pmap.c revision 36121
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.197 1998/05/15 07:25:25 dyson Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/proc.h>
77#include <sys/msgbuf.h>
78#include <sys/vmmeter.h>
79#include <sys/mman.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_prot.h>
84#include <sys/lock.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_object.h>
89#include <vm/vm_extern.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_pager.h>
92#include <vm/vm_zone.h>
93
94#include <sys/user.h>
95
96#include <machine/cputypes.h>
97#include <machine/md_var.h>
98#include <machine/specialreg.h>
99#if defined(SMP) || defined(APIC_IO)
100#include <machine/smp.h>
101#include <machine/apic.h>
102#endif /* SMP || APIC_IO */
103
104#define PMAP_KEEP_PDIRS
105#ifndef PMAP_SHPGPERPROC
106#define PMAP_SHPGPERPROC 200
107#endif
108
109#if defined(DIAGNOSTIC)
110#define PMAP_DIAGNOSTIC
111#endif
112
113#define MINPV 2048
114
115#if !defined(PMAP_DIAGNOSTIC)
116#define PMAP_INLINE __inline
117#else
118#define PMAP_INLINE
119#endif
120
121/*
122 * Get PDEs and PTEs for user/kernel address space
123 */
124#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
125#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
126
127#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
128#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
129#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
130#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
131#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
132
133#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
134#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
135
136/*
137 * Given a map and a machine independent protection code,
138 * convert to a vax protection code.
139 */
140#define pte_prot(m, p)	(protection_codes[p])
141static int protection_codes[8];
142
143#define	pa_index(pa)		atop((pa) - vm_first_phys)
144#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
145
146static struct pmap kernel_pmap_store;
147pmap_t kernel_pmap;
148extern pd_entry_t my_idlePTD;
149
150vm_offset_t avail_start;	/* PA of first available physical page */
151vm_offset_t avail_end;		/* PA of last available physical page */
152vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
153vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
154static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
155static vm_offset_t vm_first_phys;
156static int pgeflag;		/* PG_G or-in */
157static int pseflag;		/* PG_PS or-in */
158static int pv_npg;
159
160static vm_object_t kptobj;
161
162static int nkpt;
163vm_offset_t kernel_vm_end;
164
165/*
166 * Data for the pv entry allocation mechanism
167 */
168static vm_zone_t pvzone;
169static struct vm_zone pvzone_store;
170static struct vm_object pvzone_obj;
171static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
172static int pmap_pagedaemon_waken = 0;
173static struct pv_entry *pvinit;
174
175/*
176 * All those kernel PT submaps that BSD is so fond of
177 */
178pt_entry_t *CMAP1 = 0;
179static pt_entry_t *CMAP2, *ptmmap;
180static pv_table_t *pv_table;
181caddr_t CADDR1 = 0, ptvmmap = 0;
182static caddr_t CADDR2;
183static pt_entry_t *msgbufmap;
184struct msgbuf *msgbufp=0;
185
186#ifdef SMP
187extern char prv_CPAGE1[], prv_CPAGE2[], prv_CPAGE3[];
188extern pt_entry_t *prv_CMAP1, *prv_CMAP2, *prv_CMAP3;
189extern pd_entry_t *IdlePTDS[];
190extern pt_entry_t SMP_prvpt[];
191#endif
192
193static pt_entry_t *PMAP1 = 0;
194static unsigned *PADDR1 = 0;
195
196static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
197static unsigned * get_ptbase __P((pmap_t pmap));
198static pv_entry_t get_pv_entry __P((void));
199static void	i386_protection_init __P((void));
200static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
201
202static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
203static void	pmap_remove_all __P((vm_offset_t pa));
204static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
205				      vm_offset_t pa, vm_page_t mpte));
206static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
207					vm_offset_t sva));
208static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
209static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
210					vm_offset_t va));
211static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
212static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
213		vm_page_t mpte, vm_offset_t pa));
214
215static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
216
217static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
218static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
219static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
220static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
221static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
222static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
223void pmap_collect(void);
224
225static unsigned pdir4mb;
226
227/*
228 *	Routine:	pmap_pte
229 *	Function:
230 *		Extract the page table entry associated
231 *		with the given map/virtual_address pair.
232 */
233
234PMAP_INLINE unsigned *
235pmap_pte(pmap, va)
236	register pmap_t pmap;
237	vm_offset_t va;
238{
239	unsigned *pdeaddr;
240
241	if (pmap) {
242		pdeaddr = (unsigned *) pmap_pde(pmap, va);
243		if (*pdeaddr & PG_PS)
244			return pdeaddr;
245		if (*pdeaddr) {
246			return get_ptbase(pmap) + i386_btop(va);
247		}
248	}
249	return (0);
250}
251
252/*
253 * Move the kernel virtual free pointer to the next
254 * 4MB.  This is used to help improve performance
255 * by using a large (4MB) page for much of the kernel
256 * (.text, .data, .bss)
257 */
258static vm_offset_t
259pmap_kmem_choose(vm_offset_t addr) {
260	vm_offset_t newaddr = addr;
261#ifndef DISABLE_PSE
262	if (cpu_feature & CPUID_PSE) {
263		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
264	}
265#endif
266	return newaddr;
267}
268
269/*
270 *	Bootstrap the system enough to run with virtual memory.
271 *
272 *	On the i386 this is called after mapping has already been enabled
273 *	and just syncs the pmap module with what has already been done.
274 *	[We can't call it easily with mapping off since the kernel is not
275 *	mapped with PA == VA, hence we would have to relocate every address
276 *	from the linked base (virtual) address "KERNBASE" to the actual
277 *	(physical) address starting relative to 0]
278 */
279void
280pmap_bootstrap(firstaddr, loadaddr)
281	vm_offset_t firstaddr;
282	vm_offset_t loadaddr;
283{
284	vm_offset_t va;
285	pt_entry_t *pte;
286	int i, j;
287
288	avail_start = firstaddr;
289
290	/*
291	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
292	 * large. It should instead be correctly calculated in locore.s and
293	 * not based on 'first' (which is a physical address, not a virtual
294	 * address, for the start of unused physical memory). The kernel
295	 * page tables are NOT double mapped and thus should not be included
296	 * in this calculation.
297	 */
298	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
299	virtual_avail = pmap_kmem_choose(virtual_avail);
300
301	virtual_end = VM_MAX_KERNEL_ADDRESS;
302
303	/*
304	 * Initialize protection array.
305	 */
306	i386_protection_init();
307
308	/*
309	 * The kernel's pmap is statically allocated so we don't have to use
310	 * pmap_create, which is unlikely to work correctly at this part of
311	 * the boot sequence (XXX and which no longer exists).
312	 */
313	kernel_pmap = &kernel_pmap_store;
314
315	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
316
317	kernel_pmap->pm_count = 1;
318	TAILQ_INIT(&kernel_pmap->pm_pvlist);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 */
334	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
335	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
336
337	/*
338	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
339	 * XXX ptmmap is not used.
340	 */
341	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
342
343	/*
344	 * msgbufp is used to map the system message buffer.
345	 * XXX msgbufmap is not used.
346	 */
347	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
348	       atop(round_page(sizeof(struct msgbuf))))
349
350	/*
351	 * ptemap is used for pmap_pte_quick
352	 */
353	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
354
355	virtual_avail = va;
356
357	*(int *) CMAP1 = *(int *) CMAP2 = 0;
358	*(int *) PTD = 0;
359
360
361	pgeflag = 0;
362#if !defined(SMP)
363	if (cpu_feature & CPUID_PGE) {
364		pgeflag = PG_G;
365	}
366#endif
367
368/*
369 * Initialize the 4MB page size flag
370 */
371	pseflag = 0;
372/*
373 * The 4MB page version of the initial
374 * kernel page mapping.
375 */
376	pdir4mb = 0;
377
378#if !defined(DISABLE_PSE)
379	if (cpu_feature & CPUID_PSE) {
380		unsigned ptditmp;
381		/*
382		 * Enable the PSE mode
383		 */
384		load_cr4(rcr4() | CR4_PSE);
385
386		/*
387		 * Note that we have enabled PSE mode
388		 */
389		pseflag = PG_PS;
390		ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
391		ptditmp &= ~(NBPDR - 1);
392		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
393		pdir4mb = ptditmp;
394		/*
395		 * We can do the mapping here for the single processor
396		 * case.  We simply ignore the old page table page from
397		 * now on.
398		 */
399#if !defined(SMP)
400		PTD[KPTDI] = (pd_entry_t) ptditmp;
401		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
402		invltlb();
403#endif
404	}
405#endif
406
407#ifdef SMP
408	if (cpu_apic_address == 0)
409		panic("pmap_bootstrap: no local apic!");
410
411	/* 0 = private page */
412	/* 1 = page table page */
413	/* 2 = local apic */
414	/* 16-31 = io apics */
415	SMP_prvpt[2] = (pt_entry_t)(PG_V | PG_RW | pgeflag | ((u_long)cpu_apic_address & PG_FRAME));
416
417	for (i = 0; i < mp_napics; i++) {
418		for (j = 0; j < 16; j++) {
419			/* same page frame as a previous IO apic? */
420			if (((u_long)SMP_prvpt[j + 16] & PG_FRAME) ==
421			    ((u_long)io_apic_address[0] & PG_FRAME)) {
422				ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE];
423				break;
424			}
425			/* use this slot if available */
426			if (((u_long)SMP_prvpt[j + 16] & PG_FRAME) == 0) {
427				SMP_prvpt[j + 16] = (pt_entry_t)(PG_V | PG_RW | pgeflag |
428				    ((u_long)io_apic_address[i] & PG_FRAME));
429				ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE];
430				break;
431			}
432		}
433		if (j == 16)
434			panic("no space to map IO apic %d!", i);
435	}
436
437	/* BSP does this itself, AP's get it pre-set */
438	prv_CMAP1 = &SMP_prvpt[3 + UPAGES];
439	prv_CMAP2 = &SMP_prvpt[4 + UPAGES];
440	prv_CMAP3 = &SMP_prvpt[5 + UPAGES];
441#endif
442
443	invltlb();
444
445}
446
447void
448getmtrr()
449{
450	int i;
451
452	if (cpu == CPU_686) {
453		for(i = 0; i < NPPROVMTRR; i++) {
454			PPro_vmtrr[i].base = rdmsr(PPRO_VMTRRphysBase0 + i * 2);
455			PPro_vmtrr[i].mask = rdmsr(PPRO_VMTRRphysMask0 + i * 2);
456		}
457	}
458}
459
460void
461putmtrr()
462{
463	int i;
464
465	if (cpu == CPU_686) {
466		wbinvd();
467		for(i = 0; i < NPPROVMTRR; i++) {
468			wrmsr(PPRO_VMTRRphysBase0 + i * 2, PPro_vmtrr[i].base);
469			wrmsr(PPRO_VMTRRphysMask0 + i * 2, PPro_vmtrr[i].mask);
470		}
471	}
472}
473
474void
475pmap_setvidram(void)
476{
477	if (cpu == CPU_686) {
478		wbinvd();
479		/*
480		 * Set memory between 0-640K to be WB
481		 */
482		wrmsr(0x250, 0x0606060606060606LL);
483		wrmsr(0x258, 0x0606060606060606LL);
484		/*
485		 * Set normal, PC video memory to be WC
486		 */
487		wrmsr(0x259, 0x0101010101010101LL);
488	}
489}
490
491void
492pmap_setdevram(unsigned long long basea, vm_offset_t sizea)
493{
494	int i, free, skip;
495	unsigned basepage, basepaget;
496	unsigned long long base;
497	unsigned long long mask;
498
499	return;
500	if (cpu != CPU_686)
501		return;
502
503	free = -1;
504	skip = 0;
505	basea &= ~0xfff;
506	base = basea | 0x1;
507	mask = (long long) (0xfffffffffLL - ((long) sizea - 1)) | (long long) 0x800;
508	mask &= ~0x7ff;
509
510	basepage = (long long) (base >> 12);
511	for(i = 0; i < NPPROVMTRR; i++) {
512		PPro_vmtrr[i].base = rdmsr(PPRO_VMTRRphysBase0 + i * 2);
513		PPro_vmtrr[i].mask = rdmsr(PPRO_VMTRRphysMask0 + i * 2);
514		basepaget = (long long) (PPro_vmtrr[i].base >> 12);
515		if (basepage == basepaget)
516			skip = 1;
517		if ((PPro_vmtrr[i].mask & 0x800) == 0) {
518			if (free == -1)
519				free = i;
520		}
521	}
522
523	if (!skip && free != -1) {
524		wbinvd();
525		PPro_vmtrr[free].base = base;
526		PPro_vmtrr[free].mask = mask;
527		wrmsr(PPRO_VMTRRphysBase0 + free * 2, base);
528		wrmsr(PPRO_VMTRRphysMask0 + free * 2, mask);
529		printf("pmap: added WC mapping at page: 0x%x %x, size: %d mask: 0x%x %x\n", base, sizea, mask);
530	}
531}
532
533/*
534 * Set 4mb pdir for mp startup, and global flags
535 */
536void
537pmap_set_opt(unsigned *pdir) {
538	int i;
539
540	if (pseflag && (cpu_feature & CPUID_PSE)) {
541		load_cr4(rcr4() | CR4_PSE);
542		if (pdir4mb) {
543			pdir[KPTDI] = pdir4mb;
544		}
545	}
546
547	if (pgeflag && (cpu_feature & CPUID_PGE)) {
548		load_cr4(rcr4() | CR4_PGE);
549		for(i = KPTDI; i < KPTDI + nkpt; i++) {
550			if (pdir[i]) {
551				pdir[i] |= PG_G;
552			}
553		}
554	}
555}
556
557/*
558 * Setup the PTD for the boot processor
559 */
560void
561pmap_set_opt_bsp(void)
562{
563	pmap_set_opt((unsigned *)kernel_pmap->pm_pdir);
564	pmap_set_opt((unsigned *)PTD);
565	invltlb();
566}
567
568/*
569 *	Initialize the pmap module.
