pmap.c revision 24848
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.139 1997/04/07 07:15:52 peter Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_cpu.h"
72
73#define PMAP_LOCK 1
74#define PMAP_PVLIST 1
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/proc.h>
79#include <sys/malloc.h>
80#include <sys/msgbuf.h>
81#include <sys/queue.h>
82#include <sys/vmmeter.h>
83#include <sys/mman.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_prot.h>
88#include <sys/lock.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_page.h>
91#include <vm/vm_map.h>
92#include <vm/vm_object.h>
93#include <vm/vm_extern.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pager.h>
96
97#include <sys/user.h>
98
99#include <machine/pcb.h>
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102#include <machine/specialreg.h>
103
104#define PMAP_KEEP_PDIRS
105
106#if defined(DIAGNOSTIC)
107#define PMAP_DIAGNOSTIC
108#endif
109
110#if !defined(PMAP_DIAGNOSTIC)
111#define PMAP_INLINE __inline
112#else
113#define PMAP_INLINE
114#endif
115
116#define PTPHINT
117
118static void	init_pv_entries __P((int));
119
120/*
121 * Get PDEs and PTEs for user/kernel address space
122 */
123#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
124#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
125
126#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
127#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
128#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
129#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
130#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
131
132#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
133#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
134
135/*
136 * Given a map and a machine independent protection code,
137 * convert to a vax protection code.
138 */
139#define pte_prot(m, p)	(protection_codes[p])
140static int protection_codes[8];
141
142#define	pa_index(pa)		atop((pa) - vm_first_phys)
143#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
144
145static struct pmap kernel_pmap_store;
146pmap_t kernel_pmap;
147
148vm_offset_t avail_start;	/* PA of first available physical page */
149vm_offset_t avail_end;		/* PA of last available physical page */
150vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
151vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
152static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
153static vm_offset_t vm_first_phys;
154static int pgeflag;		/* PG_G or-in */
155
156static int nkpt;
157static vm_page_t nkpg;
158vm_offset_t kernel_vm_end;
159
160extern vm_offset_t clean_sva, clean_eva;
161extern int cpu_class;
162
163#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
164
165/*
166 * Data for the pv entry allocation mechanism
167 */
168static int pv_freelistcnt;
169TAILQ_HEAD (,pv_entry) pv_freelist = {0};
170static vm_offset_t pvva;
171static int npvvapg;
172
173/*
174 * All those kernel PT submaps that BSD is so fond of
175 */
176pt_entry_t *CMAP1 = 0;
177static pt_entry_t *CMAP2, *ptmmap;
178static pv_table_t *pv_table;
179caddr_t CADDR1 = 0, ptvmmap = 0;
180static caddr_t CADDR2;
181static pt_entry_t *msgbufmap;
182struct msgbuf *msgbufp=0;
183
184pt_entry_t *PMAP1 = 0;
185unsigned *PADDR1 = 0;
186
187static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
188static unsigned * get_ptbase __P((pmap_t pmap));
189static pv_entry_t get_pv_entry __P((void));
190static void	i386_protection_init __P((void));
191static void	pmap_alloc_pv_entry __P((void));
192static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
193
194static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
195static void	pmap_remove_all __P((vm_offset_t pa));
196static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
197				      vm_offset_t pa, vm_page_t mpte));
198static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
199					vm_offset_t sva));
200static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
201static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
202					vm_offset_t va));
203static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
204static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
205		vm_page_t mpte, vm_offset_t pa));
206
207static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
208
209static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
210static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
211static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
212static vm_page_t pmap_page_alloc __P((vm_object_t object, vm_pindex_t pindex));
213static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
214static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
215
216#define PDSTACKMAX 6
217static vm_offset_t pdstack[PDSTACKMAX];
218static int pdstackptr;
219
220/*
221 *	Routine:	pmap_pte
222 *	Function:
223 *		Extract the page table entry associated
224 *		with the given map/virtual_address pair.
225 */
226
227PMAP_INLINE unsigned *
228pmap_pte(pmap, va)
229	register pmap_t pmap;
230	vm_offset_t va;
231{
232	if (pmap && *pmap_pde(pmap, va)) {
233		return get_ptbase(pmap) + i386_btop(va);
234	}
235	return (0);
236}
237
238/*
239 *	Bootstrap the system enough to run with virtual memory.
240 *
241 *	On the i386 this is called after mapping has already been enabled
242 *	and just syncs the pmap module with what has already been done.
243 *	[We can't call it easily with mapping off since the kernel is not
244 *	mapped with PA == VA, hence we would have to relocate every address
245 *	from the linked base (virtual) address "KERNBASE" to the actual
246 *	(physical) address starting relative to 0]
247 */
248void
249pmap_bootstrap(firstaddr, loadaddr)
250	vm_offset_t firstaddr;
251	vm_offset_t loadaddr;
252{
253	vm_offset_t va;
254	pt_entry_t *pte;
255
256	avail_start = firstaddr;
257
258	/*
259	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
260	 * large. It should instead be correctly calculated in locore.s and
261	 * not based on 'first' (which is a physical address, not a virtual
262	 * address, for the start of unused physical memory). The kernel
263	 * page tables are NOT double mapped and thus should not be included
264	 * in this calculation.
265	 */
266	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
267	virtual_end = VM_MAX_KERNEL_ADDRESS;
268
269	/*
270	 * Initialize protection array.
271	 */
272	i386_protection_init();
273
274	/*
275	 * The kernel's pmap is statically allocated so we don't have to use
276	 * pmap_create, which is unlikely to work correctly at this part of
277	 * the boot sequence (XXX and which no longer exists).
278	 */
279	kernel_pmap = &kernel_pmap_store;
280
281	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
282
283	kernel_pmap->pm_count = 1;
284#if PMAP_PVLIST
285	TAILQ_INIT(&kernel_pmap->pm_pvlist);
286#endif
287	nkpt = NKPT;
288
289	/*
290	 * Reserve some special page table entries/VA space for temporary
291	 * mapping of pages.
292	 */
293#define	SYSMAP(c, p, v, n)	\
294	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
295
296	va = virtual_avail;
297	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
298
299	/*
300	 * CMAP1/CMAP2 are used for zeroing and copying pages.
301	 */
302	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
303	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
304
305	/*
306	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
307	 * XXX ptmmap is not used.
308	 */
309	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
310
311	/*
312	 * msgbufp is used to map the system message buffer.
313	 * XXX msgbufmap is not used.
314	 */
315	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
316	       atop(round_page(sizeof(struct msgbuf))))
317
318	/*
319	 * ptemap is used for pmap_pte_quick
320	 */
321	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
322
323	virtual_avail = va;
324
325	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
326	invltlb();
327	if (cpu_feature & CPUID_PGE)
328		pgeflag = PG_G;
329	else
330		pgeflag = 0;
331
332}
333
334/*
335 *	Initialize the pmap module.
336 *	Called by vm_init, to initialize any structures that the pmap
337 *	system needs to map virtual memory.
338 *	pmap_init has been enhanced to support in a fairly consistant
339 *	way, discontiguous physical memory.
340 */
341void
342pmap_init(phys_start, phys_end)
343	vm_offset_t phys_start, phys_end;
344{
345	vm_offset_t addr;
346	vm_size_t s;
347	int i, npg;
348
349	/*
350	 * calculate the number of pv_entries needed
351	 */
352	vm_first_phys = phys_avail[0];
353	for (i = 0; phys_avail[i + 1]; i += 2);
354	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
355
356	/*
357	 * Allocate memory for random pmap data structures.  Includes the
358	 * pv_head_table.
359	 */
360	s = (vm_size_t) (sizeof(pv_table_t) * npg);
361	s = round_page(s);
362
363	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
364	pv_table = (pv_table_t *) addr;
365	for(i = 0; i < npg; i++) {
366		vm_offset_t pa;
367		TAILQ_INIT(&pv_table[i].pv_list);
368		pv_table[i].pv_list_count = 0;
369		pa = vm_first_phys + i * PAGE_SIZE;
370		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
371	}
372	TAILQ_INIT(&pv_freelist);
373
374	/*
375	 * init the pv free list
376	 */
377	init_pv_entries(npg);
378	/*
379	 * Now it is safe to enable pv_table recording.
380	 */
381	pmap_initialized = TRUE;
382}
383
384/*
385 *	Used to map a range of physical addresses into kernel
386 *	virtual address space.
387 *
388 *	For now, VM is already on, we only need to map the
389 *	specified memory.
390 */
391vm_offset_t
392pmap_map(virt, start, end, prot)
393	vm_offset_t virt;
394	vm_offset_t start;
395	vm_offset_t end;
396	int prot;
397{
398	while (start < end) {
399		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
400		virt += PAGE_SIZE;
401		start += PAGE_SIZE;
402	}
403	return (virt);
404}
405
406
407/***************************************************
408 * Low level helper routines.....
409 ***************************************************/
410
411#if defined(PMAP_DIAGNOSTIC)
412
413/*
414 * This code checks for non-writeable/modified pages.
415 * This should be an invalid condition.
416 */
417static int
418pmap_nw_modified(pt_entry_t ptea) {
419	int pte;
420
421	pte = (int) ptea;
422
423	if ((pte & (PG_M|PG_RW)) == PG_M)
424		return 1;
425	else
426		return 0;
427}
428#endif
429
430
431/*
432 * this routine defines the region(s) of memory that should
433 * not be tested for the modified bit.
434 */
435static PMAP_INLINE int
436pmap_track_modified( vm_offset_t va) {
437	if ((va < clean_sva) || (va >= clean_eva))
438		return 1;
439	else
440		return 0;
441}
442
443static PMAP_INLINE void
444invltlb_1pg( vm_offset_t va) {
445#if defined(I386_CPU)
446	if (cpu_class == CPUCLASS_386) {
447		invltlb();
448	} else
449#endif
450	{
451		invlpg(va);
452	}
453}
454
455static PMAP_INLINE void
456invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
457#if defined(I386_CPU)
458	if (cpu_class == CPUCLASS_386) {
459		invltlb();
460	} else
461#endif
462	{
463		invlpg(va1);
464		invlpg(va2);
465	}
466}
467
468static unsigned *
469get_ptbase(pmap)
470	pmap_t pmap;
471{
472	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
473
474	/* are we current address space or kernel? */
475	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
476		return (unsigned *) PTmap;
477	}
478	/* otherwise, we are alternate address space */
479	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
480		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
481		invltlb();
482	}
483	return (unsigned *) APTmap;
484}
485
486/*
487 * Super fast pmap_pte routine best used when scanning
488 * the pv lists.  This eliminates many coarse-grained
489 * invltlb calls.  Note that many of the pv list
490 * scans are across different pmaps.  It is very wasteful
491 * to do an entire invltlb for checking a single mapping.
