pmap.c revision 41591
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.214 1998/11/27 01:14:21 tegge Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/msgbuf.h>
79#include <sys/vmmeter.h>
80#include <sys/mman.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/vm_prot.h>
85#include <sys/lock.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_zone.h>
94
95#include <sys/user.h>
96
97#include <machine/cputypes.h>
98#include <machine/md_var.h>
99#include <machine/specialreg.h>
100#if defined(SMP) || defined(APIC_IO)
101#include <machine/smp.h>
102#include <machine/apic.h>
103#endif /* SMP || APIC_IO */
104
105#define PMAP_KEEP_PDIRS
106#ifndef PMAP_SHPGPERPROC
107#define PMAP_SHPGPERPROC 200
108#endif
109
110#if defined(DIAGNOSTIC)
111#define PMAP_DIAGNOSTIC
112#endif
113
114#define MINPV 2048
115
116#if !defined(PMAP_DIAGNOSTIC)
117#define PMAP_INLINE __inline
118#else
119#define PMAP_INLINE
120#endif
121
122/*
123 * Get PDEs and PTEs for user/kernel address space
124 */
125#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
126#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
127
128#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
129#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
130#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
131#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
132#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
133
134#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
135#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
136
137/*
138 * Given a map and a machine independent protection code,
139 * convert to a vax protection code.
140 */
141#define pte_prot(m, p)	(protection_codes[p])
142static int protection_codes[8];
143
144#define	pa_index(pa)		atop((pa) - vm_first_phys)
145#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
146
147static struct pmap kernel_pmap_store;
148pmap_t kernel_pmap;
149extern pd_entry_t my_idlePTD;
150
151vm_offset_t avail_start;	/* PA of first available physical page */
152vm_offset_t avail_end;		/* PA of last available physical page */
153vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
154vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
155static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
156static vm_offset_t vm_first_phys;
157static int pgeflag;		/* PG_G or-in */
158static int pseflag;		/* PG_PS or-in */
159static int pv_npg;
160
161static vm_object_t kptobj;
162
163static int nkpt;
164vm_offset_t kernel_vm_end;
165
166/*
167 * Data for the pv entry allocation mechanism
168 */
169static vm_zone_t pvzone;
170static struct vm_zone pvzone_store;
171static struct vm_object pvzone_obj;
172static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
173static int pmap_pagedaemon_waken = 0;
174static struct pv_entry *pvinit;
175
176/*
177 * All those kernel PT submaps that BSD is so fond of
178 */
179pt_entry_t *CMAP1 = 0;
180static pt_entry_t *CMAP2, *ptmmap;
181static pv_table_t *pv_table;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2;
184static pt_entry_t *msgbufmap;
185struct msgbuf *msgbufp=0;
186
187/*
188 *  PPro_vmtrr
189 */
190struct ppro_vmtrr PPro_vmtrr[NPPROVMTRR];
191
192/* AIO support */
193extern struct vmspace *aiovmspace;
194
195#ifdef SMP
196extern char prv_CPAGE1[], prv_CPAGE2[], prv_CPAGE3[];
197extern pt_entry_t *prv_CMAP1, *prv_CMAP2, *prv_CMAP3;
198extern pd_entry_t *IdlePTDS[];
199extern pt_entry_t SMP_prvpt[];
200#endif
201
202#ifdef SMP
203extern unsigned int prv_PPAGE1[];
204extern pt_entry_t *prv_PMAP1;
205#else
206static pt_entry_t *PMAP1 = 0;
207static unsigned *PADDR1 = 0;
208#endif
209
210static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
211static unsigned * get_ptbase __P((pmap_t pmap));
212static pv_entry_t get_pv_entry __P((void));
213static void	i386_protection_init __P((void));
214static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
215
216static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
217static void	pmap_remove_all __P((vm_offset_t pa));
218static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
219				      vm_offset_t pa, vm_page_t mpte));
220static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
221					vm_offset_t sva));
222static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
223static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
224					vm_offset_t va));
225static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
226static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
227		vm_page_t mpte, vm_offset_t pa));
228
229static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
230
231static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
232static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
233static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
234static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
235static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
236static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
237void pmap_collect(void);
238
239static unsigned pdir4mb;
240
241/*
242 *	Routine:	pmap_pte
243 *	Function:
244 *		Extract the page table entry associated
245 *		with the given map/virtual_address pair.
246 */
247
248PMAP_INLINE unsigned *
249pmap_pte(pmap, va)
250	register pmap_t pmap;
251	vm_offset_t va;
252{
253	unsigned *pdeaddr;
254
255	if (pmap) {
256		pdeaddr = (unsigned *) pmap_pde(pmap, va);
257		if (*pdeaddr & PG_PS)
258			return pdeaddr;
259		if (*pdeaddr) {
260			return get_ptbase(pmap) + i386_btop(va);
261		}
262	}
263	return (0);
264}
265
266/*
267 * Move the kernel virtual free pointer to the next
268 * 4MB.  This is used to help improve performance
269 * by using a large (4MB) page for much of the kernel
270 * (.text, .data, .bss)
271 */
272static vm_offset_t
273pmap_kmem_choose(vm_offset_t addr) {
274	vm_offset_t newaddr = addr;
275#ifndef DISABLE_PSE
276	if (cpu_feature & CPUID_PSE) {
277		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
278	}
279#endif
280	return newaddr;
281}
282
283/*
284 *	Bootstrap the system enough to run with virtual memory.
285 *
286 *	On the i386 this is called after mapping has already been enabled
287 *	and just syncs the pmap module with what has already been done.
288 *	[We can't call it easily with mapping off since the kernel is not
289 *	mapped with PA == VA, hence we would have to relocate every address
290 *	from the linked base (virtual) address "KERNBASE" to the actual
291 *	(physical) address starting relative to 0]
292 */
293void
294pmap_bootstrap(firstaddr, loadaddr)
295	vm_offset_t firstaddr;
296	vm_offset_t loadaddr;
297{
298	vm_offset_t va;
299	pt_entry_t *pte;
300#ifdef SMP
301	int i, j;
302#endif
303
304	avail_start = firstaddr;
305
306	/*
307	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
308	 * large. It should instead be correctly calculated in locore.s and
309	 * not based on 'first' (which is a physical address, not a virtual
310	 * address, for the start of unused physical memory). The kernel
311	 * page tables are NOT double mapped and thus should not be included
312	 * in this calculation.
313	 */
314	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
315	virtual_avail = pmap_kmem_choose(virtual_avail);
316
317	virtual_end = VM_MAX_KERNEL_ADDRESS;
318
319	/*
320	 * Initialize protection array.
321	 */
322	i386_protection_init();
323
324	/*
325	 * The kernel's pmap is statically allocated so we don't have to use
326	 * pmap_create, which is unlikely to work correctly at this part of
327	 * the boot sequence (XXX and which no longer exists).
328	 */
329	kernel_pmap = &kernel_pmap_store;
330
331	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
332
333	kernel_pmap->pm_count = 1;
334	TAILQ_INIT(&kernel_pmap->pm_pvlist);
335	nkpt = NKPT;
336
337	/*
338	 * Reserve some special page table entries/VA space for temporary
339	 * mapping of pages.
340	 */
341#define	SYSMAP(c, p, v, n)	\
342	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
343
344	va = virtual_avail;
345	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
346
347	/*
348	 * CMAP1/CMAP2 are used for zeroing and copying pages.
349	 */
350	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
351	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
352
353	/*
354	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
355	 * XXX ptmmap is not used.
356	 */
357	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
358
359	/*
360	 * msgbufp is used to map the system message buffer.
361	 * XXX msgbufmap is not used.
362	 */
363	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
364	       atop(round_page(MSGBUF_SIZE)))
365
366#if !defined(SMP)
367	/*
368	 * ptemap is used for pmap_pte_quick
369	 */
370	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
371#endif
372
373	virtual_avail = va;
374
375	*(int *) CMAP1 = *(int *) CMAP2 = 0;
376	*(int *) PTD = 0;
377
378
379	pgeflag = 0;
380#if !defined(SMP)
381	if (cpu_feature & CPUID_PGE) {
382		pgeflag = PG_G;
383	}
384#endif
385
386/*
387 * Initialize the 4MB page size flag
388 */
389	pseflag = 0;
390/*
391 * The 4MB page version of the initial
392 * kernel page mapping.
393 */
394	pdir4mb = 0;
395
396#if !defined(DISABLE_PSE)
397	if (cpu_feature & CPUID_PSE) {
398		unsigned ptditmp;
399		/*
400		 * Enable the PSE mode
401		 */
402		load_cr4(rcr4() | CR4_PSE);
403
404		/*
405		 * Note that we have enabled PSE mode
406		 */
407		pseflag = PG_PS;
408		ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
409		ptditmp &= ~(NBPDR - 1);
410		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
411		pdir4mb = ptditmp;
412		/*
413		 * We can do the mapping here for the single processor
414		 * case.  We simply ignore the old page table page from
415		 * now on.
416		 */
417#if !defined(SMP)
418		PTD[KPTDI] = (pd_entry_t) ptditmp;
419		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
420		invltlb();
421#endif
422	}
423#endif
424
425#ifdef SMP
426	if (cpu_apic_address == 0)
427		panic("pmap_bootstrap: no local apic!");
428
429	/* 0 = private page */
430	/* 1 = page table page */
431	/* 2 = local apic */
432	/* 16-31 = io apics */
433	SMP_prvpt[2] = (pt_entry_t)(PG_V | PG_RW | pgeflag |
434	    (cpu_apic_address & PG_FRAME));
435
436	for (i = 0; i < mp_napics; i++) {
437		for (j = 0; j < 16; j++) {
438			/* same page frame as a previous IO apic? */
439			if (((vm_offset_t)SMP_prvpt[j + 16] & PG_FRAME) ==
440			    (io_apic_address[0] & PG_FRAME)) {
441				ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE];
442				break;
443			}
444			/* use this slot if available */
445			if (((vm_offset_t)SMP_prvpt[j + 16] & PG_FRAME) == 0) {
446				SMP_prvpt[j + 16] = (pt_entry_t)(PG_V | PG_RW |
447				    pgeflag | (io_apic_address[i] & PG_FRAME));
448				ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE];
449				break;
450			}
451		}
452		if (j == 16)
453			panic("no space to map IO apic %d!", i);
454	}
455
456	/* BSP does this itself, AP's get it pre-set */
457	prv_CMAP1 = &SMP_prvpt[3 + UPAGES];
458	prv_CMAP2 = &SMP_prvpt[4 + UPAGES];
459	prv_CMAP3 = &SMP_prvpt[5 + UPAGES];
460	prv_PMAP1 = &SMP_prvpt[6 + UPAGES];
461#endif
462
463	invltlb();
464
465}
466
467void
468getmtrr()
469{
470	int i;
471
472	if (cpu_class == CPUCLASS_686) {
473		for(i = 0; i < NPPROVMTRR; i++) {
474			PPro_vmtrr[i].base = rdmsr(PPRO_VMTRRphysBase0 + i * 2);
475			PPro_vmtrr[i].mask = rdmsr(PPRO_VMTRRphysMask0 + i * 2);
476		}
477	}
478}
479
480void
481putmtrr()
482{
483	int i;
484
485	if (cpu_class == CPUCLASS_686) {
486		wbinvd();
487		for(i = 0; i < NPPROVMTRR; i++) {
488			wrmsr(PPRO_VMTRRphysBase0 + i * 2, PPro_vmtrr[i].base);
489			wrmsr(PPRO_VMTRRphysMask0 + i * 2, PPro_vmtrr[i].mask);
490		}
491	}
492}
493
494void
495pmap_setvidram(void)
496{
497#if 0
498	if (cpu_class == CPUCLASS_686) {
499		wbinvd();
500		/*
501		 * Set memory between 0-640K to be WB
502		 */
503		wrmsr(0x250, 0x0606060606060606LL);
504		wrmsr(0x258, 0x0606060606060606LL);
505		/*
506		 * Set normal, PC video memory to be WC
507		 */
508		wrmsr(0x259, 0x0101010101010101LL);
509	}
510#endif
511}
512
513void
514pmap_setdevram(unsigned long long basea, vm_offset_t sizea)
515{
516	int i, free, skip;
517	unsigned basepage, basepaget;
518	unsigned long long base;
519	unsigned long long mask;
520
521	if (cpu_class != CPUCLASS_686)
522		return;
523
524	free = -1;
525	skip = 0;
526	basea &= ~0xfff;
527	base = basea | 0x1;
528	mask = (long long) (0xfffffffffLL - ((long) sizea - 1)) | (long long) 0x800;
529	mask &= ~0x7ff;
530
531	basepage = (long long) (base >> 12);
532	for(i = 0; i < NPPROVMTRR; i++) {
533		PPro_vmtrr[i].base = rdmsr(PPRO_VMTRRphysBase0 + i * 2);
534		PPro_vmtrr[i].mask = rdmsr(PPRO_VMTRRphysMask0 + i * 2);
535		basepaget = (long long) (PPro_vmtrr[i].base >> 12);
536		if (basepage == basepaget)
537			skip = 1;
538		if ((PPro_vmtrr[i].mask & 0x800) == 0) {
539			if (free == -1)
540				free = i;
541		}
542	}
543
544	if (!skip && free != -1) {
545		wbinvd();
546		PPro_vmtrr[free].base = base;
547		PPro_vmtrr[free].mask = mask;
548		wrmsr(PPRO_VMTRRphysBase0 + free * 2, base);
549		wrmsr(PPRO_VMTRRphysMask0 + free * 2, mask);
550		printf(
551	"pmap: added WC mapping at page: 0x%x %x, size: %u mask: 0x%x %x\n",
552		    (u_int)(base >> 32), (u_int)base, sizea,
553		    (u_int)(mask >> 32), (u_int)mask);
554	}
555}
556
557/*
558 * Set 4mb pdir for mp startup, and global flags
559 */
560void
561pmap_set_opt(unsigned *pdir) {
562	int i;
563
564	if (pseflag && (cpu_feature & CPUID_PSE)) {
565		load_cr4(rcr4() | CR4_PSE);
566		if (pdir4mb) {
567			pdir[KPTDI] = pdir4mb;
568		}
569	}
570
571	if (pgeflag && (cpu_feature & CPUID_PGE)) {
572		load_cr4(rcr4() | CR4_PGE);
573		for(i = KPTDI; i < KPTDI + nkpt; i++) {
574			if (pdir[i]) {
575				pdir[i] |= PG_G;
576			}
577		}
578	}
579}
580
581/*
582 * Setup the PTD for the boot processor
583 */
584void
585pmap_set_opt_bsp(void)
586{
587	pmap_set_opt((unsigned *)kernel_pmap->pm_pdir);
588	pmap_set_opt((unsigned *)PTD);
589	invltlb();
590}
591
592/*
593 *	Initialize the pmap module.
