pmap.c revision 216516
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 216516 2010-12-18 11:31:32Z kib $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#ifdef __GNUC_GNU_INLINE__
166#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167#else
168#define PMAP_INLINE	extern inline
169#endif
170#else
171#define PMAP_INLINE
172#endif
173
174#define PV_STATS
175#ifdef PV_STATS
176#define PV_STAT(x)	do { x ; } while (0)
177#else
178#define PV_STAT(x)	do { } while (0)
179#endif
180
181#define	pa_index(pa)	((pa) >> PDRSHIFT)
182#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183
184/*
185 * Get PDEs and PTEs for user/kernel address space
186 */
187#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189
190#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195
196#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197    atomic_clear_int((u_int *)(pte), PG_W))
198#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199
200struct pmap kernel_pmap_store;
201LIST_HEAD(pmaplist, pmap);
202static struct pmaplist allpmaps;
203static struct mtx allpmaps_lock;
204
205vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
206vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
207int pgeflag = 0;		/* PG_G or-in */
208int pseflag = 0;		/* PG_PS or-in */
209
210static int nkpt = NKPT;
211vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
212extern u_int32_t KERNend;
213extern u_int32_t KPTphys;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217static uma_zone_t pdptzone;
218#endif
219
220SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
221
222static int pat_works = 1;
223SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
224    "Is page attribute table fully functional?");
225
226static int pg_ps_enabled = 1;
227SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
228    "Are large page mappings enabled?");
229
230#define	PAT_INDEX_SIZE	8
231static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
232
233/*
234 * Data for the pv entry allocation mechanism
235 */
236static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
237static struct md_page *pv_table;
238static int shpgperproc = PMAP_SHPGPERPROC;
239
240struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
241int pv_maxchunks;			/* How many chunks we have KVA for */
242vm_offset_t pv_vafree;			/* freelist stored in the PTE */
243
244/*
245 * All those kernel PT submaps that BSD is so fond of
246 */
247struct sysmaps {
248	struct	mtx lock;
249	pt_entry_t *CMAP1;
250	pt_entry_t *CMAP2;
251	caddr_t	CADDR1;
252	caddr_t	CADDR2;
253};
254static struct sysmaps sysmaps_pcpu[MAXCPU];
255pt_entry_t *CMAP1 = 0;
256static pt_entry_t *CMAP3;
257static pd_entry_t *KPTD;
258caddr_t CADDR1 = 0, ptvmmap = 0;
259static caddr_t CADDR3;
260struct msgbuf *msgbufp = 0;
261
262/*
263 * Crashdump maps.
264 */
265static caddr_t crashdumpmap;
266
267static pt_entry_t *PMAP1 = 0, *PMAP2;
268static pt_entry_t *PADDR1 = 0, *PADDR2;
269#ifdef SMP
270static int PMAP1cpu;
271static int PMAP1changedcpu;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
273	   &PMAP1changedcpu, 0,
274	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
275#endif
276static int PMAP1changed;
277SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
278	   &PMAP1changed, 0,
279	   "Number of times pmap_pte_quick changed PMAP1");
280static int PMAP1unchanged;
281SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
282	   &PMAP1unchanged, 0,
283	   "Number of times pmap_pte_quick didn't change PMAP1");
284static struct mtx PMAP2mutex;
285
286static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
287static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
288static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
289static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
290static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
291static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
292static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
293		    vm_offset_t va);
294static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
295
296static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
297static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
298    vm_prot_t prot);
299static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
300    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
301static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
302static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
303static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
304static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
305static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
306static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
307static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
308static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
309static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
310static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
311    vm_prot_t prot);
312static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
313static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
314    vm_page_t *free);
315static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
316    vm_page_t *free);
317static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
318static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
319    vm_page_t *free);
320static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
321					vm_offset_t va);
322static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
323static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
324    vm_page_t m);
325static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
326    pd_entry_t newpde);
327static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
328
329static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
330
331static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
332static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
333static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
334static void pmap_pte_release(pt_entry_t *pte);
335static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
336#ifdef PAE
337static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
338#endif
339static void pmap_set_pg(void);
340
341CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
342CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
343
344/*
345 * If you get an error here, then you set KVA_PAGES wrong! See the
346 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
347 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
348 */
349CTASSERT(KERNBASE % (1 << 24) == 0);
350
351/*
352 *	Bootstrap the system enough to run with virtual memory.
353 *
354 *	On the i386 this is called after mapping has already been enabled
355 *	and just syncs the pmap module with what has already been done.
