pmap.c revision 85762
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 85762 2001-10-31 03:06:33Z dillon $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_kstack_pages.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/kernel.h>
79#include <sys/lock.h>
80#include <sys/mman.h>
81#include <sys/msgbuf.h>
82#include <sys/mutex.h>
83#include <sys/proc.h>
84#include <sys/sx.h>
85#include <sys/user.h>
86#include <sys/vmmeter.h>
87#include <sys/sysctl.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/vm_zone.h>
99
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103#if defined(SMP) || defined(APIC_IO)
104#include <machine/smp.h>
105#include <machine/apic.h>
106#include <machine/segments.h>
107#include <machine/tss.h>
108#include <machine/globaldata.h>
109#endif /* SMP || APIC_IO */
110
111#define PMAP_KEEP_PDIRS
112#ifndef PMAP_SHPGPERPROC
113#define PMAP_SHPGPERPROC 200
114#endif
115
116#if defined(DIAGNOSTIC)
117#define PMAP_DIAGNOSTIC
118#endif
119
120#define MINPV 2048
121
122#if !defined(PMAP_DIAGNOSTIC)
123#define PMAP_INLINE __inline
124#else
125#define PMAP_INLINE
126#endif
127
128/*
129 * Get PDEs and PTEs for user/kernel address space
130 */
131#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
132#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
133
134#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
135#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
136#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
137#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
138#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
139
140#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
141#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
142
143/*
144 * Given a map and a machine independent protection code,
145 * convert to a vax protection code.
146 */
147#define pte_prot(m, p)	(protection_codes[p])
148static int protection_codes[8];
149
150static struct pmap kernel_pmap_store;
151pmap_t kernel_pmap;
152LIST_HEAD(pmaplist, pmap);
153struct pmaplist allpmaps;
154
155vm_offset_t avail_start;	/* PA of first available physical page */
156vm_offset_t avail_end;		/* PA of last available physical page */
157vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
158vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
159static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
160static int pgeflag;		/* PG_G or-in */
161static int pseflag;		/* PG_PS or-in */
162
163static vm_object_t kptobj;
164
165static int nkpt;
166vm_offset_t kernel_vm_end;
167
168/*
169 * Data for the pv entry allocation mechanism
170 */
171static vm_zone_t pvzone;
172static struct vm_zone pvzone_store;
173static struct vm_object pvzone_obj;
174static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
175static int pmap_pagedaemon_waken = 0;
176static struct pv_entry *pvinit;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static unsigned *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
201static unsigned * get_ptbase __P((pmap_t pmap));
202static pv_entry_t get_pv_entry __P((void));
203static void	i386_protection_init __P((void));
204static __inline void	pmap_changebit __P((vm_page_t m, int bit, boolean_t setem));
205
206static void	pmap_remove_all __P((vm_page_t m));
207static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte));
209static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
210					vm_offset_t sva));
211static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
212static int pmap_remove_entry __P((struct pmap *pmap, vm_page_t m,
213					vm_offset_t va));
214static boolean_t pmap_testbit __P((vm_page_t m, int bit));
215static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
216		vm_page_t mpte, vm_page_t m));
217
218static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
219
220static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
221static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
222static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
223static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
224static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
225static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
226
227static unsigned pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE unsigned *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	unsigned *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = (unsigned *) pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr)
262{
263	vm_offset_t newaddr = addr;
264#ifndef DISABLE_PSE
265	if (cpu_feature & CPUID_PSE) {
266		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
267	}
268#endif
269	return newaddr;
270}
271
272/*
273 *	Bootstrap the system enough to run with virtual memory.
274 *
275 *	On the i386 this is called after mapping has already been enabled
276 *	and just syncs the pmap module with what has already been done.
277 *	[We can't call it easily with mapping off since the kernel is not
278 *	mapped with PA == VA, hence we would have to relocate every address
279 *	from the linked base (virtual) address "KERNBASE" to the actual
280 *	(physical) address starting relative to 0]
281 */
282void
283pmap_bootstrap(firstaddr, loadaddr)
284	vm_offset_t firstaddr;
285	vm_offset_t loadaddr;
286{
287	vm_offset_t va;
288	pt_entry_t *pte;
289	int i;
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * The kernel's pmap is statically allocated so we don't have to use
313	 * pmap_create, which is unlikely to work correctly at this part of
314	 * the boot sequence (XXX and which no longer exists).
315	 */
316	kernel_pmap = &kernel_pmap_store;
317
318	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
319	kernel_pmap->pm_count = 1;
320	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
321	TAILQ_INIT(&kernel_pmap->pm_pvlist);
322	LIST_INIT(&allpmaps);
323	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
324	nkpt = NKPT;
325
326	/*
327	 * Reserve some special page table entries/VA space for temporary
328	 * mapping of pages.
329	 */
330#define	SYSMAP(c, p, v, n)	\
331	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
332
333	va = virtual_avail;
334	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
335
336	/*
337	 * CMAP1/CMAP2 are used for zeroing and copying pages.
338	 */
339	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
340	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
341
342	/*
343	 * Crashdump maps.
344	 */
345	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
346
347	/*
348	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
349	 * XXX ptmmap is not used.
350	 */
351	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
352
353	/*
354	 * msgbufp is used to map the system message buffer.
355	 * XXX msgbufmap is not used.
356	 */
357	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
358	       atop(round_page(MSGBUF_SIZE)))
359
360	/*
361	 * ptemap is used for pmap_pte_quick
362	 */
363	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
364
365	virtual_avail = va;
366
367	*(int *) CMAP1 = *(int *) CMAP2 = 0;
368	for (i = 0; i < NKPT; i++)
369		PTD[i] = 0;
370
371	pgeflag = 0;
372#if !defined(SMP)			/* XXX - see also mp_machdep.c */
373	if (cpu_feature & CPUID_PGE) {
374		pgeflag = PG_G;
375	}
376#endif
377
378/*
379 * Initialize the 4MB page size flag
380 */
381	pseflag = 0;
382/*
383 * The 4MB page version of the initial
384 * kernel page mapping.
385 */
386	pdir4mb = 0;
387
388#if !defined(DISABLE_PSE)
389	if (cpu_feature & CPUID_PSE) {
390		unsigned ptditmp;
391		/*
392		 * Note that we have enabled PSE mode
393		 */
394		pseflag = PG_PS;
395		ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
396		ptditmp &= ~(NBPDR - 1);
397		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
398		pdir4mb = ptditmp;
399
400#if !defined(SMP)
401		/*
402		 * Enable the PSE mode.
403		 */
404		load_cr4(rcr4() | CR4_PSE);
405
406		/*
407		 * We can do the mapping here for the single processor
408		 * case.  We simply ignore the old page table page from
409		 * now on.
410		 */
411		/*
412		 * For SMP, we still need 4K pages to bootstrap APs,
413		 * PSE will be enabled as soon as all APs are up.
414		 */
415		PTD[KPTDI] = (pd_entry_t) ptditmp;
416		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
417		invltlb();
418#endif
419	}
420#endif
421
422#ifdef SMP
423	if (cpu_apic_address == 0)
424		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
425
426	/* local apic is mapped on last page */
427	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
428	    (cpu_apic_address & PG_FRAME));
429#endif
430
431	invltlb();
432}
433
434#ifdef SMP
435/*
436 * Set 4mb pdir for mp startup
437 */
438void
439pmap_set_opt(void)
440{
441	if (pseflag && (cpu_feature & CPUID_PSE)) {
442		load_cr4(rcr4() | CR4_PSE);
443		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
444			kernel_pmap->pm_pdir[KPTDI] =
445			    PTD[KPTDI] = (pd_entry_t)pdir4mb;
446			cpu_invltlb();
447		}
448	}
449}
450#endif
451
452/*
453 *	Initialize the pmap module.
454 *	Called by vm_init, to initialize any structures that the pmap
455 *	system needs to map virtual memory.
456 *	pmap_init has been enhanced to support in a fairly consistant
457 *	way, discontiguous physical memory.
458 */
459void
460pmap_init(phys_start, phys_end)
461	vm_offset_t phys_start, phys_end;
462{
463	int i;
464	int initial_pvs;
465
466	/*
467	 * object for kernel page table pages
468	 */
469	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
470
471	/*
472	 * Allocate memory for random pmap data structures.  Includes the
473	 * pv_head_table.
474	 */
475
476	for(i = 0; i < vm_page_array_size; i++) {
477		vm_page_t m;
478
479		m = &vm_page_array[i];
480		TAILQ_INIT(&m->md.pv_list);
481		m->md.pv_list_count = 0;
482	}
483
484	/*
485	 * init the pv free list
486	 */
487	initial_pvs = vm_page_array_size;
488	if (initial_pvs < MINPV)
489		initial_pvs = MINPV;
490	pvzone = &pvzone_store;
491	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
492		initial_pvs * sizeof (struct pv_entry));
493	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
494	    vm_page_array_size);
495
496	/*
497	 * Now it is safe to enable pv_table recording.
498	 */
499	pmap_initialized = TRUE;
500}
501
502/*
503 * Initialize the address space (zone) for the pv_entries.  Set a
504 * high water mark so that the system can recover from excessive
505 * numbers of pv entries.
506 */
507void
508pmap_init2()
509{
510	int shpgperproc = PMAP_SHPGPERPROC;
511
512	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
513	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
514	pv_entry_high_water = 9 * (pv_entry_max / 10);
515	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
516}
517
518
519/***************************************************
520 * Low level helper routines.....
521 ***************************************************/
522
523#if defined(PMAP_DIAGNOSTIC)
524
525/*
526 * This code checks for non-writeable/modified pages.
527 * This should be an invalid condition.
528 */
529static int
530pmap_nw_modified(pt_entry_t ptea)
531{
532	int pte;
533
534	pte = (int) ptea;
535
536	if ((pte & (PG_M|PG_RW)) == PG_M)
537		return 1;
538	else
539		return 0;
540}
541#endif
542
543
544/*
545 * this routine defines the region(s) of memory that should
546 * not be tested for the modified bit.
547 */
548static PMAP_INLINE int
549pmap_track_modified(vm_offset_t va)
550{
551	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
552		return 1;
553	else
554		return 0;
555}
556
557static PMAP_INLINE void
558invltlb_1pg(vm_offset_t va)
559{
560#ifdef I386_CPU
561	invltlb();
562#else
563	invlpg(va);
564#endif
565}
566
567static __inline void
568pmap_TLB_invalidate(pmap_t pmap, vm_offset_t va)
569{
570#if defined(SMP)
571	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
572		cpu_invlpg((void *)va);
573	if (pmap->pm_active & PCPU_GET(other_cpus))
574		smp_invltlb();
575#else
576	if (pmap->pm_active)
577		invltlb_1pg(va);
578#endif
579}
580
581static __inline void
582pmap_TLB_invalidate_all(pmap_t pmap)
583{
584#if defined(SMP)
585	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
586		cpu_invltlb();
587	if (pmap->pm_active & PCPU_GET(other_cpus))
588		smp_invltlb();
589#else
590	if (pmap->pm_active)
591		invltlb();
592#endif
593}
594
595/*
596 * Return an address which is the base of the Virtual mapping of
597 * all the PTEs for the given pmap. Note this doesn't say that
598 * all the PTEs will be present or that the pages there are valid.
599 * The PTEs are made available by the recursive mapping trick.
600 * It will map in the alternate PTE space if needed.
601 */
602static unsigned *
603get_ptbase(pmap)
604	pmap_t pmap;
605{
606	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
607
608	/* are we current address space or kernel? */
609	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
610		return (unsigned *) PTmap;
611	}
612	/* otherwise, we are alternate address space */
613	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
614		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
615#if defined(SMP)
616		/* The page directory is not shared between CPUs */
617		cpu_invltlb();
618#else
619		invltlb();
620#endif
621	}
622	return (unsigned *) APTmap;
623}
624
625/*
626 * Super fast pmap_pte routine best used when scanning
627 * the pv lists.  This eliminates many coarse-grained
628 * invltlb calls.  Note that many of the pv list
629 * scans are across different pmaps.  It is very wasteful
630 * to do an entire invltlb for checking a single mapping.