570 *	Called by vm_init, to initialize any structures that the pmap
571 *	system needs to map virtual memory.
572 *	pmap_init has been enhanced to support in a fairly consistant
573 *	way, discontiguous physical memory.
574 */
575void
576pmap_init(phys_start, phys_end)
577	vm_offset_t phys_start, phys_end;
578{
579	vm_offset_t addr;
580	vm_size_t s;
581	int i;
582	int initial_pvs;
583
584	/*
585	 * calculate the number of pv_entries needed
586	 */
587	vm_first_phys = phys_avail[0];
588	for (i = 0; phys_avail[i + 1]; i += 2);
589	pv_npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
590
591	/*
592	 * Allocate memory for random pmap data structures.  Includes the
593	 * pv_head_table.
594	 */
595	s = (vm_size_t) (sizeof(pv_table_t) * pv_npg);
596	s = round_page(s);
597
598	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
599	pv_table = (pv_table_t *) addr;
600	for(i = 0; i < pv_npg; i++) {
601		vm_offset_t pa;
602		TAILQ_INIT(&pv_table[i].pv_list);
603		pv_table[i].pv_list_count = 0;
604		pa = vm_first_phys + i * PAGE_SIZE;
605		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
606	}
607
608	/*
609	 * init the pv free list
610	 */
611	initial_pvs = pv_npg;
612	if (initial_pvs < MINPV)
613		initial_pvs = MINPV;
614	pvzone = &pvzone_store;
615	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
616		initial_pvs * sizeof (struct pv_entry));
617	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit, pv_npg);
618	/*
619	 * object for kernel page table pages
620	 */
621	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
622
623	/*
624	 * Now it is safe to enable pv_table recording.
625	 */
626	pmap_initialized = TRUE;
627}
628
629/*
630 * Initialize the address space (zone) for the pv_entries.  Set a
631 * high water mark so that the system can recover from excessive
632 * numbers of pv entries.
633 */
634void
635pmap_init2() {
636	pv_entry_max = PMAP_SHPGPERPROC * maxproc + pv_npg;
637	pv_entry_high_water = 9 * (pv_entry_max / 10);
638	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
639}
640
641/*
642 *	Used to map a range of physical addresses into kernel
643 *	virtual address space.
644 *
645 *	For now, VM is already on, we only need to map the
646 *	specified memory.
647 */
648vm_offset_t
649pmap_map(virt, start, end, prot)
650	vm_offset_t virt;
651	vm_offset_t start;
652	vm_offset_t end;
653	int prot;
654{
655	while (start < end) {
656		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
657		virt += PAGE_SIZE;
658		start += PAGE_SIZE;
659	}
660	return (virt);
661}
662
663
664/***************************************************
665 * Low level helper routines.....
666 ***************************************************/
667
668#if defined(PMAP_DIAGNOSTIC)
669
670/*
671 * This code checks for non-writeable/modified pages.
672 * This should be an invalid condition.
673 */
674static int
675pmap_nw_modified(pt_entry_t ptea) {
676	int pte;
677
678	pte = (int) ptea;
679
680	if ((pte & (PG_M|PG_RW)) == PG_M)
681		return 1;
682	else
683		return 0;
684}
685#endif
686
687
688/*
689 * this routine defines the region(s) of memory that should
690 * not be tested for the modified bit.
691 */
692static PMAP_INLINE int
693pmap_track_modified( vm_offset_t va) {
694	if ((va < clean_sva) || (va >= clean_eva))
695		return 1;
696	else
697		return 0;
698}
699
700static PMAP_INLINE void
701invltlb_1pg( vm_offset_t va) {
702#if defined(I386_CPU)
703	if (cpu_class == CPUCLASS_386) {
704		invltlb();
705	} else
706#endif
707	{
708		invlpg(va);
709	}
710}
711
712static PMAP_INLINE void
713invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
714#if defined(I386_CPU)
715	if (cpu_class == CPUCLASS_386) {
716		invltlb();
717	} else
718#endif
719	{
720		invlpg(va1);
721		invlpg(va2);
722	}
723}
724
725static unsigned *
726get_ptbase(pmap)
727	pmap_t pmap;
728{
729	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
730
731	/* are we current address space or kernel? */
732	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
733		return (unsigned *) PTmap;
734	}
735	/* otherwise, we are alternate address space */
736	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
737		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
738		invltlb();
739	}
740	return (unsigned *) APTmap;
741}
742
743/*
744 * Super fast pmap_pte routine best used when scanning
745 * the pv lists.  This eliminates many coarse-grained
746 * invltlb calls.  Note that many of the pv list
747 * scans are across different pmaps.  It is very wasteful
748 * to do an entire invltlb for checking a single mapping.
749 */
750
751static unsigned *
752pmap_pte_quick(pmap, va)
753	register pmap_t pmap;
754	vm_offset_t va;
755{
756	unsigned pde, newpf;
757	if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
758		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
759		unsigned index = i386_btop(va);
760		/* are we current address space or kernel? */
761		if ((pmap == kernel_pmap) ||
762			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
763			return (unsigned *) PTmap + index;
764		}
765		newpf = pde & PG_FRAME;
766		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
767			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
768			invltlb_1pg((vm_offset_t) PADDR1);
769		}
770		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
771	}
772	return (0);
773}
774
775/*
776 *	Routine:	pmap_extract
777 *	Function:
778 *		Extract the physical page address associated
779 *		with the given map/virtual_address pair.
780 */
781vm_offset_t
782pmap_extract(pmap, va)
783	register pmap_t pmap;
784	vm_offset_t va;
785{
786	vm_offset_t rtval;
787	vm_offset_t pdirindex;
788	pdirindex = va >> PDRSHIFT;
789	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
790		unsigned *pte;
791		if ((rtval & PG_PS) != 0) {
792			rtval &= ~(NBPDR - 1);
793			rtval |= va & (NBPDR - 1);
794			return rtval;
795		}
796		pte = get_ptbase(pmap) + i386_btop(va);
797		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
798		return rtval;
799	}
800	return 0;
801
802}
803
804/*
805 * determine if a page is managed (memory vs. device)
806 */
807static PMAP_INLINE int
808pmap_is_managed(pa)
809	vm_offset_t pa;
810{
811	int i;
812
813	if (!pmap_initialized)
814		return 0;
815
816	for (i = 0; phys_avail[i + 1]; i += 2) {
817		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
818			return 1;
819	}
820	return 0;
821}
822
823
824/***************************************************
825 * Low level mapping routines.....
826 ***************************************************/
827
828/*
829 * Add a list of wired pages to the kva
830 * this routine is only used for temporary
831 * kernel mappings that do not need to have
832 * page modification or references recorded.
833 * Note that old mappings are simply written
834 * over.  The page *must* be wired.
835 */
836void
837pmap_qenter(va, m, count)
838	vm_offset_t va;
839	vm_page_t *m;
840	int count;
841{
842	int i;
843	register unsigned *pte;
844
845	for (i = 0; i < count; i++) {
846		vm_offset_t tva = va + i * PAGE_SIZE;
847		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | pgeflag;
848		unsigned opte;
849		pte = (unsigned *)vtopte(tva);
850		opte = *pte;
851		*pte = npte;
852		if (opte)
853			invltlb_1pg(tva);
854	}
855}
856
857/*
858 * this routine jerks page mappings from the
859 * kernel -- it is meant only for temporary mappings.
860 */
861void
862pmap_qremove(va, count)
863	vm_offset_t va;
864	int count;
865{
866	int i;
867	register unsigned *pte;
868
869	for (i = 0; i < count; i++) {
870		pte = (unsigned *)vtopte(va);
871		*pte = 0;
872		invltlb_1pg(va);
873		va += PAGE_SIZE;
874	}
875}
876
877/*
878 * add a wired page to the kva
879 * note that in order for the mapping to take effect -- you
880 * should do a invltlb after doing the pmap_kenter...
881 */
882PMAP_INLINE void
883pmap_kenter(va, pa)
884	vm_offset_t va;
885	register vm_offset_t pa;
886{
887	register unsigned *pte;
888	unsigned npte, opte;
889
890	npte = pa | PG_RW | PG_V | pgeflag;
891	pte = (unsigned *)vtopte(va);
892	opte = *pte;
893	*pte = npte;
894	if (opte)
895		invltlb_1pg(va);
896}
897
898/*
899 * remove a page from the kernel pagetables
900 */
901PMAP_INLINE void
902pmap_kremove(va)
903	vm_offset_t va;
904{
905	register unsigned *pte;
906
907	pte = (unsigned *)vtopte(va);
908	*pte = 0;
909	invltlb_1pg(va);
910}
911
912static vm_page_t
913pmap_page_lookup(object, pindex)
914	vm_object_t object;
915	vm_pindex_t pindex;
916{
917	vm_page_t m;
918retry:
919	m = vm_page_lookup(object, pindex);
920	if (m && vm_page_sleep(m, "pplookp", NULL))
921		goto retry;
922	return m;
923}
924
925/*
926 * Create the UPAGES for a new process.
927 * This routine directly affects the fork perf for a process.
