond a single hardware page.
2864 */
2865void
2866pmap_zero_page_area(vm_offset_t phys, int off, int size)
2867{
2868
2869	if (*CMAP2)
2870		panic("pmap_zero_page: CMAP2 busy");
2871
2872	*CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2873	invltlb_1pg((vm_offset_t)CADDR2);
2874
2875#if defined(I686_CPU)
2876	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2877		i686_pagezero(CADDR2);
2878	else
2879#endif
2880		bzero((char *)CADDR2 + off, size);
2881	*CMAP2 = 0;
2882}
2883
2884/*
2885 *	pmap_copy_page copies the specified (machine independent)
2886 *	page by mapping the page into virtual memory and using
2887 *	bcopy to copy the page, one machine dependent page at a
2888 *	time.
2889 */
2890void
2891pmap_copy_page(vm_offset_t src, vm_offset_t dst)
2892{
2893
2894	if (*CMAP1)
2895		panic("pmap_copy_page: CMAP1 busy");
2896	if (*CMAP2)
2897		panic("pmap_copy_page: CMAP2 busy");
2898
2899	*CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2900	*CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2901#ifdef I386_CPU
2902	invltlb();
2903#else
2904	invlpg((u_int)CADDR1);
2905	invlpg((u_int)CADDR2);
2906#endif
2907
2908	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2909
2910	*CMAP1 = 0;
2911	*CMAP2 = 0;
2912}
2913
2914
2915/*
2916 *	Routine:	pmap_pageable
2917 *	Function:
2918 *		Make the specified pages (by pmap, offset)
2919 *		pageable (or not) as requested.
2920 *
2921 *		A page which is not pageable may not take
2922 *		a fault; therefore, its page table entry
2923 *		must remain valid for the duration.
2924 *
2925 *		This routine is merely advisory; pmap_enter
2926 *		will specify that these pages are to be wired
2927 *		down (or not) as appropriate.
2928 */
2929void
2930pmap_pageable(pmap, sva, eva, pageable)
2931	pmap_t pmap;
2932	vm_offset_t sva, eva;
2933	boolean_t pageable;
2934{
2935}
2936
2937/*
2938 * this routine returns true if a physical page resides
2939 * in the given pmap.
2940 */
2941boolean_t
2942pmap_page_exists(pmap, m)
2943	pmap_t pmap;
2944	vm_page_t m;
2945{
2946	register pv_entry_t pv;
2947	int s;
2948
2949	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2950		return FALSE;
2951
2952	s = splvm();
2953
2954	/*
2955	 * Not found, check current mappings returning immediately if found.
2956	 */
2957	for (pv = TAILQ_FIRST(&m->md.pv_list);
2958		pv;
2959		pv = TAILQ_NEXT(pv, pv_list)) {
2960		if (pv->pv_pmap == pmap) {
2961			splx(s);
2962			return TRUE;
2963		}
2964	}
2965	splx(s);
2966	return (FALSE);
2967}
2968
2969#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2970/*
2971 * Remove all pages from specified address space
2972 * this aids process exit speeds.  Also, this code
2973 * is special cased for current process only, but
2974 * can have the more generic (and slightly slower)
2975 * mode enabled.  This is much faster than pmap_remove
2976 * in the case of running down an entire address space.
2977 */
2978void
2979pmap_remove_pages(pmap, sva, eva)
2980	pmap_t pmap;
2981	vm_offset_t sva, eva;
2982{
2983	pt_entry_t *pte, tpte;
2984	vm_page_t m;
2985	pv_entry_t pv, npv;
2986	int s;
2987
2988#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2989	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2990		printf("warning: pmap_remove_pages called with non-current pmap\n");
2991		return;
2992	}
2993#endif
2994
2995	s = splvm();
2996	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2997
2998		if (pv->pv_va >= eva || pv->pv_va < sva) {
2999			npv = TAILQ_NEXT(pv, pv_plist);
3000			continue;
3001		}
3002
3003#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3004		pte = vtopte(pv->pv_va);
3005#else
3006		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3007#endif
3008		tpte = *pte;
3009
3010		if (tpte == 0) {
3011			printf("TPTE at %p  IS ZERO @ VA %08x\n",
3012							pte, pv->pv_va);
3013			panic("bad pte");
3014		}
3015
3016/*
3017 * We cannot remove wired pages from a process' mapping at this time
3018 */
3019		if (tpte & PG_W) {
3020			npv = TAILQ_NEXT(pv, pv_plist);
3021			continue;
3022		}
3023
3024		m = PHYS_TO_VM_PAGE(tpte);
3025		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3026		    ("vm_page_t %p phys_addr mismatch %08x %08x",
3027		    m, m->phys_addr, tpte));
3028
3029		KASSERT(m < &vm_page_array[vm_page_array_size],
3030			("pmap_remove_pages: bad tpte %x", tpte));
3031
3032		pv->pv_pmap->pm_stats.resident_count--;
3033
3034		*pte = 0;
3035
3036		/*
3037		 * Update the vm_page_t clean and reference bits.