356 *	[We can't call it easily with mapping off since the kernel is not
357 *	mapped with PA == VA, hence we would have to relocate every address
358 *	from the linked base (virtual) address "KERNBASE" to the actual
359 *	(physical) address starting relative to 0]
360 */
361void
362pmap_bootstrap(vm_paddr_t firstaddr)
363{
364	vm_offset_t va;
365	pt_entry_t *pte, *unused;
366	struct sysmaps *sysmaps;
367	int i;
368
369	/*
370	 * Initialize the first available kernel virtual address.  However,
371	 * using "firstaddr" may waste a few pages of the kernel virtual
372	 * address space, because locore may not have mapped every physical
373	 * page that it allocated.  Preferably, locore would provide a first
374	 * unused virtual address in addition to "firstaddr".
375	 */
376	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
377
378	virtual_end = VM_MAX_KERNEL_ADDRESS;
379
380	/*
381	 * Initialize the kernel pmap (which is statically allocated).
382	 */
383	PMAP_LOCK_INIT(kernel_pmap);
384	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
385#ifdef PAE
386	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
387#endif
388	kernel_pmap->pm_root = NULL;
389	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
390	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
391	LIST_INIT(&allpmaps);
392
393	/*
394	 * Request a spin mutex so that changes to allpmaps cannot be
395	 * preempted by smp_rendezvous_cpus().  Otherwise,
396	 * pmap_update_pde_kernel() could access allpmaps while it is
397	 * being changed.
398	 */
399	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
400	mtx_lock_spin(&allpmaps_lock);
401	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
402	mtx_unlock_spin(&allpmaps_lock);
403
404	/*
405	 * Reserve some special page table entries/VA space for temporary
406	 * mapping of pages.
407	 */
408#define	SYSMAP(c, p, v, n)	\
409	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
410
411	va = virtual_avail;
412	pte = vtopte(va);
413
414	/*
415	 * CMAP1/CMAP2 are used for zeroing and copying pages.
416	 * CMAP3 is used for the idle process page zeroing.
417	 */
418	for (i = 0; i < MAXCPU; i++) {
419		sysmaps = &sysmaps_pcpu[i];
420		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
421		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
422		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
423	}
424	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
425	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
426
427	/*
428	 * Crashdump maps.
429	 */
430	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
431
432	/*
433	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
434	 */
435	SYSMAP(caddr_t, unused, ptvmmap, 1)
436
437	/*
438	 * msgbufp is used to map the system message buffer.
439	 */
440	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
441
442	/*
443	 * KPTmap is used by pmap_kextract().
444	 *
445	 * KPTmap is first initialized by locore.  However, that initial
446	 * KPTmap can only support NKPT page table pages.  Here, a larger
447	 * KPTmap is created that can support KVA_PAGES page table pages.
448	 */
449	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
450
451	for (i = 0; i < NKPT; i++)
452		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
453
454	/*
455	 * Adjust the start of the KPTD and KPTmap so that the implementation
456	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
457	 */
458	KPTD -= KPTDI;
459	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
460
461	/*
462	 * ptemap is used for pmap_pte_quick
463	 */
464	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
465	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
466
467	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
468
469	virtual_avail = va;
470
471	/*
472	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
473	 * physical memory region that is used by the ACPI wakeup code.  This
474	 * mapping must not have PG_G set.
475	 */
476#ifdef XBOX
477	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
478	 * an early stadium, we cannot yet neatly map video memory ... :-(
479	 * Better fixes are very welcome! */
480	if (!arch_i386_is_xbox)
481#endif
482	for (i = 1; i < NKPT; i++)
483		PTD[i] = 0;
484
485	/* Initialize the PAT MSR if present. */
486	pmap_init_pat();
487
488	/* Turn on PG_G on kernel page(s) */
489	pmap_set_pg();
490}
491
492/*
493 * Setup the PAT MSR.
494 */
495void
496pmap_init_pat(void)
497{
498	int pat_table[PAT_INDEX_SIZE];
499	uint64_t pat_msr;
500	u_long cr0, cr4;
501	int i;
502
503	/* Set default PAT index table. */
504	for (i = 0; i < PAT_INDEX_SIZE; i++)
505		pat_table[i] = -1;
506	pat_table[PAT_WRITE_BACK] = 0;
507	pat_table[PAT_WRITE_THROUGH] = 1;
508	pat_table[PAT_UNCACHEABLE] = 3;
509	pat_table[PAT_WRITE_COMBINING] = 3;
510	pat_table[PAT_WRITE_PROTECTED] = 3;
511	pat_table[PAT_UNCACHED] = 3;
512
513	/* Bail if this CPU doesn't implement PAT. */
514	if ((cpu_feature & CPUID_PAT) == 0) {
515		for (i = 0; i < PAT_INDEX_SIZE; i++)
516			pat_index[i] = pat_table[i];
517		pat_works = 0;
518		return;
519	}
520
521	/*
522	 * Due to some Intel errata, we can only safely use the lower 4
523	 * PAT entries.