594 *	Called by vm_init, to initialize any structures that the pmap
595 *	system needs to map virtual memory.
596 *	pmap_init has been enhanced to support in a fairly consistant
597 *	way, discontiguous physical memory.
598 */
599void
600pmap_init(phys_start, phys_end)
601	vm_offset_t phys_start, phys_end;
602{
603	vm_offset_t addr;
604	vm_size_t s;
605	int i;
606	int initial_pvs;
607
608	/*
609	 * calculate the number of pv_entries needed
610	 */
611	vm_first_phys = phys_avail[0];
612	for (i = 0; phys_avail[i + 1]; i += 2);
613	pv_npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
614
615	/*
616	 * Allocate memory for random pmap data structures.  Includes the
617	 * pv_head_table.
618	 */
619	s = (vm_size_t) (sizeof(pv_table_t) * pv_npg);
620	s = round_page(s);
621
622	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
623	pv_table = (pv_table_t *) addr;
624	for(i = 0; i < pv_npg; i++) {
625		vm_offset_t pa;
626		TAILQ_INIT(&pv_table[i].pv_list);
627		pv_table[i].pv_list_count = 0;
628		pa = vm_first_phys + i * PAGE_SIZE;
629		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
630	}
631
632	/*
633	 * init the pv free list
634	 */
635	initial_pvs = pv_npg;
636	if (initial_pvs < MINPV)
637		initial_pvs = MINPV;
638	pvzone = &pvzone_store;
639	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
640		initial_pvs * sizeof (struct pv_entry));
641	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit, pv_npg);
642	/*
643	 * object for kernel page table pages
644	 */
645	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
646
647	/*
648	 * Now it is safe to enable pv_table recording.
649	 */
650	pmap_initialized = TRUE;
651}
652
653/*
654 * Initialize the address space (zone) for the pv_entries.  Set a
655 * high water mark so that the system can recover from excessive
656 * numbers of pv entries.
657 */
658void
659pmap_init2() {
660	pv_entry_max = PMAP_SHPGPERPROC * maxproc + pv_npg;
661	pv_entry_high_water = 9 * (pv_entry_max / 10);
662	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
663}
664
665/*
666 *	Used to map a range of physical addresses into kernel
667 *	virtual address space.
668 *
669 *	For now, VM is already on, we only need to map the
670 *	specified memory.
671 */
672vm_offset_t
673pmap_map(virt, start, end, prot)
674	vm_offset_t virt;
675	vm_offset_t start;
676	vm_offset_t end;
677	int prot;
678{
679	while (start < end) {
680		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
681		virt += PAGE_SIZE;
682		start += PAGE_SIZE;
683	}
684	return (virt);
685}
686
687
688/***************************************************
689 * Low level helper routines.....
690 ***************************************************/
691
692#if defined(PMAP_DIAGNOSTIC)
693
694/*
695 * This code checks for non-writeable/modified pages.
696 * This should be an invalid condition.
697 */
698static int
699pmap_nw_modified(pt_entry_t ptea) {
700	int pte;
701
702	pte = (int) ptea;
703
704	if ((pte & (PG_M|PG_RW)) == PG_M)
705		return 1;
706	else
707		return 0;
708}
709#endif
710
711
712/*
713 * this routine defines the region(s) of memory that should
714 * not be tested for the modified bit.
715 */
716static PMAP_INLINE int
717pmap_track_modified( vm_offset_t va) {
718	if ((va < clean_sva) || (va >= clean_eva))
719		return 1;
720	else
721		return 0;
722}
723
724static PMAP_INLINE void
725invltlb_1pg( vm_offset_t va) {
726#if defined(I386_CPU)
727	if (cpu_class == CPUCLASS_386) {
728		invltlb();
729	} else
730#endif
731	{
732		invlpg(va);
733	}
734}
735
736static PMAP_INLINE void
737invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
738#if defined(I386_CPU)
739	if (cpu_class == CPUCLASS_386) {
740		invltlb();
741	} else
742#endif
743	{
744		invlpg(va1);
745		invlpg(va2);
746	}
747}
748
749static unsigned *
750get_ptbase(pmap)
751	pmap_t pmap;
752{
753	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
754
755	/* are we current address space or kernel? */
756	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
757		return (unsigned *) PTmap;
758	}
759	/* otherwise, we are alternate address space */
760	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
761		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
762#if defined(SMP)
763		/* The page directory is not shared between CPUs */
764		cpu_invltlb();
765#else
766		invltlb();
767#endif
768	}
769	return (unsigned *) APTmap;
770}
771
772/*
773 * Super fast pmap_pte routine best used when scanning
774 * the pv lists.  This eliminates many coarse-grained
775 * invltlb calls.  Note that many of the pv list
776 * scans are across different pmaps.  It is very wasteful
777 * to do an entire invltlb for checking a single mapping.
778 */
779
780static unsigned *
781pmap_pte_quick(pmap, va)
782	register pmap_t pmap;
783	vm_offset_t va;
784{
785	unsigned pde, newpf;
786	if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
787		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
788		unsigned index = i386_btop(va);
789		/* are we current address space or kernel? */
790		if ((pmap == kernel_pmap) ||
791			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
792			return (unsigned *) PTmap + index;
793		}
794		newpf = pde & PG_FRAME;
795#ifdef SMP
796		if ( ((* (unsigned *) prv_PMAP1) & PG_FRAME) != newpf) {
797			* (unsigned *) prv_PMAP1 = newpf | PG_RW | PG_V;
798			cpu_invlpg(&prv_PPAGE1);
799		}
800		return prv_PPAGE1 + ((unsigned) index & (NPTEPG - 1));
801#else
802		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
803			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
804			invltlb_1pg((vm_offset_t) PADDR1);
805		}
806		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
807#endif
808	}
809	return (0);
810}
811
812/*
813 *	Routine:	pmap_extract
814 *	Function:
815 *		Extract the physical page address associated
816 *		with the given map/virtual_address pair.
817 */
818vm_offset_t
819pmap_extract(pmap, va)
820	register pmap_t pmap;
821	vm_offset_t va;
822{
823	vm_offset_t rtval;
824	vm_offset_t pdirindex;
825	pdirindex = va >> PDRSHIFT;
826	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
827		unsigned *pte;
828		if ((rtval & PG_PS) != 0) {
829			rtval &= ~(NBPDR - 1);
830			rtval |= va & (NBPDR - 1);
831			return rtval;
832		}
833		pte = get_ptbase(pmap) + i386_btop(va);
834		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
835		return rtval;
836	}
837	return 0;
838
839}
840
841/*
842 * determine if a page is managed (memory vs. device)
843 */
844static PMAP_INLINE int
845pmap_is_managed(pa)
846	vm_offset_t pa;
847{
848	int i;
849
850	if (!pmap_initialized)
851		return 0;
852
853	for (i = 0; phys_avail[i + 1]; i += 2) {
854		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
855			return 1;
856	}
857	return 0;
858}
859
860
861/***************************************************
862 * Low level mapping routines.....
863 ***************************************************/
864
865/*
866 * Add a list of wired pages to the kva
867 * this routine is only used for temporary
868 * kernel mappings that do not need to have
869 * page modification or references recorded.
870 * Note that old mappings are simply written
871 * over.  The page *must* be wired.
872 */
873void
874pmap_qenter(va, m, count)
875	vm_offset_t va;
876	vm_page_t *m;
877	int count;
878{
879	int i;
880	register unsigned *pte;
881
882	for (i = 0; i < count; i++) {
883		vm_offset_t tva = va + i * PAGE_SIZE;
884		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | pgeflag;
885		unsigned opte;
886		pte = (unsigned *)vtopte(tva);
887		opte = *pte;
888		*pte = npte;
889		if (opte)
890			invltlb_1pg(tva);
891	}
892}
893
894/*
895 * this routine jerks page mappings from the
896 * kernel -- it is meant only for temporary mappings.
897 */
898void
899pmap_qremove(va, count)
900	vm_offset_t va;
901	int count;
902{
903	int i;
904	register unsigned *pte;
905
906	for (i = 0; i < count; i++) {
907		pte = (unsigned *)vtopte(va);
908		*pte = 0;
909		invltlb_1pg(va);
910		va += PAGE_SIZE;
911	}
912}
913
914/*
915 * add a wired page to the kva
916 * note that in order for the mapping to take effect -- you
917 * should do a invltlb after doing the pmap_kenter...
918 */
919PMAP_INLINE void
920pmap_kenter(va, pa)
921	vm_offset_t va;
922	register vm_offset_t pa;
923{
924	register unsigned *pte;
925	unsigned npte, opte;
926
927	npte = pa | PG_RW | PG_V | pgeflag;
928	pte = (unsigned *)vtopte(va);
929	opte = *pte;
930	*pte = npte;
931	if (opte)
932		invltlb_1pg(va);
933}
934
935/*
936 * remove a page from the kernel pagetables
937 */
938PMAP_INLINE void
939pmap_kremove(va)
940	vm_offset_t va;
941{
942	register unsigned *pte;
943
944	pte = (unsigned *)vtopte(va);
945	*pte = 0;
946	invltlb_1pg(va);
947}
948
949static vm_page_t
950pmap_page_lookup(object, pindex)
951	vm_object_t object;
952	vm_pindex_t pindex;
953{
954	vm_page_t m;
955retry:
956	m = vm_page_lookup(object, pindex);
957	if (m && vm_page_sleep(m, "pplookp", NULL))
958		goto retry;
959	return m;
960}
961
962/*
963 * Create the UPAGES for a new process.
