pmap.c revision 47575
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.235 1999/05/18 06:01:49 alc Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_vm86.h"
75#include "opt_user_ldt.h"
76
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/proc.h>
80#include <sys/msgbuf.h>
81#include <sys/vmmeter.h>
82#include <sys/mman.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/vm_prot.h>
87#include <sys/lock.h>
88#include <vm/vm_kern.h>
89#include <vm/vm_page.h>
90#include <vm/vm_map.h>
91#include <vm/vm_object.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pageout.h>
94#include <vm/vm_pager.h>
95#include <vm/vm_zone.h>
96
97#include <sys/user.h>
98
99#include <machine/cputypes.h>
100#include <machine/md_var.h>
101#include <machine/specialreg.h>
102#if defined(SMP) || defined(APIC_IO)
103#include <machine/smp.h>
104#include <machine/apic.h>
105#include <machine/segments.h>
106#include <machine/tss.h>
107#include <machine/globaldata.h>
108#endif /* SMP || APIC_IO */
109
110#define PMAP_KEEP_PDIRS
111#ifndef PMAP_SHPGPERPROC
112#define PMAP_SHPGPERPROC 200
113#endif
114
115#if defined(DIAGNOSTIC)
116#define PMAP_DIAGNOSTIC
117#endif
118
119#define MINPV 2048
120
121#if !defined(PMAP_DIAGNOSTIC)
122#define PMAP_INLINE __inline
123#else
124#define PMAP_INLINE
125#endif
126
127/*
128 * Get PDEs and PTEs for user/kernel address space
129 */
130#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
131#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
132
133#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
134#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
135#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
136#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
137#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
138
139#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
140#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
141
142/*
143 * Given a map and a machine independent protection code,
144 * convert to a vax protection code.
145 */
146#define pte_prot(m, p)	(protection_codes[p])
147static int protection_codes[8];
148
149#define	pa_index(pa)		atop((pa) - vm_first_phys)
150#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
151
152static struct pmap kernel_pmap_store;
153pmap_t kernel_pmap;
154
155vm_offset_t avail_start;	/* PA of first available physical page */
156vm_offset_t avail_end;		/* PA of last available physical page */
157vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
158vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
159static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
160static vm_offset_t vm_first_phys;
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163static int pv_npg;
164
165static vm_object_t kptobj;
166
167static int nkpt;
168vm_offset_t kernel_vm_end;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static vm_zone_t pvzone;
174static struct vm_zone pvzone_store;
175static struct vm_object pvzone_obj;
176static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
177static int pmap_pagedaemon_waken = 0;
178static struct pv_entry *pvinit;
179
180/*
181 * All those kernel PT submaps that BSD is so fond of
182 */
183pt_entry_t *CMAP1 = 0;
184static pt_entry_t *CMAP2, *ptmmap;
185static pv_table_t *pv_table;
186caddr_t CADDR1 = 0, ptvmmap = 0;
187static caddr_t CADDR2;
188static pt_entry_t *msgbufmap;
189struct msgbuf *msgbufp=0;
190
191#ifdef SMP
192extern pt_entry_t *SMPpt;
193#else
194static pt_entry_t *PMAP1 = 0;
195static unsigned *PADDR1 = 0;
196#endif
197
198static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
199static unsigned * get_ptbase __P((pmap_t pmap));
200static pv_entry_t get_pv_entry __P((void));
201static void	i386_protection_init __P((void));
202static __inline void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
203static void	pmap_clearbit __P((vm_offset_t pa, int bit));
204
205static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
206static void	pmap_remove_all __P((vm_offset_t pa));
207static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
208				      vm_offset_t pa, vm_page_t mpte));
209static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
210					vm_offset_t sva));
211static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
212static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
213					vm_offset_t va));
214static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
215static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
216		vm_page_t mpte, vm_offset_t pa));
217
218static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
219
220static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
221static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
222static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
223static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
224static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
225static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
226
227static unsigned pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE unsigned *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	unsigned *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = (unsigned *) pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr) {
262	vm_offset_t newaddr = addr;
263#ifndef DISABLE_PSE
264	if (cpu_feature & CPUID_PSE) {
265		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
266	}
267#endif
268	return newaddr;
269}
270
271/*
272 *	Bootstrap the system enough to run with virtual memory.
273 *
274 *	On the i386 this is called after mapping has already been enabled
275 *	and just syncs the pmap module with what has already been done.
276 *	[We can't call it easily with mapping off since the kernel is not
277 *	mapped with PA == VA, hence we would have to relocate every address
278 *	from the linked base (virtual) address "KERNBASE" to the actual
279 *	(physical) address starting relative to 0]
280 */
281void
282pmap_bootstrap(firstaddr, loadaddr)
283	vm_offset_t firstaddr;
284	vm_offset_t loadaddr;
285{
286	vm_offset_t va;
287	pt_entry_t *pte;
288#ifdef SMP
289	int i, j;
290	struct globaldata *gd;
291#endif
292
293	avail_start = firstaddr;
294
295	/*
296	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
297	 * large. It should instead be correctly calculated in locore.s and
298	 * not based on 'first' (which is a physical address, not a virtual
299	 * address, for the start of unused physical memory). The kernel
300	 * page tables are NOT double mapped and thus should not be included
301	 * in this calculation.
302	 */
303	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
304	virtual_avail = pmap_kmem_choose(virtual_avail);
305
306	virtual_end = VM_MAX_KERNEL_ADDRESS;
307
308	/*
309	 * Initialize protection array.
310	 */
311	i386_protection_init();
312
313	/*
314	 * The kernel's pmap is statically allocated so we don't have to use
315	 * pmap_create, which is unlikely to work correctly at this part of
316	 * the boot sequence (XXX and which no longer exists).
317	 */
318	kernel_pmap = &kernel_pmap_store;
319
320	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
321	kernel_pmap->pm_count = 1;
322	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
323	TAILQ_INIT(&kernel_pmap->pm_pvlist);
324	nkpt = NKPT;
325
326	/*
327	 * Reserve some special page table entries/VA space for temporary
328	 * mapping of pages.
329	 */
330#define	SYSMAP(c, p, v, n)	\
331	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
332
333	va = virtual_avail;
334	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
335
336	/*
337	 * CMAP1/CMAP2 are used for zeroing and copying pages.
338	 */
339	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
340	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
341
342	/*
343	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
344	 * XXX ptmmap is not used.
345	 */
346	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
347
348	/*
349	 * msgbufp is used to map the system message buffer.
350	 * XXX msgbufmap is not used.
351	 */
352	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
353	       atop(round_page(MSGBUF_SIZE)))
354
355#if !defined(SMP)
356	/*
357	 * ptemap is used for pmap_pte_quick
358	 */
359	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
360#endif
361
362	virtual_avail = va;
363
364	*(int *) CMAP1 = *(int *) CMAP2 = 0;
365	*(int *) PTD = 0;
366
367
368	pgeflag = 0;
369#if !defined(SMP)
370	if (cpu_feature & CPUID_PGE) {
371		pgeflag = PG_G;
372	}
373#endif
374
375/*
376 * Initialize the 4MB page size flag
377 */
378	pseflag = 0;
379/*
380 * The 4MB page version of the initial
381 * kernel page mapping.
382 */
383	pdir4mb = 0;
384
385#if !defined(DISABLE_PSE)
386	if (cpu_feature & CPUID_PSE) {
387		unsigned ptditmp;
388		/*
389		 * Enable the PSE mode
390		 */
391		load_cr4(rcr4() | CR4_PSE);
392
393		/*
394		 * Note that we have enabled PSE mode
395		 */
396		pseflag = PG_PS;
397		ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
398		ptditmp &= ~(NBPDR - 1);
399		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
400		pdir4mb = ptditmp;
401
402#if !defined(SMP)
403		/*
404		 * We can do the mapping here for the single processor
405		 * case.  We simply ignore the old page table page from
406		 * now on.
407		 */
408		/*
409		 * For SMP, we still need 4K pages to bootstrap APs,
410		 * PSE will be enabled as soon as all APs are up.
411		 */
412		PTD[KPTDI] = (pd_entry_t) ptditmp;
413		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
414		invltlb();
415#endif
416	}
417#endif
418
419#ifdef SMP
420	if (cpu_apic_address == 0)
421		panic("pmap_bootstrap: no local apic!");
422
423	/* local apic is mapped on last page */
424	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
425	    (cpu_apic_address & PG_FRAME));
426
427	for (i = 0; i < mp_napics; i++) {
428		for (j = 0; j < mp_napics; j++) {
429			/* same page frame as a previous IO apic? */
430			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
431			    (io_apic_address[0] & PG_FRAME)) {
432				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
433					+ (NPTEPG-2-j)*PAGE_SIZE);
434				break;
435			}
436			/* use this slot if available */
437			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
438				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
439				    pgeflag | (io_apic_address[i] & PG_FRAME));
440				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
441					+ (NPTEPG-2-j)*PAGE_SIZE);
442				break;
443			}
444		}
445	}
446
447	/* BSP does this itself, AP's get it pre-set */
448	gd = &SMP_prvspace[0].globaldata;
449	gd->gd_prv_CMAP1 = &SMPpt[1];
450	gd->gd_prv_CMAP2 = &SMPpt[2];
451	gd->gd_prv_CMAP3 = &SMPpt[3];
452	gd->gd_prv_PMAP1 = &SMPpt[4];
453	gd->gd_prv_CADDR1 = SMP_prvspace[0].CPAGE1;
454	gd->gd_prv_CADDR2 = SMP_prvspace[0].CPAGE2;
455	gd->gd_prv_CADDR3 = SMP_prvspace[0].CPAGE3;
456	gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[0].PPAGE1;
457#endif
458
459	invltlb();
460}
461
462#ifdef SMP
463/*
464 * Set 4mb pdir for mp startup, and global flags
465 */
466void
467pmap_set_opt(unsigned *pdir) {
468	int i;
469
470	if (pseflag && (cpu_feature & CPUID_PSE)) {
471		load_cr4(rcr4() | CR4_PSE);
472		if (pdir4mb) {
473			pdir[KPTDI] = pdir4mb;
474		}
475	}
476
477	if (pgeflag && (cpu_feature & CPUID_PGE)) {
478		load_cr4(rcr4() | CR4_PGE);
479		for(i = KPTDI; i < KPTDI + nkpt; i++) {
480			if (pdir[i]) {
481				pdir[i] |= PG_G;
482			}
483		}
484	}
485}
486
487/*
488 * Setup the PTD for the boot processor
489 */
490void
491pmap_set_opt_bsp(void)
492{
493	pmap_set_opt((unsigned *)kernel_pmap->pm_pdir);
494	pmap_set_opt((unsigned *)PTD);
495	invltlb();
496}
497#endif
498
499/*
500 *	Initialize the pmap module.
501 *	Called by vm_init, to initialize any structures that the pmap
502 *	system needs to map virtual memory.
503 *	pmap_init has been enhanced to support in a fairly consistant
504 *	way, discontiguous physical memory.
505 */
506void
507pmap_init(phys_start, phys_end)
508	vm_offset_t phys_start, phys_end;
509{
510	vm_offset_t addr;
511	vm_size_t s;
512	int i;
513	int initial_pvs;
514
515	/*
516	 * object for kernel page table pages
517	 */
518	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
519
520	/*
521	 * calculate the number of pv_entries needed
522	 */
523	vm_first_phys = phys_avail[0];
524	for (i = 0; phys_avail[i + 1]; i += 2);
525	pv_npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
526
527	/*
528	 * Allocate memory for random pmap data structures.  Includes the
529	 * pv_head_table.