3038		 */
3039		if (tpte & PG_M) {
3040			vm_page_dirty(m);
3041		}
3042
3043		npv = TAILQ_NEXT(pv, pv_plist);
3044		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3045
3046		m->md.pv_list_count--;
3047		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3048		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3049			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3050		}
3051
3052		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3053		free_pv_entry(pv);
3054	}
3055	splx(s);
3056	pmap_invalidate_all(pmap);
3057}
3058
3059/*
3060 * pmap_testbit tests bits in pte's
3061 * note that the testbit/changebit routines are inline,
3062 * and a lot of things compile-time evaluate.
3063 */
3064static boolean_t
3065pmap_testbit(m, bit)
3066	vm_page_t m;
3067	int bit;
3068{
3069	pv_entry_t pv;
3070	pt_entry_t *pte;
3071	int s;
3072
3073	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3074		return FALSE;
3075
3076	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3077		return FALSE;
3078
3079	s = splvm();
3080
3081	for (pv = TAILQ_FIRST(&m->md.pv_list);
3082		pv;
3083		pv = TAILQ_NEXT(pv, pv_list)) {
3084
3085		/*
3086		 * if the bit being tested is the modified bit, then
3087		 * mark clean_map and ptes as never
3088		 * modified.
3089		 */
3090		if (bit & (PG_A|PG_M)) {
3091			if (!pmap_track_modified(pv->pv_va))
3092				continue;
3093		}
3094
3095#if defined(PMAP_DIAGNOSTIC)
3096		if (!pv->pv_pmap) {
3097			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3098			continue;
3099		}
3100#endif
3101		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3102		if (*pte & bit) {
3103			splx(s);
3104			return TRUE;
3105		}
3106	}
3107	splx(s);
3108	return (FALSE);
3109}
3110
3111/*
3112 * this routine is used to modify bits in ptes
3113 */
3114static __inline void
3115pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3116{
3117	register pv_entry_t pv;
3118	register pt_entry_t *pte;
3119	int s;
3120
3121	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3122		return;
3123
3124	s = splvm();
3125
3126	/*
3127	 * Loop over all current mappings setting/clearing as appropos If
3128	 * setting RO do we need to clear the VAC?
3129	 */
3130	for (pv = TAILQ_FIRST(&m->md.pv_list);
3131		pv;
3132		pv = TAILQ_NEXT(pv, pv_list)) {
3133
3134		/*
3135		 * don't write protect pager mappings
3136		 */
3137		if (!setem && (bit == PG_RW)) {
3138			if (!pmap_track_modified(pv->pv_va))
3139				continue;
3140		}
3141
3142#if defined(PMAP_DIAGNOSTIC)
3143		if (!pv->pv_pmap) {
3144			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3145			continue;
3146		}
3147#endif
3148
3149		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3150
3151		if (setem) {
3152			*pte |= bit;
3153			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3154		} else {
3155			pt_entry_t pbits = *pte;
3156			if (pbits & bit) {
3157				if (bit == PG_RW) {
3158					if (pbits & PG_M) {
3159						vm_page_dirty(m);
3160					}
3161					*pte = pbits & ~(PG_M|PG_RW);
3162				} else {
3163					*pte = pbits & ~bit;
3164				}
3165				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3166			}
3167		}
3168	}
3169	splx(s);
3170}
3171
3172/*
3173 *      pmap_page_protect:
3174 *
3175 *      Lower the permission for all mappings to a given page.
3176 */
3177void
3178pmap_page_protect(vm_page_t m, vm_prot_t prot)
3179{
3180	if ((prot & VM_PROT_WRITE) == 0) {
3181		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3182			pmap_changebit(m, PG_RW, FALSE);
3183		} else {
3184			pmap_remove_all(m);
3185		}
3186	}
3187}
3188
3189vm_offset_t
3190pmap_phys_address(ppn)
3191	int ppn;
3192{
3193	return (i386_ptob(ppn));
3194}
3195
3196/*
3197 *	pmap_ts_referenced:
3198 *
3199 *	Return the count of reference bits for a page, clearing all of them.