964 * This routine directly affects the fork perf for a process.
965 */
966void
967pmap_new_proc(p)
968	struct proc *p;
969{
970	int i, updateneeded;
971	vm_object_t upobj;
972	vm_page_t m;
973	struct user *up;
974	unsigned *ptek, oldpte;
975
976	/*
977	 * allocate object for the upages
978	 */
979	if ((upobj = p->p_upages_obj) == NULL) {
980		upobj = vm_object_allocate( OBJT_DEFAULT, UPAGES);
981		p->p_upages_obj = upobj;
982	}
983
984	/* get a kernel virtual address for the UPAGES for this proc */
985	if ((up = p->p_addr) == NULL) {
986		up = (struct user *) kmem_alloc_pageable(kernel_map,
987				UPAGES * PAGE_SIZE);
988#if !defined(MAX_PERF)
989		if (up == NULL)
990			panic("pmap_new_proc: u_map allocation failed");
991#endif
992		p->p_addr = up;
993	}
994
995	ptek = (unsigned *) vtopte((vm_offset_t) up);
996
997	updateneeded = 0;
998	for(i=0;i<UPAGES;i++) {
999		/*
1000		 * Get a kernel stack page
1001		 */
1002		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1003
1004		/*
1005		 * Wire the page
1006		 */
1007		m->wire_count++;
1008		cnt.v_wire_count++;
1009
1010		oldpte = *(ptek + i);
1011		/*
1012		 * Enter the page into the kernel address space.
1013		 */
1014		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1015		if (oldpte) {
1016			if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386)) {
1017				invlpg((vm_offset_t) up + i * PAGE_SIZE);
1018			} else {
1019				updateneeded = 1;
1020			}
1021		}
1022
1023		vm_page_wakeup(m);
1024		m->flags &= ~PG_ZERO;
1025		m->flags |= PG_MAPPED | PG_WRITEABLE;
1026		m->valid = VM_PAGE_BITS_ALL;
1027	}
1028	if (updateneeded)
1029		invltlb();
1030}
1031
1032/*
1033 * Dispose the UPAGES for a process that has exited.
1034 * This routine directly impacts the exit perf of a process.
1035 */
1036void
1037pmap_dispose_proc(p)
1038	struct proc *p;
1039{
1040	int i;
1041	vm_object_t upobj;
1042	vm_page_t m;
1043	unsigned *ptek, oldpte;
1044
1045	upobj = p->p_upages_obj;
1046
1047	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
1048	for(i=0;i<UPAGES;i++) {
1049
1050		if ((m = vm_page_lookup(upobj, i)) == NULL)
1051			panic("pmap_dispose_proc: upage already missing???");
1052
1053		m->flags |= PG_BUSY;
1054
1055		oldpte = *(ptek + i);
1056		*(ptek + i) = 0;
1057		if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386))
1058			invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
1059		vm_page_unwire(m, 0);
1060		vm_page_free(m);
1061	}
1062
1063	if (cpu_class <= CPUCLASS_386)
1064		invltlb();
1065}
1066
1067/*
1068 * Allow the UPAGES for a process to be prejudicially paged out.
1069 */
1070void
1071pmap_swapout_proc(p)
1072	struct proc *p;
1073{
1074	int i;
1075	vm_object_t upobj;
1076	vm_page_t m;
1077
1078	upobj = p->p_upages_obj;
1079	/*
1080	 * let the upages be paged
1081	 */
1082	for(i=0;i<UPAGES;i++) {
1083		if ((m = vm_page_lookup(upobj, i)) == NULL)
1084			panic("pmap_swapout_proc: upage already missing???");
1085		m->dirty = VM_PAGE_BITS_ALL;
1086		vm_page_unwire(m, 0);
1087		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
1088	}
1089}
1090
1091/*
1092 * Bring the UPAGES for a specified process back in.
1093 */
1094void
1095pmap_swapin_proc(p)
1096	struct proc *p;
1097{
1098	int i,rv;
1099	vm_object_t upobj;
1100	vm_page_t m;
1101
1102	upobj = p->p_upages_obj;
1103	for(i=0;i<UPAGES;i++) {
1104
1105		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1106
1107		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
1108			VM_PAGE_TO_PHYS(m));
1109
1110		if (m->valid != VM_PAGE_BITS_ALL) {
1111			rv = vm_pager_get_pages(upobj, &m, 1, 0);
1112#if !defined(MAX_PERF)
1113			if (rv != VM_PAGER_OK)
1114				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
1115#endif
1116			m = vm_page_lookup(upobj, i);
1117			m->valid = VM_PAGE_BITS_ALL;
1118		}
1119
1120		vm_page_wire(m);
1121		vm_page_wakeup(m);
1122		m->flags |= PG_MAPPED | PG_WRITEABLE;
1123	}
1124}
1125
1126/***************************************************
1127 * Page table page management routines.....
1128 ***************************************************/
1129
1130/*
1131 * This routine unholds page table pages, and if the hold count
1132 * drops to zero, then it decrements the wire count.
1133 */
1134static int
1135_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1136
1137	while (vm_page_sleep(m, "pmuwpt", NULL));
1138
1139	if (m->hold_count == 0) {
1140		vm_offset_t pteva;
1141		/*
1142		 * unmap the page table page
1143		 */
1144		pmap->pm_pdir[m->pindex] = 0;
1145		--pmap->pm_stats.resident_count;
1146		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1147			(((unsigned) PTDpde) & PG_FRAME)) {
1148			/*
1149			 * Do a invltlb to make the invalidated mapping
1150			 * take effect immediately.
1151			 */
1152			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
1153			invltlb_1pg(pteva);
1154		}
1155
1156		if (pmap->pm_ptphint == m)
1157			pmap->pm_ptphint = NULL;
1158
1159		/*
1160		 * If the page is finally unwired, simply free it.
1161		 */
1162		--m->wire_count;
1163		if (m->wire_count == 0) {
1164
1165			if (m->flags & PG_WANTED) {
1166				m->flags &= ~PG_WANTED;
1167				wakeup(m);
1168			}
1169
1170			m->flags |= PG_BUSY;
1171			vm_page_free_zero(m);
1172			--cnt.v_wire_count;
1173		}
1174		return 1;
1175	}
1176	return 0;
1177}
1178
1179static PMAP_INLINE int
1180pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1181	vm_page_unhold(m);
1182	if (m->hold_count == 0)
1183		return _pmap_unwire_pte_hold(pmap, m);
1184	else
1185		return 0;
1186}
1187
1188/*
1189 * After removing a page table entry, this routine is used to
1190 * conditionally free the page, and manage the hold/wire counts.
1191 */
1192static int
1193pmap_unuse_pt(pmap, va, mpte)
1194	pmap_t pmap;
1195	vm_offset_t va;
1196	vm_page_t mpte;
1197{
1198	unsigned ptepindex;
1199	if (va >= UPT_MIN_ADDRESS)
1200		return 0;
1201
1202	if (mpte == NULL) {
1203		ptepindex = (va >> PDRSHIFT);
1204		if (pmap->pm_ptphint &&
1205			(pmap->pm_ptphint->pindex == ptepindex)) {
1206			mpte = pmap->pm_ptphint;
1207		} else {
1208			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1209			pmap->pm_ptphint = mpte;
1210		}
1211	}
1212
1213	return pmap_unwire_pte_hold(pmap, mpte);
1214}
1215
1216#if !defined(SMP)
1217void
1218pmap_pinit0(pmap)
1219	struct pmap *pmap;
1220{
1221	pmap->pm_pdir =
1222		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1223	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1224	pmap->pm_flags = 0;
1225	pmap->pm_count = 1;
1226	pmap->pm_ptphint = NULL;
1227	TAILQ_INIT(&pmap->pm_pvlist);
1228	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1229}
1230#else
1231void
1232pmap_pinit0(pmap)
1233	struct pmap *pmap;
1234{
1235	pmap_pinit(pmap);
1236}
1237#endif
1238
1239/*
1240 * Initialize a preallocated and zeroed pmap structure,
1241 * such as one in a vmspace structure.
1242 */
1243void
1244pmap_pinit(pmap)
1245	register struct pmap *pmap;
1246{
1247	vm_page_t ptdpg;
1248
1249	/*
1250	 * No need to allocate page table space yet but we do need a valid
1251	 * page directory table.
1252	 */
1253	if (pmap->pm_pdir == NULL)
1254		pmap->pm_pdir =
1255			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1256
1257	/*
1258	 * allocate object for the ptes
1259	 */
1260	if (pmap->pm_pteobj == NULL)
1261		pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1262
1263	/*
1264	 * allocate the page directory page
1265	 */
1266	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
1267			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1268
1269	ptdpg->wire_count = 1;
1270	++cnt.v_wire_count;
1271
1272	ptdpg->flags &= ~(PG_MAPPED | PG_BUSY);	/* not mapped normally */
1273	ptdpg->valid = VM_PAGE_BITS_ALL;
1274
1275	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1276	if ((ptdpg->flags & PG_ZERO) == 0)
1277		bzero(pmap->pm_pdir, PAGE_SIZE);
1278
1279	/* wire in kernel global address entries */
1280	/* XXX copies current process, does not fill in MPPTDI */
1281	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1282
1283	/* install self-referential address mapping entry */
1284	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1285		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1286
1287	pmap->pm_flags = 0;
1288	pmap->pm_count = 1;
1289	pmap->pm_ptphint = NULL;
1290	TAILQ_INIT(&pmap->pm_pvlist);
1291	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1292}
1293
1294static int
1295pmap_release_free_page(pmap, p)
1296	struct pmap *pmap;
1297	vm_page_t p;
1298{
1299	unsigned *pde = (unsigned *) pmap->pm_pdir;
1300	/*
1301	 * This code optimizes the case of freeing non-busy
1302	 * page-table pages.  Those pages are zero now, and
1303	 * might as well be placed directly into the zero queue.
1304	 */
1305	if (vm_page_sleep(p, "pmaprl", NULL))
1306		return 0;
1307
1308	p->flags |= PG_BUSY;
1309
1310	/*
1311	 * Remove the page table page from the processes address space.
1312	 */
1313	pde[p->pindex] = 0;
1314	pmap->pm_stats.resident_count--;
1315
1316#if !defined(MAX_PERF)
1317	if (p->hold_count)  {
1318		panic("pmap_release: freeing held page table page");
1319	}
1320#endif
1321	/*
1322	 * Page directory pages need to have the kernel
1323	 * stuff cleared, so they can go into the zero queue also.
1324	 */
1325	if (p->pindex == PTDPTDI) {
1326		bzero(pde + KPTDI, nkpt * PTESIZE);
1327#ifdef SMP
1328		pde[MPPTDI] = 0;
1329#endif
1330		pde[APTDPTDI] = 0;
1331		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1332	}
1333
1334	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1335		pmap->pm_ptphint = NULL;
1336
1337	p->wire_count--;
1338	cnt.v_wire_count--;
1339	vm_page_free_zero(p);
1340	return 1;
1341}
1342
1343/*
1344 * this routine is called if the page table page is not
1345 * mapped correctly.
1346 */
1347static vm_page_t
1348_pmap_allocpte(pmap, ptepindex)
1349	pmap_t	pmap;
1350	unsigned ptepindex;
1351{
1352	vm_offset_t pteva, ptepa;
1353	vm_page_t m;
1354
1355	/*
1356	 * Find or fabricate a new pagetable page
1357	 */
1358	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1359			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1360
1361	if (m->queue != PQ_NONE) {
1362		int s = splvm();
1363		vm_page_unqueue(m);
1364		splx(s);
1365	}
1366
1367	if (m->wire_count == 0)
1368		cnt.v_wire_count++;
1369	m->wire_count++;
1370
1371	/*
1372	 * Increment the hold count for the page table page
1373	 * (denoting a new mapping.)
1374	 */
1375	m->hold_count++;
1376
1377	/*
1378	 * Map the pagetable page into the process address space, if
1379	 * it isn't already there.
