pmap.c revision 27484
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.148 1997/07/17 04:33:38 dyson Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_cpu.h"
72
73#define PMAP_LOCK 1
74#define PMAP_PVLIST 1
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/proc.h>
79#include <sys/malloc.h>
80#include <sys/msgbuf.h>
81#include <sys/queue.h>
82#include <sys/vmmeter.h>
83#include <sys/mman.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_prot.h>
88#include <sys/lock.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_page.h>
91#include <vm/vm_map.h>
92#include <vm/vm_object.h>
93#include <vm/vm_extern.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pager.h>
96
97#include <sys/user.h>
98
99#include <machine/cpu.h>
100#include <machine/pcb.h>
101#include <machine/cputypes.h>
102#include <machine/md_var.h>
103#include <machine/specialreg.h>
104#if defined(SMP) || defined(APIC_IO)
105#include <machine/smp.h>
106#include <machine/apic.h>
107#include <machine/smptests.h>
108#endif /* SMP || APIC_IO */
109
110#define PMAP_KEEP_PDIRS
111#ifndef PMAP_SHPGPERPROC
112#define PMAP_SHPGPERPROC 200
113#endif
114
115#if defined(DIAGNOSTIC)
116#define PMAP_DIAGNOSTIC
117#endif
118
119#if !defined(PMAP_DIAGNOSTIC)
120#define PMAP_INLINE __inline
121#else
122#define PMAP_INLINE
123#endif
124
125#define PTPHINT
126
127static void	init_pv_entries __P((int));
128
129/*
130 * Get PDEs and PTEs for user/kernel address space
131 */
132#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
133#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
134
135#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
136#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
137#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
138#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
139#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
140
141#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
142#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
143
144/*
145 * Given a map and a machine independent protection code,
146 * convert to a vax protection code.
147 */
148#define pte_prot(m, p)	(protection_codes[p])
149static int protection_codes[8];
150
151#define	pa_index(pa)		atop((pa) - vm_first_phys)
152#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
153
154static struct pmap kernel_pmap_store;
155pmap_t kernel_pmap;
156
157vm_offset_t avail_start;	/* PA of first available physical page */
158vm_offset_t avail_end;		/* PA of last available physical page */
159vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
160vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
161static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162static vm_offset_t vm_first_phys;
163static int pgeflag;		/* PG_G or-in */
164static int pseflag;		/* PG_PS or-in */
165
166static int nkpt;
167static vm_page_t nkpg;
168vm_offset_t kernel_vm_end;
169
170extern vm_offset_t clean_sva, clean_eva;
171
172#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
173
174/*
175 * Data for the pv entry allocation mechanism
176 */
177static int pv_freelistcnt;
178TAILQ_HEAD (,pv_entry) pv_freelist = {0};
179static vm_offset_t pvva;
180static int npvvapg;
181
182/*
183 * All those kernel PT submaps that BSD is so fond of
184 */
185pt_entry_t *CMAP1 = 0;
186static pt_entry_t *CMAP2, *ptmmap;
187static pv_table_t *pv_table;
188caddr_t CADDR1 = 0, ptvmmap = 0;
189static caddr_t CADDR2;
190static pt_entry_t *msgbufmap;
191struct msgbuf *msgbufp=0;
192
193pt_entry_t *PMAP1 = 0;
194unsigned *PADDR1 = 0;
195
196static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
197static unsigned * get_ptbase __P((pmap_t pmap));
198static pv_entry_t get_pv_entry __P((void));
199static void	i386_protection_init __P((void));
200static void	pmap_alloc_pv_entry __P((void));
201static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
202
203static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
204static void	pmap_remove_all __P((vm_offset_t pa));
205static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
206				      vm_offset_t pa, vm_page_t mpte));
207static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
208					vm_offset_t sva));
209static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
210static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
211					vm_offset_t va));
212static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
213static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
214		vm_page_t mpte, vm_offset_t pa));
215
216static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
217
218static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
219static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
220static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
221static vm_page_t pmap_page_alloc __P((vm_object_t object, vm_pindex_t pindex));
222static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
223static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
224vm_offset_t pmap_kmem_choose(vm_offset_t addr) ;
225
226#define PDSTACKMAX 6
227static vm_offset_t pdstack[PDSTACKMAX];
228static int pdstackptr;
229unsigned pdir4mb;
230
231/*
232 *	Routine:	pmap_pte
233 *	Function:
234 *		Extract the page table entry associated
235 *		with the given map/virtual_address pair.
236 */
237
238PMAP_INLINE unsigned *
239pmap_pte(pmap, va)
240	register pmap_t pmap;
241	vm_offset_t va;
242{
243	if (pmap && *pmap_pde(pmap, va)) {
244		return get_ptbase(pmap) + i386_btop(va);
245	}
246	return (0);
247}
248
249/*
250 * Move the kernel virtual free pointer to the next
251 * 4MB.  This is used to help improve performance
252 * by using a large (4MB) page for much of the kernel
253 * (.text, .data, .bss)
254 */
255vm_offset_t
256pmap_kmem_choose(vm_offset_t addr) {
257	vm_offset_t newaddr = addr;
258	if (cpu_feature & CPUID_PSE) {
259		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
260	}
261	return newaddr;
262}
263
264/*
265 *	Bootstrap the system enough to run with virtual memory.
266 *
267 *	On the i386 this is called after mapping has already been enabled
268 *	and just syncs the pmap module with what has already been done.
269 *	[We can't call it easily with mapping off since the kernel is not
270 *	mapped with PA == VA, hence we would have to relocate every address
271 *	from the linked base (virtual) address "KERNBASE" to the actual
272 *	(physical) address starting relative to 0]
273 */
274void
275pmap_bootstrap(firstaddr, loadaddr)
276	vm_offset_t firstaddr;
277	vm_offset_t loadaddr;
278{
279	vm_offset_t va;
280	pt_entry_t *pte;
281	int i, j;
282
283	avail_start = firstaddr;
284
285	/*
286	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
287	 * large. It should instead be correctly calculated in locore.s and
288	 * not based on 'first' (which is a physical address, not a virtual
289	 * address, for the start of unused physical memory). The kernel
290	 * page tables are NOT double mapped and thus should not be included
291	 * in this calculation.
292	 */
293	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
294	virtual_avail = pmap_kmem_choose(virtual_avail);
295
296	virtual_end = VM_MAX_KERNEL_ADDRESS;
297
298	/*
299	 * Initialize protection array.
300	 */
301	i386_protection_init();
302
303	/*
304	 * The kernel's pmap is statically allocated so we don't have to use
305	 * pmap_create, which is unlikely to work correctly at this part of
306	 * the boot sequence (XXX and which no longer exists).
307	 */
308	kernel_pmap = &kernel_pmap_store;
309
310	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
311
312	kernel_pmap->pm_count = 1;
313#if PMAP_PVLIST
314	TAILQ_INIT(&kernel_pmap->pm_pvlist);
315#endif
316	nkpt = NKPT;
317
318	/*
319	 * Reserve some special page table entries/VA space for temporary
320	 * mapping of pages.
321	 */
322#define	SYSMAP(c, p, v, n)	\
323	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
324
325	va = virtual_avail;
326	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
327
328	/*
329	 * CMAP1/CMAP2 are used for zeroing and copying pages.
330	 */
331	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
332	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
333
334	/*
335	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
336	 * XXX ptmmap is not used.
337	 */
338	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
339
340	/*
341	 * msgbufp is used to map the system message buffer.
342	 * XXX msgbufmap is not used.
343	 */
344	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
345	       atop(round_page(sizeof(struct msgbuf))))
346
347	/*
348	 * ptemap is used for pmap_pte_quick
349	 */
350	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
351
352	virtual_avail = va;
353
354	*(int *) CMAP1 = *(int *) CMAP2 = 0;
355	*(int *) PTD = 0;
356
357#ifdef SMP
358	if (cpu_apic_address == 0)
359		panic("pmap_bootstrap: no local apic!");
360
361	/* 0 = private page */
362	/* 1 = page table page */
363	/* 2 = local apic */
364	/* 16-31 = io apics */
365	SMP_prvpt[2] = PG_V | PG_RW | ((u_long)cpu_apic_address & PG_FRAME);
366
367	for (i = 0; i < mp_napics; i++) {
368		for (j = 0; j < 16; j++) {
369			/* same page frame as a previous IO apic? */
370			if (((u_long)SMP_prvpt[j + 16] & PG_FRAME) ==
371			    ((u_long)io_apic_address[0] & PG_FRAME)) {
372				ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE];
373				break;
374			}
375			/* use this slot if available */
376			if (((u_long)SMP_prvpt[j + 16] & PG_FRAME) == 0) {
377				SMP_prvpt[j + 16] = PG_V | PG_RW |
378				    ((u_long)io_apic_address[i] & PG_FRAME);
379				ioapic[i] = (ioapic_t *)&SMP_ioapic[j * PAGE_SIZE];
380				break;
381			}
382		}
383		if (j == 16)
384			panic("no space to map IO apic %d!", i);
385	}
386#endif
387
388	invltlb();
389
390	pgeflag = 0;
391#if !defined(SMP)
392	if (cpu_feature & CPUID_PGE) {
393		pgeflag = PG_G;
394	}
395#endif
396
397/*
398 * Initialize the 4MB page size flag
399 */
400	pseflag = 0;
401/*
402 * The 4MB page version of the initial
403 * kernel page mapping.
404 */
405	pdir4mb = 0;
406
407#if !defined(DISABLE_PSE)
408	if (cpu_feature & CPUID_PSE) {
409		unsigned ptditmp;
410		/*
411		 * Enable the PSE mode
412		 */
413		load_cr4(rcr4() | CR4_PSE);
414
415		/*
416		 * Note that we have enabled PSE mode
417		 */
418		pseflag = PG_PS;
419		ptditmp = (unsigned) kernel_pmap->pm_pdir[KPTDI];
420		ptditmp &= ~(NBPDR - 1);
421		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
422		pdir4mb = ptditmp;
423		/*
424		 * We can do the mapping here for the single processor
425		 * case.  We simply ignore the old page table page from
426		 * now on.
427		 */
428#if !defined(SMP)
429		PTD[KPTDI] = (pd_entry_t) ptditmp;
430		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
431		invltlb();
432#endif
433	}
434#endif
435}
436
437/*
438 * Set 4mb pdir for mp startup, and global flags
439 */
440void
441pmap_set_opt(unsigned *pdir) {
442	int i;
443
444	if (pseflag && (cpu_feature & CPUID_PSE)) {
445		load_cr4(rcr4() | CR4_PSE);
446		if (pdir4mb) {
447			(unsigned) pdir[KPTDI] = pdir4mb;
448		}
449	}
450
451	if (pgeflag && (cpu_feature & CPUID_PGE)) {
452		load_cr4(rcr4() | CR4_PGE);
453		for(i = KPTDI; i < KPTDI + nkpt; i++) {
454			if (pdir[i]) {
455				pdir[i] |= PG_G;
456			}
457		}
458	}
459}
460
461/*
462 * Setup the PTD for the boot processor
463 */
464void
465pmap_set_opt_bsp(void) {
466	pmap_set_opt((unsigned *)kernel_pmap->pm_pdir);
467	pmap_set_opt((unsigned *)PTD);
468	invltlb();
469}
470
471/*
472 *	Initialize the pmap module.
473 *	Called by vm_init, to initialize any structures that the pmap
474 *	system needs to map virtual memory.