631 */
632
633static unsigned *
634pmap_pte_quick(pmap, va)
635	register pmap_t pmap;
636	vm_offset_t va;
637{
638	unsigned pde, newpf;
639	if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
640		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
641		unsigned index = i386_btop(va);
642		/* are we current address space or kernel? */
643		if ((pmap == kernel_pmap) ||
644			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
645			return (unsigned *) PTmap + index;
646		}
647		newpf = pde & PG_FRAME;
648		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
649			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
650			invltlb_1pg((vm_offset_t) PADDR1);
651		}
652		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
653	}
654	return (0);
655}
656
657/*
658 *	Routine:	pmap_extract
659 *	Function:
660 *		Extract the physical page address associated
661 *		with the given map/virtual_address pair.
662 */
663vm_offset_t
664pmap_extract(pmap, va)
665	register pmap_t pmap;
666	vm_offset_t va;
667{
668	vm_offset_t rtval;
669	vm_offset_t pdirindex;
670	pdirindex = va >> PDRSHIFT;
671	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
672		unsigned *pte;
673		if ((rtval & PG_PS) != 0) {
674			rtval &= ~(NBPDR - 1);
675			rtval |= va & (NBPDR - 1);
676			return rtval;
677		}
678		pte = get_ptbase(pmap) + i386_btop(va);
679		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
680		return rtval;
681	}
682	return 0;
683
684}
685
686/***************************************************
687 * Low level mapping routines.....
688 ***************************************************/
689
690/*
691 * add a wired page to the kva
692 * note that in order for the mapping to take effect -- you
693 * should do a invltlb after doing the pmap_kenter...
694 */
695PMAP_INLINE void
696pmap_kenter(va, pa)
697	vm_offset_t va;
698	register vm_offset_t pa;
699{
700	register unsigned *pte;
701	unsigned npte, opte;
702
703	npte = pa | PG_RW | PG_V | pgeflag;
704	pte = (unsigned *)vtopte(va);
705	opte = *pte;
706	*pte = npte;
707	/*if (opte)*/
708		invltlb_1pg(va);	/* XXX what about SMP? */
709}
710
711/*
712 * remove a page from the kernel pagetables
713 */
714PMAP_INLINE void
715pmap_kremove(va)
716	vm_offset_t va;
717{
718	register unsigned *pte;
719
720	pte = (unsigned *)vtopte(va);
721	*pte = 0;
722	invltlb_1pg(va);	/* XXX what about SMP? */
723}
724
725/*
726 *	Used to map a range of physical addresses into kernel
727 *	virtual address space.
728 *
729 *	The value passed in '*virt' is a suggested virtual address for
730 *	the mapping. Architectures which can support a direct-mapped
731 *	physical to virtual region can return the appropriate address
732 *	within that region, leaving '*virt' unchanged. Other
733 *	architectures should map the pages starting at '*virt' and
734 *	update '*virt' with the first usable address after the mapped
735 *	region.
736 */
737vm_offset_t
738pmap_map(virt, start, end, prot)
739	vm_offset_t *virt;
740	vm_offset_t start;
741	vm_offset_t end;
742	int prot;
743{
744	vm_offset_t sva = *virt;
745	vm_offset_t va = sva;
746	while (start < end) {
747		pmap_kenter(va, start);
748		va += PAGE_SIZE;
749		start += PAGE_SIZE;
750	}
751	*virt = va;
752	return (sva);
753}
754
755
756/*
757 * Add a list of wired pages to the kva
758 * this routine is only used for temporary
759 * kernel mappings that do not need to have
760 * page modification or references recorded.
761 * Note that old mappings are simply written
762 * over.  The page *must* be wired.
763 */
764void
765pmap_qenter(va, m, count)
766	vm_offset_t va;
767	vm_page_t *m;
768	int count;
769{
770	vm_offset_t end_va;
771
772	end_va = va + count * PAGE_SIZE;
773
774	while (va < end_va) {
775		unsigned *pte;
776
777		pte = (unsigned *)vtopte(va);
778		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
779#ifdef SMP
780		cpu_invlpg((void *)va);
781#else
782		invltlb_1pg(va);
783#endif
784		va += PAGE_SIZE;
785		m++;
786	}
787#ifdef SMP
788	smp_invltlb();
789#endif
790}
791
792/*
793 * this routine jerks page mappings from the
794 * kernel -- it is meant only for temporary mappings.
795 */
796void
797pmap_qremove(va, count)
798	vm_offset_t va;
799	int count;
800{
801	vm_offset_t end_va;
802
803	end_va = va + count*PAGE_SIZE;
804
805	while (va < end_va) {
806		unsigned *pte;
807
808		pte = (unsigned *)vtopte(va);
809		*pte = 0;
810#ifdef SMP
811		cpu_invlpg((void *)va);
812#else
813		invltlb_1pg(va);
814#endif
815		va += PAGE_SIZE;
816	}
817#ifdef SMP
818	smp_invltlb();
819#endif
820}
821
822static vm_page_t
823pmap_page_lookup(object, pindex)
824	vm_object_t object;
825	vm_pindex_t pindex;
826{
827	vm_page_t m;
828retry:
829	m = vm_page_lookup(object, pindex);
830	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
831		goto retry;
832	return m;
833}
834
835/*
836 * Create the Uarea stack for a new process.
837 * This routine directly affects the fork perf for a process.
838 */
839void
840pmap_new_proc(p)
841	struct proc *p;
842{
843#ifdef I386_CPU
844	int updateneeded = 0;
845#endif
846	int i;
847	vm_object_t upobj;
848	vm_offset_t up;
849	vm_page_t m;
850	unsigned *ptek, oldpte;
851
852	/*
853	 * allocate object for the upages
854	 */
855	upobj = p->p_upages_obj;
856	if (upobj == NULL) {
857		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
858		p->p_upages_obj = upobj;
859	}
860
861	/* get a kernel virtual address for the U area for this proc */
862	up = (vm_offset_t)p->p_uarea;
863	if (up == 0) {
864		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
865		if (up == 0)
866			panic("pmap_new_proc: upage allocation failed");
867		p->p_uarea = (struct user *)up;
868	}
869
870	ptek = (unsigned *)vtopte(up);
871
872	for (i = 0; i < UAREA_PAGES; i++) {
873		/*
874		 * Get a kernel stack page
875		 */
876		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
877
878		/*
879		 * Wire the page
880		 */
881		m->wire_count++;
882		cnt.v_wire_count++;
883
884		oldpte = *(ptek + i);
885		/*
886		 * Enter the page into the kernel address space.
887		 */
888		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
889		if (oldpte) {
890#ifdef I386_CPU
891			updateneeded = 1;
892#else
893			invlpg(up + i * PAGE_SIZE);
894#endif
895		}
896
897		vm_page_wakeup(m);
898		vm_page_flag_clear(m, PG_ZERO);
899		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
900		m->valid = VM_PAGE_BITS_ALL;
901	}
902#ifdef I386_CPU
903	if (updateneeded)
904		invltlb();
905#endif
906}
907
908/*
909 * Dispose the U-Area for a process that has exited.
910 * This routine directly impacts the exit perf of a process.
911 */
912void
913pmap_dispose_proc(p)
914	struct proc *p;
915{
916	int i;
917	vm_object_t upobj;
918	vm_offset_t up;
919	vm_page_t m;
920	unsigned *ptek, oldpte;
921
922	upobj = p->p_upages_obj;
923	up = (vm_offset_t)p->p_uarea;
924	ptek = (unsigned *)vtopte(up);
925	for (i = 0; i < UAREA_PAGES; i++) {
926		m = vm_page_lookup(upobj, i);
927		if (m == NULL)
928			panic("pmap_dispose_proc: upage already missing?");
929		vm_page_busy(m);
930		oldpte = *(ptek + i);
931		*(ptek + i) = 0;
932#ifndef I386_CPU
933		invlpg(up + i * PAGE_SIZE);
934#endif
935		vm_page_unwire(m, 0);
936		vm_page_free(m);
937	}
938#ifdef I386_CPU
939	invltlb();
940#endif
941}
942
943/*
944 * Allow the U_AREA for a process to be prejudicially paged out.
945 */
946void
947pmap_swapout_proc(p)
948	struct proc *p;
949{
950	int i;
951	vm_object_t upobj;
952	vm_offset_t up;
953	vm_page_t m;
954
955	upobj = p->p_upages_obj;
956	up = (vm_offset_t)p->p_uarea;
957	for (i = 0; i < UAREA_PAGES; i++) {
958		m = vm_page_lookup(upobj, i);
959		if (m == NULL)
960			panic("pmap_swapout_proc: upage already missing?");
961		vm_page_dirty(m);
962		vm_page_unwire(m, 0);
963		pmap_kremove(up + i * PAGE_SIZE);
964	}
965}
966
967/*
968 * Bring the U-Area for a specified process back in.
969 */
970void
971pmap_swapin_proc(p)
972	struct proc *p;
973{
974	int i,rv;
975	vm_object_t upobj;
976	vm_offset_t up;
977	vm_page_t m;
978
979	upobj = p->p_upages_obj;
980	up = (vm_offset_t)p->p_uarea;
981	for (i = 0; i < UAREA_PAGES; i++) {
982		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
983		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
984		if (m->valid != VM_PAGE_BITS_ALL) {
985			rv = vm_pager_get_pages(upobj, &m, 1, 0);
986			if (rv != VM_PAGER_OK)
987				panic("pmap_swapin_proc: cannot get upage for proc: %d\n", p->p_pid);
988			m = vm_page_lookup(upobj, i);
989			m->valid = VM_PAGE_BITS_ALL;
990		}
991		vm_page_wire(m);
992		vm_page_wakeup(m);
993		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
994	}
995}
996
997/*
998 * Create the kernel stack (including pcb for i386) for a new thread.
999 * This routine directly affects the fork perf for a process and
1000 * create performance for a thread.
1001 */
1002void
1003pmap_new_thread(td)
1004	struct thread *td;
1005{
1006#ifdef I386_CPU
1007	int updateneeded = 0;
1008#endif
1009	int i;
1010	vm_object_t ksobj;
1011	vm_page_t m;
1012	vm_offset_t ks;
1013	unsigned *ptek, oldpte;
1014
1015	/*
1016	 * allocate object for the kstack
1017	 */
1018	ksobj = td->td_kstack_obj;
1019	if (ksobj == NULL) {
1020		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1021		td->td_kstack_obj = ksobj;
1022	}
1023
1024#ifdef KSTACK_GUARD
1025	/* get a kernel virtual address for the kstack for this proc */
1026	ks = (vm_offset_t)td->td_kstack;
1027	if (ks == 0) {
1028		ks = kmem_alloc_nofault(kernel_map,
1029		    (KSTACK_PAGES + 1) * PAGE_SIZE);
1030		if (ks == 0)
1031			panic("pmap_new_thread: kstack allocation failed");
1032		ks += PAGE_SIZE;
1033		td->td_kstack = ks;
1034	}
1035
1036	ptek = (unsigned *)vtopte(ks - PAGE_SIZE);
1037	oldpte = *ptek;
1038	*ptek = 0;
1039	if (oldpte) {
1040#ifdef I386_CPU
1041		updateneeded = 1;
1042#else
1043		invlpg(ks - PAGE_SIZE);
1044#endif
1045	}
1046	ptek++;
1047#else
1048	/* get a kernel virtual address for the kstack for this proc */
1049	ks = (vm_offset_t)td->td_kstack;
1050	if (ks == 0) {
1051		ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
1052		if (ks == 0)
1053			panic("pmap_new_thread: kstack allocation failed");
1054		td->td_kstack = ks;
1055	}
1056#endif
1057	for (i = 0; i < KSTACK_PAGES; i++) {
1058		/*
1059		 * Get a kernel stack page
1060		 */
1061		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1062
1063		/*
1064		 * Wire the page
1065		 */
1066		m->wire_count++;
1067		cnt.v_wire_count++;
1068
1069		oldpte = *(ptek + i);
1070		/*
1071		 * Enter the page into the kernel address space.