492 */
493
494static unsigned *
495pmap_pte_quick(pmap, va)
496	register pmap_t pmap;
497	vm_offset_t va;
498{
499	unsigned pde, newpf;
500	if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
501		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
502		unsigned index = i386_btop(va);
503		/* are we current address space or kernel? */
504		if ((pmap == kernel_pmap) ||
505			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
506			return (unsigned *) PTmap + index;
507		}
508		newpf = pde & PG_FRAME;
509		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
510			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
511			invltlb_1pg((vm_offset_t) PADDR1);
512		}
513		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
514	}
515	return (0);
516}
517
518/*
519 *	Routine:	pmap_extract
520 *	Function:
521 *		Extract the physical page address associated
522 *		with the given map/virtual_address pair.
523 */
524vm_offset_t
525pmap_extract(pmap, va)
526	register pmap_t pmap;
527	vm_offset_t va;
528{
529	vm_offset_t rtval;
530	if (pmap && *pmap_pde(pmap, va)) {
531		unsigned *pte;
532		pte = get_ptbase(pmap) + i386_btop(va);
533		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
534		return rtval;
535	}
536	return 0;
537
538}
539
540/*
541 * determine if a page is managed (memory vs. device)
542 */
543static PMAP_INLINE int
544pmap_is_managed(pa)
545	vm_offset_t pa;
546{
547	int i;
548
549	if (!pmap_initialized)
550		return 0;
551
552	for (i = 0; phys_avail[i + 1]; i += 2) {
553		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
554			return 1;
555	}
556	return 0;
557}
558
559
560/***************************************************
561 * Low level mapping routines.....
562 ***************************************************/
563
564/*
565 * Add a list of wired pages to the kva
566 * this routine is only used for temporary
567 * kernel mappings that do not need to have
568 * page modification or references recorded.
569 * Note that old mappings are simply written
570 * over.  The page *must* be wired.
571 */
572void
573pmap_qenter(va, m, count)
574	vm_offset_t va;
575	vm_page_t *m;
576	int count;
577{
578	int i;
579	register unsigned *pte;
580
581	for (i = 0; i < count; i++) {
582		vm_offset_t tva = va + i * PAGE_SIZE;
583		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | pgeflag;
584		unsigned opte;
585		pte = (unsigned *)vtopte(tva);
586		opte = *pte;
587		*pte = npte;
588		if (opte)
589			invltlb_1pg(tva);
590	}
591}
592
593/*
594 * this routine jerks page mappings from the
595 * kernel -- it is meant only for temporary mappings.
596 */
597void
598pmap_qremove(va, count)
599	vm_offset_t va;
600	int count;
601{
602	int i;
603	register unsigned *pte;
604
605	for (i = 0; i < count; i++) {
606		pte = (unsigned *)vtopte(va);
607		*pte = 0;
608		invltlb_1pg(va);
609		va += PAGE_SIZE;
610	}
611}
612
613/*
614 * add a wired page to the kva
615 * note that in order for the mapping to take effect -- you
616 * should do a invltlb after doing the pmap_kenter...
617 */
618PMAP_INLINE void
619pmap_kenter(va, pa)
620	vm_offset_t va;
621	register vm_offset_t pa;
622{
623	register unsigned *pte;
624	unsigned npte, opte;
625
626	npte = pa | PG_RW | PG_V | pgeflag;
627	pte = (unsigned *)vtopte(va);
628	opte = *pte;
629	*pte = npte;
630	if (opte)
631		invltlb_1pg(va);
632}
633
634/*
635 * remove a page from the kernel pagetables
636 */
637PMAP_INLINE void
638pmap_kremove(va)
639	vm_offset_t va;
640{
641	register unsigned *pte;
642
643	pte = (unsigned *)vtopte(va);
644	*pte = 0;
645	invltlb_1pg(va);
646}
647
648static vm_page_t
649pmap_page_alloc(object, pindex)
650	vm_object_t object;
651	vm_pindex_t pindex;
652{
653	vm_page_t m;
654	m = vm_page_alloc(object, pindex, VM_ALLOC_ZERO);
655	if (m == NULL) {
656		VM_WAIT;
657	}
658	return m;
659}
660
661static vm_page_t
662pmap_page_lookup(object, pindex)
663	vm_object_t object;
664	vm_pindex_t pindex;
665{
666	vm_page_t m;
667retry:
668	m = vm_page_lookup(object, pindex);
669	if (m) {
670		if (m->flags & PG_BUSY) {
671			m->flags |= PG_WANTED;
672			tsleep(m, PVM, "pplookp", 0);
673			goto retry;
674		}
675	}
676
677	return m;
678}
679
680/*
681 * Create the UPAGES for a new process.
682 * This routine directly affects the fork perf for a process.
683 */
684void
685pmap_new_proc(p)
686	struct proc *p;
687{
688	int i;
689	vm_object_t upobj;
690	vm_page_t m;
691	struct user *up;
692	unsigned *ptek;
693
694	/*
695	 * allocate object for the upages
696	 */
697	upobj = vm_object_allocate( OBJT_DEFAULT,
698		UPAGES);
699	p->p_upages_obj = upobj;
700
701	/* get a kernel virtual address for the UPAGES for this proc */
702	up = (struct user *) kmem_alloc_pageable(u_map, UPAGES * PAGE_SIZE);
703	if (up == NULL)
704		panic("pmap_new_proc: u_map allocation failed");
705
706	ptek = (unsigned *) vtopte((vm_offset_t) up);
707
708	for(i=0;i<UPAGES;i++) {
709		/*
710		 * Get a kernel stack page
711		 */
712		while ((m = vm_page_alloc(upobj,
713			i, VM_ALLOC_NORMAL)) == NULL) {
714			VM_WAIT;
715		}
716
717		/*
718		 * Wire the page
719		 */
720		m->wire_count++;
721		++cnt.v_wire_count;
722
723		/*
724		 * Enter the page into the kernel address space.
725		 */
726		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
727
728		m->flags &= ~(PG_ZERO|PG_BUSY);
729		m->flags |= PG_MAPPED|PG_WRITEABLE;
730		m->valid = VM_PAGE_BITS_ALL;
731	}
732
733	p->p_addr = up;
734}
735
736/*
737 * Dispose the UPAGES for a process that has exited.
738 * This routine directly impacts the exit perf of a process.
739 */
740void
741pmap_dispose_proc(p)
742	struct proc *p;
743{
744	int i;
745	vm_object_t upobj;
746	vm_page_t m;
747	unsigned *ptek;
748
749	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
750
751	upobj = p->p_upages_obj;
752
753	for(i=0;i<UPAGES;i++) {
754		unsigned oldpte;
755		if ((m = vm_page_lookup(upobj, i)) == NULL)
756			panic("pmap_dispose_proc: upage already missing???");
757		oldpte = *(ptek + i);
758		*(ptek + i) = 0;
759		if (oldpte & PG_G)
760			invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
761		vm_page_unwire(m);
762		vm_page_free(m);
763	}
764
765	vm_object_deallocate(upobj);
766
767	kmem_free(u_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
768}
769
770/*
771 * Allow the UPAGES for a process to be prejudicially paged out.
772 */
773void
774pmap_swapout_proc(p)
775	struct proc *p;
776{
777	int i;
778	vm_object_t upobj;
779	vm_page_t m;
780
781	upobj = p->p_upages_obj;
782	/*
783	 * let the upages be paged
784	 */
785	for(i=0;i<UPAGES;i++) {
786		if ((m = vm_page_lookup(upobj, i)) == NULL)
787			panic("pmap_swapout_proc: upage already missing???");
788		m->dirty = VM_PAGE_BITS_ALL;
789		vm_page_unwire(m);
790		vm_page_deactivate(m);
791		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
792	}
793}
794
795/*
796 * Bring the UPAGES for a specified process back in.
797 */
798void
799pmap_swapin_proc(p)
800	struct proc *p;
801{
802	int i;
803	vm_object_t upobj;
804	vm_page_t m;
805	unsigned *pte;
806
807	upobj = p->p_upages_obj;
808	for(i=0;i<UPAGES;i++) {
809		int s;
810		s = splvm();
811retry:
812		if ((m = vm_page_lookup(upobj, i)) == NULL) {
813			if ((m = vm_page_alloc(upobj, i, VM_ALLOC_NORMAL)) == NULL) {
814				VM_WAIT;
815				goto retry;
816			}
817		} else {
818			if ((m->flags & PG_BUSY) || m->busy) {
819				m->flags |= PG_WANTED;
820				tsleep(m, PVM, "swinuw",0);
821				goto retry;
822			}
823			m->flags |= PG_BUSY;
824		}
825		vm_page_wire(m);
826		splx(s);
827
828		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
829			VM_PAGE_TO_PHYS(m));
830
831		if (m->valid != VM_PAGE_BITS_ALL) {
832			int rv;
833			rv = vm_pager_get_pages(upobj, &m, 1, 0);
834			if (rv != VM_PAGER_OK)
835				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
836			m->valid = VM_PAGE_BITS_ALL;
837		}
838		PAGE_WAKEUP(m);
839		m->flags |= PG_MAPPED|PG_WRITEABLE;
840	}
841}
842
843/***************************************************
844 * Page table page management routines.....
845 ***************************************************/
846
847/*
848 * This routine unholds page table pages, and if the hold count
849 * drops to zero, then it decrements the wire count.
850 */
851static int
852_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
853	int s;
854
855	if (m->flags & PG_BUSY) {
856		s = splvm();
857		while (m->flags & PG_BUSY) {
858			m->flags |= PG_WANTED;
859			tsleep(m, PVM, "pmuwpt", 0);
860		}
861		splx(s);
862	}
863
864	if (m->hold_count == 0) {
865		vm_offset_t pteva;
866		/*
867		 * unmap the page table page
868		 */
869		pmap->pm_pdir[m->pindex] = 0;
870		--pmap->pm_stats.resident_count;
871		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
872			(((unsigned) PTDpde) & PG_FRAME)) {
873			/*
874			 * Do a invltlb to make the invalidated mapping
875			 * take effect immediately.