475 *	pmap_init has been enhanced to support in a fairly consistant
476 *	way, discontiguous physical memory.
477 */
478void
479pmap_init(phys_start, phys_end)
480	vm_offset_t phys_start, phys_end;
481{
482	vm_offset_t addr;
483	vm_size_t s;
484	int i, npg;
485
486	/*
487	 * calculate the number of pv_entries needed
488	 */
489	vm_first_phys = phys_avail[0];
490	for (i = 0; phys_avail[i + 1]; i += 2);
491	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
492
493	/*
494	 * Allocate memory for random pmap data structures.  Includes the
495	 * pv_head_table.
496	 */
497	s = (vm_size_t) (sizeof(pv_table_t) * npg);
498	s = round_page(s);
499
500	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
501	pv_table = (pv_table_t *) addr;
502	for(i = 0; i < npg; i++) {
503		vm_offset_t pa;
504		TAILQ_INIT(&pv_table[i].pv_list);
505		pv_table[i].pv_list_count = 0;
506		pa = vm_first_phys + i * PAGE_SIZE;
507		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
508	}
509	TAILQ_INIT(&pv_freelist);
510
511	/*
512	 * init the pv free list
513	 */
514	init_pv_entries(npg);
515	/*
516	 * Now it is safe to enable pv_table recording.
517	 */
518	pmap_initialized = TRUE;
519}
520
521/*
522 *	Used to map a range of physical addresses into kernel
523 *	virtual address space.
524 *
525 *	For now, VM is already on, we only need to map the
526 *	specified memory.
527 */
528vm_offset_t
529pmap_map(virt, start, end, prot)
530	vm_offset_t virt;
531	vm_offset_t start;
532	vm_offset_t end;
533	int prot;
534{
535	while (start < end) {
536		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
537		virt += PAGE_SIZE;
538		start += PAGE_SIZE;
539	}
540	return (virt);
541}
542
543
544/***************************************************
545 * Low level helper routines.....
546 ***************************************************/
547
548#if defined(PMAP_DIAGNOSTIC)
549
550/*
551 * This code checks for non-writeable/modified pages.
552 * This should be an invalid condition.
553 */
554static int
555pmap_nw_modified(pt_entry_t ptea) {
556	int pte;
557
558	pte = (int) ptea;
559
560	if ((pte & (PG_M|PG_RW)) == PG_M)
561		return 1;
562	else
563		return 0;
564}
565#endif
566
567
568/*
569 * this routine defines the region(s) of memory that should
570 * not be tested for the modified bit.
571 */
572static PMAP_INLINE int
573pmap_track_modified( vm_offset_t va) {
574	if ((va < clean_sva) || (va >= clean_eva))
575		return 1;
576	else
577		return 0;
578}
579
580static PMAP_INLINE void
581invltlb_1pg( vm_offset_t va) {
582#if defined(I386_CPU)
583	if (cpu_class == CPUCLASS_386) {
584		invltlb();
585	} else
586#endif
587	{
588		invlpg(va);
589	}
590}
591
592static PMAP_INLINE void
593invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
594#if defined(I386_CPU)
595	if (cpu_class == CPUCLASS_386) {
596		invltlb();
597	} else
598#endif
599	{
600		invlpg(va1);
601		invlpg(va2);
602	}
603}
604
605static unsigned *
606get_ptbase(pmap)
607	pmap_t pmap;
608{
609	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
610
611	/* are we current address space or kernel? */
612	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
613		return (unsigned *) PTmap;
614	}
615	/* otherwise, we are alternate address space */
616	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
617		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
618		invltlb();
619	}
620	return (unsigned *) APTmap;
621}
622
623/*
624 * Super fast pmap_pte routine best used when scanning
625 * the pv lists.  This eliminates many coarse-grained
626 * invltlb calls.  Note that many of the pv list
627 * scans are across different pmaps.  It is very wasteful
628 * to do an entire invltlb for checking a single mapping.
629 */
630
631static unsigned *
632pmap_pte_quick(pmap, va)
633	register pmap_t pmap;
634	vm_offset_t va;
635{
636	unsigned pde, newpf;
637	if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
638		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
639		unsigned index = i386_btop(va);
640		/* are we current address space or kernel? */
641		if ((pmap == kernel_pmap) ||
642			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
643			return (unsigned *) PTmap + index;
644		}
645		newpf = pde & PG_FRAME;
646		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
647			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
648			invltlb_1pg((vm_offset_t) PADDR1);
649		}
650		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
651	}
652	return (0);
653}
654
655/*
656 *	Routine:	pmap_extract
657 *	Function:
658 *		Extract the physical page address associated
659 *		with the given map/virtual_address pair.
660 */
661vm_offset_t
662pmap_extract(pmap, va)
663	register pmap_t pmap;
664	vm_offset_t va;
665{
666	vm_offset_t rtval;
667	vm_offset_t pdirindex;
668	pdirindex = va >> PDRSHIFT;
669	if (pmap) {
670		unsigned *pte;
671		if (((rtval = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
672			rtval &= ~(NBPDR - 1);
673			rtval |= va & (NBPDR - 1);
674			return rtval;
675		}
676		pte = get_ptbase(pmap) + i386_btop(va);
677		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
678		return rtval;
679	}
680	return 0;
681
682}
683
684/*
685 * determine if a page is managed (memory vs. device)
686 */
687static PMAP_INLINE int
688pmap_is_managed(pa)
689	vm_offset_t pa;
690{
691	int i;
692
693	if (!pmap_initialized)
694		return 0;
695
696	for (i = 0; phys_avail[i + 1]; i += 2) {
697		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
698			return 1;
699	}
700	return 0;
701}
702
703
704/***************************************************
705 * Low level mapping routines.....
706 ***************************************************/
707
708/*
709 * Add a list of wired pages to the kva
710 * this routine is only used for temporary
711 * kernel mappings that do not need to have
712 * page modification or references recorded.
713 * Note that old mappings are simply written
714 * over.  The page *must* be wired.
715 */
716void
717pmap_qenter(va, m, count)
718	vm_offset_t va;
719	vm_page_t *m;
720	int count;
721{
722	int i;
723	register unsigned *pte;
724
725	for (i = 0; i < count; i++) {
726		vm_offset_t tva = va + i * PAGE_SIZE;
727		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | pgeflag;
728		unsigned opte;
729		pte = (unsigned *)vtopte(tva);
730		opte = *pte;
731		*pte = npte;
732		if (opte)
733			invltlb_1pg(tva);
734	}
735}
736
737/*
738 * this routine jerks page mappings from the
739 * kernel -- it is meant only for temporary mappings.
740 */
741void
742pmap_qremove(va, count)
743	vm_offset_t va;
744	int count;
745{
746	int i;
747	register unsigned *pte;
748
749	for (i = 0; i < count; i++) {
750		pte = (unsigned *)vtopte(va);
751		*pte = 0;
752		invltlb_1pg(va);
753		va += PAGE_SIZE;
754	}
755}
756
757/*
758 * add a wired page to the kva
759 * note that in order for the mapping to take effect -- you
760 * should do a invltlb after doing the pmap_kenter...
761 */
762PMAP_INLINE void
763pmap_kenter(va, pa)
764	vm_offset_t va;
765	register vm_offset_t pa;
766{
767	register unsigned *pte;
768	unsigned npte, opte;
769
770	npte = pa | PG_RW | PG_V | pgeflag;
771	pte = (unsigned *)vtopte(va);
772	opte = *pte;
773	*pte = npte;
774	if (opte)
775		invltlb_1pg(va);
776}
777
778/*
779 * remove a page from the kernel pagetables
780 */
781PMAP_INLINE void
782pmap_kremove(va)
783	vm_offset_t va;
784{
785	register unsigned *pte;
786
787	pte = (unsigned *)vtopte(va);
788	*pte = 0;
789	invltlb_1pg(va);
790}
791
792static vm_page_t
793pmap_page_alloc(object, pindex)
794	vm_object_t object;
795	vm_pindex_t pindex;
796{
797	vm_page_t m;
798	m = vm_page_alloc(object, pindex, VM_ALLOC_ZERO);
799	if (m == NULL) {
800		VM_WAIT;
801	}
802	return m;
803}
804
805static vm_page_t
806pmap_page_lookup(object, pindex)
807	vm_object_t object;
808	vm_pindex_t pindex;
809{
810	vm_page_t m;
811retry:
812	m = vm_page_lookup(object, pindex);
813	if (m) {
814		if (m->flags & PG_BUSY) {
815			m->flags |= PG_WANTED;
816			tsleep(m, PVM, "pplookp", 0);
817			goto retry;
818		}
819	}
820
821	return m;
822}
823
824/*
825 * Create the UPAGES for a new process.
826 * This routine directly affects the fork perf for a process.
827 */
828void
829pmap_new_proc(p)
830	struct proc *p;
831{
832	int i;
833	vm_object_t upobj;
834	vm_page_t m;
835	struct user *up;
836	unsigned *ptek;
837
838	/*
839	 * allocate object for the upages
840	 */
841	upobj = vm_object_allocate( OBJT_DEFAULT, UPAGES);
842	p->p_upages_obj = upobj;
843
844	/* get a kernel virtual address for the UPAGES for this proc */
845	up = (struct user *) kmem_alloc_pageable(u_map, UPAGES * PAGE_SIZE);
846	if (up == NULL)
847		panic("pmap_new_proc: u_map allocation failed");
848
849	ptek = (unsigned *) vtopte((vm_offset_t) up);
850
851	for(i=0;i<UPAGES;i++) {
852		/*
853		 * Get a kernel stack page
854		 */
855		while ((m = vm_page_alloc(upobj,
856			i, VM_ALLOC_NORMAL)) == NULL) {
857			VM_WAIT;
858		}
859
860		/*
861		 * Wire the page
862		 */
863		m->wire_count++;
864		++cnt.v_wire_count;
865
866		/*
867		 * Enter the page into the kernel address space.
868		 */
869		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
870
871		m->flags &= ~(PG_ZERO|PG_BUSY);
872		m->flags |= PG_MAPPED|PG_WRITEABLE;
873		m->valid = VM_PAGE_BITS_ALL;
874	}
875
876	p->p_addr = up;
877}
878
879/*
880 * Dispose the UPAGES for a process that has exited.
881 * This routine directly impacts the exit perf of a process.
882 */
883void
884pmap_dispose_proc(p)
885	struct proc *p;
886{
887	int i;
888	vm_object_t upobj;
889	vm_page_t m;
890	unsigned *ptek;
891
892	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
893
894	upobj = p->p_upages_obj;
895
896	for(i=0;i<UPAGES;i++) {
897		unsigned oldpte;
898		if ((m = vm_page_lookup(upobj, i)) == NULL)
899			panic("pmap_dispose_proc: upage already missing???");
900		oldpte = *(ptek + i);
901		*(ptek + i) = 0;
902		if (oldpte & PG_G)
903			invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
904		vm_page_unwire(m);
905		vm_page_free(m);
906	}
907
908	vm_object_deallocate(upobj);
909
910	kmem_free(u_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
911}
912
913/*
914 * Allow the UPAGES for a process to be prejudicially paged out.
915 */
916void
917pmap_swapout_proc(p)
918	struct proc *p;
919{
920	int i;
921	vm_object_t upobj;
922	vm_page_t m;
923
924	upobj = p->p_upages_obj;
925	/*
926	 * let the upages be paged
927	 */
928	for(i=0;i<UPAGES;i++) {
929		if ((m = vm_page_lookup(upobj, i)) == NULL)
930			panic("pmap_swapout_proc: upage already missing???");
931		m->dirty = VM_PAGE_BITS_ALL;
932		vm_page_unwire(m);
933		vm_page_deactivate(m);
934		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
935	}
936}
937
938/*
939 * Bring the UPAGES for a specified process back in.