524	 *
525	 *   Intel Pentium III Processor Specification Update
526	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
527	 * or Mode C Paging)
528	 *
529	 *   Intel Pentium IV  Processor Specification Update
530	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
531	 */
532	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
533	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
534		pat_works = 0;
535
536	/* Initialize default PAT entries. */
537	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
538	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
539	    PAT_VALUE(2, PAT_UNCACHED) |
540	    PAT_VALUE(3, PAT_UNCACHEABLE) |
541	    PAT_VALUE(4, PAT_WRITE_BACK) |
542	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
543	    PAT_VALUE(6, PAT_UNCACHED) |
544	    PAT_VALUE(7, PAT_UNCACHEABLE);
545
546	if (pat_works) {
547		/*
548		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
549		 * Program 5 and 6 as WP and WC.
550		 * Leave 4 and 7 as WB and UC.
551		 */
552		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
553		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
554		    PAT_VALUE(6, PAT_WRITE_COMBINING);
555		pat_table[PAT_UNCACHED] = 2;
556		pat_table[PAT_WRITE_PROTECTED] = 5;
557		pat_table[PAT_WRITE_COMBINING] = 6;
558	} else {
559		/*
560		 * Just replace PAT Index 2 with WC instead of UC-.
561		 */
562		pat_msr &= ~PAT_MASK(2);
563		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
564		pat_table[PAT_WRITE_COMBINING] = 2;
565	}
566
567	/* Disable PGE. */
568	cr4 = rcr4();
569	load_cr4(cr4 & ~CR4_PGE);
570
571	/* Disable caches (CD = 1, NW = 0). */
572	cr0 = rcr0();
573	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
574
575	/* Flushes caches and TLBs. */
576	wbinvd();
577	invltlb();
578
579	/* Update PAT and index table. */
580	wrmsr(MSR_PAT, pat_msr);
581	for (i = 0; i < PAT_INDEX_SIZE; i++)
582		pat_index[i] = pat_table[i];
583
584	/* Flush caches and TLBs again. */
585	wbinvd();
586	invltlb();
587
588	/* Restore caches and PGE. */
589	load_cr0(cr0);
590	load_cr4(cr4);
591}
592
593/*
594 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
595 */
596static void
597pmap_set_pg(void)
598{
599	pt_entry_t *pte;
600	vm_offset_t va, endva;
601
602	if (pgeflag == 0)
603		return;
604
605	endva = KERNBASE + KERNend;
606
607	if (pseflag) {
608		va = KERNBASE + KERNLOAD;
609		while (va  < endva) {
610			pdir_pde(PTD, va) |= pgeflag;
611			invltlb();	/* Play it safe, invltlb() every time */
612			va += NBPDR;
613		}
614	} else {
615		va = (vm_offset_t)btext;
616		while (va < endva) {
617			pte = vtopte(va);
618			if (*pte)
619				*pte |= pgeflag;
620			invltlb();	/* Play it safe, invltlb() every time */
621			va += PAGE_SIZE;
622		}
623	}
624}
625
626/*
627 * Initialize a vm_page's machine-dependent fields.
628 */
629void
630pmap_page_init(vm_page_t m)
631{
632
633	TAILQ_INIT(&m->md.pv_list);
634	m->md.pat_mode = PAT_WRITE_BACK;
635}
636
637#ifdef PAE
638static void *
639pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
640{
641
642	/* Inform UMA that this allocator uses kernel_map/object. */
643	*flags = UMA_SLAB_KERNEL;
644	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
645	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
646}
647#endif
648
649/*
650 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
651 * Requirements:
652 *  - Must deal with pages in order to ensure that none of the PG_* bits
653 *    are ever set, PG_V in particular.
654 *  - Assumes we can write to ptes without pte_store() atomic ops, even
655 *    on PAE systems.  This should be ok.
656 *  - Assumes nothing will ever test these addresses for 0 to indicate
657 *    no mapping instead of correctly checking PG_V.
658 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
659 * Because PG_V is never set, there can be no mappings to invalidate.
