pmap.c revision 70861
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 70861 2001-01-10 04:43:51Z jake $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_user_ldt.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/proc.h>
79#include <sys/msgbuf.h>
80#include <sys/vmmeter.h>
81#include <sys/mman.h>
82
83#include <vm/vm.h>
84#include <vm/vm_param.h>
85#include <sys/lock.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_zone.h>
94
95#include <sys/user.h>
96
97#include <machine/cputypes.h>
98#include <machine/md_var.h>
99#include <machine/specialreg.h>
100#if defined(SMP) || defined(APIC_IO)
101#include <machine/smp.h>
102#include <machine/apic.h>
103#include <machine/segments.h>
104#include <machine/tss.h>
105#include <machine/globaldata.h>
106#endif /* SMP || APIC_IO */
107
108#define PMAP_KEEP_PDIRS
109#ifndef PMAP_SHPGPERPROC
110#define PMAP_SHPGPERPROC 200
111#endif
112
113#if defined(DIAGNOSTIC)
114#define PMAP_DIAGNOSTIC
115#endif
116
117#define MINPV 2048
118
119#if !defined(PMAP_DIAGNOSTIC)
120#define PMAP_INLINE __inline
121#else
122#define PMAP_INLINE
123#endif
124
125/*
126 * Get PDEs and PTEs for user/kernel address space
127 */
128#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
129#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
130
131#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
132#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
133#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
134#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
135#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
136
137#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
138#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
139
140/*
141 * Given a map and a machine independent protection code,
142 * convert to a vax protection code.
143 */
144#define pte_prot(m, p)	(protection_codes[p])
145static int protection_codes[8];
146
147static struct pmap kernel_pmap_store;
148pmap_t kernel_pmap;
149LIST_HEAD(pmaplist, pmap);
150struct pmaplist allpmaps;
151
152vm_offset_t avail_start;	/* PA of first available physical page */
153vm_offset_t avail_end;		/* PA of last available physical page */
154vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
155vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
156static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
157static int pgeflag;		/* PG_G or-in */
158static int pseflag;		/* PG_PS or-in */
159
160static vm_object_t kptobj;
161
162static int nkpt;
163vm_offset_t kernel_vm_end;
164
165/*
166 * Data for the pv entry allocation mechanism
167 */
168static vm_zone_t pvzone;
169static struct vm_zone pvzone_store;
170static struct vm_object pvzone_obj;
171static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
172static int pmap_pagedaemon_waken = 0;
173static struct pv_entry *pvinit;
174
175/*
176 * All those kernel PT submaps that BSD is so fond of
177 */
178pt_entry_t *CMAP1 = 0;
179static pt_entry_t *CMAP2, *ptmmap;
180caddr_t CADDR1 = 0, ptvmmap = 0;
181static caddr_t CADDR2;
182static pt_entry_t *msgbufmap;
183struct msgbuf *msgbufp=0;
184
185/*
186 * Crashdump maps.
187 */
188static pt_entry_t *pt_crashdumpmap;
189static caddr_t crashdumpmap;
190
191#ifdef SMP
192extern pt_entry_t *SMPpt;
193#else
194static pt_entry_t *PMAP1 = 0;
195static unsigned *PADDR1 = 0;
196#endif
197
198static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
199static unsigned * get_ptbase __P((pmap_t pmap));
200static pv_entry_t get_pv_entry __P((void));
201static void	i386_protection_init __P((void));
202static __inline void	pmap_changebit __P((vm_page_t m, int bit, boolean_t setem));
203
204static void	pmap_remove_all __P((vm_page_t m));
205static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
206				      vm_page_t m, vm_page_t mpte));
207static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
208					vm_offset_t sva));
209static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
210static int pmap_remove_entry __P((struct pmap *pmap, vm_page_t m,
211					vm_offset_t va));
212static boolean_t pmap_testbit __P((vm_page_t m, int bit));
213static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
214		vm_page_t mpte, vm_page_t m));
215
216static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
217
218static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
219static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
220static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
221static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
222static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
223static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
224
225static unsigned pdir4mb;
226
227/*
228 *	Routine:	pmap_pte
229 *	Function:
230 *		Extract the page table entry associated
231 *		with the given map/virtual_address pair.
232 */
233
234PMAP_INLINE unsigned *
235pmap_pte(pmap, va)
236	register pmap_t pmap;
237	vm_offset_t va;
238{
239	unsigned *pdeaddr;
240
241	if (pmap) {
242		pdeaddr = (unsigned *) pmap_pde(pmap, va);
243		if (*pdeaddr & PG_PS)
244			return pdeaddr;
245		if (*pdeaddr) {
246			return get_ptbase(pmap) + i386_btop(va);
247		}
248	}
249	return (0);
250}
251
252/*
253 * Move the kernel virtual free pointer to the next
254 * 4MB.  This is used to help improve performance
255 * by using a large (4MB) page for much of the kernel
256 * (.text, .data, .bss)
257 */
258static vm_offset_t
259pmap_kmem_choose(vm_offset_t addr)
260{
261	vm_offset_t newaddr = addr;
262#ifndef DISABLE_PSE
263	if (cpu_feature & CPUID_PSE) {
264		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
265	}
266#endif
267	return newaddr;
268}
269
270/*
271 *	Bootstrap the system enough to run with virtual memory.
272 *
273 *	On the i386 this is called after mapping has already been enabled
274 *	and just syncs the pmap module with what has already been done.
275 *	[We can't call it easily with mapping off since the kernel is not
276 *	mapped with PA == VA, hence we would have to relocate every address
277 *	from the linked base (virtual) address "KERNBASE" to the actual
278 *	(physical) address starting relative to 0]
279 */
280void
281pmap_bootstrap(firstaddr, loadaddr)
282	vm_offset_t firstaddr;
283	vm_offset_t loadaddr;
284{
285	vm_offset_t va;
286	pt_entry_t *pte;
287#ifdef SMP
288	struct globaldata *gd;
289#endif
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * The kernel's pmap is statically allocated so we don't have to use
313	 * pmap_create, which is unlikely to work correctly at this part of
314	 * the boot sequence (XXX and which no longer exists).
315	 */
316	kernel_pmap = &kernel_pmap_store;
317
318	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
319	kernel_pmap->pm_count = 1;
320	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
321	TAILQ_INIT(&kernel_pmap->pm_pvlist);
322	LIST_INIT(&allpmaps);
323	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
324	nkpt = NKPT;
325
326	/*
327	 * Reserve some special page table entries/VA space for temporary
328	 * mapping of pages.
329	 */
330#define	SYSMAP(c, p, v, n)	\
331	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
332
333	va = virtual_avail;
334	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
335
336	/*
337	 * CMAP1/CMAP2 are used for zeroing and copying pages.
338	 */
339	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
340	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
341
342	/*
343	 * Crashdump maps.
344	 */
345	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
346
347	/*
348	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
349	 * XXX ptmmap is not used.
350	 */
351	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
352
353	/*
354	 * msgbufp is used to map the system message buffer.
355	 * XXX msgbufmap is not used.
356	 */
357	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
358	       atop(round_page(MSGBUF_SIZE)))
359
360#if !defined(SMP)
361	/*
362	 * ptemap is used for pmap_pte_quick
363	 */
364	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
365#endif
366
367	virtual_avail = va;
368
369	*(int *) CMAP1 = *(int *) CMAP2 = 0;
370	*(int *) PTD = 0;
371
372
373	pgeflag = 0;
374#if !defined(SMP)			/* XXX - see also mp_machdep.c */
375	if (cpu_feature & CPUID_PGE) {
376		pgeflag = PG_G;
377	}
378#endif
379
380/*
381 * Initialize the 4MB page size flag
382 */
383	pseflag = 0;
384/*
385 * The 4MB page version of the initial
386 * kernel page mapping.
387 */
388	pdir4mb = 0;
389
390#if !defined(DISABLE_PSE)
391	if (cpu_feature & CPUID_PSE) {
392		unsigned ptditmp;
393		/*
394		 * Note that we have enabled PSE mode
395		 */
396		pseflag = PG_PS;
397		ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
398		ptditmp &= ~(NBPDR - 1);
399		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
400		pdir4mb = ptditmp;
401
402#if !defined(SMP)
403		/*
404		 * Enable the PSE mode.
405		 */
406		load_cr4(rcr4() | CR4_PSE);
407
408		/*
409		 * We can do the mapping here for the single processor
410		 * case.  We simply ignore the old page table page from
411		 * now on.
412		 */
413		/*
414		 * For SMP, we still need 4K pages to bootstrap APs,
415		 * PSE will be enabled as soon as all APs are up.
416		 */
417		PTD[KPTDI] = (pd_entry_t) ptditmp;
418		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
419		invltlb();
420#endif
421	}
422#endif
423
424#ifdef SMP
425	if (cpu_apic_address == 0)
426		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
427
428	/* local apic is mapped on last page */
429	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
430	    (cpu_apic_address & PG_FRAME));
431
432	/* BSP does this itself, AP's get it pre-set */
433	gd = &SMP_prvspace[0].globaldata;
434	gd->gd_prv_CMAP1 = &SMPpt[1];
435	gd->gd_prv_CMAP2 = &SMPpt[2];
436	gd->gd_prv_CMAP3 = &SMPpt[3];
437	gd->gd_prv_PMAP1 = &SMPpt[4];
438	gd->gd_prv_CADDR1 = SMP_prvspace[0].CPAGE1;
439	gd->gd_prv_CADDR2 = SMP_prvspace[0].CPAGE2;
440	gd->gd_prv_CADDR3 = SMP_prvspace[0].CPAGE3;
441	gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[0].PPAGE1;
442#endif
443
444	invltlb();
445}
446
447#ifdef SMP
448/*
449 * Set 4mb pdir for mp startup
450 */
451void
452pmap_set_opt(void)
453{
454	if (pseflag && (cpu_feature & CPUID_PSE)) {
455		load_cr4(rcr4() | CR4_PSE);
456		if (pdir4mb && PCPU_GET(cpuid) == 0) {	/* only on BSP */
457			kernel_pmap->pm_pdir[KPTDI] =
458			    PTD[KPTDI] = (pd_entry_t)pdir4mb;
459			cpu_invltlb();
460		}
461	}
462}
463#endif
464
465/*
466 *	Initialize the pmap module.
467 *	Called by vm_init, to initialize any structures that the pmap
468 *	system needs to map virtual memory.
469 *	pmap_init has been enhanced to support in a fairly consistant
470 *	way, discontiguous physical memory.
471 */
472void
473pmap_init(phys_start, phys_end)
474	vm_offset_t phys_start, phys_end;
475{
476	int i;
477	int initial_pvs;
478
479	/*
480	 * object for kernel page table pages
481	 */
482	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
483
484	/*
485	 * Allocate memory for random pmap data structures.  Includes the
486	 * pv_head_table.
487	 */
488
489	for(i = 0; i < vm_page_array_size; i++) {
490		vm_page_t m;
491
492		m = &vm_page_array[i];
493		TAILQ_INIT(&m->md.pv_list);
494		m->md.pv_list_count = 0;
495	}
496
497	/*
498	 * init the pv free list
499	 */
500	initial_pvs = vm_page_array_size;
501	if (initial_pvs < MINPV)
502		initial_pvs = MINPV;
503	pvzone = &pvzone_store;
504	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
505		initial_pvs * sizeof (struct pv_entry));
506	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
507	    vm_page_array_size);
508
509	/*
510	 * Now it is safe to enable pv_table recording.