940 */
941void
942pmap_swapin_proc(p)
943	struct proc *p;
944{
945	int i;
946	vm_object_t upobj;
947	vm_page_t m;
948	unsigned *pte;
949
950	upobj = p->p_upages_obj;
951	for(i=0;i<UPAGES;i++) {
952		int s;
953		s = splvm();
954retry:
955		if ((m = vm_page_lookup(upobj, i)) == NULL) {
956			if ((m = vm_page_alloc(upobj, i, VM_ALLOC_NORMAL)) == NULL) {
957				VM_WAIT;
958				goto retry;
959			}
960		} else {
961			if ((m->flags & PG_BUSY) || m->busy) {
962				m->flags |= PG_WANTED;
963				tsleep(m, PVM, "swinuw",0);
964				goto retry;
965			}
966			m->flags |= PG_BUSY;
967		}
968		vm_page_wire(m);
969		splx(s);
970
971		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
972			VM_PAGE_TO_PHYS(m));
973
974		if (m->valid != VM_PAGE_BITS_ALL) {
975			int rv;
976			rv = vm_pager_get_pages(upobj, &m, 1, 0);
977			if (rv != VM_PAGER_OK)
978				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
979			m->valid = VM_PAGE_BITS_ALL;
980		}
981		PAGE_WAKEUP(m);
982		m->flags |= PG_MAPPED|PG_WRITEABLE;
983	}
984}
985
986/***************************************************
987 * Page table page management routines.....
988 ***************************************************/
989
990/*
991 * This routine unholds page table pages, and if the hold count
992 * drops to zero, then it decrements the wire count.
993 */
994static int
995_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
996	int s;
997
998	if (m->flags & PG_BUSY) {
999		s = splvm();
1000		while (m->flags & PG_BUSY) {
1001			m->flags |= PG_WANTED;
1002			tsleep(m, PVM, "pmuwpt", 0);
1003		}
1004		splx(s);
1005	}
1006
1007	if (m->hold_count == 0) {
1008		vm_offset_t pteva;
1009		/*
1010		 * unmap the page table page
1011		 */
1012		pmap->pm_pdir[m->pindex] = 0;
1013		--pmap->pm_stats.resident_count;
1014		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1015			(((unsigned) PTDpde) & PG_FRAME)) {
1016			/*
1017			 * Do a invltlb to make the invalidated mapping
1018			 * take effect immediately.
1019			 */
1020			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
1021			invltlb_1pg(pteva);
1022		}
1023
1024#if defined(PTPHINT)
1025		if (pmap->pm_ptphint == m)
1026			pmap->pm_ptphint = NULL;
1027#endif
1028
1029		/*
1030		 * If the page is finally unwired, simply free it.
1031		 */
1032		--m->wire_count;
1033		if (m->wire_count == 0) {
1034
1035			if (m->flags & PG_WANTED) {
1036				m->flags &= ~PG_WANTED;
1037				wakeup(m);
1038			}
1039
1040			vm_page_free_zero(m);
1041			--cnt.v_wire_count;
1042		}
1043		return 1;
1044	}
1045	return 0;
1046}
1047
1048__inline static int
1049pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1050	vm_page_unhold(m);
1051	if (m->hold_count == 0)
1052		return _pmap_unwire_pte_hold(pmap, m);
1053	else
1054		return 0;
1055}
1056
1057/*
1058 * After removing a page table entry, this routine is used to
1059 * conditionally free the page, and manage the hold/wire counts.
1060 */
1061static int
1062pmap_unuse_pt(pmap, va, mpte)
1063	pmap_t pmap;
1064	vm_offset_t va;
1065	vm_page_t mpte;
1066{
1067	unsigned ptepindex;
1068	if (va >= UPT_MIN_ADDRESS)
1069		return 0;
1070
1071	if (mpte == NULL) {
1072		ptepindex = (va >> PDRSHIFT);
1073#if defined(PTPHINT)
1074		if (pmap->pm_ptphint &&
1075			(pmap->pm_ptphint->pindex == ptepindex)) {
1076			mpte = pmap->pm_ptphint;
1077		} else {
1078			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1079			pmap->pm_ptphint = mpte;
1080		}
1081#else
1082		mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1083#endif
1084	}
1085
1086	return pmap_unwire_pte_hold(pmap, mpte);
1087}
1088
1089/*
1090 * Initialize a preallocated and zeroed pmap structure,
1091 * such as one in a vmspace structure.
1092 */
1093void
1094pmap_pinit(pmap)
1095	register struct pmap *pmap;
1096{
1097	vm_page_t ptdpg;
1098	/*
1099	 * No need to allocate page table space yet but we do need a valid
1100	 * page directory table.
1101	 */
1102
1103	if (pdstackptr > 0) {
1104		--pdstackptr;
1105		pmap->pm_pdir = (pd_entry_t *)pdstack[pdstackptr];
1106	} else {
1107		pmap->pm_pdir =
1108			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1109	}
1110
1111	/*
1112	 * allocate object for the ptes
1113	 */
1114	pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1115
1116	/*
1117	 * allocate the page directory page
1118	 */
1119retry:
1120	ptdpg = pmap_page_alloc( pmap->pm_pteobj, PTDPTDI);
1121	if (ptdpg == NULL)
1122		goto retry;
1123
1124	ptdpg->wire_count = 1;
1125	++cnt.v_wire_count;
1126
1127	ptdpg->flags &= ~(PG_MAPPED|PG_BUSY);	/* not mapped normally */
1128	ptdpg->valid = VM_PAGE_BITS_ALL;
1129
1130	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1131	if ((ptdpg->flags & PG_ZERO) == 0)
1132		bzero(pmap->pm_pdir, PAGE_SIZE);
1133
1134	/* wire in kernel global address entries */
1135	/* XXX copies current process, does not fill in MPPTDI */
1136	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1137
1138	/* install self-referential address mapping entry */
1139	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1140		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
1141
1142	pmap->pm_flags = 0;
1143	pmap->pm_count = 1;
1144	pmap->pm_ptphint = NULL;
1145#if PMAP_PVLIST
1146	TAILQ_INIT(&pmap->pm_pvlist);
1147#endif
1148}
1149
1150static int
1151pmap_release_free_page(pmap, p)
1152	struct pmap *pmap;
1153	vm_page_t p;
1154{
1155	int s;
1156	unsigned *pde = (unsigned *) pmap->pm_pdir;
1157	/*
1158	 * This code optimizes the case of freeing non-busy
1159	 * page-table pages.  Those pages are zero now, and
1160	 * might as well be placed directly into the zero queue.
1161	 */
1162	s = splvm();
1163	if (p->flags & PG_BUSY) {
1164		p->flags |= PG_WANTED;
1165		tsleep(p, PVM, "pmaprl", 0);
1166		splx(s);
1167		return 0;
1168	}
1169
1170	if (p->flags & PG_WANTED) {
1171		p->flags &= ~PG_WANTED;
1172		wakeup(p);
1173	}
1174
1175	/*
1176	 * Remove the page table page from the processes address space.
1177	 */
1178	pde[p->pindex] = 0;
1179	--pmap->pm_stats.resident_count;
1180
1181	if (p->hold_count)  {
1182		panic("pmap_release: freeing held page table page");
1183	}
1184	/*
1185	 * Page directory pages need to have the kernel
1186	 * stuff cleared, so they can go into the zero queue also.
1187	 */
1188	if (p->pindex == PTDPTDI) {
1189		bzero(pde + KPTDI, nkpt * PTESIZE);
1190#ifdef SMP
1191		pde[MPPTDI] = 0;
1192#endif
1193		pde[APTDPTDI] = 0;
1194		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1195	}
1196
1197#if defined(PTPHINT)
1198	if (pmap->pm_ptphint &&
1199		(pmap->pm_ptphint->pindex == p->pindex))
1200		pmap->pm_ptphint = NULL;
1201#endif
1202
1203	vm_page_free_zero(p);
1204	splx(s);
1205	return 1;
1206}
1207
1208/*
1209 * this routine is called if the page table page is not
1210 * mapped correctly.
1211 */
1212static vm_page_t
1213_pmap_allocpte(pmap, ptepindex)
1214	pmap_t	pmap;
1215	unsigned ptepindex;
1216{
1217	vm_offset_t pteva, ptepa;
1218	vm_page_t m;
1219	int needszero = 0;
1220
1221	/*
1222	 * Find or fabricate a new pagetable page
1223	 */
1224retry:
1225	m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
1226	if (m == NULL) {
1227		m = pmap_page_alloc(pmap->pm_pteobj, ptepindex);
1228		if (m == NULL)
1229			goto retry;
1230		if ((m->flags & PG_ZERO) == 0)
1231			needszero = 1;
1232		m->flags &= ~(PG_ZERO|PG_BUSY);
1233		m->valid = VM_PAGE_BITS_ALL;
1234	} else {
1235		if ((m->flags & PG_BUSY) || m->busy) {
1236			m->flags |= PG_WANTED;
1237			tsleep(m, PVM, "ptewai", 0);
1238			goto retry;
1239		}
1240	}
1241
1242	if (m->queue != PQ_NONE) {
1243		int s = splvm();
1244		vm_page_unqueue(m);
1245		splx(s);
1246	}
1247
1248	if (m->wire_count == 0)
1249		++cnt.v_wire_count;
1250	++m->wire_count;
1251
1252	/*
1253	 * Increment the hold count for the page table page
1254	 * (denoting a new mapping.)
1255	 */
1256	++m->hold_count;
1257
1258	/*
1259	 * Map the pagetable page into the process address space, if
1260	 * it isn't already there.
1261	 */
1262
1263	pmap->pm_stats.resident_count++;
1264
1265	ptepa = VM_PAGE_TO_PHYS(m);
1266	pmap->pm_pdir[ptepindex] = (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V);
1267
1268#if defined(PTPHINT)
1269	/*
1270	 * Set the page table hint
1271	 */
1272	pmap->pm_ptphint = m;
1273#endif
1274
1275	/*
1276	 * Try to use the new mapping, but if we cannot, then
1277	 * do it with the routine that maps the page explicitly.
1278	 */
1279	if (needszero) {
1280		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1281			(((unsigned) PTDpde) & PG_FRAME)) {
1282			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1283			bzero((caddr_t) pteva, PAGE_SIZE);
1284		} else {
1285			pmap_zero_page(ptepa);
1286		}
1287	}
1288
1289	m->valid = VM_PAGE_BITS_ALL;
1290	m->flags |= PG_MAPPED;
1291
1292	return m;
1293}
1294
1295static vm_page_t
1296pmap_allocpte(pmap, va)
1297	pmap_t	pmap;
1298	vm_offset_t va;
1299{
1300	unsigned ptepindex;
1301	vm_offset_t ptepa;
1302	vm_page_t m;
1303
1304	/*
1305	 * Calculate pagetable page index
1306	 */
1307	ptepindex = va >> PDRSHIFT;
1308
1309	/*
1310	 * Get the page directory entry
1311	 */
1312	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1313
1314	/*
1315	 * This supports switching from a 4MB page to a
1316	 * normal 4K page.
