pmap.c revision 6807
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.50 1995/02/26 05:14:16 bde Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54/*
55 * Major modifications by John S. Dyson primarily to support
56 * pageable page tables, eliminating pmap_attributes,
57 * discontiguous memory pages, and using more efficient string
58 * instructions. Jan 13, 1994.  Further modifications on Mar 2, 1994,
59 * general clean-up and efficiency mods.
60 */
61
62/*
63 *	Manages physical address maps.
64 *
65 *	In addition to hardware address maps, this
66 *	module is called upon to provide software-use-only
67 *	maps which may or may not be stored in the same
68 *	form as hardware maps.  These pseudo-maps are
69 *	used to store intermediate results from copy
70 *	operations to and from address spaces.
71 *
72 *	Since the information managed by this module is
73 *	also stored by the logical address mapping module,
74 *	this module may throw away valid virtual-to-physical
75 *	mappings at almost any time.  However, invalidations
76 *	of virtual-to-physical mappings must be done as
77 *	requested.
78 *
79 *	In order to cope with hardware architectures which
80 *	make virtual-to-physical map invalidates expensive,
81 *	this module may delay invalidate or reduced protection
82 *	operations until such time as they are actually
83 *	necessary.  This module is given full information as
84 *	to which processors are currently using which maps,
85 *	and to when physical maps must be made correct.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/proc.h>
91#include <sys/malloc.h>
92#include <sys/user.h>
93
94#include <vm/vm.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_page.h>
97
98#include <machine/cputypes.h>
99
100#include <i386/isa/isa.h>
101
102/*
103 * Allocate various and sundry SYSMAPs used in the days of old VM
104 * and not yet converted.  XXX.
105 */
106#define BSDVM_COMPAT	1
107
108/*
109 * Get PDEs and PTEs for user/kernel address space
110 */
111#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
112#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
113
114#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
115
116#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
117#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
118#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
119#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
120#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
121
122#define pmap_pte_set_w(pte, v)		((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
123#define pmap_pte_set_prot(pte, v)	((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
124
125/*
126 * Given a map and a machine independent protection code,
127 * convert to a vax protection code.
128 */
129#define pte_prot(m, p)	(protection_codes[p])
130int protection_codes[8];
131
132struct pmap kernel_pmap_store;
133pmap_t kernel_pmap;
134
135vm_offset_t phys_avail[6];	/* 2 entries + 1 null */
136vm_offset_t avail_start;	/* PA of first available physical page */
137vm_offset_t avail_end;		/* PA of last available physical page */
138vm_size_t mem_size;		/* memory size in bytes */
139vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
140vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
141int i386pagesperpage;		/* PAGE_SIZE / I386_PAGE_SIZE */
142boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
143vm_offset_t vm_first_phys, vm_last_phys;
144
145static inline int pmap_is_managed();
146static inline void *vm_get_pmap();
147static inline void vm_put_pmap();
148static void i386_protection_init();
149static void pmap_alloc_pv_entry();
150static inline pv_entry_t get_pv_entry();
151int nkpt;
152
153
154extern vm_offset_t clean_sva, clean_eva;
155extern int cpu_class;
156
157#if BSDVM_COMPAT
158#include <sys/msgbuf.h>
159
160/*
161 * All those kernel PT submaps that BSD is so fond of
162 */
163pt_entry_t *CMAP1, *CMAP2, *ptmmap;
164caddr_t CADDR1, CADDR2, ptvmmap;
165pt_entry_t *msgbufmap;
166struct msgbuf *msgbufp;
167
168#endif
169
170void
171init_pv_entries(int);
172
173/*
174 *	Routine:	pmap_pte
175 *	Function:
176 *		Extract the page table entry associated
177 *		with the given map/virtual_address pair.
178 * [ what about induced faults -wfj]
179 */
180
181inline pt_entry_t * const
182pmap_pte(pmap, va)
183	register pmap_t pmap;
184	vm_offset_t va;
185{
186
187	if (pmap && *pmap_pde(pmap, va)) {
188		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
189
190		/* are we current address space or kernel? */
191		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
192			return ((pt_entry_t *) vtopte(va));
193		/* otherwise, we are alternate address space */
194		else {
195			if (frame != ((int) APTDpde & PG_FRAME)) {
196				APTDpde = pmap->pm_pdir[PTDPTDI];
197				pmap_update();
198			}
199			return ((pt_entry_t *) avtopte(va));
200		}
201	}
202	return (0);
203}
204
205/*
206 *	Routine:	pmap_extract
207 *	Function:
208 *		Extract the physical page address associated
209 *		with the given map/virtual_address pair.
210 */
211
212vm_offset_t
213pmap_extract(pmap, va)
214	register pmap_t pmap;
215	vm_offset_t va;
216{
217	vm_offset_t pa;
218
219	if (pmap && *pmap_pde(pmap, va)) {
220		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
221
222		/* are we current address space or kernel? */
223		if ((pmap == kernel_pmap)
224		    || (frame == ((int) PTDpde & PG_FRAME))) {
225			pa = *(int *) vtopte(va);
226			/* otherwise, we are alternate address space */
227		} else {
228			if (frame != ((int) APTDpde & PG_FRAME)) {
229				APTDpde = pmap->pm_pdir[PTDPTDI];
230				pmap_update();
231			}
232			pa = *(int *) avtopte(va);
233		}
234		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
235	}
236	return 0;
237
238}
239
240/*
241 * determine if a page is managed (memory vs. device)
242 */
243static inline int
244pmap_is_managed(pa)
245	vm_offset_t pa;
246{
247	int i;
248
249	if (!pmap_initialized)
250		return 0;
251
252	for (i = 0; phys_avail[i + 1]; i += 2) {
253		if (pa >= phys_avail[i] && pa < phys_avail[i + 1])
254			return 1;
255	}
256	return 0;
257}
258
259/*
260 * find the vm_page_t of a pte (only) given va of pte and pmap
261 */
262__inline vm_page_t
263pmap_pte_vm_page(pmap, pt)
264	pmap_t pmap;
265	vm_offset_t pt;
266{
267	vm_page_t m;
268
269	pt = i386_trunc_page(pt);
270	pt = (pt - UPT_MIN_ADDRESS) / NBPG;
271	pt = ((vm_offset_t) pmap->pm_pdir[pt]) & PG_FRAME;
272	m = PHYS_TO_VM_PAGE(pt);
273	return m;
274}
275
276/*
277 * Wire a page table page
278 */
279__inline void
280pmap_use_pt(pmap, va)
281	pmap_t pmap;
282	vm_offset_t va;
283{
284	vm_offset_t pt;
285
286	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
287		return;
288
289	pt = (vm_offset_t) vtopte(va);
290	vm_page_hold(pmap_pte_vm_page(pmap, pt));
291}
292
293/*
294 * Unwire a page table page
295 */
296inline void
297pmap_unuse_pt(pmap, va)
298	pmap_t pmap;
299	vm_offset_t va;
300{
301	vm_offset_t pt;
302	vm_page_t m;
303
304	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
305		return;
306
307	pt = (vm_offset_t) vtopte(va);
308	m = pmap_pte_vm_page(pmap, pt);
309	vm_page_unhold(m);
310	if (pmap != kernel_pmap &&
311	    (m->hold_count == 0) &&
312	    (m->wire_count == 0) &&
313	    (va < KPT_MIN_ADDRESS)) {
314		pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
315		vm_page_free(m);
316	}
317}
318
319/* [ macro again?, should I force kstack into user map here? -wfj ] */
320void
321pmap_activate(pmap, pcbp)
322	register pmap_t pmap;
323	struct pcb *pcbp;
324{
325	PMAP_ACTIVATE(pmap, pcbp);
326}
327
328/*
329 *	Bootstrap the system enough to run with virtual memory.