530	 */
531	s = (vm_size_t) (sizeof(pv_table_t) * pv_npg);
532	s = round_page(s);
533
534	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
535	pv_table = (pv_table_t *) addr;
536	for(i = 0; i < pv_npg; i++) {
537		vm_offset_t pa;
538		TAILQ_INIT(&pv_table[i].pv_list);
539		pv_table[i].pv_list_count = 0;
540		pa = vm_first_phys + i * PAGE_SIZE;
541		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
542	}
543
544	/*
545	 * init the pv free list
546	 */
547	initial_pvs = pv_npg;
548	if (initial_pvs < MINPV)
549		initial_pvs = MINPV;
550	pvzone = &pvzone_store;
551	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
552		initial_pvs * sizeof (struct pv_entry));
553	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit, pv_npg);
554
555	/*
556	 * Now it is safe to enable pv_table recording.
557	 */
558	pmap_initialized = TRUE;
559}
560
561/*
562 * Initialize the address space (zone) for the pv_entries.  Set a
563 * high water mark so that the system can recover from excessive
564 * numbers of pv entries.
565 */
566void
567pmap_init2() {
568	pv_entry_max = PMAP_SHPGPERPROC * maxproc + pv_npg;
569	pv_entry_high_water = 9 * (pv_entry_max / 10);
570	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
571}
572
573/*
574 *	Used to map a range of physical addresses into kernel
575 *	virtual address space.
576 *
577 *	For now, VM is already on, we only need to map the
578 *	specified memory.
579 */
580vm_offset_t
581pmap_map(virt, start, end, prot)
582	vm_offset_t virt;
583	vm_offset_t start;
584	vm_offset_t end;
585	int prot;
586{
587	while (start < end) {
588		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
589		virt += PAGE_SIZE;
590		start += PAGE_SIZE;
591	}
592	return (virt);
593}
594
595
596/***************************************************
597 * Low level helper routines.....
598 ***************************************************/
599
600#if defined(PMAP_DIAGNOSTIC)
601
602/*
603 * This code checks for non-writeable/modified pages.
604 * This should be an invalid condition.
605 */
606static int
607pmap_nw_modified(pt_entry_t ptea) {
608	int pte;
609
610	pte = (int) ptea;
611
612	if ((pte & (PG_M|PG_RW)) == PG_M)
613		return 1;
614	else
615		return 0;
616}
617#endif
618
619
620/*
621 * this routine defines the region(s) of memory that should
622 * not be tested for the modified bit.
623 */
624static PMAP_INLINE int
625pmap_track_modified( vm_offset_t va) {
626	if ((va < clean_sva) || (va >= clean_eva))
627		return 1;
628	else
629		return 0;
630}
631
632static PMAP_INLINE void
633invltlb_1pg( vm_offset_t va) {
634#if defined(I386_CPU)
635	if (cpu_class == CPUCLASS_386) {
636		invltlb();
637	} else
638#endif
639	{
640		invlpg(va);
641	}
642}
643
644static __inline void
645pmap_TLB_invalidate(pmap_t pmap, vm_offset_t va)
646{
647#if defined(SMP)
648	if (pmap->pm_active & (1 << cpuid))
649		cpu_invlpg((void *)va);
650	if (pmap->pm_active & other_cpus)
651		smp_invltlb();
652#else
653	if (pmap->pm_active)
654		invltlb_1pg(va);
655#endif
656}
657
658static __inline void
659pmap_TLB_invalidate_all(pmap_t pmap)
660{
661#if defined(SMP)
662	if (pmap->pm_active & (1 << cpuid))
663		cpu_invltlb();
664	if (pmap->pm_active & other_cpus)
665		smp_invltlb();
666#else
667	if (pmap->pm_active)
668		invltlb();
669#endif
670}
671
672static unsigned *
673get_ptbase(pmap)
674	pmap_t pmap;
675{
676	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
677
678	/* are we current address space or kernel? */
679	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
680		return (unsigned *) PTmap;
681	}
682	/* otherwise, we are alternate address space */
683	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
684		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
685#if defined(SMP)
686		/* The page directory is not shared between CPUs */
687		cpu_invltlb();
688#else
689		invltlb();
690#endif
691	}
692	return (unsigned *) APTmap;
693}
694
695/*
696 * Super fast pmap_pte routine best used when scanning
697 * the pv lists.  This eliminates many coarse-grained
698 * invltlb calls.  Note that many of the pv list
699 * scans are across different pmaps.  It is very wasteful
700 * to do an entire invltlb for checking a single mapping.
701 */
702
703static unsigned *
704pmap_pte_quick(pmap, va)
705	register pmap_t pmap;
706	vm_offset_t va;
707{
708	unsigned pde, newpf;
709	if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
710		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
711		unsigned index = i386_btop(va);
712		/* are we current address space or kernel? */
713		if ((pmap == kernel_pmap) ||
714			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
715			return (unsigned *) PTmap + index;
716		}
717		newpf = pde & PG_FRAME;
718#ifdef SMP
719		if ( ((* (unsigned *) prv_PMAP1) & PG_FRAME) != newpf) {
720			* (unsigned *) prv_PMAP1 = newpf | PG_RW | PG_V;
721			cpu_invlpg(prv_PADDR1);
722		}
723		return prv_PADDR1 + ((unsigned) index & (NPTEPG - 1));
724#else
725		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
726			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
727			invltlb_1pg((vm_offset_t) PADDR1);
728		}
729		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
730#endif
731	}
732	return (0);
733}
734
735/*
736 *	Routine:	pmap_extract
737 *	Function:
738 *		Extract the physical page address associated
739 *		with the given map/virtual_address pair.
740 */
741vm_offset_t
742pmap_extract(pmap, va)
743	register pmap_t pmap;
744	vm_offset_t va;
745{
746	vm_offset_t rtval;
747	vm_offset_t pdirindex;
748	pdirindex = va >> PDRSHIFT;
749	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
750		unsigned *pte;
751		if ((rtval & PG_PS) != 0) {
752			rtval &= ~(NBPDR - 1);
753			rtval |= va & (NBPDR - 1);
754			return rtval;
755		}
756		pte = get_ptbase(pmap) + i386_btop(va);
757		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
758		return rtval;
759	}
760	return 0;
761
762}
763
764/*
765 * determine if a page is managed (memory vs. device)
766 */
767static PMAP_INLINE int
768pmap_is_managed(pa)
769	vm_offset_t pa;
770{
771	int i;
772
773	if (!pmap_initialized)
774		return 0;
775
776	for (i = 0; phys_avail[i + 1]; i += 2) {
777		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
778			return 1;
779	}
780	return 0;
781}
782
783
784/***************************************************
785 * Low level mapping routines.....
786 ***************************************************/
787
788/*
789 * add a wired page to the kva
790 * note that in order for the mapping to take effect -- you
791 * should do a invltlb after doing the pmap_kenter...
792 */
793PMAP_INLINE void
794pmap_kenter(va, pa)
795	vm_offset_t va;
796	register vm_offset_t pa;
797{
798	register unsigned *pte;
799	unsigned npte, opte;
800
801	npte = pa | PG_RW | PG_V | pgeflag;
802	pte = (unsigned *)vtopte(va);
803	opte = *pte;
804	*pte = npte;
805	if (opte)
806		invltlb_1pg(va);
807}
808
809/*
810 * remove a page from the kernel pagetables
811 */
812PMAP_INLINE void
813pmap_kremove(va)
814	vm_offset_t va;
815{
816	register unsigned *pte;
817
818	pte = (unsigned *)vtopte(va);
819	*pte = 0;
820	invltlb_1pg(va);
821}
822
823/*
824 * Add a list of wired pages to the kva
825 * this routine is only used for temporary
826 * kernel mappings that do not need to have
827 * page modification or references recorded.
828 * Note that old mappings are simply written
829 * over.  The page *must* be wired.
830 */
831void
832pmap_qenter(va, m, count)
833	vm_offset_t va;
834	vm_page_t *m;
835	int count;
836{
837	int i;
838
839	for (i = 0; i < count; i++) {
840		vm_offset_t tva = va + i * PAGE_SIZE;
841		pmap_kenter(tva, VM_PAGE_TO_PHYS(m[i]));
842	}
843}
844
845/*
846 * this routine jerks page mappings from the
847 * kernel -- it is meant only for temporary mappings.
848 */
849void
850pmap_qremove(va, count)
851	vm_offset_t va;
852	int count;
853{
854	vm_offset_t end_va;
855
856	end_va = va + count*PAGE_SIZE;
857
858	while (va < end_va) {
859		unsigned *pte;
860
861		pte = (unsigned *)vtopte(va);
862		*pte = 0;
863#ifdef SMP
864		cpu_invlpg((void *)va);
865#else
866		invltlb_1pg(va);
867#endif
868		va += PAGE_SIZE;
869	}
870#ifdef SMP
871	smp_invltlb();
872#endif
873}
874
875static vm_page_t
876pmap_page_lookup(object, pindex)
877	vm_object_t object;
878	vm_pindex_t pindex;
879{
880	vm_page_t m;
881retry:
882	m = vm_page_lookup(object, pindex);
883	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
884		goto retry;
885	return m;
886}
887
888/*
889 * Create the UPAGES for a new process.
890 * This routine directly affects the fork perf for a process.
891 */
892void
893pmap_new_proc(p)
894	struct proc *p;
895{
896	int i, updateneeded;
897	vm_object_t upobj;
898	vm_page_t m;
899	struct user *up;
900	unsigned *ptek, oldpte;
901
902	/*
903	 * allocate object for the upages
904	 */
905	if ((upobj = p->p_upages_obj) == NULL) {
906		upobj = vm_object_allocate( OBJT_DEFAULT, UPAGES);
907		p->p_upages_obj = upobj;
908	}
909
910	/* get a kernel virtual address for the UPAGES for this proc */
911	if ((up = p->p_addr) == NULL) {
912		up = (struct user *) kmem_alloc_pageable(kernel_map,
913				UPAGES * PAGE_SIZE);
914#if !defined(MAX_PERF)
915		if (up == NULL)
916			panic("pmap_new_proc: u_map allocation failed");
917#endif
918		p->p_addr = up;
919	}
920
921	ptek = (unsigned *) vtopte((vm_offset_t) up);
922
923	updateneeded = 0;
924	for(i=0;i<UPAGES;i++) {
925		/*
926		 * Get a kernel stack page
927		 */
928		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
929
930		/*
931		 * Wire the page
932		 */
933		m->wire_count++;
934		cnt.v_wire_count++;
935
936		oldpte = *(ptek + i);
937		/*
938		 * Enter the page into the kernel address space.
939		 */
940		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
941		if (oldpte) {
942			if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386)) {
943				invlpg((vm_offset_t) up + i * PAGE_SIZE);
944			} else {
945				updateneeded = 1;
946			}
947		}
948
949		vm_page_wakeup(m);
950		vm_page_flag_clear(m, PG_ZERO);
951		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
952		m->valid = VM_PAGE_BITS_ALL;
953	}
954	if (updateneeded)
955		invltlb();
956}
957
958/*
959 * Dispose the UPAGES for a process that has exited.
960 * This routine directly impacts the exit perf of a process.
961 */
962void
963pmap_dispose_proc(p)
964	struct proc *p;
965{
966	int i;
967	vm_object_t upobj;
968	vm_page_t m;
969	unsigned *ptek, oldpte;
970
971	upobj = p->p_upages_obj;
972
973	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
974	for(i=0;i<UPAGES;i++) {
975
976		if ((m = vm_page_lookup(upobj, i)) == NULL)
977			panic("pmap_dispose_proc: upage already missing???");
978
979		vm_page_busy(m);
980
981		oldpte = *(ptek + i);
982		*(ptek + i) = 0;
983		if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386))
984			invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
985		vm_page_unwire(m, 0);
986		vm_page_free(m);
987	}
988#if defined(I386_CPU)
989	if (cpu_class <= CPUCLASS_386)
990		invltlb();
991#endif
992}
993
994/*
995 * Allow the UPAGES for a process to be prejudicially paged out.