1317	 */
1318	if (ptepa & PG_PS) {
1319		pmap->pm_pdir[ptepindex] = 0;
1320		ptepa = 0;
1321		invltlb();
1322	}
1323
1324	/*
1325	 * If the page table page is mapped, we just increment the
1326	 * hold count, and activate it.
1327	 */
1328	if (ptepa) {
1329#if defined(PTPHINT)
1330		/*
1331		 * In order to get the page table page, try the
1332		 * hint first.
1333		 */
1334		if (pmap->pm_ptphint &&
1335			(pmap->pm_ptphint->pindex == ptepindex)) {
1336			m = pmap->pm_ptphint;
1337		} else {
1338			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1339			pmap->pm_ptphint = m;
1340		}
1341#else
1342		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1343#endif
1344		++m->hold_count;
1345		return m;
1346	}
1347	/*
1348	 * Here if the pte page isn't mapped, or if it has been deallocated.
1349	 */
1350	return _pmap_allocpte(pmap, ptepindex);
1351}
1352
1353
1354/***************************************************
1355* Pmap allocation/deallocation routines.
1356 ***************************************************/
1357
1358/*
1359 * Release any resources held by the given physical map.
1360 * Called when a pmap initialized by pmap_pinit is being released.
1361 * Should only be called if the map contains no valid mappings.
1362 */
1363void
1364pmap_release(pmap)
1365	register struct pmap *pmap;
1366{
1367	vm_page_t p,n,ptdpg;
1368	vm_object_t object = pmap->pm_pteobj;
1369
1370#if defined(DIAGNOSTIC)
1371	if (object->ref_count != 1)
1372		panic("pmap_release: pteobj reference count != 1");
1373#endif
1374
1375	ptdpg = NULL;
1376retry:
1377	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1378		n = TAILQ_NEXT(p, listq);
1379		if (p->pindex == PTDPTDI) {
1380			ptdpg = p;
1381			continue;
1382		}
1383		if (!pmap_release_free_page(pmap, p))
1384			goto retry;
1385	}
1386
1387	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1388		goto retry;
1389
1390	vm_object_deallocate(object);
1391	if (pdstackptr < PDSTACKMAX) {
1392		pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
1393		++pdstackptr;
1394	} else {
1395		kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
1396	}
1397	pmap->pm_pdir = 0;
1398}
1399
1400/*
1401 * grow the number of kernel page table entries, if needed
1402 */
1403void
1404pmap_growkernel(vm_offset_t addr)
1405{
1406	struct proc *p;
1407	struct pmap *pmap;
1408	int s;
1409
1410	s = splhigh();
1411	if (kernel_vm_end == 0) {
1412		kernel_vm_end = KERNBASE;
1413		nkpt = 0;
1414		while (pdir_pde(PTD, kernel_vm_end)) {
1415			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1416			++nkpt;
1417		}
1418	}
1419	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1420	while (kernel_vm_end < addr) {
1421		if (pdir_pde(PTD, kernel_vm_end)) {
1422			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1423			continue;
1424		}
1425		++nkpt;
1426		if (!nkpg) {
1427			vm_offset_t ptpkva = (vm_offset_t) vtopte(addr);
1428			/*
1429			 * This index is bogus, but out of the way
1430			 */
1431			vm_pindex_t ptpidx = (ptpkva >> PAGE_SHIFT);
1432			nkpg = vm_page_alloc(kernel_object,
1433				ptpidx, VM_ALLOC_SYSTEM);
1434			if (!nkpg)
1435				panic("pmap_growkernel: no memory to grow kernel");
1436			vm_page_wire(nkpg);
1437			vm_page_remove(nkpg);
1438			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
1439		}
1440		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW | pgeflag);
1441		nkpg = NULL;
1442
1443		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1444			if (p->p_vmspace) {
1445				pmap = &p->p_vmspace->vm_pmap;
1446				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1447			}
1448		}
1449		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1450		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1451	}
1452	splx(s);
1453}
1454
1455/*
1456 *	Retire the given physical map from service.
1457 *	Should only be called if the map contains
1458 *	no valid mappings.
1459 */
1460void
1461pmap_destroy(pmap)
1462	register pmap_t pmap;
1463{
1464	int count;
1465
1466	if (pmap == NULL)
1467		return;
1468
1469	count = --pmap->pm_count;
1470	if (count == 0) {
1471		pmap_release(pmap);
1472		free((caddr_t) pmap, M_VMPMAP);
1473	}
1474}
1475
1476/*
1477 *	Add a reference to the specified pmap.
1478 */
1479void
1480pmap_reference(pmap)
1481	pmap_t pmap;
1482{
1483	if (pmap != NULL) {
1484		pmap->pm_count++;
1485	}
1486}
1487
1488/***************************************************
1489* page management routines.
1490 ***************************************************/
1491
1492/*
1493 * free the pv_entry back to the free list
1494 */
1495static PMAP_INLINE void
1496free_pv_entry(pv)
1497	pv_entry_t pv;
1498{
1499	++pv_freelistcnt;
1500	TAILQ_INSERT_HEAD(&pv_freelist, pv, pv_list);
1501}
1502
1503/*
1504 * get a new pv_entry, allocating a block from the system
1505 * when needed.
1506 * the memory allocation is performed bypassing the malloc code
1507 * because of the possibility of allocations at interrupt time.
1508 */
1509static pv_entry_t
1510get_pv_entry()
1511{
1512	pv_entry_t tmp;
1513
1514	/*
1515	 * get more pv_entry pages if needed
1516	 */
1517	if (pv_freelistcnt < PV_FREELIST_MIN || !TAILQ_FIRST(&pv_freelist)) {
1518		pmap_alloc_pv_entry();
1519	}
1520	/*
1521	 * get a pv_entry off of the free list
1522	 */
1523	--pv_freelistcnt;
1524	tmp = TAILQ_FIRST(&pv_freelist);
1525	TAILQ_REMOVE(&pv_freelist, tmp, pv_list);
1526	return tmp;
1527}
1528
1529/*
1530 * This *strange* allocation routine eliminates the possibility of a malloc
1531 * failure (*FATAL*) for a pv_entry_t data structure.
1532 * also -- this code is MUCH MUCH faster than the malloc equiv...
1533 * We really need to do the slab allocator thingie here.
1534 */
1535static void
1536pmap_alloc_pv_entry()
1537{
1538	/*
1539	 * do we have any pre-allocated map-pages left?
1540	 */
1541	if (npvvapg) {
1542		vm_page_t m;
1543
1544		/*
1545		 * allocate a physical page out of the vm system
1546		 */
1547		m = vm_page_alloc(kernel_object,
1548		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
1549		    VM_ALLOC_INTERRUPT);
1550		if (m) {
1551			int newentries;
1552			int i;
1553			pv_entry_t entry;
1554
1555			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
1556			/*
1557			 * wire the page
1558			 */
1559			vm_page_wire(m);
1560			m->flags &= ~PG_BUSY;
1561			/*
1562			 * let the kernel see it
1563			 */
1564			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
1565
1566			entry = (pv_entry_t) pvva;
1567			/*
1568			 * update the allocation pointers
1569			 */
1570			pvva += PAGE_SIZE;
1571			--npvvapg;
1572
1573			/*
1574			 * free the entries into the free list
1575			 */
1576			for (i = 0; i < newentries; i++) {
1577				free_pv_entry(entry);
1578				entry++;
1579			}
1580		}
1581	}
1582	if (!TAILQ_FIRST(&pv_freelist))
1583		panic("get_pv_entry: cannot get a pv_entry_t");
1584}
1585
1586/*
1587 * init the pv_entry allocation system
1588 */
1589void
1590init_pv_entries(npg)
1591	int npg;
1592{
1593	/*
1594	 * Allocate enough kvm space for one entry per page, and
1595	 * each process having PMAP_SHPGPERPROC pages shared with other
1596	 * processes.  (The system can panic if this is too small, but also
1597	 * can fail on bootup if this is too big.)
1598	 * XXX The pv management mechanism needs to be fixed so that systems
1599	 * with lots of shared mappings amongst lots of processes will still
1600	 * work.  The fix will likely be that once we run out of pv entries
1601	 * we will free other entries (and the associated mappings), with
1602	 * some policy yet to be determined.
1603	 */
1604	npvvapg = ((PMAP_SHPGPERPROC * maxproc + npg) * sizeof(struct pv_entry)
1605		+ PAGE_SIZE - 1) / PAGE_SIZE;
1606	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
1607	/*
1608	 * get the first batch of entries
1609	 */
1610	pmap_alloc_pv_entry();
1611}
1612
1613/*
1614 * If it is the first entry on the list, it is actually
1615 * in the header and we must copy the following entry up
1616 * to the header.  Otherwise we must search the list for
1617 * the entry.  In either case we free the now unused entry.
1618 */
1619
1620static int
1621pmap_remove_entry(pmap, ppv, va)
1622	struct pmap *pmap;
1623	pv_table_t *ppv;
1624	vm_offset_t va;
1625{
1626	pv_entry_t pv;
1627	int rtval;
1628	int s;
1629
1630	s = splvm();
1631#if PMAP_PVLIST
1632	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1633#endif
1634		for (pv = TAILQ_FIRST(&ppv->pv_list);
1635			pv;
1636			pv = TAILQ_NEXT(pv, pv_list)) {
1637			if (pmap == pv->pv_pmap && va == pv->pv_va)
1638				break;
1639		}
1640#if PMAP_PVLIST
1641	} else {
1642		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1643			pv;
1644			pv = TAILQ_NEXT(pv, pv_plist)) {
1645			if (va == pv->pv_va)
1646				break;
1647		}
1648	}
1649#endif
1650
1651	rtval = 0;
1652	if (pv) {
1653		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1654		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1655		--ppv->pv_list_count;
1656		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
1657			ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
1658		}
1659
1660#if PMAP_PVLIST
1661		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1662#endif
1663		free_pv_entry(pv);
1664	}
1665
1666	splx(s);
1667	return rtval;
1668}
1669
1670/*
1671 * Create a pv entry for page at pa for
1672 * (pmap, va).
1673 */
1674static void
1675pmap_insert_entry(pmap, va, mpte, pa)
1676	pmap_t pmap;
1677	vm_offset_t va;
1678	vm_page_t mpte;
1679	vm_offset_t pa;
1680{
1681
1682	int s;
1683	pv_entry_t pv;
1684	pv_table_t *ppv;
1685
1686	s = splvm();
1687	pv = get_pv_entry();
1688	pv->pv_va = va;
1689	pv->pv_pmap = pmap;
1690	pv->pv_ptem = mpte;
1691
1692#if PMAP_PVLIST
1693	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1694#endif
1695
1696	ppv = pa_to_pvh(pa);
1697	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1698	++ppv->pv_list_count;
1699
1700	splx(s);
1701}
1702
1703/*
1704 * pmap_remove_pte: do the things to unmap a page in a process
1705 */
1706static int
1707pmap_remove_pte(pmap, ptq, va)
1708	struct pmap *pmap;
1709	unsigned *ptq;
1710	vm_offset_t va;
1711{
1712	unsigned oldpte;
1713	pv_table_t *ppv;
1714
1715	oldpte = *ptq;
1716	*ptq = 0;
1717	if (oldpte & PG_W)
1718		pmap->pm_stats.wired_count -= 1;
1719	/*
1720	 * Machines that don't support invlpg, also don't support
1721	 * PG_G.