330 *	Map the kernel's code and data, and allocate the system page table.
331 *
332 *	On the I386 this is called after mapping has already been enabled
333 *	and just syncs the pmap module with what has already been done.
334 *	[We can't call it easily with mapping off since the kernel is not
335 *	mapped with PA == VA, hence we would have to relocate every address
336 *	from the linked base (virtual) address "KERNBASE" to the actual
337 *	(physical) address starting relative to 0]
338 */
339
340#define DMAPAGES 8
341void
342pmap_bootstrap(firstaddr, loadaddr)
343	vm_offset_t firstaddr;
344	vm_offset_t loadaddr;
345{
346#if BSDVM_COMPAT
347	vm_offset_t va;
348	pt_entry_t *pte;
349
350#endif
351
352	avail_start = firstaddr + DMAPAGES * NBPG;
353
354	virtual_avail = (vm_offset_t) KERNBASE + avail_start;
355	virtual_end = VM_MAX_KERNEL_ADDRESS;
356	i386pagesperpage = PAGE_SIZE / NBPG;
357
358	/*
359	 * Initialize protection array.
360	 */
361	i386_protection_init();
362
363	/*
364	 * The kernel's pmap is statically allocated so we don't have to use
365	 * pmap_create, which is unlikely to work correctly at this part of
366	 * the boot sequence.
367	 */
368	kernel_pmap = &kernel_pmap_store;
369
370	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
371
372	simple_lock_init(&kernel_pmap->pm_lock);
373	kernel_pmap->pm_count = 1;
374	nkpt = NKPT;
375
376#if BSDVM_COMPAT
377	/*
378	 * Allocate all the submaps we need
379	 */
380#define	SYSMAP(c, p, v, n)	\
381	v = (c)va; va += ((n)*NBPG); p = pte; pte += (n);
382
383	va = virtual_avail;
384	pte = pmap_pte(kernel_pmap, va);
385
386	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
387	    SYSMAP(caddr_t, CMAP2, CADDR2, 1)
388	    SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
389	    SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
390	    virtual_avail = va;
391#endif
392	/*
393	 * Reserve special hunk of memory for use by bus dma as a bounce
394	 * buffer (contiguous virtual *and* physical memory).
395	 */
396	{
397		extern vm_offset_t isaphysmem;
398
399		isaphysmem = va;
400
401		virtual_avail = pmap_map(va, firstaddr,
402		    firstaddr + DMAPAGES * NBPG, VM_PROT_ALL);
403	}
404
405	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
406	pmap_update();
407
408}
409
410/*
411 *	Initialize the pmap module.
412 *	Called by vm_init, to initialize any structures that the pmap
413 *	system needs to map virtual memory.
414 *	pmap_init has been enhanced to support in a fairly consistant
415 *	way, discontiguous physical memory.
416 */
417void
418pmap_init(phys_start, phys_end)
419	vm_offset_t phys_start, phys_end;
420{
421	vm_offset_t addr;
422	vm_size_t npg, s;
423	int i;
424
425	/*
426	 * Now that kernel map has been allocated, we can mark as unavailable
427	 * regions which we have mapped in locore.
428	 */
429	addr = atdevbase;
430	(void) vm_map_find(kernel_map, NULL, (vm_offset_t) 0,
431	    &addr, (0x100000 - 0xa0000), FALSE);
432
433	addr = (vm_offset_t) KERNBASE + IdlePTD;
434	vm_object_reference(kernel_object);
435	(void) vm_map_find(kernel_map, kernel_object, addr,
436	    &addr, (4 + NKPDE) * NBPG, FALSE);
437
438	/*
439	 * calculate the number of pv_entries needed
440	 */
441	vm_first_phys = phys_avail[0];
442	for (i = 0; phys_avail[i + 1]; i += 2);
443	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / NBPG;
444
445	/*
446	 * Allocate memory for random pmap data structures.  Includes the
447	 * pv_head_table.
448	 */
449	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
450	s = i386_round_page(s);
451	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
452	pv_table = (pv_entry_t) addr;
453
454	/*
455	 * init the pv free list
456	 */
457	init_pv_entries(npg);
458	/*
459	 * Now it is safe to enable pv_table recording.
460	 */
461	pmap_initialized = TRUE;
462}
463
464/*
465 *	Used to map a range of physical addresses into kernel
466 *	virtual address space.
467 *
468 *	For now, VM is already on, we only need to map the
469 *	specified memory.
470 */
471vm_offset_t
472pmap_map(virt, start, end, prot)
473	vm_offset_t virt;
474	vm_offset_t start;
475	vm_offset_t end;
476	int prot;
477{
478	while (start < end) {
479		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
480		virt += PAGE_SIZE;
481		start += PAGE_SIZE;
482	}
483	return (virt);
484}
485
486/*
487 *	Create and return a physical map.
488 *
489 *	If the size specified for the map
490 *	is zero, the map is an actual physical
491 *	map, and may be referenced by the
492 *	hardware.
493 *
494 *	If the size specified is non-zero,
495 *	the map will be used in software only, and
496 *	is bounded by that size.
497 *
498 * [ just allocate a ptd and mark it uninitialize -- should we track
499 *   with a table which process has which ptd? -wfj ]
500 */
501
502pmap_t
503pmap_create(size)
504	vm_size_t size;
505{
506	register pmap_t pmap;
507
508	/*
509	 * Software use map does not need a pmap
510	 */
511	if (size)
512		return (NULL);
513
514	pmap = (pmap_t) malloc(sizeof *pmap, M_VMPMAP, M_WAITOK);
515	bzero(pmap, sizeof(*pmap));
516	pmap_pinit(pmap);
517	return (pmap);
518}
519
520
521struct pmaplist {
522	struct pmaplist *next;
523};
524
525static inline void *
526vm_get_pmap()
527{
528	struct pmaplist *rtval;
529
530	rtval = (struct pmaplist *) kmem_alloc(kernel_map, ctob(1));
531	bzero(rtval, ctob(1));
532	return rtval;
533}
534
535static inline void
536vm_put_pmap(up)
537	struct pmaplist *up;
538{
539	kmem_free(kernel_map, (vm_offset_t) up, ctob(1));
540}
541
542/*
543 * Initialize a preallocated and zeroed pmap structure,
544 * such as one in a vmspace structure.
545 */
546void
547pmap_pinit(pmap)
548	register struct pmap *pmap;
549{
550	/*
551	 * No need to allocate page table space yet but we do need a valid
552	 * page directory table.