660 */
661static vm_offset_t
662pmap_ptelist_alloc(vm_offset_t *head)
663{
664	pt_entry_t *pte;
665	vm_offset_t va;
666
667	va = *head;
668	if (va == 0)
669		return (va);	/* Out of memory */
670	pte = vtopte(va);
671	*head = *pte;
672	if (*head & PG_V)
673		panic("pmap_ptelist_alloc: va with PG_V set!");
674	*pte = 0;
675	return (va);
676}
677
678static void
679pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
680{
681	pt_entry_t *pte;
682
683	if (va & PG_V)
684		panic("pmap_ptelist_free: freeing va with PG_V set!");
685	pte = vtopte(va);
686	*pte = *head;		/* virtual! PG_V is 0 though */
687	*head = va;
688}
689
690static void
691pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
692{
693	int i;
694	vm_offset_t va;
695
696	*head = 0;
697	for (i = npages - 1; i >= 0; i--) {
698		va = (vm_offset_t)base + i * PAGE_SIZE;
699		pmap_ptelist_free(head, va);
700	}
701}
702
703
704/*
705 *	Initialize the pmap module.
706 *	Called by vm_init, to initialize any structures that the pmap
707 *	system needs to map virtual memory.
708 */
709void
710pmap_init(void)
711{
712	vm_page_t mpte;
713	vm_size_t s;
714	int i, pv_npg;
715
716	/*
717	 * Initialize the vm page array entries for the kernel pmap's
718	 * page table pages.
719	 */
720	for (i = 0; i < NKPT; i++) {
721		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
722		KASSERT(mpte >= vm_page_array &&
723		    mpte < &vm_page_array[vm_page_array_size],
724		    ("pmap_init: page table page is out of range"));
725		mpte->pindex = i + KPTDI;
726		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
727	}
728
729	/*
730	 * Initialize the address space (zone) for the pv entries.  Set a
731	 * high water mark so that the system can recover from excessive
732	 * numbers of pv entries.
733	 */
734	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
735	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
736	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
737	pv_entry_max = roundup(pv_entry_max, _NPCPV);
738	pv_entry_high_water = 9 * (pv_entry_max / 10);
739
740	/*
741	 * If the kernel is running in a virtual machine on an AMD Family 10h
742	 * processor, then it must assume that MCA is enabled by the virtual
743	 * machine monitor.
744	 */
745	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
746	    CPUID_TO_FAMILY(cpu_id) == 0x10)
747		workaround_erratum383 = 1;
748
749	/*
750	 * Are large page mappings supported and enabled?
751	 */
752	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
753	if (pseflag == 0)
754		pg_ps_enabled = 0;
755	else if (pg_ps_enabled) {
756		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
757		    ("pmap_init: can't assign to pagesizes[1]"));
758		pagesizes[1] = NBPDR;
759	}
760
761	/*
762	 * Calculate the size of the pv head table for superpages.
763	 */
764	for (i = 0; phys_avail[i + 1]; i += 2);
765	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
766
767	/*
768	 * Allocate memory for the pv head table for superpages.
769	 */
770	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
771	s = round_page(s);
772	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
773	for (i = 0; i < pv_npg; i++)
774		TAILQ_INIT(&pv_table[i].pv_list);
775
776	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
777	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
778	    PAGE_SIZE * pv_maxchunks);
779	if (pv_chunkbase == NULL)
780		panic("pmap_init: not enough kvm for pv chunks");
781	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
782#ifdef PAE
783	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
784	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
785	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
786	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
787#endif
788}
789
790
791SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
792	"Max number of PV entries");
793SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
794	"Page share factor per proc");
795
796SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
797    "2/4MB page mapping counters");
798
799static u_long pmap_pde_demotions;
800SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
801    &pmap_pde_demotions, 0, "2/4MB page demotions");
802
803static u_long pmap_pde_mappings;
804SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
805    &pmap_pde_mappings, 0, "2/4MB page mappings");
806
807static u_long pmap_pde_p_failures;
808SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
809    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
810
811static u_long pmap_pde_promotions;
812SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
813    &pmap_pde_promotions, 0, "2/4MB page promotions");
814
815/***************************************************
816 * Low level helper routines.....
817 ***************************************************/
818
819/*
820 * Determine the appropriate bits to set in a PTE or PDE for a specified
821 * caching mode.
822 */
823int
824pmap_cache_bits(int mode, boolean_t is_pde)
825{
826	int cache_bits, pat_flag, pat_idx;
827
828	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
829		panic("Unknown caching mode %d\n", mode);
830
831	/* The PAT bit is different for PTE's and PDE's. */
832	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
833
834	/* Map the caching mode to a PAT index. */
835	pat_idx = pat_index[mode];
836
837	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
838	cache_bits = 0;
839	if (pat_idx & 0x4)
840		cache_bits |= pat_flag;
841	if (pat_idx & 0x2)
842		cache_bits |= PG_NC_PCD;
843	if (pat_idx & 0x1)
844		cache_bits |= PG_NC_PWT;
845	return (cache_bits);
846}
847
848/*
849 * The caller is responsible for maintaining TLB consistency.