1722	 */
1723	if (oldpte & PG_G)
1724		invlpg(va);
1725	pmap->pm_stats.resident_count -= 1;
1726	if (oldpte & PG_MANAGED) {
1727		ppv = pa_to_pvh(oldpte);
1728		if (oldpte & PG_M) {
1729#if defined(PMAP_DIAGNOSTIC)
1730			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1731				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1732			}
1733#endif
1734			if (pmap_track_modified(va))
1735				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1736		}
1737		return pmap_remove_entry(pmap, ppv, va);
1738	} else {
1739		return pmap_unuse_pt(pmap, va, NULL);
1740	}
1741
1742	return 0;
1743}
1744
1745/*
1746 * Remove a single page from a process address space
1747 */
1748static void
1749pmap_remove_page(pmap, va)
1750	struct pmap *pmap;
1751	register vm_offset_t va;
1752{
1753	register unsigned *ptq;
1754
1755	/*
1756	 * if there is no pte for this address, just skip it!!!
1757	 */
1758	if (*pmap_pde(pmap, va) == 0) {
1759		return;
1760	}
1761
1762	/*
1763	 * get a local va for mappings for this pmap.
1764	 */
1765	ptq = get_ptbase(pmap) + i386_btop(va);
1766	if (*ptq) {
1767		(void) pmap_remove_pte(pmap, ptq, va);
1768		invltlb_1pg(va);
1769	}
1770	return;
1771}
1772
1773/*
1774 *	Remove the given range of addresses from the specified map.
1775 *
1776 *	It is assumed that the start and end are properly
1777 *	rounded to the page size.
1778 */
1779void
1780pmap_remove(pmap, sva, eva)
1781	struct pmap *pmap;
1782	register vm_offset_t sva;
1783	register vm_offset_t eva;
1784{
1785	register unsigned *ptbase;
1786	vm_offset_t pdnxt;
1787	vm_offset_t ptpaddr;
1788	vm_offset_t sindex, eindex;
1789	int anyvalid;
1790
1791	if (pmap == NULL)
1792		return;
1793
1794	if (pmap->pm_stats.resident_count == 0)
1795		return;
1796
1797	/*
1798	 * special handling of removing one page.  a very
1799	 * common operation and easy to short circuit some
1800	 * code.
1801	 */
1802	if (((sva + PAGE_SIZE) == eva) &&
1803		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1804		pmap_remove_page(pmap, sva);
1805		return;
1806	}
1807
1808	anyvalid = 0;
1809
1810	/*
1811	 * Get a local virtual address for the mappings that are being
1812	 * worked with.
1813	 */
1814	ptbase = get_ptbase(pmap);
1815
1816	sindex = i386_btop(sva);
1817	eindex = i386_btop(eva);
1818
1819	for (; sindex < eindex; sindex = pdnxt) {
1820		unsigned pdirindex;
1821
1822		/*
1823		 * Calculate index for next page table.
1824		 */
1825		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1826		if (pmap->pm_stats.resident_count == 0)
1827			break;
1828
1829		pdirindex = sindex / NPDEPG;
1830		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1831			pmap->pm_pdir[pdirindex] = 0;
1832			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1833			anyvalid++;
1834			continue;
1835		}
1836
1837		/*
1838		 * Weed out invalid mappings. Note: we assume that the page
1839		 * directory table is always allocated, and in kernel virtual.
1840		 */
1841		if (ptpaddr == 0)
1842			continue;
1843
1844		/*
1845		 * Limit our scan to either the end of the va represented
1846		 * by the current page table page, or to the end of the
1847		 * range being removed.
1848		 */
1849		if (pdnxt > eindex) {
1850			pdnxt = eindex;
1851		}
1852
1853		for ( ;sindex != pdnxt; sindex++) {
1854			vm_offset_t va;
1855			if (ptbase[sindex] == 0) {
1856				continue;
1857			}
1858			va = i386_ptob(sindex);
1859
1860			anyvalid++;
1861			if (pmap_remove_pte(pmap,
1862				ptbase + sindex, va))
1863				break;
1864		}
1865	}
1866
1867	if (anyvalid) {
1868		invltlb();
1869	}
1870}
1871
1872/*
1873 *	Routine:	pmap_remove_all
1874 *	Function:
1875 *		Removes this physical page from
1876 *		all physical maps in which it resides.
1877 *		Reflects back modify bits to the pager.
1878 *
1879 *	Notes:
1880 *		Original versions of this routine were very
1881 *		inefficient because they iteratively called
1882 *		pmap_remove (slow...)
1883 */
1884
1885static void
1886pmap_remove_all(pa)
1887	vm_offset_t pa;
1888{
1889	register pv_entry_t pv;
1890	pv_table_t *ppv;
1891	register unsigned *pte, tpte;
1892	int nmodify;
1893	int update_needed;
1894	int s;
1895
1896	nmodify = 0;
1897	update_needed = 0;
1898#if defined(PMAP_DIAGNOSTIC)
1899	/*
1900	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1901	 * pages!
1902	 */
1903	if (!pmap_is_managed(pa)) {
1904		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1905	}
1906#endif
1907
1908	s = splvm();
1909	ppv = pa_to_pvh(pa);
1910	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1911		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1912
1913		pv->pv_pmap->pm_stats.resident_count--;
1914
1915		tpte = *pte;
1916		*pte = 0;
1917		if (tpte & PG_W)
1918			pv->pv_pmap->pm_stats.wired_count--;
1919		/*
1920		 * Update the vm_page_t clean and reference bits.
1921		 */
1922		if (tpte & PG_M) {
1923#if defined(PMAP_DIAGNOSTIC)
1924			if (pmap_nw_modified((pt_entry_t) tpte)) {
1925				printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", pv->pv_va, tpte);
1926			}
1927#endif
1928			if (pmap_track_modified(pv->pv_va))
1929				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1930		}
1931		if (!update_needed &&
1932			((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
1933			(pv->pv_pmap == kernel_pmap))) {
1934			update_needed = 1;
1935		}
1936
1937#if PMAP_PVLIST
1938		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1939#endif
1940		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1941		--ppv->pv_list_count;
1942		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1943		free_pv_entry(pv);
1944	}
1945	ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
1946
1947
1948	if (update_needed)
1949		invltlb();
1950	splx(s);
1951	return;
1952}
1953
1954/*
1955 *	Set the physical protection on the
1956 *	specified range of this map as requested.
1957 */
1958void
1959pmap_protect(pmap, sva, eva, prot)
1960	register pmap_t pmap;
1961	vm_offset_t sva, eva;
1962	vm_prot_t prot;
1963{
1964	register unsigned *ptbase;
1965	vm_offset_t pdnxt;
1966	vm_offset_t ptpaddr;
1967	vm_offset_t sindex, eindex;
1968	int anychanged;
1969
1970
1971	if (pmap == NULL)
1972		return;
1973
1974	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1975		pmap_remove(pmap, sva, eva);
1976		return;
1977	}
1978
1979	anychanged = 0;
1980
1981	ptbase = get_ptbase(pmap);
1982
1983	sindex = i386_btop(sva);
1984	eindex = i386_btop(eva);
1985
1986	for (; sindex < eindex; sindex = pdnxt) {
1987
1988		unsigned pdirindex;
1989
1990		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1991
1992		pdirindex = sindex / NPDEPG;
1993		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1994			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1995			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1996			anychanged++;
1997			continue;
1998		}
1999
2000		/*
2001		 * Weed out invalid mappings. Note: we assume that the page
2002		 * directory table is always allocated, and in kernel virtual.
2003		 */
2004		if (ptpaddr == 0)
2005			continue;
2006
2007		if (pdnxt > eindex) {
2008			pdnxt = eindex;
2009		}
2010
2011		for (; sindex != pdnxt; sindex++) {
2012
2013			unsigned pbits = ptbase[sindex];
2014
2015			if (prot & VM_PROT_WRITE) {
2016				if ((pbits & (PG_RW|PG_V)) == PG_V) {
2017					if (pbits & PG_MANAGED) {
2018						vm_page_t m = PHYS_TO_VM_PAGE(pbits);
2019						m->flags |= PG_WRITEABLE;
2020						m->object->flags |= OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY;
2021					}
2022					ptbase[sindex] = pbits | PG_RW;
2023					anychanged = 1;
2024				}
2025			} else if (pbits & PG_RW) {
2026				if (pbits & PG_M) {
2027					vm_offset_t sva = i386_ptob(sindex);
2028					if ((pbits & PG_MANAGED) && pmap_track_modified(sva)) {
2029						vm_page_t m = PHYS_TO_VM_PAGE(pbits);
2030						m->dirty = VM_PAGE_BITS_ALL;
2031					}
2032				}
2033				ptbase[sindex] = pbits & ~(PG_M|PG_RW);
2034				anychanged = 1;
2035			}
2036		}
2037	}
2038	if (anychanged)
2039		invltlb();
2040}
2041
2042/*
2043 *	Insert the given physical page (p) at
2044 *	the specified virtual address (v) in the
2045 *	target physical map with the protection requested.
2046 *
2047 *	If specified, the page will be wired down, meaning
2048 *	that the related pte can not be reclaimed.
2049 *
2050 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2051 *	or lose information.  That is, this routine must actually
2052 *	insert this page into the given map NOW.
2053 */
2054void
2055pmap_enter(pmap, va, pa, prot, wired)
2056	register pmap_t pmap;
2057	vm_offset_t va;
2058	register vm_offset_t pa;
2059	vm_prot_t prot;
2060	boolean_t wired;
2061{
2062	register unsigned *pte;
2063	vm_offset_t opa;
2064	vm_offset_t origpte, newpte;
2065	vm_page_t mpte;
2066
2067	if (pmap == NULL)
2068		return;
2069
2070	va &= PG_FRAME;
2071#ifdef PMAP_DIAGNOSTIC
2072	if (va > VM_MAX_KERNEL_ADDRESS)
2073		panic("pmap_enter: toobig");
2074	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2075		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2076#endif
2077
2078	mpte = NULL;
2079	/*
2080	 * In the case that a page table page is not
2081	 * resident, we are creating it here.
2082	 */
2083	if (va < UPT_MIN_ADDRESS)
2084		mpte = pmap_allocpte(pmap, va);
2085
2086	pte = pmap_pte(pmap, va);
2087	/*
2088	 * Page Directory table entry not valid, we need a new PT page
2089	 */
2090	if (pte == NULL) {
2091		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%lx\n",
2092			pmap->pm_pdir[PTDPTDI], va);
2093	}
2094
2095	origpte = *(vm_offset_t *)pte;
2096	pa &= PG_FRAME;
2097	opa = origpte & PG_FRAME;
2098	if (origpte & PG_PS)
2099		panic("pmap_enter: attempted pmap_enter on 4MB page");
2100
2101	/*
2102	 * Mapping has not changed, must be protection or wiring change.
2103	 */
2104	if (origpte && (opa == pa)) {
2105		/*
2106		 * Wiring change, just update stats. We don't worry about
2107		 * wiring PT pages as they remain resident as long as there
2108		 * are valid mappings in them. Hence, if a user page is wired,
2109		 * the PT page will be also.
2110		 */
2111		if (wired && ((origpte & PG_W) == 0))
2112			pmap->pm_stats.wired_count++;
2113		else if (!wired && (origpte & PG_W))
2114			pmap->pm_stats.wired_count--;
2115
2116#if defined(PMAP_DIAGNOSTIC)
2117		if (pmap_nw_modified((pt_entry_t) origpte)) {
2118			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
2119		}
2120#endif
2121
2122		/*
2123		 * We might be turning off write access to the page,
2124		 * so we go ahead and sense modify status.