996 */
997void
998pmap_swapout_proc(p)
999	struct proc *p;
1000{
1001	int i;
1002	vm_object_t upobj;
1003	vm_page_t m;
1004
1005	upobj = p->p_upages_obj;
1006	/*
1007	 * let the upages be paged
1008	 */
1009	for(i=0;i<UPAGES;i++) {
1010		if ((m = vm_page_lookup(upobj, i)) == NULL)
1011			panic("pmap_swapout_proc: upage already missing???");
1012		vm_page_dirty(m);
1013		vm_page_unwire(m, 0);
1014		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
1015	}
1016}
1017
1018/*
1019 * Bring the UPAGES for a specified process back in.
1020 */
1021void
1022pmap_swapin_proc(p)
1023	struct proc *p;
1024{
1025	int i,rv;
1026	vm_object_t upobj;
1027	vm_page_t m;
1028
1029	upobj = p->p_upages_obj;
1030	for(i=0;i<UPAGES;i++) {
1031
1032		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1033
1034		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
1035			VM_PAGE_TO_PHYS(m));
1036
1037		if (m->valid != VM_PAGE_BITS_ALL) {
1038			rv = vm_pager_get_pages(upobj, &m, 1, 0);
1039#if !defined(MAX_PERF)
1040			if (rv != VM_PAGER_OK)
1041				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
1042#endif
1043			m = vm_page_lookup(upobj, i);
1044			m->valid = VM_PAGE_BITS_ALL;
1045		}
1046
1047		vm_page_wire(m);
1048		vm_page_wakeup(m);
1049		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1050	}
1051}
1052
1053/***************************************************
1054 * Page table page management routines.....
1055 ***************************************************/
1056
1057/*
1058 * This routine unholds page table pages, and if the hold count
1059 * drops to zero, then it decrements the wire count.
1060 */
1061static int
1062_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1063
1064	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1065		;
1066
1067	if (m->hold_count == 0) {
1068		vm_offset_t pteva;
1069		/*
1070		 * unmap the page table page
1071		 */
1072		pmap->pm_pdir[m->pindex] = 0;
1073		--pmap->pm_stats.resident_count;
1074		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1075			(((unsigned) PTDpde) & PG_FRAME)) {
1076			/*
1077			 * Do a invltlb to make the invalidated mapping
1078			 * take effect immediately.
1079			 */
1080			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
1081			pmap_TLB_invalidate(pmap, pteva);
1082		}
1083
1084		if (pmap->pm_ptphint == m)
1085			pmap->pm_ptphint = NULL;
1086
1087		/*
1088		 * If the page is finally unwired, simply free it.
1089		 */
1090		--m->wire_count;
1091		if (m->wire_count == 0) {
1092
1093			vm_page_flash(m);
1094			vm_page_busy(m);
1095			vm_page_free_zero(m);
1096			--cnt.v_wire_count;
1097		}
1098		return 1;
1099	}
1100	return 0;
1101}
1102
1103static PMAP_INLINE int
1104pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1105	vm_page_unhold(m);
1106	if (m->hold_count == 0)
1107		return _pmap_unwire_pte_hold(pmap, m);
1108	else
1109		return 0;
1110}
1111
1112/*
1113 * After removing a page table entry, this routine is used to
1114 * conditionally free the page, and manage the hold/wire counts.
1115 */
1116static int
1117pmap_unuse_pt(pmap, va, mpte)
1118	pmap_t pmap;
1119	vm_offset_t va;
1120	vm_page_t mpte;
1121{
1122	unsigned ptepindex;
1123	if (va >= UPT_MIN_ADDRESS)
1124		return 0;
1125
1126	if (mpte == NULL) {
1127		ptepindex = (va >> PDRSHIFT);
1128		if (pmap->pm_ptphint &&
1129			(pmap->pm_ptphint->pindex == ptepindex)) {
1130			mpte = pmap->pm_ptphint;
1131		} else {
1132			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1133			pmap->pm_ptphint = mpte;
1134		}
1135	}
1136
1137	return pmap_unwire_pte_hold(pmap, mpte);
1138}
1139
1140void
1141pmap_pinit0(pmap)
1142	struct pmap *pmap;
1143{
1144	pmap->pm_pdir =
1145		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1146	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1147	pmap->pm_count = 1;
1148	pmap->pm_active = 0;
1149	pmap->pm_ptphint = NULL;
1150	TAILQ_INIT(&pmap->pm_pvlist);
1151	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1152}
1153
1154/*
1155 * Initialize a preallocated and zeroed pmap structure,
1156 * such as one in a vmspace structure.
1157 */
1158void
1159pmap_pinit(pmap)
1160	register struct pmap *pmap;
1161{
1162	vm_page_t ptdpg;
1163
1164	/*
1165	 * No need to allocate page table space yet but we do need a valid
1166	 * page directory table.
1167	 */
1168	if (pmap->pm_pdir == NULL)
1169		pmap->pm_pdir =
1170			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1171
1172	/*
1173	 * allocate object for the ptes
1174	 */
1175	if (pmap->pm_pteobj == NULL)
1176		pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1177
1178	/*
1179	 * allocate the page directory page
1180	 */
1181	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
1182			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1183
1184	ptdpg->wire_count = 1;
1185	++cnt.v_wire_count;
1186
1187
1188	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1189	ptdpg->valid = VM_PAGE_BITS_ALL;
1190
1191	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1192	if ((ptdpg->flags & PG_ZERO) == 0)
1193		bzero(pmap->pm_pdir, PAGE_SIZE);
1194
1195	/* wire in kernel global address entries */
1196	/* XXX copies current process, does not fill in MPPTDI */
1197	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1198#ifdef SMP
1199	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1200#endif
1201
1202	/* install self-referential address mapping entry */
1203	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1204		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1205
1206	pmap->pm_count = 1;
1207	pmap->pm_active = 0;
1208	pmap->pm_ptphint = NULL;
1209	TAILQ_INIT(&pmap->pm_pvlist);
1210	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1211}
1212
1213static int
1214pmap_release_free_page(pmap, p)
1215	struct pmap *pmap;
1216	vm_page_t p;
1217{
1218	unsigned *pde = (unsigned *) pmap->pm_pdir;
1219	/*
1220	 * This code optimizes the case of freeing non-busy
1221	 * page-table pages.  Those pages are zero now, and
1222	 * might as well be placed directly into the zero queue.
1223	 */
1224	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1225		return 0;
1226
1227	vm_page_busy(p);
1228
1229	/*
1230	 * Remove the page table page from the processes address space.
1231	 */
1232	pde[p->pindex] = 0;
1233	pmap->pm_stats.resident_count--;
1234
1235#if !defined(MAX_PERF)
1236	if (p->hold_count)  {
1237		panic("pmap_release: freeing held page table page");
1238	}
1239#endif
1240	/*
1241	 * Page directory pages need to have the kernel
1242	 * stuff cleared, so they can go into the zero queue also.
1243	 */
1244	if (p->pindex == PTDPTDI) {
1245		bzero(pde + KPTDI, nkpt * PTESIZE);
1246#ifdef SMP
1247		pde[MPPTDI] = 0;
1248#endif
1249		pde[APTDPTDI] = 0;
1250		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1251	}
1252
1253	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1254		pmap->pm_ptphint = NULL;
1255
1256	p->wire_count--;
1257	cnt.v_wire_count--;
1258	vm_page_free_zero(p);
1259	return 1;
1260}
1261
1262/*
1263 * this routine is called if the page table page is not
1264 * mapped correctly.
1265 */
1266static vm_page_t
1267_pmap_allocpte(pmap, ptepindex)
1268	pmap_t	pmap;
1269	unsigned ptepindex;
1270{
1271	vm_offset_t pteva, ptepa;
1272	vm_page_t m;
1273
1274	/*
1275	 * Find or fabricate a new pagetable page
1276	 */
1277	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1278			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1279
1280	if (m->queue != PQ_NONE) {
1281		int s = splvm();
1282		vm_page_unqueue(m);
1283		splx(s);
1284	}
1285
1286	if (m->wire_count == 0)
1287		cnt.v_wire_count++;
1288	m->wire_count++;
1289
1290	/*
1291	 * Increment the hold count for the page table page
1292	 * (denoting a new mapping.)
1293	 */
1294	m->hold_count++;
1295
1296	/*
1297	 * Map the pagetable page into the process address space, if
1298	 * it isn't already there.
1299	 */
1300
1301	pmap->pm_stats.resident_count++;
1302
1303	ptepa = VM_PAGE_TO_PHYS(m);
1304	pmap->pm_pdir[ptepindex] =
1305		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1306
1307	/*
1308	 * Set the page table hint
1309	 */
1310	pmap->pm_ptphint = m;
1311
1312	/*
1313	 * Try to use the new mapping, but if we cannot, then
1314	 * do it with the routine that maps the page explicitly.
1315	 */
1316	if ((m->flags & PG_ZERO) == 0) {
1317		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1318			(((unsigned) PTDpde) & PG_FRAME)) {
1319			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1320			bzero((caddr_t) pteva, PAGE_SIZE);
1321		} else {
1322			pmap_zero_page(ptepa);
1323		}
1324	}
1325
1326	m->valid = VM_PAGE_BITS_ALL;
1327	vm_page_flag_clear(m, PG_ZERO);
1328	vm_page_flag_set(m, PG_MAPPED);
1329	vm_page_wakeup(m);
1330
1331	return m;
1332}
1333
1334static vm_page_t
1335pmap_allocpte(pmap, va)
1336	pmap_t	pmap;
1337	vm_offset_t va;
1338{
1339	unsigned ptepindex;
1340	vm_offset_t ptepa;
1341	vm_page_t m;
1342
1343	/*
1344	 * Calculate pagetable page index
1345	 */
1346	ptepindex = va >> PDRSHIFT;
1347
1348	/*
1349	 * Get the page directory entry
1350	 */
1351	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1352
1353	/*
1354	 * This supports switching from a 4MB page to a
1355	 * normal 4K page.
1356	 */
1357	if (ptepa & PG_PS) {
1358		pmap->pm_pdir[ptepindex] = 0;
1359		ptepa = 0;
1360		invltlb();
1361	}
1362
1363	/*
1364	 * If the page table page is mapped, we just increment the
1365	 * hold count, and activate it.
1366	 */
1367	if (ptepa) {
1368		/*
1369		 * In order to get the page table page, try the
1370		 * hint first.
1371		 */
1372		if (pmap->pm_ptphint &&
1373			(pmap->pm_ptphint->pindex == ptepindex)) {
1374			m = pmap->pm_ptphint;
1375		} else {
1376			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1377			pmap->pm_ptphint = m;
1378		}
1379		m->hold_count++;
1380		return m;
1381	}
1382	/*
1383	 * Here if the pte page isn't mapped, or if it has been deallocated.
1384	 */
1385	return _pmap_allocpte(pmap, ptepindex);
1386}
1387
1388
1389/***************************************************
1390* Pmap allocation/deallocation routines.
1391 ***************************************************/
1392
1393/*
1394 * Release any resources held by the given physical map.
1395 * Called when a pmap initialized by pmap_pinit is being released.
1396 * Should only be called if the map contains no valid mappings.