850 */
851static void
852pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
853{
854	pd_entry_t *pde;
855	pmap_t pmap;
856	boolean_t PTD_updated;
857
858	PTD_updated = FALSE;
859	mtx_lock_spin(&allpmaps_lock);
860	LIST_FOREACH(pmap, &allpmaps, pm_list) {
861		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
862		    PG_FRAME))
863			PTD_updated = TRUE;
864		pde = pmap_pde(pmap, va);
865		pde_store(pde, newpde);
866	}
867	mtx_unlock_spin(&allpmaps_lock);
868	KASSERT(PTD_updated,
869	    ("pmap_kenter_pde: current page table is not in allpmaps"));
870}
871
872/*
873 * After changing the page size for the specified virtual address in the page
874 * table, flush the corresponding entries from the processor's TLB.  Only the
875 * calling processor's TLB is affected.
876 *
877 * The calling thread must be pinned to a processor.
878 */
879static void
880pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
881{
882	u_long cr4;
883
884	if ((newpde & PG_PS) == 0)
885		/* Demotion: flush a specific 2MB page mapping. */
886		invlpg(va);
887	else if ((newpde & PG_G) == 0)
888		/*
889		 * Promotion: flush every 4KB page mapping from the TLB
890		 * because there are too many to flush individually.
891		 */
892		invltlb();
893	else {
894		/*
895		 * Promotion: flush every 4KB page mapping from the TLB,
896		 * including any global (PG_G) mappings.
897		 */
898		cr4 = rcr4();
899		load_cr4(cr4 & ~CR4_PGE);
900		/*
901		 * Although preemption at this point could be detrimental to
902		 * performance, it would not lead to an error.  PG_G is simply
903		 * ignored if CR4.PGE is clear.  Moreover, in case this block
904		 * is re-entered, the load_cr4() either above or below will
905		 * modify CR4.PGE flushing the TLB.
906		 */
907		load_cr4(cr4 | CR4_PGE);
908	}
909}
910#ifdef SMP
911/*
912 * For SMP, these functions have to use the IPI mechanism for coherence.
913 *
914 * N.B.: Before calling any of the following TLB invalidation functions,
915 * the calling processor must ensure that all stores updating a non-
916 * kernel page table are globally performed.  Otherwise, another
917 * processor could cache an old, pre-update entry without being
918 * invalidated.  This can happen one of two ways: (1) The pmap becomes
919 * active on another processor after its pm_active field is checked by
920 * one of the following functions but before a store updating the page
921 * table is globally performed. (2) The pmap becomes active on another
922 * processor before its pm_active field is checked but due to
923 * speculative loads one of the following functions stills reads the
924 * pmap as inactive on the other processor.
925 *
926 * The kernel page table is exempt because its pm_active field is
927 * immutable.  The kernel page table is always active on every
928 * processor.
929 */
930void
931pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
932{
933	cpumask_t cpumask, other_cpus;
934
935	sched_pin();
936	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
937		invlpg(va);
938		smp_invlpg(va);
939	} else {
940		cpumask = PCPU_GET(cpumask);
941		other_cpus = PCPU_GET(other_cpus);
942		if (pmap->pm_active & cpumask)
943			invlpg(va);
944		if (pmap->pm_active & other_cpus)
945			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
946	}
947	sched_unpin();
948}
949
950void
951pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
952{
953	cpumask_t cpumask, other_cpus;
954	vm_offset_t addr;
955
956	sched_pin();
957	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
958		for (addr = sva; addr < eva; addr += PAGE_SIZE)
959			invlpg(addr);
960		smp_invlpg_range(sva, eva);
961	} else {
962		cpumask = PCPU_GET(cpumask);
963		other_cpus = PCPU_GET(other_cpus);
964		if (pmap->pm_active & cpumask)
965			for (addr = sva; addr < eva; addr += PAGE_SIZE)
966				invlpg(addr);
967		if (pmap->pm_active & other_cpus)
968			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
969			    sva, eva);
970	}
971	sched_unpin();
972}
973
974void
975pmap_invalidate_all(pmap_t pmap)
976{
977	cpumask_t cpumask, other_cpus;
978
979	sched_pin();
980	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
981		invltlb();
982		smp_invltlb();
983	} else {
984		cpumask = PCPU_GET(cpumask);
985		other_cpus = PCPU_GET(other_cpus);
986		if (pmap->pm_active & cpumask)
987			invltlb();
988		if (pmap->pm_active & other_cpus)
989			smp_masked_invltlb(pmap->pm_active & other_cpus);
990	}
991	sched_unpin();
992}
993
994void
995pmap_invalidate_cache(void)
996{
997
998	sched_pin();
999	wbinvd();
1000	smp_cache_flush();
1001	sched_unpin();
1002}
1003
1004struct pde_action {
1005	cpumask_t store;	/* processor that updates the PDE */
1006	cpumask_t invalidate;	/* processors that invalidate their TLB */
1007	vm_offset_t va;
1008	pd_entry_t *pde;
1009	pd_entry_t newpde;
1010};
1011
1012static void
1013pmap_update_pde_kernel(void *arg)
1014{
1015	struct pde_action *act = arg;
1016	pd_entry_t *pde;
1017	pmap_t pmap;
1018
1019	if (act->store == PCPU_GET(cpumask))
1020		/*
1021		 * Elsewhere, this operation requires allpmaps_lock for
1022		 * synchronization.  Here, it does not because it is being
1023		 * performed in the context of an all_cpus rendezvous.