2125		 */
2126		if (origpte & PG_MANAGED) {
2127			vm_page_t m;
2128			if (origpte & PG_M) {
2129				if (pmap_track_modified(va)) {
2130					m = PHYS_TO_VM_PAGE(pa);
2131					m->dirty = VM_PAGE_BITS_ALL;
2132				}
2133			}
2134			pa |= PG_MANAGED;
2135		}
2136
2137		if (mpte)
2138			--mpte->hold_count;
2139
2140		goto validate;
2141	}
2142	/*
2143	 * Mapping has changed, invalidate old range and fall through to
2144	 * handle validating new mapping.
2145	 */
2146	if (opa) {
2147		int err;
2148		err = pmap_remove_pte(pmap, pte, va);
2149		if (err)
2150			panic("pmap_enter: pte vanished, va: 0x%x", va);
2151	}
2152
2153	/*
2154	 * Enter on the PV list if part of our managed memory Note that we
2155	 * raise IPL while manipulating pv_table since pmap_enter can be
2156	 * called at interrupt time.
2157	 */
2158	if (pmap_is_managed(pa)) {
2159		pmap_insert_entry(pmap, va, mpte, pa);
2160		pa |= PG_MANAGED;
2161	}
2162
2163	/*
2164	 * Increment counters
2165	 */
2166	pmap->pm_stats.resident_count++;
2167	if (wired)
2168		pmap->pm_stats.wired_count++;
2169
2170validate:
2171	/*
2172	 * Now validate mapping with desired protection/wiring.
2173	 */
2174	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2175
2176	if (wired)
2177		newpte |= PG_W;
2178	if (va < UPT_MIN_ADDRESS)
2179		newpte |= PG_U;
2180	if (pmap == kernel_pmap)
2181		newpte |= pgeflag;
2182
2183	/*
2184	 * if the mapping or permission bits are different, we need
2185	 * to update the pte.
2186	 */
2187	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2188		*pte = newpte;
2189		if (origpte)
2190			invltlb_1pg(va);
2191	}
2192}
2193
2194/*
2195 * this code makes some *MAJOR* assumptions:
2196 * 1. Current pmap & pmap exists.
2197 * 2. Not wired.
2198 * 3. Read access.
2199 * 4. No page table pages.
2200 * 5. Tlbflush is deferred to calling procedure.
2201 * 6. Page IS managed.
2202 * but is *MUCH* faster than pmap_enter...
2203 */
2204
2205static vm_page_t
2206pmap_enter_quick(pmap, va, pa, mpte)
2207	register pmap_t pmap;
2208	vm_offset_t va;
2209	register vm_offset_t pa;
2210	vm_page_t mpte;
2211{
2212	register unsigned *pte;
2213
2214	/*
2215	 * In the case that a page table page is not
2216	 * resident, we are creating it here.
2217	 */
2218	if (va < UPT_MIN_ADDRESS) {
2219		unsigned ptepindex;
2220		vm_offset_t ptepa;
2221
2222		/*
2223		 * Calculate pagetable page index
2224		 */
2225		ptepindex = va >> PDRSHIFT;
2226		if (mpte && (mpte->pindex == ptepindex)) {
2227			++mpte->hold_count;
2228		} else {
2229retry:
2230			/*
2231			 * Get the page directory entry
2232			 */
2233			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2234
2235			/*
2236			 * If the page table page is mapped, we just increment
2237			 * the hold count, and activate it.
2238			 */
2239			if (ptepa) {
2240				if (ptepa & PG_PS)
2241					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2242#if defined(PTPHINT)
2243				if (pmap->pm_ptphint &&
2244					(pmap->pm_ptphint->pindex == ptepindex)) {
2245					mpte = pmap->pm_ptphint;
2246				} else {
2247					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2248					pmap->pm_ptphint = mpte;
2249				}
2250#else
2251				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2252#endif
2253				if (mpte == NULL)
2254					goto retry;
2255				++mpte->hold_count;
2256			} else {
2257				mpte = _pmap_allocpte(pmap, ptepindex);
2258			}
2259		}
2260	} else {
2261		mpte = NULL;
2262	}
2263
2264	/*
2265	 * This call to vtopte makes the assumption that we are
2266	 * entering the page into the current pmap.  In order to support
2267	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2268	 * But that isn't as quick as vtopte.
2269	 */
2270	pte = (unsigned *)vtopte(va);
2271	if (*pte) {
2272		if (mpte)
2273			pmap_unwire_pte_hold(pmap, mpte);
2274		return 0;
2275	}
2276
2277	/*
2278	 * Enter on the PV list if part of our managed memory Note that we
2279	 * raise IPL while manipulating pv_table since pmap_enter can be
2280	 * called at interrupt time.
2281	 */
2282	pmap_insert_entry(pmap, va, mpte, pa);
2283
2284	/*
2285	 * Increment counters
2286	 */
2287	pmap->pm_stats.resident_count++;
2288
2289	/*
2290	 * Now validate mapping with RO protection
2291	 */
2292	*pte = pa | PG_V | PG_U | PG_MANAGED;
2293
2294	return mpte;
2295}
2296
2297#define MAX_INIT_PT (96)
2298/*
2299 * pmap_object_init_pt preloads the ptes for a given object
2300 * into the specified pmap.  This eliminates the blast of soft
2301 * faults on process startup and immediately after an mmap.
2302 */
2303void
2304pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2305	pmap_t pmap;
2306	vm_offset_t addr;
2307	vm_object_t object;
2308	vm_pindex_t pindex;
2309	vm_size_t size;
2310	int limit;
2311{
2312	vm_offset_t tmpidx;
2313	int psize;
2314	vm_page_t p, mpte;
2315	int objpgs;
2316
2317	if (!pmap)
2318		return;
2319
2320	/*
2321	 * This code maps large physical mmap regions into the
2322	 * processor address space.  Note that some shortcuts
2323	 * are taken, but the code works.
2324	 */
2325	if (pseflag &&
2326		(object->type == OBJT_DEVICE) &&
2327		((addr & (NBPDR - 1)) == 0) &&
2328		((size & (NBPDR - 1)) == 0) ) {
2329		int i;
2330		int s;
2331		vm_page_t m[1];
2332		unsigned int ptepindex;
2333		int npdes;
2334		vm_offset_t ptepa;
2335
2336		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2337			return;
2338
2339		s = splhigh();
2340retry:
2341		p = vm_page_lookup(object, pindex);
2342		if (p && (p->flags & PG_BUSY)) {
2343			tsleep(p, PVM, "init4p", 0);
2344			goto retry;
2345		}
2346		splx(s);
2347
2348		if (p == NULL) {
2349			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2350			if (p == NULL)
2351				return;
2352			m[0] = p;
2353
2354			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2355				PAGE_WAKEUP(p);
2356				vm_page_free(p);
2357				return;
2358			}
2359
2360			p = vm_page_lookup(object, pindex);
2361			PAGE_WAKEUP(p);
2362		}
2363
2364		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
2365		if (ptepa & (NBPDR - 1)) {
2366			return;
2367		}
2368
2369		p->valid = VM_PAGE_BITS_ALL;
2370
2371		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2372		npdes = size >> PDRSHIFT;
2373		for(i=0;i<npdes;i++) {
2374			pmap->pm_pdir[ptepindex] =
2375				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
2376			ptepa += NBPDR;
2377			ptepindex += 1;
2378		}
2379		p->flags |= PG_MAPPED;
2380		invltlb();
2381		return;
2382	}
2383
2384	psize = i386_btop(size);
2385
2386	if ((object->type != OBJT_VNODE) ||
2387		(limit && (psize > MAX_INIT_PT) &&
2388			(object->resident_page_count > MAX_INIT_PT))) {
2389		return;
2390	}
2391
2392	if (psize + pindex > object->size)
2393		psize = object->size - pindex;
2394
2395	mpte = NULL;
2396	/*
2397	 * if we are processing a major portion of the object, then scan the
2398	 * entire thing.
2399	 */
2400	if (psize > (object->size >> 2)) {
2401		objpgs = psize;
2402
2403		for (p = TAILQ_FIRST(&object->memq);
2404		    ((objpgs > 0) && (p != NULL));
2405		    p = TAILQ_NEXT(p, listq)) {
2406
2407			tmpidx = p->pindex;
2408			if (tmpidx < pindex) {
2409				continue;
2410			}
2411			tmpidx -= pindex;
2412			if (tmpidx >= psize) {
2413				continue;
2414			}
2415			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2416			    (p->busy == 0) &&
2417			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2418				if ((p->queue - p->pc) == PQ_CACHE)
2419					vm_page_deactivate(p);
2420				p->flags |= PG_BUSY;
2421				mpte = pmap_enter_quick(pmap,
2422					addr + i386_ptob(tmpidx),
2423					VM_PAGE_TO_PHYS(p), mpte);
2424				p->flags |= PG_MAPPED;
2425				PAGE_WAKEUP(p);
2426			}
2427			objpgs -= 1;
2428		}
2429	} else {
2430		/*
2431		 * else lookup the pages one-by-one.
2432		 */
2433		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2434			p = vm_page_lookup(object, tmpidx + pindex);
2435			if (p &&
2436			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2437			    (p->busy == 0) &&
2438			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2439				if ((p->queue - p->pc) == PQ_CACHE)
2440					vm_page_deactivate(p);
2441				p->flags |= PG_BUSY;
2442				mpte = pmap_enter_quick(pmap,
2443					addr + i386_ptob(tmpidx),
2444					VM_PAGE_TO_PHYS(p), mpte);
2445				p->flags |= PG_MAPPED;
2446				PAGE_WAKEUP(p);
2447			}
2448		}
2449	}
2450	return;
2451}
2452
2453/*
2454 * pmap_prefault provides a quick way of clustering
2455 * pagefaults into a processes address space.  It is a "cousin"
2456 * of pmap_object_init_pt, except it runs at page fault time instead
2457 * of mmap time.
2458 */
2459#define PFBAK 2
2460#define PFFOR 2
2461#define PAGEORDER_SIZE (PFBAK+PFFOR)
2462
2463static int pmap_prefault_pageorder[] = {
2464	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
2465};
2466
2467void
2468pmap_prefault(pmap, addra, entry, object)
2469	pmap_t pmap;
2470	vm_offset_t addra;
2471	vm_map_entry_t entry;
2472	vm_object_t object;
2473{
2474	int i;
2475	vm_offset_t starta;
2476	vm_offset_t addr;
2477	vm_pindex_t pindex;
2478	vm_page_t m, mpte;
2479
2480	if (entry->object.vm_object != object)
2481		return;
2482
2483	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
2484		return;
2485
2486	starta = addra - PFBAK * PAGE_SIZE;
2487	if (starta < entry->start) {
2488		starta = entry->start;
2489	} else if (starta > addra) {
2490		starta = 0;
2491	}
2492
2493	mpte = NULL;
2494	for (i = 0; i < PAGEORDER_SIZE; i++) {
2495		vm_object_t lobject;
2496		unsigned *pte;
2497
2498		addr = addra + pmap_prefault_pageorder[i];
2499		if (addr < starta || addr >= entry->end)
2500			continue;
2501
2502		if ((*pmap_pde(pmap, addr)) == NULL)
2503			continue;
2504
2505		pte = (unsigned *) vtopte(addr);
2506		if (*pte)
2507			continue;
2508
2509		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2510		lobject = object;
2511		for (m = vm_page_lookup(lobject, pindex);
2512		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2513		    lobject = lobject->backing_object) {
2514			if (lobject->backing_object_offset & PAGE_MASK)
2515				break;
2516			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2517			m = vm_page_lookup(lobject->backing_object, pindex);
2518		}
2519
2520		/*
2521		 * give-up when a page is not in memory
2522		 */
2523		if (m == NULL)
2524			break;
2525
2526		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2527		    (m->busy == 0) &&
2528		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2529
2530			if ((m->queue - m->pc) == PQ_CACHE) {
2531				vm_page_deactivate(m);
2532			}
2533			m->flags |= PG_BUSY;
2534			mpte = pmap_enter_quick(pmap, addr,
2535				VM_PAGE_TO_PHYS(m), mpte);
2536			m->flags |= PG_MAPPED;
2537			PAGE_WAKEUP(m);
2538		}
2539	}
2540}
2541
2542/*
2543 *	Routine:	pmap_change_wiring
2544 *	Function:	Change the wiring attribute for a map/virtual-address
2545 *			pair.
