pmap.c revision 86485
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 86485 2001-11-17 01:38:32Z peter $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_kstack_pages.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mman.h>
81#include <sys/msgbuf.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/sx.h>
85#include <sys/user.h>
86#include <sys/vmmeter.h>
87#include <sys/sysctl.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103#if defined(SMP) || defined(APIC_IO)
104#include <machine/smp.h>
105#include <machine/apic.h>
106#include <machine/segments.h>
107#include <machine/tss.h>
108#include <machine/globaldata.h>
109#endif /* SMP || APIC_IO */
110
111#define PMAP_KEEP_PDIRS
112#ifndef PMAP_SHPGPERPROC
113#define PMAP_SHPGPERPROC 200
114#endif
115
116#if defined(DIAGNOSTIC)
117#define PMAP_DIAGNOSTIC
118#endif
119
120#define MINPV 2048
121
122#if !defined(PMAP_DIAGNOSTIC)
123#define PMAP_INLINE __inline
124#else
125#define PMAP_INLINE
126#endif
127
128/*
129 * Get PDEs and PTEs for user/kernel address space
130 */
131#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
132#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
133
134#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
135#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
136#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
137#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
138#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
139
140#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
141#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
142
143/*
144 * Given a map and a machine independent protection code,
145 * convert to a vax protection code.
146 */
147#define pte_prot(m, p)	(protection_codes[p])
148static int protection_codes[8];
149
150static struct pmap kernel_pmap_store;
151pmap_t kernel_pmap;
152LIST_HEAD(pmaplist, pmap);
153struct pmaplist allpmaps;
154
155vm_offset_t avail_start;	/* PA of first available physical page */
156vm_offset_t avail_end;		/* PA of last available physical page */
157vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
158vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
159static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
160static int pgeflag;		/* PG_G or-in */
161static int pseflag;		/* PG_PS or-in */
162
163static vm_object_t kptobj;
164
165static int nkpt;
166vm_offset_t kernel_vm_end;
167
168/*
169 * Data for the pv entry allocation mechanism
170 */
171static vm_zone_t pvzone;
172static struct vm_zone pvzone_store;
173static struct vm_object pvzone_obj;
174static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
175static int pmap_pagedaemon_waken = 0;
176static struct pv_entry *pvinit;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
201static unsigned * get_ptbase __P((pmap_t pmap));
202static pv_entry_t get_pv_entry __P((void));
203static void	i386_protection_init __P((void));
204static __inline void	pmap_changebit __P((vm_page_t m, int bit, boolean_t setem));
205
206static void	pmap_remove_all __P((vm_page_t m));
207static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte));
209static int pmap_remove_pte __P((pmap_t pmap, unsigned *ptq, vm_offset_t sva));
210static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
211static int pmap_remove_entry __P((struct pmap *pmap, vm_page_t m,
212					vm_offset_t va));
213static boolean_t pmap_testbit __P((vm_page_t m, int bit));
214static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m));
216
217static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
218
219static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
220static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
221static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
222static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
223static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225
226static unsigned pdir4mb;
227
228/*
229 *	Routine:	pmap_pte
230 *	Function:
231 *		Extract the page table entry associated
232 *		with the given map/virtual_address pair.
233 */
234
235PMAP_INLINE unsigned *
236pmap_pte(pmap, va)
237	register pmap_t pmap;
238	vm_offset_t va;
239{
240	pd_entry_t *pdeaddr;
241
242	if (pmap) {
243		pdeaddr = pmap_pde(pmap, va);
244		if (*pdeaddr & PG_PS)
245			return pdeaddr;
246		if (*pdeaddr) {
247			return get_ptbase(pmap) + i386_btop(va);
248		}
249	}
250	return (0);
251}
252
253/*
254 * Move the kernel virtual free pointer to the next
255 * 4MB.  This is used to help improve performance
256 * by using a large (4MB) page for much of the kernel
257 * (.text, .data, .bss)
258 */
259static vm_offset_t
260pmap_kmem_choose(vm_offset_t addr)
261{
262	vm_offset_t newaddr = addr;
263#ifndef DISABLE_PSE
264	if (cpu_feature & CPUID_PSE) {
265		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
266	}
267#endif
268	return newaddr;
269}
270
271/*
272 *	Bootstrap the system enough to run with virtual memory.
273 *
274 *	On the i386 this is called after mapping has already been enabled
275 *	and just syncs the pmap module with what has already been done.
276 *	[We can't call it easily with mapping off since the kernel is not
277 *	mapped with PA == VA, hence we would have to relocate every address
278 *	from the linked base (virtual) address "KERNBASE" to the actual
279 *	(physical) address starting relative to 0]
280 */
281void
282pmap_bootstrap(firstaddr, loadaddr)
283	vm_offset_t firstaddr;
284	vm_offset_t loadaddr;
285{
286	vm_offset_t va;
287	pt_entry_t *pte;
288	int i;
289
290	avail_start = firstaddr;
291
292	/*
293	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
294	 * large. It should instead be correctly calculated in locore.s and
295	 * not based on 'first' (which is a physical address, not a virtual
296	 * address, for the start of unused physical memory). The kernel
297	 * page tables are NOT double mapped and thus should not be included
298	 * in this calculation.
299	 */
300	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
301	virtual_avail = pmap_kmem_choose(virtual_avail);
302
303	virtual_end = VM_MAX_KERNEL_ADDRESS;
304
305	/*
306	 * Initialize protection array.
307	 */
308	i386_protection_init();
309
310	/*
311	 * The kernel's pmap is statically allocated so we don't have to use
312	 * pmap_create, which is unlikely to work correctly at this part of
313	 * the boot sequence (XXX and which no longer exists).
314	 */
315	kernel_pmap = &kernel_pmap_store;
316
317	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
318	kernel_pmap->pm_count = 1;
319	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
320	TAILQ_INIT(&kernel_pmap->pm_pvlist);
321	LIST_INIT(&allpmaps);
322	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
323	nkpt = NKPT;
324
325	/*
326	 * Reserve some special page table entries/VA space for temporary
327	 * mapping of pages.
328	 */
329#define	SYSMAP(c, p, v, n)	\
330	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
331
332	va = virtual_avail;
333	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
334
335	/*
336	 * CMAP1/CMAP2 are used for zeroing and copying pages.
337	 */
338	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
339	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
340
341	/*
342	 * Crashdump maps.
343	 */
344	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
345
346	/*
347	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
348	 * XXX ptmmap is not used.
349	 */
350	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
351
352	/*
353	 * msgbufp is used to map the system message buffer.
354	 * XXX msgbufmap is not used.
355	 */
356	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
357	       atop(round_page(MSGBUF_SIZE)))
358
359	/*
360	 * ptemap is used for pmap_pte_quick
361	 */
362	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
363
364	virtual_avail = va;
365
366	*CMAP1 = *CMAP2 = 0;
367	for (i = 0; i < NKPT; i++)
368		PTD[i] = 0;
369
370	pgeflag = 0;
371#if !defined(SMP)			/* XXX - see also mp_machdep.c */
372	if (cpu_feature & CPUID_PGE) {
373		pgeflag = PG_G;
374	}
375#endif
376
377/*
378 * Initialize the 4MB page size flag
379 */
380	pseflag = 0;
381/*
382 * The 4MB page version of the initial
383 * kernel page mapping.
384 */
385	pdir4mb = 0;
386
387#if !defined(DISABLE_PSE)
388	if (cpu_feature & CPUID_PSE) {
389		unsigned ptditmp;
390		/*
391		 * Note that we have enabled PSE mode
392		 */
393		pseflag = PG_PS;
394		ptditmp = *(PTmap + i386_btop(KERNBASE));
395		ptditmp &= ~(NBPDR - 1);
396		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
397		pdir4mb = ptditmp;
398
399#if !defined(SMP)
400		/*
401		 * Enable the PSE mode.
402		 */
403		load_cr4(rcr4() | CR4_PSE);
404
405		/*
406		 * We can do the mapping here for the single processor
407		 * case.  We simply ignore the old page table page from
408		 * now on.
409		 */
410		/*
411		 * For SMP, we still need 4K pages to bootstrap APs,
412		 * PSE will be enabled as soon as all APs are up.
413		 */
414		PTD[KPTDI] = (pd_entry_t) ptditmp;
415		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
416		invltlb();
417#endif
418	}
419#endif
420
421#ifdef SMP
422	if (cpu_apic_address == 0)
423		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
424
425	/* local apic is mapped on last page */
426	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
427	    (cpu_apic_address & PG_FRAME));
428#endif
429
430	invltlb();
431}
432
433#ifdef SMP
434/*
435 * Set 4mb pdir for mp startup
436 */
437void
438pmap_set_opt(void)
439{
440	if (pseflag && (cpu_feature & CPUID_PSE)) {
441		load_cr4(rcr4() | CR4_PSE);
442		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
443			kernel_pmap->pm_pdir[KPTDI] =
444			    PTD[KPTDI] = (pd_entry_t)pdir4mb;
445			cpu_invltlb();
446		}
447	}
448}
449#endif
450
451/*
452 *	Initialize the pmap module.
453 *	Called by vm_init, to initialize any structures that the pmap
454 *	system needs to map virtual memory.
455 *	pmap_init has been enhanced to support in a fairly consistant
456 *	way, discontiguous physical memory.
457 */
458void
459pmap_init(phys_start, phys_end)
460	vm_offset_t phys_start, phys_end;
461{
462	int i;
463	int initial_pvs;
464
465	/*
466	 * object for kernel page table pages
467	 */
468	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
469
470	/*
471	 * Allocate memory for random pmap data structures.  Includes the
472	 * pv_head_table.
473	 */
474
475	for(i = 0; i < vm_page_array_size; i++) {
476		vm_page_t m;
477
478		m = &vm_page_array[i];
479		TAILQ_INIT(&m->md.pv_list);
480		m->md.pv_list_count = 0;
481	}
482
483	/*
484	 * init the pv free list
485	 */
486	initial_pvs = vm_page_array_size;
487	if (initial_pvs < MINPV)
488		initial_pvs = MINPV;
489	pvzone = &pvzone_store;
490	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
491		initial_pvs * sizeof (struct pv_entry));
492	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
493	    vm_page_array_size);
494
495	/*
496	 * Now it is safe to enable pv_table recording.
497	 */
498	pmap_initialized = TRUE;
499}
500
501/*
502 * Initialize the address space (zone) for the pv_entries.  Set a
503 * high water mark so that the system can recover from excessive
504 * numbers of pv entries.
505 */
506void
507pmap_init2()
508{
509	int shpgperproc = PMAP_SHPGPERPROC;
510
511	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
512	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
513	pv_entry_high_water = 9 * (pv_entry_max / 10);
514	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
515}
516
517
518/***************************************************
519 * Low level helper routines.....
520 ***************************************************/
521
522#if defined(PMAP_DIAGNOSTIC)
523
524/*
525 * This code checks for non-writeable/modified pages.
526 * This should be an invalid condition.
527 */
528static int
529pmap_nw_modified(pt_entry_t ptea)
530{
531	int pte;
532
533	pte = (int) ptea;
534
535	if ((pte & (PG_M|PG_RW)) == PG_M)
536		return 1;
537	else
538		return 0;
539}
540#endif
541
542
543/*
544 * this routine defines the region(s) of memory that should
545 * not be tested for the modified bit.
546 */
547static PMAP_INLINE int
548pmap_track_modified(vm_offset_t va)
549{
550	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
551		return 1;
552	else
553		return 0;
554}
555
556static PMAP_INLINE void
557invltlb_1pg(vm_offset_t va)
558{
559#ifdef I386_CPU
560	invltlb();
561#else
562	invlpg(va);
563#endif
564}
565
566static __inline void
567pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
568{
569#if defined(SMP)
570	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
571		cpu_invlpg((void *)va);
572	if (pmap->pm_active & PCPU_GET(other_cpus))
573		smp_invltlb();
574#else
575	if (pmap->pm_active)
576		invltlb_1pg(va);
577#endif
578}
579
580static __inline void
581pmap_invalidate_all(pmap_t pmap)
582{
583#if defined(SMP)
584	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
585		cpu_invltlb();
586	if (pmap->pm_active & PCPU_GET(other_cpus))
587		smp_invltlb();
588#else
589	if (pmap->pm_active)
590		invltlb();
591#endif
592}
593
594/*
595 * Return an address which is the base of the Virtual mapping of
596 * all the PTEs for the given pmap. Note this doesn't say that
597 * all the PTEs will be present or that the pages there are valid.