1072		 */
1073		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1074		if (oldpte) {
1075#ifdef I386_CPU
1076			updateneeded = 1;
1077#else
1078			invlpg(ks + i * PAGE_SIZE);
1079#endif
1080		}
1081
1082		vm_page_wakeup(m);
1083		vm_page_flag_clear(m, PG_ZERO);
1084		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1085		m->valid = VM_PAGE_BITS_ALL;
1086	}
1087#ifdef I386_CPU
1088	if (updateneeded)
1089		invltlb();
1090#endif
1091}
1092
1093/*
1094 * Dispose the kernel stack for a thread that has exited.
1095 * This routine directly impacts the exit perf of a process and thread.
1096 */
1097void
1098pmap_dispose_thread(td)
1099	struct thread *td;
1100{
1101	int i;
1102	vm_object_t ksobj;
1103	vm_offset_t ks;
1104	vm_page_t m;
1105	unsigned *ptek, oldpte;
1106
1107	ksobj = td->td_kstack_obj;
1108	ks = td->td_kstack;
1109	ptek = (unsigned *)vtopte(ks);
1110	for (i = 0; i < KSTACK_PAGES; i++) {
1111		m = vm_page_lookup(ksobj, i);
1112		if (m == NULL)
1113			panic("pmap_dispose_thread: kstack already missing?");
1114		vm_page_busy(m);
1115		oldpte = *(ptek + i);
1116		*(ptek + i) = 0;
1117#ifndef I386_CPU
1118		invlpg(ks + i * PAGE_SIZE);
1119#endif
1120		vm_page_unwire(m, 0);
1121		vm_page_free(m);
1122	}
1123#ifdef I386_CPU
1124	invltlb();
1125#endif
1126}
1127
1128/*
1129 * Allow the Kernel stack for a thread to be prejudicially paged out.
1130 */
1131void
1132pmap_swapout_thread(td)
1133	struct thread *td;
1134{
1135	int i;
1136	vm_object_t ksobj;
1137	vm_offset_t ks;
1138	vm_page_t m;
1139
1140	ksobj = td->td_kstack_obj;
1141	ks = td->td_kstack;
1142	for (i = 0; i < KSTACK_PAGES; i++) {
1143		m = vm_page_lookup(ksobj, i);
1144		if (m == NULL)
1145			panic("pmap_swapout_thread: kstack already missing?");
1146		vm_page_dirty(m);
1147		vm_page_unwire(m, 0);
1148		pmap_kremove(ks + i * PAGE_SIZE);
1149	}
1150}
1151
1152/*
1153 * Bring the kernel stack for a specified thread back in.
1154 */
1155void
1156pmap_swapin_thread(td)
1157	struct thread *td;
1158{
1159	int i, rv;
1160	vm_object_t ksobj;
1161	vm_offset_t ks;
1162	vm_page_t m;
1163
1164	ksobj = td->td_kstack_obj;
1165	ks = td->td_kstack;
1166	for (i = 0; i < KSTACK_PAGES; i++) {
1167		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1168		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1169		if (m->valid != VM_PAGE_BITS_ALL) {
1170			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1171			if (rv != VM_PAGER_OK)
1172				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1173			m = vm_page_lookup(ksobj, i);
1174			m->valid = VM_PAGE_BITS_ALL;
1175		}
1176		vm_page_wire(m);
1177		vm_page_wakeup(m);
1178		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1179	}
1180}
1181
1182/***************************************************
1183 * Page table page management routines.....
1184 ***************************************************/
1185
1186/*
1187 * This routine unholds page table pages, and if the hold count
1188 * drops to zero, then it decrements the wire count.
1189 */
1190static int
1191_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1192
1193	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1194		;
1195
1196	if (m->hold_count == 0) {
1197		vm_offset_t pteva;
1198		/*
1199		 * unmap the page table page
1200		 */
1201		pmap->pm_pdir[m->pindex] = 0;
1202		--pmap->pm_stats.resident_count;
1203		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1204			(((unsigned) PTDpde) & PG_FRAME)) {
1205			/*
1206			 * Do a invltlb to make the invalidated mapping
1207			 * take effect immediately.
1208			 */
1209			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
1210			pmap_TLB_invalidate(pmap, pteva);
1211		}
1212
1213		if (pmap->pm_ptphint == m)
1214			pmap->pm_ptphint = NULL;
1215
1216		/*
1217		 * If the page is finally unwired, simply free it.
1218		 */
1219		--m->wire_count;
1220		if (m->wire_count == 0) {
1221
1222			vm_page_flash(m);
1223			vm_page_busy(m);
1224			vm_page_free_zero(m);
1225			--cnt.v_wire_count;
1226		}
1227		return 1;
1228	}
1229	return 0;
1230}
1231
1232static PMAP_INLINE int
1233pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1234{
1235	vm_page_unhold(m);
1236	if (m->hold_count == 0)
1237		return _pmap_unwire_pte_hold(pmap, m);
1238	else
1239		return 0;
1240}
1241
1242/*
1243 * After removing a page table entry, this routine is used to
1244 * conditionally free the page, and manage the hold/wire counts.
1245 */
1246static int
1247pmap_unuse_pt(pmap, va, mpte)
1248	pmap_t pmap;
1249	vm_offset_t va;
1250	vm_page_t mpte;
1251{
1252	unsigned ptepindex;
1253	if (va >= UPT_MIN_ADDRESS)
1254		return 0;
1255
1256	if (mpte == NULL) {
1257		ptepindex = (va >> PDRSHIFT);
1258		if (pmap->pm_ptphint &&
1259			(pmap->pm_ptphint->pindex == ptepindex)) {
1260			mpte = pmap->pm_ptphint;
1261		} else {
1262			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1263			pmap->pm_ptphint = mpte;
1264		}
1265	}
1266
1267	return pmap_unwire_pte_hold(pmap, mpte);
1268}
1269
1270void
1271pmap_pinit0(pmap)
1272	struct pmap *pmap;
1273{
1274	pmap->pm_pdir =
1275		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1276	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1277	pmap->pm_count = 1;
1278	pmap->pm_active = 0;
1279	pmap->pm_ptphint = NULL;
1280	TAILQ_INIT(&pmap->pm_pvlist);
1281	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1282	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1283}
1284
1285/*
1286 * Initialize a preallocated and zeroed pmap structure,
1287 * such as one in a vmspace structure.
1288 */
1289void
1290pmap_pinit(pmap)
1291	register struct pmap *pmap;
1292{
1293	vm_page_t ptdpg;
1294
1295	/*
1296	 * No need to allocate page table space yet but we do need a valid
1297	 * page directory table.
1298	 */
1299	if (pmap->pm_pdir == NULL)
1300		pmap->pm_pdir =
1301			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1302
1303	/*
1304	 * allocate object for the ptes
1305	 */
1306	if (pmap->pm_pteobj == NULL)
1307		pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1308
1309	/*
1310	 * allocate the page directory page
1311	 */
1312	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
1313			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1314
1315	ptdpg->wire_count = 1;
1316	++cnt.v_wire_count;
1317
1318
1319	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1320	ptdpg->valid = VM_PAGE_BITS_ALL;
1321
1322	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1323	if ((ptdpg->flags & PG_ZERO) == 0)
1324		bzero(pmap->pm_pdir, PAGE_SIZE);
1325
1326	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1327	/* Wire in kernel global address entries. */
1328	/* XXX copies current process, does not fill in MPPTDI */
1329	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1330#ifdef SMP
1331	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1332#endif
1333
1334	/* install self-referential address mapping entry */
1335	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1336		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1337
1338	pmap->pm_count = 1;
1339	pmap->pm_active = 0;
1340	pmap->pm_ptphint = NULL;
1341	TAILQ_INIT(&pmap->pm_pvlist);
1342	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1343}
1344
1345/*
1346 * Wire in kernel global address entries.  To avoid a race condition
1347 * between pmap initialization and pmap_growkernel, this procedure
1348 * should be called after the vmspace is attached to the process
1349 * but before this pmap is activated.
1350 */
1351void
1352pmap_pinit2(pmap)
1353	struct pmap *pmap;
1354{
1355	/* XXX: Remove this stub when no longer called */
1356}
1357
1358static int
1359pmap_release_free_page(pmap, p)
1360	struct pmap *pmap;
1361	vm_page_t p;
1362{
1363	unsigned *pde = (unsigned *) pmap->pm_pdir;
1364	/*
1365	 * This code optimizes the case of freeing non-busy
1366	 * page-table pages.  Those pages are zero now, and
1367	 * might as well be placed directly into the zero queue.
1368	 */
1369	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1370		return 0;
1371
1372	vm_page_busy(p);
1373
1374	/*
1375	 * Remove the page table page from the processes address space.
1376	 */
1377	pde[p->pindex] = 0;
1378	pmap->pm_stats.resident_count--;
1379
1380	if (p->hold_count)  {
1381		panic("pmap_release: freeing held page table page");
1382	}
1383	/*
1384	 * Page directory pages need to have the kernel
1385	 * stuff cleared, so they can go into the zero queue also.
1386	 */
1387	if (p->pindex == PTDPTDI) {
1388		bzero(pde + KPTDI, nkpt * PTESIZE);
1389#ifdef SMP
1390		pde[MPPTDI] = 0;
1391#endif
1392		pde[APTDPTDI] = 0;
1393		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1394	}
1395
1396	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1397		pmap->pm_ptphint = NULL;
1398
1399	p->wire_count--;
1400	cnt.v_wire_count--;
1401	vm_page_free_zero(p);
1402	return 1;
1403}
1404
1405/*
1406 * this routine is called if the page table page is not
1407 * mapped correctly.
1408 */
1409static vm_page_t
1410_pmap_allocpte(pmap, ptepindex)
1411	pmap_t	pmap;
1412	unsigned ptepindex;
1413{
1414	vm_offset_t pteva, ptepa;
1415	vm_page_t m;
1416
1417	/*
1418	 * Find or fabricate a new pagetable page
1419	 */
1420	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1421			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1422
1423	KASSERT(m->queue == PQ_NONE,
1424		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1425
1426	if (m->wire_count == 0)
1427		cnt.v_wire_count++;
1428	m->wire_count++;
1429
1430	/*
1431	 * Increment the hold count for the page table page
1432	 * (denoting a new mapping.)
1433	 */
1434	m->hold_count++;
1435
1436	/*
1437	 * Map the pagetable page into the process address space, if
1438	 * it isn't already there.
1439	 */
1440
1441	pmap->pm_stats.resident_count++;
1442
1443	ptepa = VM_PAGE_TO_PHYS(m);
1444	pmap->pm_pdir[ptepindex] =
1445		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1446
1447	/*
1448	 * Set the page table hint
1449	 */
1450	pmap->pm_ptphint = m;
1451
1452	/*
1453	 * Try to use the new mapping, but if we cannot, then
1454	 * do it with the routine that maps the page explicitly.
1455	 */
1456	if ((m->flags & PG_ZERO) == 0) {
1457		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1458			(((unsigned) PTDpde) & PG_FRAME)) {
1459			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1460			bzero((caddr_t) pteva, PAGE_SIZE);
1461		} else {
1462			pmap_zero_page(ptepa);
1463		}
1464	}
1465
1466	m->valid = VM_PAGE_BITS_ALL;
1467	vm_page_flag_clear(m, PG_ZERO);
1468	vm_page_flag_set(m, PG_MAPPED);
1469	vm_page_wakeup(m);
1470
1471	return m;
1472}
1473
1474static vm_page_t
1475pmap_allocpte(pmap, va)
1476	pmap_t	pmap;
1477	vm_offset_t va;
1478{
1479	unsigned ptepindex;
1480	vm_offset_t ptepa;
1481	vm_page_t m;
1482
1483	/*
1484	 * Calculate pagetable page index
1485	 */
1486	ptepindex = va >> PDRSHIFT;
1487
1488	/*
1489	 * Get the page directory entry
1490	 */
1491	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1492
1493	/*
1494	 * This supports switching from a 4MB page to a
1495	 * normal 4K page.
