pmap.c revision 41318
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.212 1998/11/08 02:26:14 msmith Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/msgbuf.h>
79#include <sys/vmmeter.h>
80#include <sys/mman.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/vm_prot.h>
85#include <sys/lock.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_zone.h>
94
95#include <sys/user.h>
96
97#include <machine/cputypes.h>
98#include <machine/md_var.h>
99#include <machine/specialreg.h>
100#if defined(SMP) || defined(APIC_IO)
101#include <machine/smp.h>
102#include <machine/apic.h>
103#endif /* SMP || APIC_IO */
104
105#define PMAP_KEEP_PDIRS
106#ifndef PMAP_SHPGPERPROC
107#define PMAP_SHPGPERPROC 200
108#endif
109
110#if defined(DIAGNOSTIC)
111#define PMAP_DIAGNOSTIC
112#endif
113
114#define MINPV 2048
115
116#if !defined(PMAP_DIAGNOSTIC)
117#define PMAP_INLINE __inline
118#else
119#define PMAP_INLINE
120#endif
121
122/*
123 * Get PDEs and PTEs for user/kernel address space
124 */
125#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
126#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
127
128#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
129#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
130#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
131#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
132#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
133
134#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
135#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
136
137/*
138 * Given a map and a machine independent protection code,
139 * convert to a vax protection code.
140 */
141#define pte_prot(m, p)	(protection_codes[p])
142static int protection_codes[8];
143
144#define	pa_index(pa)		atop((pa) - vm_first_phys)
145#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
146
147static struct pmap kernel_pmap_store;
148pmap_t kernel_pmap;
149extern pd_entry_t my_idlePTD;
150
151vm_offset_t avail_start;	/* PA of first available physical page */
152vm_offset_t avail_end;		/* PA of last available physical page */
153vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
154vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
155static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
156static vm_offset_t vm_first_phys;
157static int pgeflag;		/* PG_G or-in */
158static int pseflag;		/* PG_PS or-in */
159static int pv_npg;
160
161static vm_object_t kptobj;
162
163static int nkpt;
164vm_offset_t kernel_vm_end;
165
166/*
167 * Data for the pv entry allocation mechanism
168 */
169static vm_zone_t pvzone;
170static struct vm_zone pvzone_store;
171static struct vm_object pvzone_obj;
172static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
173static int pmap_pagedaemon_waken = 0;
174static struct pv_entry *pvinit;
175
176/*
177 * All those kernel PT submaps that BSD is so fond of
178 */
179pt_entry_t *CMAP1 = 0;
180static pt_entry_t *CMAP2, *ptmmap;
181static pv_table_t *pv_table;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2;
184static pt_entry_t *msgbufmap;
185struct msgbuf *msgbufp=0;
186
187/*
188 *  PPro_vmtrr
189 */
190struct ppro_vmtrr PPro_vmtrr[NPPROVMTRR];
191
192#ifdef SMP
193extern char prv_CPAGE1[], prv_CPAGE2[], prv_CPAGE3[];
194extern pt_entry_t *prv_CMAP1, *prv_CMAP2, *prv_CMAP3;
195extern pd_entry_t *IdlePTDS[];
196extern pt_entry_t SMP_prvpt[];
197#endif
198
199#ifdef SMP
200extern unsigned int prv_PPAGE1[];
201extern pt_entry_t *prv_PMAP1;
202#else
203static pt_entry_t *PMAP1 = 0;
204static unsigned *PADDR1 = 0;
205#endif
206
207static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
208static unsigned * get_ptbase __P((pmap_t pmap));
209static pv_entry_t get_pv_entry __P((void));
210static void	i386_protection_init __P((void));
211static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
212
213static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
214static void	pmap_remove_all __P((vm_offset_t pa));
215static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
216				      vm_offset_t pa, vm_page_t mpte));
217static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
218					vm_offset_t sva));
219static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
220static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
221					vm_offset_t va));
222static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
223static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
224		vm_page_t mpte, vm_offset_t pa));
225
226static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
227
228static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
229static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
230static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
231static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
232static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
233static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
234void pmap_collect(void);
235
236static unsigned pdir4mb;
237
238/*
239 *	Routine:	pmap_pte
240 *	Function:
241 *		Extract the page table entry associated
242 *		with the given map/virtual_address pair.
243 */
244
245PMAP_INLINE unsigned *
246pmap_pte(pmap, va)
247	register pmap_t pmap;
248	vm_offset_t va;
249{
250	unsigned *pdeaddr;
251
252	if (pmap) {
253		pdeaddr = (unsigned *) pmap_pde(pmap, va);
254		if (*pdeaddr & PG_PS)
255			return pdeaddr;
256		if (*pdeaddr) {
257			return get_ptbase(pmap) + i386_btop(va);
258		}
259	}
260	return (0);
261}
262
263/*
264 * Move the kernel virtual free pointer to the next
265 * 4MB.  This is used to help improve performance
266 * by using a large (4MB) page for much of the kernel
267 * (.text, .data, .bss)
268 */
269static vm_offset_t
270pmap_kmem_choose(vm_offset_t addr) {
271	vm_offset_t newaddr = addr;
272#ifndef DISABLE_PSE
273	if (cpu_feature & CPUID_PSE) {
274		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
275	}
276#endif
277	return newaddr;
278}
279
280/*
281 *	Bootstrap the system enough to run with virtual memory.
282 *
283 *	On the i386 this is called after mapping has already been enabled
284 *	and just syncs the pmap module with what has already been done.
285 *	[We can't call it easily with mapping off since the kernel is not
286 *	mapped with PA == VA, hence we would have to relocate every address
287 *	from the linked base (virtual) address "KERNBASE" to the actual
288 *	(physical) address starting relative to 0]
289 */
290void
291pmap_bootstrap(firstaddr, loadaddr)
292	vm_offset_t firstaddr;
293	vm_offset_t loadaddr;
294{
295	vm_offset_t va;
296	pt_entry_t *pte;
297	int i, j;
298
299	avail_start = firstaddr;
300
301	/*
302	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
303	 * large. It should instead be correctly calculated in locore.s and
304	 * not based on 'first' (which is a physical address, not a virtual
305	 * address, for the start of unused physical memory). The kernel
306	 * page tables are NOT double mapped and thus should not be included
307	 * in this calculation.
308	 */
309	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
310	virtual_avail = pmap_kmem_choose(virtual_avail);
311
312	virtual_end = VM_MAX_KERNEL_ADDRESS;
313
314	/*
315	 * Initialize protection array.
316	 */
317	i386_protection_init();
318
319	/*
320	 * The kernel's pmap is statically allocated so we don't have to use
321	 * pmap_create, which is unlikely to work correctly at this part of
322	 * the boot sequence (XXX and which no longer exists).
323	 */
324	kernel_pmap = &kernel_pmap_store;
325
326	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
327
328	kernel_pmap->pm_count = 1;
329	TAILQ_INIT(&kernel_pmap->pm_pvlist);
330	nkpt = NKPT;
331
332	/*
333	 * Reserve some special page table entries/VA space for temporary
334	 * mapping of pages.
335	 */
336#define	SYSMAP(c, p, v, n)	\
337	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
338
339	va = virtual_avail;
340	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
341
342	/*
343	 * CMAP1/CMAP2 are used for zeroing and copying pages.
344	 */
345	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
346	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
347
348	/*
349	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
350	 * XXX ptmmap is not used.
351	 */
352	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
353
354	/*
355	 * msgbufp is used to map the system message buffer.
356	 * XXX msgbufmap is not used.
357	 */
358	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
359	       atop(round_page(MSGBUF_SIZE)))
360
361#if !defined(SMP)
362	/*
363	 * ptemap is used for pmap_pte_quick
364	 */
365	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
366#endif
367
368	virtual_avail = va;
369
370	*(int *) CMAP1 = *(int *) CMAP2 = 0;
371	*(int *) PTD = 0;
372
373
374	pgeflag = 0;
375#if !defined(SMP)
376	if (cpu_feature & CPUID_PGE) {
377		pgeflag = PG_G;
378	}
379#endif
380
381/*
382 * Initialize the 4MB page size flag
383 */
384	pseflag = 0;
385/*
386 * The 4MB page version of the initial
387 * kernel page mapping.
388 */
389	pdir4mb = 0;
390
391#if !defined(DISABLE_PSE)
392	if (cpu_feature & CPUID_PSE) {
393		unsigned ptditmp;
394		/*
395		 * Enable the PSE mode
396		 */
397		load_cr4(rcr4() | CR4_PSE);
398
399		/*
400		 * Note that we have enabled PSE mode
401		 */
402		pseflag = PG_PS;
403		ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
404		ptditmp &= ~(NBPDR - 1);
405		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
406		pdir4mb = ptditmp;
407		/*
408		 * We can do the mapping here for the single processor
409		 * case.  We simply ignore the old page table page from
410		 * now on.
411		 */
412#if !defined(SMP)
413		PTD[KPTDI] = (pd_entry_t) ptditmp;
414		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
415		invltlb();
416#endif
417	}
418#endif
419
420#ifdef SMP
421	if (cpu_apic_address == 0)
422		panic("pmap_bootstrap: no local apic!");
423
424	/* 0 = private page */
425	/* 1 = page table page */
426	/* 2 = local apic */
427	/* 16-31 = io apics */
428	SMP_prvpt[2] = (pt_entry_t)(PG_V | PG_RW | pgeflag |
429	    (cpu_apic_address & PG_FRAME));
430
431	for (i = 0; i < mp_napics; i++) {
432		for (j = 0; j < 16; j++) {
433			/* same page frame as a previous IO apic? */
434			if (((vm_offset_t)SMP_prvpt[j + 16] & PG_FRAME) ==
435			    (io_apic_address[0] & PG_FRAME)) {
436				ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE];
437				break;
438			}
439			/* use this slot if available */
440			if (((vm_offset_t)SMP_prvpt[j + 16] & PG_FRAME) == 0) {
441				SMP_prvpt[j + 16] = (pt_entry_t)(PG_V | PG_RW |
442				    pgeflag | (io_apic_address[i] & PG_FRAME));
443				ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE];
444				break;
445			}
446		}
447		if (j == 16)
448			panic("no space to map IO apic %d!", i);
449	}
450
451	/* BSP does this itself, AP's get it pre-set */
452	prv_CMAP1 = &SMP_prvpt[3 + UPAGES];
453	prv_CMAP2 = &SMP_prvpt[4 + UPAGES];
454	prv_CMAP3 = &SMP_prvpt[5 + UPAGES];
455	prv_PMAP1 = &SMP_prvpt[6 + UPAGES];
456#endif
457
458	invltlb();
459
460}
461
462void
463getmtrr()
464{
465	int i;
466
467	if (cpu_class == CPUCLASS_686) {
468		for(i = 0; i < NPPROVMTRR; i++) {
469			PPro_vmtrr[i].base = rdmsr(PPRO_VMTRRphysBase0 + i * 2);
470			PPro_vmtrr[i].mask = rdmsr(PPRO_VMTRRphysMask0 + i * 2);
471		}
472	}
473}
474
475void
476putmtrr()
477{
478	int i;
479
480	if (cpu_class == CPUCLASS_686) {
481		wbinvd();
482		for(i = 0; i < NPPROVMTRR; i++) {
483			wrmsr(PPRO_VMTRRphysBase0 + i * 2, PPro_vmtrr[i].base);
484			wrmsr(PPRO_VMTRRphysMask0 + i * 2, PPro_vmtrr[i].mask);
485		}
486	}
487}
488
489void
490pmap_setvidram(void)
491{
492#if 0
493	if (cpu_class == CPUCLASS_686) {
494		wbinvd();
495		/*
496		 * Set memory between 0-640K to be WB
497		 */
498		wrmsr(0x250, 0x0606060606060606LL);
499		wrmsr(0x258, 0x0606060606060606LL);
500		/*
501		 * Set normal, PC video memory to be WC
502		 */
503		wrmsr(0x259, 0x0101010101010101LL);
504	}
505#endif
506}
507
508void
509pmap_setdevram(unsigned long long basea, vm_offset_t sizea)
510{
511	int i, free, skip;
512	unsigned basepage, basepaget;
513	unsigned long long base;
514	unsigned long long mask;
515
516	if (cpu_class != CPUCLASS_686)
517		return;
518
519	free = -1;
520	skip = 0;
521	basea &= ~0xfff;
522	base = basea | 0x1;
523	mask = (long long) (0xfffffffffLL - ((long) sizea - 1)) | (long long) 0x800;
524	mask &= ~0x7ff;
525
526	basepage = (long long) (base >> 12);
527	for(i = 0; i < NPPROVMTRR; i++) {
528		PPro_vmtrr[i].base = rdmsr(PPRO_VMTRRphysBase0 + i * 2);
529		PPro_vmtrr[i].mask = rdmsr(PPRO_VMTRRphysMask0 + i * 2);
530		basepaget = (long long) (PPro_vmtrr[i].base >> 12);
531		if (basepage == basepaget)
532			skip = 1;
533		if ((PPro_vmtrr[i].mask & 0x800) == 0) {
534			if (free == -1)
535				free = i;
536		}
537	}
538
539	if (!skip && free != -1) {
540		wbinvd();
541		PPro_vmtrr[free].base = base;
542		PPro_vmtrr[free].mask = mask;
543		wrmsr(PPRO_VMTRRphysBase0 + free * 2, base);
544		wrmsr(PPRO_VMTRRphysMask0 + free * 2, mask);
545		printf(
546	"pmap: added WC mapping at page: 0x%x %x, size: %u mask: 0x%x %x\n",
547		    (u_int)(base >> 32), (u_int)base, sizea,
548		    (u_int)(mask >> 32), (u_int)mask);
549	}
550}
551
552/*
553 * Set 4mb pdir for mp startup, and global flags
554 */
555void
556pmap_set_opt(unsigned *pdir) {
557	int i;
558
559	if (pseflag && (cpu_feature & CPUID_PSE)) {
560		load_cr4(rcr4() | CR4_PSE);
561		if (pdir4mb) {
562			pdir[KPTDI] = pdir4mb;
563		}
564	}
565
566	if (pgeflag && (cpu_feature & CPUID_PGE)) {
567		load_cr4(rcr4() | CR4_PGE);
568		for(i = KPTDI; i < KPTDI + nkpt; i++) {
569			if (pdir[i]) {
570				pdir[i] |= PG_G;
571			}
572		}
573	}
574}
575
576/*
577 * Setup the PTD for the boot processor
578 */
579void
580pmap_set_opt_bsp(void)
581{
582	pmap_set_opt((unsigned *)kernel_pmap->pm_pdir);
583	pmap_set_opt((unsigned *)PTD);
584	invltlb();
585}
586
587/*
588 *	Initialize the pmap module.