553	 */
554	pmap->pm_pdir = (pd_entry_t *) vm_get_pmap();
555
556	/* wire in kernel global address entries */
557	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
558
559	/* install self-referential address mapping entry */
560	*(int *) (pmap->pm_pdir + PTDPTDI) =
561	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
562
563	pmap->pm_count = 1;
564	simple_lock_init(&pmap->pm_lock);
565}
566
567/*
568 * grow the number of kernel page table entries, if needed
569 */
570
571vm_page_t nkpg;
572vm_offset_t kernel_vm_end;
573
574void
575pmap_growkernel(vm_offset_t addr)
576{
577	struct proc *p;
578	struct pmap *pmap;
579	int s;
580
581	s = splhigh();
582	if (kernel_vm_end == 0) {
583		kernel_vm_end = KERNBASE;
584		nkpt = 0;
585		while (pdir_pde(PTD, kernel_vm_end)) {
586			kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
587			++nkpt;
588		}
589	}
590	addr = (addr + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
591	while (kernel_vm_end < addr) {
592		if (pdir_pde(PTD, kernel_vm_end)) {
593			kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
594			continue;
595		}
596		++nkpt;
597		if (!nkpg) {
598			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
599			if (!nkpg)
600				panic("pmap_growkernel: no memory to grow kernel");
601			vm_page_wire(nkpg);
602			vm_page_remove(nkpg);
603			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
604		}
605		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
606		nkpg = NULL;
607
608		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
609			if (p->p_vmspace) {
610				pmap = &p->p_vmspace->vm_pmap;
611				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
612			}
613		}
614		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
615		kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
616	}
617	splx(s);
618}
619
620/*
621 *	Retire the given physical map from service.
622 *	Should only be called if the map contains
623 *	no valid mappings.
624 */
625void
626pmap_destroy(pmap)
627	register pmap_t pmap;
628{
629	int count;
630
631	if (pmap == NULL)
632		return;
633
634	simple_lock(&pmap->pm_lock);
635	count = --pmap->pm_count;
636	simple_unlock(&pmap->pm_lock);
637	if (count == 0) {
638		pmap_release(pmap);
639		free((caddr_t) pmap, M_VMPMAP);
640	}
641}
642
643/*
644 * Release any resources held by the given physical map.
645 * Called when a pmap initialized by pmap_pinit is being released.
646 * Should only be called if the map contains no valid mappings.
647 */
648void
649pmap_release(pmap)
650	register struct pmap *pmap;
651{
652	vm_put_pmap((struct pmaplist *) pmap->pm_pdir);
653}
654
655/*
656 *	Add a reference to the specified pmap.
657 */
658void
659pmap_reference(pmap)
660	pmap_t pmap;
661{
662	if (pmap != NULL) {
663		simple_lock(&pmap->pm_lock);
664		pmap->pm_count++;
665		simple_unlock(&pmap->pm_lock);
666	}
667}
668
669#define PV_FREELIST_MIN ((NBPG / sizeof (struct pv_entry)) / 2)
670
671/*
672 * Data for the pv entry allocation mechanism
673 */
674int pv_freelistcnt;
675pv_entry_t pv_freelist;
676vm_offset_t pvva;
677int npvvapg;
678
679/*
680 * free the pv_entry back to the free list
681 */
682inline static void
683free_pv_entry(pv)
684	pv_entry_t pv;
685{
686	if (!pv)
687		return;
688	++pv_freelistcnt;
689	pv->pv_next = pv_freelist;
690	pv_freelist = pv;
691}
692
693/*
694 * get a new pv_entry, allocating a block from the system
695 * when needed.
696 * the memory allocation is performed bypassing the malloc code
697 * because of the possibility of allocations at interrupt time.
698 */
699static inline pv_entry_t
700get_pv_entry()
701{
702	pv_entry_t tmp;
703
704	/*
705	 * get more pv_entry pages if needed
706	 */
707	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
708		pmap_alloc_pv_entry();
709	}
710	/*
711	 * get a pv_entry off of the free list
712	 */
713	--pv_freelistcnt;
714	tmp = pv_freelist;
715	pv_freelist = tmp->pv_next;
716	return tmp;
717}
718
719/*
720 * this *strange* allocation routine *statistically* eliminates the
721 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
722 * also -- this code is MUCH MUCH faster than the malloc equiv...
723 */
724static void
725pmap_alloc_pv_entry()
726{
727	/*
728	 * do we have any pre-allocated map-pages left?
729	 */
730	if (npvvapg) {
731		vm_page_t m;
732
733		/*
734		 * we do this to keep recursion away
735		 */
736		pv_freelistcnt += PV_FREELIST_MIN;
737		/*
738		 * allocate a physical page out of the vm system
739		 */
740		m = vm_page_alloc(kernel_object,
741		    pvva - vm_map_min(kernel_map), VM_ALLOC_INTERRUPT);
742		if (m) {
743			int newentries;
744			int i;
745			pv_entry_t entry;
746
747			newentries = (NBPG / sizeof(struct pv_entry));
748			/*
749			 * wire the page
750			 */
751			vm_page_wire(m);
752			m->flags &= ~PG_BUSY;
753			/*
754			 * let the kernel see it
755			 */
756			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
757
758			entry = (pv_entry_t) pvva;
759			/*
760			 * update the allocation pointers
761			 */
762			pvva += NBPG;
763			--npvvapg;
764
765			/*
766			 * free the entries into the free list
767			 */
768			for (i = 0; i < newentries; i++) {
769				free_pv_entry(entry);
770				entry++;
771			}
772		}
773		pv_freelistcnt -= PV_FREELIST_MIN;
774	}
775	if (!pv_freelist)
776		panic("get_pv_entry: cannot get a pv_entry_t");
777}
778
779
780
781/*
782 * init the pv_entry allocation system
783 */
784#define PVSPERPAGE 64
785void
786init_pv_entries(npg)
787	int npg;
788{
789	/*
790	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
791	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
792	 * this is too small.)
793	 */
794	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry) + NBPG - 1) / NBPG;
795	pvva = kmem_alloc_pageable(kernel_map, npvvapg * NBPG);
796	/*
797	 * get the first batch of entries
798	 */
799	free_pv_entry(get_pv_entry());
800}
801
802static pt_entry_t *
803get_pt_entry(pmap)
804	pmap_t pmap;
805{
806	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
807
808	/* are we current address space or kernel? */
809	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
810		return PTmap;
811	}
812	/* otherwise, we are alternate address space */
813	if (frame != ((int) APTDpde & PG_FRAME)) {
814		APTDpde = pmap->pm_pdir[PTDPTDI];
815		pmap_update();
816	}
817	return APTmap;
818}
819
820/*
821 * If it is the first entry on the list, it is actually
822 * in the header and we must copy the following entry up
823 * to the header.  Otherwise we must search the list for
824 * the entry.  In either case we free the now unused entry.
825 */
826void
827pmap_remove_entry(pmap, pv, va)
828	struct pmap *pmap;
829	pv_entry_t pv;
830	vm_offset_t va;
831{
832	pv_entry_t npv;
833	int s;
834
835	s = splhigh();
836	if (pmap == pv->pv_pmap && va == pv->pv_va) {
837		npv = pv->pv_next;
838		if (npv) {
839			*pv = *npv;
840			free_pv_entry(npv);
841		} else {
842			pv->pv_pmap = NULL;
843		}
844	} else {
845		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
846			if (pmap == npv->pv_pmap && va == npv->pv_va) {
847				break;
848			}
849			pv = npv;
850		}
851		if (npv) {
852			pv->pv_next = npv->pv_next;
853			free_pv_entry(npv);
854		}
855	}
856	splx(s);
857}
858
859/*
860 *	Remove the given range of addresses from the specified map.
861 *
862 *	It is assumed that the start and end are properly
863 *	rounded to the page size.
864 */
865void
866pmap_remove(pmap, sva, eva)
867	struct pmap *pmap;
868	register vm_offset_t sva;
869	register vm_offset_t eva;
870{
871	register pt_entry_t *ptp, *ptq;
872	vm_offset_t pa;
873	register pv_entry_t pv;
874	vm_offset_t va;
875	vm_page_t m;
876	pt_entry_t oldpte;
877
878	if (pmap == NULL)
879		return;
880
881	ptp = get_pt_entry(pmap);
882
883	/*
884	 * special handling of removing one page.  a very
885	 * common operation and easy to short circuit some
886	 * code.