928 */
929void
930pmap_new_proc(p)
931	struct proc *p;
932{
933	int i, updateneeded;
934	vm_object_t upobj;
935	vm_page_t m;
936	struct user *up;
937	unsigned *ptek, oldpte;
938
939	/*
940	 * allocate object for the upages
941	 */
942	if ((upobj = p->p_upages_obj) == NULL) {
943		upobj = vm_object_allocate( OBJT_DEFAULT, UPAGES);
944		p->p_upages_obj = upobj;
945	}
946
947	/* get a kernel virtual address for the UPAGES for this proc */
948	if ((up = p->p_addr) == NULL) {
949		up = (struct user *) kmem_alloc_pageable(kernel_map,
950				UPAGES * PAGE_SIZE);
951#if !defined(MAX_PERF)
952		if (up == NULL)
953			panic("pmap_new_proc: u_map allocation failed");
954#endif
955		p->p_addr = up;
956	}
957
958	ptek = (unsigned *) vtopte((vm_offset_t) up);
959
960	updateneeded = 0;
961	for(i=0;i<UPAGES;i++) {
962		/*
963		 * Get a kernel stack page
964		 */
965		m = vm_page_grab(upobj, i, VM_ALLOC_ZERO | VM_ALLOC_RETRY);
966
967		if ((m->flags & PG_ZERO) == 0)
968			vm_page_zero_fill(m);
969
970		/*
971		 * Wire the page
972		 */
973		m->wire_count++;
974		cnt.v_wire_count++;
975
976		oldpte = *(ptek + i);
977		/*
978		 * Enter the page into the kernel address space.
979		 */
980		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
981		if (oldpte) {
982			if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386)) {
983				invlpg((vm_offset_t) up + i * PAGE_SIZE);
984			} else {
985				updateneeded = 1;
986			}
987		}
988
989		PAGE_WAKEUP(m);
990		m->flags &= ~PG_ZERO;
991		m->flags |= PG_MAPPED | PG_WRITEABLE;
992		m->valid = VM_PAGE_BITS_ALL;
993	}
994	if (updateneeded)
995		invltlb();
996}
997
998/*
999 * Dispose the UPAGES for a process that has exited.
1000 * This routine directly impacts the exit perf of a process.
1001 */
1002void
1003pmap_dispose_proc(p)
1004	struct proc *p;
1005{
1006	int i;
1007	vm_object_t upobj;
1008	vm_page_t m;
1009	unsigned *ptek, oldpte;
1010
1011	upobj = p->p_upages_obj;
1012
1013	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
1014	for(i=0;i<UPAGES;i++) {
1015
1016		if ((m = vm_page_lookup(upobj, i)) == NULL)
1017			panic("pmap_dispose_proc: upage already missing???");
1018
1019		m->flags |= PG_BUSY;
1020
1021		oldpte = *(ptek + i);
1022		*(ptek + i) = 0;
1023		if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386))
1024			invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
1025		vm_page_unwire(m);
1026		vm_page_free(m);
1027	}
1028
1029	if (cpu_class <= CPUCLASS_386)
1030		invltlb();
1031}
1032
1033/*
1034 * Allow the UPAGES for a process to be prejudicially paged out.
1035 */
1036void
1037pmap_swapout_proc(p)
1038	struct proc *p;
1039{
1040	int i;
1041	vm_object_t upobj;
1042	vm_page_t m;
1043
1044	upobj = p->p_upages_obj;
1045	/*
1046	 * let the upages be paged
1047	 */
1048	for(i=0;i<UPAGES;i++) {
1049		if ((m = vm_page_lookup(upobj, i)) == NULL)
1050			panic("pmap_swapout_proc: upage already missing???");
1051		m->dirty = VM_PAGE_BITS_ALL;
1052		vm_page_unwire(m);
1053		vm_page_deactivate(m);
1054		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
1055	}
1056}
1057
1058/*
1059 * Bring the UPAGES for a specified process back in.
1060 */
1061void
1062pmap_swapin_proc(p)
1063	struct proc *p;
1064{
1065	int i,rv;
1066	vm_object_t upobj;
1067	vm_page_t m;
1068
1069	upobj = p->p_upages_obj;
1070	for(i=0;i<UPAGES;i++) {
1071
1072		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1073
1074		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
1075			VM_PAGE_TO_PHYS(m));
1076
1077		if (m->valid != VM_PAGE_BITS_ALL) {
1078			rv = vm_pager_get_pages(upobj, &m, 1, 0);
1079#if !defined(MAX_PERF)
1080			if (rv != VM_PAGER_OK)
1081				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
1082#endif
1083			m = vm_page_lookup(upobj, i);
1084			m->valid = VM_PAGE_BITS_ALL;
1085		}
1086
1087		vm_page_wire(m);
1088		PAGE_WAKEUP(m);
1089		m->flags |= PG_MAPPED | PG_WRITEABLE;
1090	}
1091}
1092
1093/***************************************************
1094 * Page table page management routines.....
1095 ***************************************************/
1096
1097/*
1098 * This routine unholds page table pages, and if the hold count
1099 * drops to zero, then it decrements the wire count.
1100 */
1101static int
1102_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1103	int s;
1104
1105	while (vm_page_sleep(m, "pmuwpt", NULL));
1106
1107	if (m->hold_count == 0) {
1108		vm_offset_t pteva;
1109		/*
1110		 * unmap the page table page
1111		 */
1112		pmap->pm_pdir[m->pindex] = 0;
1113		--pmap->pm_stats.resident_count;
1114		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1115			(((unsigned) PTDpde) & PG_FRAME)) {
1116			/*
1117			 * Do a invltlb to make the invalidated mapping
1118			 * take effect immediately.
1119			 */
1120			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
1121			invltlb_1pg(pteva);
1122		}
1123
1124		if (pmap->pm_ptphint == m)
1125			pmap->pm_ptphint = NULL;
1126
1127		/*
1128		 * If the page is finally unwired, simply free it.
1129		 */
1130		--m->wire_count;
1131		if (m->wire_count == 0) {
1132
1133			if (m->flags & PG_WANTED) {
1134				m->flags &= ~PG_WANTED;
1135				wakeup(m);
1136			}
1137
1138			m->flags |= PG_BUSY;
1139			vm_page_free_zero(m);
1140			--cnt.v_wire_count;
1141		}
1142		return 1;
1143	}
1144	return 0;
1145}
1146
1147static PMAP_INLINE int
1148pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1149	vm_page_unhold(m);
1150	if (m->hold_count == 0)
1151		return _pmap_unwire_pte_hold(pmap, m);
1152	else
1153		return 0;
1154}
1155
1156/*
1157 * After removing a page table entry, this routine is used to
1158 * conditionally free the page, and manage the hold/wire counts.
1159 */
1160static int
1161pmap_unuse_pt(pmap, va, mpte)
1162	pmap_t pmap;
1163	vm_offset_t va;
1164	vm_page_t mpte;
1165{
1166	unsigned ptepindex;
1167	if (va >= UPT_MIN_ADDRESS)
1168		return 0;
1169
1170	if (mpte == NULL) {
1171		ptepindex = (va >> PDRSHIFT);
1172		if (pmap->pm_ptphint &&
1173			(pmap->pm_ptphint->pindex == ptepindex)) {
1174			mpte = pmap->pm_ptphint;
1175		} else {
1176			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1177			pmap->pm_ptphint = mpte;
1178		}
1179	}
1180
1181	return pmap_unwire_pte_hold(pmap, mpte);
1182}
1183
1184#if !defined(SMP)
1185void
1186pmap_pinit0(pmap)
1187	struct pmap *pmap;
1188{
1189	pmap->pm_pdir =
1190		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1191	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1192	pmap->pm_flags = 0;
1193	pmap->pm_count = 1;
1194	pmap->pm_ptphint = NULL;
1195	TAILQ_INIT(&pmap->pm_pvlist);
1196	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1197}
1198#else
1199void
1200pmap_pinit0(pmap)
1201	struct pmap *pmap;
1202{
1203	pmap_pinit(pmap);
1204}
1205#endif
1206
1207/*
1208 * Initialize a preallocated and zeroed pmap structure,
1209 * such as one in a vmspace structure.
1210 */
1211void
1212pmap_pinit(pmap)
1213	register struct pmap *pmap;
1214{
1215	vm_page_t ptdpg;
1216
1217	/*
1218	 * No need to allocate page table space yet but we do need a valid
1219	 * page directory table.
1220	 */
1221	if (pmap->pm_pdir == NULL)
1222		pmap->pm_pdir =
1223			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1224
1225	/*
1226	 * allocate object for the ptes
1227	 */
1228	if (pmap->pm_pteobj == NULL)
1229		pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1230
1231	/*
1232	 * allocate the page directory page
1233	 */
1234retry:
1235	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
1236			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1237
1238	ptdpg->wire_count = 1;
1239	++cnt.v_wire_count;
1240
1241	ptdpg->flags &= ~(PG_MAPPED | PG_BUSY);	/* not mapped normally */
1242	ptdpg->valid = VM_PAGE_BITS_ALL;
1243
1244	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1245	if ((ptdpg->flags & PG_ZERO) == 0)
1246		bzero(pmap->pm_pdir, PAGE_SIZE);
1247
1248	/* wire in kernel global address entries */
1249	/* XXX copies current process, does not fill in MPPTDI */
1250	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1251
1252	/* install self-referential address mapping entry */
1253	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1254		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1255
1256	pmap->pm_flags = 0;
1257	pmap->pm_count = 1;
1258	pmap->pm_ptphint = NULL;
1259	TAILQ_INIT(&pmap->pm_pvlist);
1260	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1261}
1262
1263static int
1264pmap_release_free_page(pmap, p)
1265	struct pmap *pmap;
1266	vm_page_t p;
1267{
1268	int s;
1269	unsigned *pde = (unsigned *) pmap->pm_pdir;
1270	/*
1271	 * This code optimizes the case of freeing non-busy
1272	 * page-table pages.  Those pages are zero now, and
1273	 * might as well be placed directly into the zero queue.
1274	 */
1275	if (vm_page_sleep(p, "pmaprl", NULL))
1276		return 0;
1277
1278	p->flags |= PG_BUSY;
1279
1280	/*
1281	 * Remove the page table page from the processes address space.
1282	 */
1283	pde[p->pindex] = 0;
1284	pmap->pm_stats.resident_count--;
1285
1286#if !defined(MAX_PERF)
1287	if (p->hold_count)  {
1288		panic("pmap_release: freeing held page table page");
1289	}
1290#endif
1291	/*
1292	 * Page directory pages need to have the kernel
1293	 * stuff cleared, so they can go into the zero queue also.
1294	 */
1295	if (p->pindex == PTDPTDI) {
1296		bzero(pde + KPTDI, nkpt * PTESIZE);
1297#ifdef SMP
1298		pde[MPPTDI] = 0;
1299#endif
1300		pde[APTDPTDI] = 0;
1301		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1302	}
1303
1304	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1305		pmap->pm_ptphint = NULL;
1306
1307	vm_page_free_zero(p);
1308	return 1;
1309}
1310
1311/*
1312 * this routine is called if the page table page is not
1313 * mapped correctly.
1314 */
1315static vm_page_t
1316_pmap_allocpte(pmap, ptepindex)
1317	pmap_t	pmap;
1318	unsigned ptepindex;
1319{
1320	vm_offset_t pteva, ptepa;
1321	vm_page_t m;
1322
1323	/*
1324	 * Find or fabricate a new pagetable page
1325	 */
1326	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1327			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1328
1329	if (m->queue != PQ_NONE) {
1330		int s = splvm();
1331		vm_page_unqueue(m);
1332		splx(s);
1333	}
1334
1335	if (m->wire_count == 0)
1336		cnt.v_wire_count++;
1337	m->wire_count++;
1338
1339	/*
1340	 * Increment the hold count for the page table page
1341	 * (denoting a new mapping.)
1342	 */
1343	m->hold_count++;
1344
1345	/*
1346	 * Map the pagetable page into the process address space, if
1347	 * it isn't already there.
1348	 */
1349
1350	pmap->pm_stats.resident_count++;
1351
1352	ptepa = VM_PAGE_TO_PHYS(m);
1353	pmap->pm_pdir[ptepindex] =
1354		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1355
1356	/*
1357	 * Set the page table hint
1358	 */
1359	pmap->pm_ptphint = m;
1360
1361	/*
1362	 * Try to use the new mapping, but if we cannot, then
1363	 * do it with the routine that maps the page explicitly.