589 *	Called by vm_init, to initialize any structures that the pmap
590 *	system needs to map virtual memory.
591 *	pmap_init has been enhanced to support in a fairly consistant
592 *	way, discontiguous physical memory.
593 */
594void
595pmap_init(phys_start, phys_end)
596	vm_offset_t phys_start, phys_end;
597{
598	vm_offset_t addr;
599	vm_size_t s;
600	int i;
601	int initial_pvs;
602
603	/*
604	 * calculate the number of pv_entries needed
605	 */
606	vm_first_phys = phys_avail[0];
607	for (i = 0; phys_avail[i + 1]; i += 2);
608	pv_npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
609
610	/*
611	 * Allocate memory for random pmap data structures.  Includes the
612	 * pv_head_table.
613	 */
614	s = (vm_size_t) (sizeof(pv_table_t) * pv_npg);
615	s = round_page(s);
616
617	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
618	pv_table = (pv_table_t *) addr;
619	for(i = 0; i < pv_npg; i++) {
620		vm_offset_t pa;
621		TAILQ_INIT(&pv_table[i].pv_list);
622		pv_table[i].pv_list_count = 0;
623		pa = vm_first_phys + i * PAGE_SIZE;
624		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
625	}
626
627	/*
628	 * init the pv free list
629	 */
630	initial_pvs = pv_npg;
631	if (initial_pvs < MINPV)
632		initial_pvs = MINPV;
633	pvzone = &pvzone_store;
634	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
635		initial_pvs * sizeof (struct pv_entry));
636	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit, pv_npg);
637	/*
638	 * object for kernel page table pages
639	 */
640	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
641
642	/*
643	 * Now it is safe to enable pv_table recording.
644	 */
645	pmap_initialized = TRUE;
646}
647
648/*
649 * Initialize the address space (zone) for the pv_entries.  Set a
650 * high water mark so that the system can recover from excessive
651 * numbers of pv entries.
652 */
653void
654pmap_init2() {
655	pv_entry_max = PMAP_SHPGPERPROC * maxproc + pv_npg;
656	pv_entry_high_water = 9 * (pv_entry_max / 10);
657	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
658}
659
660/*
661 *	Used to map a range of physical addresses into kernel
662 *	virtual address space.
663 *
664 *	For now, VM is already on, we only need to map the
665 *	specified memory.
666 */
667vm_offset_t
668pmap_map(virt, start, end, prot)
669	vm_offset_t virt;
670	vm_offset_t start;
671	vm_offset_t end;
672	int prot;
673{
674	while (start < end) {
675		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
676		virt += PAGE_SIZE;
677		start += PAGE_SIZE;
678	}
679	return (virt);
680}
681
682
683/***************************************************
684 * Low level helper routines.....
685 ***************************************************/
686
687#if defined(PMAP_DIAGNOSTIC)
688
689/*
690 * This code checks for non-writeable/modified pages.
691 * This should be an invalid condition.
692 */
693static int
694pmap_nw_modified(pt_entry_t ptea) {
695	int pte;
696
697	pte = (int) ptea;
698
699	if ((pte & (PG_M|PG_RW)) == PG_M)
700		return 1;
701	else
702		return 0;
703}
704#endif
705
706
707/*
708 * this routine defines the region(s) of memory that should
709 * not be tested for the modified bit.
710 */
711static PMAP_INLINE int
712pmap_track_modified( vm_offset_t va) {
713	if ((va < clean_sva) || (va >= clean_eva))
714		return 1;
715	else
716		return 0;
717}
718
719static PMAP_INLINE void
720invltlb_1pg( vm_offset_t va) {
721#if defined(I386_CPU)
722	if (cpu_class == CPUCLASS_386) {
723		invltlb();
724	} else
725#endif
726	{
727		invlpg(va);
728	}
729}
730
731static PMAP_INLINE void
732invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
733#if defined(I386_CPU)
734	if (cpu_class == CPUCLASS_386) {
735		invltlb();
736	} else
737#endif
738	{
739		invlpg(va1);
740		invlpg(va2);
741	}
742}
743
744static unsigned *
745get_ptbase(pmap)
746	pmap_t pmap;
747{
748	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
749
750	/* are we current address space or kernel? */
751	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
752		return (unsigned *) PTmap;
753	}
754	/* otherwise, we are alternate address space */
755	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
756		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
757#if defined(SMP)
758		/* The page directory is not shared between CPUs */
759		cpu_invltlb();
760#else
761		invltlb();
762#endif
763	}
764	return (unsigned *) APTmap;
765}
766
767/*
768 * Super fast pmap_pte routine best used when scanning
769 * the pv lists.  This eliminates many coarse-grained
770 * invltlb calls.  Note that many of the pv list
771 * scans are across different pmaps.  It is very wasteful
772 * to do an entire invltlb for checking a single mapping.
773 */
774
775static unsigned *
776pmap_pte_quick(pmap, va)
777	register pmap_t pmap;
778	vm_offset_t va;
779{
780	unsigned pde, newpf;
781	if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
782		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
783		unsigned index = i386_btop(va);
784		/* are we current address space or kernel? */
785		if ((pmap == kernel_pmap) ||
786			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
787			return (unsigned *) PTmap + index;
788		}
789		newpf = pde & PG_FRAME;
790#ifdef SMP
791		if ( ((* (unsigned *) prv_PMAP1) & PG_FRAME) != newpf) {
792			* (unsigned *) prv_PMAP1 = newpf | PG_RW | PG_V;
793			cpu_invlpg(&prv_PPAGE1);
794		}
795		return prv_PPAGE1 + ((unsigned) index & (NPTEPG - 1));
796#else
797		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
798			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
799			invltlb_1pg((vm_offset_t) PADDR1);
800		}
801		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
802#endif
803	}
804	return (0);
805}
806
807/*
808 *	Routine:	pmap_extract
809 *	Function:
810 *		Extract the physical page address associated
811 *		with the given map/virtual_address pair.
812 */
813vm_offset_t
814pmap_extract(pmap, va)
815	register pmap_t pmap;
816	vm_offset_t va;
817{
818	vm_offset_t rtval;
819	vm_offset_t pdirindex;
820	pdirindex = va >> PDRSHIFT;
821	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
822		unsigned *pte;
823		if ((rtval & PG_PS) != 0) {
824			rtval &= ~(NBPDR - 1);
825			rtval |= va & (NBPDR - 1);
826			return rtval;
827		}
828		pte = get_ptbase(pmap) + i386_btop(va);
829		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
830		return rtval;
831	}
832	return 0;
833
834}
835
836/*
837 * determine if a page is managed (memory vs. device)
838 */
839static PMAP_INLINE int
840pmap_is_managed(pa)
841	vm_offset_t pa;
842{
843	int i;
844
845	if (!pmap_initialized)
846		return 0;
847
848	for (i = 0; phys_avail[i + 1]; i += 2) {
849		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
850			return 1;
851	}
852	return 0;
853}
854
855
856/***************************************************
857 * Low level mapping routines.....
858 ***************************************************/
859
860/*
861 * Add a list of wired pages to the kva
862 * this routine is only used for temporary
863 * kernel mappings that do not need to have
864 * page modification or references recorded.
865 * Note that old mappings are simply written
866 * over.  The page *must* be wired.
867 */
868void
869pmap_qenter(va, m, count)
870	vm_offset_t va;
871	vm_page_t *m;
872	int count;
873{
874	int i;
875	register unsigned *pte;
876
877	for (i = 0; i < count; i++) {
878		vm_offset_t tva = va + i * PAGE_SIZE;
879		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | pgeflag;
880		unsigned opte;
881		pte = (unsigned *)vtopte(tva);
882		opte = *pte;
883		*pte = npte;
884		if (opte)
885			invltlb_1pg(tva);
886	}
887}
888
889/*
890 * this routine jerks page mappings from the
891 * kernel -- it is meant only for temporary mappings.
892 */
893void
894pmap_qremove(va, count)
895	vm_offset_t va;
896	int count;
897{
898	int i;
899	register unsigned *pte;
900
901	for (i = 0; i < count; i++) {
902		pte = (unsigned *)vtopte(va);
903		*pte = 0;
904		invltlb_1pg(va);
905		va += PAGE_SIZE;
906	}
907}
908
909/*
910 * add a wired page to the kva
911 * note that in order for the mapping to take effect -- you
912 * should do a invltlb after doing the pmap_kenter...
913 */
914PMAP_INLINE void
915pmap_kenter(va, pa)
916	vm_offset_t va;
917	register vm_offset_t pa;
918{
919	register unsigned *pte;
920	unsigned npte, opte;
921
922	npte = pa | PG_RW | PG_V | pgeflag;
923	pte = (unsigned *)vtopte(va);
924	opte = *pte;
925	*pte = npte;
926	if (opte)
927		invltlb_1pg(va);
928}
929
930/*
931 * remove a page from the kernel pagetables
932 */
933PMAP_INLINE void
934pmap_kremove(va)
935	vm_offset_t va;
936{
937	register unsigned *pte;
938
939	pte = (unsigned *)vtopte(va);
940	*pte = 0;
941	invltlb_1pg(va);
942}
943
944static vm_page_t
945pmap_page_lookup(object, pindex)
946	vm_object_t object;
947	vm_pindex_t pindex;
948{
949	vm_page_t m;
950retry:
951	m = vm_page_lookup(object, pindex);
952	if (m && vm_page_sleep(m, "pplookp", NULL))
953		goto retry;
954	return m;
955}
956
957/*
958 * Create the UPAGES for a new process.