598 * The PTEs are made available by the recursive mapping trick.
599 * It will map in the alternate PTE space if needed.
600 */
601static pt_entry_t *
602get_ptbase(pmap)
603	pmap_t pmap;
604{
605	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
606
607	/* are we current address space or kernel? */
608	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
609		return PTmap;
610	}
611	/* otherwise, we are alternate address space */
612	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
613		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
614#if defined(SMP)
615		/* The page directory is not shared between CPUs */
616		cpu_invltlb();
617#else
618		invltlb();
619#endif
620	}
621	return APTmap;
622}
623
624/*
625 * Super fast pmap_pte routine best used when scanning
626 * the pv lists.  This eliminates many coarse-grained
627 * invltlb calls.  Note that many of the pv list
628 * scans are across different pmaps.  It is very wasteful
629 * to do an entire invltlb for checking a single mapping.
630 */
631
632static pt_entry_t *
633pmap_pte_quick(pmap, va)
634	register pmap_t pmap;
635	vm_offset_t va;
636{
637	pd_entry_t pde, newpf;
638	if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
639		pd_entry_t frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
640		unsigned index = i386_btop(va);
641		/* are we current address space or kernel? */
642		if ((pmap == kernel_pmap) ||
643			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
644			return PTmap + index;
645		}
646		newpf = pde & PG_FRAME;
647		if ( ((*PMAP1) & PG_FRAME) != newpf) {
648			*PMAP1 = newpf | PG_RW | PG_V;
649			invltlb_1pg((vm_offset_t) PADDR1);
650		}
651		return PADDR1 + (index & (NPTEPG - 1));
652	}
653	return (0);
654}
655
656/*
657 *	Routine:	pmap_extract
658 *	Function:
659 *		Extract the physical page address associated
660 *		with the given map/virtual_address pair.
661 */
662vm_offset_t
663pmap_extract(pmap, va)
664	register pmap_t pmap;
665	vm_offset_t va;
666{
667	vm_offset_t rtval;	/* XXX FIXME */
668	vm_offset_t pdirindex;
669	pdirindex = va >> PDRSHIFT;
670	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
671		pt_entry_t *pte;
672		if ((rtval & PG_PS) != 0) {
673			rtval &= ~(NBPDR - 1);
674			rtval |= va & (NBPDR - 1);
675			return rtval;
676		}
677		pte = get_ptbase(pmap) + i386_btop(va);
678		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
679		return rtval;
680	}
681	return 0;
682
683}
684
685/***************************************************
686 * Low level mapping routines.....
687 ***************************************************/
688
689/*
690 * add a wired page to the kva
691 * note that in order for the mapping to take effect -- you
692 * should do a invltlb after doing the pmap_kenter...
693 */
694PMAP_INLINE void
695pmap_kenter(vm_offset_t va, vm_offset_t pa)
696{
697	pt_entry_t *pte;
698	pt_entry_t npte, opte;
699
700	npte = pa | PG_RW | PG_V | pgeflag;
701	pte = vtopte(va);
702	opte = *pte;
703	*pte = npte;
704	/*if (opte)*/
705		invltlb_1pg(va);	/* XXX what about SMP? */
706}
707
708/*
709 * remove a page from the kernel pagetables
710 */
711PMAP_INLINE void
712pmap_kremove(vm_offset_t va)
713{
714	register pt_entry_t *pte;
715
716	pte = vtopte(va);
717	*pte = 0;
718	invltlb_1pg(va);	/* XXX what about SMP? */
719}
720
721/*
722 *	Used to map a range of physical addresses into kernel
723 *	virtual address space.
724 *
725 *	The value passed in '*virt' is a suggested virtual address for
726 *	the mapping. Architectures which can support a direct-mapped
727 *	physical to virtual region can return the appropriate address
728 *	within that region, leaving '*virt' unchanged. Other
729 *	architectures should map the pages starting at '*virt' and
730 *	update '*virt' with the first usable address after the mapped
731 *	region.
732 */
733vm_offset_t
734pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
735{
736	vm_offset_t sva = *virt;
737	vm_offset_t va = sva;
738	while (start < end) {
739		pmap_kenter(va, start);
740		va += PAGE_SIZE;
741		start += PAGE_SIZE;
742	}
743	*virt = va;
744	return (sva);
745}
746
747
748/*
749 * Add a list of wired pages to the kva
750 * this routine is only used for temporary
751 * kernel mappings that do not need to have
752 * page modification or references recorded.
753 * Note that old mappings are simply written
754 * over.  The page *must* be wired.
755 */
756void
757pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
758{
759	vm_offset_t end_va;
760
761	end_va = va + count * PAGE_SIZE;
762
763	while (va < end_va) {
764		pt_entry_t *pte;
765
766		pte = vtopte(va);
767		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
768#ifdef SMP
769		cpu_invlpg((void *)va);
770#else
771		invltlb_1pg(va);
772#endif
773		va += PAGE_SIZE;
774		m++;
775	}
776#ifdef SMP
777	smp_invltlb();
778#endif
779}
780
781/*
782 * this routine jerks page mappings from the
783 * kernel -- it is meant only for temporary mappings.
784 */
785void
786pmap_qremove(vm_offset_t va, int count)
787{
788	vm_offset_t end_va;
789
790	end_va = va + count*PAGE_SIZE;
791
792	while (va < end_va) {
793		pt_entry_t *pte;
794
795		pte = vtopte(va);
796		*pte = 0;
797#ifdef SMP
798		cpu_invlpg((void *)va);
799#else
800		invltlb_1pg(va);
801#endif
802		va += PAGE_SIZE;
803	}
804#ifdef SMP
805	smp_invltlb();
806#endif
807}
808
809static vm_page_t
810pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
811{
812	vm_page_t m;
813retry:
814	m = vm_page_lookup(object, pindex);
815	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
816		goto retry;
817	return m;
818}
819
820/*
821 * Create the Uarea stack for a new process.
822 * This routine directly affects the fork perf for a process.
823 */
824void
825pmap_new_proc(struct proc *p)
826{
827#ifdef I386_CPU
828	int updateneeded = 0;
829#endif
830	int i;
831	vm_object_t upobj;
832	vm_offset_t up;
833	vm_page_t m;
834	pt_entry_t *ptek, oldpte;
835
836	/*
837	 * allocate object for the upages
838	 */
839	upobj = p->p_upages_obj;
840	if (upobj == NULL) {
841		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
842		p->p_upages_obj = upobj;
843	}
844
845	/* get a kernel virtual address for the U area for this thread */
846	up = (vm_offset_t)p->p_uarea;
847	if (up == 0) {
848		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
849		if (up == 0)
850			panic("pmap_new_proc: upage allocation failed");
851		p->p_uarea = (struct user *)up;
852	}
853
854	ptek = vtopte(up);
855
856	for (i = 0; i < UAREA_PAGES; i++) {
857		/*
858		 * Get a kernel stack page
859		 */
860		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
861
862		/*
863		 * Wire the page
864		 */
865		m->wire_count++;
866		cnt.v_wire_count++;
867
868		oldpte = *(ptek + i);
869		/*
870		 * Enter the page into the kernel address space.
871		 */
872		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
873		if (oldpte) {
874#ifdef I386_CPU
875			updateneeded = 1;
876#else
877			invlpg(up + i * PAGE_SIZE);
878#endif
879		}
880
881		vm_page_wakeup(m);
882		vm_page_flag_clear(m, PG_ZERO);
883		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
884		m->valid = VM_PAGE_BITS_ALL;
885	}
886#ifdef I386_CPU
887	if (updateneeded)
888		invltlb();
889#endif
890}
891
892/*
893 * Dispose the U-Area for a process that has exited.
894 * This routine directly impacts the exit perf of a process.
895 */
896void
897pmap_dispose_proc(p)
898	struct proc *p;
899{
900	int i;
901	vm_object_t upobj;
902	vm_offset_t up;
903	vm_page_t m;
904	pt_entry_t *ptek, oldpte;
905
906	upobj = p->p_upages_obj;
907	up = (vm_offset_t)p->p_uarea;
908	ptek = vtopte(up);
909	for (i = 0; i < UAREA_PAGES; i++) {
910		m = vm_page_lookup(upobj, i);
911		if (m == NULL)
912			panic("pmap_dispose_proc: upage already missing?");
913		vm_page_busy(m);
914		oldpte = *(ptek + i);
915		*(ptek + i) = 0;
916#ifndef I386_CPU
917		invlpg(up + i * PAGE_SIZE);
918#endif
919		vm_page_unwire(m, 0);
920		vm_page_free(m);
921	}
922#ifdef I386_CPU
923	invltlb();
924#endif
925}
926
927/*
928 * Allow the U_AREA for a process to be prejudicially paged out.
929 */
930void
931pmap_swapout_proc(p)
932	struct proc *p;
933{
934	int i;
935	vm_object_t upobj;
936	vm_offset_t up;
937	vm_page_t m;
938
939	upobj = p->p_upages_obj;
940	up = (vm_offset_t)p->p_uarea;
941	for (i = 0; i < UAREA_PAGES; i++) {
942		m = vm_page_lookup(upobj, i);
943		if (m == NULL)
944			panic("pmap_swapout_proc: upage already missing?");
945		vm_page_dirty(m);
946		vm_page_unwire(m, 0);
947		pmap_kremove(up + i * PAGE_SIZE);
948	}
949}
950
951/*
952 * Bring the U-Area for a specified process back in.
953 */
954void
955pmap_swapin_proc(p)
956	struct proc *p;
957{
958	int i, rv;
959	vm_object_t upobj;
960	vm_offset_t up;
961	vm_page_t m;
962
963	upobj = p->p_upages_obj;
964	up = (vm_offset_t)p->p_uarea;
965	for (i = 0; i < UAREA_PAGES; i++) {
966		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
967		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
968		if (m->valid != VM_PAGE_BITS_ALL) {
969			rv = vm_pager_get_pages(upobj, &m, 1, 0);
970			if (rv != VM_PAGER_OK)
971				panic("pmap_swapin_proc: cannot get upage for proc: %d\n", p->p_pid);
972			m = vm_page_lookup(upobj, i);
973			m->valid = VM_PAGE_BITS_ALL;
974		}
975		vm_page_wire(m);
976		vm_page_wakeup(m);
977		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
978	}
979}
980
981/*
982 * Create the kernel stack (including pcb for i386) for a new thread.
983 * This routine directly affects the fork perf for a process and
984 * create performance for a thread.