2546 *	In/out conditions:
2547 *			The mapping must already exist in the pmap.
2548 */
2549void
2550pmap_change_wiring(pmap, va, wired)
2551	register pmap_t pmap;
2552	vm_offset_t va;
2553	boolean_t wired;
2554{
2555	register unsigned *pte;
2556
2557	if (pmap == NULL)
2558		return;
2559
2560	pte = pmap_pte(pmap, va);
2561
2562	if (wired && !pmap_pte_w(pte))
2563		pmap->pm_stats.wired_count++;
2564	else if (!wired && pmap_pte_w(pte))
2565		pmap->pm_stats.wired_count--;
2566
2567	/*
2568	 * Wiring is not a hardware characteristic so there is no need to
2569	 * invalidate TLB.
2570	 */
2571	pmap_pte_set_w(pte, wired);
2572}
2573
2574
2575
2576/*
2577 *	Copy the range specified by src_addr/len
2578 *	from the source map to the range dst_addr/len
2579 *	in the destination map.
2580 *
2581 *	This routine is only advisory and need not do anything.
2582 */
2583
2584void
2585pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2586	pmap_t dst_pmap, src_pmap;
2587	vm_offset_t dst_addr;
2588	vm_size_t len;
2589	vm_offset_t src_addr;
2590{
2591	vm_offset_t addr;
2592	vm_offset_t end_addr = src_addr + len;
2593	vm_offset_t pdnxt;
2594	unsigned src_frame, dst_frame;
2595
2596	if (dst_addr != src_addr)
2597		return;
2598
2599	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2600	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2601		return;
2602	}
2603
2604	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2605	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2606		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2607		invltlb();
2608	}
2609
2610	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2611		unsigned *src_pte, *dst_pte;
2612		vm_page_t dstmpte, srcmpte;
2613		vm_offset_t srcptepaddr;
2614		unsigned ptepindex;
2615
2616		if (addr >= UPT_MIN_ADDRESS)
2617			panic("pmap_copy: invalid to pmap_copy page tables\n");
2618
2619		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2620		ptepindex = addr >> PDRSHIFT;
2621
2622		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2623		if (srcptepaddr == 0)
2624			continue;
2625
2626		if (srcptepaddr & PG_PS) {
2627			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2628				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2629				dst_pmap->pm_stats.resident_count += NBPDR;
2630			}
2631			continue;
2632		}
2633
2634		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2635		if ((srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2636			continue;
2637
2638		if (pdnxt > end_addr)
2639			pdnxt = end_addr;
2640
2641		src_pte = (unsigned *) vtopte(addr);
2642		dst_pte = (unsigned *) avtopte(addr);
2643		while (addr < pdnxt) {
2644			unsigned ptetemp;
2645			ptetemp = *src_pte;
2646			/*
2647			 * we only virtual copy managed pages
2648			 */
2649			if ((ptetemp & PG_MANAGED) != 0) {
2650				/*
2651				 * We have to check after allocpte for the
2652				 * pte still being around...  allocpte can
2653				 * block.
2654				 */
2655				dstmpte = pmap_allocpte(dst_pmap, addr);
2656				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2657					/*
2658					 * Clear the modified and
2659					 * accessed (referenced) bits
2660					 * during the copy.
2661					 */
2662					*dst_pte = ptetemp & ~(PG_M|PG_A);
2663					dst_pmap->pm_stats.resident_count++;
2664					pmap_insert_entry(dst_pmap, addr,
2665						dstmpte,
2666						(ptetemp & PG_FRAME));
2667	 			} else {
2668					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2669				}
2670				if (dstmpte->hold_count >= srcmpte->hold_count)
2671					break;
2672			}
2673			addr += PAGE_SIZE;
2674			++src_pte;
2675			++dst_pte;
2676		}
2677	}
2678}
2679
2680/*
2681 *	Routine:	pmap_kernel
2682 *	Function:
2683 *		Returns the physical map handle for the kernel.
2684 */
2685pmap_t
2686pmap_kernel()
2687{
2688	return (kernel_pmap);
2689}
2690
2691/*
2692 *	pmap_zero_page zeros the specified (machine independent)
2693 *	page by mapping the page into virtual memory and using
2694 *	bzero to clear its contents, one machine dependent page
2695 *	at a time.
2696 */
2697void
2698pmap_zero_page(phys)
2699	vm_offset_t phys;
2700{
2701	if (*(int *) CMAP2)
2702		panic("pmap_zero_page: CMAP busy");
2703
2704	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
2705	bzero(CADDR2, PAGE_SIZE);
2706	*(int *) CMAP2 = 0;
2707	invltlb_1pg((vm_offset_t) CADDR2);
2708}
2709
2710/*
2711 *	pmap_copy_page copies the specified (machine independent)
2712 *	page by mapping the page into virtual memory and using
2713 *	bcopy to copy the page, one machine dependent page at a
2714 *	time.
2715 */
2716void
2717pmap_copy_page(src, dst)
2718	vm_offset_t src;
2719	vm_offset_t dst;
2720{
2721	if (*(int *) CMAP1 || *(int *) CMAP2)
2722		panic("pmap_copy_page: CMAP busy");
2723
2724	*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
2725	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
2726
2727	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2728
2729	*(int *) CMAP1 = 0;
2730	*(int *) CMAP2 = 0;
2731	invltlb_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
2732}
2733
2734
2735/*
2736 *	Routine:	pmap_pageable
2737 *	Function:
2738 *		Make the specified pages (by pmap, offset)
2739 *		pageable (or not) as requested.
2740 *
2741 *		A page which is not pageable may not take
2742 *		a fault; therefore, its page table entry
2743 *		must remain valid for the duration.
2744 *
2745 *		This routine is merely advisory; pmap_enter
2746 *		will specify that these pages are to be wired
2747 *		down (or not) as appropriate.
2748 */
2749void
2750pmap_pageable(pmap, sva, eva, pageable)
2751	pmap_t pmap;
2752	vm_offset_t sva, eva;
2753	boolean_t pageable;
2754{
2755}
2756
2757/*
2758 * this routine returns true if a physical page resides
2759 * in the given pmap.
2760 */
2761boolean_t
2762pmap_page_exists(pmap, pa)
2763	pmap_t pmap;
2764	vm_offset_t pa;
2765{
2766	register pv_entry_t pv;
2767	pv_table_t *ppv;
2768	int s;
2769
2770	if (!pmap_is_managed(pa))
2771		return FALSE;
2772
2773	s = splvm();
2774
2775	ppv = pa_to_pvh(pa);
2776	/*
2777	 * Not found, check current mappings returning immediately if found.
2778	 */
2779	for (pv = TAILQ_FIRST(&ppv->pv_list);
2780		pv;
2781		pv = TAILQ_NEXT(pv, pv_list)) {
2782		if (pv->pv_pmap == pmap) {
2783			splx(s);
2784			return TRUE;
2785		}
2786	}
2787	splx(s);
2788	return (FALSE);
2789}
2790
2791#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2792/*
2793 * Remove all pages from specified address space
2794 * this aids process exit speeds.  Also, this code
2795 * is special cased for current process only, but
2796 * can have the more generic (and slightly slower)
2797 * mode enabled.  This is much faster than pmap_remove
2798 * in the case of running down an entire address space.
2799 */
2800void
2801pmap_remove_pages(pmap, sva, eva)
2802	pmap_t pmap;
2803	vm_offset_t sva, eva;
2804{
2805	unsigned *pte, tpte;
2806	pv_table_t *ppv;
2807	pv_entry_t pv, npv;
2808	int s;
2809
2810#if PMAP_PVLIST
2811
2812#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2813	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
2814		printf("warning: pmap_remove_pages called with non-current pmap\n");
2815		return;
2816	}
2817#endif
2818
2819	s = splvm();
2820	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2821		pv;
2822		pv = npv) {
2823
2824		if (pv->pv_va >= eva || pv->pv_va < sva) {
2825			npv = TAILQ_NEXT(pv, pv_plist);
2826			continue;
2827		}
2828
2829#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2830		pte = (unsigned *)vtopte(pv->pv_va);
2831#else
2832		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2833#endif
2834		tpte = *pte;
2835
2836/*
2837 * We cannot remove wired pages from a process' mapping at this time
2838 */
2839		if (tpte & PG_W) {
2840			npv = TAILQ_NEXT(pv, pv_plist);
2841			continue;
2842		}
2843		*pte = 0;
2844
2845		ppv = pa_to_pvh(tpte);
2846
2847		pv->pv_pmap->pm_stats.resident_count--;
2848
2849		/*
2850		 * Update the vm_page_t clean and reference bits.
2851		 */
2852		if (tpte & PG_M) {
2853			ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2854		}
2855
2856
2857		npv = TAILQ_NEXT(pv, pv_plist);
2858		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2859
2860		--ppv->pv_list_count;
2861		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2862		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2863			ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
2864		}
2865
2866		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2867		free_pv_entry(pv);
2868	}
2869	splx(s);
2870	invltlb();
2871#endif
2872}
2873
2874/*
2875 * pmap_testbit tests bits in pte's
2876 * note that the testbit/changebit routines are inline,
2877 * and a lot of things compile-time evaluate.
2878 */
2879static boolean_t
2880pmap_testbit(pa, bit)
2881	register vm_offset_t pa;
2882	int bit;
2883{
2884	register pv_entry_t pv;
2885	pv_table_t *ppv;
2886	unsigned *pte;
2887	int s;
2888
2889	if (!pmap_is_managed(pa))
2890		return FALSE;
2891
2892	ppv = pa_to_pvh(pa);
2893	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
2894		return FALSE;
2895
2896	s = splvm();
2897
2898	for (pv = TAILQ_FIRST(&ppv->pv_list);
2899		pv;
2900		pv = TAILQ_NEXT(pv, pv_list)) {
2901
2902		/*
2903		 * if the bit being tested is the modified bit, then
2904		 * mark clean_map and ptes as never
2905		 * modified.