1024		 */
1025		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1026			pde = pmap_pde(pmap, act->va);
1027			pde_store(pde, act->newpde);
1028		}
1029}
1030
1031static void
1032pmap_update_pde_user(void *arg)
1033{
1034	struct pde_action *act = arg;
1035
1036	if (act->store == PCPU_GET(cpumask))
1037		pde_store(act->pde, act->newpde);
1038}
1039
1040static void
1041pmap_update_pde_teardown(void *arg)
1042{
1043	struct pde_action *act = arg;
1044
1045	if ((act->invalidate & PCPU_GET(cpumask)) != 0)
1046		pmap_update_pde_invalidate(act->va, act->newpde);
1047}
1048
1049/*
1050 * Change the page size for the specified virtual address in a way that
1051 * prevents any possibility of the TLB ever having two entries that map the
1052 * same virtual address using different page sizes.  This is the recommended
1053 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1054 * machine check exception for a TLB state that is improperly diagnosed as a
1055 * hardware error.
1056 */
1057static void
1058pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1059{
1060	struct pde_action act;
1061	cpumask_t active, cpumask;
1062
1063	sched_pin();
1064	cpumask = PCPU_GET(cpumask);
1065	if (pmap == kernel_pmap)
1066		active = all_cpus;
1067	else
1068		active = pmap->pm_active;
1069	if ((active & PCPU_GET(other_cpus)) != 0) {
1070		act.store = cpumask;
1071		act.invalidate = active;
1072		act.va = va;
1073		act.pde = pde;
1074		act.newpde = newpde;
1075		smp_rendezvous_cpus(cpumask | active,
1076		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1077		    pmap_update_pde_kernel : pmap_update_pde_user,
1078		    pmap_update_pde_teardown, &act);
1079	} else {
1080		if (pmap == kernel_pmap)
1081			pmap_kenter_pde(va, newpde);
1082		else
1083			pde_store(pde, newpde);
1084		if ((active & cpumask) != 0)
1085			pmap_update_pde_invalidate(va, newpde);
1086	}
1087	sched_unpin();
1088}
1089#else /* !SMP */
1090/*
1091 * Normal, non-SMP, 486+ invalidation functions.
1092 * We inline these within pmap.c for speed.
1093 */
1094PMAP_INLINE void
1095pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1096{
1097
1098	if (pmap == kernel_pmap || pmap->pm_active)
1099		invlpg(va);
1100}
1101
1102PMAP_INLINE void
1103pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1104{
1105	vm_offset_t addr;
1106
1107	if (pmap == kernel_pmap || pmap->pm_active)
1108		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1109			invlpg(addr);
1110}
1111
1112PMAP_INLINE void
1113pmap_invalidate_all(pmap_t pmap)
1114{
1115
1116	if (pmap == kernel_pmap || pmap->pm_active)
1117		invltlb();
1118}
1119
1120PMAP_INLINE void
1121pmap_invalidate_cache(void)
1122{
1123
1124	wbinvd();
1125}
1126
1127static void
1128pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1129{
1130
1131	if (pmap == kernel_pmap)
1132		pmap_kenter_pde(va, newpde);
1133	else
1134		pde_store(pde, newpde);
1135	if (pmap == kernel_pmap || pmap->pm_active)
1136		pmap_update_pde_invalidate(va, newpde);
1137}
1138#endif /* !SMP */
1139
1140void
1141pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1142{
1143
1144	KASSERT((sva & PAGE_MASK) == 0,
1145	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1146	KASSERT((eva & PAGE_MASK) == 0,
1147	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1148
1149	if (cpu_feature & CPUID_SS)
1150		; /* If "Self Snoop" is supported, do nothing. */
1151	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1152		 eva - sva < 2 * 1024 * 1024) {
1153
1154		/*
1155		 * Otherwise, do per-cache line flush.  Use the mfence
1156		 * instruction to insure that previous stores are
1157		 * included in the write-back.  The processor
1158		 * propagates flush to other processors in the cache
1159		 * coherence domain.