3200 */
3201int
3202pmap_ts_referenced(vm_page_t m)
3203{
3204	register pv_entry_t pv, pvf, pvn;
3205	pt_entry_t *pte;
3206	int s;
3207	int rtval = 0;
3208
3209	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3210		return (rtval);
3211
3212	s = splvm();
3213
3214	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3215
3216		pvf = pv;
3217
3218		do {
3219			pvn = TAILQ_NEXT(pv, pv_list);
3220
3221			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3222
3223			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3224
3225			if (!pmap_track_modified(pv->pv_va))
3226				continue;
3227
3228			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3229
3230			if (pte && (*pte & PG_A)) {
3231				*pte &= ~PG_A;
3232
3233				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3234
3235				rtval++;
3236				if (rtval > 4) {
3237					break;
3238				}
3239			}
3240		} while ((pv = pvn) != NULL && pv != pvf);
3241	}
3242	splx(s);
3243
3244	return (rtval);
3245}
3246
3247/*
3248 *	pmap_is_modified:
3249 *
3250 *	Return whether or not the specified physical page was modified
3251 *	in any physical maps.
3252 */
3253boolean_t
3254pmap_is_modified(vm_page_t m)
3255{
3256	return pmap_testbit(m, PG_M);
3257}
3258
3259/*
3260 *	Clear the modify bits on the specified physical page.
3261 */
3262void
3263pmap_clear_modify(vm_page_t m)
3264{
3265	pmap_changebit(m, PG_M, FALSE);
3266}
3267
3268/*
3269 *	pmap_clear_reference:
3270 *
3271 *	Clear the reference bit on the specified physical page.
3272 */
3273void
3274pmap_clear_reference(vm_page_t m)
3275{
3276	pmap_changebit(m, PG_A, FALSE);
3277}
3278
3279/*
3280 * Miscellaneous support routines follow
3281 */
3282
3283static void
3284i386_protection_init()
3285{
3286	register int *kp, prot;
3287
3288	kp = protection_codes;
3289	for (prot = 0; prot < 8; prot++) {
3290		switch (prot) {
3291		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3292			/*
3293			 * Read access is also 0. There isn't any execute bit,
3294			 * so just make it readable.
3295			 */
3296		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3297		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3298		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3299			*kp++ = 0;
3300			break;
3301		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3302		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3303		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3304		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3305			*kp++ = PG_RW;
3306			break;
3307		}
3308	}
3309}
3310
3311/*
3312 * Map a set of physical memory pages into the kernel virtual
3313 * address space. Return a pointer to where it is mapped. This
3314 * routine is intended to be used for mapping device memory,
3315 * NOT real memory.
3316 */
3317void *
3318pmap_mapdev(pa, size)
3319	vm_offset_t pa;
3320	vm_size_t size;
3321{
3322	vm_offset_t va, tmpva, offset;
3323	pt_entry_t *pte;
3324
3325	offset = pa & PAGE_MASK;
3326	size = roundup(offset + size, PAGE_SIZE);
3327
3328	GIANT_REQUIRED;
3329
3330	va = kmem_alloc_pageable(kernel_map, size);
3331	if (!va)
3332		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3333
3334	pa = pa & PG_FRAME;
3335	for (tmpva = va; size > 0;) {
3336		pte = vtopte(tmpva);
3337		*pte = pa | PG_RW | PG_V | pgeflag;
3338		size -= PAGE_SIZE;
3339		tmpva += PAGE_SIZE;
3340		pa += PAGE_SIZE;
3341	}
3342	invltlb();
3343
3344	return ((void *)(va + offset));
3345}
3346
3347void
3348pmap_unmapdev(va, size)
3349	vm_offset_t va;
3350	vm_size_t size;
3351{
3352	vm_offset_t base, offset;
3353
3354	base = va & PG_FRAME;
3355	offset = va & PAGE_MASK;
3356	size = roundup(offset + size, PAGE_SIZE);
3357	kmem_free(kernel_map, base, size);
3358}
3359
3360/*
3361 * perform the pmap work for mincore
3362 */
3363int
3364pmap_mincore(pmap, addr)
3365	pmap_t pmap;
3366	vm_offset_t addr;
3367{
3368	pt_entry_t *ptep, pte;
3369	vm_page_t m;
3370	int val = 0;
3371
3372	ptep = pmap_pte(pmap, addr);
3373	if (ptep == 0) {
3374		return 0;
3375	}
3376
3377	if ((pte = *ptep) != 0) {
3378		vm_offset_t pa;
3379
3380		val = MINCORE_INCORE;
3381		if ((pte & PG_MANAGED) == 0)
3382			return val;
3383
3384		pa = pte & PG_FRAME;
3385
3386		m = PHYS_TO_VM_PAGE(pa);
3387
3388		/*
3389		 * Modified by us
3390		 */
3391		if (pte & PG_M)
3392			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3393		/*
3394		 * Modified by someone
3395		 */
3396		else if (m->dirty || pmap_is_modified(m))
3397			val |= MINCORE_MODIFIED_OTHER;
3398		/*
3399		 * Referenced by us
3400		 */
3401		if (pte & PG_A)
3402			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3403
3404		/*
3405		 * Referenced by someone
3406		 */
3407		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3408			val |= MINCORE_REFERENCED_OTHER;
3409			vm_page_flag_set(m, PG_REFERENCED);
3410		}
3411	}
3412	return val;
3413}
3414
3415void
3416pmap_activate(struct thread *td)
3417{
3418	struct proc *p = td->td_proc;
3419	pmap_t	pmap;
3420	u_int32_t  cr3;
3421
3422	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3423#if defined(SMP)
3424	pmap->pm_active |= 1 << PCPU_GET(cpuid);
3425#else
3426	pmap->pm_active |= 1;
3427#endif
3428#if defined(SWTCH_OPTIM_STATS)
3429	tlb_flush_count++;
3430#endif
3431	cr3 = vtophys(pmap->pm_pdir);
3432	/* XXXKSE this is wrong.