985 */
986void
987pmap_new_thread(struct thread *td)
988{
989#ifdef I386_CPU
990	int updateneeded = 0;
991#endif
992	int i;
993	vm_object_t ksobj;
994	vm_page_t m;
995	vm_offset_t ks;
996	pt_entry_t *ptek, oldpte;
997
998	/*
999	 * allocate object for the kstack
1000	 */
1001	ksobj = td->td_kstack_obj;
1002	if (ksobj == NULL) {
1003		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1004		td->td_kstack_obj = ksobj;
1005	}
1006
1007#ifdef KSTACK_GUARD
1008	/* get a kernel virtual address for the kstack for this thread */
1009	ks = td->td_kstack;
1010	if (ks == 0) {
1011		ks = kmem_alloc_nofault(kernel_map,
1012		    (KSTACK_PAGES + 1) * PAGE_SIZE);
1013		if (ks == 0)
1014			panic("pmap_new_thread: kstack allocation failed");
1015		ks += PAGE_SIZE;
1016		td->td_kstack = ks;
1017	}
1018
1019	ptek = vtopte(ks - PAGE_SIZE);
1020	oldpte = *ptek;
1021	*ptek = 0;
1022	if (oldpte) {
1023#ifdef I386_CPU
1024		updateneeded = 1;
1025#else
1026		invlpg(ks - PAGE_SIZE);
1027#endif
1028	}
1029	ptek++;
1030#else
1031	/* get a kernel virtual address for the kstack for this thread */
1032	ks = td->td_kstack;
1033	if (ks == 0) {
1034		ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
1035		if (ks == 0)
1036			panic("pmap_new_thread: kstack allocation failed");
1037		td->td_kstack = ks;
1038	}
1039#endif
1040	for (i = 0; i < KSTACK_PAGES; i++) {
1041		/*
1042		 * Get a kernel stack page
1043		 */
1044		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1045
1046		/*
1047		 * Wire the page
1048		 */
1049		m->wire_count++;
1050		cnt.v_wire_count++;
1051
1052		oldpte = *(ptek + i);
1053		/*
1054		 * Enter the page into the kernel address space.
1055		 */
1056		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1057		if (oldpte) {
1058#ifdef I386_CPU
1059			updateneeded = 1;
1060#else
1061			invlpg(ks + i * PAGE_SIZE);
1062#endif
1063		}
1064
1065		vm_page_wakeup(m);
1066		vm_page_flag_clear(m, PG_ZERO);
1067		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1068		m->valid = VM_PAGE_BITS_ALL;
1069	}
1070#ifdef I386_CPU
1071	if (updateneeded)
1072		invltlb();
1073#endif
1074}
1075
1076/*
1077 * Dispose the kernel stack for a thread that has exited.
1078 * This routine directly impacts the exit perf of a process and thread.
1079 */
1080void
1081pmap_dispose_thread(td)
1082	struct thread *td;
1083{
1084	int i;
1085	vm_object_t ksobj;
1086	vm_offset_t ks;
1087	vm_page_t m;
1088	pt_entry_t *ptek, oldpte;
1089
1090	ksobj = td->td_kstack_obj;
1091	ks = td->td_kstack;
1092	ptek = vtopte(ks);
1093	for (i = 0; i < KSTACK_PAGES; i++) {
1094		m = vm_page_lookup(ksobj, i);
1095		if (m == NULL)
1096			panic("pmap_dispose_thread: kstack already missing?");
1097		vm_page_busy(m);
1098		oldpte = *(ptek + i);
1099		*(ptek + i) = 0;
1100#ifndef I386_CPU
1101		invlpg(ks + i * PAGE_SIZE);
1102#endif
1103		vm_page_unwire(m, 0);
1104		vm_page_free(m);
1105	}
1106#ifdef I386_CPU
1107	invltlb();
1108#endif
1109}
1110
1111/*
1112 * Allow the Kernel stack for a thread to be prejudicially paged out.
1113 */
1114void
1115pmap_swapout_thread(td)
1116	struct thread *td;
1117{
1118	int i;
1119	vm_object_t ksobj;
1120	vm_offset_t ks;
1121	vm_page_t m;
1122
1123	ksobj = td->td_kstack_obj;
1124	ks = td->td_kstack;
1125	for (i = 0; i < KSTACK_PAGES; i++) {
1126		m = vm_page_lookup(ksobj, i);
1127		if (m == NULL)
1128			panic("pmap_swapout_thread: kstack already missing?");
1129		vm_page_dirty(m);
1130		vm_page_unwire(m, 0);
1131		pmap_kremove(ks + i * PAGE_SIZE);
1132	}
1133}
1134
1135/*
1136 * Bring the kernel stack for a specified thread back in.
1137 */
1138void
1139pmap_swapin_thread(td)
1140	struct thread *td;
1141{
1142	int i, rv;
1143	vm_object_t ksobj;
1144	vm_offset_t ks;
1145	vm_page_t m;
1146
1147	ksobj = td->td_kstack_obj;
1148	ks = td->td_kstack;
1149	for (i = 0; i < KSTACK_PAGES; i++) {
1150		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1151		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1152		if (m->valid != VM_PAGE_BITS_ALL) {
1153			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1154			if (rv != VM_PAGER_OK)
1155				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1156			m = vm_page_lookup(ksobj, i);
1157			m->valid = VM_PAGE_BITS_ALL;
1158		}
1159		vm_page_wire(m);
1160		vm_page_wakeup(m);
1161		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1162	}
1163}
1164
1165/***************************************************
1166 * Page table page management routines.....
1167 ***************************************************/
1168
1169/*
1170 * This routine unholds page table pages, and if the hold count
1171 * drops to zero, then it decrements the wire count.
1172 */
1173static int
1174_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1175{
1176
1177	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1178		;
1179
1180	if (m->hold_count == 0) {
1181		vm_offset_t pteva;
1182		/*
1183		 * unmap the page table page
1184		 */
1185		pmap->pm_pdir[m->pindex] = 0;
1186		--pmap->pm_stats.resident_count;
1187		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1188		    (PTDpde & PG_FRAME)) {
1189			/*
1190			 * Do a invltlb to make the invalidated mapping
1191			 * take effect immediately.
1192			 */
1193			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1194			pmap_invalidate_page(pmap, pteva);
1195		}
1196
1197		if (pmap->pm_ptphint == m)
1198			pmap->pm_ptphint = NULL;
1199
1200		/*
1201		 * If the page is finally unwired, simply free it.
1202		 */
1203		--m->wire_count;
1204		if (m->wire_count == 0) {
1205
1206			vm_page_flash(m);
1207			vm_page_busy(m);
1208			vm_page_free_zero(m);
1209			--cnt.v_wire_count;
1210		}
1211		return 1;
1212	}
1213	return 0;
1214}
1215
1216static PMAP_INLINE int
1217pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1218{
1219	vm_page_unhold(m);
1220	if (m->hold_count == 0)
1221		return _pmap_unwire_pte_hold(pmap, m);
1222	else
1223		return 0;
1224}
1225
1226/*
1227 * After removing a page table entry, this routine is used to
1228 * conditionally free the page, and manage the hold/wire counts.
1229 */
1230static int
1231pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1232{
1233	unsigned ptepindex;
1234	if (va >= VM_MAXUSER_ADDRESS)
1235		return 0;
1236
1237	if (mpte == NULL) {
1238		ptepindex = (va >> PDRSHIFT);
1239		if (pmap->pm_ptphint &&
1240			(pmap->pm_ptphint->pindex == ptepindex)) {
1241			mpte = pmap->pm_ptphint;
1242		} else {
1243			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1244			pmap->pm_ptphint = mpte;
1245		}
1246	}
1247
1248	return pmap_unwire_pte_hold(pmap, mpte);
1249}
1250
1251void
1252pmap_pinit0(pmap)
1253	struct pmap *pmap;
1254{
1255	pmap->pm_pdir =
1256		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1257	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1258	pmap->pm_count = 1;
1259	pmap->pm_ptphint = NULL;
1260	pmap->pm_active = 0;
1261	TAILQ_INIT(&pmap->pm_pvlist);
1262	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1263	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1264}
1265
1266/*
1267 * Initialize a preallocated and zeroed pmap structure,
1268 * such as one in a vmspace structure.
1269 */
1270void
1271pmap_pinit(pmap)
1272	register struct pmap *pmap;
1273{
1274	vm_page_t ptdpg;
1275
1276	/*
1277	 * No need to allocate page table space yet but we do need a valid
1278	 * page directory table.
1279	 */
1280	if (pmap->pm_pdir == NULL)
1281		pmap->pm_pdir =
1282			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1283
1284	/*
1285	 * allocate object for the ptes
1286	 */
1287	if (pmap->pm_pteobj == NULL)
1288		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1289
1290	/*
1291	 * allocate the page directory page
1292	 */
1293	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
1294			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1295
1296	ptdpg->wire_count = 1;
1297	++cnt.v_wire_count;
1298
1299
1300	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1301	ptdpg->valid = VM_PAGE_BITS_ALL;
1302
1303	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1304	if ((ptdpg->flags & PG_ZERO) == 0)
1305		bzero(pmap->pm_pdir, PAGE_SIZE);
1306
1307	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1308	/* Wire in kernel global address entries. */
1309	/* XXX copies current process, does not fill in MPPTDI */
1310	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1311#ifdef SMP
1312	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1313#endif
1314
1315	/* install self-referential address mapping entry */
1316	pmap->pm_pdir[PTDPTDI] =
1317		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1318
1319	pmap->pm_count = 1;
1320	pmap->pm_active = 0;
1321	pmap->pm_ptphint = NULL;
1322	TAILQ_INIT(&pmap->pm_pvlist);
1323	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1324}
1325
1326/*
1327 * Wire in kernel global address entries.  To avoid a race condition
1328 * between pmap initialization and pmap_growkernel, this procedure
1329 * should be called after the vmspace is attached to the process
1330 * but before this pmap is activated.
1331 */
1332void
1333pmap_pinit2(pmap)
1334	struct pmap *pmap;
1335{
1336	/* XXX: Remove this stub when no longer called */
1337}
1338
1339static int
1340pmap_release_free_page(pmap_t pmap, vm_page_t p)
1341{
1342	pd_entry_t *pde = pmap->pm_pdir;
1343	/*
1344	 * This code optimizes the case of freeing non-busy
1345	 * page-table pages.  Those pages are zero now, and
1346	 * might as well be placed directly into the zero queue.
1347	 */
1348	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1349		return 0;
1350
1351	vm_page_busy(p);
1352
1353	/*
1354	 * Remove the page table page from the processes address space.
1355	 */
1356	pde[p->pindex] = 0;
1357	pmap->pm_stats.resident_count--;
1358
1359	if (p->hold_count)  {
1360		panic("pmap_release: freeing held page table page");
1361	}
1362	/*
1363	 * Page directory pages need to have the kernel
1364	 * stuff cleared, so they can go into the zero queue also.
1365	 */
1366	if (p->pindex == PTDPTDI) {
1367		bzero(pde + KPTDI, nkpt * PTESIZE);
1368#ifdef SMP
1369		pde[MPPTDI] = 0;
1370#endif
1371		pde[APTDPTDI] = 0;
1372		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1373	}
1374
1375	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1376		pmap->pm_ptphint = NULL;
1377
1378	p->wire_count--;
1379	cnt.v_wire_count--;
1380	vm_page_free_zero(p);
1381	return 1;
1382}
1383
1384/*
1385 * this routine is called if the page table page is not
1386 * mapped correctly.
1387 */
1388static vm_page_t
1389_pmap_allocpte(pmap, ptepindex)
1390	pmap_t	pmap;
1391	unsigned ptepindex;
1392{
1393	vm_offset_t pteva, ptepa;	/* XXXPA */
1394	vm_page_t m;
1395
1396	/*
1397	 * Find or fabricate a new pagetable page
1398	 */
1399	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1400			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1401
1402	KASSERT(m->queue == PQ_NONE,
1403		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1404
1405	if (m->wire_count == 0)
1406		cnt.v_wire_count++;
1407	m->wire_count++;
1408
1409	/*
1410	 * Increment the hold count for the page table page
1411	 * (denoting a new mapping.)
1412	 */
1413	m->hold_count++;
1414
1415	/*
1416	 * Map the pagetable page into the process address space, if
1417	 * it isn't already there.
1418	 */
1419
1420	pmap->pm_stats.resident_count++;
1421
1422	ptepa = VM_PAGE_TO_PHYS(m);
1423	pmap->pm_pdir[ptepindex] =
1424		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1425
1426	/*
1427	 * Set the page table hint
1428	 */
1429	pmap->pm_ptphint = m;
1430
1431	/*
1432	 * Try to use the new mapping, but if we cannot, then
1433	 * do it with the routine that maps the page explicitly.