1496	 */
1497	if (ptepa & PG_PS) {
1498		pmap->pm_pdir[ptepindex] = 0;
1499		ptepa = 0;
1500		invltlb();
1501	}
1502
1503	/*
1504	 * If the page table page is mapped, we just increment the
1505	 * hold count, and activate it.
1506	 */
1507	if (ptepa) {
1508		/*
1509		 * In order to get the page table page, try the
1510		 * hint first.
1511		 */
1512		if (pmap->pm_ptphint &&
1513			(pmap->pm_ptphint->pindex == ptepindex)) {
1514			m = pmap->pm_ptphint;
1515		} else {
1516			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1517			pmap->pm_ptphint = m;
1518		}
1519		m->hold_count++;
1520		return m;
1521	}
1522	/*
1523	 * Here if the pte page isn't mapped, or if it has been deallocated.
1524	 */
1525	return _pmap_allocpte(pmap, ptepindex);
1526}
1527
1528
1529/***************************************************
1530* Pmap allocation/deallocation routines.
1531 ***************************************************/
1532
1533/*
1534 * Release any resources held by the given physical map.
1535 * Called when a pmap initialized by pmap_pinit is being released.
1536 * Should only be called if the map contains no valid mappings.
1537 */
1538void
1539pmap_release(pmap)
1540	register struct pmap *pmap;
1541{
1542	vm_page_t p,n,ptdpg;
1543	vm_object_t object = pmap->pm_pteobj;
1544	int curgeneration;
1545
1546#if defined(DIAGNOSTIC)
1547	if (object->ref_count != 1)
1548		panic("pmap_release: pteobj reference count != 1");
1549#endif
1550
1551	ptdpg = NULL;
1552	LIST_REMOVE(pmap, pm_list);
1553retry:
1554	curgeneration = object->generation;
1555	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1556		n = TAILQ_NEXT(p, listq);
1557		if (p->pindex == PTDPTDI) {
1558			ptdpg = p;
1559			continue;
1560		}
1561		while (1) {
1562			if (!pmap_release_free_page(pmap, p) &&
1563				(object->generation != curgeneration))
1564				goto retry;
1565		}
1566	}
1567
1568	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1569		goto retry;
1570}
1571
1572static int
1573kvm_size(SYSCTL_HANDLER_ARGS)
1574{
1575	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1576
1577        return sysctl_handle_long(oidp, &ksize, 0, req);
1578}
1579SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1580    0, 0, kvm_size, "IU", "Size of KVM");
1581
1582static int
1583kvm_free(SYSCTL_HANDLER_ARGS)
1584{
1585	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1586
1587        return sysctl_handle_long(oidp, &kfree, 0, req);
1588}
1589SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1590    0, 0, kvm_free, "IU", "Amount of KVM free");
1591
1592/*
1593 * grow the number of kernel page table entries, if needed
1594 */
1595void
1596pmap_growkernel(vm_offset_t addr)
1597{
1598	struct pmap *pmap;
1599	int s;
1600	vm_offset_t ptppaddr;
1601	vm_page_t nkpg;
1602	pd_entry_t newpdir;
1603
1604	s = splhigh();
1605	if (kernel_vm_end == 0) {
1606		kernel_vm_end = KERNBASE;
1607		nkpt = 0;
1608		while (pdir_pde(PTD, kernel_vm_end)) {
1609			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1610			nkpt++;
1611		}
1612	}
1613	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1614	while (kernel_vm_end < addr) {
1615		if (pdir_pde(PTD, kernel_vm_end)) {
1616			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1617			continue;
1618		}
1619
1620		/*
1621		 * This index is bogus, but out of the way
1622		 */
1623		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1624		if (!nkpg)
1625			panic("pmap_growkernel: no memory to grow kernel");
1626
1627		nkpt++;
1628
1629		vm_page_wire(nkpg);
1630		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1631		pmap_zero_page(ptppaddr);
1632		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1633		pdir_pde(PTD, kernel_vm_end) = newpdir;
1634
1635		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1636			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1637		}
1638		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1639	}
1640	splx(s);
1641}
1642
1643/*
1644 *	Retire the given physical map from service.
1645 *	Should only be called if the map contains
1646 *	no valid mappings.
1647 */
1648void
1649pmap_destroy(pmap)
1650	register pmap_t pmap;
1651{
1652	int count;
1653
1654	if (pmap == NULL)
1655		return;
1656
1657	count = --pmap->pm_count;
1658	if (count == 0) {
1659		pmap_release(pmap);
1660		panic("destroying a pmap is not yet implemented");
1661	}
1662}
1663
1664/*
1665 *	Add a reference to the specified pmap.
1666 */
1667void
1668pmap_reference(pmap)
1669	pmap_t pmap;
1670{
1671	if (pmap != NULL) {
1672		pmap->pm_count++;
1673	}
1674}
1675
1676/***************************************************
1677* page management routines.
1678 ***************************************************/
1679
1680/*
1681 * free the pv_entry back to the free list
1682 */
1683static PMAP_INLINE void
1684free_pv_entry(pv)
1685	pv_entry_t pv;
1686{
1687	pv_entry_count--;
1688	zfree(pvzone, pv);
1689}
1690
1691/*
1692 * get a new pv_entry, allocating a block from the system
1693 * when needed.
1694 * the memory allocation is performed bypassing the malloc code
1695 * because of the possibility of allocations at interrupt time.
1696 */
1697static pv_entry_t
1698get_pv_entry(void)
1699{
1700	pv_entry_count++;
1701	if (pv_entry_high_water &&
1702		(pv_entry_count > pv_entry_high_water) &&
1703		(pmap_pagedaemon_waken == 0)) {
1704		pmap_pagedaemon_waken = 1;
1705		wakeup (&vm_pages_needed);
1706	}
1707	return zalloc(pvzone);
1708}
1709
1710/*
1711 * This routine is very drastic, but can save the system
1712 * in a pinch.
1713 */
1714void
1715pmap_collect()
1716{
1717	int i;
1718	vm_page_t m;
1719	static int warningdone = 0;
1720
1721	if (pmap_pagedaemon_waken == 0)
1722		return;
1723
1724	if (warningdone < 5) {
1725		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1726		warningdone++;
1727	}
1728
1729	for(i = 0; i < vm_page_array_size; i++) {
1730		m = &vm_page_array[i];
1731		if (m->wire_count || m->hold_count || m->busy ||
1732		    (m->flags & PG_BUSY))
1733			continue;
1734		pmap_remove_all(m);
1735	}
1736	pmap_pagedaemon_waken = 0;
1737}
1738
1739
1740/*
1741 * If it is the first entry on the list, it is actually
1742 * in the header and we must copy the following entry up
1743 * to the header.  Otherwise we must search the list for
1744 * the entry.  In either case we free the now unused entry.
1745 */
1746
1747static int
1748pmap_remove_entry(pmap, m, va)
1749	struct pmap *pmap;
1750	vm_page_t m;
1751	vm_offset_t va;
1752{
1753	pv_entry_t pv;
1754	int rtval;
1755	int s;
1756
1757	s = splvm();
1758	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1759		for (pv = TAILQ_FIRST(&m->md.pv_list);
1760			pv;
1761			pv = TAILQ_NEXT(pv, pv_list)) {
1762			if (pmap == pv->pv_pmap && va == pv->pv_va)
1763				break;
1764		}
1765	} else {
1766		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1767			pv;
1768			pv = TAILQ_NEXT(pv, pv_plist)) {
1769			if (va == pv->pv_va)
1770				break;
1771		}
1772	}
1773
1774	rtval = 0;
1775	if (pv) {
1776
1777		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1778		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1779		m->md.pv_list_count--;
1780		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1781			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1782
1783		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1784		free_pv_entry(pv);
1785	}
1786
1787	splx(s);
1788	return rtval;
1789}
1790
1791/*
1792 * Create a pv entry for page at pa for
1793 * (pmap, va).
1794 */
1795static void
1796pmap_insert_entry(pmap, va, mpte, m)
1797	pmap_t pmap;
1798	vm_offset_t va;
1799	vm_page_t mpte;
1800	vm_page_t m;
1801{
1802
1803	int s;
1804	pv_entry_t pv;
1805
1806	s = splvm();
1807	pv = get_pv_entry();
1808	pv->pv_va = va;
1809	pv->pv_pmap = pmap;
1810	pv->pv_ptem = mpte;
1811
1812	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1813	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1814	m->md.pv_list_count++;
1815
1816	splx(s);
1817}
1818
1819/*
1820 * pmap_remove_pte: do the things to unmap a page in a process
1821 */
1822static int
1823pmap_remove_pte(pmap, ptq, va)
1824	struct pmap *pmap;
1825	unsigned *ptq;
1826	vm_offset_t va;
1827{
1828	unsigned oldpte;
1829	vm_page_t m;
1830
1831	oldpte = atomic_readandclear_int(ptq);
1832	if (oldpte & PG_W)
1833		pmap->pm_stats.wired_count -= 1;
1834	/*
1835	 * Machines that don't support invlpg, also don't support
1836	 * PG_G.
1837	 */
1838	if (oldpte & PG_G)
1839		invlpg(va);
1840	pmap->pm_stats.resident_count -= 1;
1841	if (oldpte & PG_MANAGED) {
1842		m = PHYS_TO_VM_PAGE(oldpte);
1843		if (oldpte & PG_M) {
1844#if defined(PMAP_DIAGNOSTIC)
1845			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1846				printf(
1847	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1848				    va, oldpte);
1849			}
1850#endif
1851			if (pmap_track_modified(va))
1852				vm_page_dirty(m);
1853		}
1854		if (oldpte & PG_A)
1855			vm_page_flag_set(m, PG_REFERENCED);
1856		return pmap_remove_entry(pmap, m, va);
1857	} else {
1858		return pmap_unuse_pt(pmap, va, NULL);
1859	}
1860
1861	return 0;
1862}
1863
1864/*
1865 * Remove a single page from a process address space
1866 */
1867static void
1868pmap_remove_page(pmap, va)
1869	struct pmap *pmap;
1870	register vm_offset_t va;
1871{
1872	register unsigned *ptq;
1873
1874	/*
1875	 * if there is no pte for this address, just skip it!!!
1876	 */
1877	if (*pmap_pde(pmap, va) == 0) {
1878		return;
1879	}
1880
1881	/*
1882	 * get a local va for mappings for this pmap.
1883	 */
1884	ptq = get_ptbase(pmap) + i386_btop(va);
1885	if (*ptq) {
1886		(void) pmap_remove_pte(pmap, ptq, va);
1887		pmap_TLB_invalidate(pmap, va);
1888	}
1889	return;
1890}
1891
1892/*
1893 *	Remove the given range of addresses from the specified map.
1894 *
1895 *	It is assumed that the start and end are properly
1896 *	rounded to the page size.
1897 */
1898void
1899pmap_remove(pmap, sva, eva)
1900	struct pmap *pmap;
1901	register vm_offset_t sva;
1902	register vm_offset_t eva;
1903{
1904	register unsigned *ptbase;
1905	vm_offset_t pdnxt;
1906	vm_offset_t ptpaddr;
1907	vm_offset_t sindex, eindex;
1908	int anyvalid;
1909
1910	if (pmap == NULL)
1911		return;
1912
1913	if (pmap->pm_stats.resident_count == 0)
1914		return;
1915
1916	/*
1917	 * special handling of removing one page.  a very
1918	 * common operation and easy to short circuit some
1919	 * code.
1920	 */
1921	if (((sva + PAGE_SIZE) == eva) &&
1922		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1923		pmap_remove_page(pmap, sva);
1924		return;
1925	}
1926
1927	anyvalid = 0;
1928
1929	/*
1930	 * Get a local virtual address for the mappings that are being
1931	 * worked with.