887	 */
888	if ((sva + NBPG) == eva) {
889
890		if (*pmap_pde(pmap, sva) == 0)
891			return;
892
893		ptq = ptp + i386_btop(sva);
894
895		if (!*ptq)
896			return;
897		/*
898		 * Update statistics
899		 */
900		if (pmap_pte_w(ptq))
901			pmap->pm_stats.wired_count--;
902		pmap->pm_stats.resident_count--;
903
904		pa = pmap_pte_pa(ptq);
905		oldpte = *ptq;
906		*ptq = 0;
907
908		if (pmap_is_managed(pa)) {
909			if ((int) oldpte & PG_M) {
910				if ((sva < USRSTACK || sva >= KERNBASE) ||
911				    (sva >= USRSTACK && sva < USRSTACK + (UPAGES * NBPG))) {
912					if (sva < clean_sva || sva >= clean_eva) {
913						PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
914					}
915				}
916			}
917			pv = pa_to_pvh(pa);
918			pmap_remove_entry(pmap, pv, sva);
919		}
920		pmap_unuse_pt(pmap, sva);
921		pmap_update();
922		return;
923	}
924	sva = i386_btop(sva);
925	eva = i386_btop(eva);
926
927	while (sva < eva) {
928		/*
929		 * Weed out invalid mappings. Note: we assume that the page
930		 * directory table is always allocated, and in kernel virtual.
931		 */
932
933		if (*pmap_pde(pmap, i386_ptob(sva)) == 0) {
934			/* We can race ahead here, straight to next pde.. */
935			sva = ((sva + NPTEPG) & ~(NPTEPG - 1));
936			continue;
937		}
938		ptq = ptp + sva;
939
940		/*
941		 * search for page table entries, use string operations that
942		 * are much faster than explicitly scanning when page tables
943		 * are not fully populated.
944		 */
945		if (*ptq == 0) {
946			vm_offset_t pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
947			vm_offset_t nscan = pdnxt - sva;
948			int found = 0;
949
950			if ((nscan + sva) > eva)
951				nscan = eva - sva;
952
953			asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
954			    "=D"(ptq), "=a"(found) : "c"(nscan), "0"(ptq) : "cx");
955
956			if (!found) {
957				sva = pdnxt;
958				continue;
959			}
960			ptq -= 1;
961
962			sva = ptq - ptp;
963		}
964		/*
965		 * Update statistics
966		 */
967		oldpte = *ptq;
968		if (((int) oldpte) & PG_W)
969			pmap->pm_stats.wired_count--;
970		pmap->pm_stats.resident_count--;
971
972		/*
973		 * Invalidate the PTEs. XXX: should cluster them up and
974		 * invalidate as many as possible at once.
975		 */
976		*ptq = 0;
977
978		va = i386_ptob(sva);
979
980		/*
981		 * Remove from the PV table (raise IPL since we may be called
982		 * at interrupt time).
983		 */
984		pa = ((int) oldpte) & PG_FRAME;
985		if (!pmap_is_managed(pa)) {
986			pmap_unuse_pt(pmap, va);
987			++sva;
988			continue;
989		}
990		if ((int) oldpte & PG_M) {
991			if ((va < USRSTACK || va >= KERNBASE) ||
992			    (va >= USRSTACK && va < USRSTACK + (UPAGES * NBPG))) {
993				if (va < clean_sva || va >= clean_eva) {
994					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
995				}
996			}
997		}
998		pv = pa_to_pvh(pa);
999		pmap_remove_entry(pmap, pv, va);
1000		pmap_unuse_pt(pmap, va);
1001		++sva;
1002	}
1003	pmap_update();
1004}
1005
1006/*
1007 *	Routine:	pmap_remove_all
1008 *	Function:
1009 *		Removes this physical page from
1010 *		all physical maps in which it resides.
1011 *		Reflects back modify bits to the pager.
1012 *
1013 *	Notes:
1014 *		Original versions of this routine were very
1015 *		inefficient because they iteratively called
1016 *		pmap_remove (slow...)
1017 */
1018void
1019pmap_remove_all(pa)
1020	vm_offset_t pa;
1021{
1022	register pv_entry_t pv, npv;
1023	register pt_entry_t *pte, *ptp;
1024	vm_offset_t va;
1025	struct pmap *pmap;
1026	vm_page_t m;
1027	int s;
1028	int anyvalid = 0;
1029
1030	/*
1031	 * Not one of ours
1032	 */
1033	/*
1034	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1035	 * pages!
1036	 */
1037	if (!pmap_is_managed(pa))
1038		return;
1039
1040	pa = i386_trunc_page(pa);
1041	pv = pa_to_pvh(pa);
1042	m = PHYS_TO_VM_PAGE(pa);
1043
1044	s = splhigh();
1045	while (pv->pv_pmap != NULL) {
1046		pmap = pv->pv_pmap;
1047		ptp = get_pt_entry(pmap);
1048		va = pv->pv_va;
1049		pte = ptp + i386_btop(va);
1050		if (pmap_pte_w(pte))
1051			pmap->pm_stats.wired_count--;
1052		if (*pte) {
1053			pmap->pm_stats.resident_count--;
1054			anyvalid++;
1055
1056			/*
1057			 * Update the vm_page_t clean and reference bits.
1058			 */
1059			if ((int) *pte & PG_M) {
1060				if ((va < USRSTACK || va >= KERNBASE) ||
1061				    (va >= USRSTACK && va < USRSTACK + (UPAGES * NBPG))) {
1062					if (va < clean_sva || va >= clean_eva) {
1063						PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
1064					}
1065				}
1066			}
1067			*pte = 0;
1068			pmap_unuse_pt(pmap, va);
1069		}
1070		npv = pv->pv_next;
1071		if (npv) {
1072			*pv = *npv;
1073			free_pv_entry(npv);
1074		} else {
1075			pv->pv_pmap = NULL;
1076		}
1077	}
1078	splx(s);
1079	if (anyvalid)
1080		pmap_update();
1081}
1082
1083
1084/*
1085 *	Set the physical protection on the
1086 *	specified range of this map as requested.
1087 */
1088void
1089pmap_protect(pmap, sva, eva, prot)
1090	register pmap_t pmap;
1091	vm_offset_t sva, eva;
1092	vm_prot_t prot;
1093{
1094	register pt_entry_t *pte;
1095	register vm_offset_t va;
1096	int i386prot;
1097	register pt_entry_t *ptp;
1098	int evap = i386_btop(eva);
1099	int anyvalid = 0;;
1100
1101	if (pmap == NULL)
1102		return;
1103
1104	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1105		pmap_remove(pmap, sva, eva);
1106		return;
1107	}
1108	if (prot & VM_PROT_WRITE)
1109		return;
1110
1111	ptp = get_pt_entry(pmap);
1112
1113	va = sva;
1114	while (va < eva) {
1115		int found = 0;
1116		int svap;
1117		vm_offset_t nscan;
1118
1119		/*
1120		 * Page table page is not allocated. Skip it, we don't want to
1121		 * force allocation of unnecessary PTE pages just to set the
1122		 * protection.