876			 */
877			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
878			invltlb_1pg(pteva);
879		}
880
881#if defined(PTPHINT)
882		if (pmap->pm_ptphint == m)
883			pmap->pm_ptphint = NULL;
884#endif
885
886		/*
887		 * If the page is finally unwired, simply free it.
888		 */
889		--m->wire_count;
890		if (m->wire_count == 0) {
891
892			if (m->flags & PG_WANTED) {
893				m->flags &= ~PG_WANTED;
894				wakeup(m);
895			}
896
897			vm_page_free_zero(m);
898			--cnt.v_wire_count;
899		}
900		return 1;
901	}
902	return 0;
903}
904
905__inline static int
906pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
907	vm_page_unhold(m);
908	if (m->hold_count == 0)
909		return _pmap_unwire_pte_hold(pmap, m);
910	else
911		return 0;
912}
913
914/*
915 * After removing a page table entry, this routine is used to
916 * conditionally free the page, and manage the hold/wire counts.
917 */
918static int
919pmap_unuse_pt(pmap, va, mpte)
920	pmap_t pmap;
921	vm_offset_t va;
922	vm_page_t mpte;
923{
924	unsigned ptepindex;
925	if (va >= UPT_MIN_ADDRESS)
926		return 0;
927
928	if (mpte == NULL) {
929		ptepindex = (va >> PDRSHIFT);
930#if defined(PTPHINT)
931		if (pmap->pm_ptphint &&
932			(pmap->pm_ptphint->pindex == ptepindex)) {
933			mpte = pmap->pm_ptphint;
934		} else {
935			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
936			pmap->pm_ptphint = mpte;
937		}
938#else
939		mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
940#endif
941	}
942
943	return pmap_unwire_pte_hold(pmap, mpte);
944}
945
946/*
947 * Initialize a preallocated and zeroed pmap structure,
948 * such as one in a vmspace structure.
949 */
950void
951pmap_pinit(pmap)
952	register struct pmap *pmap;
953{
954	vm_page_t ptdpg;
955	/*
956	 * No need to allocate page table space yet but we do need a valid
957	 * page directory table.
958	 */
959
960	if (pdstackptr > 0) {
961		--pdstackptr;
962		pmap->pm_pdir = (pd_entry_t *)pdstack[pdstackptr];
963	} else {
964		pmap->pm_pdir =
965			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
966	}
967
968	/*
969	 * allocate object for the ptes
970	 */
971	pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
972
973	/*
974	 * allocate the page directory page
975	 */
976retry:
977	ptdpg = pmap_page_alloc( pmap->pm_pteobj, PTDPTDI);
978	if (ptdpg == NULL)
979		goto retry;
980
981	ptdpg->wire_count = 1;
982	++cnt.v_wire_count;
983
984	ptdpg->flags &= ~(PG_MAPPED|PG_BUSY);	/* not mapped normally */
985	ptdpg->valid = VM_PAGE_BITS_ALL;
986
987	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
988	if ((ptdpg->flags & PG_ZERO) == 0)
989		bzero(pmap->pm_pdir, PAGE_SIZE);
990
991	/* wire in kernel global address entries */
992	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
993
994	/* install self-referential address mapping entry */
995	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
996		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
997
998	pmap->pm_flags = 0;
999	pmap->pm_count = 1;
1000	pmap->pm_ptphint = NULL;
1001#if PMAP_PVLIST
1002	TAILQ_INIT(&pmap->pm_pvlist);
1003#endif
1004}
1005
1006static int
1007pmap_release_free_page(pmap, p)
1008	struct pmap *pmap;
1009	vm_page_t p;
1010{
1011	int s;
1012	unsigned *pde = (unsigned *) pmap->pm_pdir;
1013	/*
1014	 * This code optimizes the case of freeing non-busy
1015	 * page-table pages.  Those pages are zero now, and
1016	 * might as well be placed directly into the zero queue.
1017	 */
1018	s = splvm();
1019	if (p->flags & PG_BUSY) {
1020		p->flags |= PG_WANTED;
1021		tsleep(p, PVM, "pmaprl", 0);
1022		splx(s);
1023		return 0;
1024	}
1025
1026	if (p->flags & PG_WANTED) {
1027		p->flags &= ~PG_WANTED;
1028		wakeup(p);
1029	}
1030
1031	/*
1032	 * Remove the page table page from the processes address space.
1033	 */
1034	pde[p->pindex] = 0;
1035	--pmap->pm_stats.resident_count;
1036
1037	if (p->hold_count)  {
1038		panic("pmap_release: freeing held page table page");
1039	}
1040	/*
1041	 * Page directory pages need to have the kernel
1042	 * stuff cleared, so they can go into the zero queue also.
1043	 */
1044	if (p->pindex == PTDPTDI) {
1045		bzero(pde + KPTDI, nkpt * PTESIZE);
1046		pde[APTDPTDI] = 0;
1047		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1048	}
1049
1050#if defined(PTPHINT)
1051	if (pmap->pm_ptphint &&
1052		(pmap->pm_ptphint->pindex == p->pindex))
1053		pmap->pm_ptphint = NULL;
1054#endif
1055
1056	vm_page_free_zero(p);
1057	splx(s);
1058	return 1;
1059}
1060
1061/*
1062 * this routine is called if the page table page is not
1063 * mapped correctly.
1064 */
1065static vm_page_t
1066_pmap_allocpte(pmap, ptepindex)
1067	pmap_t	pmap;
1068	unsigned ptepindex;
1069{
1070	vm_offset_t pteva, ptepa;
1071	vm_page_t m;
1072	int needszero = 0;
1073
1074	/*
1075	 * Find or fabricate a new pagetable page
1076	 */
1077retry:
1078	m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
1079	if (m == NULL) {
1080		m = pmap_page_alloc(pmap->pm_pteobj, ptepindex);
1081		if (m == NULL)
1082			goto retry;
1083		if ((m->flags & PG_ZERO) == 0)
1084			needszero = 1;
1085		m->flags &= ~(PG_ZERO|PG_BUSY);
1086		m->valid = VM_PAGE_BITS_ALL;
1087	} else {
1088		if ((m->flags & PG_BUSY) || m->busy) {
1089			m->flags |= PG_WANTED;
1090			tsleep(m, PVM, "ptewai", 0);
1091			goto retry;
1092		}
1093	}
1094
1095	if (m->queue != PQ_NONE) {
1096		int s = splvm();
1097		vm_page_unqueue(m);
1098		splx(s);
1099	}
1100
1101	if (m->wire_count == 0)
1102		++cnt.v_wire_count;
1103	++m->wire_count;
1104
1105	/*
1106	 * Increment the hold count for the page table page
1107	 * (denoting a new mapping.)
1108	 */
1109	++m->hold_count;
1110
1111	/*
1112	 * Map the pagetable page into the process address space, if
1113	 * it isn't already there.
1114	 */
1115
1116	pmap->pm_stats.resident_count++;
1117
1118	ptepa = VM_PAGE_TO_PHYS(m);
1119	pmap->pm_pdir[ptepindex] = (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V);
1120
1121#if defined(PTPHINT)
1122	/*
1123	 * Set the page table hint
1124	 */
1125	pmap->pm_ptphint = m;
1126#endif
1127
1128	/*
1129	 * Try to use the new mapping, but if we cannot, then
1130	 * do it with the routine that maps the page explicitly.
1131	 */
1132	if (needszero) {
1133		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1134			(((unsigned) PTDpde) & PG_FRAME)) {
1135			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1136			bzero((caddr_t) pteva, PAGE_SIZE);
1137		} else {
1138			pmap_zero_page(ptepa);
1139		}
1140	}
1141
1142	m->valid = VM_PAGE_BITS_ALL;
1143	m->flags |= PG_MAPPED;
1144
1145	return m;
1146}
1147
1148static vm_page_t
1149pmap_allocpte(pmap, va)
1150	pmap_t	pmap;
1151	vm_offset_t va;
1152{
1153	unsigned ptepindex;
1154	vm_offset_t ptepa;
1155	vm_page_t m;
1156
1157	/*
1158	 * Calculate pagetable page index
1159	 */
1160	ptepindex = va >> PDRSHIFT;
1161
1162	/*
1163	 * Get the page directory entry
1164	 */
1165	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1166
1167	/*
1168	 * If the page table page is mapped, we just increment the
1169	 * hold count, and activate it.
1170	 */
1171	if (ptepa) {
1172#if defined(PTPHINT)
1173		/*
1174		 * In order to get the page table page, try the
1175		 * hint first.
1176		 */
1177		if (pmap->pm_ptphint &&
1178			(pmap->pm_ptphint->pindex == ptepindex)) {
1179			m = pmap->pm_ptphint;
1180		} else {
1181			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1182			pmap->pm_ptphint = m;
1183		}
1184#else
1185		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1186#endif
1187		++m->hold_count;
1188		return m;
1189	}
1190	/*
1191	 * Here if the pte page isn't mapped, or if it has been deallocated.
1192	 */
1193	return _pmap_allocpte(pmap, ptepindex);
1194}
1195
1196
1197/***************************************************
1198* Pmap allocation/deallocation routines.
1199 ***************************************************/
1200
1201/*
1202 * Release any resources held by the given physical map.
1203 * Called when a pmap initialized by pmap_pinit is being released.
1204 * Should only be called if the map contains no valid mappings.