1160		 */
1161		mfence();
1162		for (; sva < eva; sva += cpu_clflush_line_size)
1163			clflush(sva);
1164		mfence();
1165	} else {
1166
1167		/*
1168		 * No targeted cache flush methods are supported by CPU,
1169		 * or the supplied range is bigger than 2MB.
1170		 * Globally invalidate cache.
1171		 */
1172		pmap_invalidate_cache();
1173	}
1174}
1175
1176/*
1177 * Are we current address space or kernel?  N.B. We return FALSE when
1178 * a pmap's page table is in use because a kernel thread is borrowing
1179 * it.  The borrowed page table can change spontaneously, making any
1180 * dependence on its continued use subject to a race condition.
1181 */
1182static __inline int
1183pmap_is_current(pmap_t pmap)
1184{
1185
1186	return (pmap == kernel_pmap ||
1187		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1188	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1189}
1190
1191/*
1192 * If the given pmap is not the current or kernel pmap, the returned pte must
1193 * be released by passing it to pmap_pte_release().
1194 */
1195pt_entry_t *
1196pmap_pte(pmap_t pmap, vm_offset_t va)
1197{
1198	pd_entry_t newpf;
1199	pd_entry_t *pde;
1200
1201	pde = pmap_pde(pmap, va);
1202	if (*pde & PG_PS)
1203		return (pde);
1204	if (*pde != 0) {
1205		/* are we current address space or kernel? */
1206		if (pmap_is_current(pmap))
1207			return (vtopte(va));
1208		mtx_lock(&PMAP2mutex);
1209		newpf = *pde & PG_FRAME;
1210		if ((*PMAP2 & PG_FRAME) != newpf) {
1211			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1212			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1213		}
1214		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1215	}
1216	return (NULL);
1217}
1218
1219/*
1220 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1221 * being NULL.
1222 */
1223static __inline void
1224pmap_pte_release(pt_entry_t *pte)
1225{
1226
1227	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1228		mtx_unlock(&PMAP2mutex);
1229}
1230
1231static __inline void
1232invlcaddr(void *caddr)
1233{
1234
1235	invlpg((u_int)caddr);
1236}
1237
1238/*
1239 * Super fast pmap_pte routine best used when scanning
1240 * the pv lists.  This eliminates many coarse-grained
1241 * invltlb calls.  Note that many of the pv list
1242 * scans are across different pmaps.  It is very wasteful
1243 * to do an entire invltlb for checking a single mapping.
1244 *
1245 * If the given pmap is not the current pmap, vm_page_queue_mtx
1246 * must be held and curthread pinned to a CPU.
1247 */
1248static pt_entry_t *
1249pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1250{
1251	pd_entry_t newpf;
1252	pd_entry_t *pde;
1253
1254	pde = pmap_pde(pmap, va);
1255	if (*pde & PG_PS)
1256		return (pde);
1257	if (*pde != 0) {
1258		/* are we current address space or kernel? */
1259		if (pmap_is_current(pmap))
1260			return (vtopte(va));
1261		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1262		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1263		newpf = *pde & PG_FRAME;
1264		if ((*PMAP1 & PG_FRAME) != newpf) {
1265			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1266#ifdef SMP
1267			PMAP1cpu = PCPU_GET(cpuid);
1268#endif
1269			invlcaddr(PADDR1);
1270			PMAP1changed++;
1271		} else
1272#ifdef SMP
1273		if (PMAP1cpu != PCPU_GET(cpuid)) {
1274			PMAP1cpu = PCPU_GET(cpuid);
1275			invlcaddr(PADDR1);
1276			PMAP1changedcpu++;
1277		} else
1278#endif
1279			PMAP1unchanged++;
1280		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1281	}
1282	return (0);
1283}
1284
1285/*
1286 *	Routine:	pmap_extract
1287 *	Function:
1288 *		Extract the physical page address associated
1289 *		with the given map/virtual_address pair.