1123		 */
1124		if (!*pmap_pde(pmap, va)) {
1125			/* XXX: avoid address wrap around */
1126	nextpde:
1127			if (va >= i386_trunc_pdr((vm_offset_t) - 1))
1128				break;
1129			va = i386_round_pdr(va + PAGE_SIZE);
1130			continue;
1131		}
1132		pte = ptp + i386_btop(va);
1133
1134		if (*pte == 0) {
1135			/*
1136			 * scan for a non-empty pte
1137			 */
1138			svap = pte - ptp;
1139			nscan = ((svap + NPTEPG) & ~(NPTEPG - 1)) - svap;
1140
1141			if (nscan + svap > evap)
1142				nscan = evap - svap;
1143
1144			found = 0;
1145			if (nscan)
1146				asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
1147				    "=D"(pte), "=a"(found) : "c"(nscan), "0"(pte) : "cx");
1148
1149			if (!found)
1150				goto nextpde;
1151
1152			pte -= 1;
1153			svap = pte - ptp;
1154
1155			va = i386_ptob(svap);
1156		}
1157		anyvalid++;
1158
1159		i386prot = pte_prot(pmap, prot);
1160		if (va < UPT_MAX_ADDRESS) {
1161			i386prot |= PG_u;
1162			if (va >= UPT_MIN_ADDRESS)
1163				i386prot |= PG_RW;
1164		}
1165		pmap_pte_set_prot(pte, i386prot);
1166		va += PAGE_SIZE;
1167	}
1168	if (anyvalid)
1169		pmap_update();
1170}
1171
1172/*
1173 *	Insert the given physical page (p) at
1174 *	the specified virtual address (v) in the
1175 *	target physical map with the protection requested.
1176 *
1177 *	If specified, the page will be wired down, meaning
1178 *	that the related pte can not be reclaimed.
1179 *
1180 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1181 *	or lose information.  That is, this routine must actually
1182 *	insert this page into the given map NOW.
1183 */
1184void
1185pmap_enter(pmap, va, pa, prot, wired)
1186	register pmap_t pmap;
1187	vm_offset_t va;
1188	register vm_offset_t pa;
1189	vm_prot_t prot;
1190	boolean_t wired;
1191{
1192	register pt_entry_t *pte;
1193	register pt_entry_t npte;
1194	vm_offset_t opa;
1195	int ptevalid = 0;
1196
1197	if (pmap == NULL)
1198		return;
1199
1200	va = i386_trunc_page(va);
1201	pa = i386_trunc_page(pa);
1202	if (va > VM_MAX_KERNEL_ADDRESS)
1203		panic("pmap_enter: toobig");
1204
1205	/*
1206	 * Page Directory table entry not valid, we need a new PT page
1207	 */
1208	if (*pmap_pde(pmap, va) == 0) {
1209		printf("kernel page directory invalid pdir=0x%x, va=0x%x\n", pmap->pm_pdir[PTDPTDI], va);
1210		panic("invalid kernel page directory");
1211	}
1212	pte = pmap_pte(pmap, va);
1213	opa = pmap_pte_pa(pte);
1214
1215	/*
1216	 * Mapping has not changed, must be protection or wiring change.
1217	 */
1218	if (opa == pa) {
1219		/*
1220		 * Wiring change, just update stats. We don't worry about
1221		 * wiring PT pages as they remain resident as long as there
1222		 * are valid mappings in them. Hence, if a user page is wired,
1223		 * the PT page will be also.
1224		 */
1225		if (wired && !pmap_pte_w(pte))
1226			pmap->pm_stats.wired_count++;
1227		else if (!wired && pmap_pte_w(pte))
1228			pmap->pm_stats.wired_count--;
1229
1230		goto validate;
1231	}
1232	/*
1233	 * Mapping has changed, invalidate old range and fall through to
1234	 * handle validating new mapping.
1235	 */
1236	if (opa) {
1237		pmap_remove(pmap, va, va + PAGE_SIZE);
1238	}
1239	/*
1240	 * Enter on the PV list if part of our managed memory Note that we
1241	 * raise IPL while manipulating pv_table since pmap_enter can be
1242	 * called at interrupt time.
1243	 */
1244	if (pmap_is_managed(pa)) {
1245		register pv_entry_t pv, npv;
1246		int s;
1247
1248		pv = pa_to_pvh(pa);
1249		s = splhigh();
1250		/*
1251		 * No entries yet, use header as the first entry
1252		 */
1253		if (pv->pv_pmap == NULL) {
1254			pv->pv_va = va;
1255			pv->pv_pmap = pmap;
1256			pv->pv_next = NULL;
1257		}
1258		/*
1259		 * There is at least one other VA mapping this page. Place
1260		 * this entry after the header.
1261		 */
1262		else {
1263			npv = get_pv_entry();
1264			npv->pv_va = va;
1265			npv->pv_pmap = pmap;
1266			npv->pv_next = pv->pv_next;
1267			pv->pv_next = npv;
1268		}
1269		splx(s);
1270	}
1271
1272	/*
1273	 * Increment counters
1274	 */
1275	pmap->pm_stats.resident_count++;
1276	if (wired)
1277		pmap->pm_stats.wired_count++;
1278
1279validate:
1280	/*
1281	 * Now validate mapping with desired protection/wiring.
1282	 */
1283	npte = (pt_entry_t) ((int) (pa | pte_prot(pmap, prot) | PG_V));
1284
1285	/*
1286	 * When forking (copy-on-write, etc): A process will turn off write
1287	 * permissions for any of its writable pages.  If the data (object) is
1288	 * only referred to by one process, the processes map is modified
1289	 * directly as opposed to using the object manipulation routine.  When
1290	 * using pmap_protect, the modified bits are not kept in the vm_page_t
1291	 * data structure.  Therefore, when using pmap_enter in vm_fault to
1292	 * bring back writability of a page, there has been no memory of the
1293	 * modified or referenced bits except at the pte level.  this clause
1294	 * supports the carryover of the modified and used (referenced) bits.
1295	 */
1296	if (pa == opa)
1297		(int) npte |= (int) *pte & (PG_M | PG_U);
1298
1299
1300	if (wired)
1301		(int) npte |= PG_W;
1302	if (va < UPT_MIN_ADDRESS)
1303		(int) npte |= PG_u;
1304	else if (va < UPT_MAX_ADDRESS)
1305		(int) npte |= PG_u | PG_RW;
1306
1307	if (*pte != npte) {
1308		if (*pte)
1309			ptevalid++;
1310		*pte = npte;
1311	}
1312	if (ptevalid) {
1313		pmap_update();
1314	} else {
1315		pmap_use_pt(pmap, va);
1316	}
1317}
1318
1319/*
1320 * Add a list of wired pages to the kva
1321 * this routine is only used for temporary
1322 * kernel mappings that do not need to have
1323 * page modification or references recorded.
1324 * Note that old mappings are simply written
1325 * over.  The page *must* be wired.
1326 */
1327void
1328pmap_qenter(va, m, count)
1329	vm_offset_t va;
1330	vm_page_t *m;
1331	int count;
1332{
1333	int i;
1334	int anyvalid = 0;
1335	register pt_entry_t *pte;
1336
1337	for (i = 0; i < count; i++) {
1338		pte = vtopte(va + i * NBPG);
1339		if (*pte)
1340			anyvalid++;
1341		*pte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | PG_W));
1342	}
1343	if (anyvalid)
1344		pmap_update();
1345}
1346/*
1347 * this routine jerks page mappings from the
1348 * kernel -- it is meant only for temporary mappings.