1364	 */
1365	if ((m->flags & PG_ZERO) == 0) {
1366		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1367			(((unsigned) PTDpde) & PG_FRAME)) {
1368			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1369			bzero((caddr_t) pteva, PAGE_SIZE);
1370		} else {
1371			pmap_zero_page(ptepa);
1372		}
1373	}
1374
1375	m->valid = VM_PAGE_BITS_ALL;
1376	m->flags &= ~(PG_ZERO | PG_BUSY);
1377	m->flags |= PG_MAPPED;
1378
1379	return m;
1380}
1381
1382static vm_page_t
1383pmap_allocpte(pmap, va)
1384	pmap_t	pmap;
1385	vm_offset_t va;
1386{
1387	unsigned ptepindex;
1388	vm_offset_t ptepa;
1389	vm_page_t m;
1390
1391	/*
1392	 * Calculate pagetable page index
1393	 */
1394	ptepindex = va >> PDRSHIFT;
1395
1396	/*
1397	 * Get the page directory entry
1398	 */
1399	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1400
1401	/*
1402	 * This supports switching from a 4MB page to a
1403	 * normal 4K page.
1404	 */
1405	if (ptepa & PG_PS) {
1406		pmap->pm_pdir[ptepindex] = 0;
1407		ptepa = 0;
1408		invltlb();
1409	}
1410
1411	/*
1412	 * If the page table page is mapped, we just increment the
1413	 * hold count, and activate it.
1414	 */
1415	if (ptepa) {
1416		/*
1417		 * In order to get the page table page, try the
1418		 * hint first.
1419		 */
1420		if (pmap->pm_ptphint &&
1421			(pmap->pm_ptphint->pindex == ptepindex)) {
1422			m = pmap->pm_ptphint;
1423		} else {
1424			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1425			pmap->pm_ptphint = m;
1426		}
1427		m->hold_count++;
1428		return m;
1429	}
1430	/*
1431	 * Here if the pte page isn't mapped, or if it has been deallocated.
1432	 */
1433	return _pmap_allocpte(pmap, ptepindex);
1434}
1435
1436
1437/***************************************************
1438* Pmap allocation/deallocation routines.
1439 ***************************************************/
1440
1441/*
1442 * Release any resources held by the given physical map.
1443 * Called when a pmap initialized by pmap_pinit is being released.
1444 * Should only be called if the map contains no valid mappings.
1445 */
1446void
1447pmap_release(pmap)
1448	register struct pmap *pmap;
1449{
1450	vm_page_t p,n,ptdpg;
1451	vm_object_t object = pmap->pm_pteobj;
1452	int curgeneration;
1453
1454#if defined(DIAGNOSTIC)
1455	if (object->ref_count != 1)
1456		panic("pmap_release: pteobj reference count != 1");
1457#endif
1458
1459	ptdpg = NULL;
1460retry:
1461	curgeneration = object->generation;
1462	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1463		n = TAILQ_NEXT(p, listq);
1464		if (p->pindex == PTDPTDI) {
1465			ptdpg = p;
1466			continue;
1467		}
1468		while (1) {
1469			if (!pmap_release_free_page(pmap, p) &&
1470				(object->generation != curgeneration))
1471				goto retry;
1472		}
1473	}
1474
1475	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1476		goto retry;
1477}
1478
1479/*
1480 * grow the number of kernel page table entries, if needed
1481 */
1482void
1483pmap_growkernel(vm_offset_t addr)
1484{
1485	struct proc *p;
1486	struct pmap *pmap;
1487	int s;
1488	vm_offset_t ptppaddr;
1489	vm_page_t nkpg;
1490#ifdef SMP
1491	int i;
1492#endif
1493	pd_entry_t newpdir;
1494
1495	s = splhigh();
1496	if (kernel_vm_end == 0) {
1497		kernel_vm_end = KERNBASE;
1498		nkpt = 0;
1499		while (pdir_pde(PTD, kernel_vm_end)) {
1500			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1501			nkpt++;
1502		}
1503	}
1504	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1505	while (kernel_vm_end < addr) {
1506		if (pdir_pde(PTD, kernel_vm_end)) {
1507			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1508			continue;
1509		}
1510
1511		/*
1512		 * This index is bogus, but out of the way
1513		 */
1514		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1515#if !defined(MAX_PERF)
1516		if (!nkpg)
1517			panic("pmap_growkernel: no memory to grow kernel");
1518#endif
1519
1520		nkpt++;
1521
1522		vm_page_wire(nkpg);
1523		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1524		pmap_zero_page(ptppaddr);
1525		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1526		pdir_pde(PTD, kernel_vm_end) = newpdir;
1527
1528#ifdef SMP
1529		for (i = 0; i < mp_ncpus; i++) {
1530			if (IdlePTDS[i])
1531				pdir_pde(IdlePTDS[i], kernel_vm_end) = newpdir;
1532		}
1533#endif
1534
1535		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1536			if (p->p_vmspace) {
1537				pmap = &p->p_vmspace->vm_pmap;
1538				*pmap_pde(pmap, kernel_vm_end) = newpdir;
1539			}
1540		}
1541		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1542		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1543	}
1544	splx(s);
1545}
1546
1547/*
1548 *	Retire the given physical map from service.
1549 *	Should only be called if the map contains
1550 *	no valid mappings.
1551 */
1552void
1553pmap_destroy(pmap)
1554	register pmap_t pmap;
1555{
1556	int count;
1557
1558	if (pmap == NULL)
1559		return;
1560
1561	count = --pmap->pm_count;
1562	if (count == 0) {
1563		pmap_release(pmap);
1564#if !defined(MAX_PERF)
1565		panic("destroying a pmap is not yet implemented");
1566#endif
1567	}
1568}
1569
1570/*
1571 *	Add a reference to the specified pmap.
1572 */
1573void
1574pmap_reference(pmap)
1575	pmap_t pmap;
1576{
1577	if (pmap != NULL) {
1578		pmap->pm_count++;
1579	}
1580}
1581
1582/***************************************************
1583* page management routines.
1584 ***************************************************/
1585
1586/*
1587 * free the pv_entry back to the free list
1588 */
1589static PMAP_INLINE void
1590free_pv_entry(pv)
1591	pv_entry_t pv;
1592{
1593	pv_entry_count--;
1594	zfreei(pvzone, pv);
1595}
1596
1597/*
1598 * get a new pv_entry, allocating a block from the system
1599 * when needed.
1600 * the memory allocation is performed bypassing the malloc code
1601 * because of the possibility of allocations at interrupt time.
1602 */
1603static pv_entry_t
1604get_pv_entry(void)
1605{
1606	pv_entry_count++;
1607	if (pv_entry_high_water &&
1608		(pv_entry_count > pv_entry_high_water) &&
1609		(pmap_pagedaemon_waken == 0)) {
1610		pmap_pagedaemon_waken = 1;
1611		wakeup (&vm_pages_needed);
1612	}
1613	return zalloci(pvzone);
1614}
1615
1616/*
1617 * This routine is very drastic, but can save the system
1618 * in a pinch.
1619 */
1620void
1621pmap_collect() {
1622	pv_table_t *ppv;
1623	int i;
1624	vm_offset_t pa;
1625	vm_page_t m;
1626	static int warningdone=0;
1627
1628	if (pmap_pagedaemon_waken == 0)
1629		return;
1630
1631	if (warningdone < 5) {
1632		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1633		warningdone++;
1634	}
1635
1636	for(i = 0; i < pv_npg; i++) {
1637		if ((ppv = &pv_table[i]) == 0)
1638			continue;
1639		m = ppv->pv_vm_page;
1640		if ((pa = VM_PAGE_TO_PHYS(m)) == 0)
1641			continue;
1642		if (m->wire_count || m->hold_count || m->busy ||
1643			(m->flags & PG_BUSY))
1644			continue;
1645		pmap_remove_all(pa);
1646	}
1647	pmap_pagedaemon_waken = 0;
1648}
1649
1650
1651/*
1652 * If it is the first entry on the list, it is actually
1653 * in the header and we must copy the following entry up
1654 * to the header.  Otherwise we must search the list for
1655 * the entry.  In either case we free the now unused entry.
1656 */
1657
1658static int
1659pmap_remove_entry(pmap, ppv, va)
1660	struct pmap *pmap;
1661	pv_table_t *ppv;
1662	vm_offset_t va;
1663{
1664	pv_entry_t pv;
1665	int rtval;
1666	int s;
1667
1668	s = splvm();
1669	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1670		for (pv = TAILQ_FIRST(&ppv->pv_list);
1671			pv;
1672			pv = TAILQ_NEXT(pv, pv_list)) {
1673			if (pmap == pv->pv_pmap && va == pv->pv_va)
1674				break;
1675		}
1676	} else {
1677		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1678			pv;
1679			pv = TAILQ_NEXT(pv, pv_plist)) {
1680			if (va == pv->pv_va)
1681				break;
1682		}
1683	}
1684
1685	rtval = 0;
1686	if (pv) {
1687
1688		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1689		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1690		ppv->pv_list_count--;
1691		if (TAILQ_FIRST(&ppv->pv_list) == NULL)
1692			ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
1693
1694		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1695		free_pv_entry(pv);
1696	}
1697
1698	splx(s);
1699	return rtval;
1700}
1701
1702/*
1703 * Create a pv entry for page at pa for
1704 * (pmap, va).
1705 */
1706static void
1707pmap_insert_entry(pmap, va, mpte, pa)
1708	pmap_t pmap;
1709	vm_offset_t va;
1710	vm_page_t mpte;
1711	vm_offset_t pa;
1712{
1713
1714	int s;
1715	pv_entry_t pv;
1716	pv_table_t *ppv;
1717
1718	s = splvm();
1719	pv = get_pv_entry();
1720	pv->pv_va = va;
1721	pv->pv_pmap = pmap;
1722	pv->pv_ptem = mpte;
1723
1724	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1725
1726	ppv = pa_to_pvh(pa);
1727	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1728	ppv->pv_list_count++;
1729
1730	splx(s);
1731}
1732
1733/*
1734 * pmap_remove_pte: do the things to unmap a page in a process
1735 */
1736static int
1737pmap_remove_pte(pmap, ptq, va)
1738	struct pmap *pmap;
1739	unsigned *ptq;
1740	vm_offset_t va;
1741{
1742	unsigned oldpte;
1743	pv_table_t *ppv;
1744
1745	oldpte = *ptq;
1746	*ptq = 0;
1747	if (oldpte & PG_W)
1748		pmap->pm_stats.wired_count -= 1;
1749	/*
1750	 * Machines that don't support invlpg, also don't support
1751	 * PG_G.
1752	 */
1753	if (oldpte & PG_G)
1754		invlpg(va);
1755	pmap->pm_stats.resident_count -= 1;
1756	if (oldpte & PG_MANAGED) {
1757		ppv = pa_to_pvh(oldpte);
1758		if (oldpte & PG_M) {
1759#if defined(PMAP_DIAGNOSTIC)
1760			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1761				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1762			}
1763#endif
1764			if (pmap_track_modified(va))
1765				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1766		}
1767		if (oldpte & PG_A)
1768			ppv->pv_vm_page->flags |= PG_REFERENCED;
1769		return pmap_remove_entry(pmap, ppv, va);
1770	} else {
1771		return pmap_unuse_pt(pmap, va, NULL);
1772	}
1773
1774	return 0;
1775}
1776
1777/*
1778 * Remove a single page from a process address space
1779 */
1780static void
1781pmap_remove_page(pmap, va)
1782	struct pmap *pmap;
1783	register vm_offset_t va;
1784{
1785	register unsigned *ptq;
1786
1787	/*
1788	 * if there is no pte for this address, just skip it!!!
1789	 */
1790	if (*pmap_pde(pmap, va) == 0) {
1791		return;
1792	}
1793
1794	/*
1795	 * get a local va for mappings for this pmap.
1796	 */
1797	ptq = get_ptbase(pmap) + i386_btop(va);
1798	if (*ptq) {
1799		(void) pmap_remove_pte(pmap, ptq, va);
1800		invltlb_1pg(va);
1801	}
1802	return;
1803}
1804
1805/*
1806 *	Remove the given range of addresses from the specified map.