1434	 */
1435	if ((m->flags & PG_ZERO) == 0) {
1436		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1437		    (PTDpde & PG_FRAME)) {
1438			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1439			bzero((caddr_t) pteva, PAGE_SIZE);
1440		} else {
1441			pmap_zero_page(ptepa);
1442		}
1443	}
1444
1445	m->valid = VM_PAGE_BITS_ALL;
1446	vm_page_flag_clear(m, PG_ZERO);
1447	vm_page_flag_set(m, PG_MAPPED);
1448	vm_page_wakeup(m);
1449
1450	return m;
1451}
1452
1453static vm_page_t
1454pmap_allocpte(pmap_t pmap, vm_offset_t va)
1455{
1456	unsigned ptepindex;
1457	pd_entry_t ptepa;
1458	vm_page_t m;
1459
1460	/*
1461	 * Calculate pagetable page index
1462	 */
1463	ptepindex = va >> PDRSHIFT;
1464
1465	/*
1466	 * Get the page directory entry
1467	 */
1468	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1469
1470	/*
1471	 * This supports switching from a 4MB page to a
1472	 * normal 4K page.
1473	 */
1474	if (ptepa & PG_PS) {
1475		pmap->pm_pdir[ptepindex] = 0;
1476		ptepa = 0;
1477		invltlb();
1478	}
1479
1480	/*
1481	 * If the page table page is mapped, we just increment the
1482	 * hold count, and activate it.
1483	 */
1484	if (ptepa) {
1485		/*
1486		 * In order to get the page table page, try the
1487		 * hint first.
1488		 */
1489		if (pmap->pm_ptphint &&
1490			(pmap->pm_ptphint->pindex == ptepindex)) {
1491			m = pmap->pm_ptphint;
1492		} else {
1493			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1494			pmap->pm_ptphint = m;
1495		}
1496		m->hold_count++;
1497		return m;
1498	}
1499	/*
1500	 * Here if the pte page isn't mapped, or if it has been deallocated.
1501	 */
1502	return _pmap_allocpte(pmap, ptepindex);
1503}
1504
1505
1506/***************************************************
1507* Pmap allocation/deallocation routines.
1508 ***************************************************/
1509
1510/*
1511 * Release any resources held by the given physical map.
1512 * Called when a pmap initialized by pmap_pinit is being released.
1513 * Should only be called if the map contains no valid mappings.
1514 */
1515void
1516pmap_release(pmap_t pmap)
1517{
1518	vm_page_t p,n,ptdpg;
1519	vm_object_t object = pmap->pm_pteobj;
1520	int curgeneration;
1521
1522#if defined(DIAGNOSTIC)
1523	if (object->ref_count != 1)
1524		panic("pmap_release: pteobj reference count != 1");
1525#endif
1526
1527	ptdpg = NULL;
1528	LIST_REMOVE(pmap, pm_list);
1529retry:
1530	curgeneration = object->generation;
1531	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1532		n = TAILQ_NEXT(p, listq);
1533		if (p->pindex == PTDPTDI) {
1534			ptdpg = p;
1535			continue;
1536		}
1537		while (1) {
1538			if (!pmap_release_free_page(pmap, p) &&
1539				(object->generation != curgeneration))
1540				goto retry;
1541		}
1542	}
1543
1544	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1545		goto retry;
1546}
1547
1548static int
1549kvm_size(SYSCTL_HANDLER_ARGS)
1550{
1551	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1552
1553        return sysctl_handle_long(oidp, &ksize, 0, req);
1554}
1555SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1556    0, 0, kvm_size, "IU", "Size of KVM");
1557
1558static int
1559kvm_free(SYSCTL_HANDLER_ARGS)
1560{
1561	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1562
1563        return sysctl_handle_long(oidp, &kfree, 0, req);
1564}
1565SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1566    0, 0, kvm_free, "IU", "Amount of KVM free");
1567
1568/*
1569 * grow the number of kernel page table entries, if needed
1570 */
1571void
1572pmap_growkernel(vm_offset_t addr)
1573{
1574	struct pmap *pmap;
1575	int s;
1576	vm_offset_t ptppaddr;
1577	vm_page_t nkpg;
1578	pd_entry_t newpdir;
1579
1580	s = splhigh();
1581	if (kernel_vm_end == 0) {
1582		kernel_vm_end = KERNBASE;
1583		nkpt = 0;
1584		while (pdir_pde(PTD, kernel_vm_end)) {
1585			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1586			nkpt++;
1587		}
1588	}
1589	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1590	while (kernel_vm_end < addr) {
1591		if (pdir_pde(PTD, kernel_vm_end)) {
1592			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1593			continue;
1594		}
1595
1596		/*
1597		 * This index is bogus, but out of the way
1598		 */
1599		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1600		if (!nkpg)
1601			panic("pmap_growkernel: no memory to grow kernel");
1602
1603		nkpt++;
1604
1605		vm_page_wire(nkpg);
1606		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1607		pmap_zero_page(ptppaddr);
1608		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1609		pdir_pde(PTD, kernel_vm_end) = newpdir;
1610
1611		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1612			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1613		}
1614		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1615	}
1616	splx(s);
1617}
1618
1619/*
1620 *	Retire the given physical map from service.
1621 *	Should only be called if the map contains
1622 *	no valid mappings.
1623 */
1624void
1625pmap_destroy(pmap_t pmap)
1626{
1627	int count;
1628
1629	if (pmap == NULL)
1630		return;
1631
1632	count = --pmap->pm_count;
1633	if (count == 0) {
1634		pmap_release(pmap);
1635		panic("destroying a pmap is not yet implemented");
1636	}
1637}
1638
1639/*
1640 *	Add a reference to the specified pmap.
1641 */
1642void
1643pmap_reference(pmap_t pmap)
1644{
1645	if (pmap != NULL) {
1646		pmap->pm_count++;
1647	}
1648}
1649
1650/***************************************************
1651* page management routines.
1652 ***************************************************/
1653
1654/*
1655 * free the pv_entry back to the free list
1656 */
1657static PMAP_INLINE void
1658free_pv_entry(pv_entry_t pv)
1659{
1660	pv_entry_count--;
1661	zfree(pvzone, pv);
1662}
1663
1664/*
1665 * get a new pv_entry, allocating a block from the system
1666 * when needed.
1667 * the memory allocation is performed bypassing the malloc code
1668 * because of the possibility of allocations at interrupt time.
1669 */
1670static pv_entry_t
1671get_pv_entry(void)
1672{
1673	pv_entry_count++;
1674	if (pv_entry_high_water &&
1675		(pv_entry_count > pv_entry_high_water) &&
1676		(pmap_pagedaemon_waken == 0)) {
1677		pmap_pagedaemon_waken = 1;
1678		wakeup (&vm_pages_needed);
1679	}
1680	return zalloc(pvzone);
1681}
1682
1683/*
1684 * This routine is very drastic, but can save the system
1685 * in a pinch.
1686 */
1687void
1688pmap_collect()
1689{
1690	int i;
1691	vm_page_t m;
1692	static int warningdone = 0;
1693
1694	if (pmap_pagedaemon_waken == 0)
1695		return;
1696
1697	if (warningdone < 5) {
1698		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1699		warningdone++;
1700	}
1701
1702	for(i = 0; i < vm_page_array_size; i++) {
1703		m = &vm_page_array[i];
1704		if (m->wire_count || m->hold_count || m->busy ||
1705		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1706			continue;
1707		pmap_remove_all(m);
1708	}
1709	pmap_pagedaemon_waken = 0;
1710}
1711
1712
1713/*
1714 * If it is the first entry on the list, it is actually
1715 * in the header and we must copy the following entry up
1716 * to the header.  Otherwise we must search the list for
1717 * the entry.  In either case we free the now unused entry.
1718 */
1719
1720static int
1721pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1722{
1723	pv_entry_t pv;
1724	int rtval;
1725	int s;
1726
1727	s = splvm();
1728	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1729		for (pv = TAILQ_FIRST(&m->md.pv_list);
1730			pv;
1731			pv = TAILQ_NEXT(pv, pv_list)) {
1732			if (pmap == pv->pv_pmap && va == pv->pv_va)
1733				break;
1734		}
1735	} else {
1736		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1737			pv;
1738			pv = TAILQ_NEXT(pv, pv_plist)) {
1739			if (va == pv->pv_va)
1740				break;
1741		}
1742	}
1743
1744	rtval = 0;
1745	if (pv) {
1746		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1747		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1748		m->md.pv_list_count--;
1749		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1750			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1751
1752		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1753		free_pv_entry(pv);
1754	}
1755
1756	splx(s);
1757	return rtval;
1758}
1759
1760/*
1761 * Create a pv entry for page at pa for
1762 * (pmap, va).
1763 */
1764static void
1765pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1766{
1767
1768	int s;
1769	pv_entry_t pv;
1770
1771	s = splvm();
1772	pv = get_pv_entry();
1773	pv->pv_va = va;
1774	pv->pv_pmap = pmap;
1775	pv->pv_ptem = mpte;
1776
1777	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1778	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1779	m->md.pv_list_count++;
1780
1781	splx(s);
1782}
1783
1784/*
1785 * pmap_remove_pte: do the things to unmap a page in a process
1786 */
1787static int
1788pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1789{
1790	pt_entry_t oldpte;
1791	vm_page_t m;
1792
1793	oldpte = atomic_readandclear_int(ptq);
1794	if (oldpte & PG_W)
1795		pmap->pm_stats.wired_count -= 1;
1796	/*
1797	 * Machines that don't support invlpg, also don't support
1798	 * PG_G.
1799	 */
1800	if (oldpte & PG_G)
1801		invlpg(va);
1802	pmap->pm_stats.resident_count -= 1;
1803	if (oldpte & PG_MANAGED) {
1804		m = PHYS_TO_VM_PAGE(oldpte);
1805		if (oldpte & PG_M) {
1806#if defined(PMAP_DIAGNOSTIC)
1807			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1808				printf(
1809	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1810				    va, oldpte);
1811			}
1812#endif
1813			if (pmap_track_modified(va))
1814				vm_page_dirty(m);
1815		}
1816		if (oldpte & PG_A)
1817			vm_page_flag_set(m, PG_REFERENCED);
1818		return pmap_remove_entry(pmap, m, va);
1819	} else {
1820		return pmap_unuse_pt(pmap, va, NULL);
1821	}
1822
1823	return 0;
1824}
1825
1826/*
1827 * Remove a single page from a process address space
1828 */
1829static void
1830pmap_remove_page(pmap_t pmap, vm_offset_t va)
1831{
1832	register pt_entry_t *ptq;
1833
1834	/*
1835	 * if there is no pte for this address, just skip it!!!
1836	 */
1837	if (*pmap_pde(pmap, va) == 0) {
1838		return;
1839	}
1840
1841	/*
1842	 * get a local va for mappings for this pmap.
1843	 */
1844	ptq = get_ptbase(pmap) + i386_btop(va);
1845	if (*ptq) {
1846		(void) pmap_remove_pte(pmap, ptq, va);
1847		pmap_invalidate_page(pmap, va);
1848	}
1849	return;
1850}
1851
1852/*
1853 *	Remove the given range of addresses from the specified map.
1854 *
1855 *	It is assumed that the start and end are properly
1856 *	rounded to the page size.
1857 */
1858void
1859pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1860{
1861	register pt_entry_t *ptbase;
1862	vm_offset_t pdnxt;
1863	pd_entry_t ptpaddr;
1864	vm_offset_t sindex, eindex;
1865	int anyvalid;
1866
1867	if (pmap == NULL)
1868		return;
1869
1870	if (pmap->pm_stats.resident_count == 0)
1871		return;
1872
1873	/*
1874	 * special handling of removing one page.  a very
1875	 * common operation and easy to short circuit some
1876	 * code.
1877	 */
1878	if ((sva + PAGE_SIZE == eva) &&
1879	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1880		pmap_remove_page(pmap, sva);
1881		return;
1882	}
1883
1884	anyvalid = 0;
1885
1886	/*
1887	 * Get a local virtual address for the mappings that are being
1888	 * worked with.