959 * This routine directly affects the fork perf for a process.
960 */
961void
962pmap_new_proc(p)
963	struct proc *p;
964{
965	int i, updateneeded;
966	vm_object_t upobj;
967	vm_page_t m;
968	struct user *up;
969	unsigned *ptek, oldpte;
970
971	/*
972	 * allocate object for the upages
973	 */
974	if ((upobj = p->p_upages_obj) == NULL) {
975		upobj = vm_object_allocate( OBJT_DEFAULT, UPAGES);
976		p->p_upages_obj = upobj;
977	}
978
979	/* get a kernel virtual address for the UPAGES for this proc */
980	if ((up = p->p_addr) == NULL) {
981		up = (struct user *) kmem_alloc_pageable(kernel_map,
982				UPAGES * PAGE_SIZE);
983#if !defined(MAX_PERF)
984		if (up == NULL)
985			panic("pmap_new_proc: u_map allocation failed");
986#endif
987		p->p_addr = up;
988	}
989
990	ptek = (unsigned *) vtopte((vm_offset_t) up);
991
992	updateneeded = 0;
993	for(i=0;i<UPAGES;i++) {
994		/*
995		 * Get a kernel stack page
996		 */
997		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
998
999		/*
1000		 * Wire the page
1001		 */
1002		m->wire_count++;
1003		cnt.v_wire_count++;
1004
1005		oldpte = *(ptek + i);
1006		/*
1007		 * Enter the page into the kernel address space.
1008		 */
1009		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
1010		if (oldpte) {
1011			if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386)) {
1012				invlpg((vm_offset_t) up + i * PAGE_SIZE);
1013			} else {
1014				updateneeded = 1;
1015			}
1016		}
1017
1018		vm_page_wakeup(m);
1019		m->flags &= ~PG_ZERO;
1020		m->flags |= PG_MAPPED | PG_WRITEABLE;
1021		m->valid = VM_PAGE_BITS_ALL;
1022	}
1023	if (updateneeded)
1024		invltlb();
1025}
1026
1027/*
1028 * Dispose the UPAGES for a process that has exited.
1029 * This routine directly impacts the exit perf of a process.
1030 */
1031void
1032pmap_dispose_proc(p)
1033	struct proc *p;
1034{
1035	int i;
1036	vm_object_t upobj;
1037	vm_page_t m;
1038	unsigned *ptek, oldpte;
1039
1040	upobj = p->p_upages_obj;
1041
1042	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
1043	for(i=0;i<UPAGES;i++) {
1044
1045		if ((m = vm_page_lookup(upobj, i)) == NULL)
1046			panic("pmap_dispose_proc: upage already missing???");
1047
1048		m->flags |= PG_BUSY;
1049
1050		oldpte = *(ptek + i);
1051		*(ptek + i) = 0;
1052		if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386))
1053			invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
1054		vm_page_unwire(m, 0);
1055		vm_page_free(m);
1056	}
1057
1058	if (cpu_class <= CPUCLASS_386)
1059		invltlb();
1060}
1061
1062/*
1063 * Allow the UPAGES for a process to be prejudicially paged out.
1064 */
1065void
1066pmap_swapout_proc(p)
1067	struct proc *p;
1068{
1069	int i;
1070	vm_object_t upobj;
1071	vm_page_t m;
1072
1073	upobj = p->p_upages_obj;
1074	/*
1075	 * let the upages be paged
1076	 */
1077	for(i=0;i<UPAGES;i++) {
1078		if ((m = vm_page_lookup(upobj, i)) == NULL)
1079			panic("pmap_swapout_proc: upage already missing???");
1080		m->dirty = VM_PAGE_BITS_ALL;
1081		vm_page_unwire(m, 0);
1082		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
1083	}
1084}
1085
1086/*
1087 * Bring the UPAGES for a specified process back in.
1088 */
1089void
1090pmap_swapin_proc(p)
1091	struct proc *p;
1092{
1093	int i,rv;
1094	vm_object_t upobj;
1095	vm_page_t m;
1096
1097	upobj = p->p_upages_obj;
1098	for(i=0;i<UPAGES;i++) {
1099
1100		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1101
1102		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
1103			VM_PAGE_TO_PHYS(m));
1104
1105		if (m->valid != VM_PAGE_BITS_ALL) {
1106			rv = vm_pager_get_pages(upobj, &m, 1, 0);
1107#if !defined(MAX_PERF)
1108			if (rv != VM_PAGER_OK)
1109				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
1110#endif
1111			m = vm_page_lookup(upobj, i);
1112			m->valid = VM_PAGE_BITS_ALL;
1113		}
1114
1115		vm_page_wire(m);
1116		vm_page_wakeup(m);
1117		m->flags |= PG_MAPPED | PG_WRITEABLE;
1118	}
1119}
1120
1121/***************************************************
1122 * Page table page management routines.....
1123 ***************************************************/
1124
1125/*
1126 * This routine unholds page table pages, and if the hold count
1127 * drops to zero, then it decrements the wire count.
1128 */
1129static int
1130_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1131	int s;
1132
1133	while (vm_page_sleep(m, "pmuwpt", NULL));
1134
1135	if (m->hold_count == 0) {
1136		vm_offset_t pteva;
1137		/*
1138		 * unmap the page table page
1139		 */
1140		pmap->pm_pdir[m->pindex] = 0;
1141		--pmap->pm_stats.resident_count;
1142		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1143			(((unsigned) PTDpde) & PG_FRAME)) {
1144			/*
1145			 * Do a invltlb to make the invalidated mapping
1146			 * take effect immediately.
1147			 */
1148			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
1149			invltlb_1pg(pteva);
1150		}
1151
1152		if (pmap->pm_ptphint == m)
1153			pmap->pm_ptphint = NULL;
1154
1155		/*
1156		 * If the page is finally unwired, simply free it.
1157		 */
1158		--m->wire_count;
1159		if (m->wire_count == 0) {
1160
1161			if (m->flags & PG_WANTED) {
1162				m->flags &= ~PG_WANTED;
1163				wakeup(m);
1164			}
1165
1166			m->flags |= PG_BUSY;
1167			vm_page_free_zero(m);
1168			--cnt.v_wire_count;
1169		}
1170		return 1;
1171	}
1172	return 0;
1173}
1174
1175static PMAP_INLINE int
1176pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1177	vm_page_unhold(m);
1178	if (m->hold_count == 0)
1179		return _pmap_unwire_pte_hold(pmap, m);
1180	else
1181		return 0;
1182}
1183
1184/*
1185 * After removing a page table entry, this routine is used to
1186 * conditionally free the page, and manage the hold/wire counts.
1187 */
1188static int
1189pmap_unuse_pt(pmap, va, mpte)
1190	pmap_t pmap;
1191	vm_offset_t va;
1192	vm_page_t mpte;
1193{
1194	unsigned ptepindex;
1195	if (va >= UPT_MIN_ADDRESS)
1196		return 0;
1197
1198	if (mpte == NULL) {
1199		ptepindex = (va >> PDRSHIFT);
1200		if (pmap->pm_ptphint &&
1201			(pmap->pm_ptphint->pindex == ptepindex)) {
1202			mpte = pmap->pm_ptphint;
1203		} else {
1204			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1205			pmap->pm_ptphint = mpte;
1206		}
1207	}
1208
1209	return pmap_unwire_pte_hold(pmap, mpte);
1210}
1211
1212#if !defined(SMP)
1213void
1214pmap_pinit0(pmap)
1215	struct pmap *pmap;
1216{
1217	pmap->pm_pdir =
1218		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1219	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1220	pmap->pm_flags = 0;
1221	pmap->pm_count = 1;
1222	pmap->pm_ptphint = NULL;
1223	TAILQ_INIT(&pmap->pm_pvlist);
1224	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1225}
1226#else
1227void
1228pmap_pinit0(pmap)
1229	struct pmap *pmap;
1230{
1231	pmap_pinit(pmap);
1232}
1233#endif
1234
1235/*
1236 * Initialize a preallocated and zeroed pmap structure,
1237 * such as one in a vmspace structure.
1238 */
1239void
1240pmap_pinit(pmap)
1241	register struct pmap *pmap;
1242{
1243	vm_page_t ptdpg;
1244
1245	/*
1246	 * No need to allocate page table space yet but we do need a valid
1247	 * page directory table.
1248	 */
1249	if (pmap->pm_pdir == NULL)
1250		pmap->pm_pdir =
1251			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1252
1253	/*
1254	 * allocate object for the ptes
1255	 */
1256	if (pmap->pm_pteobj == NULL)
1257		pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1258
1259	/*
1260	 * allocate the page directory page
1261	 */
1262retry:
1263	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
1264			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1265
1266	ptdpg->wire_count = 1;
1267	++cnt.v_wire_count;
1268
1269	ptdpg->flags &= ~(PG_MAPPED | PG_BUSY);	/* not mapped normally */
1270	ptdpg->valid = VM_PAGE_BITS_ALL;
1271
1272	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1273	if ((ptdpg->flags & PG_ZERO) == 0)
1274		bzero(pmap->pm_pdir, PAGE_SIZE);
1275
1276	/* wire in kernel global address entries */
1277	/* XXX copies current process, does not fill in MPPTDI */
1278	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1279
1280	/* install self-referential address mapping entry */
1281	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1282		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1283
1284	pmap->pm_flags = 0;
1285	pmap->pm_count = 1;
1286	pmap->pm_ptphint = NULL;
1287	TAILQ_INIT(&pmap->pm_pvlist);
1288	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1289}
1290
1291static int
1292pmap_release_free_page(pmap, p)
1293	struct pmap *pmap;
1294	vm_page_t p;
1295{
1296	int s;
1297	unsigned *pde = (unsigned *) pmap->pm_pdir;
1298	/*
1299	 * This code optimizes the case of freeing non-busy
1300	 * page-table pages.  Those pages are zero now, and
1301	 * might as well be placed directly into the zero queue.
1302	 */
1303	if (vm_page_sleep(p, "pmaprl", NULL))
1304		return 0;
1305
1306	p->flags |= PG_BUSY;
1307
1308	/*
1309	 * Remove the page table page from the processes address space.
1310	 */
1311	pde[p->pindex] = 0;
1312	pmap->pm_stats.resident_count--;
1313
1314#if !defined(MAX_PERF)
1315	if (p->hold_count)  {
1316		panic("pmap_release: freeing held page table page");
1317	}
1318#endif
1319	/*
1320	 * Page directory pages need to have the kernel
1321	 * stuff cleared, so they can go into the zero queue also.
1322	 */
1323	if (p->pindex == PTDPTDI) {
1324		bzero(pde + KPTDI, nkpt * PTESIZE);
1325#ifdef SMP
1326		pde[MPPTDI] = 0;
1327#endif
1328		pde[APTDPTDI] = 0;
1329		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1330	}
1331
1332	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1333		pmap->pm_ptphint = NULL;
1334
1335	p->wire_count--;
1336	cnt.v_wire_count--;
1337	vm_page_free_zero(p);
1338	return 1;
1339}
1340
1341/*
1342 * this routine is called if the page table page is not
1343 * mapped correctly.
1344 */
1345static vm_page_t
1346_pmap_allocpte(pmap, ptepindex)
1347	pmap_t	pmap;
1348	unsigned ptepindex;
1349{
1350	vm_offset_t pteva, ptepa;
1351	vm_page_t m;
1352
1353	/*
1354	 * Find or fabricate a new pagetable page
1355	 */
1356	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1357			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1358
1359	if (m->queue != PQ_NONE) {
1360		int s = splvm();
1361		vm_page_unqueue(m);
1362		splx(s);
1363	}
1364
1365	if (m->wire_count == 0)
1366		cnt.v_wire_count++;
1367	m->wire_count++;
1368
1369	/*
1370	 * Increment the hold count for the page table page
1371	 * (denoting a new mapping.)
1372	 */
1373	m->hold_count++;
1374
1375	/*
1376	 * Map the pagetable page into the process address space, if
1377	 * it isn't already there.