1807 *
1808 *	It is assumed that the start and end are properly
1809 *	rounded to the page size.
1810 */
1811void
1812pmap_remove(pmap, sva, eva)
1813	struct pmap *pmap;
1814	register vm_offset_t sva;
1815	register vm_offset_t eva;
1816{
1817	register unsigned *ptbase;
1818	vm_offset_t pdnxt;
1819	vm_offset_t ptpaddr;
1820	vm_offset_t sindex, eindex;
1821	int anyvalid;
1822
1823	if (pmap == NULL)
1824		return;
1825
1826	if (pmap->pm_stats.resident_count == 0)
1827		return;
1828
1829	/*
1830	 * special handling of removing one page.  a very
1831	 * common operation and easy to short circuit some
1832	 * code.
1833	 */
1834	if (((sva + PAGE_SIZE) == eva) &&
1835		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1836		pmap_remove_page(pmap, sva);
1837		return;
1838	}
1839
1840	anyvalid = 0;
1841
1842	/*
1843	 * Get a local virtual address for the mappings that are being
1844	 * worked with.
1845	 */
1846	ptbase = get_ptbase(pmap);
1847
1848	sindex = i386_btop(sva);
1849	eindex = i386_btop(eva);
1850
1851	for (; sindex < eindex; sindex = pdnxt) {
1852		unsigned pdirindex;
1853
1854		/*
1855		 * Calculate index for next page table.
1856		 */
1857		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1858		if (pmap->pm_stats.resident_count == 0)
1859			break;
1860
1861		pdirindex = sindex / NPDEPG;
1862		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1863			pmap->pm_pdir[pdirindex] = 0;
1864			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1865			anyvalid++;
1866			continue;
1867		}
1868
1869		/*
1870		 * Weed out invalid mappings. Note: we assume that the page
1871		 * directory table is always allocated, and in kernel virtual.
1872		 */
1873		if (ptpaddr == 0)
1874			continue;
1875
1876		/*
1877		 * Limit our scan to either the end of the va represented
1878		 * by the current page table page, or to the end of the
1879		 * range being removed.
1880		 */
1881		if (pdnxt > eindex) {
1882			pdnxt = eindex;
1883		}
1884
1885		for ( ;sindex != pdnxt; sindex++) {
1886			vm_offset_t va;
1887			if (ptbase[sindex] == 0) {
1888				continue;
1889			}
1890			va = i386_ptob(sindex);
1891
1892			anyvalid++;
1893			if (pmap_remove_pte(pmap,
1894				ptbase + sindex, va))
1895				break;
1896		}
1897	}
1898
1899	if (anyvalid) {
1900		invltlb();
1901	}
1902}
1903
1904/*
1905 *	Routine:	pmap_remove_all
1906 *	Function:
1907 *		Removes this physical page from
1908 *		all physical maps in which it resides.
1909 *		Reflects back modify bits to the pager.
1910 *
1911 *	Notes:
1912 *		Original versions of this routine were very
1913 *		inefficient because they iteratively called
1914 *		pmap_remove (slow...)
1915 */
1916
1917static void
1918pmap_remove_all(pa)
1919	vm_offset_t pa;
1920{
1921	register pv_entry_t pv;
1922	pv_table_t *ppv;
1923	register unsigned *pte, tpte;
1924	int nmodify;
1925	int update_needed;
1926	int s;
1927
1928	nmodify = 0;
1929	update_needed = 0;
1930#if defined(PMAP_DIAGNOSTIC)
1931	/*
1932	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1933	 * pages!
1934	 */
1935	if (!pmap_is_managed(pa)) {
1936		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1937	}
1938#endif
1939
1940	s = splvm();
1941	ppv = pa_to_pvh(pa);
1942	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1943		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1944
1945		pv->pv_pmap->pm_stats.resident_count--;
1946
1947		tpte = *pte;
1948		*pte = 0;
1949		if (tpte & PG_W)
1950			pv->pv_pmap->pm_stats.wired_count--;
1951
1952		if (tpte & PG_A)
1953			ppv->pv_vm_page->flags |= PG_REFERENCED;
1954
1955		/*
1956		 * Update the vm_page_t clean and reference bits.
1957		 */
1958		if (tpte & PG_M) {
1959#if defined(PMAP_DIAGNOSTIC)
1960			if (pmap_nw_modified((pt_entry_t) tpte)) {
1961				printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", pv->pv_va, tpte);
1962			}
1963#endif
1964			if (pmap_track_modified(pv->pv_va))
1965				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1966		}
1967		if (!update_needed &&
1968			((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
1969			(pv->pv_pmap == kernel_pmap))) {
1970			update_needed = 1;
1971		}
1972
1973		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1974		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1975		ppv->pv_list_count--;
1976		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1977		free_pv_entry(pv);
1978	}
1979
1980	ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
1981
1982	if (update_needed)
1983		invltlb();
1984
1985	splx(s);
1986	return;
1987}
1988
1989/*
1990 *	Set the physical protection on the
1991 *	specified range of this map as requested.
1992 */
1993void
1994pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1995{
1996	register unsigned *ptbase;
1997	vm_offset_t pdnxt, ptpaddr;
1998	vm_pindex_t sindex, eindex;
1999	int anychanged;
2000
2001
2002	if (pmap == NULL)
2003		return;
2004
2005	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2006		pmap_remove(pmap, sva, eva);
2007		return;
2008	}
2009
2010	if (prot & VM_PROT_WRITE)
2011		return;
2012
2013	anychanged = 0;
2014
2015	ptbase = get_ptbase(pmap);
2016
2017	sindex = i386_btop(sva);
2018	eindex = i386_btop(eva);
2019
2020	for (; sindex < eindex; sindex = pdnxt) {
2021
2022		unsigned pdirindex;
2023
2024		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2025
2026		pdirindex = sindex / NPDEPG;
2027		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
2028			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2029			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2030			anychanged++;
2031			continue;
2032		}
2033
2034		/*
2035		 * Weed out invalid mappings. Note: we assume that the page
2036		 * directory table is always allocated, and in kernel virtual.
2037		 */
2038		if (ptpaddr == 0)
2039			continue;
2040
2041		if (pdnxt > eindex) {
2042			pdnxt = eindex;
2043		}
2044
2045		for (; sindex != pdnxt; sindex++) {
2046
2047			unsigned pbits;
2048			pv_table_t *ppv;
2049
2050			pbits = ptbase[sindex];
2051
2052			if (pbits & PG_MANAGED) {
2053				ppv = NULL;
2054				if (pbits & PG_A) {
2055					ppv = pa_to_pvh(pbits);
2056					ppv->pv_vm_page->flags |= PG_REFERENCED;
2057					pbits &= ~PG_A;
2058				}
2059				if (pbits & PG_M) {
2060					if (pmap_track_modified(i386_ptob(sindex))) {
2061						if (ppv == NULL)
2062							ppv = pa_to_pvh(pbits);
2063						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2064						pbits &= ~PG_M;
2065					}
2066				}
2067			}
2068
2069			pbits &= ~PG_RW;
2070
2071			if (pbits != ptbase[sindex]) {
2072				ptbase[sindex] = pbits;
2073				anychanged = 1;
2074			}
2075		}
2076	}
2077	if (anychanged)
2078		invltlb();
2079}
2080
2081/*
2082 *	Insert the given physical page (p) at
2083 *	the specified virtual address (v) in the
2084 *	target physical map with the protection requested.
2085 *
2086 *	If specified, the page will be wired down, meaning
2087 *	that the related pte can not be reclaimed.
2088 *
2089 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2090 *	or lose information.  That is, this routine must actually
2091 *	insert this page into the given map NOW.
2092 */
2093void
2094pmap_enter(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_prot_t prot,
2095	   boolean_t wired)
2096{
2097	register unsigned *pte;
2098	vm_offset_t opa;
2099	vm_offset_t origpte, newpte;
2100	vm_page_t mpte;
2101
2102	if (pmap == NULL)
2103		return;
2104
2105	va &= PG_FRAME;
2106#ifdef PMAP_DIAGNOSTIC
2107	if (va > VM_MAX_KERNEL_ADDRESS)
2108		panic("pmap_enter: toobig");
2109	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2110		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2111#endif
2112
2113	mpte = NULL;
2114	/*
2115	 * In the case that a page table page is not
2116	 * resident, we are creating it here.
2117	 */
2118	if (va < UPT_MIN_ADDRESS) {
2119		mpte = pmap_allocpte(pmap, va);
2120	}
2121#if 0 && defined(PMAP_DIAGNOSTIC)
2122	else {
2123		vm_offset_t *pdeaddr = (vm_offset_t *)pmap_pde(pmap, va);
2124		if (((origpte = (vm_offset_t) *pdeaddr) & PG_V) == 0) {
2125			panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
2126				pmap->pm_pdir[PTDPTDI], origpte, va);
2127		}
2128		if (smp_active) {
2129			pdeaddr = (vm_offset_t *) IdlePTDS[cpuid];
2130			if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
2131				if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
2132					printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
2133				printf("cpuid: %d, pdeaddr: 0x%x\n", cpuid, pdeaddr);
2134				panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
2135					pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
2136			}
2137		}
2138	}
2139#endif
2140
2141	pte = pmap_pte(pmap, va);
2142
2143#if !defined(MAX_PERF)
2144	/*
2145	 * Page Directory table entry not valid, we need a new PT page
2146	 */
2147	if (pte == NULL) {
2148		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%lx\n",
2149			pmap->pm_pdir[PTDPTDI], va);
2150	}
2151#endif
2152
2153	origpte = *(vm_offset_t *)pte;
2154	pa &= PG_FRAME;
2155	opa = origpte & PG_FRAME;
2156
2157#if !defined(MAX_PERF)
2158	if (origpte & PG_PS)
2159		panic("pmap_enter: attempted pmap_enter on 4MB page");
2160#endif
2161
2162	/*
2163	 * Mapping has not changed, must be protection or wiring change.
2164	 */
2165	if (origpte && (opa == pa)) {
2166		/*
2167		 * Wiring change, just update stats. We don't worry about
2168		 * wiring PT pages as they remain resident as long as there
2169		 * are valid mappings in them. Hence, if a user page is wired,
2170		 * the PT page will be also.
2171		 */
2172		if (wired && ((origpte & PG_W) == 0))
2173			pmap->pm_stats.wired_count++;
2174		else if (!wired && (origpte & PG_W))
2175			pmap->pm_stats.wired_count--;
2176
2177#if defined(PMAP_DIAGNOSTIC)
2178		if (pmap_nw_modified((pt_entry_t) origpte)) {
2179			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
2180		}
2181#endif
2182
2183		/*
2184		 * Remove extra pte reference
2185		 */
2186		if (mpte)
2187			mpte->hold_count--;
2188
2189		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2190			if ((origpte & PG_RW) == 0) {
2191				*pte |= PG_RW;
2192				invltlb_1pg(va);
2193			}
2194			return;
2195		}
2196
2197		/*
2198		 * We might be turning off write access to the page,
2199		 * so we go ahead and sense modify status.
2200		 */
2201		if (origpte & PG_MANAGED) {
2202			if ((origpte & PG_M) && pmap_track_modified(va)) {
2203				pv_table_t *ppv;
2204				ppv = pa_to_pvh(opa);
2205				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2206			}
2207			pa |= PG_MANAGED;
2208		}
2209		goto validate;
2210	}
2211	/*
2212	 * Mapping has changed, invalidate old range and fall through to
2213	 * handle validating new mapping.
2214	 */
2215	if (opa) {
2216		int err;
2217		err = pmap_remove_pte(pmap, pte, va);
2218#if !defined(MAX_PERF)
2219		if (err)
2220			panic("pmap_enter: pte vanished, va: 0x%x", va);
2221#endif
2222	}
2223
2224	/*
2225	 * Enter on the PV list if part of our managed memory Note that we
2226	 * raise IPL while manipulating pv_table since pmap_enter can be
2227	 * called at interrupt time.