1889	 */
1890	ptbase = get_ptbase(pmap);
1891
1892	sindex = i386_btop(sva);
1893	eindex = i386_btop(eva);
1894
1895	for (; sindex < eindex; sindex = pdnxt) {
1896		unsigned pdirindex;
1897
1898		/*
1899		 * Calculate index for next page table.
1900		 */
1901		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1902		if (pmap->pm_stats.resident_count == 0)
1903			break;
1904
1905		pdirindex = sindex / NPDEPG;
1906		ptpaddr = pmap->pm_pdir[pdirindex];
1907		if ((ptpaddr & PG_PS) != 0) {
1908			pmap->pm_pdir[pdirindex] = 0;
1909			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1910			anyvalid++;
1911			continue;
1912		}
1913
1914		/*
1915		 * Weed out invalid mappings. Note: we assume that the page
1916		 * directory table is always allocated, and in kernel virtual.
1917		 */
1918		if (ptpaddr == 0)
1919			continue;
1920
1921		/*
1922		 * Limit our scan to either the end of the va represented
1923		 * by the current page table page, or to the end of the
1924		 * range being removed.
1925		 */
1926		if (pdnxt > eindex) {
1927			pdnxt = eindex;
1928		}
1929
1930		for ( ;sindex != pdnxt; sindex++) {
1931			vm_offset_t va;
1932			if (ptbase[sindex] == 0) {
1933				continue;
1934			}
1935			va = i386_ptob(sindex);
1936
1937			anyvalid++;
1938			if (pmap_remove_pte(pmap,
1939				ptbase + sindex, va))
1940				break;
1941		}
1942	}
1943
1944	if (anyvalid)
1945		pmap_invalidate_all(pmap);
1946}
1947
1948/*
1949 *	Routine:	pmap_remove_all
1950 *	Function:
1951 *		Removes this physical page from
1952 *		all physical maps in which it resides.
1953 *		Reflects back modify bits to the pager.
1954 *
1955 *	Notes:
1956 *		Original versions of this routine were very
1957 *		inefficient because they iteratively called
1958 *		pmap_remove (slow...)
1959 */
1960
1961static void
1962pmap_remove_all(vm_page_t m)
1963{
1964	register pv_entry_t pv;
1965	pt_entry_t *pte, tpte;
1966	int s;
1967
1968#if defined(PMAP_DIAGNOSTIC)
1969	/*
1970	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1971	 * pages!
1972	 */
1973	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1974		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1975	}
1976#endif
1977
1978	s = splvm();
1979	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1980		pv->pv_pmap->pm_stats.resident_count--;
1981
1982		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1983
1984		tpte = atomic_readandclear_int(pte);
1985		if (tpte & PG_W)
1986			pv->pv_pmap->pm_stats.wired_count--;
1987
1988		if (tpte & PG_A)
1989			vm_page_flag_set(m, PG_REFERENCED);
1990
1991		/*
1992		 * Update the vm_page_t clean and reference bits.
1993		 */
1994		if (tpte & PG_M) {
1995#if defined(PMAP_DIAGNOSTIC)
1996			if (pmap_nw_modified((pt_entry_t) tpte)) {
1997				printf(
1998	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1999				    pv->pv_va, tpte);
2000			}
2001#endif
2002			if (pmap_track_modified(pv->pv_va))
2003				vm_page_dirty(m);
2004		}
2005		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2006
2007		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2008		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2009		m->md.pv_list_count--;
2010		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2011		free_pv_entry(pv);
2012	}
2013
2014	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2015
2016	splx(s);
2017}
2018
2019/*
2020 *	Set the physical protection on the
2021 *	specified range of this map as requested.
2022 */
2023void
2024pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2025{
2026	register pt_entry_t *ptbase;
2027	vm_offset_t pdnxt;
2028	pd_entry_t ptpaddr;
2029	vm_pindex_t sindex, eindex;
2030	int anychanged;
2031
2032	if (pmap == NULL)
2033		return;
2034
2035	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2036		pmap_remove(pmap, sva, eva);
2037		return;
2038	}
2039
2040	if (prot & VM_PROT_WRITE)
2041		return;
2042
2043	anychanged = 0;
2044
2045	ptbase = get_ptbase(pmap);
2046
2047	sindex = i386_btop(sva);
2048	eindex = i386_btop(eva);
2049
2050	for (; sindex < eindex; sindex = pdnxt) {
2051
2052		unsigned pdirindex;
2053
2054		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2055
2056		pdirindex = sindex / NPDEPG;
2057		ptpaddr = pmap->pm_pdir[pdirindex];
2058		if ((ptpaddr & PG_PS) != 0) {
2059			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2060			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2061			anychanged++;
2062			continue;
2063		}
2064
2065		/*
2066		 * Weed out invalid mappings. Note: we assume that the page
2067		 * directory table is always allocated, and in kernel virtual.
2068		 */
2069		if (ptpaddr == 0)
2070			continue;
2071
2072		if (pdnxt > eindex) {
2073			pdnxt = eindex;
2074		}
2075
2076		for (; sindex != pdnxt; sindex++) {
2077
2078			pt_entry_t pbits;
2079			vm_page_t m;
2080
2081			pbits = ptbase[sindex];
2082
2083			if (pbits & PG_MANAGED) {
2084				m = NULL;
2085				if (pbits & PG_A) {
2086					m = PHYS_TO_VM_PAGE(pbits);
2087					vm_page_flag_set(m, PG_REFERENCED);
2088					pbits &= ~PG_A;
2089				}
2090				if (pbits & PG_M) {
2091					if (pmap_track_modified(i386_ptob(sindex))) {
2092						if (m == NULL)
2093							m = PHYS_TO_VM_PAGE(pbits);
2094						vm_page_dirty(m);
2095						pbits &= ~PG_M;
2096					}
2097				}
2098			}
2099
2100			pbits &= ~PG_RW;
2101
2102			if (pbits != ptbase[sindex]) {
2103				ptbase[sindex] = pbits;
2104				anychanged = 1;
2105			}
2106		}
2107	}
2108	if (anychanged)
2109		pmap_invalidate_all(pmap);
2110}
2111
2112/*
2113 *	Insert the given physical page (p) at
2114 *	the specified virtual address (v) in the
2115 *	target physical map with the protection requested.
2116 *
2117 *	If specified, the page will be wired down, meaning
2118 *	that the related pte can not be reclaimed.
2119 *
2120 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2121 *	or lose information.  That is, this routine must actually
2122 *	insert this page into the given map NOW.
2123 */
2124void
2125pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2126	   boolean_t wired)
2127{
2128	vm_offset_t pa;
2129	register pt_entry_t *pte;
2130	vm_offset_t opa;
2131	pt_entry_t origpte, newpte;
2132	vm_page_t mpte;
2133
2134	if (pmap == NULL)
2135		return;
2136
2137	va &= PG_FRAME;
2138#ifdef PMAP_DIAGNOSTIC
2139	if (va > VM_MAX_KERNEL_ADDRESS)
2140		panic("pmap_enter: toobig");
2141	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2142		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2143#endif
2144
2145	mpte = NULL;
2146	/*
2147	 * In the case that a page table page is not
2148	 * resident, we are creating it here.
2149	 */
2150	if (va < VM_MAXUSER_ADDRESS) {
2151		mpte = pmap_allocpte(pmap, va);
2152	}
2153#if 0 && defined(PMAP_DIAGNOSTIC)
2154	else {
2155		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2156		if (((origpte = *pdeaddr) & PG_V) == 0) {
2157			panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
2158				pmap->pm_pdir[PTDPTDI], origpte, va);
2159		}
2160		if (smp_active) {
2161			pdeaddr = (vm_offset_t *) IdlePTDS[PCPU_GET(cpuid)];
2162			if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
2163				if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
2164					printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
2165				printf("cpuid: %d, pdeaddr: 0x%x\n", PCPU_GET(cpuid), pdeaddr);
2166				panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
2167					pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
2168			}
2169		}
2170	}
2171#endif
2172
2173	pte = pmap_pte(pmap, va);
2174
2175	/*
2176	 * Page Directory table entry not valid, we need a new PT page
2177	 */
2178	if (pte == NULL) {
2179		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2180			(void *)pmap->pm_pdir[PTDPTDI], va);
2181	}
2182
2183	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2184	origpte = *(vm_offset_t *)pte;
2185	opa = origpte & PG_FRAME;
2186
2187	if (origpte & PG_PS)
2188		panic("pmap_enter: attempted pmap_enter on 4MB page");
2189
2190	/*
2191	 * Mapping has not changed, must be protection or wiring change.
2192	 */
2193	if (origpte && (opa == pa)) {
2194		/*
2195		 * Wiring change, just update stats. We don't worry about
2196		 * wiring PT pages as they remain resident as long as there
2197		 * are valid mappings in them. Hence, if a user page is wired,
2198		 * the PT page will be also.
2199		 */
2200		if (wired && ((origpte & PG_W) == 0))
2201			pmap->pm_stats.wired_count++;
2202		else if (!wired && (origpte & PG_W))
2203			pmap->pm_stats.wired_count--;
2204
2205#if defined(PMAP_DIAGNOSTIC)
2206		if (pmap_nw_modified((pt_entry_t) origpte)) {
2207			printf(
2208	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2209			    va, origpte);
2210		}
2211#endif
2212
2213		/*
2214		 * Remove extra pte reference
2215		 */
2216		if (mpte)
2217			mpte->hold_count--;
2218
2219		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2220			if ((origpte & PG_RW) == 0) {
2221				*pte |= PG_RW;
2222#ifdef SMP
2223				cpu_invlpg((void *)va);
2224				if (pmap->pm_active & PCPU_GET(other_cpus))
2225					smp_invltlb();
2226#else
2227				invltlb_1pg(va);
2228#endif
2229			}
2230			return;
2231		}
2232
2233		/*
2234		 * We might be turning off write access to the page,
2235		 * so we go ahead and sense modify status.
2236		 */
2237		if (origpte & PG_MANAGED) {
2238			if ((origpte & PG_M) && pmap_track_modified(va)) {
2239				vm_page_t om;
2240				om = PHYS_TO_VM_PAGE(opa);
2241				vm_page_dirty(om);
2242			}
2243			pa |= PG_MANAGED;
2244		}
2245		goto validate;
2246	}
2247	/*
2248	 * Mapping has changed, invalidate old range and fall through to
2249	 * handle validating new mapping.
2250	 */
2251	if (opa) {
2252		int err;
2253		err = pmap_remove_pte(pmap, pte, va);
2254		if (err)
2255			panic("pmap_enter: pte vanished, va: 0x%x", va);
2256	}
2257
2258	/*
2259	 * Enter on the PV list if part of our managed memory. Note that we
2260	 * raise IPL while manipulating pv_table since pmap_enter can be
2261	 * called at interrupt time.
2262	 */
2263	if (pmap_initialized &&
2264	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2265		pmap_insert_entry(pmap, va, mpte, m);
2266		pa |= PG_MANAGED;
2267	}
2268
2269	/*
2270	 * Increment counters
2271	 */
2272	pmap->pm_stats.resident_count++;
2273	if (wired)
2274		pmap->pm_stats.wired_count++;
2275
2276validate:
2277	/*
2278	 * Now validate mapping with desired protection/wiring.
2279	 */
2280	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2281
2282	if (wired)
2283		newpte |= PG_W;
2284	if (va < VM_MAXUSER_ADDRESS)
2285		newpte |= PG_U;
2286	if (pmap == kernel_pmap)
2287		newpte |= pgeflag;
2288
2289	/*
2290	 * if the mapping or permission bits are different, we need
2291	 * to update the pte.