1378	 */
1379
1380	pmap->pm_stats.resident_count++;
1381
1382	ptepa = VM_PAGE_TO_PHYS(m);
1383	pmap->pm_pdir[ptepindex] =
1384		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1385
1386	/*
1387	 * Set the page table hint
1388	 */
1389	pmap->pm_ptphint = m;
1390
1391	/*
1392	 * Try to use the new mapping, but if we cannot, then
1393	 * do it with the routine that maps the page explicitly.
1394	 */
1395	if ((m->flags & PG_ZERO) == 0) {
1396		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1397			(((unsigned) PTDpde) & PG_FRAME)) {
1398			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1399			bzero((caddr_t) pteva, PAGE_SIZE);
1400		} else {
1401			pmap_zero_page(ptepa);
1402		}
1403	}
1404
1405	m->valid = VM_PAGE_BITS_ALL;
1406	m->flags &= ~(PG_ZERO | PG_BUSY);
1407	m->flags |= PG_MAPPED;
1408
1409	return m;
1410}
1411
1412static vm_page_t
1413pmap_allocpte(pmap, va)
1414	pmap_t	pmap;
1415	vm_offset_t va;
1416{
1417	unsigned ptepindex;
1418	vm_offset_t ptepa;
1419	vm_page_t m;
1420
1421	/*
1422	 * Calculate pagetable page index
1423	 */
1424	ptepindex = va >> PDRSHIFT;
1425
1426	/*
1427	 * Get the page directory entry
1428	 */
1429	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1430
1431	/*
1432	 * This supports switching from a 4MB page to a
1433	 * normal 4K page.
1434	 */
1435	if (ptepa & PG_PS) {
1436		pmap->pm_pdir[ptepindex] = 0;
1437		ptepa = 0;
1438		invltlb();
1439	}
1440
1441	/*
1442	 * If the page table page is mapped, we just increment the
1443	 * hold count, and activate it.
1444	 */
1445	if (ptepa) {
1446		/*
1447		 * In order to get the page table page, try the
1448		 * hint first.
1449		 */
1450		if (pmap->pm_ptphint &&
1451			(pmap->pm_ptphint->pindex == ptepindex)) {
1452			m = pmap->pm_ptphint;
1453		} else {
1454			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1455			pmap->pm_ptphint = m;
1456		}
1457		m->hold_count++;
1458		return m;
1459	}
1460	/*
1461	 * Here if the pte page isn't mapped, or if it has been deallocated.
1462	 */
1463	return _pmap_allocpte(pmap, ptepindex);
1464}
1465
1466
1467/***************************************************
1468* Pmap allocation/deallocation routines.
1469 ***************************************************/
1470
1471/*
1472 * Release any resources held by the given physical map.
1473 * Called when a pmap initialized by pmap_pinit is being released.
1474 * Should only be called if the map contains no valid mappings.
1475 */
1476void
1477pmap_release(pmap)
1478	register struct pmap *pmap;
1479{
1480	vm_page_t p,n,ptdpg;
1481	vm_object_t object = pmap->pm_pteobj;
1482	int curgeneration;
1483
1484#if defined(DIAGNOSTIC)
1485	if (object->ref_count != 1)
1486		panic("pmap_release: pteobj reference count != 1");
1487#endif
1488
1489	ptdpg = NULL;
1490retry:
1491	curgeneration = object->generation;
1492	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1493		n = TAILQ_NEXT(p, listq);
1494		if (p->pindex == PTDPTDI) {
1495			ptdpg = p;
1496			continue;
1497		}
1498		while (1) {
1499			if (!pmap_release_free_page(pmap, p) &&
1500				(object->generation != curgeneration))
1501				goto retry;
1502		}
1503	}
1504
1505	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1506		goto retry;
1507}
1508
1509/*
1510 * grow the number of kernel page table entries, if needed
1511 */
1512void
1513pmap_growkernel(vm_offset_t addr)
1514{
1515	struct proc *p;
1516	struct pmap *pmap;
1517	int s;
1518	vm_offset_t ptppaddr;
1519	vm_page_t nkpg;
1520#ifdef SMP
1521	int i;
1522#endif
1523	pd_entry_t newpdir;
1524
1525	s = splhigh();
1526	if (kernel_vm_end == 0) {
1527		kernel_vm_end = KERNBASE;
1528		nkpt = 0;
1529		while (pdir_pde(PTD, kernel_vm_end)) {
1530			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1531			nkpt++;
1532		}
1533	}
1534	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1535	while (kernel_vm_end < addr) {
1536		if (pdir_pde(PTD, kernel_vm_end)) {
1537			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1538			continue;
1539		}
1540
1541		/*
1542		 * This index is bogus, but out of the way
1543		 */
1544		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1545#if !defined(MAX_PERF)
1546		if (!nkpg)
1547			panic("pmap_growkernel: no memory to grow kernel");
1548#endif
1549
1550		nkpt++;
1551
1552		vm_page_wire(nkpg);
1553		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1554		pmap_zero_page(ptppaddr);
1555		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1556		pdir_pde(PTD, kernel_vm_end) = newpdir;
1557
1558#ifdef SMP
1559		for (i = 0; i < mp_ncpus; i++) {
1560			if (IdlePTDS[i])
1561				pdir_pde(IdlePTDS[i], kernel_vm_end) = newpdir;
1562		}
1563#endif
1564
1565		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1566			if (p->p_vmspace) {
1567				pmap = &p->p_vmspace->vm_pmap;
1568				*pmap_pde(pmap, kernel_vm_end) = newpdir;
1569			}
1570		}
1571		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1572		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1573	}
1574	splx(s);
1575}
1576
1577/*
1578 *	Retire the given physical map from service.
1579 *	Should only be called if the map contains
1580 *	no valid mappings.
1581 */
1582void
1583pmap_destroy(pmap)
1584	register pmap_t pmap;
1585{
1586	int count;
1587
1588	if (pmap == NULL)
1589		return;
1590
1591	count = --pmap->pm_count;
1592	if (count == 0) {
1593		pmap_release(pmap);
1594#if !defined(MAX_PERF)
1595		panic("destroying a pmap is not yet implemented");
1596#endif
1597	}
1598}
1599
1600/*
1601 *	Add a reference to the specified pmap.
1602 */
1603void
1604pmap_reference(pmap)
1605	pmap_t pmap;
1606{
1607	if (pmap != NULL) {
1608		pmap->pm_count++;
1609	}
1610}
1611
1612/***************************************************
1613* page management routines.
1614 ***************************************************/
1615
1616/*
1617 * free the pv_entry back to the free list
1618 */
1619static PMAP_INLINE void
1620free_pv_entry(pv)
1621	pv_entry_t pv;
1622{
1623	pv_entry_count--;
1624	zfreei(pvzone, pv);
1625}
1626
1627/*
1628 * get a new pv_entry, allocating a block from the system
1629 * when needed.
1630 * the memory allocation is performed bypassing the malloc code
1631 * because of the possibility of allocations at interrupt time.
1632 */
1633static pv_entry_t
1634get_pv_entry(void)
1635{
1636	pv_entry_count++;
1637	if (pv_entry_high_water &&
1638		(pv_entry_count > pv_entry_high_water) &&
1639		(pmap_pagedaemon_waken == 0)) {
1640		pmap_pagedaemon_waken = 1;
1641		wakeup (&vm_pages_needed);
1642	}
1643	return zalloci(pvzone);
1644}
1645
1646/*
1647 * This routine is very drastic, but can save the system
1648 * in a pinch.
1649 */
1650void
1651pmap_collect() {
1652	pv_table_t *ppv;
1653	int i;
1654	vm_offset_t pa;
1655	vm_page_t m;
1656	static int warningdone=0;
1657
1658	if (pmap_pagedaemon_waken == 0)
1659		return;
1660
1661	if (warningdone < 5) {
1662		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1663		warningdone++;
1664	}
1665
1666	for(i = 0; i < pv_npg; i++) {
1667		if ((ppv = &pv_table[i]) == 0)
1668			continue;
1669		m = ppv->pv_vm_page;
1670		if ((pa = VM_PAGE_TO_PHYS(m)) == 0)
1671			continue;
1672		if (m->wire_count || m->hold_count || m->busy ||
1673			(m->flags & PG_BUSY))
1674			continue;
1675		pmap_remove_all(pa);
1676	}
1677	pmap_pagedaemon_waken = 0;
1678}
1679
1680
1681/*
1682 * If it is the first entry on the list, it is actually
1683 * in the header and we must copy the following entry up
1684 * to the header.  Otherwise we must search the list for
1685 * the entry.  In either case we free the now unused entry.
1686 */
1687
1688static int
1689pmap_remove_entry(pmap, ppv, va)
1690	struct pmap *pmap;
1691	pv_table_t *ppv;
1692	vm_offset_t va;
1693{
1694	pv_entry_t pv;
1695	int rtval;
1696	int s;
1697
1698	s = splvm();
1699	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1700		for (pv = TAILQ_FIRST(&ppv->pv_list);
1701			pv;
1702			pv = TAILQ_NEXT(pv, pv_list)) {
1703			if (pmap == pv->pv_pmap && va == pv->pv_va)
1704				break;
1705		}
1706	} else {
1707		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1708			pv;
1709			pv = TAILQ_NEXT(pv, pv_plist)) {
1710			if (va == pv->pv_va)
1711				break;
1712		}
1713	}
1714
1715	rtval = 0;
1716	if (pv) {
1717
1718		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1719		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1720		ppv->pv_list_count--;
1721		if (TAILQ_FIRST(&ppv->pv_list) == NULL)
1722			ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
1723
1724		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1725		free_pv_entry(pv);
1726	}
1727
1728	splx(s);
1729	return rtval;
1730}
1731
1732/*
1733 * Create a pv entry for page at pa for
1734 * (pmap, va).
1735 */
1736static void
1737pmap_insert_entry(pmap, va, mpte, pa)
1738	pmap_t pmap;
1739	vm_offset_t va;
1740	vm_page_t mpte;
1741	vm_offset_t pa;
1742{
1743
1744	int s;
1745	pv_entry_t pv;
1746	pv_table_t *ppv;
1747
1748	s = splvm();
1749	pv = get_pv_entry();
1750	pv->pv_va = va;
1751	pv->pv_pmap = pmap;
1752	pv->pv_ptem = mpte;
1753
1754	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1755
1756	ppv = pa_to_pvh(pa);
1757	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1758	ppv->pv_list_count++;
1759
1760	splx(s);
1761}
1762
1763/*
1764 * pmap_remove_pte: do the things to unmap a page in a process
1765 */
1766static int
1767pmap_remove_pte(pmap, ptq, va)
1768	struct pmap *pmap;
1769	unsigned *ptq;
1770	vm_offset_t va;
1771{
1772	unsigned oldpte;
1773	pv_table_t *ppv;
1774
1775	oldpte = *ptq;
1776	*ptq = 0;
1777	if (oldpte & PG_W)
1778		pmap->pm_stats.wired_count -= 1;
1779	/*
1780	 * Machines that don't support invlpg, also don't support
1781	 * PG_G.
1782	 */
1783	if (oldpte & PG_G)
1784		invlpg(va);
1785	pmap->pm_stats.resident_count -= 1;
1786	if (oldpte & PG_MANAGED) {
1787		ppv = pa_to_pvh(oldpte);
1788		if (oldpte & PG_M) {
1789#if defined(PMAP_DIAGNOSTIC)
1790			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1791				printf(
1792	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1793				    va, oldpte);
1794			}
1795#endif
1796			if (pmap_track_modified(va))
1797				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1798		}
1799		if (oldpte & PG_A)
1800			ppv->pv_vm_page->flags |= PG_REFERENCED;
1801		return pmap_remove_entry(pmap, ppv, va);
1802	} else {
1803		return pmap_unuse_pt(pmap, va, NULL);
1804	}
1805
1806	return 0;
1807}
1808
1809/*
1810 * Remove a single page from a process address space
1811 */
1812static void
1813pmap_remove_page(pmap, va)
1814	struct pmap *pmap;
1815	register vm_offset_t va;
1816{
1817	register unsigned *ptq;
1818
1819	/*
1820	 * if there is no pte for this address, just skip it!!!