1349 */
1350void
1351pmap_qremove(va, count)
1352	vm_offset_t va;
1353	int count;
1354{
1355	int i;
1356	register pt_entry_t *pte;
1357
1358	for (i = 0; i < count; i++) {
1359		pte = vtopte(va + i * NBPG);
1360		*pte = 0;
1361	}
1362	pmap_update();
1363}
1364
1365/*
1366 * add a wired page to the kva
1367 * note that in order for the mapping to take effect -- you
1368 * should do a pmap_update after doing the pmap_kenter...
1369 */
1370void
1371pmap_kenter(va, pa)
1372	vm_offset_t va;
1373	register vm_offset_t pa;
1374{
1375	register pt_entry_t *pte;
1376	int wasvalid = 0;
1377
1378	pte = vtopte(va);
1379
1380	if (*pte)
1381		wasvalid++;
1382
1383	*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_W));
1384
1385	if (wasvalid)
1386		pmap_update();
1387}
1388
1389/*
1390 * remove a page from the kernel pagetables
1391 */
1392void
1393pmap_kremove(va)
1394	vm_offset_t va;
1395{
1396	register pt_entry_t *pte;
1397
1398	pte = vtopte(va);
1399
1400	*pte = (pt_entry_t) 0;
1401	pmap_update();
1402}
1403
1404/*
1405 * this code makes some *MAJOR* assumptions:
1406 * 1. Current pmap & pmap exists.
1407 * 2. Not wired.
1408 * 3. Read access.
1409 * 4. No page table pages.
1410 * 5. Tlbflush is deferred to calling procedure.
1411 * 6. Page IS managed.
1412 * but is *MUCH* faster than pmap_enter...
1413 */
1414
1415static inline void
1416pmap_enter_quick(pmap, va, pa)
1417	register pmap_t pmap;
1418	vm_offset_t va;
1419	register vm_offset_t pa;
1420{
1421	register pt_entry_t *pte;
1422	register pv_entry_t pv, npv;
1423	int s;
1424
1425	/*
1426	 * Enter on the PV list if part of our managed memory Note that we
1427	 * raise IPL while manipulating pv_table since pmap_enter can be
1428	 * called at interrupt time.
1429	 */
1430
1431	pte = vtopte(va);
1432
1433	/* a fault on the page table might occur here */
1434	if (*pte) {
1435		pmap_remove(pmap, va, va + PAGE_SIZE);
1436	}
1437	pv = pa_to_pvh(pa);
1438	s = splhigh();
1439	/*
1440	 * No entries yet, use header as the first entry
1441	 */
1442	if (pv->pv_pmap == NULL) {
1443		pv->pv_pmap = pmap;
1444		pv->pv_va = va;
1445		pv->pv_next = NULL;
1446	}
1447	/*
1448	 * There is at least one other VA mapping this page. Place this entry
1449	 * after the header.
1450	 */
1451	else {
1452		npv = get_pv_entry();
1453		npv->pv_va = va;
1454		npv->pv_pmap = pmap;
1455		npv->pv_next = pv->pv_next;
1456		pv->pv_next = npv;
1457	}
1458	splx(s);
1459
1460	/*
1461	 * Increment counters
1462	 */
1463	pmap->pm_stats.resident_count++;
1464
1465	/*
1466	 * Now validate mapping with desired protection/wiring.
1467	 */
1468	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1469
1470	pmap_use_pt(pmap, va);
1471
1472	return;
1473}
1474
1475#define MAX_INIT_PT (1024*2048)
1476/*
1477 * pmap_object_init_pt preloads the ptes for a given object
1478 * into the specified pmap.  This eliminates the blast of soft
1479 * faults on process startup and immediately after an mmap.
1480 */
1481void
1482pmap_object_init_pt(pmap, addr, object, offset, size)
1483	pmap_t pmap;
1484	vm_offset_t addr;
1485	vm_object_t object;
1486	vm_offset_t offset;
1487	vm_offset_t size;
1488{
1489	vm_offset_t tmpoff;
1490	vm_page_t p;
1491	int bits;
1492	int objbytes;
1493
1494	if (!pmap || ((size > MAX_INIT_PT) &&
1495		(object->resident_page_count > (MAX_INIT_PT / NBPG)))) {
1496		return;
1497	}
1498	if (!vm_object_lock_try(object))
1499		return;
1500
1501	/*
1502	 * if we are processing a major portion of the object, then scan the
1503	 * entire thing.
1504	 */
1505	if (size > (object->size >> 2)) {
1506		objbytes = size;
1507
1508		for (p = object->memq.tqh_first;
1509		    ((objbytes > 0) && (p != NULL));
1510		    p = p->listq.tqe_next) {
1511
1512			tmpoff = p->offset;
1513			if (tmpoff < offset) {
1514				continue;
1515			}
1516			tmpoff -= offset;
1517			if (tmpoff >= size) {
1518				continue;
1519			}
1520			if (((p->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
1521			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1522			    (p->bmapped == 0) &&
1523				(p->busy == 0) &&
1524			    (p->flags & (PG_BUSY | PG_FICTITIOUS | PG_CACHE)) == 0) {
1525				vm_page_hold(p);
1526				p->flags |= PG_MAPPED;
1527				pmap_enter_quick(pmap, addr + tmpoff, VM_PAGE_TO_PHYS(p));
1528				vm_page_unhold(p);
1529			}
1530			objbytes -= NBPG;
1531		}
1532	} else {
1533		/*
1534		 * else lookup the pages one-by-one.
1535		 */
1536		for (tmpoff = 0; tmpoff < size; tmpoff += NBPG) {
1537			p = vm_page_lookup(object, tmpoff + offset);
1538			if (p && ((p->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
1539			    (p->bmapped == 0) && (p->busy == 0) &&
1540			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1541			    (p->flags & (PG_BUSY | PG_FICTITIOUS | PG_CACHE)) == 0) {
1542				vm_page_hold(p);
1543				p->flags |= PG_MAPPED;
1544				pmap_enter_quick(pmap, addr + tmpoff, VM_PAGE_TO_PHYS(p));
1545				vm_page_unhold(p);
1546			}
1547		}
1548	}
1549	vm_object_unlock(object);
1550}
1551
1552#if 0
1553/*
1554 * pmap_prefault provides a quick way of clustering
1555 * pagefaults into a processes address space.  It is a "cousin"
1556 * of pmap_object_init_pt, except it runs at page fault time instead
1557 * of mmap time.
1558 */
1559#define PFBAK 2
1560#define PFFOR 2
1561#define PAGEORDER_SIZE (PFBAK+PFFOR)
1562
1563static int pmap_prefault_pageorder[] = {
1564	-NBPG, NBPG, -2 * NBPG, 2 * NBPG
1565};
1566
1567void
1568pmap_prefault(pmap, addra, entry, object)
1569	pmap_t pmap;
1570	vm_offset_t addra;
1571	vm_map_entry_t entry;
1572	vm_object_t object;
1573{
1574	int i;
1575	vm_offset_t starta, enda;
1576	vm_offset_t offset, addr;
1577	vm_page_t m;
1578	int pageorder_index;
1579
1580	if (entry->object.vm_object != object)
1581		return;
1582
1583	if (pmap != &curproc->p_vmspace->vm_pmap)
1584		return;
1585
1586	starta = addra - PFBAK * NBPG;
1587	if (starta < entry->start) {
1588		starta = entry->start;
1589	} else if (starta > addra)
1590		starta = 0;
1591
1592	enda = addra + PFFOR * NBPG;
1593	if (enda > entry->end)
1594		enda = entry->end;
1595
1596	for (i = 0; i < PAGEORDER_SIZE; i++) {
1597		vm_object_t lobject;
1598		pt_entry_t *pte;
1599
1600		addr = addra + pmap_prefault_pageorder[i];
1601		if (addr < starta || addr >= enda)
1602			continue;
1603
1604		pte = vtopte(addr);
1605		if (*pte)
1606			continue;
1607
1608		offset = (addr - entry->start) + entry->offset;
1609		lobject = object;
1610		for (m = vm_page_lookup(lobject, offset);
1611		    (!m && lobject->shadow && !lobject->pager);
1612		    lobject = lobject->shadow) {
1613
1614			offset += lobject->shadow_offset;
1615			m = vm_page_lookup(lobject->shadow, offset);
1616		}
1617
1618		/*
1619		 * give-up when a page is not in memory
1620		 */
1621		if (m == NULL)
1622			break;
1623
1624		if (((m->flags & (PG_CACHE | PG_ACTIVE | PG_INACTIVE)) != 0) &&
1625		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1626		    (m->busy == 0) &&
1627			(m->bmapped == 0) &&
1628		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1629			/*
1630			 * test results show that the system is faster when
1631			 * pages are activated.