2292	 */
2293	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2294		*pte = newpte | PG_A;
2295		/*if (origpte)*/ {
2296#ifdef SMP
2297			cpu_invlpg((void *)va);
2298			if (pmap->pm_active & PCPU_GET(other_cpus))
2299				smp_invltlb();
2300#else
2301			invltlb_1pg(va);
2302#endif
2303		}
2304	}
2305}
2306
2307/*
2308 * this code makes some *MAJOR* assumptions:
2309 * 1. Current pmap & pmap exists.
2310 * 2. Not wired.
2311 * 3. Read access.
2312 * 4. No page table pages.
2313 * 5. Tlbflush is deferred to calling procedure.
2314 * 6. Page IS managed.
2315 * but is *MUCH* faster than pmap_enter...
2316 */
2317
2318static vm_page_t
2319pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2320{
2321	pt_entry_t *pte;
2322	vm_offset_t pa;
2323
2324	/*
2325	 * In the case that a page table page is not
2326	 * resident, we are creating it here.
2327	 */
2328	if (va < VM_MAXUSER_ADDRESS) {
2329		unsigned ptepindex;
2330		pd_entry_t ptepa;
2331
2332		/*
2333		 * Calculate pagetable page index
2334		 */
2335		ptepindex = va >> PDRSHIFT;
2336		if (mpte && (mpte->pindex == ptepindex)) {
2337			mpte->hold_count++;
2338		} else {
2339retry:
2340			/*
2341			 * Get the page directory entry
2342			 */
2343			ptepa = pmap->pm_pdir[ptepindex];
2344
2345			/*
2346			 * If the page table page is mapped, we just increment
2347			 * the hold count, and activate it.
2348			 */
2349			if (ptepa) {
2350				if (ptepa & PG_PS)
2351					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2352				if (pmap->pm_ptphint &&
2353					(pmap->pm_ptphint->pindex == ptepindex)) {
2354					mpte = pmap->pm_ptphint;
2355				} else {
2356					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2357					pmap->pm_ptphint = mpte;
2358				}
2359				if (mpte == NULL)
2360					goto retry;
2361				mpte->hold_count++;
2362			} else {
2363				mpte = _pmap_allocpte(pmap, ptepindex);
2364			}
2365		}
2366	} else {
2367		mpte = NULL;
2368	}
2369
2370	/*
2371	 * This call to vtopte makes the assumption that we are
2372	 * entering the page into the current pmap.  In order to support
2373	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2374	 * But that isn't as quick as vtopte.
2375	 */
2376	pte = vtopte(va);
2377	if (*pte) {
2378		if (mpte)
2379			pmap_unwire_pte_hold(pmap, mpte);
2380		return 0;
2381	}
2382
2383	/*
2384	 * Enter on the PV list if part of our managed memory. Note that we
2385	 * raise IPL while manipulating pv_table since pmap_enter can be
2386	 * called at interrupt time.
2387	 */
2388	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2389		pmap_insert_entry(pmap, va, mpte, m);
2390
2391	/*
2392	 * Increment counters
2393	 */
2394	pmap->pm_stats.resident_count++;
2395
2396	pa = VM_PAGE_TO_PHYS(m);
2397
2398	/*
2399	 * Now validate mapping with RO protection
2400	 */
2401	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2402		*pte = pa | PG_V | PG_U;
2403	else
2404		*pte = pa | PG_V | PG_U | PG_MANAGED;
2405
2406	return mpte;
2407}
2408
2409/*
2410 * Make a temporary mapping for a physical address.  This is only intended
2411 * to be used for panic dumps.
2412 */
2413void *
2414pmap_kenter_temporary(vm_offset_t pa, int i)
2415{
2416	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2417	return ((void *)crashdumpmap);
2418}
2419
2420#define MAX_INIT_PT (96)
2421/*
2422 * pmap_object_init_pt preloads the ptes for a given object
2423 * into the specified pmap.  This eliminates the blast of soft
2424 * faults on process startup and immediately after an mmap.
2425 */
2426void
2427pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2428		    vm_object_t object, vm_pindex_t pindex,
2429		    vm_size_t size, int limit)
2430{
2431	vm_offset_t tmpidx;
2432	int psize;
2433	vm_page_t p, mpte;
2434	int objpgs;
2435
2436	if (pmap == NULL || object == NULL)
2437		return;
2438
2439	/*
2440	 * This code maps large physical mmap regions into the
2441	 * processor address space.  Note that some shortcuts
2442	 * are taken, but the code works.
2443	 */
2444	if (pseflag && (object->type == OBJT_DEVICE) &&
2445	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2446		int i;
2447		vm_page_t m[1];
2448		unsigned int ptepindex;
2449		int npdes;
2450		pd_entry_t ptepa;
2451
2452		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2453			return;
2454
2455retry:
2456		p = vm_page_lookup(object, pindex);
2457		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2458			goto retry;
2459
2460		if (p == NULL) {
2461			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2462			if (p == NULL)
2463				return;
2464			m[0] = p;
2465
2466			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2467				vm_page_free(p);
2468				return;
2469			}
2470
2471			p = vm_page_lookup(object, pindex);
2472			vm_page_wakeup(p);
2473		}
2474
2475		ptepa = VM_PAGE_TO_PHYS(p);
2476		if (ptepa & (NBPDR - 1)) {
2477			return;
2478		}
2479
2480		p->valid = VM_PAGE_BITS_ALL;
2481
2482		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2483		npdes = size >> PDRSHIFT;
2484		for(i = 0; i < npdes; i++) {
2485			pmap->pm_pdir[ptepindex] =
2486			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2487			ptepa += NBPDR;
2488			ptepindex += 1;
2489		}
2490		vm_page_flag_set(p, PG_MAPPED);
2491		invltlb();
2492		return;
2493	}
2494
2495	psize = i386_btop(size);
2496
2497	if ((object->type != OBJT_VNODE) ||
2498		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2499			(object->resident_page_count > MAX_INIT_PT))) {
2500		return;
2501	}
2502
2503	if (psize + pindex > object->size) {
2504		if (object->size < pindex)
2505			return;
2506		psize = object->size - pindex;
2507	}
2508
2509	mpte = NULL;
2510	/*
2511	 * if we are processing a major portion of the object, then scan the
2512	 * entire thing.
2513	 */
2514	if (psize > (object->resident_page_count >> 2)) {
2515		objpgs = psize;
2516
2517		for (p = TAILQ_FIRST(&object->memq);
2518		    ((objpgs > 0) && (p != NULL));
2519		    p = TAILQ_NEXT(p, listq)) {
2520
2521			tmpidx = p->pindex;
2522			if (tmpidx < pindex) {
2523				continue;
2524			}
2525			tmpidx -= pindex;
2526			if (tmpidx >= psize) {
2527				continue;
2528			}
2529			/*
2530			 * don't allow an madvise to blow away our really
2531			 * free pages allocating pv entries.
2532			 */
2533			if ((limit & MAP_PREFAULT_MADVISE) &&
2534			    cnt.v_free_count < cnt.v_free_reserved) {
2535				break;
2536			}
2537			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2538				(p->busy == 0) &&
2539			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2540				if ((p->queue - p->pc) == PQ_CACHE)
2541					vm_page_deactivate(p);
2542				vm_page_busy(p);
2543				mpte = pmap_enter_quick(pmap,
2544					addr + i386_ptob(tmpidx), p, mpte);
2545				vm_page_flag_set(p, PG_MAPPED);
2546				vm_page_wakeup(p);
2547			}
2548			objpgs -= 1;
2549		}
2550	} else {
2551		/*
2552		 * else lookup the pages one-by-one.
2553		 */
2554		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2555			/*
2556			 * don't allow an madvise to blow away our really
2557			 * free pages allocating pv entries.
2558			 */
2559			if ((limit & MAP_PREFAULT_MADVISE) &&
2560			    cnt.v_free_count < cnt.v_free_reserved) {
2561				break;
2562			}
2563			p = vm_page_lookup(object, tmpidx + pindex);
2564			if (p &&
2565			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2566				(p->busy == 0) &&
2567			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2568				if ((p->queue - p->pc) == PQ_CACHE)
2569					vm_page_deactivate(p);
2570				vm_page_busy(p);
2571				mpte = pmap_enter_quick(pmap,
2572					addr + i386_ptob(tmpidx), p, mpte);
2573				vm_page_flag_set(p, PG_MAPPED);
2574				vm_page_wakeup(p);
2575			}
2576		}
2577	}
2578	return;
2579}
2580
2581/*
2582 * pmap_prefault provides a quick way of clustering
2583 * pagefaults into a processes address space.  It is a "cousin"
2584 * of pmap_object_init_pt, except it runs at page fault time instead
2585 * of mmap time.
2586 */
2587#define PFBAK 4
2588#define PFFOR 4
2589#define PAGEORDER_SIZE (PFBAK+PFFOR)
2590
2591static int pmap_prefault_pageorder[] = {
2592	-PAGE_SIZE, PAGE_SIZE,
2593	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2594	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2595	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2596};
2597
2598void
2599pmap_prefault(pmap, addra, entry)
2600	pmap_t pmap;
2601	vm_offset_t addra;
2602	vm_map_entry_t entry;
2603{
2604	int i;
2605	vm_offset_t starta;
2606	vm_offset_t addr;
2607	vm_pindex_t pindex;
2608	vm_page_t m, mpte;
2609	vm_object_t object;
2610
2611	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2612		return;
2613
2614	object = entry->object.vm_object;
2615
2616	starta = addra - PFBAK * PAGE_SIZE;
2617	if (starta < entry->start) {
2618		starta = entry->start;
2619	} else if (starta > addra) {
2620		starta = 0;
2621	}
2622
2623	mpte = NULL;
2624	for (i = 0; i < PAGEORDER_SIZE; i++) {
2625		vm_object_t lobject;
2626		pt_entry_t *pte;
2627
2628		addr = addra + pmap_prefault_pageorder[i];
2629		if (addr > addra + (PFFOR * PAGE_SIZE))
2630			addr = 0;
2631
2632		if (addr < starta || addr >= entry->end)
2633			continue;
2634
2635		if ((*pmap_pde(pmap, addr)) == NULL)
2636			continue;
2637
2638		pte = vtopte(addr);
2639		if (*pte)
2640			continue;
2641
2642		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2643		lobject = object;
2644		for (m = vm_page_lookup(lobject, pindex);
2645		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2646		    lobject = lobject->backing_object) {
2647			if (lobject->backing_object_offset & PAGE_MASK)
2648				break;
2649			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2650			m = vm_page_lookup(lobject->backing_object, pindex);
2651		}
2652
2653		/*
2654		 * give-up when a page is not in memory
2655		 */
2656		if (m == NULL)
2657			break;
2658
2659		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2660			(m->busy == 0) &&
2661		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2662
2663			if ((m->queue - m->pc) == PQ_CACHE) {
2664				vm_page_deactivate(m);
2665			}
2666			vm_page_busy(m);
2667			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2668			vm_page_flag_set(m, PG_MAPPED);
2669			vm_page_wakeup(m);
2670		}
2671	}
2672}
2673
2674/*
2675 *	Routine:	pmap_change_wiring
2676 *	Function:	Change the wiring attribute for a map/virtual-address
2677 *			pair.
2678 *	In/out conditions:
2679 *			The mapping must already exist in the pmap.
2680 */
2681void
2682pmap_change_wiring(pmap, va, wired)
2683	register pmap_t pmap;
2684	vm_offset_t va;
2685	boolean_t wired;
2686{
2687	register pt_entry_t *pte;
2688
2689	if (pmap == NULL)
2690		return;
2691
2692	pte = pmap_pte(pmap, va);
2693
2694	if (wired && !pmap_pte_w(pte))
2695		pmap->pm_stats.wired_count++;
2696	else if (!wired && pmap_pte_w(pte))
2697		pmap->pm_stats.wired_count--;
2698
2699	/*
2700	 * Wiring is not a hardware characteristic so there is no need to
2701	 * invalidate TLB.