3433	 * pmap_activate is for the current thread on the current cpu
3434	 */
3435	if (p->p_flag & P_KSES) {
3436		/* Make sure all other cr3 entries are updated. */
3437		/* what if they are running?  XXXKSE (maybe abort them) */
3438		FOREACH_THREAD_IN_PROC(p, td) {
3439			td->td_pcb->pcb_cr3 = cr3;
3440		}
3441	} else {
3442		td->td_pcb->pcb_cr3 = cr3;
3443	}
3444	load_cr3(cr3);
3445}
3446
3447vm_offset_t
3448pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3449{
3450
3451	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3452		return addr;
3453	}
3454
3455	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3456	return addr;
3457}
3458
3459
3460#if defined(PMAP_DEBUG)
3461pmap_pid_dump(int pid)
3462{
3463	pmap_t pmap;
3464	struct proc *p;
3465	int npte = 0;
3466	int index;
3467
3468	sx_slock(&allproc_lock);
3469	LIST_FOREACH(p, &allproc, p_list) {
3470		if (p->p_pid != pid)
3471			continue;
3472
3473		if (p->p_vmspace) {
3474			int i,j;
3475			index = 0;
3476			pmap = vmspace_pmap(p->p_vmspace);
3477			for (i = 0; i < NPDEPG; i++) {
3478				pd_entry_t *pde;
3479				pt_entry_t *pte;
3480				vm_offset_t base = i << PDRSHIFT;
3481
3482				pde = &pmap->pm_pdir[i];
3483				if (pde && pmap_pde_v(pde)) {
3484					for (j = 0; j < NPTEPG; j++) {
3485						vm_offset_t va = base + (j << PAGE_SHIFT);
3486						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3487							if (index) {
3488								index = 0;
3489								printf("\n");
3490							}
3491							sx_sunlock(&allproc_lock);
3492							return npte;
3493						}
3494						pte = pmap_pte_quick(pmap, va);
3495						if (pte && pmap_pte_v(pte)) {
3496							pt_entry_t pa;
3497							vm_page_t m;
3498							pa = *pte;
3499							m = PHYS_TO_VM_PAGE(pa);
3500							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3501								va, pa, m->hold_count, m->wire_count, m->flags);
3502							npte++;
3503							index++;
3504							if (index >= 2) {
3505								index = 0;
3506								printf("\n");
3507							} else {
3508								printf(" ");
3509							}
3510						}
3511					}
3512				}
3513			}
3514		}
3515	}
3516	sx_sunlock(&allproc_lock);
3517	return npte;
3518}
3519#endif
3520
3521#if defined(DEBUG)
3522
3523static void	pads __P((pmap_t pm));
3524void		pmap_pvdump __P((vm_offset_t pa));
3525
3526/* print address space of pmap*/
3527static void
3528pads(pm)
3529	pmap_t pm;
3530{
3531	int i, j;
3532	vm_offset_t va;
3533	pt_entry_t *ptep;
3534
3535	if (pm == kernel_pmap)
3536		return;
3537	for (i = 0; i < NPDEPG; i++)
3538		if (pm->pm_pdir[i])
3539			for (j = 0; j < NPTEPG; j++) {
3540				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3541				if (pm == kernel_pmap && va < KERNBASE)
3542					continue;
3543				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3544					continue;
3545				ptep = pmap_pte_quick(pm, va);
3546				if (pmap_pte_v(ptep))
3547					printf("%x:%x ", va, *ptep);
3548			};
3549
3550}
3551
3552void
3553pmap_pvdump(pa)
3554	vm_offset_t pa;
3555{
3556	pv_entry_t pv;
3557	vm_page_t m;
3558
3559	printf("pa %x", pa);
3560	m = PHYS_TO_VM_PAGE(pa);
3561	for (pv = TAILQ_FIRST(&m->md.pv_list);
3562		pv;
3563		pv = TAILQ_NEXT(pv, pv_list)) {
3564		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3565		pads(pv->pv_pmap);
3566	}
3567	printf(" ");
3568}
3569#endif
3570