1821	 */
1822	if (*pmap_pde(pmap, va) == 0) {
1823		return;
1824	}
1825
1826	/*
1827	 * get a local va for mappings for this pmap.
1828	 */
1829	ptq = get_ptbase(pmap) + i386_btop(va);
1830	if (*ptq) {
1831		(void) pmap_remove_pte(pmap, ptq, va);
1832		invltlb_1pg(va);
1833	}
1834	return;
1835}
1836
1837/*
1838 *	Remove the given range of addresses from the specified map.
1839 *
1840 *	It is assumed that the start and end are properly
1841 *	rounded to the page size.
1842 */
1843void
1844pmap_remove(pmap, sva, eva)
1845	struct pmap *pmap;
1846	register vm_offset_t sva;
1847	register vm_offset_t eva;
1848{
1849	register unsigned *ptbase;
1850	vm_offset_t pdnxt;
1851	vm_offset_t ptpaddr;
1852	vm_offset_t sindex, eindex;
1853	int anyvalid;
1854
1855	if (pmap == NULL)
1856		return;
1857
1858	if (pmap->pm_stats.resident_count == 0)
1859		return;
1860
1861	/*
1862	 * special handling of removing one page.  a very
1863	 * common operation and easy to short circuit some
1864	 * code.
1865	 */
1866	if (((sva + PAGE_SIZE) == eva) &&
1867		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1868		pmap_remove_page(pmap, sva);
1869		return;
1870	}
1871
1872	anyvalid = 0;
1873
1874	/*
1875	 * Get a local virtual address for the mappings that are being
1876	 * worked with.
1877	 */
1878	ptbase = get_ptbase(pmap);
1879
1880	sindex = i386_btop(sva);
1881	eindex = i386_btop(eva);
1882
1883	for (; sindex < eindex; sindex = pdnxt) {
1884		unsigned pdirindex;
1885
1886		/*
1887		 * Calculate index for next page table.
1888		 */
1889		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1890		if (pmap->pm_stats.resident_count == 0)
1891			break;
1892
1893		pdirindex = sindex / NPDEPG;
1894		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1895			pmap->pm_pdir[pdirindex] = 0;
1896			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1897			anyvalid++;
1898			continue;
1899		}
1900
1901		/*
1902		 * Weed out invalid mappings. Note: we assume that the page
1903		 * directory table is always allocated, and in kernel virtual.
1904		 */
1905		if (ptpaddr == 0)
1906			continue;
1907
1908		/*
1909		 * Limit our scan to either the end of the va represented
1910		 * by the current page table page, or to the end of the
1911		 * range being removed.
1912		 */
1913		if (pdnxt > eindex) {
1914			pdnxt = eindex;
1915		}
1916
1917		for ( ;sindex != pdnxt; sindex++) {
1918			vm_offset_t va;
1919			if (ptbase[sindex] == 0) {
1920				continue;
1921			}
1922			va = i386_ptob(sindex);
1923
1924			anyvalid++;
1925			if (pmap_remove_pte(pmap,
1926				ptbase + sindex, va))
1927				break;
1928		}
1929	}
1930
1931	if (anyvalid) {
1932		invltlb();
1933	}
1934}
1935
1936/*
1937 *	Routine:	pmap_remove_all
1938 *	Function:
1939 *		Removes this physical page from
1940 *		all physical maps in which it resides.
1941 *		Reflects back modify bits to the pager.
1942 *
1943 *	Notes:
1944 *		Original versions of this routine were very
1945 *		inefficient because they iteratively called
1946 *		pmap_remove (slow...)
1947 */
1948
1949static void
1950pmap_remove_all(pa)
1951	vm_offset_t pa;
1952{
1953	register pv_entry_t pv;
1954	pv_table_t *ppv;
1955	register unsigned *pte, tpte;
1956	int nmodify;
1957	int update_needed;
1958	int s;
1959
1960	nmodify = 0;
1961	update_needed = 0;
1962#if defined(PMAP_DIAGNOSTIC)
1963	/*
1964	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1965	 * pages!
1966	 */
1967	if (!pmap_is_managed(pa)) {
1968		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", pa);
1969	}
1970#endif
1971
1972	s = splvm();
1973	ppv = pa_to_pvh(pa);
1974	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1975		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1976
1977		pv->pv_pmap->pm_stats.resident_count--;
1978
1979		tpte = *pte;
1980		*pte = 0;
1981		if (tpte & PG_W)
1982			pv->pv_pmap->pm_stats.wired_count--;
1983
1984		if (tpte & PG_A)
1985			ppv->pv_vm_page->flags |= PG_REFERENCED;
1986
1987		/*
1988		 * Update the vm_page_t clean and reference bits.
1989		 */
1990		if (tpte & PG_M) {
1991#if defined(PMAP_DIAGNOSTIC)
1992			if (pmap_nw_modified((pt_entry_t) tpte)) {
1993				printf(
1994	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1995				    pv->pv_va, tpte);
1996			}
1997#endif
1998			if (pmap_track_modified(pv->pv_va))
1999				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2000		}
2001		if (!update_needed &&
2002			((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
2003			(pv->pv_pmap == kernel_pmap))) {
2004			update_needed = 1;
2005		}
2006
2007		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2008		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2009		ppv->pv_list_count--;
2010		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2011		free_pv_entry(pv);
2012	}
2013
2014	ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
2015
2016	if (update_needed)
2017		invltlb();
2018
2019	splx(s);
2020	return;
2021}
2022
2023/*
2024 *	Set the physical protection on the
2025 *	specified range of this map as requested.
2026 */
2027void
2028pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2029{
2030	register unsigned *ptbase;
2031	vm_offset_t pdnxt, ptpaddr;
2032	vm_pindex_t sindex, eindex;
2033	int anychanged;
2034
2035
2036	if (pmap == NULL)
2037		return;
2038
2039	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2040		pmap_remove(pmap, sva, eva);
2041		return;
2042	}
2043
2044	if (prot & VM_PROT_WRITE)
2045		return;
2046
2047	anychanged = 0;
2048
2049	ptbase = get_ptbase(pmap);
2050
2051	sindex = i386_btop(sva);
2052	eindex = i386_btop(eva);
2053
2054	for (; sindex < eindex; sindex = pdnxt) {
2055
2056		unsigned pdirindex;
2057
2058		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2059
2060		pdirindex = sindex / NPDEPG;
2061		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
2062			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2063			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2064			anychanged++;
2065			continue;
2066		}
2067
2068		/*
2069		 * Weed out invalid mappings. Note: we assume that the page
2070		 * directory table is always allocated, and in kernel virtual.
2071		 */
2072		if (ptpaddr == 0)
2073			continue;
2074
2075		if (pdnxt > eindex) {
2076			pdnxt = eindex;
2077		}
2078
2079		for (; sindex != pdnxt; sindex++) {
2080
2081			unsigned pbits;
2082			pv_table_t *ppv;
2083
2084			pbits = ptbase[sindex];
2085
2086			if (pbits & PG_MANAGED) {
2087				ppv = NULL;
2088				if (pbits & PG_A) {
2089					ppv = pa_to_pvh(pbits);
2090					ppv->pv_vm_page->flags |= PG_REFERENCED;
2091					pbits &= ~PG_A;
2092				}
2093				if (pbits & PG_M) {
2094					if (pmap_track_modified(i386_ptob(sindex))) {
2095						if (ppv == NULL)
2096							ppv = pa_to_pvh(pbits);
2097						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2098						pbits &= ~PG_M;
2099					}
2100				}
2101			}
2102
2103			pbits &= ~PG_RW;
2104
2105			if (pbits != ptbase[sindex]) {
2106				ptbase[sindex] = pbits;
2107				anychanged = 1;
2108			}
2109		}
2110	}
2111	if (anychanged)
2112		invltlb();
2113}
2114
2115/*
2116 *	Insert the given physical page (p) at
2117 *	the specified virtual address (v) in the
2118 *	target physical map with the protection requested.
2119 *
2120 *	If specified, the page will be wired down, meaning
2121 *	that the related pte can not be reclaimed.
2122 *
2123 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2124 *	or lose information.  That is, this routine must actually
2125 *	insert this page into the given map NOW.
2126 */
2127void
2128pmap_enter(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_prot_t prot,
2129	   boolean_t wired)
2130{
2131	register unsigned *pte;
2132	vm_offset_t opa;
2133	vm_offset_t origpte, newpte;
2134	vm_page_t mpte;
2135
2136	if (pmap == NULL)
2137		return;
2138
2139	va &= PG_FRAME;
2140#ifdef PMAP_DIAGNOSTIC
2141	if (va > VM_MAX_KERNEL_ADDRESS)
2142		panic("pmap_enter: toobig");
2143	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2144		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2145#endif
2146
2147	mpte = NULL;
2148	/*
2149	 * In the case that a page table page is not
2150	 * resident, we are creating it here.
2151	 */
2152	if (va < UPT_MIN_ADDRESS) {
2153		mpte = pmap_allocpte(pmap, va);
2154	}
2155#if 0 && defined(PMAP_DIAGNOSTIC)
2156	else {
2157		vm_offset_t *pdeaddr = (vm_offset_t *)pmap_pde(pmap, va);
2158		if (((origpte = (vm_offset_t) *pdeaddr) & PG_V) == 0) {
2159			panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
2160				pmap->pm_pdir[PTDPTDI], origpte, va);
2161		}
2162		if (smp_active) {
2163			pdeaddr = (vm_offset_t *) IdlePTDS[cpuid];
2164			if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
2165				if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
2166					printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
2167				printf("cpuid: %d, pdeaddr: 0x%x\n", cpuid, pdeaddr);
2168				panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
2169					pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
2170			}
2171		}
2172	}
2173#endif
2174
2175	pte = pmap_pte(pmap, va);
2176
2177#if !defined(MAX_PERF)
2178	/*
2179	 * Page Directory table entry not valid, we need a new PT page
2180	 */
2181	if (pte == NULL) {
2182		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2183			(void *)pmap->pm_pdir[PTDPTDI], va);
2184	}
2185#endif
2186
2187	origpte = *(vm_offset_t *)pte;
2188	pa &= PG_FRAME;
2189	opa = origpte & PG_FRAME;
2190
2191#if !defined(MAX_PERF)
2192	if (origpte & PG_PS)
2193		panic("pmap_enter: attempted pmap_enter on 4MB page");
2194#endif
2195
2196	/*
2197	 * Mapping has not changed, must be protection or wiring change.
2198	 */
2199	if (origpte && (opa == pa)) {
2200		/*
2201		 * Wiring change, just update stats. We don't worry about
2202		 * wiring PT pages as they remain resident as long as there
2203		 * are valid mappings in them. Hence, if a user page is wired,
2204		 * the PT page will be also.
2205		 */
2206		if (wired && ((origpte & PG_W) == 0))
2207			pmap->pm_stats.wired_count++;
2208		else if (!wired && (origpte & PG_W))
2209			pmap->pm_stats.wired_count--;
2210
2211#if defined(PMAP_DIAGNOSTIC)
2212		if (pmap_nw_modified((pt_entry_t) origpte)) {
2213			printf(
2214	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2215			    va, origpte);
2216		}
2217#endif
2218
2219		/*
2220		 * Remove extra pte reference
2221		 */
2222		if (mpte)
2223			mpte->hold_count--;
2224
2225		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2226			if ((origpte & PG_RW) == 0) {
2227				*pte |= PG_RW;
2228				invltlb_1pg(va);
2229			}
2230			return;
2231		}
2232
2233		/*
2234		 * We might be turning off write access to the page,
2235		 * so we go ahead and sense modify status.
2236		 */
2237		if (origpte & PG_MANAGED) {
2238			if ((origpte & PG_M) && pmap_track_modified(va)) {
2239				pv_table_t *ppv;
2240				ppv = pa_to_pvh(opa);
2241				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2242			}
2243			pa |= PG_MANAGED;
2244		}
2245		goto validate;
2246	}
2247	/*
2248	 * Mapping has changed, invalidate old range and fall through to
2249	 * handle validating new mapping.