511	 */
512	pmap_initialized = TRUE;
513}
514
515/*
516 * Initialize the address space (zone) for the pv_entries.  Set a
517 * high water mark so that the system can recover from excessive
518 * numbers of pv entries.
519 */
520void
521pmap_init2()
522{
523	pv_entry_max = PMAP_SHPGPERPROC * maxproc + vm_page_array_size;
524	pv_entry_high_water = 9 * (pv_entry_max / 10);
525	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
526}
527
528
529/***************************************************
530 * Low level helper routines.....
531 ***************************************************/
532
533#if defined(PMAP_DIAGNOSTIC)
534
535/*
536 * This code checks for non-writeable/modified pages.
537 * This should be an invalid condition.
538 */
539static int
540pmap_nw_modified(pt_entry_t ptea)
541{
542	int pte;
543
544	pte = (int) ptea;
545
546	if ((pte & (PG_M|PG_RW)) == PG_M)
547		return 1;
548	else
549		return 0;
550}
551#endif
552
553
554/*
555 * this routine defines the region(s) of memory that should
556 * not be tested for the modified bit.
557 */
558static PMAP_INLINE int
559pmap_track_modified(vm_offset_t va)
560{
561	if ((va < clean_sva) || (va >= clean_eva))
562		return 1;
563	else
564		return 0;
565}
566
567static PMAP_INLINE void
568invltlb_1pg(vm_offset_t va)
569{
570#if defined(I386_CPU)
571	if (cpu_class == CPUCLASS_386) {
572		invltlb();
573	} else
574#endif
575	{
576		invlpg(va);
577	}
578}
579
580static __inline void
581pmap_TLB_invalidate(pmap_t pmap, vm_offset_t va)
582{
583#if defined(SMP)
584	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
585		cpu_invlpg((void *)va);
586	if (pmap->pm_active & PCPU_GET(other_cpus))
587		smp_invltlb();
588#else
589	if (pmap->pm_active)
590		invltlb_1pg(va);
591#endif
592}
593
594static __inline void
595pmap_TLB_invalidate_all(pmap_t pmap)
596{
597#if defined(SMP)
598	if (pmap->pm_active & (1 << PCPU_GET(cpuid)))
599		cpu_invltlb();
600	if (pmap->pm_active & PCPU_GET(other_cpus))
601		smp_invltlb();
602#else
603	if (pmap->pm_active)
604		invltlb();
605#endif
606}
607
608static unsigned *
609get_ptbase(pmap)
610	pmap_t pmap;
611{
612	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
613
614	/* are we current address space or kernel? */
615	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
616		return (unsigned *) PTmap;
617	}
618	/* otherwise, we are alternate address space */
619	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
620		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
621#if defined(SMP)
622		/* The page directory is not shared between CPUs */
623		cpu_invltlb();
624#else
625		invltlb();
626#endif
627	}
628	return (unsigned *) APTmap;
629}
630
631/*
632 * Super fast pmap_pte routine best used when scanning
633 * the pv lists.  This eliminates many coarse-grained
634 * invltlb calls.  Note that many of the pv list
635 * scans are across different pmaps.  It is very wasteful
636 * to do an entire invltlb for checking a single mapping.
637 */
638
639static unsigned *
640pmap_pte_quick(pmap, va)
641	register pmap_t pmap;
642	vm_offset_t va;
643{
644	unsigned pde, newpf;
645	if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
646		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
647		unsigned index = i386_btop(va);
648		/* are we current address space or kernel? */
649		if ((pmap == kernel_pmap) ||
650			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
651			return (unsigned *) PTmap + index;
652		}
653		newpf = pde & PG_FRAME;
654#ifdef SMP
655		if ( ((* (unsigned *) PCPU_GET(prv_PMAP1)) & PG_FRAME) != newpf) {
656			* (unsigned *) PCPU_GET(prv_PMAP1) = newpf | PG_RW | PG_V;
657			cpu_invlpg(PCPU_GET(prv_PADDR1));
658		}
659		return (unsigned *)(PCPU_GET(prv_PADDR1) + (index & (NPTEPG - 1)));
660#else
661		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
662			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
663			invltlb_1pg((vm_offset_t) PADDR1);
664		}
665		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
666#endif
667	}
668	return (0);
669}
670
671/*
672 *	Routine:	pmap_extract
673 *	Function:
674 *		Extract the physical page address associated
675 *		with the given map/virtual_address pair.
676 */
677vm_offset_t
678pmap_extract(pmap, va)
679	register pmap_t pmap;
680	vm_offset_t va;
681{
682	vm_offset_t rtval;
683	vm_offset_t pdirindex;
684	pdirindex = va >> PDRSHIFT;
685	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
686		unsigned *pte;
687		if ((rtval & PG_PS) != 0) {
688			rtval &= ~(NBPDR - 1);
689			rtval |= va & (NBPDR - 1);
690			return rtval;
691		}
692		pte = get_ptbase(pmap) + i386_btop(va);
693		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
694		return rtval;
695	}
696	return 0;
697
698}
699
700/***************************************************
701 * Low level mapping routines.....
702 ***************************************************/
703
704/*
705 * add a wired page to the kva
706 * note that in order for the mapping to take effect -- you
707 * should do a invltlb after doing the pmap_kenter...
708 */
709PMAP_INLINE void
710pmap_kenter(va, pa)
711	vm_offset_t va;
712	register vm_offset_t pa;
713{
714	register unsigned *pte;
715	unsigned npte, opte;
716
717	npte = pa | PG_RW | PG_V | pgeflag;
718	pte = (unsigned *)vtopte(va);
719	opte = *pte;
720	*pte = npte;
721	/*if (opte)*/
722		invltlb_1pg(va);	/* XXX what about SMP? */
723}
724
725/*
726 * remove a page from the kernel pagetables
727 */
728PMAP_INLINE void
729pmap_kremove(va)
730	vm_offset_t va;
731{
732	register unsigned *pte;
733
734	pte = (unsigned *)vtopte(va);
735	*pte = 0;
736	invltlb_1pg(va);	/* XXX what about SMP? */
737}
738
739/*
740 *	Used to map a range of physical addresses into kernel
741 *	virtual address space.
742 *
743 *	For now, VM is already on, we only need to map the
744 *	specified memory.
745 */
746vm_offset_t
747pmap_map(virt, start, end, prot)
748	vm_offset_t virt;
749	vm_offset_t start;
750	vm_offset_t end;
751	int prot;
752{
753	while (start < end) {
754		pmap_kenter(virt, start);
755		virt += PAGE_SIZE;
756		start += PAGE_SIZE;
757	}
758	return (virt);
759}
760
761
762/*
763 * Add a list of wired pages to the kva
764 * this routine is only used for temporary
765 * kernel mappings that do not need to have
766 * page modification or references recorded.
767 * Note that old mappings are simply written
768 * over.  The page *must* be wired.
769 */
770void
771pmap_qenter(va, m, count)
772	vm_offset_t va;
773	vm_page_t *m;
774	int count;
775{
776	int i;
777
778	for (i = 0; i < count; i++) {
779		vm_offset_t tva = va + i * PAGE_SIZE;
780		pmap_kenter(tva, VM_PAGE_TO_PHYS(m[i]));
781	}
782}
783
784/*
785 * this routine jerks page mappings from the
786 * kernel -- it is meant only for temporary mappings.
787 */
788void
789pmap_qremove(va, count)
790	vm_offset_t va;
791	int count;
792{
793	vm_offset_t end_va;
794
795	end_va = va + count*PAGE_SIZE;
796
797	while (va < end_va) {
798		unsigned *pte;
799
800		pte = (unsigned *)vtopte(va);
801		*pte = 0;
802#ifdef SMP
803		cpu_invlpg((void *)va);
804#else
805		invltlb_1pg(va);
806#endif
807		va += PAGE_SIZE;
808	}
809#ifdef SMP
810	smp_invltlb();
811#endif
812}
813
814static vm_page_t
815pmap_page_lookup(object, pindex)
816	vm_object_t object;
817	vm_pindex_t pindex;
818{
819	vm_page_t m;
820retry:
821	m = vm_page_lookup(object, pindex);
822	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
823		goto retry;
824	return m;
825}
826
827/*
828 * Create the UPAGES for a new process.
829 * This routine directly affects the fork perf for a process.
830 */
831void
832pmap_new_proc(p)
833	struct proc *p;
834{
835	int i, updateneeded;
836	vm_object_t upobj;
837	vm_page_t m;
838	struct user *up;
839	unsigned *ptek, oldpte;
840
841	/*
842	 * allocate object for the upages
843	 */
844	if ((upobj = p->p_upages_obj) == NULL) {
845		upobj = vm_object_allocate( OBJT_DEFAULT, UPAGES);
846		p->p_upages_obj = upobj;
847	}
848
849	/* get a kernel virtual address for the UPAGES for this proc */
850	if ((up = p->p_addr) == NULL) {
851		up = (struct user *) kmem_alloc_nofault(kernel_map,
852				UPAGES * PAGE_SIZE);
853		if (up == NULL)
854			panic("pmap_new_proc: u_map allocation failed");
855		p->p_addr = up;
856	}
857
858	ptek = (unsigned *) vtopte((vm_offset_t) up);
859
860	updateneeded = 0;
861	for(i=0;i<UPAGES;i++) {
862		/*
863		 * Get a kernel stack page
864		 */
865		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
866
867		/*
868		 * Wire the page
869		 */
870		m->wire_count++;
871		cnt.v_wire_count++;
872
873		oldpte = *(ptek + i);
874		/*
875		 * Enter the page into the kernel address space.
876		 */
877		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
878		if (oldpte) {
879			if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386)) {
880				invlpg((vm_offset_t) up + i * PAGE_SIZE);
881			} else {
882				updateneeded = 1;
883			}
884		}
885
886		vm_page_wakeup(m);
887		vm_page_flag_clear(m, PG_ZERO);
888		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
889		m->valid = VM_PAGE_BITS_ALL;
890	}
891	if (updateneeded)
892		invltlb();
893}
894
895/*
896 * Dispose the UPAGES for a process that has exited.
897 * This routine directly impacts the exit perf of a process.
898 */
899void
900pmap_dispose_proc(p)
901	struct proc *p;
902{
903	int i;
904	vm_object_t upobj;
905	vm_page_t m;
906	unsigned *ptek, oldpte;
907
908	upobj = p->p_upages_obj;
909
910	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
911	for(i=0;i<UPAGES;i++) {
912
913		if ((m = vm_page_lookup(upobj, i)) == NULL)
914			panic("pmap_dispose_proc: upage already missing???");
915
916		vm_page_busy(m);
917
918		oldpte = *(ptek + i);
919		*(ptek + i) = 0;
920		if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386))
921			invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
922		vm_page_unwire(m, 0);
923		vm_page_free(m);
924	}
925#if defined(I386_CPU)
926	if (cpu_class <= CPUCLASS_386)
927		invltlb();
928#endif
929}
930
931/*
932 * Allow the UPAGES for a process to be prejudicially paged out.
933 */
934void
935pmap_swapout_proc(p)
936	struct proc *p;
937{
938	int i;
939	vm_object_t upobj;
940	vm_page_t m;
941
942	upobj = p->p_upages_obj;
943	/*
944	 * let the upages be paged
945	 */
946	for(i=0;i<UPAGES;i++) {
947		if ((m = vm_page_lookup(upobj, i)) == NULL)
948			panic("pmap_swapout_proc: upage already missing???");
949		vm_page_dirty(m);
950		vm_page_unwire(m, 0);
951		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
952	}
953}
954
955/*
956 * Bring the UPAGES for a specified process back in.