1205 */
1206void
1207pmap_release(pmap)
1208	register struct pmap *pmap;
1209{
1210	vm_page_t p,n,ptdpg;
1211	vm_object_t object = pmap->pm_pteobj;
1212
1213#if defined(DIAGNOSTIC)
1214	if (object->ref_count != 1)
1215		panic("pmap_release: pteobj reference count != 1");
1216#endif
1217
1218	ptdpg = NULL;
1219retry:
1220	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1221		n = TAILQ_NEXT(p, listq);
1222		if (p->pindex == PTDPTDI) {
1223			ptdpg = p;
1224			continue;
1225		}
1226		if (!pmap_release_free_page(pmap, p))
1227			goto retry;
1228	}
1229
1230	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1231		goto retry;
1232
1233	vm_object_deallocate(object);
1234	if (pdstackptr < PDSTACKMAX) {
1235		pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
1236		++pdstackptr;
1237	} else {
1238		kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
1239	}
1240	pmap->pm_pdir = 0;
1241}
1242
1243/*
1244 * grow the number of kernel page table entries, if needed
1245 */
1246void
1247pmap_growkernel(vm_offset_t addr)
1248{
1249	struct proc *p;
1250	struct pmap *pmap;
1251	int s;
1252
1253	s = splhigh();
1254	if (kernel_vm_end == 0) {
1255		kernel_vm_end = KERNBASE;
1256		nkpt = 0;
1257		while (pdir_pde(PTD, kernel_vm_end)) {
1258			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1259			++nkpt;
1260		}
1261	}
1262	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1263	while (kernel_vm_end < addr) {
1264		if (pdir_pde(PTD, kernel_vm_end)) {
1265			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1266			continue;
1267		}
1268		++nkpt;
1269		if (!nkpg) {
1270			vm_offset_t ptpkva = (vm_offset_t) vtopte(addr);
1271			/*
1272			 * This index is bogus, but out of the way
1273			 */
1274			vm_pindex_t ptpidx = (ptpkva >> PAGE_SHIFT);
1275			nkpg = vm_page_alloc(kernel_object,
1276				ptpidx, VM_ALLOC_SYSTEM);
1277			if (!nkpg)
1278				panic("pmap_growkernel: no memory to grow kernel");
1279			vm_page_wire(nkpg);
1280			vm_page_remove(nkpg);
1281			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
1282		}
1283		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW);
1284		nkpg = NULL;
1285
1286		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1287			if (p->p_vmspace) {
1288				pmap = &p->p_vmspace->vm_pmap;
1289				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1290			}
1291		}
1292		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1293		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1294	}
1295	splx(s);
1296}
1297
1298/*
1299 *	Retire the given physical map from service.
1300 *	Should only be called if the map contains
1301 *	no valid mappings.
1302 */
1303void
1304pmap_destroy(pmap)
1305	register pmap_t pmap;
1306{
1307	int count;
1308
1309	if (pmap == NULL)
1310		return;
1311
1312	count = --pmap->pm_count;
1313	if (count == 0) {
1314		pmap_release(pmap);
1315		free((caddr_t) pmap, M_VMPMAP);
1316	}
1317}
1318
1319/*
1320 *	Add a reference to the specified pmap.
1321 */
1322void
1323pmap_reference(pmap)
1324	pmap_t pmap;
1325{
1326	if (pmap != NULL) {
1327		pmap->pm_count++;
1328	}
1329}
1330
1331/***************************************************
1332* page management routines.
1333 ***************************************************/
1334
1335/*
1336 * free the pv_entry back to the free list
1337 */
1338static PMAP_INLINE void
1339free_pv_entry(pv)
1340	pv_entry_t pv;
1341{
1342	++pv_freelistcnt;
1343	TAILQ_INSERT_HEAD(&pv_freelist, pv, pv_list);
1344}
1345
1346/*
1347 * get a new pv_entry, allocating a block from the system
1348 * when needed.
1349 * the memory allocation is performed bypassing the malloc code
1350 * because of the possibility of allocations at interrupt time.
1351 */
1352static pv_entry_t
1353get_pv_entry()
1354{
1355	pv_entry_t tmp;
1356
1357	/*
1358	 * get more pv_entry pages if needed
1359	 */
1360	if (pv_freelistcnt < PV_FREELIST_MIN || !TAILQ_FIRST(&pv_freelist)) {
1361		pmap_alloc_pv_entry();
1362	}
1363	/*
1364	 * get a pv_entry off of the free list
1365	 */
1366	--pv_freelistcnt;
1367	tmp = TAILQ_FIRST(&pv_freelist);
1368	TAILQ_REMOVE(&pv_freelist, tmp, pv_list);
1369	return tmp;
1370}
1371
1372/*
1373 * This *strange* allocation routine eliminates the possibility of a malloc
1374 * failure (*FATAL*) for a pv_entry_t data structure.
1375 * also -- this code is MUCH MUCH faster than the malloc equiv...
1376 * We really need to do the slab allocator thingie here.
1377 */
1378static void
1379pmap_alloc_pv_entry()
1380{
1381	/*
1382	 * do we have any pre-allocated map-pages left?
1383	 */
1384	if (npvvapg) {
1385		vm_page_t m;
1386
1387		/*
1388		 * allocate a physical page out of the vm system
1389		 */
1390		m = vm_page_alloc(kernel_object,
1391		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
1392		    VM_ALLOC_INTERRUPT);
1393		if (m) {
1394			int newentries;
1395			int i;
1396			pv_entry_t entry;
1397
1398			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
1399			/*
1400			 * wire the page
1401			 */
1402			vm_page_wire(m);
1403			m->flags &= ~PG_BUSY;
1404			/*
1405			 * let the kernel see it
1406			 */
1407			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
1408
1409			entry = (pv_entry_t) pvva;
1410			/*
1411			 * update the allocation pointers
1412			 */
1413			pvva += PAGE_SIZE;
1414			--npvvapg;
1415
1416			/*
1417			 * free the entries into the free list
1418			 */
1419			for (i = 0; i < newentries; i++) {
1420				free_pv_entry(entry);
1421				entry++;
1422			}
1423		}
1424	}
1425	if (!TAILQ_FIRST(&pv_freelist))
1426		panic("get_pv_entry: cannot get a pv_entry_t");
1427}
1428
1429/*
1430 * init the pv_entry allocation system
1431 */
1432#define PVSPERPAGE 64
1433void
1434init_pv_entries(npg)
1435	int npg;
1436{
1437	/*
1438	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
1439	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
1440	 * this is too small.)
1441	 */
1442	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
1443		+ PAGE_SIZE - 1) / PAGE_SIZE;
1444	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
1445	/*
1446	 * get the first batch of entries
1447	 */
1448	pmap_alloc_pv_entry();
1449}
1450
1451/*
1452 * If it is the first entry on the list, it is actually
1453 * in the header and we must copy the following entry up
1454 * to the header.  Otherwise we must search the list for
1455 * the entry.  In either case we free the now unused entry.
1456 */
1457
1458static int
1459pmap_remove_entry(pmap, ppv, va)
1460	struct pmap *pmap;
1461	pv_table_t *ppv;
1462	vm_offset_t va;
1463{
1464	pv_entry_t pv;
1465	int rtval;
1466	int s;
1467
1468	s = splvm();
1469#if PMAP_PVLIST
1470	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1471#endif
1472		for (pv = TAILQ_FIRST(&ppv->pv_list);
1473			pv;
1474			pv = TAILQ_NEXT(pv, pv_list)) {
1475			if (pmap == pv->pv_pmap && va == pv->pv_va)
1476				break;
1477		}
1478#if PMAP_PVLIST
1479	} else {
1480		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1481			pv;
1482			pv = TAILQ_NEXT(pv, pv_plist)) {
1483			if (va == pv->pv_va)
1484				break;
1485		}
1486	}
1487#endif
1488
1489	rtval = 0;
1490	if (pv) {
1491		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1492		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1493		--ppv->pv_list_count;
1494		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
1495			ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
1496		}
1497
1498#if PMAP_PVLIST
1499		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1500#endif
1501		free_pv_entry(pv);
1502	}
1503
1504	splx(s);
1505	return rtval;
1506}
1507
1508/*
1509 * Create a pv entry for page at pa for
1510 * (pmap, va).
1511 */
1512static void
1513pmap_insert_entry(pmap, va, mpte, pa)
1514	pmap_t pmap;
1515	vm_offset_t va;
1516	vm_page_t mpte;
1517	vm_offset_t pa;
1518{
1519
1520	int s;
1521	pv_entry_t pv;
1522	pv_table_t *ppv;
1523
1524	s = splvm();
1525	pv = get_pv_entry();
1526	pv->pv_va = va;
1527	pv->pv_pmap = pmap;
1528	pv->pv_ptem = mpte;
1529
1530#if PMAP_PVLIST
1531	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1532#endif
1533
1534	ppv = pa_to_pvh(pa);
1535	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1536	++ppv->pv_list_count;
1537
1538	splx(s);
1539}
1540
1541/*
1542 * pmap_remove_pte: do the things to unmap a page in a process
1543 */
1544static int
1545pmap_remove_pte(pmap, ptq, va)
1546	struct pmap *pmap;
1547	unsigned *ptq;
1548	vm_offset_t va;
1549{
1550	unsigned oldpte;
1551	pv_table_t *ppv;
1552
1553	oldpte = *ptq;
1554	*ptq = 0;
1555	if (oldpte & PG_W)
1556		pmap->pm_stats.wired_count -= 1;
1557	/*
1558	 * Machines that don't support invlpg, also don't support
1559	 * PG_G.
1560	 */
1561	if (oldpte & PG_G)
1562		invlpg(va);
1563	pmap->pm_stats.resident_count -= 1;
1564	if (oldpte & PG_MANAGED) {
1565		ppv = pa_to_pvh(oldpte);
1566		if (oldpte & PG_M) {
1567#if defined(PMAP_DIAGNOSTIC)
1568			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1569				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1570			}
1571#endif
1572			if (pmap_track_modified(va))
1573				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1574		}
1575		return pmap_remove_entry(pmap, ppv, va);
1576	} else {
1577		return pmap_unuse_pt(pmap, va, NULL);
1578	}
1579
1580	return 0;
1581}
1582
1583/*
1584 * Remove a single page from a process address space
1585 */
1586static void
1587pmap_remove_page(pmap, va)
1588	struct pmap *pmap;
1589	register vm_offset_t va;
1590{
1591	register unsigned *ptq;
1592
1593	/*
1594	 * if there is no pte for this address, just skip it!!!
1595	 */
1596	if (*pmap_pde(pmap, va) == 0) {
1597		return;
1598	}
1599
1600	/*
1601	 * get a local va for mappings for this pmap.
1602	 */
1603	ptq = get_ptbase(pmap) + i386_btop(va);
1604	if (*ptq) {
1605		(void) pmap_remove_pte(pmap, ptq, va);
1606		invltlb_1pg(va);
1607	}
1608	return;
1609}
1610
1611/*
1612 *	Remove the given range of addresses from the specified map.
1613 *
1614 *	It is assumed that the start and end are properly
1615 *	rounded to the page size.