1397 */
1398void
1399pmap_release(pmap)
1400	register struct pmap *pmap;
1401{
1402	vm_page_t p,n,ptdpg;
1403	vm_object_t object = pmap->pm_pteobj;
1404	int curgeneration;
1405
1406#if defined(DIAGNOSTIC)
1407	if (object->ref_count != 1)
1408		panic("pmap_release: pteobj reference count != 1");
1409#endif
1410
1411	ptdpg = NULL;
1412retry:
1413	curgeneration = object->generation;
1414	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1415		n = TAILQ_NEXT(p, listq);
1416		if (p->pindex == PTDPTDI) {
1417			ptdpg = p;
1418			continue;
1419		}
1420		while (1) {
1421			if (!pmap_release_free_page(pmap, p) &&
1422				(object->generation != curgeneration))
1423				goto retry;
1424		}
1425	}
1426
1427	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1428		goto retry;
1429}
1430
1431/*
1432 * grow the number of kernel page table entries, if needed
1433 */
1434void
1435pmap_growkernel(vm_offset_t addr)
1436{
1437	struct proc *p;
1438	struct pmap *pmap;
1439	int s;
1440	vm_offset_t ptppaddr;
1441	vm_page_t nkpg;
1442	pd_entry_t newpdir;
1443
1444	s = splhigh();
1445	if (kernel_vm_end == 0) {
1446		kernel_vm_end = KERNBASE;
1447		nkpt = 0;
1448		while (pdir_pde(PTD, kernel_vm_end)) {
1449			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1450			nkpt++;
1451		}
1452	}
1453	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1454	while (kernel_vm_end < addr) {
1455		if (pdir_pde(PTD, kernel_vm_end)) {
1456			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1457			continue;
1458		}
1459
1460		/*
1461		 * This index is bogus, but out of the way
1462		 */
1463		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1464#if !defined(MAX_PERF)
1465		if (!nkpg)
1466			panic("pmap_growkernel: no memory to grow kernel");
1467#endif
1468
1469		nkpt++;
1470
1471		vm_page_wire(nkpg);
1472		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1473		pmap_zero_page(ptppaddr);
1474		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1475		pdir_pde(PTD, kernel_vm_end) = newpdir;
1476
1477		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1478			if (p->p_vmspace) {
1479				pmap = vmspace_pmap(p->p_vmspace);
1480				*pmap_pde(pmap, kernel_vm_end) = newpdir;
1481			}
1482		}
1483		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1484		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1485	}
1486	splx(s);
1487}
1488
1489/*
1490 *	Retire the given physical map from service.
1491 *	Should only be called if the map contains
1492 *	no valid mappings.
1493 */
1494void
1495pmap_destroy(pmap)
1496	register pmap_t pmap;
1497{
1498	int count;
1499
1500	if (pmap == NULL)
1501		return;
1502
1503	count = --pmap->pm_count;
1504	if (count == 0) {
1505		pmap_release(pmap);
1506#if !defined(MAX_PERF)
1507		panic("destroying a pmap is not yet implemented");
1508#endif
1509	}
1510}
1511
1512/*
1513 *	Add a reference to the specified pmap.
1514 */
1515void
1516pmap_reference(pmap)
1517	pmap_t pmap;
1518{
1519	if (pmap != NULL) {
1520		pmap->pm_count++;
1521	}
1522}
1523
1524/***************************************************
1525* page management routines.
1526 ***************************************************/
1527
1528/*
1529 * free the pv_entry back to the free list
1530 */
1531static PMAP_INLINE void
1532free_pv_entry(pv)
1533	pv_entry_t pv;
1534{
1535	pv_entry_count--;
1536	zfreei(pvzone, pv);
1537}
1538
1539/*
1540 * get a new pv_entry, allocating a block from the system
1541 * when needed.
1542 * the memory allocation is performed bypassing the malloc code
1543 * because of the possibility of allocations at interrupt time.
1544 */
1545static pv_entry_t
1546get_pv_entry(void)
1547{
1548	pv_entry_count++;
1549	if (pv_entry_high_water &&
1550		(pv_entry_count > pv_entry_high_water) &&
1551		(pmap_pagedaemon_waken == 0)) {
1552		pmap_pagedaemon_waken = 1;
1553		wakeup (&vm_pages_needed);
1554	}
1555	return zalloci(pvzone);
1556}
1557
1558/*
1559 * This routine is very drastic, but can save the system
1560 * in a pinch.
1561 */
1562void
1563pmap_collect() {
1564	pv_table_t *ppv;
1565	int i;
1566	vm_offset_t pa;
1567	vm_page_t m;
1568	static int warningdone=0;
1569
1570	if (pmap_pagedaemon_waken == 0)
1571		return;
1572
1573	if (warningdone < 5) {
1574		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1575		warningdone++;
1576	}
1577
1578	for(i = 0; i < pv_npg; i++) {
1579		if ((ppv = &pv_table[i]) == 0)
1580			continue;
1581		m = ppv->pv_vm_page;
1582		if ((pa = VM_PAGE_TO_PHYS(m)) == 0)
1583			continue;
1584		if (m->wire_count || m->hold_count || m->busy ||
1585			(m->flags & PG_BUSY))
1586			continue;
1587		pmap_remove_all(pa);
1588	}
1589	pmap_pagedaemon_waken = 0;
1590}
1591
1592
1593/*
1594 * If it is the first entry on the list, it is actually
1595 * in the header and we must copy the following entry up
1596 * to the header.  Otherwise we must search the list for
1597 * the entry.  In either case we free the now unused entry.
1598 */
1599
1600static int
1601pmap_remove_entry(pmap, ppv, va)
1602	struct pmap *pmap;
1603	pv_table_t *ppv;
1604	vm_offset_t va;
1605{
1606	pv_entry_t pv;
1607	int rtval;
1608	int s;
1609
1610	s = splvm();
1611	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1612		for (pv = TAILQ_FIRST(&ppv->pv_list);
1613			pv;
1614			pv = TAILQ_NEXT(pv, pv_list)) {
1615			if (pmap == pv->pv_pmap && va == pv->pv_va)
1616				break;
1617		}
1618	} else {
1619		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1620			pv;
1621			pv = TAILQ_NEXT(pv, pv_plist)) {
1622			if (va == pv->pv_va)
1623				break;
1624		}
1625	}
1626
1627	rtval = 0;
1628	if (pv) {
1629
1630		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1631		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1632		ppv->pv_list_count--;
1633		if (TAILQ_FIRST(&ppv->pv_list) == NULL)
1634			vm_page_flag_clear(ppv->pv_vm_page, PG_MAPPED | PG_WRITEABLE);
1635
1636		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1637		free_pv_entry(pv);
1638	}
1639
1640	splx(s);
1641	return rtval;
1642}
1643
1644/*
1645 * Create a pv entry for page at pa for
1646 * (pmap, va).
1647 */
1648static void
1649pmap_insert_entry(pmap, va, mpte, pa)
1650	pmap_t pmap;
1651	vm_offset_t va;
1652	vm_page_t mpte;
1653	vm_offset_t pa;
1654{
1655
1656	int s;
1657	pv_entry_t pv;
1658	pv_table_t *ppv;
1659
1660	s = splvm();
1661	pv = get_pv_entry();
1662	pv->pv_va = va;
1663	pv->pv_pmap = pmap;
1664	pv->pv_ptem = mpte;
1665
1666	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1667
1668	ppv = pa_to_pvh(pa);
1669	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1670	ppv->pv_list_count++;
1671
1672	splx(s);
1673}
1674
1675/*
1676 * pmap_remove_pte: do the things to unmap a page in a process
1677 */
1678static int
1679pmap_remove_pte(pmap, ptq, va)
1680	struct pmap *pmap;
1681	unsigned *ptq;
1682	vm_offset_t va;
1683{
1684	unsigned oldpte;
1685	pv_table_t *ppv;
1686
1687	oldpte = loadandclear(ptq);
1688	if (oldpte & PG_W)
1689		pmap->pm_stats.wired_count -= 1;
1690	/*
1691	 * Machines that don't support invlpg, also don't support
1692	 * PG_G.
1693	 */
1694	if (oldpte & PG_G)
1695		invlpg(va);
1696	pmap->pm_stats.resident_count -= 1;
1697	if (oldpte & PG_MANAGED) {
1698		ppv = pa_to_pvh(oldpte);
1699		if (oldpte & PG_M) {
1700#if defined(PMAP_DIAGNOSTIC)
1701			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1702				printf(
1703	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1704				    va, oldpte);
1705			}
1706#endif
1707			if (pmap_track_modified(va))
1708				vm_page_dirty(ppv->pv_vm_page);
1709		}
1710		if (oldpte & PG_A)
1711			vm_page_flag_set(ppv->pv_vm_page, PG_REFERENCED);
1712		return pmap_remove_entry(pmap, ppv, va);
1713	} else {
1714		return pmap_unuse_pt(pmap, va, NULL);
1715	}
1716
1717	return 0;
1718}
1719
1720/*
1721 * Remove a single page from a process address space
1722 */
1723static void
1724pmap_remove_page(pmap, va)
1725	struct pmap *pmap;
1726	register vm_offset_t va;
1727{
1728	register unsigned *ptq;
1729
1730	/*
1731	 * if there is no pte for this address, just skip it!!!
1732	 */
1733	if (*pmap_pde(pmap, va) == 0) {
1734		return;
1735	}
1736
1737	/*
1738	 * get a local va for mappings for this pmap.
1739	 */
1740	ptq = get_ptbase(pmap) + i386_btop(va);
1741	if (*ptq) {
1742		(void) pmap_remove_pte(pmap, ptq, va);
1743		pmap_TLB_invalidate(pmap, va);
1744	}
1745	return;
1746}
1747
1748/*
1749 *	Remove the given range of addresses from the specified map.
1750 *
1751 *	It is assumed that the start and end are properly
1752 *	rounded to the page size.
1753 */
1754void
1755pmap_remove(pmap, sva, eva)
1756	struct pmap *pmap;
1757	register vm_offset_t sva;
1758	register vm_offset_t eva;
1759{
1760	register unsigned *ptbase;
1761	vm_offset_t pdnxt;
1762	vm_offset_t ptpaddr;
1763	vm_offset_t sindex, eindex;
1764	int anyvalid;
1765
1766	if (pmap == NULL)
1767		return;
1768
1769	if (pmap->pm_stats.resident_count == 0)
1770		return;
1771
1772	/*
1773	 * special handling of removing one page.  a very
1774	 * common operation and easy to short circuit some
1775	 * code.
1776	 */
1777	if (((sva + PAGE_SIZE) == eva) &&
1778		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1779		pmap_remove_page(pmap, sva);
1780		return;
1781	}
1782
1783	anyvalid = 0;
1784
1785	/*
1786	 * Get a local virtual address for the mappings that are being
1787	 * worked with.
1788	 */
1789	ptbase = get_ptbase(pmap);
1790
1791	sindex = i386_btop(sva);
1792	eindex = i386_btop(eva);
1793
1794	for (; sindex < eindex; sindex = pdnxt) {
1795		unsigned pdirindex;
1796
1797		/*
1798		 * Calculate index for next page table.
1799		 */
1800		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1801		if (pmap->pm_stats.resident_count == 0)
1802			break;
1803
1804		pdirindex = sindex / NPDEPG;
1805		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1806			pmap->pm_pdir[pdirindex] = 0;
1807			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1808			anyvalid++;
1809			continue;
1810		}
1811
1812		/*
1813		 * Weed out invalid mappings. Note: we assume that the page
1814		 * directory table is always allocated, and in kernel virtual.
1815		 */
1816		if (ptpaddr == 0)
1817			continue;
1818
1819		/*
1820		 * Limit our scan to either the end of the va represented
1821		 * by the current page table page, or to the end of the
1822		 * range being removed.
1823		 */
1824		if (pdnxt > eindex) {
1825			pdnxt = eindex;
1826		}
1827
1828		for ( ;sindex != pdnxt; sindex++) {
1829			vm_offset_t va;
1830			if (ptbase[sindex] == 0) {
1831				continue;
1832			}
1833			va = i386_ptob(sindex);
1834
1835			anyvalid++;
1836			if (pmap_remove_pte(pmap,
1837				ptbase + sindex, va))
1838				break;
1839		}
1840	}
1841
1842	if (anyvalid)
1843		pmap_TLB_invalidate_all(pmap);
1844}
1845
1846/*
1847 *	Routine:	pmap_remove_all
1848 *	Function:
1849 *		Removes this physical page from
1850 *		all physical maps in which it resides.