2250	 */
2251	if (opa) {
2252		int err;
2253		err = pmap_remove_pte(pmap, pte, va);
2254#if !defined(MAX_PERF)
2255		if (err)
2256			panic("pmap_enter: pte vanished, va: 0x%x", va);
2257#endif
2258	}
2259
2260	/*
2261	 * Enter on the PV list if part of our managed memory Note that we
2262	 * raise IPL while manipulating pv_table since pmap_enter can be
2263	 * called at interrupt time.
2264	 */
2265	if (pmap_is_managed(pa)) {
2266		pmap_insert_entry(pmap, va, mpte, pa);
2267		pa |= PG_MANAGED;
2268	}
2269
2270	/*
2271	 * Increment counters
2272	 */
2273	pmap->pm_stats.resident_count++;
2274	if (wired)
2275		pmap->pm_stats.wired_count++;
2276
2277validate:
2278	/*
2279	 * Now validate mapping with desired protection/wiring.
2280	 */
2281	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2282
2283	if (wired)
2284		newpte |= PG_W;
2285	if (va < UPT_MIN_ADDRESS)
2286		newpte |= PG_U;
2287	if (pmap == kernel_pmap)
2288		newpte |= pgeflag;
2289
2290	/*
2291	 * if the mapping or permission bits are different, we need
2292	 * to update the pte.
2293	 */
2294	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2295		*pte = newpte | PG_A;
2296		if (origpte)
2297			invltlb_1pg(va);
2298	}
2299}
2300
2301/*
2302 * this code makes some *MAJOR* assumptions:
2303 * 1. Current pmap & pmap exists.
2304 * 2. Not wired.
2305 * 3. Read access.
2306 * 4. No page table pages.
2307 * 5. Tlbflush is deferred to calling procedure.
2308 * 6. Page IS managed.
2309 * but is *MUCH* faster than pmap_enter...
2310 */
2311
2312static vm_page_t
2313pmap_enter_quick(pmap, va, pa, mpte)
2314	register pmap_t pmap;
2315	vm_offset_t va;
2316	register vm_offset_t pa;
2317	vm_page_t mpte;
2318{
2319	register unsigned *pte;
2320
2321	/*
2322	 * In the case that a page table page is not
2323	 * resident, we are creating it here.
2324	 */
2325	if (va < UPT_MIN_ADDRESS) {
2326		unsigned ptepindex;
2327		vm_offset_t ptepa;
2328
2329		/*
2330		 * Calculate pagetable page index
2331		 */
2332		ptepindex = va >> PDRSHIFT;
2333		if (mpte && (mpte->pindex == ptepindex)) {
2334			mpte->hold_count++;
2335		} else {
2336retry:
2337			/*
2338			 * Get the page directory entry
2339			 */
2340			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2341
2342			/*
2343			 * If the page table page is mapped, we just increment
2344			 * the hold count, and activate it.
2345			 */
2346			if (ptepa) {
2347#if !defined(MAX_PERF)
2348				if (ptepa & PG_PS)
2349					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2350#endif
2351				if (pmap->pm_ptphint &&
2352					(pmap->pm_ptphint->pindex == ptepindex)) {
2353					mpte = pmap->pm_ptphint;
2354				} else {
2355					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2356					pmap->pm_ptphint = mpte;
2357				}
2358				if (mpte == NULL)
2359					goto retry;
2360				mpte->hold_count++;
2361			} else {
2362				mpte = _pmap_allocpte(pmap, ptepindex);
2363			}
2364		}
2365	} else {
2366		mpte = NULL;
2367	}
2368
2369	/*
2370	 * This call to vtopte makes the assumption that we are
2371	 * entering the page into the current pmap.  In order to support
2372	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2373	 * But that isn't as quick as vtopte.
2374	 */
2375	pte = (unsigned *)vtopte(va);
2376	if (*pte) {
2377		if (mpte)
2378			pmap_unwire_pte_hold(pmap, mpte);
2379		return 0;
2380	}
2381
2382	/*
2383	 * Enter on the PV list if part of our managed memory Note that we
2384	 * raise IPL while manipulating pv_table since pmap_enter can be
2385	 * called at interrupt time.
2386	 */
2387	pmap_insert_entry(pmap, va, mpte, pa);
2388
2389	/*
2390	 * Increment counters
2391	 */
2392	pmap->pm_stats.resident_count++;
2393
2394	/*
2395	 * Now validate mapping with RO protection
2396	 */
2397	*pte = pa | PG_V | PG_U | PG_MANAGED;
2398
2399	return mpte;
2400}
2401
2402#define MAX_INIT_PT (96)
2403/*
2404 * pmap_object_init_pt preloads the ptes for a given object
2405 * into the specified pmap.  This eliminates the blast of soft
2406 * faults on process startup and immediately after an mmap.
2407 */
2408void
2409pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2410	pmap_t pmap;
2411	vm_offset_t addr;
2412	vm_object_t object;
2413	vm_pindex_t pindex;
2414	vm_size_t size;
2415	int limit;
2416{
2417	vm_offset_t tmpidx;
2418	int psize;
2419	vm_page_t p, mpte;
2420	int objpgs;
2421
2422	if (!pmap)
2423		return;
2424
2425	/*
2426	 * This code maps large physical mmap regions into the
2427	 * processor address space.  Note that some shortcuts
2428	 * are taken, but the code works.
2429	 */
2430	if (pseflag &&
2431		(object->type == OBJT_DEVICE) &&
2432		((addr & (NBPDR - 1)) == 0) &&
2433		((size & (NBPDR - 1)) == 0) ) {
2434		int i;
2435		int s;
2436		vm_page_t m[1];
2437		unsigned int ptepindex;
2438		int npdes;
2439		vm_offset_t ptepa;
2440
2441		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2442			return;
2443
2444retry:
2445		p = vm_page_lookup(object, pindex);
2446		if (p && vm_page_sleep(p, "init4p", NULL))
2447			goto retry;
2448
2449		if (p == NULL) {
2450			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2451			if (p == NULL)
2452				return;
2453			m[0] = p;
2454
2455			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2456				vm_page_free(p);
2457				return;
2458			}
2459
2460			p = vm_page_lookup(object, pindex);
2461			vm_page_wakeup(p);
2462		}
2463
2464		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
2465		if (ptepa & (NBPDR - 1)) {
2466			return;
2467		}
2468
2469		p->valid = VM_PAGE_BITS_ALL;
2470
2471		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2472		npdes = size >> PDRSHIFT;
2473		for(i=0;i<npdes;i++) {
2474			pmap->pm_pdir[ptepindex] =
2475				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
2476			ptepa += NBPDR;
2477			ptepindex += 1;
2478		}
2479		p->flags |= PG_MAPPED;
2480		invltlb();
2481		return;
2482	}
2483
2484	psize = i386_btop(size);
2485
2486	if ((object->type != OBJT_VNODE) ||
2487		(limit && (psize > MAX_INIT_PT) &&
2488			(object->resident_page_count > MAX_INIT_PT))) {
2489		return;
2490	}
2491
2492	if (psize + pindex > object->size)
2493		psize = object->size - pindex;
2494
2495	mpte = NULL;
2496	/*
2497	 * if we are processing a major portion of the object, then scan the
2498	 * entire thing.
2499	 */
2500	if (psize > (object->size >> 2)) {
2501		objpgs = psize;
2502
2503		for (p = TAILQ_FIRST(&object->memq);
2504		    ((objpgs > 0) && (p != NULL));
2505		    p = TAILQ_NEXT(p, listq)) {
2506
2507			tmpidx = p->pindex;
2508			if (tmpidx < pindex) {
2509				continue;
2510			}
2511			tmpidx -= pindex;
2512			if (tmpidx >= psize) {
2513				continue;
2514			}
2515			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2516				(p->busy == 0) &&
2517			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2518				if ((p->queue - p->pc) == PQ_CACHE)
2519					vm_page_deactivate(p);
2520				p->flags |= PG_BUSY;
2521				mpte = pmap_enter_quick(pmap,
2522					addr + i386_ptob(tmpidx),
2523					VM_PAGE_TO_PHYS(p), mpte);
2524				p->flags |= PG_MAPPED;
2525				vm_page_wakeup(p);
2526			}
2527			objpgs -= 1;
2528		}
2529	} else {
2530		/*
2531		 * else lookup the pages one-by-one.
2532		 */
2533		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2534			p = vm_page_lookup(object, tmpidx + pindex);
2535			if (p &&
2536			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2537				(p->busy == 0) &&
2538			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2539				if ((p->queue - p->pc) == PQ_CACHE)
2540					vm_page_deactivate(p);
2541				p->flags |= PG_BUSY;
2542				mpte = pmap_enter_quick(pmap,
2543					addr + i386_ptob(tmpidx),
2544					VM_PAGE_TO_PHYS(p), mpte);
2545				p->flags |= PG_MAPPED;
2546				vm_page_wakeup(p);
2547			}
2548		}
2549	}
2550	return;
2551}
2552
2553/*
2554 * pmap_prefault provides a quick way of clustering
2555 * pagefaults into a processes address space.  It is a "cousin"
2556 * of pmap_object_init_pt, except it runs at page fault time instead
2557 * of mmap time.
2558 */
2559#define PFBAK 4
2560#define PFFOR 4
2561#define PAGEORDER_SIZE (PFBAK+PFFOR)
2562
2563static int pmap_prefault_pageorder[] = {
2564	-PAGE_SIZE, PAGE_SIZE,
2565	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2566	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2567	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2568};
2569
2570void
2571pmap_prefault(pmap, addra, entry)
2572	pmap_t pmap;
2573	vm_offset_t addra;
2574	vm_map_entry_t entry;
2575{
2576	int i;
2577	vm_offset_t starta;
2578	vm_offset_t addr;
2579	vm_pindex_t pindex;
2580	vm_page_t m, mpte;
2581	vm_object_t object;
2582
2583	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
2584		return;
2585
2586	object = entry->object.vm_object;
2587
2588	starta = addra - PFBAK * PAGE_SIZE;
2589	if (starta < entry->start) {
2590		starta = entry->start;
2591	} else if (starta > addra) {
2592		starta = 0;
2593	}
2594
2595	mpte = NULL;
2596	for (i = 0; i < PAGEORDER_SIZE; i++) {
2597		vm_object_t lobject;
2598		unsigned *pte;
2599
2600		addr = addra + pmap_prefault_pageorder[i];
2601		if (addr > addra + (PFFOR * PAGE_SIZE))
2602			addr = 0;
2603
2604		if (addr < starta || addr >= entry->end)
2605			continue;
2606
2607		if ((*pmap_pde(pmap, addr)) == NULL)
2608			continue;
2609
2610		pte = (unsigned *) vtopte(addr);
2611		if (*pte)
2612			continue;
2613
2614		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2615		lobject = object;
2616		for (m = vm_page_lookup(lobject, pindex);
2617		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2618		    lobject = lobject->backing_object) {
2619			if (lobject->backing_object_offset & PAGE_MASK)
2620				break;
2621			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2622			m = vm_page_lookup(lobject->backing_object, pindex);
2623		}
2624
2625		/*
2626		 * give-up when a page is not in memory
2627		 */
2628		if (m == NULL)
2629			break;
2630
2631		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2632			(m->busy == 0) &&
2633		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2634
2635			if ((m->queue - m->pc) == PQ_CACHE) {
2636				vm_page_deactivate(m);
2637			}
2638			m->flags |= PG_BUSY;
2639			mpte = pmap_enter_quick(pmap, addr,
2640				VM_PAGE_TO_PHYS(m), mpte);
2641			m->flags |= PG_MAPPED;
2642			vm_page_wakeup(m);
2643		}
2644	}
2645}
2646
2647/*
2648 *	Routine:	pmap_change_wiring
2649 *	Function:	Change the wiring attribute for a map/virtual-address
2650 *			pair.
2651 *	In/out conditions:
2652 *			The mapping must already exist in the pmap.