2906		 */
2907		if (bit & (PG_A|PG_M)) {
2908			if (!pmap_track_modified(pv->pv_va))
2909				continue;
2910		}
2911
2912#if defined(PMAP_DIAGNOSTIC)
2913		if (!pv->pv_pmap) {
2914			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2915			continue;
2916		}
2917#endif
2918		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2919		if (*pte & bit) {
2920			splx(s);
2921			return TRUE;
2922		}
2923	}
2924	splx(s);
2925	return (FALSE);
2926}
2927
2928/*
2929 * this routine is used to modify bits in ptes
2930 */
2931static void
2932pmap_changebit(pa, bit, setem)
2933	vm_offset_t pa;
2934	int bit;
2935	boolean_t setem;
2936{
2937	register pv_entry_t pv;
2938	pv_table_t *ppv;
2939	register unsigned *pte;
2940	int changed;
2941	int s;
2942
2943	if (!pmap_is_managed(pa))
2944		return;
2945
2946	s = splvm();
2947	changed = 0;
2948	ppv = pa_to_pvh(pa);
2949
2950	/*
2951	 * Loop over all current mappings setting/clearing as appropos If
2952	 * setting RO do we need to clear the VAC?
2953	 */
2954	for (pv = TAILQ_FIRST(&ppv->pv_list);
2955		pv;
2956		pv = TAILQ_NEXT(pv, pv_list)) {
2957
2958		/*
2959		 * don't write protect pager mappings
2960		 */
2961		if (!setem && (bit == PG_RW)) {
2962			if (!pmap_track_modified(pv->pv_va))
2963				continue;
2964		}
2965
2966#if defined(PMAP_DIAGNOSTIC)
2967		if (!pv->pv_pmap) {
2968			printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2969			continue;
2970		}
2971#endif
2972
2973		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2974
2975		if (setem) {
2976			*(int *)pte |= bit;
2977			changed = 1;
2978		} else {
2979			vm_offset_t pbits = *(vm_offset_t *)pte;
2980			if (pbits & bit) {
2981				changed = 1;
2982				if (bit == PG_RW) {
2983					if (pbits & PG_M) {
2984						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2985					}
2986					*(int *)pte = pbits & ~(PG_M|PG_RW);
2987				} else {
2988					*(int *)pte = pbits & ~bit;
2989				}
2990			}
2991		}
2992	}
2993	splx(s);
2994	if (changed)
2995		invltlb();
2996}
2997
2998/*
2999 *      pmap_page_protect:
3000 *
3001 *      Lower the permission for all mappings to a given page.
3002 */
3003void
3004pmap_page_protect(phys, prot)
3005	vm_offset_t phys;
3006	vm_prot_t prot;
3007{
3008	if ((prot & VM_PROT_WRITE) == 0) {
3009		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3010			pmap_changebit(phys, PG_RW, FALSE);
3011		} else {
3012			pmap_remove_all(phys);
3013		}
3014	}
3015}
3016
3017vm_offset_t
3018pmap_phys_address(ppn)
3019	int ppn;
3020{
3021	return (i386_ptob(ppn));
3022}
3023
3024/*
3025 *	pmap_ts_referenced:
3026 *
3027 *	Return the count of reference bits for a page, clearing all of them.
3028 *
3029 */
3030int
3031pmap_ts_referenced(vm_offset_t pa)
3032{
3033	register pv_entry_t pv;
3034	pv_table_t *ppv;
3035	unsigned *pte;
3036	int s;
3037	int rtval = 0;
3038
3039	if (!pmap_is_managed(pa))
3040		return FALSE;
3041
3042	s = splvm();
3043
3044	ppv = pa_to_pvh(pa);
3045
3046	if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
3047		splx(s);
3048		return 0;
3049	}
3050
3051	/*
3052	 * Not found, check current mappings returning immediately if found.
3053	 */
3054	for (pv = TAILQ_FIRST(&ppv->pv_list);
3055		pv;
3056		pv = TAILQ_NEXT(pv, pv_list)) {
3057		/*
3058		 * if the bit being tested is the modified bit, then
3059		 * mark clean_map and ptes as never
3060		 * modified.
3061		 */
3062		if (!pmap_track_modified(pv->pv_va))
3063			continue;
3064
3065		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3066		if (pte == NULL) {
3067			continue;
3068		}
3069		if (*pte & PG_A) {
3070			rtval++;
3071			*pte &= ~PG_A;
3072		}
3073	}
3074	splx(s);
3075	if (rtval) {
3076		invltlb();
3077	}
3078	return (rtval);
3079}
3080
3081/*
3082 *	pmap_is_modified:
3083 *
3084 *	Return whether or not the specified physical page was modified
3085 *	in any physical maps.
3086 */
3087boolean_t
3088pmap_is_modified(vm_offset_t pa)
3089{
3090	return pmap_testbit((pa), PG_M);
3091}
3092
3093/*
3094 *	Clear the modify bits on the specified physical page.
3095 */
3096void
3097pmap_clear_modify(vm_offset_t pa)
3098{
3099	pmap_changebit((pa), PG_M, FALSE);
3100}
3101
3102/*
3103 *	pmap_clear_reference:
3104 *
3105 *	Clear the reference bit on the specified physical page.
3106 */
3107void
3108pmap_clear_reference(vm_offset_t pa)
3109{
3110	pmap_changebit((pa), PG_A, FALSE);
3111}
3112
3113/*
3114 * Miscellaneous support routines follow
3115 */
3116
3117static void
3118i386_protection_init()
3119{
3120	register int *kp, prot;
3121
3122	kp = protection_codes;
3123	for (prot = 0; prot < 8; prot++) {
3124		switch (prot) {
3125		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3126			/*
3127			 * Read access is also 0. There isn't any execute bit,
3128			 * so just make it readable.
3129			 */
3130		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3131		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3132		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3133			*kp++ = 0;
3134			break;
3135		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3136		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3137		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3138		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3139			*kp++ = PG_RW;
3140			break;
3141		}
3142	}
3143}
3144
3145/*
3146 * Map a set of physical memory pages into the kernel virtual
3147 * address space. Return a pointer to where it is mapped. This
3148 * routine is intended to be used for mapping device memory,
3149 * NOT real memory. The non-cacheable bits are set on each
3150 * mapped page.
3151 */
3152void *
3153pmap_mapdev(pa, size)
3154	vm_offset_t pa;
3155	vm_size_t size;
3156{
3157	vm_offset_t va, tmpva;
3158	unsigned *pte;
3159
3160	size = roundup(size, PAGE_SIZE);
3161
3162	va = kmem_alloc_pageable(kernel_map, size);
3163	if (!va)
3164		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3165
3166	pa = pa & PG_FRAME;
3167	for (tmpva = va; size > 0;) {
3168		pte = (unsigned *)vtopte(tmpva);
3169		*pte = pa | PG_RW | PG_V | pgeflag;
3170		size -= PAGE_SIZE;
3171		tmpva += PAGE_SIZE;
3172		pa += PAGE_SIZE;
3173	}
3174	invltlb();
3175
3176	return ((void *) va);
3177}
3178
3179/*
3180 * perform the pmap work for mincore
3181 */
3182int
3183pmap_mincore(pmap, addr)
3184	pmap_t pmap;
3185	vm_offset_t addr;
3186{
3187
3188	unsigned *ptep, pte;
3189	int val = 0;
3190
3191	ptep = pmap_pte(pmap, addr);
3192	if (ptep == 0) {
3193		return 0;
3194	}
3195
3196	if (pte = *ptep) {
3197		vm_offset_t pa;
3198		val = MINCORE_INCORE;
3199		pa = pte & PG_FRAME;
3200
3201		/*
3202		 * Modified by us
3203		 */
3204		if (pte & PG_M)
3205			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3206		/*
3207		 * Modified by someone
3208		 */
3209		else if (PHYS_TO_VM_PAGE(pa)->dirty ||
3210			pmap_is_modified(pa))
3211			val |= MINCORE_MODIFIED_OTHER;
3212		/*
3213		 * Referenced by us
3214		 */
3215		if (pte & PG_U)
3216			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3217
3218		/*
3219		 * Referenced by someone
3220		 */
3221		else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
3222			pmap_ts_referenced(pa)) {
3223			val |= MINCORE_REFERENCED_OTHER;
3224			PHYS_TO_VM_PAGE(pa)->flags |= PG_REFERENCED;
3225		}
3226	}
3227	return val;
3228}
3229
3230void
3231pmap_activate(struct proc *p)
3232{
3233	load_cr3(p->p_addr->u_pcb.pcb_cr3 =
3234		vtophys(p->p_vmspace->vm_pmap.pm_pdir));
3235}
3236
3237vm_offset_t
3238pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) {
3239
3240	if ((size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3241		return addr;
3242	}
3243
3244	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3245	return addr;
3246}
3247
3248
3249#if defined(PMAP_DEBUG)
3250pmap_pid_dump(int pid) {
3251	pmap_t pmap;
3252	struct proc *p;
3253	int npte = 0;
3254	int index;
3255	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
3256		if (p->p_pid != pid)
3257			continue;
3258
3259		if (p->p_vmspace) {
3260			int i,j;
3261			index = 0;
3262			pmap = &p->p_vmspace->vm_pmap;
3263			for(i=0;i<1024;i++) {
3264				pd_entry_t *pde;
3265				unsigned *pte;
3266				unsigned base = i << PDRSHIFT;
3267
3268				pde = &pmap->pm_pdir[i];
3269				if (pde && pmap_pde_v(pde)) {
3270					for(j=0;j<1024;j++) {
3271						unsigned va = base + (j << PAGE_SHIFT);
3272						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3273							if (index) {
3274								index = 0;
3275								printf("\n");
3276							}
3277							return npte;
3278						}
3279						pte = pmap_pte_quick( pmap, va);
3280						if (pte && pmap_pte_v(pte)) {
3281							vm_offset_t pa;
3282							vm_page_t m;
3283							pa = *(int *)pte;
3284							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3285							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3286								va, pa, m->hold_count, m->wire_count, m->flags);
3287							npte++;
3288							index++;
3289							if (index >= 2) {
3290								index = 0;
3291								printf("\n");
3292							} else {
3293								printf(" ");
3294							}
3295						}
3296					}
3297				}
3298			}
3299		}
3300	}
3301	return npte;
3302}
3303#endif
3304
3305#if defined(DEBUG)
3306
3307static void	pads __P((pmap_t pm));
3308static void	pmap_pvdump __P((vm_offset_t pa));
3309
3310/* print address space of pmap*/
3311static void
3312pads(pm)
3313	pmap_t pm;
3314{
3315	unsigned va, i, j;
3316	unsigned *ptep;
3317
3318	if (pm == kernel_pmap)
3319		return;
3320	for (i = 0; i < 1024; i++)
3321		if (pm->pm_pdir[i])
3322			for (j = 0; j < 1024; j++) {
3323				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3324				if (pm == kernel_pmap && va < KERNBASE)
3325					continue;
3326				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3327					continue;
3328				ptep = pmap_pte_quick(pm, va);
3329				if (pmap_pte_v(ptep))
3330					printf("%x:%x ", va, *(int *) ptep);
3331			};
3332
3333}
3334
3335static void
3336pmap_pvdump(pa)
3337	vm_offset_t pa;
3338{
3339	pv_table_t *ppv;
3340	register pv_entry_t pv;
3341
3342	printf("pa %x", pa);
3343	ppv = pa_to_pvh(pa);
3344	for (pv = TAILQ_FIRST(&ppv->pv_list);
3345		pv;
3346		pv = TAILQ_NEXT(pv, pv_list)) {
3347#ifdef used_to_be
3348		printf(" -> pmap %x, va %x, flags %x",
3349		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
3350#endif
3351		printf(" -> pmap %x, va %x",
3352		    pv->pv_pmap, pv->pv_va);
3353		pads(pv->pv_pmap);
3354	}
3355	printf(" ");
3356}
3357#endif
3358