1932	 */
1933	ptbase = get_ptbase(pmap);
1934
1935	sindex = i386_btop(sva);
1936	eindex = i386_btop(eva);
1937
1938	for (; sindex < eindex; sindex = pdnxt) {
1939		unsigned pdirindex;
1940
1941		/*
1942		 * Calculate index for next page table.
1943		 */
1944		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1945		if (pmap->pm_stats.resident_count == 0)
1946			break;
1947
1948		pdirindex = sindex / NPDEPG;
1949		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1950			pmap->pm_pdir[pdirindex] = 0;
1951			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1952			anyvalid++;
1953			continue;
1954		}
1955
1956		/*
1957		 * Weed out invalid mappings. Note: we assume that the page
1958		 * directory table is always allocated, and in kernel virtual.
1959		 */
1960		if (ptpaddr == 0)
1961			continue;
1962
1963		/*
1964		 * Limit our scan to either the end of the va represented
1965		 * by the current page table page, or to the end of the
1966		 * range being removed.
1967		 */
1968		if (pdnxt > eindex) {
1969			pdnxt = eindex;
1970		}
1971
1972		for ( ;sindex != pdnxt; sindex++) {
1973			vm_offset_t va;
1974			if (ptbase[sindex] == 0) {
1975				continue;
1976			}
1977			va = i386_ptob(sindex);
1978
1979			anyvalid++;
1980			if (pmap_remove_pte(pmap,
1981				ptbase + sindex, va))
1982				break;
1983		}
1984	}
1985
1986	if (anyvalid)
1987		pmap_TLB_invalidate_all(pmap);
1988}
1989
1990/*
1991 *	Routine:	pmap_remove_all
1992 *	Function:
1993 *		Removes this physical page from
1994 *		all physical maps in which it resides.
1995 *		Reflects back modify bits to the pager.
1996 *
1997 *	Notes:
1998 *		Original versions of this routine were very
1999 *		inefficient because they iteratively called
2000 *		pmap_remove (slow...)
2001 */
2002
2003static void
2004pmap_remove_all(m)
2005	vm_page_t m;
2006{
2007	register pv_entry_t pv;
2008	register unsigned *pte, tpte;
2009	int s;
2010
2011#if defined(PMAP_DIAGNOSTIC)
2012	/*
2013	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2014	 * pages!
2015	 */
2016	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2017		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
2018	}
2019#endif
2020
2021	s = splvm();
2022	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2023		pv->pv_pmap->pm_stats.resident_count--;
2024
2025		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2026
2027		tpte = atomic_readandclear_int(pte);
2028		if (tpte & PG_W)
2029			pv->pv_pmap->pm_stats.wired_count--;
2030
2031		if (tpte & PG_A)
2032			vm_page_flag_set(m, PG_REFERENCED);
2033
2034		/*
2035		 * Update the vm_page_t clean and reference bits.
2036		 */
2037		if (tpte & PG_M) {
2038#if defined(PMAP_DIAGNOSTIC)
2039			if (pmap_nw_modified((pt_entry_t) tpte)) {
2040				printf(
2041	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
2042				    pv->pv_va, tpte);
2043			}
2044#endif
2045			if (pmap_track_modified(pv->pv_va))
2046				vm_page_dirty(m);
2047		}
2048		pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
2049
2050		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2051		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2052		m->md.pv_list_count--;
2053		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2054		free_pv_entry(pv);
2055	}
2056
2057	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2058
2059	splx(s);
2060}
2061
2062/*
2063 *	Set the physical protection on the
2064 *	specified range of this map as requested.
2065 */
2066void
2067pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2068{
2069	register unsigned *ptbase;
2070	vm_offset_t pdnxt, ptpaddr;
2071	vm_pindex_t sindex, eindex;
2072	int anychanged;
2073
2074	if (pmap == NULL)
2075		return;
2076
2077	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2078		pmap_remove(pmap, sva, eva);
2079		return;
2080	}
2081
2082	if (prot & VM_PROT_WRITE)
2083		return;
2084
2085	anychanged = 0;
2086
2087	ptbase = get_ptbase(pmap);
2088
2089	sindex = i386_btop(sva);
2090	eindex = i386_btop(eva);
2091
2092	for (; sindex < eindex; sindex = pdnxt) {
2093
2094		unsigned pdirindex;
2095
2096		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2097
2098		pdirindex = sindex / NPDEPG;
2099		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
2100			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2101			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2102			anychanged++;
2103			continue;
2104		}
2105
2106		/*
2107		 * Weed out invalid mappings. Note: we assume that the page
2108		 * directory table is always allocated, and in kernel virtual.
2109		 */
2110		if (ptpaddr == 0)
2111			continue;
2112
2113		if (pdnxt > eindex) {
2114			pdnxt = eindex;
2115		}
2116
2117		for (; sindex != pdnxt; sindex++) {
2118
2119			unsigned pbits;
2120			vm_page_t m;
2121
2122			pbits = ptbase[sindex];
2123
2124			if (pbits & PG_MANAGED) {
2125				m = NULL;
2126				if (pbits & PG_A) {
2127					m = PHYS_TO_VM_PAGE(pbits);
2128					vm_page_flag_set(m, PG_REFERENCED);
2129					pbits &= ~PG_A;
2130				}
2131				if (pbits & PG_M) {
2132					if (pmap_track_modified(i386_ptob(sindex))) {
2133						if (m == NULL)
2134							m = PHYS_TO_VM_PAGE(pbits);
2135						vm_page_dirty(m);
2136						pbits &= ~PG_M;
2137					}
2138				}
2139			}
2140
2141			pbits &= ~PG_RW;
2142
2143			if (pbits != ptbase[sindex]) {
2144				ptbase[sindex] = pbits;
2145				anychanged = 1;
2146			}
2147		}
2148	}
2149	if (anychanged)
2150		pmap_TLB_invalidate_all(pmap);
2151}
2152
2153/*
2154 *	Insert the given physical page (p) at
2155 *	the specified virtual address (v) in the
2156 *	target physical map with the protection requested.
2157 *
2158 *	If specified, the page will be wired down, meaning
2159 *	that the related pte can not be reclaimed.
2160 *
2161 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2162 *	or lose information.  That is, this routine must actually
2163 *	insert this page into the given map NOW.
2164 */
2165void
2166pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2167	   boolean_t wired)
2168{
2169	vm_offset_t pa;
2170	register unsigned *pte;
2171	vm_offset_t opa;
2172	vm_offset_t origpte, newpte;
2173	vm_page_t mpte;
2174
2175	if (pmap == NULL)
2176		return;
2177
2178	va &= PG_FRAME;
2179#ifdef PMAP_DIAGNOSTIC
2180	if (va > VM_MAX_KERNEL_ADDRESS)
2181		panic("pmap_enter: toobig");
2182	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2183		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2184#endif
2185
2186	mpte = NULL;
2187	/*
2188	 * In the case that a page table page is not
2189	 * resident, we are creating it here.
2190	 */
2191	if (va < UPT_MIN_ADDRESS) {
2192		mpte = pmap_allocpte(pmap, va);
2193	}
2194#if 0 && defined(PMAP_DIAGNOSTIC)
2195	else {
2196		vm_offset_t *pdeaddr = (vm_offset_t *)pmap_pde(pmap, va);
2197		if (((origpte = (vm_offset_t) *pdeaddr) & PG_V) == 0) {
2198			panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
2199				pmap->pm_pdir[PTDPTDI], origpte, va);
2200		}
2201		if (smp_active) {
2202			pdeaddr = (vm_offset_t *) IdlePTDS[PCPU_GET(cpuid)];
2203			if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
2204				if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
2205					printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
2206				printf("cpuid: %d, pdeaddr: 0x%x\n", PCPU_GET(cpuid), pdeaddr);
2207				panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
2208					pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
2209			}
2210		}
2211	}
2212#endif
2213
2214	pte = pmap_pte(pmap, va);
2215
2216	/*
2217	 * Page Directory table entry not valid, we need a new PT page
2218	 */
2219	if (pte == NULL) {
2220		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2221			(void *)pmap->pm_pdir[PTDPTDI], va);
2222	}
2223
2224	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2225	origpte = *(vm_offset_t *)pte;
2226	opa = origpte & PG_FRAME;
2227
2228	if (origpte & PG_PS)
2229		panic("pmap_enter: attempted pmap_enter on 4MB page");
2230
2231	/*
2232	 * Mapping has not changed, must be protection or wiring change.
2233	 */
2234	if (origpte && (opa == pa)) {
2235		/*
2236		 * Wiring change, just update stats. We don't worry about
2237		 * wiring PT pages as they remain resident as long as there
2238		 * are valid mappings in them. Hence, if a user page is wired,
2239		 * the PT page will be also.
2240		 */
2241		if (wired && ((origpte & PG_W) == 0))
2242			pmap->pm_stats.wired_count++;
2243		else if (!wired && (origpte & PG_W))
2244			pmap->pm_stats.wired_count--;
2245
2246#if defined(PMAP_DIAGNOSTIC)
2247		if (pmap_nw_modified((pt_entry_t) origpte)) {
2248			printf(
2249	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2250			    va, origpte);
2251		}
2252#endif
2253
2254		/*
2255		 * Remove extra pte reference
2256		 */
2257		if (mpte)
2258			mpte->hold_count--;
2259
2260		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2261			if ((origpte & PG_RW) == 0) {
2262				*pte |= PG_RW;
2263#ifdef SMP
2264				cpu_invlpg((void *)va);
2265				if (pmap->pm_active & PCPU_GET(other_cpus))
2266					smp_invltlb();
2267#else
2268				invltlb_1pg(va);
2269#endif
2270			}
2271			return;
2272		}
2273
2274		/*
2275		 * We might be turning off write access to the page,
2276		 * so we go ahead and sense modify status.
2277		 */
2278		if (origpte & PG_MANAGED) {
2279			if ((origpte & PG_M) && pmap_track_modified(va)) {
2280				vm_page_t om;
2281				om = PHYS_TO_VM_PAGE(opa);
2282				vm_page_dirty(om);
2283			}
2284			pa |= PG_MANAGED;
2285		}
2286		goto validate;
2287	}
2288	/*
2289	 * Mapping has changed, invalidate old range and fall through to
2290	 * handle validating new mapping.
2291	 */
2292	if (opa) {
2293		int err;
2294		err = pmap_remove_pte(pmap, pte, va);
2295		if (err)
2296			panic("pmap_enter: pte vanished, va: 0x%x", va);
2297	}
2298
2299	/*
2300	 * Enter on the PV list if part of our managed memory. Note that we
2301	 * raise IPL while manipulating pv_table since pmap_enter can be
2302	 * called at interrupt time.
2303	 */
2304	if (pmap_initialized &&
2305	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2306		pmap_insert_entry(pmap, va, mpte, m);
2307		pa |= PG_MANAGED;
2308	}
2309
2310	/*
2311	 * Increment counters
2312	 */
2313	pmap->pm_stats.resident_count++;
2314	if (wired)
2315		pmap->pm_stats.wired_count++;
2316
2317validate:
2318	/*
2319	 * Now validate mapping with desired protection/wiring.
2320	 */
2321	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2322
2323	if (wired)
2324		newpte |= PG_W;
2325	if (va < UPT_MIN_ADDRESS)
2326		newpte |= PG_U;
2327	if (pmap == kernel_pmap)
2328		newpte |= pgeflag;
2329
2330	/*
2331	 * if the mapping or permission bits are different, we need
2332	 * to update the pte.
2333	 */
2334	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2335		*pte = newpte | PG_A;
2336		/*if (origpte)*/ {
2337#ifdef SMP
2338			cpu_invlpg((void *)va);
2339			if (pmap->pm_active & PCPU_GET(other_cpus))
2340				smp_invltlb();
2341#else
2342			invltlb_1pg(va);
2343#endif
2344		}
2345	}
2346}
2347
2348/*
2349 * this code makes some *MAJOR* assumptions:
2350 * 1. Current pmap & pmap exists.
2351 * 2. Not wired.
2352 * 3. Read access.
2353 * 4. No page table pages.
2354 * 5. Tlbflush is deferred to calling procedure.
2355 * 6. Page IS managed.