957 */
958void
959pmap_swapin_proc(p)
960	struct proc *p;
961{
962	int i,rv;
963	vm_object_t upobj;
964	vm_page_t m;
965
966	upobj = p->p_upages_obj;
967	for(i=0;i<UPAGES;i++) {
968
969		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
970
971		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
972			VM_PAGE_TO_PHYS(m));
973
974		if (m->valid != VM_PAGE_BITS_ALL) {
975			rv = vm_pager_get_pages(upobj, &m, 1, 0);
976			if (rv != VM_PAGER_OK)
977				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
978			m = vm_page_lookup(upobj, i);
979			m->valid = VM_PAGE_BITS_ALL;
980		}
981
982		vm_page_wire(m);
983		vm_page_wakeup(m);
984		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
985	}
986}
987
988/***************************************************
989 * Page table page management routines.....
990 ***************************************************/
991
992/*
993 * This routine unholds page table pages, and if the hold count
994 * drops to zero, then it decrements the wire count.
995 */
996static int
997_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
998
999	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1000		;
1001
1002	if (m->hold_count == 0) {
1003		vm_offset_t pteva;
1004		/*
1005		 * unmap the page table page
1006		 */
1007		pmap->pm_pdir[m->pindex] = 0;
1008		--pmap->pm_stats.resident_count;
1009		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1010			(((unsigned) PTDpde) & PG_FRAME)) {
1011			/*
1012			 * Do a invltlb to make the invalidated mapping
1013			 * take effect immediately.
1014			 */
1015			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
1016			pmap_TLB_invalidate(pmap, pteva);
1017		}
1018
1019		if (pmap->pm_ptphint == m)
1020			pmap->pm_ptphint = NULL;
1021
1022		/*
1023		 * If the page is finally unwired, simply free it.
1024		 */
1025		--m->wire_count;
1026		if (m->wire_count == 0) {
1027
1028			vm_page_flash(m);
1029			vm_page_busy(m);
1030			vm_page_free_zero(m);
1031			--cnt.v_wire_count;
1032		}
1033		return 1;
1034	}
1035	return 0;
1036}
1037
1038static PMAP_INLINE int
1039pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1040{
1041	vm_page_unhold(m);
1042	if (m->hold_count == 0)
1043		return _pmap_unwire_pte_hold(pmap, m);
1044	else
1045		return 0;
1046}
1047
1048/*
1049 * After removing a page table entry, this routine is used to
1050 * conditionally free the page, and manage the hold/wire counts.
1051 */
1052static int
1053pmap_unuse_pt(pmap, va, mpte)
1054	pmap_t pmap;
1055	vm_offset_t va;
1056	vm_page_t mpte;
1057{
1058	unsigned ptepindex;
1059	if (va >= UPT_MIN_ADDRESS)
1060		return 0;
1061
1062	if (mpte == NULL) {
1063		ptepindex = (va >> PDRSHIFT);
1064		if (pmap->pm_ptphint &&
1065			(pmap->pm_ptphint->pindex == ptepindex)) {
1066			mpte = pmap->pm_ptphint;
1067		} else {
1068			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1069			pmap->pm_ptphint = mpte;
1070		}
1071	}
1072
1073	return pmap_unwire_pte_hold(pmap, mpte);
1074}
1075
1076void
1077pmap_pinit0(pmap)
1078	struct pmap *pmap;
1079{
1080	pmap->pm_pdir =
1081		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1082	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1083	pmap->pm_count = 1;
1084	pmap->pm_active = 0;
1085	pmap->pm_ptphint = NULL;
1086	TAILQ_INIT(&pmap->pm_pvlist);
1087	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1088	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1089}
1090
1091/*
1092 * Initialize a preallocated and zeroed pmap structure,
1093 * such as one in a vmspace structure.
1094 */
1095void
1096pmap_pinit(pmap)
1097	register struct pmap *pmap;
1098{
1099	vm_page_t ptdpg;
1100
1101	/*
1102	 * No need to allocate page table space yet but we do need a valid
1103	 * page directory table.
1104	 */
1105	if (pmap->pm_pdir == NULL)
1106		pmap->pm_pdir =
1107			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1108
1109	/*
1110	 * allocate object for the ptes
1111	 */
1112	if (pmap->pm_pteobj == NULL)
1113		pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1114
1115	/*
1116	 * allocate the page directory page
1117	 */
1118	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
1119			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1120
1121	ptdpg->wire_count = 1;
1122	++cnt.v_wire_count;
1123
1124
1125	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1126	ptdpg->valid = VM_PAGE_BITS_ALL;
1127
1128	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1129	if ((ptdpg->flags & PG_ZERO) == 0)
1130		bzero(pmap->pm_pdir, PAGE_SIZE);
1131
1132	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1133	/* Wire in kernel global address entries. */
1134	/* XXX copies current process, does not fill in MPPTDI */
1135	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1136#ifdef SMP
1137	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1138#endif
1139
1140	/* install self-referential address mapping entry */
1141	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1142		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1143
1144	pmap->pm_count = 1;
1145	pmap->pm_active = 0;
1146	pmap->pm_ptphint = NULL;
1147	TAILQ_INIT(&pmap->pm_pvlist);
1148	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1149}
1150
1151/*
1152 * Wire in kernel global address entries.  To avoid a race condition
1153 * between pmap initialization and pmap_growkernel, this procedure
1154 * should be called after the vmspace is attached to the process
1155 * but before this pmap is activated.
1156 */
1157void
1158pmap_pinit2(pmap)
1159	struct pmap *pmap;
1160{
1161	/* XXX: Remove this stub when no longer called */
1162}
1163
1164static int
1165pmap_release_free_page(pmap, p)
1166	struct pmap *pmap;
1167	vm_page_t p;
1168{
1169	unsigned *pde = (unsigned *) pmap->pm_pdir;
1170	/*
1171	 * This code optimizes the case of freeing non-busy
1172	 * page-table pages.  Those pages are zero now, and
1173	 * might as well be placed directly into the zero queue.
1174	 */
1175	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1176		return 0;
1177
1178	vm_page_busy(p);
1179
1180	/*
1181	 * Remove the page table page from the processes address space.
1182	 */
1183	pde[p->pindex] = 0;
1184	pmap->pm_stats.resident_count--;
1185
1186	if (p->hold_count)  {
1187		panic("pmap_release: freeing held page table page");
1188	}
1189	/*
1190	 * Page directory pages need to have the kernel
1191	 * stuff cleared, so they can go into the zero queue also.
1192	 */
1193	if (p->pindex == PTDPTDI) {
1194		bzero(pde + KPTDI, nkpt * PTESIZE);
1195#ifdef SMP
1196		pde[MPPTDI] = 0;
1197#endif
1198		pde[APTDPTDI] = 0;
1199		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1200	}
1201
1202	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1203		pmap->pm_ptphint = NULL;
1204
1205	p->wire_count--;
1206	cnt.v_wire_count--;
1207	vm_page_free_zero(p);
1208	return 1;
1209}
1210
1211/*
1212 * this routine is called if the page table page is not
1213 * mapped correctly.
1214 */
1215static vm_page_t
1216_pmap_allocpte(pmap, ptepindex)
1217	pmap_t	pmap;
1218	unsigned ptepindex;
1219{
1220	vm_offset_t pteva, ptepa;
1221	vm_page_t m;
1222
1223	/*
1224	 * Find or fabricate a new pagetable page
1225	 */
1226	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1227			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1228
1229	KASSERT(m->queue == PQ_NONE,
1230		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1231
1232	if (m->wire_count == 0)
1233		cnt.v_wire_count++;
1234	m->wire_count++;
1235
1236	/*
1237	 * Increment the hold count for the page table page
1238	 * (denoting a new mapping.)
1239	 */
1240	m->hold_count++;
1241
1242	/*
1243	 * Map the pagetable page into the process address space, if
1244	 * it isn't already there.
1245	 */
1246
1247	pmap->pm_stats.resident_count++;
1248
1249	ptepa = VM_PAGE_TO_PHYS(m);
1250	pmap->pm_pdir[ptepindex] =
1251		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1252
1253	/*
1254	 * Set the page table hint
1255	 */
1256	pmap->pm_ptphint = m;
1257
1258	/*
1259	 * Try to use the new mapping, but if we cannot, then
1260	 * do it with the routine that maps the page explicitly.
1261	 */
1262	if ((m->flags & PG_ZERO) == 0) {
1263		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1264			(((unsigned) PTDpde) & PG_FRAME)) {
1265			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1266			bzero((caddr_t) pteva, PAGE_SIZE);
1267		} else {
1268			pmap_zero_page(ptepa);
1269		}
1270	}
1271
1272	m->valid = VM_PAGE_BITS_ALL;
1273	vm_page_flag_clear(m, PG_ZERO);
1274	vm_page_flag_set(m, PG_MAPPED);
1275	vm_page_wakeup(m);
1276
1277	return m;
1278}
1279
1280static vm_page_t
1281pmap_allocpte(pmap, va)
1282	pmap_t	pmap;
1283	vm_offset_t va;
1284{
1285	unsigned ptepindex;
1286	vm_offset_t ptepa;
1287	vm_page_t m;
1288
1289	/*
1290	 * Calculate pagetable page index
1291	 */
1292	ptepindex = va >> PDRSHIFT;
1293
1294	/*
1295	 * Get the page directory entry
1296	 */
1297	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1298
1299	/*
1300	 * This supports switching from a 4MB page to a
1301	 * normal 4K page.
1302	 */
1303	if (ptepa & PG_PS) {
1304		pmap->pm_pdir[ptepindex] = 0;
1305		ptepa = 0;
1306		invltlb();
1307	}
1308
1309	/*
1310	 * If the page table page is mapped, we just increment the
1311	 * hold count, and activate it.
1312	 */
1313	if (ptepa) {
1314		/*
1315		 * In order to get the page table page, try the
1316		 * hint first.
1317		 */
1318		if (pmap->pm_ptphint &&
1319			(pmap->pm_ptphint->pindex == ptepindex)) {
1320			m = pmap->pm_ptphint;
1321		} else {
1322			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1323			pmap->pm_ptphint = m;
1324		}
1325		m->hold_count++;
1326		return m;
1327	}
1328	/*
1329	 * Here if the pte page isn't mapped, or if it has been deallocated.
1330	 */
1331	return _pmap_allocpte(pmap, ptepindex);
1332}
1333
1334
1335/***************************************************
1336* Pmap allocation/deallocation routines.
1337 ***************************************************/
1338
1339/*
1340 * Release any resources held by the given physical map.
1341 * Called when a pmap initialized by pmap_pinit is being released.
1342 * Should only be called if the map contains no valid mappings.