1616 */
1617void
1618pmap_remove(pmap, sva, eva)
1619	struct pmap *pmap;
1620	register vm_offset_t sva;
1621	register vm_offset_t eva;
1622{
1623	register unsigned *ptbase;
1624	vm_offset_t pdnxt;
1625	vm_offset_t ptpaddr;
1626	vm_offset_t sindex, eindex;
1627	int anyvalid;
1628
1629	if (pmap == NULL)
1630		return;
1631
1632	if (pmap->pm_stats.resident_count == 0)
1633		return;
1634
1635	/*
1636	 * special handling of removing one page.  a very
1637	 * common operation and easy to short circuit some
1638	 * code.
1639	 */
1640	if ((sva + PAGE_SIZE) == eva) {
1641		pmap_remove_page(pmap, sva);
1642		return;
1643	}
1644
1645	anyvalid = 0;
1646
1647	/*
1648	 * Get a local virtual address for the mappings that are being
1649	 * worked with.
1650	 */
1651	ptbase = get_ptbase(pmap);
1652
1653	sindex = i386_btop(sva);
1654	eindex = i386_btop(eva);
1655
1656	for (; sindex < eindex; sindex = pdnxt) {
1657
1658		/*
1659		 * Calculate index for next page table.
1660		 */
1661		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1662		if (pmap->pm_stats.resident_count == 0)
1663			break;
1664		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1665
1666		/*
1667		 * Weed out invalid mappings. Note: we assume that the page
1668		 * directory table is always allocated, and in kernel virtual.
1669		 */
1670		if (ptpaddr == 0)
1671			continue;
1672
1673		/*
1674		 * Limit our scan to either the end of the va represented
1675		 * by the current page table page, or to the end of the
1676		 * range being removed.
1677		 */
1678		if (pdnxt > eindex) {
1679			pdnxt = eindex;
1680		}
1681
1682		for ( ;sindex != pdnxt; sindex++) {
1683			vm_offset_t va;
1684			if (ptbase[sindex] == 0) {
1685				continue;
1686			}
1687			va = i386_ptob(sindex);
1688
1689			anyvalid++;
1690			if (pmap_remove_pte(pmap,
1691				ptbase + sindex, va))
1692				break;
1693		}
1694	}
1695
1696	if (anyvalid) {
1697		invltlb();
1698	}
1699}
1700
1701/*
1702 *	Routine:	pmap_remove_all
1703 *	Function:
1704 *		Removes this physical page from
1705 *		all physical maps in which it resides.
1706 *		Reflects back modify bits to the pager.
1707 *
1708 *	Notes:
1709 *		Original versions of this routine were very
1710 *		inefficient because they iteratively called
1711 *		pmap_remove (slow...)
1712 */
1713
1714static void
1715pmap_remove_all(pa)
1716	vm_offset_t pa;
1717{
1718	register pv_entry_t pv;
1719	pv_table_t *ppv;
1720	register unsigned *pte, tpte;
1721	int nmodify;
1722	int update_needed;
1723	int s;
1724
1725	nmodify = 0;
1726	update_needed = 0;
1727#if defined(PMAP_DIAGNOSTIC)
1728	/*
1729	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1730	 * pages!
1731	 */
1732	if (!pmap_is_managed(pa)) {
1733		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1734	}
1735#endif
1736
1737	s = splvm();
1738	ppv = pa_to_pvh(pa);
1739	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1740		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1741
1742		pv->pv_pmap->pm_stats.resident_count--;
1743
1744		tpte = *pte;
1745		*pte = 0;
1746		if (tpte & PG_W)
1747			pv->pv_pmap->pm_stats.wired_count--;
1748		/*
1749		 * Update the vm_page_t clean and reference bits.
1750		 */
1751		if (tpte & PG_M) {
1752#if defined(PMAP_DIAGNOSTIC)
1753			if (pmap_nw_modified((pt_entry_t) tpte)) {
1754				printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", pv->pv_va, tpte);
1755			}
1756#endif
1757			if (pmap_track_modified(pv->pv_va))
1758				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1759		}
1760		if (!update_needed &&
1761			((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
1762			(pv->pv_pmap == kernel_pmap))) {
1763			update_needed = 1;
1764		}
1765
1766#if PMAP_PVLIST
1767		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1768#endif
1769		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1770		--ppv->pv_list_count;
1771		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1772		free_pv_entry(pv);
1773	}
1774	ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
1775
1776
1777	if (update_needed)
1778		invltlb();
1779	splx(s);
1780	return;
1781}
1782
1783/*
1784 *	Set the physical protection on the
1785 *	specified range of this map as requested.
1786 */
1787void
1788pmap_protect(pmap, sva, eva, prot)
1789	register pmap_t pmap;
1790	vm_offset_t sva, eva;
1791	vm_prot_t prot;
1792{
1793	register unsigned *ptbase;
1794	vm_offset_t pdnxt;
1795	vm_offset_t ptpaddr;
1796	vm_offset_t sindex, eindex;
1797	int anychanged;
1798
1799
1800	if (pmap == NULL)
1801		return;
1802
1803	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1804		pmap_remove(pmap, sva, eva);
1805		return;
1806	}
1807
1808	anychanged = 0;
1809
1810	ptbase = get_ptbase(pmap);
1811
1812	sindex = i386_btop(sva);
1813	eindex = i386_btop(eva);
1814
1815	for (; sindex < eindex; sindex = pdnxt) {
1816
1817		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1818		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1819
1820		/*
1821		 * Weed out invalid mappings. Note: we assume that the page
1822		 * directory table is always allocated, and in kernel virtual.
1823		 */
1824		if (ptpaddr == 0)
1825			continue;
1826
1827		if (pdnxt > eindex) {
1828			pdnxt = eindex;
1829		}
1830
1831		for (; sindex != pdnxt; sindex++) {
1832
1833			unsigned pbits = ptbase[sindex];
1834
1835			if (prot & VM_PROT_WRITE) {
1836				if ((pbits & (PG_RW|PG_V)) == PG_V) {
1837					if (pbits & PG_MANAGED) {
1838						vm_page_t m = PHYS_TO_VM_PAGE(pbits);
1839						m->flags |= PG_WRITEABLE;
1840						m->object->flags |= OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY;
1841					}
1842					ptbase[sindex] = pbits | PG_RW;
1843					anychanged = 1;
1844				}
1845			} else if (pbits & PG_RW) {
1846				if (pbits & PG_M) {
1847					vm_offset_t sva = i386_ptob(sindex);
1848					if ((pbits & PG_MANAGED) && pmap_track_modified(sva)) {
1849						vm_page_t m = PHYS_TO_VM_PAGE(pbits);
1850						m->dirty = VM_PAGE_BITS_ALL;
1851					}
1852				}
1853				ptbase[sindex] = pbits & ~(PG_M|PG_RW);
1854				anychanged = 1;
1855			}
1856		}
1857	}
1858	if (anychanged)
1859		invltlb();
1860}
1861
1862/*
1863 *	Insert the given physical page (p) at
1864 *	the specified virtual address (v) in the
1865 *	target physical map with the protection requested.
1866 *
1867 *	If specified, the page will be wired down, meaning
1868 *	that the related pte can not be reclaimed.
1869 *
1870 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1871 *	or lose information.  That is, this routine must actually
1872 *	insert this page into the given map NOW.
1873 */
1874void
1875pmap_enter(pmap, va, pa, prot, wired)
1876	register pmap_t pmap;
1877	vm_offset_t va;
1878	register vm_offset_t pa;
1879	vm_prot_t prot;
1880	boolean_t wired;
1881{
1882	register unsigned *pte;
1883	vm_offset_t opa;
1884	vm_offset_t origpte, newpte;
1885	vm_page_t mpte;
1886
1887	if (pmap == NULL)
1888		return;
1889
1890	va &= PG_FRAME;
1891#ifdef PMAP_DIAGNOSTIC
1892	if (va > VM_MAX_KERNEL_ADDRESS)
1893		panic("pmap_enter: toobig");
1894	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1895		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1896#endif
1897
1898	mpte = NULL;
1899	/*
1900	 * In the case that a page table page is not
1901	 * resident, we are creating it here.
1902	 */
1903	if (va < UPT_MIN_ADDRESS)
1904		mpte = pmap_allocpte(pmap, va);
1905
1906	pte = pmap_pte(pmap, va);
1907	/*
1908	 * Page Directory table entry not valid, we need a new PT page
1909	 */
1910	if (pte == NULL) {
1911		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%lx\n",
1912			pmap->pm_pdir[PTDPTDI], va);
1913	}
1914
1915	origpte = *(vm_offset_t *)pte;
1916	pa &= PG_FRAME;
1917	opa = origpte & PG_FRAME;
1918
1919	/*
1920	 * Mapping has not changed, must be protection or wiring change.
1921	 */
1922	if (origpte && (opa == pa)) {
1923		/*
1924		 * Wiring change, just update stats. We don't worry about
1925		 * wiring PT pages as they remain resident as long as there
1926		 * are valid mappings in them. Hence, if a user page is wired,
1927		 * the PT page will be also.
1928		 */
1929		if (wired && ((origpte & PG_W) == 0))
1930			pmap->pm_stats.wired_count++;
1931		else if (!wired && (origpte & PG_W))
1932			pmap->pm_stats.wired_count--;
1933
1934#if defined(PMAP_DIAGNOSTIC)
1935		if (pmap_nw_modified((pt_entry_t) origpte)) {
1936			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1937		}
1938#endif
1939
1940		/*
1941		 * We might be turning off write access to the page,
1942		 * so we go ahead and sense modify status.
1943		 */
1944		if (origpte & PG_MANAGED) {
1945			vm_page_t m;
1946			if (origpte & PG_M) {
1947				if (pmap_track_modified(va)) {
1948					m = PHYS_TO_VM_PAGE(pa);
1949					m->dirty = VM_PAGE_BITS_ALL;
1950				}
1951			}
1952			pa |= PG_MANAGED;
1953		}
1954
1955		if (mpte)
1956			--mpte->hold_count;
1957
1958		goto validate;
1959	}
1960	/*
1961	 * Mapping has changed, invalidate old range and fall through to
1962	 * handle validating new mapping.
1963	 */
1964	if (opa) {
1965		int err;
1966		err = pmap_remove_pte(pmap, pte, va);
1967		if (err)
1968			panic("pmap_enter: pte vanished, va: 0x%x", va);
1969	}
1970
1971	/*
1972	 * Enter on the PV list if part of our managed memory Note that we
1973	 * raise IPL while manipulating pv_table since pmap_enter can be
1974	 * called at interrupt time.