1380	 */
1381
1382	pmap->pm_stats.resident_count++;
1383
1384	ptepa = VM_PAGE_TO_PHYS(m);
1385	pmap->pm_pdir[ptepindex] =
1386		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1387
1388	/*
1389	 * Set the page table hint
1390	 */
1391	pmap->pm_ptphint = m;
1392
1393	/*
1394	 * Try to use the new mapping, but if we cannot, then
1395	 * do it with the routine that maps the page explicitly.
1396	 */
1397	if ((m->flags & PG_ZERO) == 0) {
1398		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1399			(((unsigned) PTDpde) & PG_FRAME)) {
1400			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1401			bzero((caddr_t) pteva, PAGE_SIZE);
1402		} else {
1403			pmap_zero_page(ptepa);
1404		}
1405	}
1406
1407	m->valid = VM_PAGE_BITS_ALL;
1408	m->flags &= ~(PG_ZERO | PG_BUSY);
1409	m->flags |= PG_MAPPED;
1410
1411	return m;
1412}
1413
1414static vm_page_t
1415pmap_allocpte(pmap, va)
1416	pmap_t	pmap;
1417	vm_offset_t va;
1418{
1419	unsigned ptepindex;
1420	vm_offset_t ptepa;
1421	vm_page_t m;
1422
1423	/*
1424	 * Calculate pagetable page index
1425	 */
1426	ptepindex = va >> PDRSHIFT;
1427
1428	/*
1429	 * Get the page directory entry
1430	 */
1431	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1432
1433	/*
1434	 * This supports switching from a 4MB page to a
1435	 * normal 4K page.
1436	 */
1437	if (ptepa & PG_PS) {
1438		pmap->pm_pdir[ptepindex] = 0;
1439		ptepa = 0;
1440		invltlb();
1441	}
1442
1443	/*
1444	 * If the page table page is mapped, we just increment the
1445	 * hold count, and activate it.
1446	 */
1447	if (ptepa) {
1448		/*
1449		 * In order to get the page table page, try the
1450		 * hint first.
1451		 */
1452		if (pmap->pm_ptphint &&
1453			(pmap->pm_ptphint->pindex == ptepindex)) {
1454			m = pmap->pm_ptphint;
1455		} else {
1456			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1457			pmap->pm_ptphint = m;
1458		}
1459		m->hold_count++;
1460		return m;
1461	}
1462	/*
1463	 * Here if the pte page isn't mapped, or if it has been deallocated.
1464	 */
1465	return _pmap_allocpte(pmap, ptepindex);
1466}
1467
1468
1469/***************************************************
1470* Pmap allocation/deallocation routines.
1471 ***************************************************/
1472
1473/*
1474 * Release any resources held by the given physical map.
1475 * Called when a pmap initialized by pmap_pinit is being released.
1476 * Should only be called if the map contains no valid mappings.
1477 */
1478void
1479pmap_release(pmap)
1480	register struct pmap *pmap;
1481{
1482	vm_page_t p,n,ptdpg;
1483	vm_object_t object = pmap->pm_pteobj;
1484	int curgeneration;
1485
1486#if defined(DIAGNOSTIC)
1487	if (object->ref_count != 1)
1488		panic("pmap_release: pteobj reference count != 1");
1489#endif
1490
1491	ptdpg = NULL;
1492retry:
1493	curgeneration = object->generation;
1494	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1495		n = TAILQ_NEXT(p, listq);
1496		if (p->pindex == PTDPTDI) {
1497			ptdpg = p;
1498			continue;
1499		}
1500		while (1) {
1501			if (!pmap_release_free_page(pmap, p) &&
1502				(object->generation != curgeneration))
1503				goto retry;
1504		}
1505	}
1506
1507	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1508		goto retry;
1509}
1510
1511/*
1512 * grow the number of kernel page table entries, if needed
1513 */
1514void
1515pmap_growkernel(vm_offset_t addr)
1516{
1517	struct proc *p;
1518	struct pmap *pmap;
1519	int s;
1520	vm_offset_t ptppaddr;
1521	vm_page_t nkpg;
1522#ifdef SMP
1523	int i;
1524#endif
1525	pd_entry_t newpdir;
1526
1527	s = splhigh();
1528	if (kernel_vm_end == 0) {
1529		kernel_vm_end = KERNBASE;
1530		nkpt = 0;
1531		while (pdir_pde(PTD, kernel_vm_end)) {
1532			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1533			nkpt++;
1534		}
1535	}
1536	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1537	while (kernel_vm_end < addr) {
1538		if (pdir_pde(PTD, kernel_vm_end)) {
1539			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1540			continue;
1541		}
1542
1543		/*
1544		 * This index is bogus, but out of the way
1545		 */
1546		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1547#if !defined(MAX_PERF)
1548		if (!nkpg)
1549			panic("pmap_growkernel: no memory to grow kernel");
1550#endif
1551
1552		nkpt++;
1553
1554		vm_page_wire(nkpg);
1555		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1556		pmap_zero_page(ptppaddr);
1557		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1558		pdir_pde(PTD, kernel_vm_end) = newpdir;
1559
1560#ifdef SMP
1561		for (i = 0; i < mp_ncpus; i++) {
1562			if (IdlePTDS[i])
1563				pdir_pde(IdlePTDS[i], kernel_vm_end) = newpdir;
1564		}
1565#endif
1566
1567		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1568			if (p->p_vmspace) {
1569				pmap = &p->p_vmspace->vm_pmap;
1570				*pmap_pde(pmap, kernel_vm_end) = newpdir;
1571			}
1572		}
1573		if (aiovmspace != NULL) {
1574			pmap = &aiovmspace->vm_pmap;
1575			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1576		}
1577		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1578		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1579	}
1580	splx(s);
1581}
1582
1583/*
1584 *	Retire the given physical map from service.
1585 *	Should only be called if the map contains
1586 *	no valid mappings.
1587 */
1588void
1589pmap_destroy(pmap)
1590	register pmap_t pmap;
1591{
1592	int count;
1593
1594	if (pmap == NULL)
1595		return;
1596
1597	count = --pmap->pm_count;
1598	if (count == 0) {
1599		pmap_release(pmap);
1600#if !defined(MAX_PERF)
1601		panic("destroying a pmap is not yet implemented");
1602#endif
1603	}
1604}
1605
1606/*
1607 *	Add a reference to the specified pmap.
1608 */
1609void
1610pmap_reference(pmap)
1611	pmap_t pmap;
1612{
1613	if (pmap != NULL) {
1614		pmap->pm_count++;
1615	}
1616}
1617
1618/***************************************************
1619* page management routines.
1620 ***************************************************/
1621
1622/*
1623 * free the pv_entry back to the free list
1624 */
1625static PMAP_INLINE void
1626free_pv_entry(pv)
1627	pv_entry_t pv;
1628{
1629	pv_entry_count--;
1630	zfreei(pvzone, pv);
1631}
1632
1633/*
1634 * get a new pv_entry, allocating a block from the system
1635 * when needed.
1636 * the memory allocation is performed bypassing the malloc code
1637 * because of the possibility of allocations at interrupt time.
1638 */
1639static pv_entry_t
1640get_pv_entry(void)
1641{
1642	pv_entry_count++;
1643	if (pv_entry_high_water &&
1644		(pv_entry_count > pv_entry_high_water) &&
1645		(pmap_pagedaemon_waken == 0)) {
1646		pmap_pagedaemon_waken = 1;
1647		wakeup (&vm_pages_needed);
1648	}
1649	return zalloci(pvzone);
1650}
1651
1652/*
1653 * This routine is very drastic, but can save the system
1654 * in a pinch.
1655 */
1656void
1657pmap_collect() {
1658	pv_table_t *ppv;
1659	int i;
1660	vm_offset_t pa;
1661	vm_page_t m;
1662	static int warningdone=0;
1663
1664	if (pmap_pagedaemon_waken == 0)
1665		return;
1666
1667	if (warningdone < 5) {
1668		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1669		warningdone++;
1670	}
1671
1672	for(i = 0; i < pv_npg; i++) {
1673		if ((ppv = &pv_table[i]) == 0)
1674			continue;
1675		m = ppv->pv_vm_page;
1676		if ((pa = VM_PAGE_TO_PHYS(m)) == 0)
1677			continue;
1678		if (m->wire_count || m->hold_count || m->busy ||
1679			(m->flags & PG_BUSY))
1680			continue;
1681		pmap_remove_all(pa);
1682	}
1683	pmap_pagedaemon_waken = 0;
1684}
1685
1686
1687/*
1688 * If it is the first entry on the list, it is actually
1689 * in the header and we must copy the following entry up
1690 * to the header.  Otherwise we must search the list for
1691 * the entry.  In either case we free the now unused entry.
1692 */
1693
1694static int
1695pmap_remove_entry(pmap, ppv, va)
1696	struct pmap *pmap;
1697	pv_table_t *ppv;
1698	vm_offset_t va;
1699{
1700	pv_entry_t pv;
1701	int rtval;
1702	int s;
1703
1704	s = splvm();
1705	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1706		for (pv = TAILQ_FIRST(&ppv->pv_list);
1707			pv;
1708			pv = TAILQ_NEXT(pv, pv_list)) {
1709			if (pmap == pv->pv_pmap && va == pv->pv_va)
1710				break;
1711		}
1712	} else {
1713		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1714			pv;
1715			pv = TAILQ_NEXT(pv, pv_plist)) {
1716			if (va == pv->pv_va)
1717				break;
1718		}
1719	}
1720
1721	rtval = 0;
1722	if (pv) {
1723
1724		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1725		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1726		ppv->pv_list_count--;
1727		if (TAILQ_FIRST(&ppv->pv_list) == NULL)
1728			ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
1729
1730		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1731		free_pv_entry(pv);
1732	}
1733
1734	splx(s);
1735	return rtval;
1736}
1737
1738/*
1739 * Create a pv entry for page at pa for
1740 * (pmap, va).
1741 */
1742static void
1743pmap_insert_entry(pmap, va, mpte, pa)
1744	pmap_t pmap;
1745	vm_offset_t va;
1746	vm_page_t mpte;
1747	vm_offset_t pa;
1748{
1749
1750	int s;
1751	pv_entry_t pv;
1752	pv_table_t *ppv;
1753
1754	s = splvm();
1755	pv = get_pv_entry();
1756	pv->pv_va = va;
1757	pv->pv_pmap = pmap;
1758	pv->pv_ptem = mpte;
1759
1760	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1761
1762	ppv = pa_to_pvh(pa);
1763	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1764	ppv->pv_list_count++;
1765
1766	splx(s);
1767}
1768
1769/*
1770 * pmap_remove_pte: do the things to unmap a page in a process
1771 */
1772static int
1773pmap_remove_pte(pmap, ptq, va)
1774	struct pmap *pmap;
1775	unsigned *ptq;
1776	vm_offset_t va;
1777{
1778	unsigned oldpte;
1779	pv_table_t *ppv;
1780
1781	oldpte = *ptq;
1782	*ptq = 0;
1783	if (oldpte & PG_W)
1784		pmap->pm_stats.wired_count -= 1;
1785	/*
1786	 * Machines that don't support invlpg, also don't support
1787	 * PG_G.
1788	 */
1789	if (oldpte & PG_G)
1790		invlpg(va);
1791	pmap->pm_stats.resident_count -= 1;
1792	if (oldpte & PG_MANAGED) {
1793		ppv = pa_to_pvh(oldpte);
1794		if (oldpte & PG_M) {
1795#if defined(PMAP_DIAGNOSTIC)
1796			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1797				printf(
1798	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1799				    va, oldpte);
1800			}
1801#endif
1802			if (pmap_track_modified(va))
1803				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1804		}
1805		if (oldpte & PG_A)
1806			ppv->pv_vm_page->flags |= PG_REFERENCED;
1807		return pmap_remove_entry(pmap, ppv, va);
1808	} else {
1809		return pmap_unuse_pt(pmap, va, NULL);
1810	}
1811
1812	return 0;
1813}
1814
1815/*
1816 * Remove a single page from a process address space
1817 */
1818static void
1819pmap_remove_page(pmap, va)
1820	struct pmap *pmap;
1821	register vm_offset_t va;
1822{
1823	register unsigned *ptq;
1824
1825	/*
1826	 * if there is no pte for this address, just skip it!!!