2653 */
2654void
2655pmap_change_wiring(pmap, va, wired)
2656	register pmap_t pmap;
2657	vm_offset_t va;
2658	boolean_t wired;
2659{
2660	register unsigned *pte;
2661
2662	if (pmap == NULL)
2663		return;
2664
2665	pte = pmap_pte(pmap, va);
2666
2667	if (wired && !pmap_pte_w(pte))
2668		pmap->pm_stats.wired_count++;
2669	else if (!wired && pmap_pte_w(pte))
2670		pmap->pm_stats.wired_count--;
2671
2672	/*
2673	 * Wiring is not a hardware characteristic so there is no need to
2674	 * invalidate TLB.
2675	 */
2676	pmap_pte_set_w(pte, wired);
2677}
2678
2679
2680
2681/*
2682 *	Copy the range specified by src_addr/len
2683 *	from the source map to the range dst_addr/len
2684 *	in the destination map.
2685 *
2686 *	This routine is only advisory and need not do anything.
2687 */
2688
2689void
2690pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2691	pmap_t dst_pmap, src_pmap;
2692	vm_offset_t dst_addr;
2693	vm_size_t len;
2694	vm_offset_t src_addr;
2695{
2696	vm_offset_t addr;
2697	vm_offset_t end_addr = src_addr + len;
2698	vm_offset_t pdnxt;
2699	unsigned src_frame, dst_frame;
2700
2701	if (dst_addr != src_addr)
2702		return;
2703
2704	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2705	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2706		return;
2707	}
2708
2709	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2710	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2711		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2712		invltlb();
2713	}
2714
2715	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2716		unsigned *src_pte, *dst_pte;
2717		vm_page_t dstmpte, srcmpte;
2718		vm_offset_t srcptepaddr;
2719		unsigned ptepindex;
2720
2721#if !defined(MAX_PERF)
2722		if (addr >= UPT_MIN_ADDRESS)
2723			panic("pmap_copy: invalid to pmap_copy page tables\n");
2724#endif
2725
2726		/*
2727		 * Don't let optional prefaulting of pages make us go
2728		 * way below the low water mark of free pages or way
2729		 * above high water mark of used pv entries.
2730		 */
2731		if (cnt.v_free_count < cnt.v_free_reserved ||
2732		    pv_entry_count > pv_entry_high_water)
2733			break;
2734
2735		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2736		ptepindex = addr >> PDRSHIFT;
2737
2738		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2739		if (srcptepaddr == 0)
2740			continue;
2741
2742		if (srcptepaddr & PG_PS) {
2743			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2744				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2745				dst_pmap->pm_stats.resident_count += NBPDR;
2746			}
2747			continue;
2748		}
2749
2750		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2751		if ((srcmpte == NULL) ||
2752			(srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2753			continue;
2754
2755		if (pdnxt > end_addr)
2756			pdnxt = end_addr;
2757
2758		src_pte = (unsigned *) vtopte(addr);
2759		dst_pte = (unsigned *) avtopte(addr);
2760		while (addr < pdnxt) {
2761			unsigned ptetemp;
2762			ptetemp = *src_pte;
2763			/*
2764			 * we only virtual copy managed pages
2765			 */
2766			if ((ptetemp & PG_MANAGED) != 0) {
2767				/*
2768				 * We have to check after allocpte for the
2769				 * pte still being around...  allocpte can
2770				 * block.
2771				 */
2772				dstmpte = pmap_allocpte(dst_pmap, addr);
2773				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2774					/*
2775					 * Clear the modified and
2776					 * accessed (referenced) bits
2777					 * during the copy.
2778					 */
2779					*dst_pte = ptetemp & ~(PG_M | PG_A);
2780					dst_pmap->pm_stats.resident_count++;
2781					pmap_insert_entry(dst_pmap, addr,
2782						dstmpte,
2783						(ptetemp & PG_FRAME));
2784	 			} else {
2785					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2786				}
2787				if (dstmpte->hold_count >= srcmpte->hold_count)
2788					break;
2789			}
2790			addr += PAGE_SIZE;
2791			src_pte++;
2792			dst_pte++;
2793		}
2794	}
2795}
2796
2797/*
2798 *	Routine:	pmap_kernel
2799 *	Function:
2800 *		Returns the physical map handle for the kernel.
2801 */
2802pmap_t
2803pmap_kernel()
2804{
2805	return (kernel_pmap);
2806}
2807
2808/*
2809 *	pmap_zero_page zeros the specified (machine independent)
2810 *	page by mapping the page into virtual memory and using
2811 *	bzero to clear its contents, one machine dependent page
2812 *	at a time.
2813 */
2814void
2815pmap_zero_page(phys)
2816	vm_offset_t phys;
2817{
2818#ifdef SMP
2819#if !defined(MAX_PERF)
2820	if (*(int *) prv_CMAP3)
2821		panic("pmap_zero_page: prv_CMAP3 busy");
2822#endif
2823
2824	*(int *) prv_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2825	cpu_invlpg(&prv_CPAGE3);
2826
2827#if defined(I686_CPU)
2828	if (cpu_class == CPUCLASS_686)
2829		i686_pagezero(&prv_CPAGE3);
2830	else
2831#endif
2832		bzero(&prv_CPAGE3, PAGE_SIZE);
2833
2834	*(int *) prv_CMAP3 = 0;
2835#else
2836#if !defined(MAX_PERF)
2837	if (*(int *) CMAP2)
2838		panic("pmap_zero_page: CMAP2 busy");
2839#endif
2840
2841	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2842	if (cpu_class == CPUCLASS_386) {
2843		invltlb();
2844	} else {
2845		invlpg((u_int)CADDR2);
2846	}
2847
2848#if defined(I686_CPU)
2849	if (cpu_class == CPUCLASS_686)
2850		i686_pagezero(CADDR2);
2851	else
2852#endif
2853		bzero(CADDR2, PAGE_SIZE);
2854	*(int *) CMAP2 = 0;
2855#endif
2856}
2857
2858/*
2859 *	pmap_copy_page copies the specified (machine independent)
2860 *	page by mapping the page into virtual memory and using
2861 *	bcopy to copy the page, one machine dependent page at a
2862 *	time.
2863 */
2864void
2865pmap_copy_page(src, dst)
2866	vm_offset_t src;
2867	vm_offset_t dst;
2868{
2869#ifdef SMP
2870#if !defined(MAX_PERF)
2871	if (*(int *) prv_CMAP1)
2872		panic("pmap_copy_page: prv_CMAP1 busy");
2873	if (*(int *) prv_CMAP2)
2874		panic("pmap_copy_page: prv_CMAP2 busy");
2875#endif
2876
2877	*(int *) prv_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2878	*(int *) prv_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2879
2880	cpu_invlpg(&prv_CPAGE1);
2881	cpu_invlpg(&prv_CPAGE2);
2882
2883	bcopy(&prv_CPAGE1, &prv_CPAGE2, PAGE_SIZE);
2884
2885	*(int *) prv_CMAP1 = 0;
2886	*(int *) prv_CMAP2 = 0;
2887#else
2888#if !defined(MAX_PERF)
2889	if (*(int *) CMAP1 || *(int *) CMAP2)
2890		panic("pmap_copy_page: CMAP busy");
2891#endif
2892
2893	*(int *) CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2894	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2895	if (cpu_class == CPUCLASS_386) {
2896		invltlb();
2897	} else {
2898		invlpg((u_int)CADDR1);
2899		invlpg((u_int)CADDR2);
2900	}
2901
2902	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2903
2904	*(int *) CMAP1 = 0;
2905	*(int *) CMAP2 = 0;
2906#endif
2907}
2908
2909
2910/*
2911 *	Routine:	pmap_pageable
2912 *	Function:
2913 *		Make the specified pages (by pmap, offset)
2914 *		pageable (or not) as requested.
2915 *
2916 *		A page which is not pageable may not take
2917 *		a fault; therefore, its page table entry
2918 *		must remain valid for the duration.
2919 *
2920 *		This routine is merely advisory; pmap_enter
2921 *		will specify that these pages are to be wired
2922 *		down (or not) as appropriate.
2923 */
2924void
2925pmap_pageable(pmap, sva, eva, pageable)
2926	pmap_t pmap;
2927	vm_offset_t sva, eva;
2928	boolean_t pageable;
2929{
2930}
2931
2932/*
2933 * this routine returns true if a physical page resides
2934 * in the given pmap.
2935 */
2936boolean_t
2937pmap_page_exists(pmap, pa)
2938	pmap_t pmap;
2939	vm_offset_t pa;
2940{
2941	register pv_entry_t pv;
2942	pv_table_t *ppv;
2943	int s;
2944
2945	if (!pmap_is_managed(pa))
2946		return FALSE;
2947
2948	s = splvm();
2949
2950	ppv = pa_to_pvh(pa);
2951	/*
2952	 * Not found, check current mappings returning immediately if found.
2953	 */
2954	for (pv = TAILQ_FIRST(&ppv->pv_list);
2955		pv;
2956		pv = TAILQ_NEXT(pv, pv_list)) {
2957		if (pv->pv_pmap == pmap) {
2958			splx(s);
2959			return TRUE;
2960		}
2961	}
2962	splx(s);
2963	return (FALSE);
2964}
2965
2966#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2967/*
2968 * Remove all pages from specified address space
2969 * this aids process exit speeds.  Also, this code
2970 * is special cased for current process only, but
2971 * can have the more generic (and slightly slower)
2972 * mode enabled.  This is much faster than pmap_remove
2973 * in the case of running down an entire address space.
2974 */
2975void
2976pmap_remove_pages(pmap, sva, eva)
2977	pmap_t pmap;
2978	vm_offset_t sva, eva;
2979{
2980	unsigned *pte, tpte;
2981	pv_table_t *ppv;
2982	pv_entry_t pv, npv;
2983	int s;
2984
2985#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2986	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
2987		printf("warning: pmap_remove_pages called with non-current pmap\n");
2988		return;
2989	}
2990#endif
2991
2992	s = splvm();
2993	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2994		pv;
2995		pv = npv) {
2996
2997		if (pv->pv_va >= eva || pv->pv_va < sva) {
2998			npv = TAILQ_NEXT(pv, pv_plist);
2999			continue;
3000		}
3001
3002#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3003		pte = (unsigned *)vtopte(pv->pv_va);
3004#else
3005		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3006#endif
3007		tpte = *pte;
3008
3009/*
3010 * We cannot remove wired pages from a process' mapping at this time
3011 */
3012		if (tpte & PG_W) {
3013			npv = TAILQ_NEXT(pv, pv_plist);
3014			continue;
3015		}
3016		*pte = 0;
3017
3018		ppv = pa_to_pvh(tpte);
3019
3020		pv->pv_pmap->pm_stats.resident_count--;
3021
3022		/*
3023		 * Update the vm_page_t clean and reference bits.
3024		 */
3025		if (tpte & PG_M) {
3026			ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
3027		}
3028
3029
3030		npv = TAILQ_NEXT(pv, pv_plist);
3031		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3032
3033		ppv->pv_list_count--;
3034		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
3035		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
3036			ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
3037		}
3038
3039		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3040		free_pv_entry(pv);
3041	}
3042	splx(s);
3043	invltlb();
3044}
3045
3046/*
3047 * pmap_testbit tests bits in pte's
3048 * note that the testbit/changebit routines are inline,
3049 * and a lot of things compile-time evaluate.
3050 */
3051static boolean_t
3052pmap_testbit(pa, bit)
3053	register vm_offset_t pa;
3054	int bit;
3055{
3056	register pv_entry_t pv;
3057	pv_table_t *ppv;
3058	unsigned *pte;
3059	int s;
3060
3061	if (!pmap_is_managed(pa))
3062		return FALSE;
3063
3064	ppv = pa_to_pvh(pa);
3065	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
3066		return FALSE;
3067
3068	s = splvm();
3069
3070	for (pv = TAILQ_FIRST(&ppv->pv_list);
3071		pv;
3072		pv = TAILQ_NEXT(pv, pv_list)) {
3073
3074		/*
3075		 * if the bit being tested is the modified bit, then
3076		 * mark clean_map and ptes as never
3077		 * modified.