1975	 */
1976	if (pmap_is_managed(pa)) {
1977		pmap_insert_entry(pmap, va, mpte, pa);
1978		pa |= PG_MANAGED;
1979	}
1980
1981	/*
1982	 * Increment counters
1983	 */
1984	pmap->pm_stats.resident_count++;
1985	if (wired)
1986		pmap->pm_stats.wired_count++;
1987
1988validate:
1989	/*
1990	 * Now validate mapping with desired protection/wiring.
1991	 */
1992	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1993
1994	if (wired)
1995		newpte |= PG_W;
1996	if (va < UPT_MIN_ADDRESS)
1997		newpte |= PG_U;
1998	if (pmap == kernel_pmap)
1999		newpte |= pgeflag;
2000
2001	/*
2002	 * if the mapping or permission bits are different, we need
2003	 * to update the pte.
2004	 */
2005	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2006		*pte = newpte;
2007		if (origpte)
2008			invltlb_1pg(va);
2009	}
2010}
2011
2012/*
2013 * this code makes some *MAJOR* assumptions:
2014 * 1. Current pmap & pmap exists.
2015 * 2. Not wired.
2016 * 3. Read access.
2017 * 4. No page table pages.
2018 * 5. Tlbflush is deferred to calling procedure.
2019 * 6. Page IS managed.
2020 * but is *MUCH* faster than pmap_enter...
2021 */
2022
2023static vm_page_t
2024pmap_enter_quick(pmap, va, pa, mpte)
2025	register pmap_t pmap;
2026	vm_offset_t va;
2027	register vm_offset_t pa;
2028	vm_page_t mpte;
2029{
2030	register unsigned *pte;
2031
2032	/*
2033	 * In the case that a page table page is not
2034	 * resident, we are creating it here.
2035	 */
2036	if (va < UPT_MIN_ADDRESS) {
2037		unsigned ptepindex;
2038		vm_offset_t ptepa;
2039
2040		/*
2041		 * Calculate pagetable page index
2042		 */
2043		ptepindex = va >> PDRSHIFT;
2044		if (mpte && (mpte->pindex == ptepindex)) {
2045			++mpte->hold_count;
2046		} else {
2047retry:
2048			/*
2049			 * Get the page directory entry
2050			 */
2051			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2052
2053			/*
2054			 * If the page table page is mapped, we just increment
2055			 * the hold count, and activate it.
2056			 */
2057			if (ptepa) {
2058#if defined(PTPHINT)
2059				if (pmap->pm_ptphint &&
2060					(pmap->pm_ptphint->pindex == ptepindex)) {
2061					mpte = pmap->pm_ptphint;
2062				} else {
2063					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2064					pmap->pm_ptphint = mpte;
2065				}
2066#else
2067				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2068#endif
2069				if (mpte == NULL)
2070					goto retry;
2071				++mpte->hold_count;
2072			} else {
2073				mpte = _pmap_allocpte(pmap, ptepindex);
2074			}
2075		}
2076	} else {
2077		mpte = NULL;
2078	}
2079
2080	/*
2081	 * This call to vtopte makes the assumption that we are
2082	 * entering the page into the current pmap.  In order to support
2083	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2084	 * But that isn't as quick as vtopte.
2085	 */
2086	pte = (unsigned *)vtopte(va);
2087	if (*pte) {
2088		if (mpte)
2089			pmap_unwire_pte_hold(pmap, mpte);
2090		return 0;
2091	}
2092
2093	/*
2094	 * Enter on the PV list if part of our managed memory Note that we
2095	 * raise IPL while manipulating pv_table since pmap_enter can be
2096	 * called at interrupt time.
2097	 */
2098	pmap_insert_entry(pmap, va, mpte, pa);
2099
2100	/*
2101	 * Increment counters
2102	 */
2103	pmap->pm_stats.resident_count++;
2104
2105	/*
2106	 * Now validate mapping with RO protection
2107	 */
2108	*pte = pa | PG_V | PG_U | PG_MANAGED;
2109
2110	return mpte;
2111}
2112
2113#define MAX_INIT_PT (96)
2114/*
2115 * pmap_object_init_pt preloads the ptes for a given object
2116 * into the specified pmap.  This eliminates the blast of soft
2117 * faults on process startup and immediately after an mmap.
2118 */
2119void
2120pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2121	pmap_t pmap;
2122	vm_offset_t addr;
2123	vm_object_t object;
2124	vm_pindex_t pindex;
2125	vm_size_t size;
2126	int limit;
2127{
2128	vm_offset_t tmpidx;
2129	int psize;
2130	vm_page_t p, mpte;
2131	int objpgs;
2132
2133	psize = i386_btop(size);
2134
2135	if (!pmap || (object->type != OBJT_VNODE) ||
2136		(limit && (psize > MAX_INIT_PT) &&
2137			(object->resident_page_count > MAX_INIT_PT))) {
2138		return;
2139	}
2140
2141	if (psize + pindex > object->size)
2142		psize = object->size - pindex;
2143
2144	mpte = NULL;
2145	/*
2146	 * if we are processing a major portion of the object, then scan the
2147	 * entire thing.
2148	 */
2149	if (psize > (object->size >> 2)) {
2150		objpgs = psize;
2151
2152		for (p = TAILQ_FIRST(&object->memq);
2153		    ((objpgs > 0) && (p != NULL));
2154		    p = TAILQ_NEXT(p, listq)) {
2155
2156			tmpidx = p->pindex;
2157			if (tmpidx < pindex) {
2158				continue;
2159			}
2160			tmpidx -= pindex;
2161			if (tmpidx >= psize) {
2162				continue;
2163			}
2164			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2165			    (p->busy == 0) &&
2166			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2167				if ((p->queue - p->pc) == PQ_CACHE)
2168					vm_page_deactivate(p);
2169				p->flags |= PG_BUSY;
2170				mpte = pmap_enter_quick(pmap,
2171					addr + i386_ptob(tmpidx),
2172					VM_PAGE_TO_PHYS(p), mpte);
2173				p->flags |= PG_MAPPED;
2174				PAGE_WAKEUP(p);
2175			}
2176			objpgs -= 1;
2177		}
2178	} else {
2179		/*
2180		 * else lookup the pages one-by-one.
2181		 */
2182		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2183			p = vm_page_lookup(object, tmpidx + pindex);
2184			if (p &&
2185			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2186			    (p->busy == 0) &&
2187			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2188				if ((p->queue - p->pc) == PQ_CACHE)
2189					vm_page_deactivate(p);
2190				p->flags |= PG_BUSY;
2191				mpte = pmap_enter_quick(pmap,
2192					addr + i386_ptob(tmpidx),
2193					VM_PAGE_TO_PHYS(p), mpte);
2194				p->flags |= PG_MAPPED;
2195				PAGE_WAKEUP(p);
2196			}
2197		}
2198	}
2199	return;
2200}
2201
2202/*
2203 * pmap_prefault provides a quick way of clustering
2204 * pagefaults into a processes address space.  It is a "cousin"
2205 * of pmap_object_init_pt, except it runs at page fault time instead
2206 * of mmap time.
2207 */
2208#define PFBAK 2
2209#define PFFOR 2
2210#define PAGEORDER_SIZE (PFBAK+PFFOR)
2211
2212static int pmap_prefault_pageorder[] = {
2213	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
2214};
2215
2216void
2217pmap_prefault(pmap, addra, entry, object)
2218	pmap_t pmap;
2219	vm_offset_t addra;
2220	vm_map_entry_t entry;
2221	vm_object_t object;
2222{
2223	int i;
2224	vm_offset_t starta;
2225	vm_offset_t addr;
2226	vm_pindex_t pindex;
2227	vm_page_t m, mpte;
2228
2229	if (entry->object.vm_object != object)
2230		return;
2231
2232	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
2233		return;
2234
2235	starta = addra - PFBAK * PAGE_SIZE;
2236	if (starta < entry->start) {
2237		starta = entry->start;
2238	} else if (starta > addra) {
2239		starta = 0;
2240	}
2241
2242	mpte = NULL;
2243	for (i = 0; i < PAGEORDER_SIZE; i++) {
2244		vm_object_t lobject;
2245		unsigned *pte;
2246
2247		addr = addra + pmap_prefault_pageorder[i];
2248		if (addr < starta || addr >= entry->end)
2249			continue;
2250
2251		if ((*pmap_pde(pmap, addr)) == NULL)
2252			continue;
2253
2254		pte = (unsigned *) vtopte(addr);
2255		if (*pte)
2256			continue;
2257
2258		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2259		lobject = object;
2260		for (m = vm_page_lookup(lobject, pindex);
2261		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2262		    lobject = lobject->backing_object) {
2263			if (lobject->backing_object_offset & PAGE_MASK)
2264				break;
2265			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2266			m = vm_page_lookup(lobject->backing_object, pindex);
2267		}
2268
2269		/*
2270		 * give-up when a page is not in memory
2271		 */
2272		if (m == NULL)
2273			break;
2274
2275		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2276		    (m->busy == 0) &&
2277		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2278
2279			if ((m->queue - m->pc) == PQ_CACHE) {
2280				vm_page_deactivate(m);
2281			}
2282			m->flags |= PG_BUSY;
2283			mpte = pmap_enter_quick(pmap, addr,
2284				VM_PAGE_TO_PHYS(m), mpte);
2285			m->flags |= PG_MAPPED;
2286			PAGE_WAKEUP(m);
2287		}
2288	}
2289}
2290
2291/*
2292 *	Routine:	pmap_change_wiring
2293 *	Function:	Change the wiring attribute for a map/virtual-address
2294 *			pair.
2295 *	In/out conditions:
2296 *			The mapping must already exist in the pmap.
2297 */
2298void
2299pmap_change_wiring(pmap, va, wired)
2300	register pmap_t pmap;
2301	vm_offset_t va;
2302	boolean_t wired;
2303{
2304	register unsigned *pte;
2305
2306	if (pmap == NULL)
2307		return;
2308
2309	pte = pmap_pte(pmap, va);
2310
2311	if (wired && !pmap_pte_w(pte))
2312		pmap->pm_stats.wired_count++;
2313	else if (!wired && pmap_pte_w(pte))
2314		pmap->pm_stats.wired_count--;
2315
2316	/*
2317	 * Wiring is not a hardware characteristic so there is no need to
2318	 * invalidate TLB.