1827	 */
1828	if (*pmap_pde(pmap, va) == 0) {
1829		return;
1830	}
1831
1832	/*
1833	 * get a local va for mappings for this pmap.
1834	 */
1835	ptq = get_ptbase(pmap) + i386_btop(va);
1836	if (*ptq) {
1837		(void) pmap_remove_pte(pmap, ptq, va);
1838		invltlb_1pg(va);
1839	}
1840	return;
1841}
1842
1843/*
1844 *	Remove the given range of addresses from the specified map.
1845 *
1846 *	It is assumed that the start and end are properly
1847 *	rounded to the page size.
1848 */
1849void
1850pmap_remove(pmap, sva, eva)
1851	struct pmap *pmap;
1852	register vm_offset_t sva;
1853	register vm_offset_t eva;
1854{
1855	register unsigned *ptbase;
1856	vm_offset_t pdnxt;
1857	vm_offset_t ptpaddr;
1858	vm_offset_t sindex, eindex;
1859	int anyvalid;
1860
1861	if (pmap == NULL)
1862		return;
1863
1864	if (pmap->pm_stats.resident_count == 0)
1865		return;
1866
1867	/*
1868	 * special handling of removing one page.  a very
1869	 * common operation and easy to short circuit some
1870	 * code.
1871	 */
1872	if (((sva + PAGE_SIZE) == eva) &&
1873		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1874		pmap_remove_page(pmap, sva);
1875		return;
1876	}
1877
1878	anyvalid = 0;
1879
1880	/*
1881	 * Get a local virtual address for the mappings that are being
1882	 * worked with.
1883	 */
1884	ptbase = get_ptbase(pmap);
1885
1886	sindex = i386_btop(sva);
1887	eindex = i386_btop(eva);
1888
1889	for (; sindex < eindex; sindex = pdnxt) {
1890		unsigned pdirindex;
1891
1892		/*
1893		 * Calculate index for next page table.
1894		 */
1895		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1896		if (pmap->pm_stats.resident_count == 0)
1897			break;
1898
1899		pdirindex = sindex / NPDEPG;
1900		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1901			pmap->pm_pdir[pdirindex] = 0;
1902			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1903			anyvalid++;
1904			continue;
1905		}
1906
1907		/*
1908		 * Weed out invalid mappings. Note: we assume that the page
1909		 * directory table is always allocated, and in kernel virtual.
1910		 */
1911		if (ptpaddr == 0)
1912			continue;
1913
1914		/*
1915		 * Limit our scan to either the end of the va represented
1916		 * by the current page table page, or to the end of the
1917		 * range being removed.
1918		 */
1919		if (pdnxt > eindex) {
1920			pdnxt = eindex;
1921		}
1922
1923		for ( ;sindex != pdnxt; sindex++) {
1924			vm_offset_t va;
1925			if (ptbase[sindex] == 0) {
1926				continue;
1927			}
1928			va = i386_ptob(sindex);
1929
1930			anyvalid++;
1931			if (pmap_remove_pte(pmap,
1932				ptbase + sindex, va))
1933				break;
1934		}
1935	}
1936
1937	if (anyvalid) {
1938		invltlb();
1939	}
1940}
1941
1942/*
1943 *	Routine:	pmap_remove_all
1944 *	Function:
1945 *		Removes this physical page from
1946 *		all physical maps in which it resides.
1947 *		Reflects back modify bits to the pager.
1948 *
1949 *	Notes:
1950 *		Original versions of this routine were very
1951 *		inefficient because they iteratively called
1952 *		pmap_remove (slow...)
1953 */
1954
1955static void
1956pmap_remove_all(pa)
1957	vm_offset_t pa;
1958{
1959	register pv_entry_t pv;
1960	pv_table_t *ppv;
1961	register unsigned *pte, tpte;
1962	int nmodify;
1963	int update_needed;
1964	int s;
1965
1966	nmodify = 0;
1967	update_needed = 0;
1968#if defined(PMAP_DIAGNOSTIC)
1969	/*
1970	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1971	 * pages!
1972	 */
1973	if (!pmap_is_managed(pa)) {
1974		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", pa);
1975	}
1976#endif
1977
1978	s = splvm();
1979	ppv = pa_to_pvh(pa);
1980	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1981		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1982
1983		pv->pv_pmap->pm_stats.resident_count--;
1984
1985		tpte = *pte;
1986		*pte = 0;
1987		if (tpte & PG_W)
1988			pv->pv_pmap->pm_stats.wired_count--;
1989
1990		if (tpte & PG_A)
1991			ppv->pv_vm_page->flags |= PG_REFERENCED;
1992
1993		/*
1994		 * Update the vm_page_t clean and reference bits.
1995		 */
1996		if (tpte & PG_M) {
1997#if defined(PMAP_DIAGNOSTIC)
1998			if (pmap_nw_modified((pt_entry_t) tpte)) {
1999				printf(
2000	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
2001				    pv->pv_va, tpte);
2002			}
2003#endif
2004			if (pmap_track_modified(pv->pv_va))
2005				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2006		}
2007		if (!update_needed &&
2008			((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
2009			(pv->pv_pmap == kernel_pmap))) {
2010			update_needed = 1;
2011		}
2012
2013		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2014		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2015		ppv->pv_list_count--;
2016		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2017		free_pv_entry(pv);
2018	}
2019
2020	ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
2021
2022	if (update_needed)
2023		invltlb();
2024
2025	splx(s);
2026	return;
2027}
2028
2029/*
2030 *	Set the physical protection on the
2031 *	specified range of this map as requested.
2032 */
2033void
2034pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2035{
2036	register unsigned *ptbase;
2037	vm_offset_t pdnxt, ptpaddr;
2038	vm_pindex_t sindex, eindex;
2039	int anychanged;
2040
2041
2042	if (pmap == NULL)
2043		return;
2044
2045	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2046		pmap_remove(pmap, sva, eva);
2047		return;
2048	}
2049
2050	if (prot & VM_PROT_WRITE)
2051		return;
2052
2053	anychanged = 0;
2054
2055	ptbase = get_ptbase(pmap);
2056
2057	sindex = i386_btop(sva);
2058	eindex = i386_btop(eva);
2059
2060	for (; sindex < eindex; sindex = pdnxt) {
2061
2062		unsigned pdirindex;
2063
2064		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2065
2066		pdirindex = sindex / NPDEPG;
2067		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
2068			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2069			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2070			anychanged++;
2071			continue;
2072		}
2073
2074		/*
2075		 * Weed out invalid mappings. Note: we assume that the page
2076		 * directory table is always allocated, and in kernel virtual.
2077		 */
2078		if (ptpaddr == 0)
2079			continue;
2080
2081		if (pdnxt > eindex) {
2082			pdnxt = eindex;
2083		}
2084
2085		for (; sindex != pdnxt; sindex++) {
2086
2087			unsigned pbits;
2088			pv_table_t *ppv;
2089
2090			pbits = ptbase[sindex];
2091
2092			if (pbits & PG_MANAGED) {
2093				ppv = NULL;
2094				if (pbits & PG_A) {
2095					ppv = pa_to_pvh(pbits);
2096					ppv->pv_vm_page->flags |= PG_REFERENCED;
2097					pbits &= ~PG_A;
2098				}
2099				if (pbits & PG_M) {
2100					if (pmap_track_modified(i386_ptob(sindex))) {
2101						if (ppv == NULL)
2102							ppv = pa_to_pvh(pbits);
2103						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2104						pbits &= ~PG_M;
2105					}
2106				}
2107			}
2108
2109			pbits &= ~PG_RW;
2110
2111			if (pbits != ptbase[sindex]) {
2112				ptbase[sindex] = pbits;
2113				anychanged = 1;
2114			}
2115		}
2116	}
2117	if (anychanged)
2118		invltlb();
2119}
2120
2121/*
2122 *	Insert the given physical page (p) at
2123 *	the specified virtual address (v) in the
2124 *	target physical map with the protection requested.
2125 *
2126 *	If specified, the page will be wired down, meaning
2127 *	that the related pte can not be reclaimed.
2128 *
2129 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2130 *	or lose information.  That is, this routine must actually
2131 *	insert this page into the given map NOW.
2132 */
2133void
2134pmap_enter(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_prot_t prot,
2135	   boolean_t wired)
2136{
2137	register unsigned *pte;
2138	vm_offset_t opa;
2139	vm_offset_t origpte, newpte;
2140	vm_page_t mpte;
2141
2142	if (pmap == NULL)
2143		return;
2144
2145	va &= PG_FRAME;
2146#ifdef PMAP_DIAGNOSTIC
2147	if (va > VM_MAX_KERNEL_ADDRESS)
2148		panic("pmap_enter: toobig");
2149	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2150		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2151#endif
2152
2153	mpte = NULL;
2154	/*
2155	 * In the case that a page table page is not
2156	 * resident, we are creating it here.
2157	 */
2158	if (va < UPT_MIN_ADDRESS) {
2159		mpte = pmap_allocpte(pmap, va);
2160	}
2161#if 0 && defined(PMAP_DIAGNOSTIC)
2162	else {
2163		vm_offset_t *pdeaddr = (vm_offset_t *)pmap_pde(pmap, va);
2164		if (((origpte = (vm_offset_t) *pdeaddr) & PG_V) == 0) {
2165			panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
2166				pmap->pm_pdir[PTDPTDI], origpte, va);
2167		}
2168		if (smp_active) {
2169			pdeaddr = (vm_offset_t *) IdlePTDS[cpuid];
2170			if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
2171				if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
2172					printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
2173				printf("cpuid: %d, pdeaddr: 0x%x\n", cpuid, pdeaddr);
2174				panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
2175					pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
2176			}
2177		}
2178	}
2179#endif
2180
2181	pte = pmap_pte(pmap, va);
2182
2183#if !defined(MAX_PERF)
2184	/*
2185	 * Page Directory table entry not valid, we need a new PT page
2186	 */
2187	if (pte == NULL) {
2188		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2189			(void *)pmap->pm_pdir[PTDPTDI], va);
2190	}
2191#endif
2192
2193	origpte = *(vm_offset_t *)pte;
2194	pa &= PG_FRAME;
2195	opa = origpte & PG_FRAME;
2196
2197#if !defined(MAX_PERF)
2198	if (origpte & PG_PS)
2199		panic("pmap_enter: attempted pmap_enter on 4MB page");
2200#endif
2201
2202	/*
2203	 * Mapping has not changed, must be protection or wiring change.
2204	 */
2205	if (origpte && (opa == pa)) {
2206		/*
2207		 * Wiring change, just update stats. We don't worry about
2208		 * wiring PT pages as they remain resident as long as there
2209		 * are valid mappings in them. Hence, if a user page is wired,
2210		 * the PT page will be also.
2211		 */
2212		if (wired && ((origpte & PG_W) == 0))
2213			pmap->pm_stats.wired_count++;
2214		else if (!wired && (origpte & PG_W))
2215			pmap->pm_stats.wired_count--;
2216
2217#if defined(PMAP_DIAGNOSTIC)
2218		if (pmap_nw_modified((pt_entry_t) origpte)) {
2219			printf(
2220	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2221			    va, origpte);
2222		}
2223#endif
2224
2225		/*
2226		 * Remove extra pte reference
2227		 */
2228		if (mpte)
2229			mpte->hold_count--;
2230
2231		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2232			if ((origpte & PG_RW) == 0) {
2233				*pte |= PG_RW;
2234				invltlb_1pg(va);
2235			}
2236			return;
2237		}
2238
2239		/*
2240		 * We might be turning off write access to the page,
2241		 * so we go ahead and sense modify status.
2242		 */
2243		if (origpte & PG_MANAGED) {
2244			if ((origpte & PG_M) && pmap_track_modified(va)) {
2245				pv_table_t *ppv;
2246				ppv = pa_to_pvh(opa);
2247				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2248			}
2249			pa |= PG_MANAGED;
2250		}
2251		goto validate;
2252	}
2253	/*
2254	 * Mapping has changed, invalidate old range and fall through to
2255	 * handle validating new mapping.