2356 * but is *MUCH* faster than pmap_enter...
2357 */
2358
2359static vm_page_t
2360pmap_enter_quick(pmap, va, m, mpte)
2361	register pmap_t pmap;
2362	vm_offset_t va;
2363	vm_page_t m;
2364	vm_page_t mpte;
2365{
2366	unsigned *pte;
2367	vm_offset_t pa;
2368
2369	/*
2370	 * In the case that a page table page is not
2371	 * resident, we are creating it here.
2372	 */
2373	if (va < UPT_MIN_ADDRESS) {
2374		unsigned ptepindex;
2375		vm_offset_t ptepa;
2376
2377		/*
2378		 * Calculate pagetable page index
2379		 */
2380		ptepindex = va >> PDRSHIFT;
2381		if (mpte && (mpte->pindex == ptepindex)) {
2382			mpte->hold_count++;
2383		} else {
2384retry:
2385			/*
2386			 * Get the page directory entry
2387			 */
2388			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2389
2390			/*
2391			 * If the page table page is mapped, we just increment
2392			 * the hold count, and activate it.
2393			 */
2394			if (ptepa) {
2395				if (ptepa & PG_PS)
2396					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2397				if (pmap->pm_ptphint &&
2398					(pmap->pm_ptphint->pindex == ptepindex)) {
2399					mpte = pmap->pm_ptphint;
2400				} else {
2401					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2402					pmap->pm_ptphint = mpte;
2403				}
2404				if (mpte == NULL)
2405					goto retry;
2406				mpte->hold_count++;
2407			} else {
2408				mpte = _pmap_allocpte(pmap, ptepindex);
2409			}
2410		}
2411	} else {
2412		mpte = NULL;
2413	}
2414
2415	/*
2416	 * This call to vtopte makes the assumption that we are
2417	 * entering the page into the current pmap.  In order to support
2418	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2419	 * But that isn't as quick as vtopte.
2420	 */
2421	pte = (unsigned *)vtopte(va);
2422	if (*pte) {
2423		if (mpte)
2424			pmap_unwire_pte_hold(pmap, mpte);
2425		return 0;
2426	}
2427
2428	/*
2429	 * Enter on the PV list if part of our managed memory. Note that we
2430	 * raise IPL while manipulating pv_table since pmap_enter can be
2431	 * called at interrupt time.
2432	 */
2433	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2434		pmap_insert_entry(pmap, va, mpte, m);
2435
2436	/*
2437	 * Increment counters
2438	 */
2439	pmap->pm_stats.resident_count++;
2440
2441	pa = VM_PAGE_TO_PHYS(m);
2442
2443	/*
2444	 * Now validate mapping with RO protection
2445	 */
2446	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2447		*pte = pa | PG_V | PG_U;
2448	else
2449		*pte = pa | PG_V | PG_U | PG_MANAGED;
2450
2451	return mpte;
2452}
2453
2454/*
2455 * Make a temporary mapping for a physical address.  This is only intended
2456 * to be used for panic dumps.
2457 */
2458void *
2459pmap_kenter_temporary(vm_offset_t pa, int i)
2460{
2461	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2462	return ((void *)crashdumpmap);
2463}
2464
2465#define MAX_INIT_PT (96)
2466/*
2467 * pmap_object_init_pt preloads the ptes for a given object
2468 * into the specified pmap.  This eliminates the blast of soft
2469 * faults on process startup and immediately after an mmap.
2470 */
2471void
2472pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2473	pmap_t pmap;
2474	vm_offset_t addr;
2475	vm_object_t object;
2476	vm_pindex_t pindex;
2477	vm_size_t size;
2478	int limit;
2479{
2480	vm_offset_t tmpidx;
2481	int psize;
2482	vm_page_t p, mpte;
2483	int objpgs;
2484
2485	if (pmap == NULL || object == NULL)
2486		return;
2487
2488	/*
2489	 * This code maps large physical mmap regions into the
2490	 * processor address space.  Note that some shortcuts
2491	 * are taken, but the code works.
2492	 */
2493	if (pseflag &&
2494		(object->type == OBJT_DEVICE) &&
2495		((addr & (NBPDR - 1)) == 0) &&
2496		((size & (NBPDR - 1)) == 0) ) {
2497		int i;
2498		vm_page_t m[1];
2499		unsigned int ptepindex;
2500		int npdes;
2501		vm_offset_t ptepa;
2502
2503		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2504			return;
2505
2506retry:
2507		p = vm_page_lookup(object, pindex);
2508		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2509			goto retry;
2510
2511		if (p == NULL) {
2512			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2513			if (p == NULL)
2514				return;
2515			m[0] = p;
2516
2517			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2518				vm_page_free(p);
2519				return;
2520			}
2521
2522			p = vm_page_lookup(object, pindex);
2523			vm_page_wakeup(p);
2524		}
2525
2526		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
2527		if (ptepa & (NBPDR - 1)) {
2528			return;
2529		}
2530
2531		p->valid = VM_PAGE_BITS_ALL;
2532
2533		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2534		npdes = size >> PDRSHIFT;
2535		for(i = 0; i < npdes; i++) {
2536			pmap->pm_pdir[ptepindex] =
2537				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
2538			ptepa += NBPDR;
2539			ptepindex += 1;
2540		}
2541		vm_page_flag_set(p, PG_MAPPED);
2542		invltlb();
2543		return;
2544	}
2545
2546	psize = i386_btop(size);
2547
2548	if ((object->type != OBJT_VNODE) ||
2549		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2550			(object->resident_page_count > MAX_INIT_PT))) {
2551		return;
2552	}
2553
2554	if (psize + pindex > object->size) {
2555		if (object->size < pindex)
2556			return;
2557		psize = object->size - pindex;
2558	}
2559
2560	mpte = NULL;
2561	/*
2562	 * if we are processing a major portion of the object, then scan the
2563	 * entire thing.
2564	 */
2565	if (psize > (object->resident_page_count >> 2)) {
2566		objpgs = psize;
2567
2568		for (p = TAILQ_FIRST(&object->memq);
2569		    ((objpgs > 0) && (p != NULL));
2570		    p = TAILQ_NEXT(p, listq)) {
2571
2572			tmpidx = p->pindex;
2573			if (tmpidx < pindex) {
2574				continue;
2575			}
2576			tmpidx -= pindex;
2577			if (tmpidx >= psize) {
2578				continue;
2579			}
2580			/*
2581			 * don't allow an madvise to blow away our really
2582			 * free pages allocating pv entries.
2583			 */
2584			if ((limit & MAP_PREFAULT_MADVISE) &&
2585			    cnt.v_free_count < cnt.v_free_reserved) {
2586				break;
2587			}
2588			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2589				(p->busy == 0) &&
2590			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2591				if ((p->queue - p->pc) == PQ_CACHE)
2592					vm_page_deactivate(p);
2593				vm_page_busy(p);
2594				mpte = pmap_enter_quick(pmap,
2595					addr + i386_ptob(tmpidx), p, mpte);
2596				vm_page_flag_set(p, PG_MAPPED);
2597				vm_page_wakeup(p);
2598			}
2599			objpgs -= 1;
2600		}
2601	} else {
2602		/*
2603		 * else lookup the pages one-by-one.
2604		 */
2605		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2606			/*
2607			 * don't allow an madvise to blow away our really
2608			 * free pages allocating pv entries.
2609			 */
2610			if ((limit & MAP_PREFAULT_MADVISE) &&
2611			    cnt.v_free_count < cnt.v_free_reserved) {
2612				break;
2613			}
2614			p = vm_page_lookup(object, tmpidx + pindex);
2615			if (p &&
2616			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2617				(p->busy == 0) &&
2618			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2619				if ((p->queue - p->pc) == PQ_CACHE)
2620					vm_page_deactivate(p);
2621				vm_page_busy(p);
2622				mpte = pmap_enter_quick(pmap,
2623					addr + i386_ptob(tmpidx), p, mpte);
2624				vm_page_flag_set(p, PG_MAPPED);
2625				vm_page_wakeup(p);
2626			}
2627		}
2628	}
2629	return;
2630}
2631
2632/*
2633 * pmap_prefault provides a quick way of clustering
2634 * pagefaults into a processes address space.  It is a "cousin"
2635 * of pmap_object_init_pt, except it runs at page fault time instead
2636 * of mmap time.
2637 */
2638#define PFBAK 4
2639#define PFFOR 4
2640#define PAGEORDER_SIZE (PFBAK+PFFOR)
2641
2642static int pmap_prefault_pageorder[] = {
2643	-PAGE_SIZE, PAGE_SIZE,
2644	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2645	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2646	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2647};
2648
2649void
2650pmap_prefault(pmap, addra, entry)
2651	pmap_t pmap;
2652	vm_offset_t addra;
2653	vm_map_entry_t entry;
2654{
2655	int i;
2656	vm_offset_t starta;
2657	vm_offset_t addr;
2658	vm_pindex_t pindex;
2659	vm_page_t m, mpte;
2660	vm_object_t object;
2661
2662	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2663		return;
2664
2665	object = entry->object.vm_object;
2666
2667	starta = addra - PFBAK * PAGE_SIZE;
2668	if (starta < entry->start) {
2669		starta = entry->start;
2670	} else if (starta > addra) {
2671		starta = 0;
2672	}
2673
2674	mpte = NULL;
2675	for (i = 0; i < PAGEORDER_SIZE; i++) {
2676		vm_object_t lobject;
2677		unsigned *pte;
2678
2679		addr = addra + pmap_prefault_pageorder[i];
2680		if (addr > addra + (PFFOR * PAGE_SIZE))
2681			addr = 0;
2682
2683		if (addr < starta || addr >= entry->end)
2684			continue;
2685
2686		if ((*pmap_pde(pmap, addr)) == NULL)
2687			continue;
2688
2689		pte = (unsigned *) vtopte(addr);
2690		if (*pte)
2691			continue;
2692
2693		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2694		lobject = object;
2695		for (m = vm_page_lookup(lobject, pindex);
2696		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2697		    lobject = lobject->backing_object) {
2698			if (lobject->backing_object_offset & PAGE_MASK)
2699				break;
2700			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2701			m = vm_page_lookup(lobject->backing_object, pindex);
2702		}
2703
2704		/*
2705		 * give-up when a page is not in memory
2706		 */
2707		if (m == NULL)
2708			break;
2709
2710		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2711			(m->busy == 0) &&
2712		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2713
2714			if ((m->queue - m->pc) == PQ_CACHE) {
2715				vm_page_deactivate(m);
2716			}
2717			vm_page_busy(m);
2718			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2719			vm_page_flag_set(m, PG_MAPPED);
2720			vm_page_wakeup(m);
2721		}
2722	}
2723}
2724
2725/*
2726 *	Routine:	pmap_change_wiring
2727 *	Function:	Change the wiring attribute for a map/virtual-address
2728 *			pair.
2729 *	In/out conditions:
2730 *			The mapping must already exist in the pmap.
2731 */
2732void
2733pmap_change_wiring(pmap, va, wired)
2734	register pmap_t pmap;
2735	vm_offset_t va;
2736	boolean_t wired;
2737{
2738	register unsigned *pte;
2739
2740	if (pmap == NULL)
2741		return;
2742
2743	pte = pmap_pte(pmap, va);
2744
2745	if (wired && !pmap_pte_w(pte))
2746		pmap->pm_stats.wired_count++;
2747	else if (!wired && pmap_pte_w(pte))
2748		pmap->pm_stats.wired_count--;
2749
2750	/*
2751	 * Wiring is not a hardware characteristic so there is no need to
2752	 * invalidate TLB.
2753	 */
2754	pmap_pte_set_w(pte, wired);
2755}
2756
2757
2758
2759/*
2760 *	Copy the range specified by src_addr/len
2761 *	from the source map to the range dst_addr/len
2762 *	in the destination map.
2763 *
2764 *	This routine is only advisory and need not do anything.