2702	 */
2703	pmap_pte_set_w(pte, wired);
2704}
2705
2706
2707
2708/*
2709 *	Copy the range specified by src_addr/len
2710 *	from the source map to the range dst_addr/len
2711 *	in the destination map.
2712 *
2713 *	This routine is only advisory and need not do anything.
2714 */
2715
2716void
2717pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2718	  vm_offset_t src_addr)
2719{
2720	vm_offset_t addr;
2721	vm_offset_t end_addr = src_addr + len;
2722	vm_offset_t pdnxt;
2723	pd_entry_t src_frame, dst_frame;
2724	vm_page_t m;
2725	pd_entry_t saved_pde;
2726
2727	if (dst_addr != src_addr)
2728		return;
2729
2730	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2731	if (src_frame != (PTDpde & PG_FRAME))
2732		return;
2733
2734	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2735	if (dst_frame != (APTDpde & PG_FRAME)) {
2736		APTDpde = dst_frame | PG_RW | PG_V;
2737#if defined(SMP)
2738		/* The page directory is not shared between CPUs */
2739		cpu_invltlb();
2740#else
2741		invltlb();
2742#endif
2743	}
2744 	saved_pde = APTDpde & (PG_FRAME | PG_RW | PG_V);
2745	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2746		pt_entry_t *src_pte, *dst_pte;
2747		vm_page_t dstmpte, srcmpte;
2748		pd_entry_t srcptepaddr;
2749		unsigned ptepindex;
2750
2751		if (addr >= UPT_MIN_ADDRESS)
2752			panic("pmap_copy: invalid to pmap_copy page tables\n");
2753
2754		/*
2755		 * Don't let optional prefaulting of pages make us go
2756		 * way below the low water mark of free pages or way
2757		 * above high water mark of used pv entries.
2758		 */
2759		if (cnt.v_free_count < cnt.v_free_reserved ||
2760		    pv_entry_count > pv_entry_high_water)
2761			break;
2762
2763		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2764		ptepindex = addr >> PDRSHIFT;
2765
2766		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2767		if (srcptepaddr == 0)
2768			continue;
2769
2770		if (srcptepaddr & PG_PS) {
2771			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2772				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2773				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2774			}
2775			continue;
2776		}
2777
2778		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2779		if ((srcmpte == NULL) ||
2780		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2781			continue;
2782
2783		if (pdnxt > end_addr)
2784			pdnxt = end_addr;
2785
2786		src_pte = vtopte(addr);
2787		dst_pte = avtopte(addr);
2788		while (addr < pdnxt) {
2789			pt_entry_t ptetemp;
2790			ptetemp = *src_pte;
2791			/*
2792			 * we only virtual copy managed pages
2793			 */
2794			if ((ptetemp & PG_MANAGED) != 0) {
2795				/*
2796				 * We have to check after allocpte for the
2797				 * pte still being around...  allocpte can
2798				 * block.
2799				 */
2800				dstmpte = pmap_allocpte(dst_pmap, addr);
2801				if ((APTDpde & PG_FRAME) !=
2802				    (saved_pde & PG_FRAME)) {
2803					APTDpde = saved_pde;
2804printf ("IT HAPPENNED!");
2805#if defined(SMP)
2806					cpu_invltlb();
2807#else
2808					invltlb();
2809#endif
2810				}
2811				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2812					/*
2813					 * Clear the modified and
2814					 * accessed (referenced) bits
2815					 * during the copy.
2816					 */
2817					m = PHYS_TO_VM_PAGE(ptetemp);
2818					*dst_pte = ptetemp & ~(PG_M | PG_A);
2819					dst_pmap->pm_stats.resident_count++;
2820					pmap_insert_entry(dst_pmap, addr,
2821						dstmpte, m);
2822	 			} else {
2823					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2824				}
2825				if (dstmpte->hold_count >= srcmpte->hold_count)
2826					break;
2827			}
2828			addr += PAGE_SIZE;
2829			src_pte++;
2830			dst_pte++;
2831		}
2832	}
2833}
2834
2835/*
2836 *	Routine:	pmap_kernel
2837 *	Function:
2838 *		Returns the physical map handle for the kernel.
2839 */
2840pmap_t
2841pmap_kernel()
2842{
2843	return (kernel_pmap);
2844}
2845
2846/*
2847 *	pmap_zero_page zeros the specified hardware page by mapping
2848 *	the page into KVM and using bzero to clear its contents.
2849 */
2850void
2851pmap_zero_page(vm_offset_t phys)
2852{
2853
2854	if (*CMAP2)
2855		panic("pmap_zero_page: CMAP2 busy");
2856
2857	*CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2858	invltlb_1pg((vm_offset_t)CADDR2);
2859
2860#if defined(I686_CPU)
2861	if (cpu_class == CPUCLASS_686)
2862		i686_pagezero(CADDR2);
2863	else
2864#endif
2865		bzero(CADDR2, PAGE_SIZE);
2866	*CMAP2 = 0;
2867}
2868
2869/*
2870 *	pmap_zero_page_area zeros the specified hardware page by mapping
2871 *	the page into KVM and using bzero to clear its contents.
2872 *
2873 *	off and size may not cover an area beyond a single hardware page.
2874 */
2875void
2876pmap_zero_page_area(vm_offset_t phys, int off, int size)
2877{
2878
2879	if (*CMAP2)
2880		panic("pmap_zero_page: CMAP2 busy");
2881
2882	*CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2883	invltlb_1pg((vm_offset_t)CADDR2);
2884
2885#if defined(I686_CPU)
2886	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2887		i686_pagezero(CADDR2);
2888	else
2889#endif
2890		bzero((char *)CADDR2 + off, size);
2891	*CMAP2 = 0;
2892}
2893
2894/*
2895 *	pmap_copy_page copies the specified (machine independent)
2896 *	page by mapping the page into virtual memory and using
2897 *	bcopy to copy the page, one machine dependent page at a
2898 *	time.
2899 */
2900void
2901pmap_copy_page(vm_offset_t src, vm_offset_t dst)
2902{
2903
2904	if (*CMAP1)
2905		panic("pmap_copy_page: CMAP1 busy");
2906	if (*CMAP2)
2907		panic("pmap_copy_page: CMAP2 busy");
2908
2909	*CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2910	*CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2911#ifdef I386_CPU
2912	invltlb();
2913#else
2914	invlpg((u_int)CADDR1);
2915	invlpg((u_int)CADDR2);
2916#endif
2917
2918	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2919
2920	*CMAP1 = 0;
2921	*CMAP2 = 0;
2922}
2923
2924
2925/*
2926 *	Routine:	pmap_pageable
2927 *	Function:
2928 *		Make the specified pages (by pmap, offset)
2929 *		pageable (or not) as requested.
2930 *
2931 *		A page which is not pageable may not take
2932 *		a fault; therefore, its page table entry
2933 *		must remain valid for the duration.
2934 *
2935 *		This routine is merely advisory; pmap_enter
2936 *		will specify that these pages are to be wired
2937 *		down (or not) as appropriate.
2938 */
2939void
2940pmap_pageable(pmap, sva, eva, pageable)
2941	pmap_t pmap;
2942	vm_offset_t sva, eva;
2943	boolean_t pageable;
2944{
2945}
2946
2947/*
2948 * this routine returns true if a physical page resides
2949 * in the given pmap.
2950 */
2951boolean_t
2952pmap_page_exists(pmap, m)
2953	pmap_t pmap;
2954	vm_page_t m;
2955{
2956	register pv_entry_t pv;
2957	int s;
2958
2959	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2960		return FALSE;
2961
2962	s = splvm();
2963
2964	/*
2965	 * Not found, check current mappings returning immediately if found.
2966	 */
2967	for (pv = TAILQ_FIRST(&m->md.pv_list);
2968		pv;
2969		pv = TAILQ_NEXT(pv, pv_list)) {
2970		if (pv->pv_pmap == pmap) {
2971			splx(s);
2972			return TRUE;
2973		}
2974	}
2975	splx(s);
2976	return (FALSE);
2977}
2978
2979#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2980/*
2981 * Remove all pages from specified address space
2982 * this aids process exit speeds.  Also, this code
2983 * is special cased for current process only, but
2984 * can have the more generic (and slightly slower)
2985 * mode enabled.  This is much faster than pmap_remove
2986 * in the case of running down an entire address space.
2987 */
2988void
2989pmap_remove_pages(pmap, sva, eva)
2990	pmap_t pmap;
2991	vm_offset_t sva, eva;
2992{
2993	pt_entry_t *pte, tpte;
2994	vm_page_t m;
2995	pv_entry_t pv, npv;
2996	int s;
2997
2998#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2999	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
3000		printf("warning: pmap_remove_pages called with non-current pmap\n");
3001		return;
3002	}
3003#endif
3004
3005	s = splvm();
3006	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
3007
3008		if (pv->pv_va >= eva || pv->pv_va < sva) {
3009			npv = TAILQ_NEXT(pv, pv_plist);
3010			continue;
3011		}
3012
3013#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3014		pte = vtopte(pv->pv_va);
3015#else
3016		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3017#endif
3018		tpte = *pte;
3019
3020		if (tpte == 0) {
3021			printf("TPTE at %p  IS ZERO @ VA %08x\n",
3022							pte, pv->pv_va);
3023			panic("bad pte");
3024		}
3025
3026/*
3027 * We cannot remove wired pages from a process' mapping at this time
3028 */
3029		if (tpte & PG_W) {
3030			npv = TAILQ_NEXT(pv, pv_plist);
3031			continue;
3032		}
3033
3034		m = PHYS_TO_VM_PAGE(tpte);
3035		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3036		    ("vm_page_t %p phys_addr mismatch %08x %08x",
3037		    m, m->phys_addr, tpte));
3038
3039		KASSERT(m < &vm_page_array[vm_page_array_size],
3040			("pmap_remove_pages: bad tpte %x", tpte));
3041
3042		pv->pv_pmap->pm_stats.resident_count--;
3043
3044		*pte = 0;
3045
3046		/*
3047		 * Update the vm_page_t clean and reference bits.
3048		 */
3049		if (tpte & PG_M) {
3050			vm_page_dirty(m);
3051		}
3052
3053		npv = TAILQ_NEXT(pv, pv_plist);
3054		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3055
3056		m->md.pv_list_count--;
3057		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3058		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3059			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3060		}
3061
3062		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3063		free_pv_entry(pv);
3064	}
3065	splx(s);
3066	pmap_invalidate_all(pmap);
3067}
3068
3069/*
3070 * pmap_testbit tests bits in pte's
3071 * note that the testbit/changebit routines are inline,
3072 * and a lot of things compile-time evaluate.
3073 */
3074static boolean_t
3075pmap_testbit(m, bit)
3076	vm_page_t m;
3077	int bit;
3078{
3079	pv_entry_t pv;
3080	pt_entry_t *pte;
3081	int s;
3082
3083	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3084		return FALSE;
3085
3086	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3087		return FALSE;
3088
3089	s = splvm();
3090
3091	for (pv = TAILQ_FIRST(&m->md.pv_list);
3092		pv;
3093		pv = TAILQ_NEXT(pv, pv_list)) {
3094
3095		/*
3096		 * if the bit being tested is the modified bit, then
3097		 * mark clean_map and ptes as never
3098		 * modified.
3099		 */
3100		if (bit & (PG_A|PG_M)) {
3101			if (!pmap_track_modified(pv->pv_va))
3102				continue;
3103		}
3104
3105#if defined(PMAP_DIAGNOSTIC)
3106		if (!pv->pv_pmap) {
3107			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3108			continue;
3109		}
3110#endif
3111		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3112		if (*pte & bit) {
3113			splx(s);
3114			return TRUE;
3115		}
3116	}
3117	splx(s);
3118	return (FALSE);
3119}
3120
3121/*
3122 * this routine is used to modify bits in ptes
3123 */
3124static __inline void
3125pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3126{
3127	register pv_entry_t pv;
3128	register pt_entry_t *pte;
3129	int s;
3130
3131	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3132		return;
3133
3134	s = splvm();
3135
3136	/*
3137	 * Loop over all current mappings setting/clearing as appropos If
3138	 * setting RO do we need to clear the VAC?