2256	 */
2257	if (opa) {
2258		int err;
2259		err = pmap_remove_pte(pmap, pte, va);
2260#if !defined(MAX_PERF)
2261		if (err)
2262			panic("pmap_enter: pte vanished, va: 0x%x", va);
2263#endif
2264	}
2265
2266	/*
2267	 * Enter on the PV list if part of our managed memory Note that we
2268	 * raise IPL while manipulating pv_table since pmap_enter can be
2269	 * called at interrupt time.
2270	 */
2271	if (pmap_is_managed(pa)) {
2272		pmap_insert_entry(pmap, va, mpte, pa);
2273		pa |= PG_MANAGED;
2274	}
2275
2276	/*
2277	 * Increment counters
2278	 */
2279	pmap->pm_stats.resident_count++;
2280	if (wired)
2281		pmap->pm_stats.wired_count++;
2282
2283validate:
2284	/*
2285	 * Now validate mapping with desired protection/wiring.
2286	 */
2287	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2288
2289	if (wired)
2290		newpte |= PG_W;
2291	if (va < UPT_MIN_ADDRESS)
2292		newpte |= PG_U;
2293	if (pmap == kernel_pmap)
2294		newpte |= pgeflag;
2295
2296	/*
2297	 * if the mapping or permission bits are different, we need
2298	 * to update the pte.
2299	 */
2300	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2301		*pte = newpte | PG_A;
2302		if (origpte)
2303			invltlb_1pg(va);
2304	}
2305}
2306
2307/*
2308 * this code makes some *MAJOR* assumptions:
2309 * 1. Current pmap & pmap exists.
2310 * 2. Not wired.
2311 * 3. Read access.
2312 * 4. No page table pages.
2313 * 5. Tlbflush is deferred to calling procedure.
2314 * 6. Page IS managed.
2315 * but is *MUCH* faster than pmap_enter...
2316 */
2317
2318static vm_page_t
2319pmap_enter_quick(pmap, va, pa, mpte)
2320	register pmap_t pmap;
2321	vm_offset_t va;
2322	register vm_offset_t pa;
2323	vm_page_t mpte;
2324{
2325	register unsigned *pte;
2326
2327	/*
2328	 * In the case that a page table page is not
2329	 * resident, we are creating it here.
2330	 */
2331	if (va < UPT_MIN_ADDRESS) {
2332		unsigned ptepindex;
2333		vm_offset_t ptepa;
2334
2335		/*
2336		 * Calculate pagetable page index
2337		 */
2338		ptepindex = va >> PDRSHIFT;
2339		if (mpte && (mpte->pindex == ptepindex)) {
2340			mpte->hold_count++;
2341		} else {
2342retry:
2343			/*
2344			 * Get the page directory entry
2345			 */
2346			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2347
2348			/*
2349			 * If the page table page is mapped, we just increment
2350			 * the hold count, and activate it.
2351			 */
2352			if (ptepa) {
2353#if !defined(MAX_PERF)
2354				if (ptepa & PG_PS)
2355					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2356#endif
2357				if (pmap->pm_ptphint &&
2358					(pmap->pm_ptphint->pindex == ptepindex)) {
2359					mpte = pmap->pm_ptphint;
2360				} else {
2361					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2362					pmap->pm_ptphint = mpte;
2363				}
2364				if (mpte == NULL)
2365					goto retry;
2366				mpte->hold_count++;
2367			} else {
2368				mpte = _pmap_allocpte(pmap, ptepindex);
2369			}
2370		}
2371	} else {
2372		mpte = NULL;
2373	}
2374
2375	/*
2376	 * This call to vtopte makes the assumption that we are
2377	 * entering the page into the current pmap.  In order to support
2378	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2379	 * But that isn't as quick as vtopte.
2380	 */
2381	pte = (unsigned *)vtopte(va);
2382	if (*pte) {
2383		if (mpte)
2384			pmap_unwire_pte_hold(pmap, mpte);
2385		return 0;
2386	}
2387
2388	/*
2389	 * Enter on the PV list if part of our managed memory Note that we
2390	 * raise IPL while manipulating pv_table since pmap_enter can be
2391	 * called at interrupt time.
2392	 */
2393	pmap_insert_entry(pmap, va, mpte, pa);
2394
2395	/*
2396	 * Increment counters
2397	 */
2398	pmap->pm_stats.resident_count++;
2399
2400	/*
2401	 * Now validate mapping with RO protection
2402	 */
2403	*pte = pa | PG_V | PG_U | PG_MANAGED;
2404
2405	return mpte;
2406}
2407
2408#define MAX_INIT_PT (96)
2409/*
2410 * pmap_object_init_pt preloads the ptes for a given object
2411 * into the specified pmap.  This eliminates the blast of soft
2412 * faults on process startup and immediately after an mmap.
2413 */
2414void
2415pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2416	pmap_t pmap;
2417	vm_offset_t addr;
2418	vm_object_t object;
2419	vm_pindex_t pindex;
2420	vm_size_t size;
2421	int limit;
2422{
2423	vm_offset_t tmpidx;
2424	int psize;
2425	vm_page_t p, mpte;
2426	int objpgs;
2427
2428	if (!pmap)
2429		return;
2430
2431	/*
2432	 * This code maps large physical mmap regions into the
2433	 * processor address space.  Note that some shortcuts
2434	 * are taken, but the code works.
2435	 */
2436	if (pseflag &&
2437		(object->type == OBJT_DEVICE) &&
2438		((addr & (NBPDR - 1)) == 0) &&
2439		((size & (NBPDR - 1)) == 0) ) {
2440		int i;
2441		vm_page_t m[1];
2442		unsigned int ptepindex;
2443		int npdes;
2444		vm_offset_t ptepa;
2445
2446		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2447			return;
2448
2449retry:
2450		p = vm_page_lookup(object, pindex);
2451		if (p && vm_page_sleep(p, "init4p", NULL))
2452			goto retry;
2453
2454		if (p == NULL) {
2455			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2456			if (p == NULL)
2457				return;
2458			m[0] = p;
2459
2460			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2461				vm_page_free(p);
2462				return;
2463			}
2464
2465			p = vm_page_lookup(object, pindex);
2466			vm_page_wakeup(p);
2467		}
2468
2469		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
2470		if (ptepa & (NBPDR - 1)) {
2471			return;
2472		}
2473
2474		p->valid = VM_PAGE_BITS_ALL;
2475
2476		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2477		npdes = size >> PDRSHIFT;
2478		for(i=0;i<npdes;i++) {
2479			pmap->pm_pdir[ptepindex] =
2480				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
2481			ptepa += NBPDR;
2482			ptepindex += 1;
2483		}
2484		p->flags |= PG_MAPPED;
2485		invltlb();
2486		return;
2487	}
2488
2489	psize = i386_btop(size);
2490
2491	if ((object->type != OBJT_VNODE) ||
2492		(limit && (psize > MAX_INIT_PT) &&
2493			(object->resident_page_count > MAX_INIT_PT))) {
2494		return;
2495	}
2496
2497	if (psize + pindex > object->size)
2498		psize = object->size - pindex;
2499
2500	mpte = NULL;
2501	/*
2502	 * if we are processing a major portion of the object, then scan the
2503	 * entire thing.
2504	 */
2505	if (psize > (object->size >> 2)) {
2506		objpgs = psize;
2507
2508		for (p = TAILQ_FIRST(&object->memq);
2509		    ((objpgs > 0) && (p != NULL));
2510		    p = TAILQ_NEXT(p, listq)) {
2511
2512			tmpidx = p->pindex;
2513			if (tmpidx < pindex) {
2514				continue;
2515			}
2516			tmpidx -= pindex;
2517			if (tmpidx >= psize) {
2518				continue;
2519			}
2520			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2521				(p->busy == 0) &&
2522			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2523				if ((p->queue - p->pc) == PQ_CACHE)
2524					vm_page_deactivate(p);
2525				p->flags |= PG_BUSY;
2526				mpte = pmap_enter_quick(pmap,
2527					addr + i386_ptob(tmpidx),
2528					VM_PAGE_TO_PHYS(p), mpte);
2529				p->flags |= PG_MAPPED;
2530				vm_page_wakeup(p);
2531			}
2532			objpgs -= 1;
2533		}
2534	} else {
2535		/*
2536		 * else lookup the pages one-by-one.
2537		 */
2538		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2539			p = vm_page_lookup(object, tmpidx + pindex);
2540			if (p &&
2541			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2542				(p->busy == 0) &&
2543			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2544				if ((p->queue - p->pc) == PQ_CACHE)
2545					vm_page_deactivate(p);
2546				p->flags |= PG_BUSY;
2547				mpte = pmap_enter_quick(pmap,
2548					addr + i386_ptob(tmpidx),
2549					VM_PAGE_TO_PHYS(p), mpte);
2550				p->flags |= PG_MAPPED;
2551				vm_page_wakeup(p);
2552			}
2553		}
2554	}
2555	return;
2556}
2557
2558/*
2559 * pmap_prefault provides a quick way of clustering
2560 * pagefaults into a processes address space.  It is a "cousin"
2561 * of pmap_object_init_pt, except it runs at page fault time instead
2562 * of mmap time.
2563 */
2564#define PFBAK 4
2565#define PFFOR 4
2566#define PAGEORDER_SIZE (PFBAK+PFFOR)
2567
2568static int pmap_prefault_pageorder[] = {
2569	-PAGE_SIZE, PAGE_SIZE,
2570	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2571	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2572	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2573};
2574
2575void
2576pmap_prefault(pmap, addra, entry)
2577	pmap_t pmap;
2578	vm_offset_t addra;
2579	vm_map_entry_t entry;
2580{
2581	int i;
2582	vm_offset_t starta;
2583	vm_offset_t addr;
2584	vm_pindex_t pindex;
2585	vm_page_t m, mpte;
2586	vm_object_t object;
2587
2588	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
2589		return;
2590
2591	object = entry->object.vm_object;
2592
2593	starta = addra - PFBAK * PAGE_SIZE;
2594	if (starta < entry->start) {
2595		starta = entry->start;
2596	} else if (starta > addra) {
2597		starta = 0;
2598	}
2599
2600	mpte = NULL;
2601	for (i = 0; i < PAGEORDER_SIZE; i++) {
2602		vm_object_t lobject;
2603		unsigned *pte;
2604
2605		addr = addra + pmap_prefault_pageorder[i];
2606		if (addr > addra + (PFFOR * PAGE_SIZE))
2607			addr = 0;
2608
2609		if (addr < starta || addr >= entry->end)
2610			continue;
2611
2612		if ((*pmap_pde(pmap, addr)) == NULL)
2613			continue;
2614
2615		pte = (unsigned *) vtopte(addr);
2616		if (*pte)
2617			continue;
2618
2619		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2620		lobject = object;
2621		for (m = vm_page_lookup(lobject, pindex);
2622		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2623		    lobject = lobject->backing_object) {
2624			if (lobject->backing_object_offset & PAGE_MASK)
2625				break;
2626			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2627			m = vm_page_lookup(lobject->backing_object, pindex);
2628		}
2629
2630		/*
2631		 * give-up when a page is not in memory
2632		 */
2633		if (m == NULL)
2634			break;
2635
2636		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2637			(m->busy == 0) &&
2638		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2639
2640			if ((m->queue - m->pc) == PQ_CACHE) {
2641				vm_page_deactivate(m);
2642			}
2643			m->flags |= PG_BUSY;
2644			mpte = pmap_enter_quick(pmap, addr,
2645				VM_PAGE_TO_PHYS(m), mpte);
2646			m->flags |= PG_MAPPED;
2647			vm_page_wakeup(m);
2648		}
2649	}
2650}
2651
2652/*
2653 *	Routine:	pmap_change_wiring
2654 *	Function:	Change the wiring attribute for a map/virtual-address
2655 *			pair.
2656 *	In/out conditions:
2657 *			The mapping must already exist in the pmap.