1343 */
1344void
1345pmap_release(pmap)
1346	register struct pmap *pmap;
1347{
1348	vm_page_t p,n,ptdpg;
1349	vm_object_t object = pmap->pm_pteobj;
1350	int curgeneration;
1351
1352#if defined(DIAGNOSTIC)
1353	if (object->ref_count != 1)
1354		panic("pmap_release: pteobj reference count != 1");
1355#endif
1356
1357	ptdpg = NULL;
1358	LIST_REMOVE(pmap, pm_list);
1359retry:
1360	curgeneration = object->generation;
1361	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1362		n = TAILQ_NEXT(p, listq);
1363		if (p->pindex == PTDPTDI) {
1364			ptdpg = p;
1365			continue;
1366		}
1367		while (1) {
1368			if (!pmap_release_free_page(pmap, p) &&
1369				(object->generation != curgeneration))
1370				goto retry;
1371		}
1372	}
1373
1374	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1375		goto retry;
1376}
1377
1378/*
1379 * grow the number of kernel page table entries, if needed
1380 */
1381void
1382pmap_growkernel(vm_offset_t addr)
1383{
1384	struct pmap *pmap;
1385	int s;
1386	vm_offset_t ptppaddr;
1387	vm_page_t nkpg;
1388	pd_entry_t newpdir;
1389
1390	s = splhigh();
1391	if (kernel_vm_end == 0) {
1392		kernel_vm_end = KERNBASE;
1393		nkpt = 0;
1394		while (pdir_pde(PTD, kernel_vm_end)) {
1395			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1396			nkpt++;
1397		}
1398	}
1399	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1400	while (kernel_vm_end < addr) {
1401		if (pdir_pde(PTD, kernel_vm_end)) {
1402			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1403			continue;
1404		}
1405
1406		/*
1407		 * This index is bogus, but out of the way
1408		 */
1409		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1410		if (!nkpg)
1411			panic("pmap_growkernel: no memory to grow kernel");
1412
1413		nkpt++;
1414
1415		vm_page_wire(nkpg);
1416		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1417		pmap_zero_page(ptppaddr);
1418		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1419		pdir_pde(PTD, kernel_vm_end) = newpdir;
1420
1421		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1422			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1423		}
1424		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1425	}
1426	splx(s);
1427}
1428
1429/*
1430 *	Retire the given physical map from service.
1431 *	Should only be called if the map contains
1432 *	no valid mappings.
1433 */
1434void
1435pmap_destroy(pmap)
1436	register pmap_t pmap;
1437{
1438	int count;
1439
1440	if (pmap == NULL)
1441		return;
1442
1443	count = --pmap->pm_count;
1444	if (count == 0) {
1445		pmap_release(pmap);
1446		panic("destroying a pmap is not yet implemented");
1447	}
1448}
1449
1450/*
1451 *	Add a reference to the specified pmap.
1452 */
1453void
1454pmap_reference(pmap)
1455	pmap_t pmap;
1456{
1457	if (pmap != NULL) {
1458		pmap->pm_count++;
1459	}
1460}
1461
1462/***************************************************
1463* page management routines.
1464 ***************************************************/
1465
1466/*
1467 * free the pv_entry back to the free list
1468 */
1469static PMAP_INLINE void
1470free_pv_entry(pv)
1471	pv_entry_t pv;
1472{
1473	pv_entry_count--;
1474	zfreei(pvzone, pv);
1475}
1476
1477/*
1478 * get a new pv_entry, allocating a block from the system
1479 * when needed.
1480 * the memory allocation is performed bypassing the malloc code
1481 * because of the possibility of allocations at interrupt time.
1482 */
1483static pv_entry_t
1484get_pv_entry(void)
1485{
1486	pv_entry_count++;
1487	if (pv_entry_high_water &&
1488		(pv_entry_count > pv_entry_high_water) &&
1489		(pmap_pagedaemon_waken == 0)) {
1490		pmap_pagedaemon_waken = 1;
1491		wakeup (&vm_pages_needed);
1492	}
1493	return zalloci(pvzone);
1494}
1495
1496/*
1497 * This routine is very drastic, but can save the system
1498 * in a pinch.
1499 */
1500void
1501pmap_collect()
1502{
1503	int i;
1504	vm_page_t m;
1505	static int warningdone=0;
1506
1507	if (pmap_pagedaemon_waken == 0)
1508		return;
1509
1510	if (warningdone < 5) {
1511		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1512		warningdone++;
1513	}
1514
1515	for(i = 0; i < vm_page_array_size; i++) {
1516		m = &vm_page_array[i];
1517		if (m->wire_count || m->hold_count || m->busy ||
1518		    (m->flags & PG_BUSY))
1519			continue;
1520		pmap_remove_all(m);
1521	}
1522	pmap_pagedaemon_waken = 0;
1523}
1524
1525
1526/*
1527 * If it is the first entry on the list, it is actually
1528 * in the header and we must copy the following entry up
1529 * to the header.  Otherwise we must search the list for
1530 * the entry.  In either case we free the now unused entry.
1531 */
1532
1533static int
1534pmap_remove_entry(pmap, m, va)
1535	struct pmap *pmap;
1536	vm_page_t m;
1537	vm_offset_t va;
1538{
1539	pv_entry_t pv;
1540	int rtval;
1541	int s;
1542
1543	s = splvm();
1544	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1545		for (pv = TAILQ_FIRST(&m->md.pv_list);
1546			pv;
1547			pv = TAILQ_NEXT(pv, pv_list)) {
1548			if (pmap == pv->pv_pmap && va == pv->pv_va)
1549				break;
1550		}
1551	} else {
1552		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1553			pv;
1554			pv = TAILQ_NEXT(pv, pv_plist)) {
1555			if (va == pv->pv_va)
1556				break;
1557		}
1558	}
1559
1560	rtval = 0;
1561	if (pv) {
1562
1563		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1564		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1565		m->md.pv_list_count--;
1566		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1567			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1568
1569		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1570		free_pv_entry(pv);
1571	}
1572
1573	splx(s);
1574	return rtval;
1575}
1576
1577/*
1578 * Create a pv entry for page at pa for
1579 * (pmap, va).
1580 */
1581static void
1582pmap_insert_entry(pmap, va, mpte, m)
1583	pmap_t pmap;
1584	vm_offset_t va;
1585	vm_page_t mpte;
1586	vm_page_t m;
1587{
1588
1589	int s;
1590	pv_entry_t pv;
1591
1592	s = splvm();
1593	pv = get_pv_entry();
1594	pv->pv_va = va;
1595	pv->pv_pmap = pmap;
1596	pv->pv_ptem = mpte;
1597
1598	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1599	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1600	m->md.pv_list_count++;
1601
1602	splx(s);
1603}
1604
1605/*
1606 * pmap_remove_pte: do the things to unmap a page in a process
1607 */
1608static int
1609pmap_remove_pte(pmap, ptq, va)
1610	struct pmap *pmap;
1611	unsigned *ptq;
1612	vm_offset_t va;
1613{
1614	unsigned oldpte;
1615	vm_page_t m;
1616
1617	oldpte = atomic_readandclear_int(ptq);
1618	if (oldpte & PG_W)
1619		pmap->pm_stats.wired_count -= 1;
1620	/*
1621	 * Machines that don't support invlpg, also don't support
1622	 * PG_G.
1623	 */
1624	if (oldpte & PG_G)
1625		invlpg(va);
1626	pmap->pm_stats.resident_count -= 1;
1627	if (oldpte & PG_MANAGED) {
1628		m = PHYS_TO_VM_PAGE(oldpte);
1629		if (oldpte & PG_M) {
1630#if defined(PMAP_DIAGNOSTIC)
1631			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1632				printf(
1633	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1634				    va, oldpte);
1635			}
1636#endif
1637			if (pmap_track_modified(va))
1638				vm_page_dirty(m);
1639		}
1640		if (oldpte & PG_A)
1641			vm_page_flag_set(m, PG_REFERENCED);
1642		return pmap_remove_entry(pmap, m, va);
1643	} else {
1644		return pmap_unuse_pt(pmap, va, NULL);
1645	}
1646
1647	return 0;
1648}
1649
1650/*
1651 * Remove a single page from a process address space
1652 */
1653static void
1654pmap_remove_page(pmap, va)
1655	struct pmap *pmap;
1656	register vm_offset_t va;
1657{
1658	register unsigned *ptq;
1659
1660	/*
1661	 * if there is no pte for this address, just skip it!!!
1662	 */
1663	if (*pmap_pde(pmap, va) == 0) {
1664		return;
1665	}
1666
1667	/*
1668	 * get a local va for mappings for this pmap.
1669	 */
1670	ptq = get_ptbase(pmap) + i386_btop(va);
1671	if (*ptq) {
1672		(void) pmap_remove_pte(pmap, ptq, va);
1673		pmap_TLB_invalidate(pmap, va);
1674	}
1675	return;
1676}
1677
1678/*
1679 *	Remove the given range of addresses from the specified map.
1680 *
1681 *	It is assumed that the start and end are properly
1682 *	rounded to the page size.
1683 */
1684void
1685pmap_remove(pmap, sva, eva)
1686	struct pmap *pmap;
1687	register vm_offset_t sva;
1688	register vm_offset_t eva;
1689{
1690	register unsigned *ptbase;
1691	vm_offset_t pdnxt;
1692	vm_offset_t ptpaddr;
1693	vm_offset_t sindex, eindex;
1694	int anyvalid;
1695
1696	if (pmap == NULL)
1697		return;
1698
1699	if (pmap->pm_stats.resident_count == 0)
1700		return;
1701
1702	/*
1703	 * special handling of removing one page.  a very
1704	 * common operation and easy to short circuit some
1705	 * code.
1706	 */
1707	if (((sva + PAGE_SIZE) == eva) &&
1708		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1709		pmap_remove_page(pmap, sva);
1710		return;
1711	}
1712
1713	anyvalid = 0;
1714
1715	/*
1716	 * Get a local virtual address for the mappings that are being
1717	 * worked with.
1718	 */
1719	ptbase = get_ptbase(pmap);
1720
1721	sindex = i386_btop(sva);
1722	eindex = i386_btop(eva);
1723
1724	for (; sindex < eindex; sindex = pdnxt) {
1725		unsigned pdirindex;
1726
1727		/*
1728		 * Calculate index for next page table.
1729		 */
1730		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1731		if (pmap->pm_stats.resident_count == 0)
1732			break;
1733
1734		pdirindex = sindex / NPDEPG;
1735		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1736			pmap->pm_pdir[pdirindex] = 0;
1737			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1738			anyvalid++;
1739			continue;
1740		}
1741
1742		/*
1743		 * Weed out invalid mappings. Note: we assume that the page
1744		 * directory table is always allocated, and in kernel virtual.
1745		 */
1746		if (ptpaddr == 0)
1747			continue;
1748
1749		/*
1750		 * Limit our scan to either the end of the va represented
1751		 * by the current page table page, or to the end of the
1752		 * range being removed.
1753		 */
1754		if (pdnxt > eindex) {
1755			pdnxt = eindex;
1756		}
1757
1758		for ( ;sindex != pdnxt; sindex++) {
1759			vm_offset_t va;
1760			if (ptbase[sindex] == 0) {
1761				continue;
1762			}
1763			va = i386_ptob(sindex);
1764
1765			anyvalid++;
1766			if (pmap_remove_pte(pmap,
1767				ptbase + sindex, va))
1768				break;
1769		}
1770	}
1771
1772	if (anyvalid)
1773		pmap_TLB_invalidate_all(pmap);
1774}
1775
1776/*
1777 *	Routine:	pmap_remove_all
1778 *	Function:
1779 *		Removes this physical page from
1780 *		all physical maps in which it resides.
1781 *		Reflects back modify bits to the pager.
1782 *
1783 *	Notes:
1784 *		Original versions of this routine were very
1785 *		inefficient because they iteratively called
1786 *		pmap_remove (slow...)
1787 */
1788
1789static void
1790pmap_remove_all(m)
1791	vm_page_t m;
1792{
1793	register pv_entry_t pv;
1794	register unsigned *pte, tpte;
1795	int s;
1796
1797#if defined(PMAP_DIAGNOSTIC)
1798	/*
1799	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1800	 * pages!