2228	 */
2229	if (pmap_is_managed(pa)) {
2230		pmap_insert_entry(pmap, va, mpte, pa);
2231		pa |= PG_MANAGED;
2232	}
2233
2234	/*
2235	 * Increment counters
2236	 */
2237	pmap->pm_stats.resident_count++;
2238	if (wired)
2239		pmap->pm_stats.wired_count++;
2240
2241validate:
2242	/*
2243	 * Now validate mapping with desired protection/wiring.
2244	 */
2245	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2246
2247	if (wired)
2248		newpte |= PG_W;
2249	if (va < UPT_MIN_ADDRESS)
2250		newpte |= PG_U;
2251	if (pmap == kernel_pmap)
2252		newpte |= pgeflag;
2253
2254	/*
2255	 * if the mapping or permission bits are different, we need
2256	 * to update the pte.
2257	 */
2258	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2259		*pte = newpte | PG_A;
2260		if (origpte)
2261			invltlb_1pg(va);
2262	}
2263}
2264
2265/*
2266 * this code makes some *MAJOR* assumptions:
2267 * 1. Current pmap & pmap exists.
2268 * 2. Not wired.
2269 * 3. Read access.
2270 * 4. No page table pages.
2271 * 5. Tlbflush is deferred to calling procedure.
2272 * 6. Page IS managed.
2273 * but is *MUCH* faster than pmap_enter...
2274 */
2275
2276static vm_page_t
2277pmap_enter_quick(pmap, va, pa, mpte)
2278	register pmap_t pmap;
2279	vm_offset_t va;
2280	register vm_offset_t pa;
2281	vm_page_t mpte;
2282{
2283	register unsigned *pte;
2284
2285	/*
2286	 * In the case that a page table page is not
2287	 * resident, we are creating it here.
2288	 */
2289	if (va < UPT_MIN_ADDRESS) {
2290		unsigned ptepindex;
2291		vm_offset_t ptepa;
2292
2293		/*
2294		 * Calculate pagetable page index
2295		 */
2296		ptepindex = va >> PDRSHIFT;
2297		if (mpte && (mpte->pindex == ptepindex)) {
2298			mpte->hold_count++;
2299		} else {
2300retry:
2301			/*
2302			 * Get the page directory entry
2303			 */
2304			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2305
2306			/*
2307			 * If the page table page is mapped, we just increment
2308			 * the hold count, and activate it.
2309			 */
2310			if (ptepa) {
2311#if !defined(MAX_PERF)
2312				if (ptepa & PG_PS)
2313					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2314#endif
2315				if (pmap->pm_ptphint &&
2316					(pmap->pm_ptphint->pindex == ptepindex)) {
2317					mpte = pmap->pm_ptphint;
2318				} else {
2319					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2320					pmap->pm_ptphint = mpte;
2321				}
2322				if (mpte == NULL)
2323					goto retry;
2324				mpte->hold_count++;
2325			} else {
2326				mpte = _pmap_allocpte(pmap, ptepindex);
2327			}
2328		}
2329	} else {
2330		mpte = NULL;
2331	}
2332
2333	/*
2334	 * This call to vtopte makes the assumption that we are
2335	 * entering the page into the current pmap.  In order to support
2336	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2337	 * But that isn't as quick as vtopte.
2338	 */
2339	pte = (unsigned *)vtopte(va);
2340	if (*pte) {
2341		if (mpte)
2342			pmap_unwire_pte_hold(pmap, mpte);
2343		return 0;
2344	}
2345
2346	/*
2347	 * Enter on the PV list if part of our managed memory Note that we
2348	 * raise IPL while manipulating pv_table since pmap_enter can be
2349	 * called at interrupt time.
2350	 */
2351	pmap_insert_entry(pmap, va, mpte, pa);
2352
2353	/*
2354	 * Increment counters
2355	 */
2356	pmap->pm_stats.resident_count++;
2357
2358	/*
2359	 * Now validate mapping with RO protection
2360	 */
2361	*pte = pa | PG_V | PG_U | PG_MANAGED;
2362
2363	return mpte;
2364}
2365
2366#define MAX_INIT_PT (96)
2367/*
2368 * pmap_object_init_pt preloads the ptes for a given object
2369 * into the specified pmap.  This eliminates the blast of soft
2370 * faults on process startup and immediately after an mmap.
2371 */
2372void
2373pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2374	pmap_t pmap;
2375	vm_offset_t addr;
2376	vm_object_t object;
2377	vm_pindex_t pindex;
2378	vm_size_t size;
2379	int limit;
2380{
2381	vm_offset_t tmpidx;
2382	int psize;
2383	vm_page_t p, mpte;
2384	int objpgs;
2385
2386	if (!pmap)
2387		return;
2388
2389	/*
2390	 * This code maps large physical mmap regions into the
2391	 * processor address space.  Note that some shortcuts
2392	 * are taken, but the code works.
2393	 */
2394	if (pseflag &&
2395		(object->type == OBJT_DEVICE) &&
2396		((addr & (NBPDR - 1)) == 0) &&
2397		((size & (NBPDR - 1)) == 0) ) {
2398		int i;
2399		int s;
2400		vm_page_t m[1];
2401		unsigned int ptepindex;
2402		int npdes;
2403		vm_offset_t ptepa;
2404
2405		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2406			return;
2407
2408retry:
2409		p = vm_page_lookup(object, pindex);
2410		if (p && vm_page_sleep(p, "init4p", NULL))
2411			goto retry;
2412
2413		if (p == NULL) {
2414			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2415			if (p == NULL)
2416				return;
2417			m[0] = p;
2418
2419			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2420				vm_page_free(p);
2421				return;
2422			}
2423
2424			p = vm_page_lookup(object, pindex);
2425			PAGE_WAKEUP(p);
2426		}
2427
2428		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
2429		if (ptepa & (NBPDR - 1)) {
2430			return;
2431		}
2432
2433		p->valid = VM_PAGE_BITS_ALL;
2434
2435		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2436		npdes = size >> PDRSHIFT;
2437		for(i=0;i<npdes;i++) {
2438			pmap->pm_pdir[ptepindex] =
2439				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
2440			ptepa += NBPDR;
2441			ptepindex += 1;
2442		}
2443		p->flags |= PG_MAPPED;
2444		invltlb();
2445		return;
2446	}
2447
2448	psize = i386_btop(size);
2449
2450	if ((object->type != OBJT_VNODE) ||
2451		(limit && (psize > MAX_INIT_PT) &&
2452			(object->resident_page_count > MAX_INIT_PT))) {
2453		return;
2454	}
2455
2456	if (psize + pindex > object->size)
2457		psize = object->size - pindex;
2458
2459	mpte = NULL;
2460	/*
2461	 * if we are processing a major portion of the object, then scan the
2462	 * entire thing.
2463	 */
2464	if (psize > (object->size >> 2)) {
2465		objpgs = psize;
2466
2467		for (p = TAILQ_FIRST(&object->memq);
2468		    ((objpgs > 0) && (p != NULL));
2469		    p = TAILQ_NEXT(p, listq)) {
2470
2471			tmpidx = p->pindex;
2472			if (tmpidx < pindex) {
2473				continue;
2474			}
2475			tmpidx -= pindex;
2476			if (tmpidx >= psize) {
2477				continue;
2478			}
2479			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2480			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2481				if ((p->queue - p->pc) == PQ_CACHE)
2482					vm_page_deactivate(p);
2483				p->flags |= PG_BUSY;
2484				mpte = pmap_enter_quick(pmap,
2485					addr + i386_ptob(tmpidx),
2486					VM_PAGE_TO_PHYS(p), mpte);
2487				p->flags |= PG_MAPPED;
2488				PAGE_WAKEUP(p);
2489			}
2490			objpgs -= 1;
2491		}
2492	} else {
2493		/*
2494		 * else lookup the pages one-by-one.
2495		 */
2496		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2497			p = vm_page_lookup(object, tmpidx + pindex);
2498			if (p &&
2499			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2500			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2501				if ((p->queue - p->pc) == PQ_CACHE)
2502					vm_page_deactivate(p);
2503				p->flags |= PG_BUSY;
2504				mpte = pmap_enter_quick(pmap,
2505					addr + i386_ptob(tmpidx),
2506					VM_PAGE_TO_PHYS(p), mpte);
2507				p->flags |= PG_MAPPED;
2508				PAGE_WAKEUP(p);
2509			}
2510		}
2511	}
2512	return;
2513}
2514
2515/*
2516 * pmap_prefault provides a quick way of clustering
2517 * pagefaults into a processes address space.  It is a "cousin"
2518 * of pmap_object_init_pt, except it runs at page fault time instead
2519 * of mmap time.
2520 */
2521#define PFBAK 4
2522#define PFFOR 4
2523#define PAGEORDER_SIZE (PFBAK+PFFOR)
2524
2525static int pmap_prefault_pageorder[] = {
2526	-PAGE_SIZE, PAGE_SIZE,
2527	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2528	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2529	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2530};
2531
2532void
2533pmap_prefault(pmap, addra, entry)
2534	pmap_t pmap;
2535	vm_offset_t addra;
2536	vm_map_entry_t entry;
2537{
2538	int i;
2539	vm_offset_t starta;
2540	vm_offset_t addr;
2541	vm_pindex_t pindex;
2542	vm_page_t m, mpte;
2543	vm_object_t object;
2544
2545	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
2546		return;
2547
2548	object = entry->object.vm_object;
2549
2550	starta = addra - PFBAK * PAGE_SIZE;
2551	if (starta < entry->start) {
2552		starta = entry->start;
2553	} else if (starta > addra) {
2554		starta = 0;
2555	}
2556
2557	mpte = NULL;
2558	for (i = 0; i < PAGEORDER_SIZE; i++) {
2559		vm_object_t lobject;
2560		unsigned *pte;
2561
2562		addr = addra + pmap_prefault_pageorder[i];
2563		if (addr > addra + (PFFOR * PAGE_SIZE))
2564			addr = 0;
2565
2566		if (addr < starta || addr >= entry->end)
2567			continue;
2568
2569		if ((*pmap_pde(pmap, addr)) == NULL)
2570			continue;
2571
2572		pte = (unsigned *) vtopte(addr);
2573		if (*pte)
2574			continue;
2575
2576		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2577		lobject = object;
2578		for (m = vm_page_lookup(lobject, pindex);
2579		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2580		    lobject = lobject->backing_object) {
2581			if (lobject->backing_object_offset & PAGE_MASK)
2582				break;
2583			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2584			m = vm_page_lookup(lobject->backing_object, pindex);
2585		}
2586
2587		/*
2588		 * give-up when a page is not in memory
2589		 */
2590		if (m == NULL)
2591			break;
2592
2593		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2594		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2595
2596			if ((m->queue - m->pc) == PQ_CACHE) {
2597				vm_page_deactivate(m);
2598			}
2599			m->flags |= PG_BUSY;
2600			mpte = pmap_enter_quick(pmap, addr,
2601				VM_PAGE_TO_PHYS(m), mpte);
2602			m->flags |= PG_MAPPED;
2603			PAGE_WAKEUP(m);
2604		}
2605	}
2606}
2607
2608/*
2609 *	Routine:	pmap_change_wiring
2610 *	Function:	Change the wiring attribute for a map/virtual-address
2611 *			pair.
2612 *	In/out conditions:
2613 *			The mapping must already exist in the pmap.
2614 */
2615void
2616pmap_change_wiring(pmap, va, wired)
2617	register pmap_t pmap;
2618	vm_offset_t va;
2619	boolean_t wired;
2620{
2621	register unsigned *pte;
2622
2623	if (pmap == NULL)
2624		return;
2625
2626	pte = pmap_pte(pmap, va);
2627
2628	if (wired && !pmap_pte_w(pte))
2629		pmap->pm_stats.wired_count++;
2630	else if (!wired && pmap_pte_w(pte))
2631		pmap->pm_stats.wired_count--;
2632
2633	/*
2634	 * Wiring is not a hardware characteristic so there is no need to
2635	 * invalidate TLB.