2658 */
2659void
2660pmap_change_wiring(pmap, va, wired)
2661	register pmap_t pmap;
2662	vm_offset_t va;
2663	boolean_t wired;
2664{
2665	register unsigned *pte;
2666
2667	if (pmap == NULL)
2668		return;
2669
2670	pte = pmap_pte(pmap, va);
2671
2672	if (wired && !pmap_pte_w(pte))
2673		pmap->pm_stats.wired_count++;
2674	else if (!wired && pmap_pte_w(pte))
2675		pmap->pm_stats.wired_count--;
2676
2677	/*
2678	 * Wiring is not a hardware characteristic so there is no need to
2679	 * invalidate TLB.
2680	 */
2681	pmap_pte_set_w(pte, wired);
2682}
2683
2684
2685
2686/*
2687 *	Copy the range specified by src_addr/len
2688 *	from the source map to the range dst_addr/len
2689 *	in the destination map.
2690 *
2691 *	This routine is only advisory and need not do anything.
2692 */
2693
2694void
2695pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2696	pmap_t dst_pmap, src_pmap;
2697	vm_offset_t dst_addr;
2698	vm_size_t len;
2699	vm_offset_t src_addr;
2700{
2701	vm_offset_t addr;
2702	vm_offset_t end_addr = src_addr + len;
2703	vm_offset_t pdnxt;
2704	unsigned src_frame, dst_frame;
2705
2706	if (dst_addr != src_addr)
2707		return;
2708
2709	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2710	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2711		return;
2712	}
2713
2714	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2715	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2716		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2717		invltlb();
2718	}
2719
2720	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2721		unsigned *src_pte, *dst_pte;
2722		vm_page_t dstmpte, srcmpte;
2723		vm_offset_t srcptepaddr;
2724		unsigned ptepindex;
2725
2726#if !defined(MAX_PERF)
2727		if (addr >= UPT_MIN_ADDRESS)
2728			panic("pmap_copy: invalid to pmap_copy page tables\n");
2729#endif
2730
2731		/*
2732		 * Don't let optional prefaulting of pages make us go
2733		 * way below the low water mark of free pages or way
2734		 * above high water mark of used pv entries.
2735		 */
2736		if (cnt.v_free_count < cnt.v_free_reserved ||
2737		    pv_entry_count > pv_entry_high_water)
2738			break;
2739
2740		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2741		ptepindex = addr >> PDRSHIFT;
2742
2743		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2744		if (srcptepaddr == 0)
2745			continue;
2746
2747		if (srcptepaddr & PG_PS) {
2748			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2749				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2750				dst_pmap->pm_stats.resident_count += NBPDR;
2751			}
2752			continue;
2753		}
2754
2755		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2756		if ((srcmpte == NULL) ||
2757			(srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2758			continue;
2759
2760		if (pdnxt > end_addr)
2761			pdnxt = end_addr;
2762
2763		src_pte = (unsigned *) vtopte(addr);
2764		dst_pte = (unsigned *) avtopte(addr);
2765		while (addr < pdnxt) {
2766			unsigned ptetemp;
2767			ptetemp = *src_pte;
2768			/*
2769			 * we only virtual copy managed pages
2770			 */
2771			if ((ptetemp & PG_MANAGED) != 0) {
2772				/*
2773				 * We have to check after allocpte for the
2774				 * pte still being around...  allocpte can
2775				 * block.
2776				 */
2777				dstmpte = pmap_allocpte(dst_pmap, addr);
2778				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2779					/*
2780					 * Clear the modified and
2781					 * accessed (referenced) bits
2782					 * during the copy.
2783					 */
2784					*dst_pte = ptetemp & ~(PG_M | PG_A);
2785					dst_pmap->pm_stats.resident_count++;
2786					pmap_insert_entry(dst_pmap, addr,
2787						dstmpte,
2788						(ptetemp & PG_FRAME));
2789	 			} else {
2790					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2791				}
2792				if (dstmpte->hold_count >= srcmpte->hold_count)
2793					break;
2794			}
2795			addr += PAGE_SIZE;
2796			src_pte++;
2797			dst_pte++;
2798		}
2799	}
2800}
2801
2802/*
2803 *	Routine:	pmap_kernel
2804 *	Function:
2805 *		Returns the physical map handle for the kernel.
2806 */
2807pmap_t
2808pmap_kernel()
2809{
2810	return (kernel_pmap);
2811}
2812
2813/*
2814 *	pmap_zero_page zeros the specified (machine independent)
2815 *	page by mapping the page into virtual memory and using
2816 *	bzero to clear its contents, one machine dependent page
2817 *	at a time.
2818 */
2819void
2820pmap_zero_page(phys)
2821	vm_offset_t phys;
2822{
2823#ifdef SMP
2824#if !defined(MAX_PERF)
2825	if (*(int *) prv_CMAP3)
2826		panic("pmap_zero_page: prv_CMAP3 busy");
2827#endif
2828
2829	*(int *) prv_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2830	cpu_invlpg(&prv_CPAGE3);
2831
2832#if defined(I686_CPU)
2833	if (cpu_class == CPUCLASS_686)
2834		i686_pagezero(&prv_CPAGE3);
2835	else
2836#endif
2837		bzero(&prv_CPAGE3, PAGE_SIZE);
2838
2839	*(int *) prv_CMAP3 = 0;
2840#else
2841#if !defined(MAX_PERF)
2842	if (*(int *) CMAP2)
2843		panic("pmap_zero_page: CMAP2 busy");
2844#endif
2845
2846	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2847	if (cpu_class == CPUCLASS_386) {
2848		invltlb();
2849	} else {
2850		invlpg((u_int)CADDR2);
2851	}
2852
2853#if defined(I686_CPU)
2854	if (cpu_class == CPUCLASS_686)
2855		i686_pagezero(CADDR2);
2856	else
2857#endif
2858		bzero(CADDR2, PAGE_SIZE);
2859	*(int *) CMAP2 = 0;
2860#endif
2861}
2862
2863/*
2864 *	pmap_copy_page copies the specified (machine independent)
2865 *	page by mapping the page into virtual memory and using
2866 *	bcopy to copy the page, one machine dependent page at a
2867 *	time.
2868 */
2869void
2870pmap_copy_page(src, dst)
2871	vm_offset_t src;
2872	vm_offset_t dst;
2873{
2874#ifdef SMP
2875#if !defined(MAX_PERF)
2876	if (*(int *) prv_CMAP1)
2877		panic("pmap_copy_page: prv_CMAP1 busy");
2878	if (*(int *) prv_CMAP2)
2879		panic("pmap_copy_page: prv_CMAP2 busy");
2880#endif
2881
2882	*(int *) prv_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2883	*(int *) prv_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2884
2885	cpu_invlpg(&prv_CPAGE1);
2886	cpu_invlpg(&prv_CPAGE2);
2887
2888	bcopy(&prv_CPAGE1, &prv_CPAGE2, PAGE_SIZE);
2889
2890	*(int *) prv_CMAP1 = 0;
2891	*(int *) prv_CMAP2 = 0;
2892#else
2893#if !defined(MAX_PERF)
2894	if (*(int *) CMAP1 || *(int *) CMAP2)
2895		panic("pmap_copy_page: CMAP busy");
2896#endif
2897
2898	*(int *) CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2899	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2900	if (cpu_class == CPUCLASS_386) {
2901		invltlb();
2902	} else {
2903		invlpg((u_int)CADDR1);
2904		invlpg((u_int)CADDR2);
2905	}
2906
2907	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2908
2909	*(int *) CMAP1 = 0;
2910	*(int *) CMAP2 = 0;
2911#endif
2912}
2913
2914
2915/*
2916 *	Routine:	pmap_pageable
2917 *	Function:
2918 *		Make the specified pages (by pmap, offset)
2919 *		pageable (or not) as requested.
2920 *
2921 *		A page which is not pageable may not take
2922 *		a fault; therefore, its page table entry
2923 *		must remain valid for the duration.
2924 *
2925 *		This routine is merely advisory; pmap_enter
2926 *		will specify that these pages are to be wired
2927 *		down (or not) as appropriate.
2928 */
2929void
2930pmap_pageable(pmap, sva, eva, pageable)
2931	pmap_t pmap;
2932	vm_offset_t sva, eva;
2933	boolean_t pageable;
2934{
2935}
2936
2937/*
2938 * this routine returns true if a physical page resides
2939 * in the given pmap.
2940 */
2941boolean_t
2942pmap_page_exists(pmap, pa)
2943	pmap_t pmap;
2944	vm_offset_t pa;
2945{
2946	register pv_entry_t pv;
2947	pv_table_t *ppv;
2948	int s;
2949
2950	if (!pmap_is_managed(pa))
2951		return FALSE;
2952
2953	s = splvm();
2954
2955	ppv = pa_to_pvh(pa);
2956	/*
2957	 * Not found, check current mappings returning immediately if found.
2958	 */
2959	for (pv = TAILQ_FIRST(&ppv->pv_list);
2960		pv;
2961		pv = TAILQ_NEXT(pv, pv_list)) {
2962		if (pv->pv_pmap == pmap) {
2963			splx(s);
2964			return TRUE;
2965		}
2966	}
2967	splx(s);
2968	return (FALSE);
2969}
2970
2971#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2972/*
2973 * Remove all pages from specified address space
2974 * this aids process exit speeds.  Also, this code
2975 * is special cased for current process only, but
2976 * can have the more generic (and slightly slower)
2977 * mode enabled.  This is much faster than pmap_remove
2978 * in the case of running down an entire address space.
2979 */
2980void
2981pmap_remove_pages(pmap, sva, eva)
2982	pmap_t pmap;
2983	vm_offset_t sva, eva;
2984{
2985	unsigned *pte, tpte;
2986	pv_table_t *ppv;
2987	pv_entry_t pv, npv;
2988	int s;
2989
2990#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2991	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
2992		printf("warning: pmap_remove_pages called with non-current pmap\n");
2993		return;
2994	}
2995#endif
2996
2997	s = splvm();
2998	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2999		pv;
3000		pv = npv) {
3001
3002		if (pv->pv_va >= eva || pv->pv_va < sva) {
3003			npv = TAILQ_NEXT(pv, pv_plist);
3004			continue;
3005		}
3006
3007#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3008		pte = (unsigned *)vtopte(pv->pv_va);
3009#else
3010		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3011#endif
3012		tpte = *pte;
3013
3014/*
3015 * We cannot remove wired pages from a process' mapping at this time
3016 */
3017		if (tpte & PG_W) {
3018			npv = TAILQ_NEXT(pv, pv_plist);
3019			continue;
3020		}
3021		*pte = 0;
3022
3023		ppv = pa_to_pvh(tpte);
3024
3025		pv->pv_pmap->pm_stats.resident_count--;
3026
3027		/*
3028		 * Update the vm_page_t clean and reference bits.
3029		 */
3030		if (tpte & PG_M) {
3031			ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
3032		}
3033
3034
3035		npv = TAILQ_NEXT(pv, pv_plist);
3036		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3037
3038		ppv->pv_list_count--;
3039		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
3040		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
3041			ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
3042		}
3043
3044		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3045		free_pv_entry(pv);
3046	}
3047	splx(s);
3048	invltlb();
3049}
3050
3051/*
3052 * pmap_testbit tests bits in pte's
3053 * note that the testbit/changebit routines are inline,
3054 * and a lot of things compile-time evaluate.
3055 */
3056static boolean_t
3057pmap_testbit(pa, bit)
3058	register vm_offset_t pa;
3059	int bit;
3060{
3061	register pv_entry_t pv;
3062	pv_table_t *ppv;
3063	unsigned *pte;
3064	int s;
3065
3066	if (!pmap_is_managed(pa))
3067		return FALSE;
3068
3069	ppv = pa_to_pvh(pa);
3070	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
3071		return FALSE;
3072
3073	s = splvm();
3074
3075	for (pv = TAILQ_FIRST(&ppv->pv_list);
3076		pv;
3077		pv = TAILQ_NEXT(pv, pv_list)) {
3078
3079		/*
3080		 * if the bit being tested is the modified bit, then
3081		 * mark clean_map and ptes as never
3082		 * modified.