2319	 */
2320	pmap_pte_set_w(pte, wired);
2321}
2322
2323
2324
2325/*
2326 *	Copy the range specified by src_addr/len
2327 *	from the source map to the range dst_addr/len
2328 *	in the destination map.
2329 *
2330 *	This routine is only advisory and need not do anything.
2331 */
2332
2333void
2334pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2335	pmap_t dst_pmap, src_pmap;
2336	vm_offset_t dst_addr;
2337	vm_size_t len;
2338	vm_offset_t src_addr;
2339{
2340	vm_offset_t addr;
2341	vm_offset_t end_addr = src_addr + len;
2342	vm_offset_t pdnxt;
2343	unsigned src_frame, dst_frame;
2344
2345	if (dst_addr != src_addr)
2346		return;
2347
2348	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2349	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2350		return;
2351	}
2352
2353	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2354	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2355		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2356		invltlb();
2357	}
2358
2359	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2360		unsigned *src_pte, *dst_pte;
2361		vm_page_t dstmpte, srcmpte;
2362		vm_offset_t srcptepaddr;
2363		unsigned ptepindex;
2364
2365		if (addr >= UPT_MIN_ADDRESS)
2366			panic("pmap_copy: invalid to pmap_copy page tables\n");
2367
2368		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2369		ptepindex = addr >> PDRSHIFT;
2370
2371		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2372		if (srcptepaddr == 0)
2373			continue;
2374
2375		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2376		if ((srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2377			continue;
2378
2379		if (pdnxt > end_addr)
2380			pdnxt = end_addr;
2381
2382		src_pte = (unsigned *) vtopte(addr);
2383		dst_pte = (unsigned *) avtopte(addr);
2384		while (addr < pdnxt) {
2385			unsigned ptetemp;
2386			ptetemp = *src_pte;
2387			/*
2388			 * we only virtual copy managed pages
2389			 */
2390			if ((ptetemp & PG_MANAGED) != 0) {
2391				/*
2392				 * We have to check after allocpte for the
2393				 * pte still being around...  allocpte can
2394				 * block.
2395				 */
2396				dstmpte = pmap_allocpte(dst_pmap, addr);
2397				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2398					/*
2399					 * Clear the modified and
2400					 * accessed (referenced) bits
2401					 * during the copy.
2402					 */
2403					*dst_pte = ptetemp & ~(PG_M|PG_A);
2404					dst_pmap->pm_stats.resident_count++;
2405					pmap_insert_entry(dst_pmap, addr,
2406						dstmpte,
2407						(ptetemp & PG_FRAME));
2408	 			} else {
2409					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2410				}
2411				if (dstmpte->hold_count >= srcmpte->hold_count)
2412					break;
2413			}
2414			addr += PAGE_SIZE;
2415			++src_pte;
2416			++dst_pte;
2417		}
2418	}
2419}
2420
2421/*
2422 *	Routine:	pmap_kernel
2423 *	Function:
2424 *		Returns the physical map handle for the kernel.
2425 */
2426pmap_t
2427pmap_kernel()
2428{
2429	return (kernel_pmap);
2430}
2431
2432/*
2433 *	pmap_zero_page zeros the specified (machine independent)
2434 *	page by mapping the page into virtual memory and using
2435 *	bzero to clear its contents, one machine dependent page
2436 *	at a time.
2437 */
2438void
2439pmap_zero_page(phys)
2440	vm_offset_t phys;
2441{
2442	if (*(int *) CMAP2)
2443		panic("pmap_zero_page: CMAP busy");
2444
2445	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
2446	bzero(CADDR2, PAGE_SIZE);
2447	*(int *) CMAP2 = 0;
2448	invltlb_1pg((vm_offset_t) CADDR2);
2449}
2450
2451/*
2452 *	pmap_copy_page copies the specified (machine independent)
2453 *	page by mapping the page into virtual memory and using
2454 *	bcopy to copy the page, one machine dependent page at a
2455 *	time.
2456 */
2457void
2458pmap_copy_page(src, dst)
2459	vm_offset_t src;
2460	vm_offset_t dst;
2461{
2462	if (*(int *) CMAP1 || *(int *) CMAP2)
2463		panic("pmap_copy_page: CMAP busy");
2464
2465	*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
2466	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
2467
2468	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2469
2470	*(int *) CMAP1 = 0;
2471	*(int *) CMAP2 = 0;
2472	invltlb_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
2473}
2474
2475
2476/*
2477 *	Routine:	pmap_pageable
2478 *	Function:
2479 *		Make the specified pages (by pmap, offset)
2480 *		pageable (or not) as requested.
2481 *
2482 *		A page which is not pageable may not take
2483 *		a fault; therefore, its page table entry
2484 *		must remain valid for the duration.
2485 *
2486 *		This routine is merely advisory; pmap_enter
2487 *		will specify that these pages are to be wired
2488 *		down (or not) as appropriate.
2489 */
2490void
2491pmap_pageable(pmap, sva, eva, pageable)
2492	pmap_t pmap;
2493	vm_offset_t sva, eva;
2494	boolean_t pageable;
2495{
2496}
2497
2498/*
2499 * this routine returns true if a physical page resides
2500 * in the given pmap.
2501 */
2502boolean_t
2503pmap_page_exists(pmap, pa)
2504	pmap_t pmap;
2505	vm_offset_t pa;
2506{
2507	register pv_entry_t pv;
2508	pv_table_t *ppv;
2509	int s;
2510
2511	if (!pmap_is_managed(pa))
2512		return FALSE;
2513
2514	s = splvm();
2515
2516	ppv = pa_to_pvh(pa);
2517	/*
2518	 * Not found, check current mappings returning immediately if found.
2519	 */
2520	for (pv = TAILQ_FIRST(&ppv->pv_list);
2521		pv;
2522		pv = TAILQ_NEXT(pv, pv_list)) {
2523		if (pv->pv_pmap == pmap) {
2524			splx(s);
2525			return TRUE;
2526		}
2527	}
2528	splx(s);
2529	return (FALSE);
2530}
2531
2532#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2533/*
2534 * Remove all pages from specified address space
2535 * this aids process exit speeds.  Also, this code
2536 * is special cased for current process only, but
2537 * can have the more generic (and slightly slower)
2538 * mode enabled.  This is much faster than pmap_remove
2539 * in the case of running down an entire address space.
2540 */
2541void
2542pmap_remove_pages(pmap, sva, eva)
2543	pmap_t pmap;
2544	vm_offset_t sva, eva;
2545{
2546	unsigned *pte, tpte;
2547	pv_table_t *ppv;
2548	pv_entry_t pv, npv;
2549	int s;
2550
2551#if PMAP_PVLIST
2552
2553#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2554	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
2555		printf("warning: pmap_remove_pages called with non-current pmap\n");
2556		return;
2557	}
2558#endif
2559
2560	s = splvm();
2561	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2562		pv;
2563		pv = npv) {
2564
2565		if (pv->pv_va >= eva || pv->pv_va < sva) {
2566			npv = TAILQ_NEXT(pv, pv_plist);
2567			continue;
2568		}
2569
2570#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2571		pte = (unsigned *)vtopte(pv->pv_va);
2572#else
2573		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2574#endif
2575		tpte = *pte;
2576
2577/*
2578 * We cannot remove wired pages from a process' mapping at this time
2579 */
2580		if (tpte & PG_W) {
2581			npv = TAILQ_NEXT(pv, pv_plist);
2582			continue;
2583		}
2584		*pte = 0;
2585
2586		ppv = pa_to_pvh(tpte);
2587
2588		pv->pv_pmap->pm_stats.resident_count--;
2589
2590		/*
2591		 * Update the vm_page_t clean and reference bits.
2592		 */
2593		if (tpte & PG_M) {
2594			ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2595		}
2596
2597
2598		npv = TAILQ_NEXT(pv, pv_plist);
2599		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2600
2601		--ppv->pv_list_count;
2602		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2603		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2604			ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
2605		}
2606
2607		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2608		free_pv_entry(pv);
2609	}
2610	splx(s);
2611	invltlb();
2612#endif
2613}
2614
2615/*
2616 * pmap_testbit tests bits in pte's
2617 * note that the testbit/changebit routines are inline,
2618 * and a lot of things compile-time evaluate.
2619 */
2620static boolean_t
2621pmap_testbit(pa, bit)
2622	register vm_offset_t pa;
2623	int bit;
2624{
2625	register pv_entry_t pv;
2626	pv_table_t *ppv;
2627	unsigned *pte;
2628	int s;
2629
2630	if (!pmap_is_managed(pa))
2631		return FALSE;
2632
2633	ppv = pa_to_pvh(pa);
2634	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
2635		return FALSE;
2636
2637	s = splvm();
2638
2639	for (pv = TAILQ_FIRST(&ppv->pv_list);
2640		pv;
2641		pv = TAILQ_NEXT(pv, pv_list)) {
2642
2643		/*
2644		 * if the bit being tested is the modified bit, then
2645		 * mark clean_map and ptes as never
2646		 * modified.
2647		 */
2648		if (bit & (PG_A|PG_M)) {
2649			if (!pmap_track_modified(pv->pv_va))
2650				continue;
2651		}
2652
2653#if defined(PMAP_DIAGNOSTIC)
2654		if (!pv->pv_pmap) {
2655			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2656			continue;
2657		}
2658#endif
2659		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2660		if (*pte & bit) {
2661			splx(s);
2662			return TRUE;
2663		}
2664	}
2665	splx(s);
2666	return (FALSE);
2667}
2668
2669/*
2670 * this routine is used to modify bits in ptes
2671 */
2672static void
2673pmap_changebit(pa, bit, setem)
2674	vm_offset_t pa;
2675	int bit;
2676	boolean_t setem;
2677{
2678	register pv_entry_t pv;
2679	pv_table_t *ppv;
2680	register unsigned *pte;
2681	int changed;
2682	int s;
2683
2684	if (!pmap_is_managed(pa))
2685		return;
2686
2687	s = splvm();
2688	changed = 0;
2689	ppv = pa_to_pvh(pa);
2690
2691	/*
2692	 * Loop over all current mappings setting/clearing as appropos If
2693	 * setting RO do we need to clear the VAC?