2636	 */
2637	pmap_pte_set_w(pte, wired);
2638}
2639
2640
2641
2642/*
2643 *	Copy the range specified by src_addr/len
2644 *	from the source map to the range dst_addr/len
2645 *	in the destination map.
2646 *
2647 *	This routine is only advisory and need not do anything.
2648 */
2649
2650void
2651pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2652	pmap_t dst_pmap, src_pmap;
2653	vm_offset_t dst_addr;
2654	vm_size_t len;
2655	vm_offset_t src_addr;
2656{
2657	vm_offset_t addr;
2658	vm_offset_t end_addr = src_addr + len;
2659	vm_offset_t pdnxt;
2660	unsigned src_frame, dst_frame;
2661
2662	if (dst_addr != src_addr)
2663		return;
2664
2665	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2666	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2667		return;
2668	}
2669
2670	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2671	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2672		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2673		invltlb();
2674	}
2675
2676	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2677		unsigned *src_pte, *dst_pte;
2678		vm_page_t dstmpte, srcmpte;
2679		vm_offset_t srcptepaddr;
2680		unsigned ptepindex;
2681
2682#if !defined(MAX_PERF)
2683		if (addr >= UPT_MIN_ADDRESS)
2684			panic("pmap_copy: invalid to pmap_copy page tables\n");
2685#endif
2686
2687		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2688		ptepindex = addr >> PDRSHIFT;
2689
2690		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2691		if (srcptepaddr == 0)
2692			continue;
2693
2694		if (srcptepaddr & PG_PS) {
2695			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2696				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2697				dst_pmap->pm_stats.resident_count += NBPDR;
2698			}
2699			continue;
2700		}
2701
2702		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2703		if ((srcmpte == NULL) ||
2704			(srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2705			continue;
2706
2707		if (pdnxt > end_addr)
2708			pdnxt = end_addr;
2709
2710		src_pte = (unsigned *) vtopte(addr);
2711		dst_pte = (unsigned *) avtopte(addr);
2712		while (addr < pdnxt) {
2713			unsigned ptetemp;
2714			ptetemp = *src_pte;
2715			/*
2716			 * we only virtual copy managed pages
2717			 */
2718			if ((ptetemp & PG_MANAGED) != 0) {
2719				/*
2720				 * We have to check after allocpte for the
2721				 * pte still being around...  allocpte can
2722				 * block.
2723				 */
2724				dstmpte = pmap_allocpte(dst_pmap, addr);
2725				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2726					/*
2727					 * Clear the modified and
2728					 * accessed (referenced) bits
2729					 * during the copy.
2730					 */
2731					*dst_pte = ptetemp & ~(PG_M | PG_A);
2732					dst_pmap->pm_stats.resident_count++;
2733					pmap_insert_entry(dst_pmap, addr,
2734						dstmpte,
2735						(ptetemp & PG_FRAME));
2736	 			} else {
2737					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2738				}
2739				if (dstmpte->hold_count >= srcmpte->hold_count)
2740					break;
2741			}
2742			addr += PAGE_SIZE;
2743			src_pte++;
2744			dst_pte++;
2745		}
2746	}
2747}
2748
2749/*
2750 *	Routine:	pmap_kernel
2751 *	Function:
2752 *		Returns the physical map handle for the kernel.
2753 */
2754pmap_t
2755pmap_kernel()
2756{
2757	return (kernel_pmap);
2758}
2759
2760/*
2761 *	pmap_zero_page zeros the specified (machine independent)
2762 *	page by mapping the page into virtual memory and using
2763 *	bzero to clear its contents, one machine dependent page
2764 *	at a time.
2765 */
2766void
2767pmap_zero_page(phys)
2768	vm_offset_t phys;
2769{
2770#ifdef SMP
2771#if !defined(MAX_PERF)
2772	if (*(int *) prv_CMAP3)
2773		panic("pmap_zero_page: prv_CMAP3 busy");
2774#endif
2775
2776	*(int *) prv_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2777	cpu_invlpg(&prv_CPAGE3);
2778
2779#if defined(I686_CPU)
2780	if (cpu == CPU_686)
2781		i686_pagezero(&prv_CPAGE3);
2782	else
2783#endif
2784		bzero(&prv_CPAGE3, PAGE_SIZE);
2785
2786	*(int *) prv_CMAP3 = 0;
2787#else
2788#if !defined(MAX_PERF)
2789	if (*(int *) CMAP2)
2790		panic("pmap_zero_page: CMAP2 busy");
2791#endif
2792
2793	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2794	if (cpu_class == CPUCLASS_386) {
2795		invltlb();
2796	} else {
2797		invlpg((u_int)CADDR2);
2798	}
2799
2800#if defined(I686_CPU)
2801	if (cpu == CPU_686)
2802		i686_pagezero(CADDR2);
2803	else
2804#endif
2805		bzero(CADDR2, PAGE_SIZE);
2806	*(int *) CMAP2 = 0;
2807#endif
2808}
2809
2810/*
2811 *	pmap_copy_page copies the specified (machine independent)
2812 *	page by mapping the page into virtual memory and using
2813 *	bcopy to copy the page, one machine dependent page at a
2814 *	time.
2815 */
2816void
2817pmap_copy_page(src, dst)
2818	vm_offset_t src;
2819	vm_offset_t dst;
2820{
2821#ifdef SMP
2822#if !defined(MAX_PERF)
2823	if (*(int *) prv_CMAP1)
2824		panic("pmap_copy_page: prv_CMAP1 busy");
2825	if (*(int *) prv_CMAP2)
2826		panic("pmap_copy_page: prv_CMAP2 busy");
2827#endif
2828
2829	*(int *) prv_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2830	*(int *) prv_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2831
2832	cpu_invlpg(&prv_CPAGE1);
2833	cpu_invlpg(&prv_CPAGE2);
2834
2835	bcopy(&prv_CPAGE1, &prv_CPAGE2, PAGE_SIZE);
2836
2837	*(int *) prv_CMAP1 = 0;
2838	*(int *) prv_CMAP2 = 0;
2839#else
2840#if !defined(MAX_PERF)
2841	if (*(int *) CMAP1 || *(int *) CMAP2)
2842		panic("pmap_copy_page: CMAP busy");
2843#endif
2844
2845	*(int *) CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2846	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2847	if (cpu_class == CPUCLASS_386) {
2848		invltlb();
2849	} else {
2850		invlpg((u_int)CADDR1);
2851		invlpg((u_int)CADDR2);
2852	}
2853
2854	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2855
2856	*(int *) CMAP1 = 0;
2857	*(int *) CMAP2 = 0;
2858#endif
2859}
2860
2861
2862/*
2863 *	Routine:	pmap_pageable
2864 *	Function:
2865 *		Make the specified pages (by pmap, offset)
2866 *		pageable (or not) as requested.
2867 *
2868 *		A page which is not pageable may not take
2869 *		a fault; therefore, its page table entry
2870 *		must remain valid for the duration.
2871 *
2872 *		This routine is merely advisory; pmap_enter
2873 *		will specify that these pages are to be wired
2874 *		down (or not) as appropriate.
2875 */
2876void
2877pmap_pageable(pmap, sva, eva, pageable)
2878	pmap_t pmap;
2879	vm_offset_t sva, eva;
2880	boolean_t pageable;
2881{
2882}
2883
2884/*
2885 * this routine returns true if a physical page resides
2886 * in the given pmap.
2887 */
2888boolean_t
2889pmap_page_exists(pmap, pa)
2890	pmap_t pmap;
2891	vm_offset_t pa;
2892{
2893	register pv_entry_t pv;
2894	pv_table_t *ppv;
2895	int s;
2896
2897	if (!pmap_is_managed(pa))
2898		return FALSE;
2899
2900	s = splvm();
2901
2902	ppv = pa_to_pvh(pa);
2903	/*
2904	 * Not found, check current mappings returning immediately if found.
2905	 */
2906	for (pv = TAILQ_FIRST(&ppv->pv_list);
2907		pv;
2908		pv = TAILQ_NEXT(pv, pv_list)) {
2909		if (pv->pv_pmap == pmap) {
2910			splx(s);
2911			return TRUE;
2912		}
2913	}
2914	splx(s);
2915	return (FALSE);
2916}
2917
2918#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2919/*
2920 * Remove all pages from specified address space
2921 * this aids process exit speeds.  Also, this code
2922 * is special cased for current process only, but
2923 * can have the more generic (and slightly slower)
2924 * mode enabled.  This is much faster than pmap_remove
2925 * in the case of running down an entire address space.
2926 */
2927void
2928pmap_remove_pages(pmap, sva, eva)
2929	pmap_t pmap;
2930	vm_offset_t sva, eva;
2931{
2932	unsigned *pte, tpte;
2933	pv_table_t *ppv;
2934	pv_entry_t pv, npv;
2935	int s;
2936
2937#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2938	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
2939		printf("warning: pmap_remove_pages called with non-current pmap\n");
2940		return;
2941	}
2942#endif
2943
2944	s = splvm();
2945	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2946		pv;
2947		pv = npv) {
2948
2949		if (pv->pv_va >= eva || pv->pv_va < sva) {
2950			npv = TAILQ_NEXT(pv, pv_plist);
2951			continue;
2952		}
2953
2954#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2955		pte = (unsigned *)vtopte(pv->pv_va);
2956#else
2957		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2958#endif
2959		tpte = *pte;
2960
2961/*
2962 * We cannot remove wired pages from a process' mapping at this time
2963 */
2964		if (tpte & PG_W) {
2965			npv = TAILQ_NEXT(pv, pv_plist);
2966			continue;
2967		}
2968		*pte = 0;
2969
2970		ppv = pa_to_pvh(tpte);
2971
2972		pv->pv_pmap->pm_stats.resident_count--;
2973
2974		/*
2975		 * Update the vm_page_t clean and reference bits.
2976		 */
2977		if (tpte & PG_M) {
2978			ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2979		}
2980
2981
2982		npv = TAILQ_NEXT(pv, pv_plist);
2983		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2984
2985		ppv->pv_list_count--;
2986		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2987		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2988			ppv->pv_vm_page->flags &= ~(PG_MAPPED | PG_WRITEABLE);
2989		}
2990
2991		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2992		free_pv_entry(pv);
2993	}
2994	splx(s);
2995	invltlb();
2996}
2997
2998/*
2999 * pmap_testbit tests bits in pte's
3000 * note that the testbit/changebit routines are inline,
3001 * and a lot of things compile-time evaluate.
3002 */
3003static boolean_t
3004pmap_testbit(pa, bit)
3005	register vm_offset_t pa;
3006	int bit;
3007{
3008	register pv_entry_t pv;
3009	pv_table_t *ppv;
3010	unsigned *pte;
3011	int s;
3012
3013	if (!pmap_is_managed(pa))
3014		return FALSE;
3015
3016	ppv = pa_to_pvh(pa);
3017	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
3018		return FALSE;
3019
3020	s = splvm();
3021
3022	for (pv = TAILQ_FIRST(&ppv->pv_list);
3023		pv;
3024		pv = TAILQ_NEXT(pv, pv_list)) {
3025
3026		/*
3027		 * if the bit being tested is the modified bit, then
3028		 * mark clean_map and ptes as never
3029		 * modified.