2765 */
2766
2767void
2768pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2769	pmap_t dst_pmap, src_pmap;
2770	vm_offset_t dst_addr;
2771	vm_size_t len;
2772	vm_offset_t src_addr;
2773{
2774	vm_offset_t addr;
2775	vm_offset_t end_addr = src_addr + len;
2776	vm_offset_t pdnxt;
2777	unsigned src_frame, dst_frame;
2778	vm_page_t m;
2779	pd_entry_t saved_pde;
2780
2781	if (dst_addr != src_addr)
2782		return;
2783
2784	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2785	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2786		return;
2787	}
2788
2789	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2790	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2791		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2792#if defined(SMP)
2793		/* The page directory is not shared between CPUs */
2794		cpu_invltlb();
2795#else
2796		invltlb();
2797#endif
2798	}
2799 	saved_pde = (pd_entry_t)((u_int32_t)APTDpde & (PG_FRAME|PG_RW | PG_V));
2800	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2801		unsigned *src_pte, *dst_pte;
2802		vm_page_t dstmpte, srcmpte;
2803		vm_offset_t srcptepaddr;
2804		unsigned ptepindex;
2805
2806		if (addr >= UPT_MIN_ADDRESS)
2807			panic("pmap_copy: invalid to pmap_copy page tables\n");
2808
2809		/*
2810		 * Don't let optional prefaulting of pages make us go
2811		 * way below the low water mark of free pages or way
2812		 * above high water mark of used pv entries.
2813		 */
2814		if (cnt.v_free_count < cnt.v_free_reserved ||
2815		    pv_entry_count > pv_entry_high_water)
2816			break;
2817
2818		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2819		ptepindex = addr >> PDRSHIFT;
2820
2821		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2822		if (srcptepaddr == 0)
2823			continue;
2824
2825		if (srcptepaddr & PG_PS) {
2826			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2827				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2828				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2829			}
2830			continue;
2831		}
2832
2833		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2834		if ((srcmpte == NULL) ||
2835			(srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2836			continue;
2837
2838		if (pdnxt > end_addr)
2839			pdnxt = end_addr;
2840
2841		src_pte = (unsigned *) vtopte(addr);
2842		dst_pte = (unsigned *) avtopte(addr);
2843		while (addr < pdnxt) {
2844			unsigned ptetemp;
2845			ptetemp = *src_pte;
2846			/*
2847			 * we only virtual copy managed pages
2848			 */
2849			if ((ptetemp & PG_MANAGED) != 0) {
2850				/*
2851				 * We have to check after allocpte for the
2852				 * pte still being around...  allocpte can
2853				 * block.
2854				 */
2855				dstmpte = pmap_allocpte(dst_pmap, addr);
2856				if (((u_int32_t)APTDpde & PG_FRAME) !=
2857				    ((u_int32_t)saved_pde & PG_FRAME)) {
2858					APTDpde = saved_pde;
2859printf ("IT HAPPENNED!");
2860#if defined(SMP)
2861					cpu_invltlb();
2862#else
2863					invltlb();
2864#endif
2865				}
2866				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2867					/*
2868					 * Clear the modified and
2869					 * accessed (referenced) bits
2870					 * during the copy.
2871					 */
2872					m = PHYS_TO_VM_PAGE(ptetemp);
2873					*dst_pte = ptetemp & ~(PG_M | PG_A);
2874					dst_pmap->pm_stats.resident_count++;
2875					pmap_insert_entry(dst_pmap, addr,
2876						dstmpte, m);
2877	 			} else {
2878					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2879				}
2880				if (dstmpte->hold_count >= srcmpte->hold_count)
2881					break;
2882			}
2883			addr += PAGE_SIZE;
2884			src_pte++;
2885			dst_pte++;
2886		}
2887	}
2888}
2889
2890/*
2891 *	Routine:	pmap_kernel
2892 *	Function:
2893 *		Returns the physical map handle for the kernel.
2894 */
2895pmap_t
2896pmap_kernel()
2897{
2898	return (kernel_pmap);
2899}
2900
2901/*
2902 *	pmap_zero_page zeros the specified hardware page by mapping
2903 *	the page into KVM and using bzero to clear its contents.
2904 */
2905void
2906pmap_zero_page(phys)
2907	vm_offset_t phys;
2908{
2909
2910	if (*(int *) CMAP2)
2911		panic("pmap_zero_page: CMAP2 busy");
2912
2913	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2914	invltlb_1pg((vm_offset_t)CADDR2);
2915
2916#if defined(I686_CPU)
2917	if (cpu_class == CPUCLASS_686)
2918		i686_pagezero(CADDR2);
2919	else
2920#endif
2921		bzero(CADDR2, PAGE_SIZE);
2922	*(int *) CMAP2 = 0;
2923}
2924
2925/*
2926 *	pmap_zero_page_area zeros the specified hardware page by mapping
2927 *	the page into KVM and using bzero to clear its contents.
2928 *
2929 *	off and size may not cover an area beyond a single hardware page.
2930 */
2931void
2932pmap_zero_page_area(phys, off, size)
2933	vm_offset_t phys;
2934	int off;
2935	int size;
2936{
2937
2938	if (*(int *) CMAP2)
2939		panic("pmap_zero_page: CMAP2 busy");
2940
2941	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2942	invltlb_1pg((vm_offset_t)CADDR2);
2943
2944#if defined(I686_CPU)
2945	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2946		i686_pagezero(CADDR2);
2947	else
2948#endif
2949		bzero((char *)CADDR2 + off, size);
2950	*(int *) CMAP2 = 0;
2951}
2952
2953/*
2954 *	pmap_copy_page copies the specified (machine independent)
2955 *	page by mapping the page into virtual memory and using
2956 *	bcopy to copy the page, one machine dependent page at a
2957 *	time.
2958 */
2959void
2960pmap_copy_page(src, dst)
2961	vm_offset_t src;
2962	vm_offset_t dst;
2963{
2964
2965	if (*(int *) CMAP1)
2966		panic("pmap_copy_page: CMAP1 busy");
2967	if (*(int *) CMAP2)
2968		panic("pmap_copy_page: CMAP2 busy");
2969
2970	*(int *) CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2971	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2972#ifdef I386_CPU
2973	invltlb();
2974#else
2975	invlpg((u_int)CADDR1);
2976	invlpg((u_int)CADDR2);
2977#endif
2978
2979	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2980
2981	*(int *) CMAP1 = 0;
2982	*(int *) CMAP2 = 0;
2983}
2984
2985
2986/*
2987 *	Routine:	pmap_pageable
2988 *	Function:
2989 *		Make the specified pages (by pmap, offset)
2990 *		pageable (or not) as requested.
2991 *
2992 *		A page which is not pageable may not take
2993 *		a fault; therefore, its page table entry
2994 *		must remain valid for the duration.
2995 *
2996 *		This routine is merely advisory; pmap_enter
2997 *		will specify that these pages are to be wired
2998 *		down (or not) as appropriate.
2999 */
3000void
3001pmap_pageable(pmap, sva, eva, pageable)
3002	pmap_t pmap;
3003	vm_offset_t sva, eva;
3004	boolean_t pageable;
3005{
3006}
3007
3008/*
3009 * this routine returns true if a physical page resides
3010 * in the given pmap.
3011 */
3012boolean_t
3013pmap_page_exists(pmap, m)
3014	pmap_t pmap;
3015	vm_page_t m;
3016{
3017	register pv_entry_t pv;
3018	int s;
3019
3020	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3021		return FALSE;
3022
3023	s = splvm();
3024
3025	/*
3026	 * Not found, check current mappings returning immediately if found.
3027	 */
3028	for (pv = TAILQ_FIRST(&m->md.pv_list);
3029		pv;
3030		pv = TAILQ_NEXT(pv, pv_list)) {
3031		if (pv->pv_pmap == pmap) {
3032			splx(s);
3033			return TRUE;
3034		}
3035	}
3036	splx(s);
3037	return (FALSE);
3038}
3039
3040#define PMAP_REMOVE_PAGES_CURPROC_ONLY
3041/*
3042 * Remove all pages from specified address space
3043 * this aids process exit speeds.  Also, this code
3044 * is special cased for current process only, but
3045 * can have the more generic (and slightly slower)
3046 * mode enabled.  This is much faster than pmap_remove
3047 * in the case of running down an entire address space.
3048 */
3049void
3050pmap_remove_pages(pmap, sva, eva)
3051	pmap_t pmap;
3052	vm_offset_t sva, eva;
3053{
3054	unsigned *pte, tpte;
3055	pv_entry_t pv, npv;
3056	int s;
3057	vm_page_t m;
3058
3059#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3060	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
3061		printf("warning: pmap_remove_pages called with non-current pmap\n");
3062		return;
3063	}
3064#endif
3065
3066	s = splvm();
3067	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
3068	    pv;
3069	    pv = npv) {
3070
3071		if (pv->pv_va >= eva || pv->pv_va < sva) {
3072			npv = TAILQ_NEXT(pv, pv_plist);
3073			continue;
3074		}
3075
3076#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3077		pte = (unsigned *)vtopte(pv->pv_va);
3078#else
3079		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3080#endif
3081		tpte = *pte;
3082
3083		if (tpte == 0) {
3084			printf("TPTE at %p  IS ZERO @ VA %08x\n",
3085							pte, pv->pv_va);
3086			panic("bad pte");
3087		}
3088
3089/*
3090 * We cannot remove wired pages from a process' mapping at this time
3091 */
3092		if (tpte & PG_W) {
3093			npv = TAILQ_NEXT(pv, pv_plist);
3094			continue;
3095		}
3096
3097		m = PHYS_TO_VM_PAGE(tpte);
3098		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3099		    ("vm_page_t %p phys_addr mismatch %08x %08x",
3100		    m, m->phys_addr, tpte));
3101
3102		KASSERT(m < &vm_page_array[vm_page_array_size],
3103			("pmap_remove_pages: bad tpte %x", tpte));
3104
3105		pv->pv_pmap->pm_stats.resident_count--;
3106
3107		*pte = 0;
3108
3109		/*
3110		 * Update the vm_page_t clean and reference bits.
3111		 */
3112		if (tpte & PG_M) {
3113			vm_page_dirty(m);
3114		}
3115
3116		npv = TAILQ_NEXT(pv, pv_plist);
3117		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3118
3119		m->md.pv_list_count--;
3120		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3121		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3122			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3123		}
3124
3125		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3126		free_pv_entry(pv);
3127	}
3128	splx(s);
3129	pmap_TLB_invalidate_all(pmap);
3130}
3131
3132/*
3133 * pmap_testbit tests bits in pte's
3134 * note that the testbit/changebit routines are inline,
3135 * and a lot of things compile-time evaluate.
3136 */
3137static boolean_t
3138pmap_testbit(m, bit)
3139	vm_page_t m;
3140	int bit;
3141{
3142	pv_entry_t pv;
3143	unsigned *pte;
3144	int s;
3145
3146	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3147		return FALSE;
3148
3149	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3150		return FALSE;
3151
3152	s = splvm();
3153
3154	for (pv = TAILQ_FIRST(&m->md.pv_list);
3155		pv;
3156		pv = TAILQ_NEXT(pv, pv_list)) {
3157
3158		/*
3159		 * if the bit being tested is the modified bit, then
3160		 * mark clean_map and ptes as never
3161		 * modified.
3162		 */
3163		if (bit & (PG_A|PG_M)) {
3164			if (!pmap_track_modified(pv->pv_va))
3165				continue;
3166		}
3167
3168#if defined(PMAP_DIAGNOSTIC)
3169		if (!pv->pv_pmap) {
3170			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3171			continue;
3172		}
3173#endif
3174		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3175		if (*pte & bit) {
3176			splx(s);
3177			return TRUE;
3178		}
3179	}
3180	splx(s);
3181	return (FALSE);
3182}
3183
3184/*
3185 * this routine is used to modify bits in ptes
3186 */
3187static __inline void
3188pmap_changebit(m, bit, setem)
3189	vm_page_t m;
3190	int bit;
3191	boolean_t setem;
3192{
3193	register pv_entry_t pv;
3194	register unsigned *pte;
3195	int s;
3196
3197	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3198		return;
3199
3200	s = splvm();
3201
3202	/*
3203	 * Loop over all current mappings setting/clearing as appropos If
3204	 * setting RO do we need to clear the VAC?