3139	 */
3140	for (pv = TAILQ_FIRST(&m->md.pv_list);
3141		pv;
3142		pv = TAILQ_NEXT(pv, pv_list)) {
3143
3144		/*
3145		 * don't write protect pager mappings
3146		 */
3147		if (!setem && (bit == PG_RW)) {
3148			if (!pmap_track_modified(pv->pv_va))
3149				continue;
3150		}
3151
3152#if defined(PMAP_DIAGNOSTIC)
3153		if (!pv->pv_pmap) {
3154			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3155			continue;
3156		}
3157#endif
3158
3159		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3160
3161		if (setem) {
3162			*pte |= bit;
3163			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3164		} else {
3165			pt_entry_t pbits = *pte;
3166			if (pbits & bit) {
3167				if (bit == PG_RW) {
3168					if (pbits & PG_M) {
3169						vm_page_dirty(m);
3170					}
3171					*pte = pbits & ~(PG_M|PG_RW);
3172				} else {
3173					*pte = pbits & ~bit;
3174				}
3175				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3176			}
3177		}
3178	}
3179	splx(s);
3180}
3181
3182/*
3183 *      pmap_page_protect:
3184 *
3185 *      Lower the permission for all mappings to a given page.
3186 */
3187void
3188pmap_page_protect(vm_page_t m, vm_prot_t prot)
3189{
3190	if ((prot & VM_PROT_WRITE) == 0) {
3191		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3192			pmap_changebit(m, PG_RW, FALSE);
3193		} else {
3194			pmap_remove_all(m);
3195		}
3196	}
3197}
3198
3199vm_offset_t
3200pmap_phys_address(ppn)
3201	int ppn;
3202{
3203	return (i386_ptob(ppn));
3204}
3205
3206/*
3207 *	pmap_ts_referenced:
3208 *
3209 *	Return the count of reference bits for a page, clearing all of them.
3210 */
3211int
3212pmap_ts_referenced(vm_page_t m)
3213{
3214	register pv_entry_t pv, pvf, pvn;
3215	pt_entry_t *pte;
3216	int s;
3217	int rtval = 0;
3218
3219	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3220		return (rtval);
3221
3222	s = splvm();
3223
3224	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3225
3226		pvf = pv;
3227
3228		do {
3229			pvn = TAILQ_NEXT(pv, pv_list);
3230
3231			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3232
3233			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3234
3235			if (!pmap_track_modified(pv->pv_va))
3236				continue;
3237
3238			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3239
3240			if (pte && (*pte & PG_A)) {
3241				*pte &= ~PG_A;
3242
3243				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3244
3245				rtval++;
3246				if (rtval > 4) {
3247					break;
3248				}
3249			}
3250		} while ((pv = pvn) != NULL && pv != pvf);
3251	}
3252	splx(s);
3253
3254	return (rtval);
3255}
3256
3257/*
3258 *	pmap_is_modified:
3259 *
3260 *	Return whether or not the specified physical page was modified
3261 *	in any physical maps.
3262 */
3263boolean_t
3264pmap_is_modified(vm_page_t m)
3265{
3266	return pmap_testbit(m, PG_M);
3267}
3268
3269/*
3270 *	Clear the modify bits on the specified physical page.
3271 */
3272void
3273pmap_clear_modify(vm_page_t m)
3274{
3275	pmap_changebit(m, PG_M, FALSE);
3276}
3277
3278/*
3279 *	pmap_clear_reference:
3280 *
3281 *	Clear the reference bit on the specified physical page.
3282 */
3283void
3284pmap_clear_reference(vm_page_t m)
3285{
3286	pmap_changebit(m, PG_A, FALSE);
3287}
3288
3289/*
3290 * Miscellaneous support routines follow
3291 */
3292
3293static void
3294i386_protection_init()
3295{
3296	register int *kp, prot;
3297
3298	kp = protection_codes;
3299	for (prot = 0; prot < 8; prot++) {
3300		switch (prot) {
3301		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3302			/*
3303			 * Read access is also 0. There isn't any execute bit,
3304			 * so just make it readable.
3305			 */
3306		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3307		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3308		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3309			*kp++ = 0;
3310			break;
3311		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3312		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3313		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3314		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3315			*kp++ = PG_RW;
3316			break;
3317		}
3318	}
3319}
3320
3321/*
3322 * Map a set of physical memory pages into the kernel virtual
3323 * address space. Return a pointer to where it is mapped. This
3324 * routine is intended to be used for mapping device memory,
3325 * NOT real memory.
3326 */
3327void *
3328pmap_mapdev(pa, size)
3329	vm_offset_t pa;
3330	vm_size_t size;
3331{
3332	vm_offset_t va, tmpva, offset;
3333	pt_entry_t *pte;
3334
3335	offset = pa & PAGE_MASK;
3336	size = roundup(offset + size, PAGE_SIZE);
3337
3338	GIANT_REQUIRED;
3339
3340	va = kmem_alloc_pageable(kernel_map, size);
3341	if (!va)
3342		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3343
3344	pa = pa & PG_FRAME;
3345	for (tmpva = va; size > 0;) {
3346		pte = vtopte(tmpva);
3347		*pte = pa | PG_RW | PG_V | pgeflag;
3348		size -= PAGE_SIZE;
3349		tmpva += PAGE_SIZE;
3350		pa += PAGE_SIZE;
3351	}
3352	invltlb();
3353
3354	return ((void *)(va + offset));
3355}
3356
3357void
3358pmap_unmapdev(va, size)
3359	vm_offset_t va;
3360	vm_size_t size;
3361{
3362	vm_offset_t base, offset;
3363
3364	base = va & PG_FRAME;
3365	offset = va & PAGE_MASK;
3366	size = roundup(offset + size, PAGE_SIZE);
3367	kmem_free(kernel_map, base, size);
3368}
3369
3370/*
3371 * perform the pmap work for mincore
3372 */
3373int
3374pmap_mincore(pmap, addr)
3375	pmap_t pmap;
3376	vm_offset_t addr;
3377{
3378
3379	pt_entry_t *ptep, pte;
3380	vm_page_t m;
3381	int val = 0;
3382
3383	ptep = pmap_pte(pmap, addr);
3384	if (ptep == 0) {
3385		return 0;
3386	}
3387
3388	if ((pte = *ptep) != 0) {
3389		vm_offset_t pa;
3390
3391		val = MINCORE_INCORE;
3392		if ((pte & PG_MANAGED) == 0)
3393			return val;
3394
3395		pa = pte & PG_FRAME;
3396
3397		m = PHYS_TO_VM_PAGE(pa);
3398
3399		/*
3400		 * Modified by us
3401		 */
3402		if (pte & PG_M)
3403			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3404		/*
3405		 * Modified by someone
3406		 */
3407		else if (m->dirty || pmap_is_modified(m))
3408			val |= MINCORE_MODIFIED_OTHER;
3409		/*
3410		 * Referenced by us
3411		 */
3412		if (pte & PG_A)
3413			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3414
3415		/*
3416		 * Referenced by someone
3417		 */
3418		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3419			val |= MINCORE_REFERENCED_OTHER;
3420			vm_page_flag_set(m, PG_REFERENCED);
3421		}
3422	}
3423	return val;
3424}
3425
3426void
3427pmap_activate(struct thread *td)
3428{
3429	struct proc *p = td->td_proc;
3430	pmap_t	pmap;
3431	u_int32_t  cr3;
3432
3433	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3434#if defined(SMP)
3435	pmap->pm_active |= 1 << PCPU_GET(cpuid);
3436#else
3437	pmap->pm_active |= 1;
3438#endif
3439#if defined(SWTCH_OPTIM_STATS)
3440	tlb_flush_count++;
3441#endif
3442	cr3 = vtophys(pmap->pm_pdir);
3443	/* XXXKSE this is wrong.
3444	 * pmap_activate is for the current thread on the current cpu
3445	 */
3446	if (p->p_flag & P_KSES) {
3447		/* Make sure all other cr3 entries are updated. */
3448		/* what if they are running?  XXXKSE (maybe abort them) */
3449		FOREACH_THREAD_IN_PROC(p, td) {
3450			td->td_pcb->pcb_cr3 = cr3;
3451		}
3452	} else {
3453		td->td_pcb->pcb_cr3 = cr3;
3454	}
3455	load_cr3(cr3);
3456}
3457
3458vm_offset_t
3459pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3460{
3461
3462	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3463		return addr;
3464	}
3465
3466	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3467	return addr;
3468}
3469
3470
3471#if defined(PMAP_DEBUG)
3472pmap_pid_dump(int pid)
3473{
3474	pmap_t pmap;
3475	struct proc *p;
3476	int npte = 0;
3477	int index;
3478
3479	sx_slock(&allproc_lock);
3480	LIST_FOREACH(p, &allproc, p_list) {
3481		if (p->p_pid != pid)
3482			continue;
3483
3484		if (p->p_vmspace) {
3485			int i,j;
3486			index = 0;
3487			pmap = vmspace_pmap(p->p_vmspace);
3488			for (i = 0; i < NPDEPG; i++) {
3489				pd_entry_t *pde;
3490				pt_entry_t *pte;
3491				vm_offset_t base = i << PDRSHIFT;
3492
3493				pde = &pmap->pm_pdir[i];
3494				if (pde && pmap_pde_v(pde)) {
3495					for (j = 0; j < NPTEPG; j++) {
3496						vm_offset_t va = base + (j << PAGE_SHIFT);
3497						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3498							if (index) {
3499								index = 0;
3500								printf("\n");
3501							}
3502							sx_sunlock(&allproc_lock);
3503							return npte;
3504						}
3505						pte = pmap_pte_quick(pmap, va);
3506						if (pte && pmap_pte_v(pte)) {
3507							pt_entry_t pa;
3508							vm_page_t m;
3509							pa = *pte;
3510							m = PHYS_TO_VM_PAGE(pa);
3511							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3512								va, pa, m->hold_count, m->wire_count, m->flags);
3513							npte++;
3514							index++;
3515							if (index >= 2) {
3516								index = 0;
3517								printf("\n");
3518							} else {
3519								printf(" ");
3520							}
3521						}
3522					}
3523				}
3524			}
3525		}
3526	}
3527	sx_sunlock(&allproc_lock);
3528	return npte;
3529}
3530#endif
3531
3532#if defined(DEBUG)
3533
3534static void	pads __P((pmap_t pm));
3535void		pmap_pvdump __P((vm_offset_t pa));
3536
3537/* print address space of pmap*/
3538static void
3539pads(pm)
3540	pmap_t pm;
3541{
3542	int i, j;
3543	vm_offset_t va;
3544	pt_entry_t *ptep;
3545
3546	if (pm == kernel_pmap)
3547		return;
3548	for (i = 0; i < NPDEPG; i++)
3549		if (pm->pm_pdir[i])
3550			for (j = 0; j < NPTEPG; j++) {
3551				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3552				if (pm == kernel_pmap && va < KERNBASE)
3553					continue;
3554				if (pm != kernel_pmap && va > VM_MAXUSER_ADDRESS)
3555					continue;
3556				ptep = pmap_pte_quick(pm, va);
3557				if (pmap_pte_v(ptep))
3558					printf("%x:%x ", va, *ptep);
3559			};
3560
3561}
3562
3563void
3564pmap_pvdump(pa)
3565	vm_offset_t pa;
3566{
3567	pv_entry_t pv;
3568	vm_page_t m;
3569
3570	printf("pa %x", pa);
3571	m = PHYS_TO_VM_PAGE(pa);
3572	for (pv = TAILQ_FIRST(&m->md.pv_list);
3573		pv;
3574		pv = TAILQ_NEXT(pv, pv_list)) {
3575		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3576		pads(pv->pv_pmap);
3577	}
3578	printf(" ");
3579}
3580#endif
3581