1801	 */
1802	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1803		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1804	}
1805#endif
1806
1807	s = splvm();
1808	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1809		pv->pv_pmap->pm_stats.resident_count--;
1810
1811		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1812
1813		tpte = atomic_readandclear_int(pte);
1814		if (tpte & PG_W)
1815			pv->pv_pmap->pm_stats.wired_count--;
1816
1817		if (tpte & PG_A)
1818			vm_page_flag_set(m, PG_REFERENCED);
1819
1820		/*
1821		 * Update the vm_page_t clean and reference bits.
1822		 */
1823		if (tpte & PG_M) {
1824#if defined(PMAP_DIAGNOSTIC)
1825			if (pmap_nw_modified((pt_entry_t) tpte)) {
1826				printf(
1827	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1828				    pv->pv_va, tpte);
1829			}
1830#endif
1831			if (pmap_track_modified(pv->pv_va))
1832				vm_page_dirty(m);
1833		}
1834		pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
1835
1836		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1837		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1838		m->md.pv_list_count--;
1839		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1840		free_pv_entry(pv);
1841	}
1842
1843	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1844
1845	splx(s);
1846}
1847
1848/*
1849 *	Set the physical protection on the
1850 *	specified range of this map as requested.
1851 */
1852void
1853pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1854{
1855	register unsigned *ptbase;
1856	vm_offset_t pdnxt, ptpaddr;
1857	vm_pindex_t sindex, eindex;
1858	int anychanged;
1859
1860	if (pmap == NULL)
1861		return;
1862
1863	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1864		pmap_remove(pmap, sva, eva);
1865		return;
1866	}
1867
1868	if (prot & VM_PROT_WRITE)
1869		return;
1870
1871	anychanged = 0;
1872
1873	ptbase = get_ptbase(pmap);
1874
1875	sindex = i386_btop(sva);
1876	eindex = i386_btop(eva);
1877
1878	for (; sindex < eindex; sindex = pdnxt) {
1879
1880		unsigned pdirindex;
1881
1882		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1883
1884		pdirindex = sindex / NPDEPG;
1885		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1886			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1887			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1888			anychanged++;
1889			continue;
1890		}
1891
1892		/*
1893		 * Weed out invalid mappings. Note: we assume that the page
1894		 * directory table is always allocated, and in kernel virtual.
1895		 */
1896		if (ptpaddr == 0)
1897			continue;
1898
1899		if (pdnxt > eindex) {
1900			pdnxt = eindex;
1901		}
1902
1903		for (; sindex != pdnxt; sindex++) {
1904
1905			unsigned pbits;
1906			vm_page_t m;
1907
1908			pbits = ptbase[sindex];
1909
1910			if (pbits & PG_MANAGED) {
1911				m = NULL;
1912				if (pbits & PG_A) {
1913					m = PHYS_TO_VM_PAGE(pbits);
1914					vm_page_flag_set(m, PG_REFERENCED);
1915					pbits &= ~PG_A;
1916				}
1917				if (pbits & PG_M) {
1918					if (pmap_track_modified(i386_ptob(sindex))) {
1919						if (m == NULL)
1920							m = PHYS_TO_VM_PAGE(pbits);
1921						vm_page_dirty(m);
1922						pbits &= ~PG_M;
1923					}
1924				}
1925			}
1926
1927			pbits &= ~PG_RW;
1928
1929			if (pbits != ptbase[sindex]) {
1930				ptbase[sindex] = pbits;
1931				anychanged = 1;
1932			}
1933		}
1934	}
1935	if (anychanged)
1936		pmap_TLB_invalidate_all(pmap);
1937}
1938
1939/*
1940 *	Insert the given physical page (p) at
1941 *	the specified virtual address (v) in the
1942 *	target physical map with the protection requested.
1943 *
1944 *	If specified, the page will be wired down, meaning
1945 *	that the related pte can not be reclaimed.
1946 *
1947 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1948 *	or lose information.  That is, this routine must actually
1949 *	insert this page into the given map NOW.
1950 */
1951void
1952pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1953	   boolean_t wired)
1954{
1955	vm_offset_t pa;
1956	register unsigned *pte;
1957	vm_offset_t opa;
1958	vm_offset_t origpte, newpte;
1959	vm_page_t mpte;
1960
1961	if (pmap == NULL)
1962		return;
1963
1964	va &= PG_FRAME;
1965#ifdef PMAP_DIAGNOSTIC
1966	if (va > VM_MAX_KERNEL_ADDRESS)
1967		panic("pmap_enter: toobig");
1968	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1969		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1970#endif
1971
1972	mpte = NULL;
1973	/*
1974	 * In the case that a page table page is not
1975	 * resident, we are creating it here.
1976	 */
1977	if (va < UPT_MIN_ADDRESS) {
1978		mpte = pmap_allocpte(pmap, va);
1979	}
1980#if 0 && defined(PMAP_DIAGNOSTIC)
1981	else {
1982		vm_offset_t *pdeaddr = (vm_offset_t *)pmap_pde(pmap, va);
1983		if (((origpte = (vm_offset_t) *pdeaddr) & PG_V) == 0) {
1984			panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
1985				pmap->pm_pdir[PTDPTDI], origpte, va);
1986		}
1987		if (smp_active) {
1988			pdeaddr = (vm_offset_t *) IdlePTDS[PCPU_GET(cpuid)];
1989			if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
1990				if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
1991					printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
1992				printf("cpuid: %d, pdeaddr: 0x%x\n", PCPU_GET(cpuid), pdeaddr);
1993				panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
1994					pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
1995			}
1996		}
1997	}
1998#endif
1999
2000	pte = pmap_pte(pmap, va);
2001
2002	/*
2003	 * Page Directory table entry not valid, we need a new PT page
2004	 */
2005	if (pte == NULL) {
2006		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2007			(void *)pmap->pm_pdir[PTDPTDI], va);
2008	}
2009
2010	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2011	origpte = *(vm_offset_t *)pte;
2012	opa = origpte & PG_FRAME;
2013
2014	if (origpte & PG_PS)
2015		panic("pmap_enter: attempted pmap_enter on 4MB page");
2016
2017	/*
2018	 * Mapping has not changed, must be protection or wiring change.
2019	 */
2020	if (origpte && (opa == pa)) {
2021		/*
2022		 * Wiring change, just update stats. We don't worry about
2023		 * wiring PT pages as they remain resident as long as there
2024		 * are valid mappings in them. Hence, if a user page is wired,
2025		 * the PT page will be also.
2026		 */
2027		if (wired && ((origpte & PG_W) == 0))
2028			pmap->pm_stats.wired_count++;
2029		else if (!wired && (origpte & PG_W))
2030			pmap->pm_stats.wired_count--;
2031
2032#if defined(PMAP_DIAGNOSTIC)
2033		if (pmap_nw_modified((pt_entry_t) origpte)) {
2034			printf(
2035	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2036			    va, origpte);
2037		}
2038#endif
2039
2040		/*
2041		 * Remove extra pte reference
2042		 */
2043		if (mpte)
2044			mpte->hold_count--;
2045
2046		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2047			if ((origpte & PG_RW) == 0) {
2048				*pte |= PG_RW;
2049#ifdef SMP
2050				cpu_invlpg((void *)va);
2051				if (pmap->pm_active & PCPU_GET(other_cpus))
2052					smp_invltlb();
2053#else
2054				invltlb_1pg(va);
2055#endif
2056			}
2057			return;
2058		}
2059
2060		/*
2061		 * We might be turning off write access to the page,
2062		 * so we go ahead and sense modify status.
2063		 */
2064		if (origpte & PG_MANAGED) {
2065			if ((origpte & PG_M) && pmap_track_modified(va)) {
2066				vm_page_t om;
2067				om = PHYS_TO_VM_PAGE(opa);
2068				vm_page_dirty(om);
2069			}
2070			pa |= PG_MANAGED;
2071		}
2072		goto validate;
2073	}
2074	/*
2075	 * Mapping has changed, invalidate old range and fall through to
2076	 * handle validating new mapping.
2077	 */
2078	if (opa) {
2079		int err;
2080		err = pmap_remove_pte(pmap, pte, va);
2081		if (err)
2082			panic("pmap_enter: pte vanished, va: 0x%x", va);
2083	}
2084
2085	/*
2086	 * Enter on the PV list if part of our managed memory. Note that we
2087	 * raise IPL while manipulating pv_table since pmap_enter can be
2088	 * called at interrupt time.
2089	 */
2090	if (pmap_initialized &&
2091	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2092		pmap_insert_entry(pmap, va, mpte, m);
2093		pa |= PG_MANAGED;
2094	}
2095
2096	/*
2097	 * Increment counters
2098	 */
2099	pmap->pm_stats.resident_count++;
2100	if (wired)
2101		pmap->pm_stats.wired_count++;
2102
2103validate:
2104	/*
2105	 * Now validate mapping with desired protection/wiring.
2106	 */
2107	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2108
2109	if (wired)
2110		newpte |= PG_W;
2111	if (va < UPT_MIN_ADDRESS)
2112		newpte |= PG_U;
2113	if (pmap == kernel_pmap)
2114		newpte |= pgeflag;
2115
2116	/*
2117	 * if the mapping or permission bits are different, we need
2118	 * to update the pte.
2119	 */
2120	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2121		*pte = newpte | PG_A;
2122		/*if (origpte)*/ {
2123#ifdef SMP
2124			cpu_invlpg((void *)va);
2125			if (pmap->pm_active & PCPU_GET(other_cpus))
2126				smp_invltlb();
2127#else
2128			invltlb_1pg(va);
2129#endif
2130		}
2131	}
2132}
2133
2134/*
2135 * this code makes some *MAJOR* assumptions:
2136 * 1. Current pmap & pmap exists.
2137 * 2. Not wired.
2138 * 3. Read access.
2139 * 4. No page table pages.
2140 * 5. Tlbflush is deferred to calling procedure.
2141 * 6. Page IS managed.
2142 * but is *MUCH* faster than pmap_enter...
2143 */
2144
2145static vm_page_t
2146pmap_enter_quick(pmap, va, m, mpte)
2147	register pmap_t pmap;
2148	vm_offset_t va;
2149	vm_page_t m;
2150	vm_page_t mpte;
2151{
2152	unsigned *pte;
2153	vm_offset_t pa;
2154
2155	/*
2156	 * In the case that a page table page is not
2157	 * resident, we are creating it here.
2158	 */
2159	if (va < UPT_MIN_ADDRESS) {
2160		unsigned ptepindex;
2161		vm_offset_t ptepa;
2162
2163		/*
2164		 * Calculate pagetable page index
2165		 */
2166		ptepindex = va >> PDRSHIFT;
2167		if (mpte && (mpte->pindex == ptepindex)) {
2168			mpte->hold_count++;
2169		} else {
2170retry:
2171			/*
2172			 * Get the page directory entry
2173			 */
2174			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2175
2176			/*
2177			 * If the page table page is mapped, we just increment
2178			 * the hold count, and activate it.
2179			 */
2180			if (ptepa) {
2181				if (ptepa & PG_PS)
2182					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2183				if (pmap->pm_ptphint &&
2184					(pmap->pm_ptphint->pindex == ptepindex)) {
2185					mpte = pmap->pm_ptphint;
2186				} else {
2187					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2188					pmap->pm_ptphint = mpte;
2189				}
2190				if (mpte == NULL)
2191					goto retry;
2192				mpte->hold_count++;
2193			} else {
2194				mpte = _pmap_allocpte(pmap, ptepindex);
2195			}
2196		}
2197	} else {
2198		mpte = NULL;
2199	}
2200
2201	/*
2202	 * This call to vtopte makes the assumption that we are
2203	 * entering the page into the current pmap.  In order to support
2204	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2205	 * But that isn't as quick as vtopte.