1632			 */
1633			if ((m->flags & PG_ACTIVE) == 0) {
1634				if( m->flags & PG_CACHE)
1635					vm_page_deactivate(m);
1636				else
1637					vm_page_activate(m);
1638			}
1639			vm_page_hold(m);
1640			m->flags |= PG_MAPPED;
1641			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1642			vm_page_unhold(m);
1643		}
1644	}
1645}
1646#endif
1647
1648/*
1649 *	Routine:	pmap_change_wiring
1650 *	Function:	Change the wiring attribute for a map/virtual-address
1651 *			pair.
1652 *	In/out conditions:
1653 *			The mapping must already exist in the pmap.
1654 */
1655void
1656pmap_change_wiring(pmap, va, wired)
1657	register pmap_t pmap;
1658	vm_offset_t va;
1659	boolean_t wired;
1660{
1661	register pt_entry_t *pte;
1662
1663	if (pmap == NULL)
1664		return;
1665
1666	pte = pmap_pte(pmap, va);
1667
1668	if (wired && !pmap_pte_w(pte))
1669		pmap->pm_stats.wired_count++;
1670	else if (!wired && pmap_pte_w(pte))
1671		pmap->pm_stats.wired_count--;
1672
1673	/*
1674	 * Wiring is not a hardware characteristic so there is no need to
1675	 * invalidate TLB.
1676	 */
1677	pmap_pte_set_w(pte, wired);
1678	/*
1679	 * When unwiring, set the modified bit in the pte -- could have been
1680	 * changed by the kernel
1681	 */
1682	if (!wired)
1683		(int) *pte |= PG_M;
1684}
1685
1686
1687
1688/*
1689 *	Copy the range specified by src_addr/len
1690 *	from the source map to the range dst_addr/len
1691 *	in the destination map.
1692 *
1693 *	This routine is only advisory and need not do anything.
1694 */
1695void
1696pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1697	pmap_t dst_pmap, src_pmap;
1698	vm_offset_t dst_addr;
1699	vm_size_t len;
1700	vm_offset_t src_addr;
1701{
1702}
1703
1704/*
1705 *	Routine:	pmap_kernel
1706 *	Function:
1707 *		Returns the physical map handle for the kernel.
1708 */
1709pmap_t
1710pmap_kernel()
1711{
1712	return (kernel_pmap);
1713}
1714
1715/*
1716 *	pmap_zero_page zeros the specified (machine independent)
1717 *	page by mapping the page into virtual memory and using
1718 *	bzero to clear its contents, one machine dependent page
1719 *	at a time.
1720 */
1721void
1722pmap_zero_page(phys)
1723	vm_offset_t phys;
1724{
1725	if (*(int *) CMAP2)
1726		panic("pmap_zero_page: CMAP busy");
1727
1728	*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(phys);
1729	bzero(CADDR2, NBPG);
1730
1731	*(int *) CMAP2 = 0;
1732	pmap_update();
1733}
1734
1735/*
1736 *	pmap_copy_page copies the specified (machine independent)
1737 *	page by mapping the page into virtual memory and using
1738 *	bcopy to copy the page, one machine dependent page at a
1739 *	time.
1740 */
1741void
1742pmap_copy_page(src, dst)
1743	vm_offset_t src;
1744	vm_offset_t dst;
1745{
1746	if (*(int *) CMAP1 || *(int *) CMAP2)
1747		panic("pmap_copy_page: CMAP busy");
1748
1749	*(int *) CMAP1 = PG_V | PG_KW | i386_trunc_page(src);
1750	*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(dst);
1751
1752#if __GNUC__ > 1
1753	memcpy(CADDR2, CADDR1, NBPG);
1754#else
1755	bcopy(CADDR1, CADDR2, NBPG);
1756#endif
1757	*(int *) CMAP1 = 0;
1758	*(int *) CMAP2 = 0;
1759	pmap_update();
1760}
1761
1762
1763/*
1764 *	Routine:	pmap_pageable
1765 *	Function:
1766 *		Make the specified pages (by pmap, offset)
1767 *		pageable (or not) as requested.
1768 *
1769 *		A page which is not pageable may not take
1770 *		a fault; therefore, its page table entry
1771 *		must remain valid for the duration.
1772 *
1773 *		This routine is merely advisory; pmap_enter
1774 *		will specify that these pages are to be wired
1775 *		down (or not) as appropriate.
1776 */
1777void
1778pmap_pageable(pmap, sva, eva, pageable)
1779	pmap_t pmap;
1780	vm_offset_t sva, eva;
1781	boolean_t pageable;
1782{
1783}
1784
1785/*
1786 * this routine returns true if a physical page resides
1787 * in the given pmap.
1788 */
1789boolean_t
1790pmap_page_exists(pmap, pa)
1791	pmap_t pmap;
1792	vm_offset_t pa;
1793{
1794	register pv_entry_t pv;
1795	int s;
1796
1797	if (!pmap_is_managed(pa))
1798		return FALSE;
1799
1800	pv = pa_to_pvh(pa);
1801	s = splhigh();
1802
1803	/*
1804	 * Not found, check current mappings returning immediately if found.
1805	 */
1806	if (pv->pv_pmap != NULL) {
1807		for (; pv; pv = pv->pv_next) {
1808			if (pv->pv_pmap == pmap) {
1809				splx(s);
1810				return TRUE;
1811			}
1812		}
1813	}
1814	splx(s);
1815	return (FALSE);
1816}
1817
1818/*
1819 * pmap_testbit tests bits in pte's
1820 * note that the testbit/changebit routines are inline,
1821 * and a lot of things compile-time evaluate.
1822 */
1823__inline boolean_t
1824pmap_testbit(pa, bit)
1825	register vm_offset_t pa;
1826	int bit;
1827{
1828	register pv_entry_t pv;
1829	pt_entry_t *pte;
1830	int s;
1831
1832	if (!pmap_is_managed(pa))
1833		return FALSE;
1834
1835	pv = pa_to_pvh(pa);
1836	s = splhigh();
1837
1838	/*
1839	 * Not found, check current mappings returning immediately if found.
1840	 */
1841	if (pv->pv_pmap != NULL) {
1842		for (; pv; pv = pv->pv_next) {
1843			/*
1844			 * if the bit being tested is the modified bit, then
1845			 * mark UPAGES as always modified, and ptes as never
1846			 * modified.