3030		 */
3031		if (bit & (PG_A|PG_M)) {
3032			if (!pmap_track_modified(pv->pv_va))
3033				continue;
3034		}
3035
3036#if defined(PMAP_DIAGNOSTIC)
3037		if (!pv->pv_pmap) {
3038			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
3039			continue;
3040		}
3041#endif
3042		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3043		if (*pte & bit) {
3044			splx(s);
3045			return TRUE;
3046		}
3047	}
3048	splx(s);
3049	return (FALSE);
3050}
3051
3052/*
3053 * this routine is used to modify bits in ptes
3054 */
3055static void
3056pmap_changebit(pa, bit, setem)
3057	vm_offset_t pa;
3058	int bit;
3059	boolean_t setem;
3060{
3061	register pv_entry_t pv;
3062	pv_table_t *ppv;
3063	register unsigned *pte;
3064	int changed;
3065	int s;
3066
3067	if (!pmap_is_managed(pa))
3068		return;
3069
3070	s = splvm();
3071	changed = 0;
3072	ppv = pa_to_pvh(pa);
3073
3074	/*
3075	 * Loop over all current mappings setting/clearing as appropos If
3076	 * setting RO do we need to clear the VAC?
3077	 */
3078	for (pv = TAILQ_FIRST(&ppv->pv_list);
3079		pv;
3080		pv = TAILQ_NEXT(pv, pv_list)) {
3081
3082		/*
3083		 * don't write protect pager mappings
3084		 */
3085		if (!setem && (bit == PG_RW)) {
3086			if (!pmap_track_modified(pv->pv_va))
3087				continue;
3088		}
3089
3090#if defined(PMAP_DIAGNOSTIC)
3091		if (!pv->pv_pmap) {
3092			printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3093			continue;
3094		}
3095#endif
3096
3097		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3098
3099		if (setem) {
3100			*(int *)pte |= bit;
3101			changed = 1;
3102		} else {
3103			vm_offset_t pbits = *(vm_offset_t *)pte;
3104			if (pbits & bit) {
3105				changed = 1;
3106				if (bit == PG_RW) {
3107					if (pbits & PG_M) {
3108						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
3109					}
3110					*(int *)pte = pbits & ~(PG_M|PG_RW);
3111				} else {
3112					*(int *)pte = pbits & ~bit;
3113				}
3114			}
3115		}
3116	}
3117	splx(s);
3118	if (changed)
3119		invltlb();
3120}
3121
3122/*
3123 *      pmap_page_protect:
3124 *
3125 *      Lower the permission for all mappings to a given page.
3126 */
3127void
3128pmap_page_protect(vm_offset_t phys, vm_prot_t prot)
3129{
3130	if ((prot & VM_PROT_WRITE) == 0) {
3131		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3132			pmap_changebit(phys, PG_RW, FALSE);
3133		} else {
3134			pmap_remove_all(phys);
3135		}
3136	}
3137}
3138
3139vm_offset_t
3140pmap_phys_address(ppn)
3141	int ppn;
3142{
3143	return (i386_ptob(ppn));
3144}
3145
3146/*
3147 *	pmap_ts_referenced:
3148 *
3149 *	Return the count of reference bits for a page, clearing all of them.
3150 *
3151 */
3152int
3153pmap_ts_referenced(vm_offset_t pa)
3154{
3155	register pv_entry_t pv;
3156	pv_table_t *ppv;
3157	unsigned *pte;
3158	int s;
3159	int rtval = 0;
3160
3161	if (!pmap_is_managed(pa))
3162		return FALSE;
3163
3164	s = splvm();
3165
3166	ppv = pa_to_pvh(pa);
3167
3168	if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
3169		splx(s);
3170		return 0;
3171	}
3172
3173	/*
3174	 * Not found, check current mappings returning immediately if found.
3175	 */
3176	for (pv = TAILQ_FIRST(&ppv->pv_list);
3177		pv;
3178		pv = TAILQ_NEXT(pv, pv_list)) {
3179
3180		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
3181		/*
3182		 * if the bit being tested is the modified bit, then
3183		 * mark clean_map and ptes as never
3184		 * modified.
3185		 */
3186		if (!pmap_track_modified(pv->pv_va)) {
3187			TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3188			continue;
3189		}
3190
3191		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3192		if (pte == NULL) {
3193			TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3194			continue;
3195		}
3196
3197		if (*pte & PG_A) {
3198			rtval++;
3199			*pte &= ~PG_A;
3200			if (rtval > 4) {
3201				TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3202				break;
3203			}
3204		}
3205		TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3206	}
3207
3208	splx(s);
3209	if (rtval) {
3210		invltlb();
3211	}
3212	return (rtval);
3213}
3214
3215/*
3216 *	pmap_is_modified:
3217 *
3218 *	Return whether or not the specified physical page was modified
3219 *	in any physical maps.
3220 */
3221boolean_t
3222pmap_is_modified(vm_offset_t pa)
3223{
3224	return pmap_testbit((pa), PG_M);
3225}
3226
3227/*
3228 *	Clear the modify bits on the specified physical page.
3229 */
3230void
3231pmap_clear_modify(vm_offset_t pa)
3232{
3233	pmap_changebit((pa), PG_M, FALSE);
3234}
3235
3236/*
3237 *	pmap_clear_reference:
3238 *
3239 *	Clear the reference bit on the specified physical page.
3240 */
3241void
3242pmap_clear_reference(vm_offset_t pa)
3243{
3244	pmap_changebit((pa), PG_A, FALSE);
3245}
3246
3247/*
3248 * Miscellaneous support routines follow
3249 */
3250
3251static void
3252i386_protection_init()
3253{
3254	register int *kp, prot;
3255
3256	kp = protection_codes;
3257	for (prot = 0; prot < 8; prot++) {
3258		switch (prot) {
3259		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3260			/*
3261			 * Read access is also 0. There isn't any execute bit,
3262			 * so just make it readable.
3263			 */
3264		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3265		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3266		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3267			*kp++ = 0;
3268			break;
3269		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3270		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3271		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3272		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3273			*kp++ = PG_RW;
3274			break;
3275		}
3276	}
3277}
3278
3279/*
3280 * Map a set of physical memory pages into the kernel virtual
3281 * address space. Return a pointer to where it is mapped. This
3282 * routine is intended to be used for mapping device memory,
3283 * NOT real memory.
3284 */
3285void *
3286pmap_mapdev(pa, size)
3287	vm_offset_t pa;
3288	vm_size_t size;
3289{
3290	vm_offset_t va, tmpva;
3291	unsigned *pte;
3292
3293	size = roundup(size, PAGE_SIZE);
3294
3295	va = kmem_alloc_pageable(kernel_map, size);
3296#if !defined(MAX_PERF)
3297	if (!va)
3298		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3299#endif
3300
3301	pa = pa & PG_FRAME;
3302	for (tmpva = va; size > 0;) {
3303		pte = (unsigned *)vtopte(tmpva);
3304		*pte = pa | PG_RW | PG_V | pgeflag;
3305		size -= PAGE_SIZE;
3306		tmpva += PAGE_SIZE;
3307		pa += PAGE_SIZE;
3308	}
3309	invltlb();
3310
3311	return ((void *) va);
3312}
3313
3314/*
3315 * perform the pmap work for mincore
3316 */
3317int
3318pmap_mincore(pmap, addr)
3319	pmap_t pmap;
3320	vm_offset_t addr;
3321{
3322
3323	unsigned *ptep, pte;
3324	vm_page_t m;
3325	int val = 0;
3326
3327	ptep = pmap_pte(pmap, addr);
3328	if (ptep == 0) {
3329		return 0;
3330	}
3331
3332	if (pte = *ptep) {
3333		pv_table_t *ppv;
3334		vm_offset_t pa;
3335
3336		val = MINCORE_INCORE;
3337		if ((pte & PG_MANAGED) == 0)
3338			return val;
3339
3340		pa = pte & PG_FRAME;
3341
3342		ppv = pa_to_pvh((pa & PG_FRAME));
3343		m = ppv->pv_vm_page;
3344
3345		/*
3346		 * Modified by us
3347		 */
3348		if (pte & PG_M)
3349			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3350		/*
3351		 * Modified by someone
3352		 */
3353		else if (m->dirty || pmap_is_modified(pa))
3354			val |= MINCORE_MODIFIED_OTHER;
3355		/*
3356		 * Referenced by us
3357		 */
3358		if (pte & PG_A)
3359			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3360
3361		/*
3362		 * Referenced by someone
3363		 */
3364		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(pa)) {
3365			val |= MINCORE_REFERENCED_OTHER;
3366			m->flags |= PG_REFERENCED;
3367		}
3368	}
3369	return val;
3370}
3371
3372void
3373pmap_activate(struct proc *p)
3374{
3375#if defined(SWTCH_OPTIM_STATS)
3376	tlb_flush_count++;
3377#endif
3378	load_cr3(p->p_addr->u_pcb.pcb_cr3 =
3379		vtophys(p->p_vmspace->vm_pmap.pm_pdir));
3380}
3381
3382vm_offset_t
3383pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) {
3384
3385	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3386		return addr;
3387	}
3388
3389	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3390	return addr;
3391}
3392
3393
3394#if defined(PMAP_DEBUG)
3395pmap_pid_dump(int pid) {
3396	pmap_t pmap;
3397	struct proc *p;
3398	int npte = 0;
3399	int index;
3400	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
3401		if (p->p_pid != pid)
3402			continue;
3403
3404		if (p->p_vmspace) {
3405			int i,j;
3406			index = 0;
3407			pmap = &p->p_vmspace->vm_pmap;
3408			for(i=0;i<1024;i++) {
3409				pd_entry_t *pde;
3410				unsigned *pte;
3411				unsigned base = i << PDRSHIFT;
3412
3413				pde = &pmap->pm_pdir[i];
3414				if (pde && pmap_pde_v(pde)) {
3415					for(j=0;j<1024;j++) {
3416						unsigned va = base + (j << PAGE_SHIFT);
3417						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3418							if (index) {
3419								index = 0;
3420								printf("\n");
3421							}
3422							return npte;
3423						}
3424						pte = pmap_pte_quick( pmap, va);
3425						if (pte && pmap_pte_v(pte)) {
3426							vm_offset_t pa;
3427							vm_page_t m;
3428							pa = *(int *)pte;
3429							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3430							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3431								va, pa, m->hold_count, m->wire_count, m->flags);
3432							npte++;
3433							index++;
3434							if (index >= 2) {
3435								index = 0;
3436								printf("\n");
3437							} else {
3438								printf(" ");
3439							}
3440						}
3441					}
3442				}
3443			}
3444		}
3445	}
3446	return npte;
3447}
3448#endif
3449
3450#if defined(DEBUG)
3451
3452static void	pads __P((pmap_t pm));
3453static void	pmap_pvdump __P((vm_offset_t pa));
3454
3455/* print address space of pmap*/
3456static void
3457pads(pm)
3458	pmap_t pm;
3459{
3460	unsigned va, i, j;
3461	unsigned *ptep;
3462
3463	if (pm == kernel_pmap)
3464		return;
3465	for (i = 0; i < 1024; i++)
3466		if (pm->pm_pdir[i])
3467			for (j = 0; j < 1024; j++) {
3468				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3469				if (pm == kernel_pmap && va < KERNBASE)
3470					continue;
3471				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3472					continue;
3473				ptep = pmap_pte_quick(pm, va);
3474				if (pmap_pte_v(ptep))
3475					printf("%x:%x ", va, *(int *) ptep);
3476			};
3477
3478}
3479
3480static void
3481pmap_pvdump(pa)
3482	vm_offset_t pa;
3483{
3484	pv_table_t *ppv;
3485	register pv_entry_t pv;
3486
3487	printf("pa %x", pa);
3488	ppv = pa_to_pvh(pa);
3489	for (pv = TAILQ_FIRST(&ppv->pv_list);
3490		pv;
3491		pv = TAILQ_NEXT(pv, pv_list)) {
3492#ifdef used_to_be
3493		printf(" -> pmap %x, va %x, flags %x",
3494		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
3495#endif
3496		printf(" -> pmap %x, va %x",
3497		    pv->pv_pmap, pv->pv_va);
3498		pads(pv->pv_pmap);
3499	}
3500	printf(" ");
3501}
3502#endif
3503