3083		 */
3084		if (bit & (PG_A|PG_M)) {
3085			if (!pmap_track_modified(pv->pv_va))
3086				continue;
3087		}
3088
3089#if defined(PMAP_DIAGNOSTIC)
3090		if (!pv->pv_pmap) {
3091			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3092			continue;
3093		}
3094#endif
3095		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3096		if (*pte & bit) {
3097			splx(s);
3098			return TRUE;
3099		}
3100	}
3101	splx(s);
3102	return (FALSE);
3103}
3104
3105/*
3106 * this routine is used to modify bits in ptes
3107 */
3108static void
3109pmap_changebit(pa, bit, setem)
3110	vm_offset_t pa;
3111	int bit;
3112	boolean_t setem;
3113{
3114	register pv_entry_t pv;
3115	pv_table_t *ppv;
3116	register unsigned *pte;
3117	int changed;
3118	int s;
3119
3120	if (!pmap_is_managed(pa))
3121		return;
3122
3123	s = splvm();
3124	changed = 0;
3125	ppv = pa_to_pvh(pa);
3126
3127	/*
3128	 * Loop over all current mappings setting/clearing as appropos If
3129	 * setting RO do we need to clear the VAC?
3130	 */
3131	for (pv = TAILQ_FIRST(&ppv->pv_list);
3132		pv;
3133		pv = TAILQ_NEXT(pv, pv_list)) {
3134
3135		/*
3136		 * don't write protect pager mappings
3137		 */
3138		if (!setem && (bit == PG_RW)) {
3139			if (!pmap_track_modified(pv->pv_va))
3140				continue;
3141		}
3142
3143#if defined(PMAP_DIAGNOSTIC)
3144		if (!pv->pv_pmap) {
3145			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3146			continue;
3147		}
3148#endif
3149
3150		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3151
3152		if (setem) {
3153			*(int *)pte |= bit;
3154			changed = 1;
3155		} else {
3156			vm_offset_t pbits = *(vm_offset_t *)pte;
3157			if (pbits & bit) {
3158				changed = 1;
3159				if (bit == PG_RW) {
3160					if (pbits & PG_M) {
3161						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
3162					}
3163					*(int *)pte = pbits & ~(PG_M|PG_RW);
3164				} else {
3165					*(int *)pte = pbits & ~bit;
3166				}
3167			}
3168		}
3169	}
3170	splx(s);
3171	if (changed)
3172		invltlb();
3173}
3174
3175/*
3176 *      pmap_page_protect:
3177 *
3178 *      Lower the permission for all mappings to a given page.
3179 */
3180void
3181pmap_page_protect(vm_offset_t phys, vm_prot_t prot)
3182{
3183	if ((prot & VM_PROT_WRITE) == 0) {
3184		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3185			pmap_changebit(phys, PG_RW, FALSE);
3186		} else {
3187			pmap_remove_all(phys);
3188		}
3189	}
3190}
3191
3192vm_offset_t
3193pmap_phys_address(ppn)
3194	int ppn;
3195{
3196	return (i386_ptob(ppn));
3197}
3198
3199/*
3200 *	pmap_ts_referenced:
3201 *
3202 *	Return the count of reference bits for a page, clearing all of them.
3203 *
3204 */
3205int
3206pmap_ts_referenced(vm_offset_t pa)
3207{
3208	register pv_entry_t pv;
3209	pv_table_t *ppv;
3210	unsigned *pte;
3211	int s;
3212	int rtval = 0;
3213
3214	if (!pmap_is_managed(pa))
3215		return FALSE;
3216
3217	s = splvm();
3218
3219	ppv = pa_to_pvh(pa);
3220
3221	if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
3222		splx(s);
3223		return 0;
3224	}
3225
3226	/*
3227	 * Not found, check current mappings returning immediately if found.
3228	 */
3229	for (pv = TAILQ_FIRST(&ppv->pv_list);
3230		pv;
3231		pv = TAILQ_NEXT(pv, pv_list)) {
3232
3233		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
3234		/*
3235		 * if the bit being tested is the modified bit, then
3236		 * mark clean_map and ptes as never
3237		 * modified.
3238		 */
3239		if (!pmap_track_modified(pv->pv_va)) {
3240			TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3241			continue;
3242		}
3243
3244		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3245		if (pte == NULL) {
3246			TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3247			continue;
3248		}
3249
3250		if (*pte & PG_A) {
3251			rtval++;
3252			*pte &= ~PG_A;
3253			if (rtval > 4) {
3254				TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3255				break;
3256			}
3257		}
3258		TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3259	}
3260
3261	splx(s);
3262	if (rtval) {
3263		invltlb();
3264	}
3265	return (rtval);
3266}
3267
3268/*
3269 *	pmap_is_modified:
3270 *
3271 *	Return whether or not the specified physical page was modified
3272 *	in any physical maps.
3273 */
3274boolean_t
3275pmap_is_modified(vm_offset_t pa)
3276{
3277	return pmap_testbit((pa), PG_M);
3278}
3279
3280/*
3281 *	Clear the modify bits on the specified physical page.
3282 */
3283void
3284pmap_clear_modify(vm_offset_t pa)
3285{
3286	pmap_changebit((pa), PG_M, FALSE);
3287}
3288
3289/*
3290 *	pmap_clear_reference:
3291 *
3292 *	Clear the reference bit on the specified physical page.
3293 */
3294void
3295pmap_clear_reference(vm_offset_t pa)
3296{
3297	pmap_changebit((pa), PG_A, FALSE);
3298}
3299
3300/*
3301 * Miscellaneous support routines follow
3302 */
3303
3304static void
3305i386_protection_init()
3306{
3307	register int *kp, prot;
3308
3309	kp = protection_codes;
3310	for (prot = 0; prot < 8; prot++) {
3311		switch (prot) {
3312		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3313			/*
3314			 * Read access is also 0. There isn't any execute bit,
3315			 * so just make it readable.
3316			 */
3317		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3318		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3319		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3320			*kp++ = 0;
3321			break;
3322		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3323		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3324		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3325		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3326			*kp++ = PG_RW;
3327			break;
3328		}
3329	}
3330}
3331
3332/*
3333 * Map a set of physical memory pages into the kernel virtual
3334 * address space. Return a pointer to where it is mapped. This
3335 * routine is intended to be used for mapping device memory,
3336 * NOT real memory.
3337 */
3338void *
3339pmap_mapdev(pa, size)
3340	vm_offset_t pa;
3341	vm_size_t size;
3342{
3343	vm_offset_t va, tmpva;
3344	unsigned *pte;
3345
3346	size = roundup(size, PAGE_SIZE);
3347
3348	va = kmem_alloc_pageable(kernel_map, size);
3349#if !defined(MAX_PERF)
3350	if (!va)
3351		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3352#endif
3353
3354	pa = pa & PG_FRAME;
3355	for (tmpva = va; size > 0;) {
3356		pte = (unsigned *)vtopte(tmpva);
3357		*pte = pa | PG_RW | PG_V | pgeflag;
3358		size -= PAGE_SIZE;
3359		tmpva += PAGE_SIZE;
3360		pa += PAGE_SIZE;
3361	}
3362	invltlb();
3363
3364	return ((void *) va);
3365}
3366
3367/*
3368 * perform the pmap work for mincore
3369 */
3370int
3371pmap_mincore(pmap, addr)
3372	pmap_t pmap;
3373	vm_offset_t addr;
3374{
3375
3376	unsigned *ptep, pte;
3377	vm_page_t m;
3378	int val = 0;
3379
3380	ptep = pmap_pte(pmap, addr);
3381	if (ptep == 0) {
3382		return 0;
3383	}
3384
3385	if (pte = *ptep) {
3386		pv_table_t *ppv;
3387		vm_offset_t pa;
3388
3389		val = MINCORE_INCORE;
3390		if ((pte & PG_MANAGED) == 0)
3391			return val;
3392
3393		pa = pte & PG_FRAME;
3394
3395		ppv = pa_to_pvh((pa & PG_FRAME));
3396		m = ppv->pv_vm_page;
3397
3398		/*
3399		 * Modified by us
3400		 */
3401		if (pte & PG_M)
3402			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3403		/*
3404		 * Modified by someone
3405		 */
3406		else if (m->dirty || pmap_is_modified(pa))
3407			val |= MINCORE_MODIFIED_OTHER;
3408		/*
3409		 * Referenced by us
3410		 */
3411		if (pte & PG_A)
3412			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3413
3414		/*
3415		 * Referenced by someone
3416		 */
3417		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(pa)) {
3418			val |= MINCORE_REFERENCED_OTHER;
3419			m->flags |= PG_REFERENCED;
3420		}
3421	}
3422	return val;
3423}
3424
3425void
3426pmap_activate(struct proc *p)
3427{
3428#if defined(SWTCH_OPTIM_STATS)
3429	tlb_flush_count++;
3430#endif
3431	load_cr3(p->p_addr->u_pcb.pcb_cr3 =
3432		vtophys(p->p_vmspace->vm_pmap.pm_pdir));
3433}
3434
3435vm_offset_t
3436pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) {
3437
3438	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3439		return addr;
3440	}
3441
3442	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3443	return addr;
3444}
3445
3446
3447#if defined(PMAP_DEBUG)
3448pmap_pid_dump(int pid) {
3449	pmap_t pmap;
3450	struct proc *p;
3451	int npte = 0;
3452	int index;
3453	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
3454		if (p->p_pid != pid)
3455			continue;
3456
3457		if (p->p_vmspace) {
3458			int i,j;
3459			index = 0;
3460			pmap = &p->p_vmspace->vm_pmap;
3461			for(i=0;i<1024;i++) {
3462				pd_entry_t *pde;
3463				unsigned *pte;
3464				unsigned base = i << PDRSHIFT;
3465
3466				pde = &pmap->pm_pdir[i];
3467				if (pde && pmap_pde_v(pde)) {
3468					for(j=0;j<1024;j++) {
3469						unsigned va = base + (j << PAGE_SHIFT);
3470						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3471							if (index) {
3472								index = 0;
3473								printf("\n");
3474							}
3475							return npte;
3476						}
3477						pte = pmap_pte_quick( pmap, va);
3478						if (pte && pmap_pte_v(pte)) {
3479							vm_offset_t pa;
3480							vm_page_t m;
3481							pa = *(int *)pte;
3482							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3483							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3484								va, pa, m->hold_count, m->wire_count, m->flags);
3485							npte++;
3486							index++;
3487							if (index >= 2) {
3488								index = 0;
3489								printf("\n");
3490							} else {
3491								printf(" ");
3492							}
3493						}
3494					}
3495				}
3496			}
3497		}
3498	}
3499	return npte;
3500}
3501#endif
3502
3503#if defined(DEBUG)
3504
3505static void	pads __P((pmap_t pm));
3506static void	pmap_pvdump __P((vm_offset_t pa));
3507
3508/* print address space of pmap*/
3509static void
3510pads(pm)
3511	pmap_t pm;
3512{
3513	unsigned va, i, j;
3514	unsigned *ptep;
3515
3516	if (pm == kernel_pmap)
3517		return;
3518	for (i = 0; i < 1024; i++)
3519		if (pm->pm_pdir[i])
3520			for (j = 0; j < 1024; j++) {
3521				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3522				if (pm == kernel_pmap && va < KERNBASE)
3523					continue;
3524				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3525					continue;
3526				ptep = pmap_pte_quick(pm, va);
3527				if (pmap_pte_v(ptep))
3528					printf("%x:%x ", va, *(int *) ptep);
3529			};
3530
3531}
3532
3533static void
3534pmap_pvdump(pa)
3535	vm_offset_t pa;
3536{
3537	pv_table_t *ppv;
3538	register pv_entry_t pv;
3539
3540	printf("pa %x", pa);
3541	ppv = pa_to_pvh(pa);
3542	for (pv = TAILQ_FIRST(&ppv->pv_list);
3543		pv;
3544		pv = TAILQ_NEXT(pv, pv_list)) {
3545#ifdef used_to_be
3546		printf(" -> pmap %p, va %x, flags %x",
3547		    (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3548#endif
3549		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3550		pads(pv->pv_pmap);
3551	}
3552	printf(" ");
3553}
3554#endif
3555