1847			 */
1848			if (bit & PG_U) {
1849				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
1850					continue;
1851				}
1852			}
1853			if (bit & PG_M) {
1854				if (pv->pv_va >= USRSTACK) {
1855					if (pv->pv_va >= clean_sva && pv->pv_va < clean_eva) {
1856						continue;
1857					}
1858					if (pv->pv_va < USRSTACK + (UPAGES * NBPG)) {
1859						splx(s);
1860						return TRUE;
1861					} else if (pv->pv_va < KERNBASE) {
1862						splx(s);
1863						return FALSE;
1864					}
1865				}
1866			}
1867			if (!pv->pv_pmap) {
1868				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
1869				continue;
1870			}
1871			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1872			if ((int) *pte & bit) {
1873				splx(s);
1874				return TRUE;
1875			}
1876		}
1877	}
1878	splx(s);
1879	return (FALSE);
1880}
1881
1882/*
1883 * this routine is used to modify bits in ptes
1884 */
1885__inline void
1886pmap_changebit(pa, bit, setem)
1887	vm_offset_t pa;
1888	int bit;
1889	boolean_t setem;
1890{
1891	register pv_entry_t pv;
1892	register pt_entry_t *pte, npte;
1893	vm_offset_t va;
1894	int s;
1895
1896	if (!pmap_is_managed(pa))
1897		return;
1898
1899	pv = pa_to_pvh(pa);
1900	s = splhigh();
1901
1902	/*
1903	 * Loop over all current mappings setting/clearing as appropos If
1904	 * setting RO do we need to clear the VAC?
1905	 */
1906	if (pv->pv_pmap != NULL) {
1907		for (; pv; pv = pv->pv_next) {
1908			va = pv->pv_va;
1909
1910			/*
1911			 * don't write protect pager mappings
1912			 */
1913			if (!setem && (bit == PG_RW)) {
1914				if (va >= clean_sva && va < clean_eva)
1915					continue;
1916			}
1917			if (!pv->pv_pmap) {
1918				printf("Null pmap (cb) at va: 0x%lx\n", va);
1919				continue;
1920			}
1921			pte = pmap_pte(pv->pv_pmap, va);
1922			if (setem)
1923				(int) npte = (int) *pte | bit;
1924			else
1925				(int) npte = (int) *pte & ~bit;
1926			*pte = npte;
1927		}
1928	}
1929	splx(s);
1930	pmap_update();
1931}
1932
1933/*
1934 *      pmap_page_protect:
1935 *
1936 *      Lower the permission for all mappings to a given page.
1937 */
1938void
1939pmap_page_protect(phys, prot)
1940	vm_offset_t phys;
1941	vm_prot_t prot;
1942{
1943	if ((prot & VM_PROT_WRITE) == 0) {
1944		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
1945			pmap_changebit(phys, PG_RW, FALSE);
1946		else
1947			pmap_remove_all(phys);
1948	}
1949}
1950
1951vm_offset_t
1952pmap_phys_address(ppn)
1953	int ppn;
1954{
1955	return (i386_ptob(ppn));
1956}
1957
1958/*
1959 *	pmap_is_referenced:
1960 *
1961 *	Return whether or not the specified physical page was referenced
1962 *	by any physical maps.
1963 */
1964boolean_t
1965pmap_is_referenced(vm_offset_t pa)
1966{
1967	return pmap_testbit((pa), PG_U);
1968}
1969
1970/*
1971 *	pmap_is_modified:
1972 *
1973 *	Return whether or not the specified physical page was modified
1974 *	in any physical maps.
1975 */
1976boolean_t
1977pmap_is_modified(vm_offset_t pa)
1978{
1979	return pmap_testbit((pa), PG_M);
1980}
1981
1982/*
1983 *	Clear the modify bits on the specified physical page.
1984 */
1985void
1986pmap_clear_modify(vm_offset_t pa)
1987{
1988	pmap_changebit((pa), PG_M, FALSE);
1989}
1990
1991/*
1992 *	pmap_clear_reference:
1993 *
1994 *	Clear the reference bit on the specified physical page.
1995 */
1996void
1997pmap_clear_reference(vm_offset_t pa)
1998{
1999	pmap_changebit((pa), PG_U, FALSE);
2000}
2001
2002/*
2003 *	Routine:	pmap_copy_on_write
2004 *	Function:
2005 *		Remove write privileges from all
2006 *		physical maps for this physical page.
2007 */
2008void
2009pmap_copy_on_write(vm_offset_t pa)
2010{
2011	pmap_changebit((pa), PG_RW, FALSE);
2012}
2013
2014/*
2015 * Miscellaneous support routines follow
2016 */
2017
2018void
2019i386_protection_init()
2020{
2021	register int *kp, prot;
2022
2023	kp = protection_codes;
2024	for (prot = 0; prot < 8; prot++) {
2025		switch (prot) {
2026		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2027			/*
2028			 * Read access is also 0. There isn't any execute bit,
2029			 * so just make it readable.
2030			 */
2031		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2032		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2033		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2034			*kp++ = 0;
2035			break;
2036		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2037		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2038		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2039		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2040			*kp++ = PG_RW;
2041			break;
2042		}
2043	}
2044}
2045
2046/*
2047 * Map a set of physical memory pages into the kernel virtual
2048 * address space. Return a pointer to where it is mapped. This
2049 * routine is intended to be used for mapping device memory,
2050 * NOT real memory. The non-cacheable bits are set on each
2051 * mapped page.
2052 */
2053void *
2054pmap_mapdev(pa, size)
2055	vm_offset_t pa;
2056	vm_size_t size;
2057{
2058	vm_offset_t va, tmpva;
2059	pt_entry_t *pte;
2060
2061	pa = trunc_page(pa);
2062	size = roundup(size, PAGE_SIZE);
2063
2064	va = kmem_alloc_pageable(kernel_map, size);
2065	if (!va)
2066		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2067
2068	for (tmpva = va; size > 0;) {
2069		pte = vtopte(tmpva);
2070		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
2071		size -= PAGE_SIZE;
2072		tmpva += PAGE_SIZE;
2073		pa += PAGE_SIZE;
2074	}
2075	pmap_update();
2076
2077	return ((void *) va);
2078}
2079
2080#ifdef DEBUG
2081/* print address space of pmap*/
2082void
2083pads(pm)
2084	pmap_t pm;
2085{
2086	unsigned va, i, j;
2087	pt_entry_t *ptep;
2088
2089	if (pm == kernel_pmap)
2090		return;
2091	for (i = 0; i < 1024; i++)
2092		if (pm->pm_pdir[i])
2093			for (j = 0; j < 1024; j++) {
2094				va = (i << PD_SHIFT) + (j << PG_SHIFT);
2095				if (pm == kernel_pmap && va < KERNBASE)
2096					continue;
2097				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2098					continue;
2099				ptep = pmap_pte(pm, va);
2100				if (pmap_pte_v(ptep))
2101					printf("%x:%x ", va, *(int *) ptep);
2102			};
2103
2104}
2105
2106void
2107pmap_pvdump(pa)
2108	vm_offset_t pa;
2109{
2110	register pv_entry_t pv;
2111
2112	printf("pa %x", pa);
2113	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2114#ifdef used_to_be
2115		printf(" -> pmap %x, va %x, flags %x",
2116		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2117#endif
2118		printf(" -> pmap %x, va %x",
2119		    pv->pv_pmap, pv->pv_va);
2120		pads(pv->pv_pmap);
2121	}
2122	printf(" ");
2123}
2124#endif
2125