3205	 */
3206	for (pv = TAILQ_FIRST(&m->md.pv_list);
3207		pv;
3208		pv = TAILQ_NEXT(pv, pv_list)) {
3209
3210		/*
3211		 * don't write protect pager mappings
3212		 */
3213		if (!setem && (bit == PG_RW)) {
3214			if (!pmap_track_modified(pv->pv_va))
3215				continue;
3216		}
3217
3218#if defined(PMAP_DIAGNOSTIC)
3219		if (!pv->pv_pmap) {
3220			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3221			continue;
3222		}
3223#endif
3224
3225		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3226
3227		if (setem) {
3228			*(int *)pte |= bit;
3229			pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3230		} else {
3231			vm_offset_t pbits = *(vm_offset_t *)pte;
3232			if (pbits & bit) {
3233				if (bit == PG_RW) {
3234					if (pbits & PG_M) {
3235						vm_page_dirty(m);
3236					}
3237					*(int *)pte = pbits & ~(PG_M|PG_RW);
3238				} else {
3239					*(int *)pte = pbits & ~bit;
3240				}
3241				pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3242			}
3243		}
3244	}
3245	splx(s);
3246}
3247
3248/*
3249 *      pmap_page_protect:
3250 *
3251 *      Lower the permission for all mappings to a given page.
3252 */
3253void
3254pmap_page_protect(vm_page_t m, vm_prot_t prot)
3255{
3256	if ((prot & VM_PROT_WRITE) == 0) {
3257		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3258			pmap_changebit(m, PG_RW, FALSE);
3259		} else {
3260			pmap_remove_all(m);
3261		}
3262	}
3263}
3264
3265vm_offset_t
3266pmap_phys_address(ppn)
3267	int ppn;
3268{
3269	return (i386_ptob(ppn));
3270}
3271
3272/*
3273 *	pmap_ts_referenced:
3274 *
3275 *	Return the count of reference bits for a page, clearing all of them.
3276 */
3277int
3278pmap_ts_referenced(vm_page_t m)
3279{
3280	register pv_entry_t pv, pvf, pvn;
3281	unsigned *pte;
3282	int s;
3283	int rtval = 0;
3284
3285	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3286		return (rtval);
3287
3288	s = splvm();
3289
3290	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3291
3292		pvf = pv;
3293
3294		do {
3295			pvn = TAILQ_NEXT(pv, pv_list);
3296
3297			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3298
3299			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3300
3301			if (!pmap_track_modified(pv->pv_va))
3302				continue;
3303
3304			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3305
3306			if (pte && (*pte & PG_A)) {
3307				*pte &= ~PG_A;
3308
3309				pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3310
3311				rtval++;
3312				if (rtval > 4) {
3313					break;
3314				}
3315			}
3316		} while ((pv = pvn) != NULL && pv != pvf);
3317	}
3318	splx(s);
3319
3320	return (rtval);
3321}
3322
3323/*
3324 *	pmap_is_modified:
3325 *
3326 *	Return whether or not the specified physical page was modified
3327 *	in any physical maps.
3328 */
3329boolean_t
3330pmap_is_modified(vm_page_t m)
3331{
3332	return pmap_testbit(m, PG_M);
3333}
3334
3335/*
3336 *	Clear the modify bits on the specified physical page.
3337 */
3338void
3339pmap_clear_modify(vm_page_t m)
3340{
3341	pmap_changebit(m, PG_M, FALSE);
3342}
3343
3344/*
3345 *	pmap_clear_reference:
3346 *
3347 *	Clear the reference bit on the specified physical page.
3348 */
3349void
3350pmap_clear_reference(vm_page_t m)
3351{
3352	pmap_changebit(m, PG_A, FALSE);
3353}
3354
3355/*
3356 * Miscellaneous support routines follow
3357 */
3358
3359static void
3360i386_protection_init()
3361{
3362	register int *kp, prot;
3363
3364	kp = protection_codes;
3365	for (prot = 0; prot < 8; prot++) {
3366		switch (prot) {
3367		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3368			/*
3369			 * Read access is also 0. There isn't any execute bit,
3370			 * so just make it readable.
3371			 */
3372		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3373		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3374		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3375			*kp++ = 0;
3376			break;
3377		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3378		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3379		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3380		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3381			*kp++ = PG_RW;
3382			break;
3383		}
3384	}
3385}
3386
3387/*
3388 * Map a set of physical memory pages into the kernel virtual
3389 * address space. Return a pointer to where it is mapped. This
3390 * routine is intended to be used for mapping device memory,
3391 * NOT real memory.
3392 */
3393void *
3394pmap_mapdev(pa, size)
3395	vm_offset_t pa;
3396	vm_size_t size;
3397{
3398	vm_offset_t va, tmpva, offset;
3399	unsigned *pte;
3400
3401	offset = pa & PAGE_MASK;
3402	size = roundup(offset + size, PAGE_SIZE);
3403
3404	GIANT_REQUIRED;
3405
3406	va = kmem_alloc_pageable(kernel_map, size);
3407	if (!va)
3408		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3409
3410	pa = pa & PG_FRAME;
3411	for (tmpva = va; size > 0;) {
3412		pte = (unsigned *)vtopte(tmpva);
3413		*pte = pa | PG_RW | PG_V | pgeflag;
3414		size -= PAGE_SIZE;
3415		tmpva += PAGE_SIZE;
3416		pa += PAGE_SIZE;
3417	}
3418	invltlb();
3419
3420	return ((void *)(va + offset));
3421}
3422
3423void
3424pmap_unmapdev(va, size)
3425	vm_offset_t va;
3426	vm_size_t size;
3427{
3428	vm_offset_t base, offset;
3429
3430	base = va & PG_FRAME;
3431	offset = va & PAGE_MASK;
3432	size = roundup(offset + size, PAGE_SIZE);
3433	kmem_free(kernel_map, base, size);
3434}
3435
3436/*
3437 * perform the pmap work for mincore
3438 */
3439int
3440pmap_mincore(pmap, addr)
3441	pmap_t pmap;
3442	vm_offset_t addr;
3443{
3444
3445	unsigned *ptep, pte;
3446	vm_page_t m;
3447	int val = 0;
3448
3449	ptep = pmap_pte(pmap, addr);
3450	if (ptep == 0) {
3451		return 0;
3452	}
3453
3454	if ((pte = *ptep) != 0) {
3455		vm_offset_t pa;
3456
3457		val = MINCORE_INCORE;
3458		if ((pte & PG_MANAGED) == 0)
3459			return val;
3460
3461		pa = pte & PG_FRAME;
3462
3463		m = PHYS_TO_VM_PAGE(pa);
3464
3465		/*
3466		 * Modified by us
3467		 */
3468		if (pte & PG_M)
3469			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3470		/*
3471		 * Modified by someone
3472		 */
3473		else if (m->dirty || pmap_is_modified(m))
3474			val |= MINCORE_MODIFIED_OTHER;
3475		/*
3476		 * Referenced by us
3477		 */
3478		if (pte & PG_A)
3479			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3480
3481		/*
3482		 * Referenced by someone
3483		 */
3484		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3485			val |= MINCORE_REFERENCED_OTHER;
3486			vm_page_flag_set(m, PG_REFERENCED);
3487		}
3488	}
3489	return val;
3490}
3491
3492void
3493pmap_activate(struct thread *td)
3494{
3495	struct proc *p = td->td_proc;
3496	pmap_t	pmap;
3497	u_int32_t  cr3;
3498
3499	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3500#if defined(SMP)
3501	pmap->pm_active |= 1 << PCPU_GET(cpuid);
3502#else
3503	pmap->pm_active |= 1;
3504#endif
3505#if defined(SWTCH_OPTIM_STATS)
3506	tlb_flush_count++;
3507#endif
3508	cr3 = vtophys(pmap->pm_pdir);
3509	/* XXXKSE this is wrong.
3510	 * pmap_activate is for the current thread on the current cpu
3511	 */
3512	if (p->p_flag & P_KSES) {
3513		/* Make sure all other cr3 entries are updated. */
3514		/* what if they are running?  XXXKSE (maybe abort them) */
3515		FOREACH_THREAD_IN_PROC(p, td) {
3516			td->td_pcb->pcb_cr3 = cr3;
3517		}
3518	} else {
3519		td->td_pcb->pcb_cr3 = cr3;
3520	}
3521	load_cr3(cr3);
3522}
3523
3524vm_offset_t
3525pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3526{
3527
3528	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3529		return addr;
3530	}
3531
3532	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3533	return addr;
3534}
3535
3536
3537#if defined(PMAP_DEBUG)
3538pmap_pid_dump(int pid)
3539{
3540	pmap_t pmap;
3541	struct proc *p;
3542	int npte = 0;
3543	int index;
3544
3545	sx_slock(&allproc_lock);
3546	LIST_FOREACH(p, &allproc, p_list) {
3547		if (p->p_pid != pid)
3548			continue;
3549
3550		if (p->p_vmspace) {
3551			int i,j;
3552			index = 0;
3553			pmap = vmspace_pmap(p->p_vmspace);
3554			for(i = 0; i < 1024; i++) {
3555				pd_entry_t *pde;
3556				unsigned *pte;
3557				unsigned base = i << PDRSHIFT;
3558
3559				pde = &pmap->pm_pdir[i];
3560				if (pde && pmap_pde_v(pde)) {
3561					for(j = 0; j < 1024; j++) {
3562						unsigned va = base + (j << PAGE_SHIFT);
3563						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3564							if (index) {
3565								index = 0;
3566								printf("\n");
3567							}
3568							sx_sunlock(&allproc_lock);
3569							return npte;
3570						}
3571						pte = pmap_pte_quick( pmap, va);
3572						if (pte && pmap_pte_v(pte)) {
3573							vm_offset_t pa;
3574							vm_page_t m;
3575							pa = *(int *)pte;
3576							m = PHYS_TO_VM_PAGE(pa);
3577							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3578								va, pa, m->hold_count, m->wire_count, m->flags);
3579							npte++;
3580							index++;
3581							if (index >= 2) {
3582								index = 0;
3583								printf("\n");
3584							} else {
3585								printf(" ");
3586							}
3587						}
3588					}
3589				}
3590			}
3591		}
3592	}
3593	sx_sunlock(&allproc_lock);
3594	return npte;
3595}
3596#endif
3597
3598#if defined(DEBUG)
3599
3600static void	pads __P((pmap_t pm));
3601void		pmap_pvdump __P((vm_offset_t pa));
3602
3603/* print address space of pmap*/
3604static void
3605pads(pm)
3606	pmap_t pm;
3607{
3608	unsigned va, i, j;
3609	unsigned *ptep;
3610
3611	if (pm == kernel_pmap)
3612		return;
3613	for (i = 0; i < 1024; i++)
3614		if (pm->pm_pdir[i])
3615			for (j = 0; j < 1024; j++) {
3616				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3617				if (pm == kernel_pmap && va < KERNBASE)
3618					continue;
3619				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3620					continue;
3621				ptep = pmap_pte_quick(pm, va);
3622				if (pmap_pte_v(ptep))
3623					printf("%x:%x ", va, *(int *) ptep);
3624			};
3625
3626}
3627
3628void
3629pmap_pvdump(pa)
3630	vm_offset_t pa;
3631{
3632	register pv_entry_t pv;
3633	vm_page_t m;
3634
3635	printf("pa %x", pa);
3636	m = PHYS_TO_VM_PAGE(pa);
3637	for (pv = TAILQ_FIRST(&m->md.pv_list);
3638		pv;
3639		pv = TAILQ_NEXT(pv, pv_list)) {
3640#ifdef used_to_be
3641		printf(" -> pmap %p, va %x, flags %x",
3642		    (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3643#endif
3644		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3645		pads(pv->pv_pmap);
3646	}
3647	printf(" ");
3648}
3649#endif
3650