1851 *		Reflects back modify bits to the pager.
1852 *
1853 *	Notes:
1854 *		Original versions of this routine were very
1855 *		inefficient because they iteratively called
1856 *		pmap_remove (slow...)
1857 */
1858
1859static void
1860pmap_remove_all(pa)
1861	vm_offset_t pa;
1862{
1863	register pv_entry_t pv;
1864	pv_table_t *ppv;
1865	register unsigned *pte, tpte;
1866	int s;
1867
1868#if defined(PMAP_DIAGNOSTIC)
1869	/*
1870	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1871	 * pages!
1872	 */
1873	if (!pmap_is_managed(pa)) {
1874		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", pa);
1875	}
1876#endif
1877
1878	s = splvm();
1879	ppv = pa_to_pvh(pa);
1880	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1881		pv->pv_pmap->pm_stats.resident_count--;
1882
1883		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1884
1885		tpte = loadandclear(pte);
1886		if (tpte & PG_W)
1887			pv->pv_pmap->pm_stats.wired_count--;
1888
1889		if (tpte & PG_A)
1890			vm_page_flag_set(ppv->pv_vm_page, PG_REFERENCED);
1891
1892		/*
1893		 * Update the vm_page_t clean and reference bits.
1894		 */
1895		if (tpte & PG_M) {
1896#if defined(PMAP_DIAGNOSTIC)
1897			if (pmap_nw_modified((pt_entry_t) tpte)) {
1898				printf(
1899	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1900				    pv->pv_va, tpte);
1901			}
1902#endif
1903			if (pmap_track_modified(pv->pv_va))
1904				vm_page_dirty(ppv->pv_vm_page);
1905		}
1906		pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
1907
1908		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1909		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1910		ppv->pv_list_count--;
1911		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1912		free_pv_entry(pv);
1913	}
1914
1915	vm_page_flag_clear(ppv->pv_vm_page, PG_MAPPED | PG_WRITEABLE);
1916
1917	splx(s);
1918}
1919
1920/*
1921 *	Set the physical protection on the
1922 *	specified range of this map as requested.
1923 */
1924void
1925pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1926{
1927	register unsigned *ptbase;
1928	vm_offset_t pdnxt, ptpaddr;
1929	vm_pindex_t sindex, eindex;
1930	int anychanged;
1931
1932
1933	if (pmap == NULL)
1934		return;
1935
1936	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1937		pmap_remove(pmap, sva, eva);
1938		return;
1939	}
1940
1941	if (prot & VM_PROT_WRITE)
1942		return;
1943
1944	anychanged = 0;
1945
1946	ptbase = get_ptbase(pmap);
1947
1948	sindex = i386_btop(sva);
1949	eindex = i386_btop(eva);
1950
1951	for (; sindex < eindex; sindex = pdnxt) {
1952
1953		unsigned pdirindex;
1954
1955		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1956
1957		pdirindex = sindex / NPDEPG;
1958		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1959			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1960			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1961			anychanged++;
1962			continue;
1963		}
1964
1965		/*
1966		 * Weed out invalid mappings. Note: we assume that the page
1967		 * directory table is always allocated, and in kernel virtual.
1968		 */
1969		if (ptpaddr == 0)
1970			continue;
1971
1972		if (pdnxt > eindex) {
1973			pdnxt = eindex;
1974		}
1975
1976		for (; sindex != pdnxt; sindex++) {
1977
1978			unsigned pbits;
1979			pv_table_t *ppv;
1980
1981			pbits = ptbase[sindex];
1982
1983			if (pbits & PG_MANAGED) {
1984				ppv = NULL;
1985				if (pbits & PG_A) {
1986					ppv = pa_to_pvh(pbits);
1987					vm_page_flag_set(ppv->pv_vm_page, PG_REFERENCED);
1988					pbits &= ~PG_A;
1989				}
1990				if (pbits & PG_M) {
1991					if (pmap_track_modified(i386_ptob(sindex))) {
1992						if (ppv == NULL)
1993							ppv = pa_to_pvh(pbits);
1994						vm_page_dirty(ppv->pv_vm_page);
1995						pbits &= ~PG_M;
1996					}
1997				}
1998			}
1999
2000			pbits &= ~PG_RW;
2001
2002			if (pbits != ptbase[sindex]) {
2003				ptbase[sindex] = pbits;
2004				anychanged = 1;
2005			}
2006		}
2007	}
2008	if (anychanged)
2009		pmap_TLB_invalidate_all(pmap);
2010}
2011
2012/*
2013 *	Insert the given physical page (p) at
2014 *	the specified virtual address (v) in the
2015 *	target physical map with the protection requested.
2016 *
2017 *	If specified, the page will be wired down, meaning
2018 *	that the related pte can not be reclaimed.
2019 *
2020 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2021 *	or lose information.  That is, this routine must actually
2022 *	insert this page into the given map NOW.
2023 */
2024void
2025pmap_enter(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_prot_t prot,
2026	   boolean_t wired)
2027{
2028	register unsigned *pte;
2029	vm_offset_t opa;
2030	vm_offset_t origpte, newpte;
2031	vm_page_t mpte;
2032
2033	if (pmap == NULL)
2034		return;
2035
2036	va &= PG_FRAME;
2037#ifdef PMAP_DIAGNOSTIC
2038	if (va > VM_MAX_KERNEL_ADDRESS)
2039		panic("pmap_enter: toobig");
2040	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2041		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2042#endif
2043
2044	mpte = NULL;
2045	/*
2046	 * In the case that a page table page is not
2047	 * resident, we are creating it here.
2048	 */
2049	if (va < UPT_MIN_ADDRESS) {
2050		mpte = pmap_allocpte(pmap, va);
2051	}
2052#if 0 && defined(PMAP_DIAGNOSTIC)
2053	else {
2054		vm_offset_t *pdeaddr = (vm_offset_t *)pmap_pde(pmap, va);
2055		if (((origpte = (vm_offset_t) *pdeaddr) & PG_V) == 0) {
2056			panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
2057				pmap->pm_pdir[PTDPTDI], origpte, va);
2058		}
2059		if (smp_active) {
2060			pdeaddr = (vm_offset_t *) IdlePTDS[cpuid];
2061			if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
2062				if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
2063					printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
2064				printf("cpuid: %d, pdeaddr: 0x%x\n", cpuid, pdeaddr);
2065				panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
2066					pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
2067			}
2068		}
2069	}
2070#endif
2071
2072	pte = pmap_pte(pmap, va);
2073
2074#if !defined(MAX_PERF)
2075	/*
2076	 * Page Directory table entry not valid, we need a new PT page
2077	 */
2078	if (pte == NULL) {
2079		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2080			(void *)pmap->pm_pdir[PTDPTDI], va);
2081	}
2082#endif
2083
2084	origpte = *(vm_offset_t *)pte;
2085	pa &= PG_FRAME;
2086	opa = origpte & PG_FRAME;
2087
2088#if !defined(MAX_PERF)
2089	if (origpte & PG_PS)
2090		panic("pmap_enter: attempted pmap_enter on 4MB page");
2091#endif
2092
2093	/*
2094	 * Mapping has not changed, must be protection or wiring change.
2095	 */
2096	if (origpte && (opa == pa)) {
2097		/*
2098		 * Wiring change, just update stats. We don't worry about
2099		 * wiring PT pages as they remain resident as long as there
2100		 * are valid mappings in them. Hence, if a user page is wired,
2101		 * the PT page will be also.
2102		 */
2103		if (wired && ((origpte & PG_W) == 0))
2104			pmap->pm_stats.wired_count++;
2105		else if (!wired && (origpte & PG_W))
2106			pmap->pm_stats.wired_count--;
2107
2108#if defined(PMAP_DIAGNOSTIC)
2109		if (pmap_nw_modified((pt_entry_t) origpte)) {
2110			printf(
2111	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2112			    va, origpte);
2113		}
2114#endif
2115
2116		/*
2117		 * Remove extra pte reference
2118		 */
2119		if (mpte)
2120			mpte->hold_count--;
2121
2122		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2123			if ((origpte & PG_RW) == 0) {
2124				*pte |= PG_RW;
2125#ifdef SMP
2126				cpu_invlpg((void *)va);
2127				if (pmap->pm_active & other_cpus)
2128					smp_invltlb();
2129#else
2130				invltlb_1pg(va);
2131#endif
2132			}
2133			return;
2134		}
2135
2136		/*
2137		 * We might be turning off write access to the page,
2138		 * so we go ahead and sense modify status.
2139		 */
2140		if (origpte & PG_MANAGED) {
2141			if ((origpte & PG_M) && pmap_track_modified(va)) {
2142				pv_table_t *ppv;
2143				ppv = pa_to_pvh(opa);
2144				vm_page_dirty(ppv->pv_vm_page);
2145			}
2146			pa |= PG_MANAGED;
2147		}
2148		goto validate;
2149	}
2150	/*
2151	 * Mapping has changed, invalidate old range and fall through to
2152	 * handle validating new mapping.
2153	 */
2154	if (opa) {
2155		int err;
2156		err = pmap_remove_pte(pmap, pte, va);
2157#if !defined(MAX_PERF)
2158		if (err)
2159			panic("pmap_enter: pte vanished, va: 0x%x", va);
2160#endif
2161	}
2162
2163	/*
2164	 * Enter on the PV list if part of our managed memory Note that we
2165	 * raise IPL while manipulating pv_table since pmap_enter can be
2166	 * called at interrupt time.
2167	 */
2168	if (pmap_is_managed(pa)) {
2169		pmap_insert_entry(pmap, va, mpte, pa);
2170		pa |= PG_MANAGED;
2171	}
2172
2173	/*
2174	 * Increment counters
2175	 */
2176	pmap->pm_stats.resident_count++;
2177	if (wired)
2178		pmap->pm_stats.wired_count++;
2179
2180validate:
2181	/*
2182	 * Now validate mapping with desired protection/wiring.
2183	 */
2184	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2185
2186	if (wired)
2187		newpte |= PG_W;
2188	if (va < UPT_MIN_ADDRESS)
2189		newpte |= PG_U;
2190	if (pmap == kernel_pmap)
2191		newpte |= pgeflag;
2192
2193	/*
2194	 * if the mapping or permission bits are different, we need
2195	 * to update the pte.
2196	 */
2197	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2198		*pte = newpte | PG_A;
2199		if (origpte) {
2200#ifdef SMP
2201			cpu_invlpg((void *)va);
2202			if (pmap->pm_active & other_cpus)
2203				smp_invltlb();
2204#else
2205			invltlb_1pg(va);
2206#endif
2207		}
2208	}
2209}
2210
2211/*
2212 * this code makes some *MAJOR* assumptions:
2213 * 1. Current pmap & pmap exists.
2214 * 2. Not wired.
2215 * 3. Read access.
2216 * 4. No page table pages.
2217 * 5. Tlbflush is deferred to calling procedure.
2218 * 6. Page IS managed.
2219 * but is *MUCH* faster than pmap_enter...
2220 */
2221
2222static vm_page_t
2223pmap_enter_quick(pmap, va, pa, mpte)
2224	register pmap_t pmap;
2225	vm_offset_t va;
2226	register vm_offset_t pa;
2227	vm_page_t mpte;
2228{
2229	register unsigned *pte;
2230
2231	/*
2232	 * In the case that a page table page is not
2233	 * resident, we are creating it here.
2234	 */
2235	if (va < UPT_MIN_ADDRESS) {
2236		unsigned ptepindex;
2237		vm_offset_t ptepa;
2238
2239		/*
2240		 * Calculate pagetable page index
2241		 */
2242		ptepindex = va >> PDRSHIFT;
2243		if (mpte && (mpte->pindex == ptepindex)) {
2244			mpte->hold_count++;
2245		} else {
2246retry:
2247			/*
2248			 * Get the page directory entry
2249			 */
2250			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2251
2252			/*
2253			 * If the page table page is mapped, we just increment
2254			 * the hold count, and activate it.