3078		 */
3079		if (bit & (PG_A|PG_M)) {
3080			if (!pmap_track_modified(pv->pv_va))
3081				continue;
3082		}
3083
3084#if defined(PMAP_DIAGNOSTIC)
3085		if (!pv->pv_pmap) {
3086			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3087			continue;
3088		}
3089#endif
3090		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3091		if (*pte & bit) {
3092			splx(s);
3093			return TRUE;
3094		}
3095	}
3096	splx(s);
3097	return (FALSE);
3098}
3099
3100/*
3101 * this routine is used to modify bits in ptes
3102 */
3103static void
3104pmap_changebit(pa, bit, setem)
3105	vm_offset_t pa;
3106	int bit;
3107	boolean_t setem;
3108{
3109	register pv_entry_t pv;
3110	pv_table_t *ppv;
3111	register unsigned *pte;
3112	int changed;
3113	int s;
3114
3115	if (!pmap_is_managed(pa))
3116		return;
3117
3118	s = splvm();
3119	changed = 0;
3120	ppv = pa_to_pvh(pa);
3121
3122	/*
3123	 * Loop over all current mappings setting/clearing as appropos If
3124	 * setting RO do we need to clear the VAC?
3125	 */
3126	for (pv = TAILQ_FIRST(&ppv->pv_list);
3127		pv;
3128		pv = TAILQ_NEXT(pv, pv_list)) {
3129
3130		/*
3131		 * don't write protect pager mappings
3132		 */
3133		if (!setem && (bit == PG_RW)) {
3134			if (!pmap_track_modified(pv->pv_va))
3135				continue;
3136		}
3137
3138#if defined(PMAP_DIAGNOSTIC)
3139		if (!pv->pv_pmap) {
3140			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3141			continue;
3142		}
3143#endif
3144
3145		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3146
3147		if (setem) {
3148			*(int *)pte |= bit;
3149			changed = 1;
3150		} else {
3151			vm_offset_t pbits = *(vm_offset_t *)pte;
3152			if (pbits & bit) {
3153				changed = 1;
3154				if (bit == PG_RW) {
3155					if (pbits & PG_M) {
3156						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
3157					}
3158					*(int *)pte = pbits & ~(PG_M|PG_RW);
3159				} else {
3160					*(int *)pte = pbits & ~bit;
3161				}
3162			}
3163		}
3164	}
3165	splx(s);
3166	if (changed)
3167		invltlb();
3168}
3169
3170/*
3171 *      pmap_page_protect:
3172 *
3173 *      Lower the permission for all mappings to a given page.
3174 */
3175void
3176pmap_page_protect(vm_offset_t phys, vm_prot_t prot)
3177{
3178	if ((prot & VM_PROT_WRITE) == 0) {
3179		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3180			pmap_changebit(phys, PG_RW, FALSE);
3181		} else {
3182			pmap_remove_all(phys);
3183		}
3184	}
3185}
3186
3187vm_offset_t
3188pmap_phys_address(ppn)
3189	int ppn;
3190{
3191	return (i386_ptob(ppn));
3192}
3193
3194/*
3195 *	pmap_ts_referenced:
3196 *
3197 *	Return the count of reference bits for a page, clearing all of them.
3198 *
3199 */
3200int
3201pmap_ts_referenced(vm_offset_t pa)
3202{
3203	register pv_entry_t pv;
3204	pv_table_t *ppv;
3205	unsigned *pte;
3206	int s;
3207	int rtval = 0;
3208
3209	if (!pmap_is_managed(pa))
3210		return FALSE;
3211
3212	s = splvm();
3213
3214	ppv = pa_to_pvh(pa);
3215
3216	if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
3217		splx(s);
3218		return 0;
3219	}
3220
3221	/*
3222	 * Not found, check current mappings returning immediately if found.
3223	 */
3224	for (pv = TAILQ_FIRST(&ppv->pv_list);
3225		pv;
3226		pv = TAILQ_NEXT(pv, pv_list)) {
3227
3228		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
3229		/*
3230		 * if the bit being tested is the modified bit, then
3231		 * mark clean_map and ptes as never
3232		 * modified.
3233		 */
3234		if (!pmap_track_modified(pv->pv_va)) {
3235			TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3236			continue;
3237		}
3238
3239		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3240		if (pte == NULL) {
3241			TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3242			continue;
3243		}
3244
3245		if (*pte & PG_A) {
3246			rtval++;
3247			*pte &= ~PG_A;
3248			if (rtval > 4) {
3249				TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3250				break;
3251			}
3252		}
3253		TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3254	}
3255
3256	splx(s);
3257	if (rtval) {
3258		invltlb();
3259	}
3260	return (rtval);
3261}
3262
3263/*
3264 *	pmap_is_modified:
3265 *
3266 *	Return whether or not the specified physical page was modified
3267 *	in any physical maps.
3268 */
3269boolean_t
3270pmap_is_modified(vm_offset_t pa)
3271{
3272	return pmap_testbit((pa), PG_M);
3273}
3274
3275/*
3276 *	Clear the modify bits on the specified physical page.
3277 */
3278void
3279pmap_clear_modify(vm_offset_t pa)
3280{
3281	pmap_changebit((pa), PG_M, FALSE);
3282}
3283
3284/*
3285 *	pmap_clear_reference:
3286 *
3287 *	Clear the reference bit on the specified physical page.
3288 */
3289void
3290pmap_clear_reference(vm_offset_t pa)
3291{
3292	pmap_changebit((pa), PG_A, FALSE);
3293}
3294
3295/*
3296 * Miscellaneous support routines follow
3297 */
3298
3299static void
3300i386_protection_init()
3301{
3302	register int *kp, prot;
3303
3304	kp = protection_codes;
3305	for (prot = 0; prot < 8; prot++) {
3306		switch (prot) {
3307		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3308			/*
3309			 * Read access is also 0. There isn't any execute bit,
3310			 * so just make it readable.
3311			 */
3312		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3313		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3314		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3315			*kp++ = 0;
3316			break;
3317		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3318		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3319		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3320		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3321			*kp++ = PG_RW;
3322			break;
3323		}
3324	}
3325}
3326
3327/*
3328 * Map a set of physical memory pages into the kernel virtual
3329 * address space. Return a pointer to where it is mapped. This
3330 * routine is intended to be used for mapping device memory,
3331 * NOT real memory.
3332 */
3333void *
3334pmap_mapdev(pa, size)
3335	vm_offset_t pa;
3336	vm_size_t size;
3337{
3338	vm_offset_t va, tmpva;
3339	unsigned *pte;
3340
3341	size = roundup(size, PAGE_SIZE);
3342
3343	va = kmem_alloc_pageable(kernel_map, size);
3344#if !defined(MAX_PERF)
3345	if (!va)
3346		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3347#endif
3348
3349	pa = pa & PG_FRAME;
3350	for (tmpva = va; size > 0;) {
3351		pte = (unsigned *)vtopte(tmpva);
3352		*pte = pa | PG_RW | PG_V | pgeflag;
3353		size -= PAGE_SIZE;
3354		tmpva += PAGE_SIZE;
3355		pa += PAGE_SIZE;
3356	}
3357	invltlb();
3358
3359	return ((void *) va);
3360}
3361
3362/*
3363 * perform the pmap work for mincore
3364 */
3365int
3366pmap_mincore(pmap, addr)
3367	pmap_t pmap;
3368	vm_offset_t addr;
3369{
3370
3371	unsigned *ptep, pte;
3372	vm_page_t m;
3373	int val = 0;
3374
3375	ptep = pmap_pte(pmap, addr);
3376	if (ptep == 0) {
3377		return 0;
3378	}
3379
3380	if (pte = *ptep) {
3381		pv_table_t *ppv;
3382		vm_offset_t pa;
3383
3384		val = MINCORE_INCORE;
3385		if ((pte & PG_MANAGED) == 0)
3386			return val;
3387
3388		pa = pte & PG_FRAME;
3389
3390		ppv = pa_to_pvh((pa & PG_FRAME));
3391		m = ppv->pv_vm_page;
3392
3393		/*
3394		 * Modified by us
3395		 */
3396		if (pte & PG_M)
3397			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3398		/*
3399		 * Modified by someone
3400		 */
3401		else if (m->dirty || pmap_is_modified(pa))
3402			val |= MINCORE_MODIFIED_OTHER;
3403		/*
3404		 * Referenced by us
3405		 */
3406		if (pte & PG_A)
3407			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3408
3409		/*
3410		 * Referenced by someone
3411		 */
3412		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(pa)) {
3413			val |= MINCORE_REFERENCED_OTHER;
3414			m->flags |= PG_REFERENCED;
3415		}
3416	}
3417	return val;
3418}
3419
3420void
3421pmap_activate(struct proc *p)
3422{
3423#if defined(SWTCH_OPTIM_STATS)
3424	tlb_flush_count++;
3425#endif
3426	load_cr3(p->p_addr->u_pcb.pcb_cr3 =
3427		vtophys(p->p_vmspace->vm_pmap.pm_pdir));
3428}
3429
3430vm_offset_t
3431pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) {
3432
3433	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3434		return addr;
3435	}
3436
3437	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3438	return addr;
3439}
3440
3441
3442#if defined(PMAP_DEBUG)
3443pmap_pid_dump(int pid) {
3444	pmap_t pmap;
3445	struct proc *p;
3446	int npte = 0;
3447	int index;
3448	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
3449		if (p->p_pid != pid)
3450			continue;
3451
3452		if (p->p_vmspace) {
3453			int i,j;
3454			index = 0;
3455			pmap = &p->p_vmspace->vm_pmap;
3456			for(i=0;i<1024;i++) {
3457				pd_entry_t *pde;
3458				unsigned *pte;
3459				unsigned base = i << PDRSHIFT;
3460
3461				pde = &pmap->pm_pdir[i];
3462				if (pde && pmap_pde_v(pde)) {
3463					for(j=0;j<1024;j++) {
3464						unsigned va = base + (j << PAGE_SHIFT);
3465						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3466							if (index) {
3467								index = 0;
3468								printf("\n");
3469							}
3470							return npte;
3471						}
3472						pte = pmap_pte_quick( pmap, va);
3473						if (pte && pmap_pte_v(pte)) {
3474							vm_offset_t pa;
3475							vm_page_t m;
3476							pa = *(int *)pte;
3477							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3478							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3479								va, pa, m->hold_count, m->wire_count, m->flags);
3480							npte++;
3481							index++;
3482							if (index >= 2) {
3483								index = 0;
3484								printf("\n");
3485							} else {
3486								printf(" ");
3487							}
3488						}
3489					}
3490				}
3491			}
3492		}
3493	}
3494	return npte;
3495}
3496#endif
3497
3498#if defined(DEBUG)
3499
3500static void	pads __P((pmap_t pm));
3501static void	pmap_pvdump __P((vm_offset_t pa));
3502
3503/* print address space of pmap*/
3504static void
3505pads(pm)
3506	pmap_t pm;
3507{
3508	unsigned va, i, j;
3509	unsigned *ptep;
3510
3511	if (pm == kernel_pmap)
3512		return;
3513	for (i = 0; i < 1024; i++)
3514		if (pm->pm_pdir[i])
3515			for (j = 0; j < 1024; j++) {
3516				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3517				if (pm == kernel_pmap && va < KERNBASE)
3518					continue;
3519				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3520					continue;
3521				ptep = pmap_pte_quick(pm, va);
3522				if (pmap_pte_v(ptep))
3523					printf("%x:%x ", va, *(int *) ptep);
3524			};
3525
3526}
3527
3528static void
3529pmap_pvdump(pa)
3530	vm_offset_t pa;
3531{
3532	pv_table_t *ppv;
3533	register pv_entry_t pv;
3534
3535	printf("pa %x", pa);
3536	ppv = pa_to_pvh(pa);
3537	for (pv = TAILQ_FIRST(&ppv->pv_list);
3538		pv;
3539		pv = TAILQ_NEXT(pv, pv_list)) {
3540#ifdef used_to_be
3541		printf(" -> pmap %p, va %x, flags %x",
3542		    (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3543#endif
3544		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3545		pads(pv->pv_pmap);
3546	}
3547	printf(" ");
3548}
3549#endif
3550