2206	 */
2207	pte = (unsigned *)vtopte(va);
2208	if (*pte) {
2209		if (mpte)
2210			pmap_unwire_pte_hold(pmap, mpte);
2211		return 0;
2212	}
2213
2214	/*
2215	 * Enter on the PV list if part of our managed memory. Note that we
2216	 * raise IPL while manipulating pv_table since pmap_enter can be
2217	 * called at interrupt time.
2218	 */
2219	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2220		pmap_insert_entry(pmap, va, mpte, m);
2221
2222	/*
2223	 * Increment counters
2224	 */
2225	pmap->pm_stats.resident_count++;
2226
2227	pa = VM_PAGE_TO_PHYS(m);
2228
2229	/*
2230	 * Now validate mapping with RO protection
2231	 */
2232	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2233		*pte = pa | PG_V | PG_U;
2234	else
2235		*pte = pa | PG_V | PG_U | PG_MANAGED;
2236
2237	return mpte;
2238}
2239
2240/*
2241 * Make a temporary mapping for a physical address.  This is only intended
2242 * to be used for panic dumps.
2243 */
2244void *
2245pmap_kenter_temporary(vm_offset_t pa, int i)
2246{
2247	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2248	return ((void *)crashdumpmap);
2249}
2250
2251#define MAX_INIT_PT (96)
2252/*
2253 * pmap_object_init_pt preloads the ptes for a given object
2254 * into the specified pmap.  This eliminates the blast of soft
2255 * faults on process startup and immediately after an mmap.
2256 */
2257void
2258pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2259	pmap_t pmap;
2260	vm_offset_t addr;
2261	vm_object_t object;
2262	vm_pindex_t pindex;
2263	vm_size_t size;
2264	int limit;
2265{
2266	vm_offset_t tmpidx;
2267	int psize;
2268	vm_page_t p, mpte;
2269	int objpgs;
2270
2271	if (pmap == NULL || object == NULL)
2272		return;
2273
2274	/*
2275	 * This code maps large physical mmap regions into the
2276	 * processor address space.  Note that some shortcuts
2277	 * are taken, but the code works.
2278	 */
2279	if (pseflag &&
2280		(object->type == OBJT_DEVICE) &&
2281		((addr & (NBPDR - 1)) == 0) &&
2282		((size & (NBPDR - 1)) == 0) ) {
2283		int i;
2284		vm_page_t m[1];
2285		unsigned int ptepindex;
2286		int npdes;
2287		vm_offset_t ptepa;
2288
2289		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2290			return;
2291
2292retry:
2293		p = vm_page_lookup(object, pindex);
2294		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2295			goto retry;
2296
2297		if (p == NULL) {
2298			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2299			if (p == NULL)
2300				return;
2301			m[0] = p;
2302
2303			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2304				vm_page_free(p);
2305				return;
2306			}
2307
2308			p = vm_page_lookup(object, pindex);
2309			vm_page_wakeup(p);
2310		}
2311
2312		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
2313		if (ptepa & (NBPDR - 1)) {
2314			return;
2315		}
2316
2317		p->valid = VM_PAGE_BITS_ALL;
2318
2319		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2320		npdes = size >> PDRSHIFT;
2321		for(i=0;i<npdes;i++) {
2322			pmap->pm_pdir[ptepindex] =
2323				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
2324			ptepa += NBPDR;
2325			ptepindex += 1;
2326		}
2327		vm_page_flag_set(p, PG_MAPPED);
2328		invltlb();
2329		return;
2330	}
2331
2332	psize = i386_btop(size);
2333
2334	if ((object->type != OBJT_VNODE) ||
2335		(limit && (psize > MAX_INIT_PT) &&
2336			(object->resident_page_count > MAX_INIT_PT))) {
2337		return;
2338	}
2339
2340	if (psize + pindex > object->size) {
2341		if (object->size < pindex)
2342			return;
2343		psize = object->size - pindex;
2344	}
2345
2346	mpte = NULL;
2347	/*
2348	 * if we are processing a major portion of the object, then scan the
2349	 * entire thing.
2350	 */
2351	if (psize > (object->resident_page_count >> 2)) {
2352		objpgs = psize;
2353
2354		for (p = TAILQ_FIRST(&object->memq);
2355		    ((objpgs > 0) && (p != NULL));
2356		    p = TAILQ_NEXT(p, listq)) {
2357
2358			tmpidx = p->pindex;
2359			if (tmpidx < pindex) {
2360				continue;
2361			}
2362			tmpidx -= pindex;
2363			if (tmpidx >= psize) {
2364				continue;
2365			}
2366			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2367				(p->busy == 0) &&
2368			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2369				if ((p->queue - p->pc) == PQ_CACHE)
2370					vm_page_deactivate(p);
2371				vm_page_busy(p);
2372				mpte = pmap_enter_quick(pmap,
2373					addr + i386_ptob(tmpidx), p, mpte);
2374				vm_page_flag_set(p, PG_MAPPED);
2375				vm_page_wakeup(p);
2376			}
2377			objpgs -= 1;
2378		}
2379	} else {
2380		/*
2381		 * else lookup the pages one-by-one.
2382		 */
2383		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2384			p = vm_page_lookup(object, tmpidx + pindex);
2385			if (p &&
2386			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2387				(p->busy == 0) &&
2388			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2389				if ((p->queue - p->pc) == PQ_CACHE)
2390					vm_page_deactivate(p);
2391				vm_page_busy(p);
2392				mpte = pmap_enter_quick(pmap,
2393					addr + i386_ptob(tmpidx), p, mpte);
2394				vm_page_flag_set(p, PG_MAPPED);
2395				vm_page_wakeup(p);
2396			}
2397		}
2398	}
2399	return;
2400}
2401
2402/*
2403 * pmap_prefault provides a quick way of clustering
2404 * pagefaults into a processes address space.  It is a "cousin"
2405 * of pmap_object_init_pt, except it runs at page fault time instead
2406 * of mmap time.
2407 */
2408#define PFBAK 4
2409#define PFFOR 4
2410#define PAGEORDER_SIZE (PFBAK+PFFOR)
2411
2412static int pmap_prefault_pageorder[] = {
2413	-PAGE_SIZE, PAGE_SIZE,
2414	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2415	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2416	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2417};
2418
2419void
2420pmap_prefault(pmap, addra, entry)
2421	pmap_t pmap;
2422	vm_offset_t addra;
2423	vm_map_entry_t entry;
2424{
2425	int i;
2426	vm_offset_t starta;
2427	vm_offset_t addr;
2428	vm_pindex_t pindex;
2429	vm_page_t m, mpte;
2430	vm_object_t object;
2431
2432	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace)))
2433		return;
2434
2435	object = entry->object.vm_object;
2436
2437	starta = addra - PFBAK * PAGE_SIZE;
2438	if (starta < entry->start) {
2439		starta = entry->start;
2440	} else if (starta > addra) {
2441		starta = 0;
2442	}
2443
2444	mpte = NULL;
2445	for (i = 0; i < PAGEORDER_SIZE; i++) {
2446		vm_object_t lobject;
2447		unsigned *pte;
2448
2449		addr = addra + pmap_prefault_pageorder[i];
2450		if (addr > addra + (PFFOR * PAGE_SIZE))
2451			addr = 0;
2452
2453		if (addr < starta || addr >= entry->end)
2454			continue;
2455
2456		if ((*pmap_pde(pmap, addr)) == NULL)
2457			continue;
2458
2459		pte = (unsigned *) vtopte(addr);
2460		if (*pte)
2461			continue;
2462
2463		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2464		lobject = object;
2465		for (m = vm_page_lookup(lobject, pindex);
2466		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2467		    lobject = lobject->backing_object) {
2468			if (lobject->backing_object_offset & PAGE_MASK)
2469				break;
2470			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2471			m = vm_page_lookup(lobject->backing_object, pindex);
2472		}
2473
2474		/*
2475		 * give-up when a page is not in memory
2476		 */
2477		if (m == NULL)
2478			break;
2479
2480		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2481			(m->busy == 0) &&
2482		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2483
2484			if ((m->queue - m->pc) == PQ_CACHE) {
2485				vm_page_deactivate(m);
2486			}
2487			vm_page_busy(m);
2488			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2489			vm_page_flag_set(m, PG_MAPPED);
2490			vm_page_wakeup(m);
2491		}
2492	}
2493}
2494
2495/*
2496 *	Routine:	pmap_change_wiring
2497 *	Function:	Change the wiring attribute for a map/virtual-address
2498 *			pair.
2499 *	In/out conditions:
2500 *			The mapping must already exist in the pmap.
2501 */
2502void
2503pmap_change_wiring(pmap, va, wired)
2504	register pmap_t pmap;
2505	vm_offset_t va;
2506	boolean_t wired;
2507{
2508	register unsigned *pte;
2509
2510	if (pmap == NULL)
2511		return;
2512
2513	pte = pmap_pte(pmap, va);
2514
2515	if (wired && !pmap_pte_w(pte))
2516		pmap->pm_stats.wired_count++;
2517	else if (!wired && pmap_pte_w(pte))
2518		pmap->pm_stats.wired_count--;
2519
2520	/*
2521	 * Wiring is not a hardware characteristic so there is no need to
2522	 * invalidate TLB.
2523	 */
2524	pmap_pte_set_w(pte, wired);
2525}
2526
2527
2528
2529/*
2530 *	Copy the range specified by src_addr/len
2531 *	from the source map to the range dst_addr/len
2532 *	in the destination map.
2533 *
2534 *	This routine is only advisory and need not do anything.
2535 */
2536
2537void
2538pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2539	pmap_t dst_pmap, src_pmap;
2540	vm_offset_t dst_addr;
2541	vm_size_t len;
2542	vm_offset_t src_addr;
2543{
2544	vm_offset_t addr;
2545	vm_offset_t end_addr = src_addr + len;
2546	vm_offset_t pdnxt;
2547	unsigned src_frame, dst_frame;
2548	vm_page_t m;
2549
2550	if (dst_addr != src_addr)
2551		return;
2552
2553	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2554	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2555		return;
2556	}
2557
2558	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2559	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2560		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2561#if defined(SMP)
2562		/* The page directory is not shared between CPUs */
2563		cpu_invltlb();
2564#else
2565		invltlb();
2566#endif
2567	}
2568
2569	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2570		unsigned *src_pte, *dst_pte;
2571		vm_page_t dstmpte, srcmpte;
2572		vm_offset_t srcptepaddr;
2573		unsigned ptepindex;
2574
2575		if (addr >= UPT_MIN_ADDRESS)
2576			panic("pmap_copy: invalid to pmap_copy page tables\n");
2577
2578		/*
2579		 * Don't let optional prefaulting of pages make us go
2580		 * way below the low water mark of free pages or way
2581		 * above high water mark of used pv entries.
2582		 */
2583		if (cnt.v_free_count < cnt.v_free_reserved ||
2584		    pv_entry_count > pv_entry_high_water)
2585			break;
2586
2587		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2588		ptepindex = addr >> PDRSHIFT;
2589
2590		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2591		if (srcptepaddr == 0)
2592			continue;
2593
2594		if (srcptepaddr & PG_PS) {
2595			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2596				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2597				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2598			}
2599			continue;
2600		}
2601
2602		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2603		if ((srcmpte == NULL) ||
2604			(srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2605			continue;
2606
2607		if (pdnxt > end_addr)
2608			pdnxt = end_addr;
2609
2610		src_pte = (unsigned *) vtopte(addr);
2611		dst_pte = (unsigned *) avtopte(addr);
2612		while (addr < pdnxt) {
2613			unsigned ptetemp;
2614			ptetemp = *src_pte;
2615			/*
2616			 * we only virtual copy managed pages
2617			 */
2618			if ((ptetemp & PG_MANAGED) != 0) {
2619				/*
2620				 * We have to check after allocpte for the
2621				 * pte still being around...  allocpte can
2622				 * block.