2255			 */
2256			if (ptepa) {
2257#if !defined(MAX_PERF)
2258				if (ptepa & PG_PS)
2259					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2260#endif
2261				if (pmap->pm_ptphint &&
2262					(pmap->pm_ptphint->pindex == ptepindex)) {
2263					mpte = pmap->pm_ptphint;
2264				} else {
2265					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2266					pmap->pm_ptphint = mpte;
2267				}
2268				if (mpte == NULL)
2269					goto retry;
2270				mpte->hold_count++;
2271			} else {
2272				mpte = _pmap_allocpte(pmap, ptepindex);
2273			}
2274		}
2275	} else {
2276		mpte = NULL;
2277	}
2278
2279	/*
2280	 * This call to vtopte makes the assumption that we are
2281	 * entering the page into the current pmap.  In order to support
2282	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2283	 * But that isn't as quick as vtopte.
2284	 */
2285	pte = (unsigned *)vtopte(va);
2286	if (*pte) {
2287		if (mpte)
2288			pmap_unwire_pte_hold(pmap, mpte);
2289		return 0;
2290	}
2291
2292	/*
2293	 * Enter on the PV list if part of our managed memory Note that we
2294	 * raise IPL while manipulating pv_table since pmap_enter can be
2295	 * called at interrupt time.
2296	 */
2297	pmap_insert_entry(pmap, va, mpte, pa);
2298
2299	/*
2300	 * Increment counters
2301	 */
2302	pmap->pm_stats.resident_count++;
2303
2304	/*
2305	 * Now validate mapping with RO protection
2306	 */
2307	*pte = pa | PG_V | PG_U | PG_MANAGED;
2308
2309	return mpte;
2310}
2311
2312#define MAX_INIT_PT (96)
2313/*
2314 * pmap_object_init_pt preloads the ptes for a given object
2315 * into the specified pmap.  This eliminates the blast of soft
2316 * faults on process startup and immediately after an mmap.
2317 */
2318void
2319pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2320	pmap_t pmap;
2321	vm_offset_t addr;
2322	vm_object_t object;
2323	vm_pindex_t pindex;
2324	vm_size_t size;
2325	int limit;
2326{
2327	vm_offset_t tmpidx;
2328	int psize;
2329	vm_page_t p, mpte;
2330	int objpgs;
2331
2332	if (!pmap)
2333		return;
2334
2335	/*
2336	 * This code maps large physical mmap regions into the
2337	 * processor address space.  Note that some shortcuts
2338	 * are taken, but the code works.
2339	 */
2340	if (pseflag &&
2341		(object->type == OBJT_DEVICE) &&
2342		((addr & (NBPDR - 1)) == 0) &&
2343		((size & (NBPDR - 1)) == 0) ) {
2344		int i;
2345		vm_page_t m[1];
2346		unsigned int ptepindex;
2347		int npdes;
2348		vm_offset_t ptepa;
2349
2350		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2351			return;
2352
2353retry:
2354		p = vm_page_lookup(object, pindex);
2355		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2356			goto retry;
2357
2358		if (p == NULL) {
2359			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2360			if (p == NULL)
2361				return;
2362			m[0] = p;
2363
2364			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2365				vm_page_free(p);
2366				return;
2367			}
2368
2369			p = vm_page_lookup(object, pindex);
2370			vm_page_wakeup(p);
2371		}
2372
2373		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
2374		if (ptepa & (NBPDR - 1)) {
2375			return;
2376		}
2377
2378		p->valid = VM_PAGE_BITS_ALL;
2379
2380		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2381		npdes = size >> PDRSHIFT;
2382		for(i=0;i<npdes;i++) {
2383			pmap->pm_pdir[ptepindex] =
2384				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
2385			ptepa += NBPDR;
2386			ptepindex += 1;
2387		}
2388		vm_page_flag_set(p, PG_MAPPED);
2389		invltlb();
2390		return;
2391	}
2392
2393	psize = i386_btop(size);
2394
2395	if ((object->type != OBJT_VNODE) ||
2396		(limit && (psize > MAX_INIT_PT) &&
2397			(object->resident_page_count > MAX_INIT_PT))) {
2398		return;
2399	}
2400
2401	if (psize + pindex > object->size)
2402		psize = object->size - pindex;
2403
2404	mpte = NULL;
2405	/*
2406	 * if we are processing a major portion of the object, then scan the
2407	 * entire thing.
2408	 */
2409	if (psize > (object->resident_page_count >> 2)) {
2410		objpgs = psize;
2411
2412		for (p = TAILQ_FIRST(&object->memq);
2413		    ((objpgs > 0) && (p != NULL));
2414		    p = TAILQ_NEXT(p, listq)) {
2415
2416			tmpidx = p->pindex;
2417			if (tmpidx < pindex) {
2418				continue;
2419			}
2420			tmpidx -= pindex;
2421			if (tmpidx >= psize) {
2422				continue;
2423			}
2424			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2425				(p->busy == 0) &&
2426			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2427				if ((p->queue - p->pc) == PQ_CACHE)
2428					vm_page_deactivate(p);
2429				vm_page_busy(p);
2430				mpte = pmap_enter_quick(pmap,
2431					addr + i386_ptob(tmpidx),
2432					VM_PAGE_TO_PHYS(p), mpte);
2433				vm_page_flag_set(p, PG_MAPPED);
2434				vm_page_wakeup(p);
2435			}
2436			objpgs -= 1;
2437		}
2438	} else {
2439		/*
2440		 * else lookup the pages one-by-one.
2441		 */
2442		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2443			p = vm_page_lookup(object, tmpidx + pindex);
2444			if (p &&
2445			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2446				(p->busy == 0) &&
2447			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2448				if ((p->queue - p->pc) == PQ_CACHE)
2449					vm_page_deactivate(p);
2450				vm_page_busy(p);
2451				mpte = pmap_enter_quick(pmap,
2452					addr + i386_ptob(tmpidx),
2453					VM_PAGE_TO_PHYS(p), mpte);
2454				vm_page_flag_set(p, PG_MAPPED);
2455				vm_page_wakeup(p);
2456			}
2457		}
2458	}
2459	return;
2460}
2461
2462/*
2463 * pmap_prefault provides a quick way of clustering
2464 * pagefaults into a processes address space.  It is a "cousin"
2465 * of pmap_object_init_pt, except it runs at page fault time instead
2466 * of mmap time.
2467 */
2468#define PFBAK 4
2469#define PFFOR 4
2470#define PAGEORDER_SIZE (PFBAK+PFFOR)
2471
2472static int pmap_prefault_pageorder[] = {
2473	-PAGE_SIZE, PAGE_SIZE,
2474	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2475	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2476	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2477};
2478
2479void
2480pmap_prefault(pmap, addra, entry)
2481	pmap_t pmap;
2482	vm_offset_t addra;
2483	vm_map_entry_t entry;
2484{
2485	int i;
2486	vm_offset_t starta;
2487	vm_offset_t addr;
2488	vm_pindex_t pindex;
2489	vm_page_t m, mpte;
2490	vm_object_t object;
2491
2492	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace)))
2493		return;
2494
2495	object = entry->object.vm_object;
2496
2497	starta = addra - PFBAK * PAGE_SIZE;
2498	if (starta < entry->start) {
2499		starta = entry->start;
2500	} else if (starta > addra) {
2501		starta = 0;
2502	}
2503
2504	mpte = NULL;
2505	for (i = 0; i < PAGEORDER_SIZE; i++) {
2506		vm_object_t lobject;
2507		unsigned *pte;
2508
2509		addr = addra + pmap_prefault_pageorder[i];
2510		if (addr > addra + (PFFOR * PAGE_SIZE))
2511			addr = 0;
2512
2513		if (addr < starta || addr >= entry->end)
2514			continue;
2515
2516		if ((*pmap_pde(pmap, addr)) == NULL)
2517			continue;
2518
2519		pte = (unsigned *) vtopte(addr);
2520		if (*pte)
2521			continue;
2522
2523		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2524		lobject = object;
2525		for (m = vm_page_lookup(lobject, pindex);
2526		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2527		    lobject = lobject->backing_object) {
2528			if (lobject->backing_object_offset & PAGE_MASK)
2529				break;
2530			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2531			m = vm_page_lookup(lobject->backing_object, pindex);
2532		}
2533
2534		/*
2535		 * give-up when a page is not in memory
2536		 */
2537		if (m == NULL)
2538			break;
2539
2540		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2541			(m->busy == 0) &&
2542		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2543
2544			if ((m->queue - m->pc) == PQ_CACHE) {
2545				vm_page_deactivate(m);
2546			}
2547			vm_page_busy(m);
2548			mpte = pmap_enter_quick(pmap, addr,
2549				VM_PAGE_TO_PHYS(m), mpte);
2550			vm_page_flag_set(m, PG_MAPPED);
2551			vm_page_wakeup(m);
2552		}
2553	}
2554}
2555
2556/*
2557 *	Routine:	pmap_change_wiring
2558 *	Function:	Change the wiring attribute for a map/virtual-address
2559 *			pair.
2560 *	In/out conditions:
2561 *			The mapping must already exist in the pmap.
2562 */
2563void
2564pmap_change_wiring(pmap, va, wired)
2565	register pmap_t pmap;
2566	vm_offset_t va;
2567	boolean_t wired;
2568{
2569	register unsigned *pte;
2570
2571	if (pmap == NULL)
2572		return;
2573
2574	pte = pmap_pte(pmap, va);
2575
2576	if (wired && !pmap_pte_w(pte))
2577		pmap->pm_stats.wired_count++;
2578	else if (!wired && pmap_pte_w(pte))
2579		pmap->pm_stats.wired_count--;
2580
2581	/*
2582	 * Wiring is not a hardware characteristic so there is no need to
2583	 * invalidate TLB.
2584	 */
2585	pmap_pte_set_w(pte, wired);
2586}
2587
2588
2589
2590/*
2591 *	Copy the range specified by src_addr/len
2592 *	from the source map to the range dst_addr/len
2593 *	in the destination map.
2594 *
2595 *	This routine is only advisory and need not do anything.
2596 */
2597
2598void
2599pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2600	pmap_t dst_pmap, src_pmap;
2601	vm_offset_t dst_addr;
2602	vm_size_t len;
2603	vm_offset_t src_addr;
2604{
2605	vm_offset_t addr;
2606	vm_offset_t end_addr = src_addr + len;
2607	vm_offset_t pdnxt;
2608	unsigned src_frame, dst_frame;
2609
2610	if (dst_addr != src_addr)
2611		return;
2612
2613	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2614	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2615		return;
2616	}
2617
2618	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2619	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2620		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2621#if defined(SMP)
2622		/* The page directory is not shared between CPUs */
2623		cpu_invltlb();
2624#else
2625		invltlb();
2626#endif
2627	}
2628
2629	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2630		unsigned *src_pte, *dst_pte;
2631		vm_page_t dstmpte, srcmpte;
2632		vm_offset_t srcptepaddr;
2633		unsigned ptepindex;
2634
2635#if !defined(MAX_PERF)
2636		if (addr >= UPT_MIN_ADDRESS)
2637			panic("pmap_copy: invalid to pmap_copy page tables\n");
2638#endif
2639
2640		/*
2641		 * Don't let optional prefaulting of pages make us go
2642		 * way below the low water mark of free pages or way
2643		 * above high water mark of used pv entries.