2694	 */
2695	for (pv = TAILQ_FIRST(&ppv->pv_list);
2696		pv;
2697		pv = TAILQ_NEXT(pv, pv_list)) {
2698
2699		/*
2700		 * don't write protect pager mappings
2701		 */
2702		if (!setem && (bit == PG_RW)) {
2703			if (!pmap_track_modified(pv->pv_va))
2704				continue;
2705		}
2706
2707#if defined(PMAP_DIAGNOSTIC)
2708		if (!pv->pv_pmap) {
2709			printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2710			continue;
2711		}
2712#endif
2713
2714		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2715
2716		if (setem) {
2717			*(int *)pte |= bit;
2718			changed = 1;
2719		} else {
2720			vm_offset_t pbits = *(vm_offset_t *)pte;
2721			if (pbits & bit) {
2722				changed = 1;
2723				if (bit == PG_RW) {
2724					if (pbits & PG_M) {
2725						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2726					}
2727					*(int *)pte = pbits & ~(PG_M|PG_RW);
2728				} else {
2729					*(int *)pte = pbits & ~bit;
2730				}
2731			}
2732		}
2733	}
2734	splx(s);
2735	if (changed)
2736		invltlb();
2737}
2738
2739/*
2740 *      pmap_page_protect:
2741 *
2742 *      Lower the permission for all mappings to a given page.
2743 */
2744void
2745pmap_page_protect(phys, prot)
2746	vm_offset_t phys;
2747	vm_prot_t prot;
2748{
2749	if ((prot & VM_PROT_WRITE) == 0) {
2750		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2751			pmap_changebit(phys, PG_RW, FALSE);
2752		} else {
2753			pmap_remove_all(phys);
2754		}
2755	}
2756}
2757
2758vm_offset_t
2759pmap_phys_address(ppn)
2760	int ppn;
2761{
2762	return (i386_ptob(ppn));
2763}
2764
2765/*
2766 *	pmap_ts_referenced:
2767 *
2768 *	Return the count of reference bits for a page, clearing all of them.
2769 *
2770 */
2771int
2772pmap_ts_referenced(vm_offset_t pa)
2773{
2774	register pv_entry_t pv;
2775	pv_table_t *ppv;
2776	unsigned *pte;
2777	int s;
2778	int rtval = 0;
2779
2780	if (!pmap_is_managed(pa))
2781		return FALSE;
2782
2783	s = splvm();
2784
2785	ppv = pa_to_pvh(pa);
2786
2787	if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2788		splx(s);
2789		return 0;
2790	}
2791
2792	/*
2793	 * Not found, check current mappings returning immediately if found.
2794	 */
2795	for (pv = TAILQ_FIRST(&ppv->pv_list);
2796		pv;
2797		pv = TAILQ_NEXT(pv, pv_list)) {
2798		/*
2799		 * if the bit being tested is the modified bit, then
2800		 * mark clean_map and ptes as never
2801		 * modified.
2802		 */
2803		if (!pmap_track_modified(pv->pv_va))
2804			continue;
2805
2806		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2807		if (pte == NULL) {
2808			continue;
2809		}
2810		if (*pte & PG_A) {
2811			rtval++;
2812			*pte &= ~PG_A;
2813		}
2814	}
2815	splx(s);
2816	if (rtval) {
2817		invltlb();
2818	}
2819	return (rtval);
2820}
2821
2822/*
2823 *	pmap_is_modified:
2824 *
2825 *	Return whether or not the specified physical page was modified
2826 *	in any physical maps.
2827 */
2828boolean_t
2829pmap_is_modified(vm_offset_t pa)
2830{
2831	return pmap_testbit((pa), PG_M);
2832}
2833
2834/*
2835 *	Clear the modify bits on the specified physical page.
2836 */
2837void
2838pmap_clear_modify(vm_offset_t pa)
2839{
2840	pmap_changebit((pa), PG_M, FALSE);
2841}
2842
2843/*
2844 *	pmap_clear_reference:
2845 *
2846 *	Clear the reference bit on the specified physical page.
2847 */
2848void
2849pmap_clear_reference(vm_offset_t pa)
2850{
2851	pmap_changebit((pa), PG_A, FALSE);
2852}
2853
2854/*
2855 * Miscellaneous support routines follow
2856 */
2857
2858static void
2859i386_protection_init()
2860{
2861	register int *kp, prot;
2862
2863	kp = protection_codes;
2864	for (prot = 0; prot < 8; prot++) {
2865		switch (prot) {
2866		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2867			/*
2868			 * Read access is also 0. There isn't any execute bit,
2869			 * so just make it readable.
2870			 */
2871		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2872		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2873		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2874			*kp++ = 0;
2875			break;
2876		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2877		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2878		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2879		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2880			*kp++ = PG_RW;
2881			break;
2882		}
2883	}
2884}
2885
2886/*
2887 * Map a set of physical memory pages into the kernel virtual
2888 * address space. Return a pointer to where it is mapped. This
2889 * routine is intended to be used for mapping device memory,
2890 * NOT real memory. The non-cacheable bits are set on each
2891 * mapped page.
2892 */
2893void *
2894pmap_mapdev(pa, size)
2895	vm_offset_t pa;
2896	vm_size_t size;
2897{
2898	vm_offset_t va, tmpva;
2899	unsigned *pte;
2900
2901	size = roundup(size, PAGE_SIZE);
2902
2903	va = kmem_alloc_pageable(kernel_map, size);
2904	if (!va)
2905		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2906
2907	pa = pa & PG_FRAME;
2908	for (tmpva = va; size > 0;) {
2909		pte = (unsigned *)vtopte(tmpva);
2910		*pte = pa | PG_RW | PG_V;
2911		size -= PAGE_SIZE;
2912		tmpva += PAGE_SIZE;
2913		pa += PAGE_SIZE;
2914	}
2915	invltlb();
2916
2917	return ((void *) va);
2918}
2919
2920/*
2921 * perform the pmap work for mincore
2922 */
2923int
2924pmap_mincore(pmap, addr)
2925	pmap_t pmap;
2926	vm_offset_t addr;
2927{
2928
2929	unsigned *ptep, pte;
2930	int val = 0;
2931
2932	ptep = pmap_pte(pmap, addr);
2933	if (ptep == 0) {
2934		return 0;
2935	}
2936
2937	if (pte = *ptep) {
2938		vm_offset_t pa;
2939		val = MINCORE_INCORE;
2940		pa = pte & PG_FRAME;
2941
2942		/*
2943		 * Modified by us
2944		 */
2945		if (pte & PG_M)
2946			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2947		/*
2948		 * Modified by someone
2949		 */
2950		else if (PHYS_TO_VM_PAGE(pa)->dirty ||
2951			pmap_is_modified(pa))
2952			val |= MINCORE_MODIFIED_OTHER;
2953		/*
2954		 * Referenced by us
2955		 */
2956		if (pte & PG_U)
2957			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2958
2959		/*
2960		 * Referenced by someone
2961		 */
2962		else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
2963			pmap_ts_referenced(pa)) {
2964			val |= MINCORE_REFERENCED_OTHER;
2965			PHYS_TO_VM_PAGE(pa)->flags |= PG_REFERENCED;
2966		}
2967	}
2968	return val;
2969}
2970
2971void
2972pmap_activate(struct proc *p)
2973{
2974	load_cr3(p->p_addr->u_pcb.pcb_cr3 =
2975		vtophys(p->p_vmspace->vm_pmap.pm_pdir));
2976}
2977
2978#if defined(PMAP_DEBUG)
2979pmap_pid_dump(int pid) {
2980	pmap_t pmap;
2981	struct proc *p;
2982	int npte = 0;
2983	int index;
2984	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
2985		if (p->p_pid != pid)
2986			continue;
2987
2988		if (p->p_vmspace) {
2989			int i,j;
2990			index = 0;
2991			pmap = &p->p_vmspace->vm_pmap;
2992			for(i=0;i<1024;i++) {
2993				pd_entry_t *pde;
2994				unsigned *pte;
2995				unsigned base = i << PDRSHIFT;
2996
2997				pde = &pmap->pm_pdir[i];
2998				if (pde && pmap_pde_v(pde)) {
2999					for(j=0;j<1024;j++) {
3000						unsigned va = base + (j << PAGE_SHIFT);
3001						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3002							if (index) {
3003								index = 0;
3004								printf("\n");
3005							}
3006							return npte;
3007						}
3008						pte = pmap_pte_quick( pmap, va);
3009						if (pte && pmap_pte_v(pte)) {
3010							vm_offset_t pa;
3011							vm_page_t m;
3012							pa = *(int *)pte;
3013							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3014							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3015								va, pa, m->hold_count, m->wire_count, m->flags);
3016							npte++;
3017							index++;
3018							if (index >= 2) {
3019								index = 0;
3020								printf("\n");
3021							} else {
3022								printf(" ");
3023							}
3024						}
3025					}
3026				}
3027			}
3028		}
3029	}
3030	return npte;
3031}
3032#endif
3033
3034#if defined(DEBUG)
3035
3036static void	pads __P((pmap_t pm));
3037static void	pmap_pvdump __P((vm_offset_t pa));
3038
3039/* print address space of pmap*/
3040static void
3041pads(pm)
3042	pmap_t pm;
3043{
3044	unsigned va, i, j;
3045	unsigned *ptep;
3046
3047	if (pm == kernel_pmap)
3048		return;
3049	for (i = 0; i < 1024; i++)
3050		if (pm->pm_pdir[i])
3051			for (j = 0; j < 1024; j++) {
3052				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3053				if (pm == kernel_pmap && va < KERNBASE)
3054					continue;
3055				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3056					continue;
3057				ptep = pmap_pte_quick(pm, va);
3058				if (pmap_pte_v(ptep))
3059					printf("%x:%x ", va, *(int *) ptep);
3060			};
3061
3062}
3063
3064static void
3065pmap_pvdump(pa)
3066	vm_offset_t pa;
3067{
3068	pv_table_t *ppv;
3069	register pv_entry_t pv;
3070
3071	printf("pa %x", pa);
3072	ppv = pa_to_pvh(pa);
3073	for (pv = TAILQ_FIRST(&ppv->pv_list);
3074		pv;
3075		pv = TAILQ_NEXT(pv, pv_list)) {
3076#ifdef used_to_be
3077		printf(" -> pmap %x, va %x, flags %x",
3078		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
3079#endif
3080		printf(" -> pmap %x, va %x",
3081		    pv->pv_pmap, pv->pv_va);
3082		pads(pv->pv_pmap);
3083	}
3084	printf(" ");
3085}
3086#endif
3087