2623				 */
2624				dstmpte = pmap_allocpte(dst_pmap, addr);
2625				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2626					/*
2627					 * Clear the modified and
2628					 * accessed (referenced) bits
2629					 * during the copy.
2630					 */
2631					m = PHYS_TO_VM_PAGE(ptetemp);
2632					*dst_pte = ptetemp & ~(PG_M | PG_A);
2633					dst_pmap->pm_stats.resident_count++;
2634					pmap_insert_entry(dst_pmap, addr,
2635						dstmpte, m);
2636	 			} else {
2637					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2638				}
2639				if (dstmpte->hold_count >= srcmpte->hold_count)
2640					break;
2641			}
2642			addr += PAGE_SIZE;
2643			src_pte++;
2644			dst_pte++;
2645		}
2646	}
2647}
2648
2649/*
2650 *	Routine:	pmap_kernel
2651 *	Function:
2652 *		Returns the physical map handle for the kernel.
2653 */
2654pmap_t
2655pmap_kernel()
2656{
2657	return (kernel_pmap);
2658}
2659
2660/*
2661 *	pmap_zero_page zeros the specified hardware page by mapping
2662 *	the page into KVM and using bzero to clear its contents.
2663 */
2664void
2665pmap_zero_page(phys)
2666	vm_offset_t phys;
2667{
2668#ifdef SMP
2669	if (*(int *) PCPU_GET(prv_CMAP3))
2670		panic("pmap_zero_page: prv_CMAP3 busy");
2671
2672	*(int *) PCPU_GET(prv_CMAP3) = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2673	cpu_invlpg(PCPU_GET(prv_CADDR3));
2674
2675#if defined(I686_CPU)
2676	if (cpu_class == CPUCLASS_686)
2677		i686_pagezero(PCPU_GET(prv_CADDR3));
2678	else
2679#endif
2680		bzero(PCPU_GET(prv_CADDR3), PAGE_SIZE);
2681
2682	*(int *) PCPU_GET(prv_CMAP3) = 0;
2683#else
2684	if (*(int *) CMAP2)
2685		panic("pmap_zero_page: CMAP2 busy");
2686
2687	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2688	invltlb_1pg((vm_offset_t)CADDR2);
2689
2690#if defined(I686_CPU)
2691	if (cpu_class == CPUCLASS_686)
2692		i686_pagezero(CADDR2);
2693	else
2694#endif
2695		bzero(CADDR2, PAGE_SIZE);
2696	*(int *) CMAP2 = 0;
2697#endif
2698}
2699
2700/*
2701 *	pmap_zero_page_area zeros the specified hardware page by mapping
2702 *	the page into KVM and using bzero to clear its contents.
2703 *
2704 *	off and size may not cover an area beyond a single hardware page.
2705 */
2706void
2707pmap_zero_page_area(phys, off, size)
2708	vm_offset_t phys;
2709	int off;
2710	int size;
2711{
2712#ifdef SMP
2713	if (*(int *) PCPU_GET(prv_CMAP3))
2714		panic("pmap_zero_page: prv_CMAP3 busy");
2715
2716	*(int *) PCPU_GET(prv_CMAP3) = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2717	cpu_invlpg(PCPU_GET(prv_CADDR3));
2718
2719#if defined(I686_CPU)
2720	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2721		i686_pagezero(PCPU_GET(prv_CADDR3));
2722	else
2723#endif
2724		bzero((char *)PCPU_GET(prv_CADDR3) + off, size);
2725
2726	*(int *) PCPU_GET(prv_CMAP3) = 0;
2727#else
2728	if (*(int *) CMAP2)
2729		panic("pmap_zero_page: CMAP2 busy");
2730
2731	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2732	invltlb_1pg((vm_offset_t)CADDR2);
2733
2734#if defined(I686_CPU)
2735	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2736		i686_pagezero(CADDR2);
2737	else
2738#endif
2739		bzero((char *)CADDR2 + off, size);
2740	*(int *) CMAP2 = 0;
2741#endif
2742}
2743
2744/*
2745 *	pmap_copy_page copies the specified (machine independent)
2746 *	page by mapping the page into virtual memory and using
2747 *	bcopy to copy the page, one machine dependent page at a
2748 *	time.
2749 */
2750void
2751pmap_copy_page(src, dst)
2752	vm_offset_t src;
2753	vm_offset_t dst;
2754{
2755#ifdef SMP
2756	if (*(int *) PCPU_GET(prv_CMAP1))
2757		panic("pmap_copy_page: prv_CMAP1 busy");
2758	if (*(int *) PCPU_GET(prv_CMAP2))
2759		panic("pmap_copy_page: prv_CMAP2 busy");
2760
2761	*(int *) PCPU_GET(prv_CMAP1) = PG_V | (src & PG_FRAME) | PG_A;
2762	*(int *) PCPU_GET(prv_CMAP2) = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2763
2764	cpu_invlpg(PCPU_GET(prv_CADDR1));
2765	cpu_invlpg(PCPU_GET(prv_CADDR2));
2766
2767	bcopy(PCPU_GET(prv_CADDR1), PCPU_GET(prv_CADDR2), PAGE_SIZE);
2768
2769	*(int *) PCPU_GET(prv_CMAP1) = 0;
2770	*(int *) PCPU_GET(prv_CMAP2) = 0;
2771
2772#else
2773	if (*(int *) CMAP1 || *(int *) CMAP2)
2774		panic("pmap_copy_page: CMAP busy");
2775
2776	*(int *) CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2777	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2778#if defined(I386_CPU)
2779	if (cpu_class == CPUCLASS_386) {
2780		invltlb();
2781	} else
2782#endif
2783	{
2784		invlpg((u_int)CADDR1);
2785		invlpg((u_int)CADDR2);
2786	}
2787
2788	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2789
2790	*(int *) CMAP1 = 0;
2791	*(int *) CMAP2 = 0;
2792#endif
2793}
2794
2795
2796/*
2797 *	Routine:	pmap_pageable
2798 *	Function:
2799 *		Make the specified pages (by pmap, offset)
2800 *		pageable (or not) as requested.
2801 *
2802 *		A page which is not pageable may not take
2803 *		a fault; therefore, its page table entry
2804 *		must remain valid for the duration.
2805 *
2806 *		This routine is merely advisory; pmap_enter
2807 *		will specify that these pages are to be wired
2808 *		down (or not) as appropriate.
2809 */
2810void
2811pmap_pageable(pmap, sva, eva, pageable)
2812	pmap_t pmap;
2813	vm_offset_t sva, eva;
2814	boolean_t pageable;
2815{
2816}
2817
2818/*
2819 * this routine returns true if a physical page resides
2820 * in the given pmap.
2821 */
2822boolean_t
2823pmap_page_exists(pmap, m)
2824	pmap_t pmap;
2825	vm_page_t m;
2826{
2827	register pv_entry_t pv;
2828	int s;
2829
2830	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2831		return FALSE;
2832
2833	s = splvm();
2834
2835	/*
2836	 * Not found, check current mappings returning immediately if found.
2837	 */
2838	for (pv = TAILQ_FIRST(&m->md.pv_list);
2839		pv;
2840		pv = TAILQ_NEXT(pv, pv_list)) {
2841		if (pv->pv_pmap == pmap) {
2842			splx(s);
2843			return TRUE;
2844		}
2845	}
2846	splx(s);
2847	return (FALSE);
2848}
2849
2850#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2851/*
2852 * Remove all pages from specified address space
2853 * this aids process exit speeds.  Also, this code
2854 * is special cased for current process only, but
2855 * can have the more generic (and slightly slower)
2856 * mode enabled.  This is much faster than pmap_remove
2857 * in the case of running down an entire address space.
2858 */
2859void
2860pmap_remove_pages(pmap, sva, eva)
2861	pmap_t pmap;
2862	vm_offset_t sva, eva;
2863{
2864	unsigned *pte, tpte;
2865	pv_entry_t pv, npv;
2866	int s;
2867	vm_page_t m;
2868
2869#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2870	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace))) {
2871		printf("warning: pmap_remove_pages called with non-current pmap\n");
2872		return;
2873	}
2874#endif
2875
2876	s = splvm();
2877	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2878		pv;
2879		pv = npv) {
2880
2881		if (pv->pv_va >= eva || pv->pv_va < sva) {
2882			npv = TAILQ_NEXT(pv, pv_plist);
2883			continue;
2884		}
2885
2886#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2887		pte = (unsigned *)vtopte(pv->pv_va);
2888#else
2889		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2890#endif
2891		tpte = *pte;
2892
2893/*
2894 * We cannot remove wired pages from a process' mapping at this time
2895 */
2896		if (tpte & PG_W) {
2897			npv = TAILQ_NEXT(pv, pv_plist);
2898			continue;
2899		}
2900		*pte = 0;
2901
2902		m = PHYS_TO_VM_PAGE(tpte);
2903
2904		KASSERT(m < &vm_page_array[vm_page_array_size],
2905			("pmap_remove_pages: bad tpte %x", tpte));
2906
2907		pv->pv_pmap->pm_stats.resident_count--;
2908
2909		/*
2910		 * Update the vm_page_t clean and reference bits.
2911		 */
2912		if (tpte & PG_M) {
2913			vm_page_dirty(m);
2914		}
2915
2916
2917		npv = TAILQ_NEXT(pv, pv_plist);
2918		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2919
2920		m->md.pv_list_count--;
2921		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2922		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2923			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2924		}
2925
2926		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2927		free_pv_entry(pv);
2928	}
2929	splx(s);
2930	pmap_TLB_invalidate_all(pmap);
2931}
2932
2933/*
2934 * pmap_testbit tests bits in pte's
2935 * note that the testbit/changebit routines are inline,
2936 * and a lot of things compile-time evaluate.
2937 */
2938static boolean_t
2939pmap_testbit(m, bit)
2940	vm_page_t m;
2941	int bit;
2942{
2943	pv_entry_t pv;
2944	unsigned *pte;
2945	int s;
2946
2947	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2948		return FALSE;
2949
2950	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2951		return FALSE;
2952
2953	s = splvm();
2954
2955	for (pv = TAILQ_FIRST(&m->md.pv_list);
2956		pv;
2957		pv = TAILQ_NEXT(pv, pv_list)) {
2958
2959		/*
2960		 * if the bit being tested is the modified bit, then
2961		 * mark clean_map and ptes as never
2962		 * modified.
2963		 */
2964		if (bit & (PG_A|PG_M)) {
2965			if (!pmap_track_modified(pv->pv_va))
2966				continue;
2967		}
2968
2969#if defined(PMAP_DIAGNOSTIC)
2970		if (!pv->pv_pmap) {
2971			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2972			continue;
2973		}
2974#endif
2975		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2976		if (*pte & bit) {
2977			splx(s);
2978			return TRUE;
2979		}
2980	}
2981	splx(s);
2982	return (FALSE);
2983}
2984
2985/*
2986 * this routine is used to modify bits in ptes
2987 */
2988static __inline void
2989pmap_changebit(m, bit, setem)
2990	vm_page_t m;
2991	int bit;
2992	boolean_t setem;
2993{
2994	register pv_entry_t pv;
2995	register unsigned *pte;
2996	int s;
2997
2998	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2999		return;
3000
3001	s = splvm();
3002
3003	/*
3004	 * Loop over all current mappings setting/clearing as appropos If
3005	 * setting RO do we need to clear the VAC?