2644		 */
2645		if (cnt.v_free_count < cnt.v_free_reserved ||
2646		    pv_entry_count > pv_entry_high_water)
2647			break;
2648
2649		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2650		ptepindex = addr >> PDRSHIFT;
2651
2652		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2653		if (srcptepaddr == 0)
2654			continue;
2655
2656		if (srcptepaddr & PG_PS) {
2657			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2658				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2659				dst_pmap->pm_stats.resident_count += NBPDR;
2660			}
2661			continue;
2662		}
2663
2664		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2665		if ((srcmpte == NULL) ||
2666			(srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2667			continue;
2668
2669		if (pdnxt > end_addr)
2670			pdnxt = end_addr;
2671
2672		src_pte = (unsigned *) vtopte(addr);
2673		dst_pte = (unsigned *) avtopte(addr);
2674		while (addr < pdnxt) {
2675			unsigned ptetemp;
2676			ptetemp = *src_pte;
2677			/*
2678			 * we only virtual copy managed pages
2679			 */
2680			if ((ptetemp & PG_MANAGED) != 0) {
2681				/*
2682				 * We have to check after allocpte for the
2683				 * pte still being around...  allocpte can
2684				 * block.
2685				 */
2686				dstmpte = pmap_allocpte(dst_pmap, addr);
2687				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2688					/*
2689					 * Clear the modified and
2690					 * accessed (referenced) bits
2691					 * during the copy.
2692					 */
2693					*dst_pte = ptetemp & ~(PG_M | PG_A);
2694					dst_pmap->pm_stats.resident_count++;
2695					pmap_insert_entry(dst_pmap, addr,
2696						dstmpte,
2697						(ptetemp & PG_FRAME));
2698	 			} else {
2699					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2700				}
2701				if (dstmpte->hold_count >= srcmpte->hold_count)
2702					break;
2703			}
2704			addr += PAGE_SIZE;
2705			src_pte++;
2706			dst_pte++;
2707		}
2708	}
2709}
2710
2711/*
2712 *	Routine:	pmap_kernel
2713 *	Function:
2714 *		Returns the physical map handle for the kernel.
2715 */
2716pmap_t
2717pmap_kernel()
2718{
2719	return (kernel_pmap);
2720}
2721
2722/*
2723 *	pmap_zero_page zeros the specified hardware page by mapping
2724 *	the page into KVM and using bzero to clear its contents.
2725 */
2726void
2727pmap_zero_page(phys)
2728	vm_offset_t phys;
2729{
2730#ifdef SMP
2731#if !defined(MAX_PERF)
2732	if (*(int *) prv_CMAP3)
2733		panic("pmap_zero_page: prv_CMAP3 busy");
2734#endif
2735
2736	*(int *) prv_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2737	cpu_invlpg(prv_CADDR3);
2738
2739#if defined(I686_CPU)
2740	if (cpu_class == CPUCLASS_686)
2741		i686_pagezero(prv_CADDR3);
2742	else
2743#endif
2744		bzero(prv_CADDR3, PAGE_SIZE);
2745
2746	*(int *) prv_CMAP3 = 0;
2747#else
2748#if !defined(MAX_PERF)
2749	if (*(int *) CMAP2)
2750		panic("pmap_zero_page: CMAP2 busy");
2751#endif
2752
2753	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2754	invltlb_1pg((vm_offset_t)CADDR2);
2755
2756#if defined(I686_CPU)
2757	if (cpu_class == CPUCLASS_686)
2758		i686_pagezero(CADDR2);
2759	else
2760#endif
2761		bzero(CADDR2, PAGE_SIZE);
2762	*(int *) CMAP2 = 0;
2763#endif
2764}
2765
2766/*
2767 *	pmap_zero_page_area zeros the specified hardware page by mapping
2768 *	the page into KVM and using bzero to clear its contents.
2769 *
2770 *	off and size may not cover an area beyond a single hardware page.
2771 */
2772void
2773pmap_zero_page_area(phys, off, size)
2774	vm_offset_t phys;
2775	int off;
2776	int size;
2777{
2778#ifdef SMP
2779#if !defined(MAX_PERF)
2780	if (*(int *) prv_CMAP3)
2781		panic("pmap_zero_page: prv_CMAP3 busy");
2782#endif
2783
2784	*(int *) prv_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2785	cpu_invlpg(prv_CADDR3);
2786
2787#if defined(I686_CPU)
2788	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2789		i686_pagezero(prv_CADDR3);
2790	else
2791#endif
2792		bzero((char *)prv_CADDR3 + off, size);
2793
2794	*(int *) prv_CMAP3 = 0;
2795#else
2796#if !defined(MAX_PERF)
2797	if (*(int *) CMAP2)
2798		panic("pmap_zero_page: CMAP2 busy");
2799#endif
2800
2801	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2802	invltlb_1pg((vm_offset_t)CADDR2);
2803
2804#if defined(I686_CPU)
2805	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2806		i686_pagezero(CADDR2);
2807	else
2808#endif
2809		bzero((char *)CADDR2 + off, size);
2810	*(int *) CMAP2 = 0;
2811#endif
2812}
2813
2814/*
2815 *	pmap_copy_page copies the specified (machine independent)
2816 *	page by mapping the page into virtual memory and using
2817 *	bcopy to copy the page, one machine dependent page at a
2818 *	time.
2819 */
2820void
2821pmap_copy_page(src, dst)
2822	vm_offset_t src;
2823	vm_offset_t dst;
2824{
2825#ifdef SMP
2826#if !defined(MAX_PERF)
2827	if (*(int *) prv_CMAP1)
2828		panic("pmap_copy_page: prv_CMAP1 busy");
2829	if (*(int *) prv_CMAP2)
2830		panic("pmap_copy_page: prv_CMAP2 busy");
2831#endif
2832
2833	*(int *) prv_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2834	*(int *) prv_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2835
2836	cpu_invlpg(prv_CADDR1);
2837	cpu_invlpg(prv_CADDR2);
2838
2839	bcopy(prv_CADDR1, prv_CADDR2, PAGE_SIZE);
2840
2841	*(int *) prv_CMAP1 = 0;
2842	*(int *) prv_CMAP2 = 0;
2843#else
2844#if !defined(MAX_PERF)
2845	if (*(int *) CMAP1 || *(int *) CMAP2)
2846		panic("pmap_copy_page: CMAP busy");
2847#endif
2848
2849	*(int *) CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2850	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2851#if defined(I386_CPU)
2852	if (cpu_class == CPUCLASS_386) {
2853		invltlb();
2854	} else
2855#endif
2856	{
2857		invlpg((u_int)CADDR1);
2858		invlpg((u_int)CADDR2);
2859	}
2860
2861	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2862
2863	*(int *) CMAP1 = 0;
2864	*(int *) CMAP2 = 0;
2865#endif
2866}
2867
2868
2869/*
2870 *	Routine:	pmap_pageable
2871 *	Function:
2872 *		Make the specified pages (by pmap, offset)
2873 *		pageable (or not) as requested.
2874 *
2875 *		A page which is not pageable may not take
2876 *		a fault; therefore, its page table entry
2877 *		must remain valid for the duration.
2878 *
2879 *		This routine is merely advisory; pmap_enter
2880 *		will specify that these pages are to be wired
2881 *		down (or not) as appropriate.
2882 */
2883void
2884pmap_pageable(pmap, sva, eva, pageable)
2885	pmap_t pmap;
2886	vm_offset_t sva, eva;
2887	boolean_t pageable;
2888{
2889}
2890
2891/*
2892 * this routine returns true if a physical page resides
2893 * in the given pmap.
2894 */
2895boolean_t
2896pmap_page_exists(pmap, pa)
2897	pmap_t pmap;
2898	vm_offset_t pa;
2899{
2900	register pv_entry_t pv;
2901	pv_table_t *ppv;
2902	int s;
2903
2904	if (!pmap_is_managed(pa))
2905		return FALSE;
2906
2907	s = splvm();
2908
2909	ppv = pa_to_pvh(pa);
2910	/*
2911	 * Not found, check current mappings returning immediately if found.
2912	 */
2913	for (pv = TAILQ_FIRST(&ppv->pv_list);
2914		pv;
2915		pv = TAILQ_NEXT(pv, pv_list)) {
2916		if (pv->pv_pmap == pmap) {
2917			splx(s);
2918			return TRUE;
2919		}
2920	}
2921	splx(s);
2922	return (FALSE);
2923}
2924
2925#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2926/*
2927 * Remove all pages from specified address space
2928 * this aids process exit speeds.  Also, this code
2929 * is special cased for current process only, but
2930 * can have the more generic (and slightly slower)
2931 * mode enabled.  This is much faster than pmap_remove
2932 * in the case of running down an entire address space.
2933 */
2934void
2935pmap_remove_pages(pmap, sva, eva)
2936	pmap_t pmap;
2937	vm_offset_t sva, eva;
2938{
2939	unsigned *pte, tpte;
2940	pv_table_t *ppv;
2941	pv_entry_t pv, npv;
2942	int s;
2943
2944#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2945	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace))) {
2946		printf("warning: pmap_remove_pages called with non-current pmap\n");
2947		return;
2948	}
2949#endif
2950
2951	s = splvm();
2952	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2953		pv;
2954		pv = npv) {
2955
2956		if (pv->pv_va >= eva || pv->pv_va < sva) {
2957			npv = TAILQ_NEXT(pv, pv_plist);
2958			continue;
2959		}
2960
2961#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2962		pte = (unsigned *)vtopte(pv->pv_va);
2963#else
2964		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2965#endif
2966		tpte = *pte;
2967
2968/*
2969 * We cannot remove wired pages from a process' mapping at this time
2970 */
2971		if (tpte & PG_W) {
2972			npv = TAILQ_NEXT(pv, pv_plist);
2973			continue;
2974		}
2975		*pte = 0;
2976
2977		ppv = pa_to_pvh(tpte);
2978
2979		pv->pv_pmap->pm_stats.resident_count--;
2980
2981		/*
2982		 * Update the vm_page_t clean and reference bits.
2983		 */
2984		if (tpte & PG_M) {
2985			vm_page_dirty(ppv->pv_vm_page);
2986		}
2987
2988
2989		npv = TAILQ_NEXT(pv, pv_plist);
2990		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2991
2992		ppv->pv_list_count--;
2993		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2994		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2995			vm_page_flag_clear(ppv->pv_vm_page, PG_MAPPED | PG_WRITEABLE);
2996		}
2997
2998		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2999		free_pv_entry(pv);
3000	}
3001	splx(s);
3002	pmap_TLB_invalidate_all(pmap);
3003}
3004
3005/*
3006 * pmap_testbit tests bits in pte's
3007 * note that the testbit/changebit routines are inline,
3008 * and a lot of things compile-time evaluate.
3009 */
3010static boolean_t
3011pmap_testbit(pa, bit)
3012	register vm_offset_t pa;
3013	int bit;
3014{
3015	register pv_entry_t pv;
3016	pv_table_t *ppv;
3017	unsigned *pte;
3018	int s;
3019
3020	if (!pmap_is_managed(pa))
3021		return FALSE;
3022
3023	ppv = pa_to_pvh(pa);
3024	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
3025		return FALSE;
3026
3027	s = splvm();
3028
3029	for (pv = TAILQ_FIRST(&ppv->pv_list);
3030		pv;
3031		pv = TAILQ_NEXT(pv, pv_list)) {
3032
3033		/*
3034		 * if the bit being tested is the modified bit, then
3035		 * mark clean_map and ptes as never
3036		 * modified.
3037		 */
3038		if (bit & (PG_A|PG_M)) {
3039			if (!pmap_track_modified(pv->pv_va))
3040				continue;
3041		}
3042
3043#if defined(PMAP_DIAGNOSTIC)
3044		if (!pv->pv_pmap) {
3045			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3046			continue;
3047		}
3048#endif
3049		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3050		if (*pte & bit) {
3051			splx(s);
3052			return TRUE;
3053		}
3054	}
3055	splx(s);
3056	return (FALSE);
3057}
3058
3059/*
3060 * this routine is used to modify bits in ptes
3061 */
3062static __inline void
3063pmap_changebit(pa, bit, setem)
3064	vm_offset_t pa;
3065	int bit;
3066	boolean_t setem;
3067{
3068	register pv_entry_t pv;
3069	pv_table_t *ppv;
3070	register unsigned *pte;
3071	int s;
3072
3073	if (!pmap_is_managed(pa))
3074		return;
3075
3076	s = splvm();
3077	ppv = pa_to_pvh(pa);
3078
3079	/*
3080	 * Loop over all current mappings setting/clearing as appropos If
3081	 * setting RO do we need to clear the VAC?
3082	 */
3083	for (pv = TAILQ_FIRST(&ppv->pv_list);
3084		pv;
3085		pv = TAILQ_NEXT(pv, pv_list)) {
3086
3087		/*
3088		 * don't write protect pager mappings
3089		 */
3090		if (!setem && (bit == PG_RW)) {
3091			if (!pmap_track_modified(pv->pv_va))
3092				continue;
3093		}
3094
3095#if defined(PMAP_DIAGNOSTIC)
3096		if (!pv->pv_pmap) {
3097			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3098			continue;
3099		}
3100#endif
3101
3102		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3103
3104		if (setem) {
3105			*(int *)pte |= bit;
3106			pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3107		} else {
3108			vm_offset_t pbits = *(vm_offset_t *)pte;
3109			if (pbits & bit) {
3110				if (bit == PG_RW) {
3111					if (pbits & PG_M) {
3112						vm_page_dirty(ppv->pv_vm_page);
3113					}
3114					*(int *)pte = pbits & ~(PG_M|PG_RW);
3115				} else {
3116					*(int *)pte = pbits & ~bit;
3117				}
3118				pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3119			}
3120		}
3121	}
3122	splx(s);
3123}
3124
3125/*
3126 *	pmap_clearbit:
3127 *
3128 *	Clear a bit/bits in every pte mapping a given physical page.
3129 */
3130static void
3131pmap_clearbit(
3132	vm_offset_t pa,
3133	int	bit)
3134{
3135	pmap_changebit(pa, bit, FALSE);
3136}
3137
3138/*
3139 *      pmap_page_protect:
3140 *
3141 *      Lower the permission for all mappings to a given page.
3142 */
3143void
3144pmap_page_protect(vm_offset_t phys, vm_prot_t prot)
3145{
3146	if ((prot & VM_PROT_WRITE) == 0) {
3147		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3148			pmap_clearbit(phys, PG_RW);
3149		} else {
3150			pmap_remove_all(phys);
3151		}
3152	}
3153}
3154
3155vm_offset_t
3156pmap_phys_address(ppn)
3157	int ppn;
3158{
3159	return (i386_ptob(ppn));
3160}
3161
3162/*
3163 *	pmap_ts_referenced:
3164 *
3165 *	Return the count of reference bits for a page, clearing all of them.
3166 */
3167int
3168pmap_ts_referenced(vm_offset_t pa)
3169{
3170	register pv_entry_t pv, pvf, pvn;
3171	pv_table_t *ppv;
3172	unsigned *pte;
3173	int s;
3174	int rtval = 0;
3175
3176	if (!pmap_is_managed(pa))
3177		return (rtval);
3178
3179	s = splvm();
3180
3181	ppv = pa_to_pvh(pa);
3182
3183	if ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
3184
3185		pvf = pv;
3186
3187		do {
3188			pvn = TAILQ_NEXT(pv, pv_list);
3189
3190			TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
3191
3192			TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3193
3194			if (!pmap_track_modified(pv->pv_va))
3195				continue;
3196
3197			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3198
3199			if (pte && *pte & PG_A) {
3200				*pte &= ~PG_A;
3201
3202				pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3203
3204				rtval++;
3205				if (rtval > 4) {
3206					break;
3207				}
3208			}
3209		} while ((pv = pvn) != NULL && pv != pvf);
3210	}
3211	splx(s);
3212
3213	return (rtval);
3214}
3215
3216/*
3217 *	pmap_is_modified:
3218 *
3219 *	Return whether or not the specified physical page was modified
3220 *	in any physical maps.
3221 */
3222boolean_t
3223pmap_is_modified(vm_offset_t pa)
3224{
3225	return pmap_testbit((pa), PG_M);
3226}
3227
3228/*
3229 *	Clear the modify bits on the specified physical page.
3230 */
3231void
3232pmap_clear_modify(vm_offset_t pa)
3233{
3234	pmap_clearbit(pa, PG_M);
3235}
3236
3237/*
3238 *	pmap_clear_reference:
3239 *
3240 *	Clear the reference bit on the specified physical page.
3241 */
3242void
3243pmap_clear_reference(vm_offset_t pa)
3244{
3245	pmap_clearbit(pa, PG_A);
3246}
3247
3248/*
3249 * Miscellaneous support routines follow
3250 */
3251
3252static void
3253i386_protection_init()
3254{
3255	register int *kp, prot;
3256
3257	kp = protection_codes;
3258	for (prot = 0; prot < 8; prot++) {
3259		switch (prot) {
3260		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3261			/*
3262			 * Read access is also 0. There isn't any execute bit,
3263			 * so just make it readable.
3264			 */
3265		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3266		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3267		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3268			*kp++ = 0;
3269			break;
3270		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3271		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3272		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3273		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3274			*kp++ = PG_RW;
3275			break;
3276		}
3277	}
3278}
3279
3280/*
3281 * Map a set of physical memory pages into the kernel virtual
3282 * address space. Return a pointer to where it is mapped. This
3283 * routine is intended to be used for mapping device memory,
3284 * NOT real memory.
3285 */
3286void *
3287pmap_mapdev(pa, size)
3288	vm_offset_t pa;
3289	vm_size_t size;
3290{
3291	vm_offset_t va, tmpva;
3292	unsigned *pte;
3293
3294	size = roundup(size, PAGE_SIZE);
3295
3296	va = kmem_alloc_pageable(kernel_map, size);
3297#if !defined(MAX_PERF)
3298	if (!va)
3299		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3300#endif
3301
3302	pa = pa & PG_FRAME;
3303	for (tmpva = va; size > 0;) {
3304		pte = (unsigned *)vtopte(tmpva);
3305		*pte = pa | PG_RW | PG_V | pgeflag;
3306		size -= PAGE_SIZE;
3307		tmpva += PAGE_SIZE;
3308		pa += PAGE_SIZE;
3309	}
3310	invltlb();
3311
3312	return ((void *) va);
3313}
3314
3315/*
3316 * perform the pmap work for mincore
3317 */
3318int
3319pmap_mincore(pmap, addr)
3320	pmap_t pmap;
3321	vm_offset_t addr;
3322{
3323
3324	unsigned *ptep, pte;
3325	vm_page_t m;
3326	int val = 0;
3327
3328	ptep = pmap_pte(pmap, addr);
3329	if (ptep == 0) {
3330		return 0;
3331	}
3332
3333	if ((pte = *ptep) != 0) {
3334		pv_table_t *ppv;
3335		vm_offset_t pa;
3336
3337		val = MINCORE_INCORE;
3338		if ((pte & PG_MANAGED) == 0)
3339			return val;
3340
3341		pa = pte & PG_FRAME;
3342
3343		ppv = pa_to_pvh((pa & PG_FRAME));
3344		m = ppv->pv_vm_page;
3345
3346		/*
3347		 * Modified by us
3348		 */
3349		if (pte & PG_M)
3350			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3351		/*
3352		 * Modified by someone
3353		 */
3354		else if (m->dirty || pmap_is_modified(pa))
3355			val |= MINCORE_MODIFIED_OTHER;
3356		/*
3357		 * Referenced by us
3358		 */
3359		if (pte & PG_A)
3360			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3361
3362		/*
3363		 * Referenced by someone
3364		 */
3365		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(pa)) {
3366			val |= MINCORE_REFERENCED_OTHER;
3367			vm_page_flag_set(m, PG_REFERENCED);
3368		}
3369	}
3370	return val;
3371}
3372
3373void
3374pmap_activate(struct proc *p)
3375{
3376	pmap_t	pmap;
3377
3378	pmap = vmspace_pmap(p->p_vmspace);
3379#if defined(SMP)
3380	pmap->pm_active |= 1 << cpuid;
3381#else
3382	pmap->pm_active |= 1;
3383#endif
3384#if defined(SWTCH_OPTIM_STATS)
3385	tlb_flush_count++;
3386#endif
3387	load_cr3(p->p_addr->u_pcb.pcb_cr3 = vtophys(pmap->pm_pdir));
3388}
3389
3390vm_offset_t
3391pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) {
3392
3393	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3394		return addr;
3395	}
3396
3397	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3398	return addr;
3399}
3400
3401
3402#if defined(PMAP_DEBUG)
3403pmap_pid_dump(int pid) {
3404	pmap_t pmap;
3405	struct proc *p;
3406	int npte = 0;
3407	int index;
3408	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
3409		if (p->p_pid != pid)
3410			continue;
3411
3412		if (p->p_vmspace) {
3413			int i,j;
3414			index = 0;
3415			pmap = vmspace_pmap(p->p_vmspace);
3416			for(i=0;i<1024;i++) {
3417				pd_entry_t *pde;
3418				unsigned *pte;
3419				unsigned base = i << PDRSHIFT;
3420
3421				pde = &pmap->pm_pdir[i];
3422				if (pde && pmap_pde_v(pde)) {
3423					for(j=0;j<1024;j++) {
3424						unsigned va = base + (j << PAGE_SHIFT);
3425						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3426							if (index) {
3427								index = 0;
3428								printf("\n");
3429							}
3430							return npte;
3431						}
3432						pte = pmap_pte_quick( pmap, va);
3433						if (pte && pmap_pte_v(pte)) {
3434							vm_offset_t pa;
3435							vm_page_t m;
3436							pa = *(int *)pte;
3437							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3438							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3439								va, pa, m->hold_count, m->wire_count, m->flags);
3440							npte++;
3441							index++;
3442							if (index >= 2) {
3443								index = 0;
3444								printf("\n");
3445							} else {
3446								printf(" ");
3447							}
3448						}
3449					}
3450				}
3451			}
3452		}
3453	}
3454	return npte;
3455}
3456#endif
3457
3458#if defined(DEBUG)
3459
3460static void	pads __P((pmap_t pm));
3461void		pmap_pvdump __P((vm_offset_t pa));
3462
3463/* print address space of pmap*/
3464static void
3465pads(pm)
3466	pmap_t pm;
3467{
3468	unsigned va, i, j;
3469	unsigned *ptep;
3470
3471	if (pm == kernel_pmap)
3472		return;
3473	for (i = 0; i < 1024; i++)
3474		if (pm->pm_pdir[i])
3475			for (j = 0; j < 1024; j++) {
3476				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3477				if (pm == kernel_pmap && va < KERNBASE)
3478					continue;
3479				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3480					continue;
3481				ptep = pmap_pte_quick(pm, va);
3482				if (pmap_pte_v(ptep))
3483					printf("%x:%x ", va, *(int *) ptep);
3484			};
3485
3486}
3487
3488void
3489pmap_pvdump(pa)
3490	vm_offset_t pa;
3491{
3492	pv_table_t *ppv;
3493	register pv_entry_t pv;
3494
3495	printf("pa %x", pa);
3496	ppv = pa_to_pvh(pa);
3497	for (pv = TAILQ_FIRST(&ppv->pv_list);
3498		pv;
3499		pv = TAILQ_NEXT(pv, pv_list)) {
3500#ifdef used_to_be
3501		printf(" -> pmap %p, va %x, flags %x",
3502		    (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3503#endif
3504		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3505		pads(pv->pv_pmap);
3506	}
3507	printf(" ");
3508}
3509#endif
3510