3006	 */
3007	for (pv = TAILQ_FIRST(&m->md.pv_list);
3008		pv;
3009		pv = TAILQ_NEXT(pv, pv_list)) {
3010
3011		/*
3012		 * don't write protect pager mappings
3013		 */
3014		if (!setem && (bit == PG_RW)) {
3015			if (!pmap_track_modified(pv->pv_va))
3016				continue;
3017		}
3018
3019#if defined(PMAP_DIAGNOSTIC)
3020		if (!pv->pv_pmap) {
3021			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3022			continue;
3023		}
3024#endif
3025
3026		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3027
3028		if (setem) {
3029			*(int *)pte |= bit;
3030			pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3031		} else {
3032			vm_offset_t pbits = *(vm_offset_t *)pte;
3033			if (pbits & bit) {
3034				if (bit == PG_RW) {
3035					if (pbits & PG_M) {
3036						vm_page_dirty(m);
3037					}
3038					*(int *)pte = pbits & ~(PG_M|PG_RW);
3039				} else {
3040					*(int *)pte = pbits & ~bit;
3041				}
3042				pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3043			}
3044		}
3045	}
3046	splx(s);
3047}
3048
3049/*
3050 *      pmap_page_protect:
3051 *
3052 *      Lower the permission for all mappings to a given page.
3053 */
3054void
3055pmap_page_protect(vm_page_t m, vm_prot_t prot)
3056{
3057	if ((prot & VM_PROT_WRITE) == 0) {
3058		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3059			pmap_changebit(m, PG_RW, FALSE);
3060		} else {
3061			pmap_remove_all(m);
3062		}
3063	}
3064}
3065
3066vm_offset_t
3067pmap_phys_address(ppn)
3068	int ppn;
3069{
3070	return (i386_ptob(ppn));
3071}
3072
3073/*
3074 *	pmap_ts_referenced:
3075 *
3076 *	Return the count of reference bits for a page, clearing all of them.
3077 */
3078int
3079pmap_ts_referenced(vm_page_t m)
3080{
3081	register pv_entry_t pv, pvf, pvn;
3082	unsigned *pte;
3083	int s;
3084	int rtval = 0;
3085
3086	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3087		return (rtval);
3088
3089	s = splvm();
3090
3091	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3092
3093		pvf = pv;
3094
3095		do {
3096			pvn = TAILQ_NEXT(pv, pv_list);
3097
3098			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3099
3100			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3101
3102			if (!pmap_track_modified(pv->pv_va))
3103				continue;
3104
3105			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3106
3107			if (pte && (*pte & PG_A)) {
3108				*pte &= ~PG_A;
3109
3110				pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3111
3112				rtval++;
3113				if (rtval > 4) {
3114					break;
3115				}
3116			}
3117		} while ((pv = pvn) != NULL && pv != pvf);
3118	}
3119	splx(s);
3120
3121	return (rtval);
3122}
3123
3124/*
3125 *	pmap_is_modified:
3126 *
3127 *	Return whether or not the specified physical page was modified
3128 *	in any physical maps.
3129 */
3130boolean_t
3131pmap_is_modified(vm_page_t m)
3132{
3133	return pmap_testbit(m, PG_M);
3134}
3135
3136/*
3137 *	Clear the modify bits on the specified physical page.
3138 */
3139void
3140pmap_clear_modify(vm_page_t m)
3141{
3142	pmap_changebit(m, PG_M, FALSE);
3143}
3144
3145/*
3146 *	pmap_clear_reference:
3147 *
3148 *	Clear the reference bit on the specified physical page.
3149 */
3150void
3151pmap_clear_reference(vm_page_t m)
3152{
3153	pmap_changebit(m, PG_A, FALSE);
3154}
3155
3156/*
3157 * Miscellaneous support routines follow
3158 */
3159
3160static void
3161i386_protection_init()
3162{
3163	register int *kp, prot;
3164
3165	kp = protection_codes;
3166	for (prot = 0; prot < 8; prot++) {
3167		switch (prot) {
3168		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3169			/*
3170			 * Read access is also 0. There isn't any execute bit,
3171			 * so just make it readable.
3172			 */
3173		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3174		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3175		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3176			*kp++ = 0;
3177			break;
3178		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3179		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3180		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3181		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3182			*kp++ = PG_RW;
3183			break;
3184		}
3185	}
3186}
3187
3188/*
3189 * Map a set of physical memory pages into the kernel virtual
3190 * address space. Return a pointer to where it is mapped. This
3191 * routine is intended to be used for mapping device memory,
3192 * NOT real memory.
3193 */
3194void *
3195pmap_mapdev(pa, size)
3196	vm_offset_t pa;
3197	vm_size_t size;
3198{
3199	vm_offset_t va, tmpva, offset;
3200	unsigned *pte;
3201
3202	offset = pa & PAGE_MASK;
3203	size = roundup(offset + size, PAGE_SIZE);
3204
3205	va = kmem_alloc_pageable(kernel_map, size);
3206	if (!va)
3207		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3208
3209	pa = pa & PG_FRAME;
3210	for (tmpva = va; size > 0;) {
3211		pte = (unsigned *)vtopte(tmpva);
3212		*pte = pa | PG_RW | PG_V | pgeflag;
3213		size -= PAGE_SIZE;
3214		tmpva += PAGE_SIZE;
3215		pa += PAGE_SIZE;
3216	}
3217	invltlb();
3218
3219	return ((void *)(va + offset));
3220}
3221
3222void
3223pmap_unmapdev(va, size)
3224	vm_offset_t va;
3225	vm_size_t size;
3226{
3227	vm_offset_t base, offset;
3228
3229	base = va & PG_FRAME;
3230	offset = va & PAGE_MASK;
3231	size = roundup(offset + size, PAGE_SIZE);
3232	kmem_free(kernel_map, base, size);
3233}
3234
3235/*
3236 * perform the pmap work for mincore
3237 */
3238int
3239pmap_mincore(pmap, addr)
3240	pmap_t pmap;
3241	vm_offset_t addr;
3242{
3243
3244	unsigned *ptep, pte;
3245	vm_page_t m;
3246	int val = 0;
3247
3248	ptep = pmap_pte(pmap, addr);
3249	if (ptep == 0) {
3250		return 0;
3251	}
3252
3253	if ((pte = *ptep) != 0) {
3254		vm_offset_t pa;
3255
3256		val = MINCORE_INCORE;
3257		if ((pte & PG_MANAGED) == 0)
3258			return val;
3259
3260		pa = pte & PG_FRAME;
3261
3262		m = PHYS_TO_VM_PAGE(pa);
3263
3264		/*
3265		 * Modified by us
3266		 */
3267		if (pte & PG_M)
3268			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3269		/*
3270		 * Modified by someone
3271		 */
3272		else if (m->dirty || pmap_is_modified(m))
3273			val |= MINCORE_MODIFIED_OTHER;
3274		/*
3275		 * Referenced by us
3276		 */
3277		if (pte & PG_A)
3278			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3279
3280		/*
3281		 * Referenced by someone
3282		 */
3283		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3284			val |= MINCORE_REFERENCED_OTHER;
3285			vm_page_flag_set(m, PG_REFERENCED);
3286		}
3287	}
3288	return val;
3289}
3290
3291void
3292pmap_activate(struct proc *p)
3293{
3294	pmap_t	pmap;
3295
3296	pmap = vmspace_pmap(p->p_vmspace);
3297#if defined(SMP)
3298	pmap->pm_active |= 1 << PCPU_GET(cpuid);
3299#else
3300	pmap->pm_active |= 1;
3301#endif
3302#if defined(SWTCH_OPTIM_STATS)
3303	tlb_flush_count++;
3304#endif
3305	load_cr3(p->p_addr->u_pcb.pcb_cr3 = vtophys(pmap->pm_pdir));
3306}
3307
3308vm_offset_t
3309pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3310{
3311
3312	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3313		return addr;
3314	}
3315
3316	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3317	return addr;
3318}
3319
3320
3321#if defined(PMAP_DEBUG)
3322pmap_pid_dump(int pid)
3323{
3324	pmap_t pmap;
3325	struct proc *p;
3326	int npte = 0;
3327	int index;
3328	ALLPROC_LOCK(AP_SHARED);
3329	LIST_FOREACH(p, &allproc, p_list) {
3330		if (p->p_pid != pid)
3331			continue;
3332
3333		if (p->p_vmspace) {
3334			int i,j;
3335			index = 0;
3336			pmap = vmspace_pmap(p->p_vmspace);
3337			for(i=0;i<1024;i++) {
3338				pd_entry_t *pde;
3339				unsigned *pte;
3340				unsigned base = i << PDRSHIFT;
3341
3342				pde = &pmap->pm_pdir[i];
3343				if (pde && pmap_pde_v(pde)) {
3344					for(j=0;j<1024;j++) {
3345						unsigned va = base + (j << PAGE_SHIFT);
3346						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3347							if (index) {
3348								index = 0;
3349								printf("\n");
3350							}
3351							ALLPROC_LOCK(AP_RELEASE);
3352							return npte;
3353						}
3354						pte = pmap_pte_quick( pmap, va);
3355						if (pte && pmap_pte_v(pte)) {
3356							vm_offset_t pa;
3357							vm_page_t m;
3358							pa = *(int *)pte;
3359							m = PHYS_TO_VM_PAGE(pa);
3360							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3361								va, pa, m->hold_count, m->wire_count, m->flags);
3362							npte++;
3363							index++;
3364							if (index >= 2) {
3365								index = 0;
3366								printf("\n");
3367							} else {
3368								printf(" ");
3369							}
3370						}
3371					}
3372				}
3373			}
3374		}
3375	}
3376	ALLPROC_LOCK(AP_RELEASE);
3377	return npte;
3378}
3379#endif
3380
3381#if defined(DEBUG)
3382
3383static void	pads __P((pmap_t pm));
3384void		pmap_pvdump __P((vm_offset_t pa));
3385
3386/* print address space of pmap*/
3387static void
3388pads(pm)
3389	pmap_t pm;
3390{
3391	unsigned va, i, j;
3392	unsigned *ptep;
3393
3394	if (pm == kernel_pmap)
3395		return;
3396	for (i = 0; i < 1024; i++)
3397		if (pm->pm_pdir[i])
3398			for (j = 0; j < 1024; j++) {
3399				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3400				if (pm == kernel_pmap && va < KERNBASE)
3401					continue;
3402				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3403					continue;
3404				ptep = pmap_pte_quick(pm, va);
3405				if (pmap_pte_v(ptep))
3406					printf("%x:%x ", va, *(int *) ptep);
3407			};
3408
3409}
3410
3411void
3412pmap_pvdump(pa)
3413	vm_offset_t pa;
3414{
3415	register pv_entry_t pv;
3416	vm_page_t m;
3417
3418	printf("pa %x", pa);
3419	m = PHYS_TO_VM_PAGE(pa);
3420	for (pv = TAILQ_FIRST(&m->md.pv_list);
3421		pv;
3422		pv = TAILQ_NEXT(pv, pv_list)) {
3423#ifdef used_to_be
3424		printf(" -> pmap %p, va %x, flags %x",
3425		    (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3426#endif
3427		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3428		pads(pv->pv_pmap);
3429	}
3430	printf(" ");
3431}
3432#endif
3433