1290 */
1291vm_paddr_t
1292pmap_extract(pmap_t pmap, vm_offset_t va)
1293{
1294	pt_entry_t pte, *ptep;
1295	vm_paddr_t rtval;
1296
1297	rtval = 0;
1298	PMAP_LOCK(pmap);
1299	ptep = pmap_pte(pmap, va);
1300	pte = (ptep != NULL) ? *ptep : 0;
1301	pmap_pte_release(ptep);
1302	PMAP_UNLOCK(pmap);
1303	if ((pte & PG_V) != 0) {
1304		if ((pte & PG_PS) != 0)
1305			rtval = (pte & PG_PS_FRAME) | (va & PDRMASK);
1306		else
1307			rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1308	}
1309	return (rtval);
1310}
1311
1312/*
1313 *	Routine:	pmap_extract_and_hold
1314 *	Function:
1315 *		Atomically extract and hold the physical page
1316 *		with the given pmap and virtual address pair
1317 *		if that mapping permits the given protection.
1318 */
1319vm_page_t
1320pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1321{
1322	pt_entry_t pte, *ptep;
1323	vm_paddr_t locked_pa, pa;
1324	vm_page_t m;
1325
1326	locked_pa = 0;
1327	m = NULL;
1328	PMAP_LOCK(pmap);
1329retry:
1330	ptep = pmap_pte(pmap, va);
1331	pte = (ptep != NULL) ? *ptep : 0;
1332	pmap_pte_release(ptep);
1333	if ((pte & PG_V) != 0 &&
1334	    ((pte & PG_RW) != 0 || (prot & VM_PROT_WRITE) == 0)) {
1335		if ((pte & PG_PS) != 0) {
1336			/* Compute the physical address of the 4KB page. */
1337			pa = (pte & PG_PS_FRAME) | (va & PG_FRAME & PDRMASK);
1338		} else
1339			pa = pte & PG_FRAME;
1340		if (vm_page_pa_tryrelock(pmap, pa, &locked_pa))
1341			goto retry;
1342		m = PHYS_TO_VM_PAGE(pa);
1343		vm_page_hold(m);
1344		PA_UNLOCK(locked_pa);
1345	}
1346	PMAP_UNLOCK(pmap);
1347	return (m);
1348}
1349
1350/***************************************************
1351 * Low level mapping routines.....
1352 ***************************************************/
1353
1354/*
1355 * Add a wired page to the kva.
1356 * Note: not SMP coherent.
1357 *
1358 * This function may be used before pmap_bootstrap() is called.
1359 */
1360PMAP_INLINE void
1361pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1362{
1363	pt_entry_t *pte;
1364
1365	pte = vtopte(va);
1366	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1367}
1368
1369static __inline void
1370pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1371{
1372	pt_entry_t *pte;
1373
1374	pte = vtopte(va);
1375	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1376}
1377
1378/*
1379 * Remove a page from the kernel pagetables.
1380 * Note: not SMP coherent.
1381 *
1382 * This function may be used before pmap_bootstrap() is called.
1383 */
1384PMAP_INLINE void
1385pmap_kremove(vm_offset_t va)
1386{
1387	pt_entry_t *pte;
1388
1389	pte = vtopte(va);
1390	pte_clear(pte);
1391}
1392
1393/*
1394 *	Used to map a range of physical addresses into kernel
1395 *	virtual address space.
1396 *
1397 *	The value passed in '*virt' is a suggested virtual address for
1398 *	the mapping. Architectures which can support a direct-mapped
1399 *	physical to virtual region can return the appropriate address
1400 *	within that region, leaving '*virt' unchanged. Other
1401 *	architectures should map the pages starting at '*virt' and
1402 *	update '*virt' with the first usable address after the mapped
1403 *	region.
1404 */
1405vm_offset_t
1406pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1407{
1408	vm_offset_t va, sva;
1409
1410	va = sva = *virt;
1411	while (start < end) {
1412		pmap_kenter(va, start);
1413		va += PAGE_SIZE;
1414		start += PAGE_SIZE;
1415	}
1416	pmap_invalidate_range(kernel_pmap, sva, va);
1417	*virt = va;
1418	return (sva);
1419}
1420
1421
1422/*
1423 * Add a list of wired pages to the kva
1424 * this routine is only used for temporary
1425 * kernel mappings that do not need to have
1426 * page modification or references recorded.
1427 * Note that old mappings are simply written
1428 * over.  The page *must* be wired.
1429 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1430 */
1431void
1432pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1433{
1434	pt_entry_t *endpte, oldpte, pa, *pte;
1435	vm_page_t m;
1436
1437	oldpte = 0;
1438	pte = vtopte(sva);
1439	endpte = pte + count;
1440	while (pte < endpte) {
1441		m = *ma++;
1442		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1443		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1444			oldpte |= *pte;
1445			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1446		}
1447		pte++;
1448	}
1449	if (__predict_false((oldpte & PG_V) != 0))
1450		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1451		    PAGE_SIZE);
1452}
1453
1454/*
1455 * This routine tears out page mappings from the
1456 * kernel -- it is meant only for temporary mappings.
1457 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1458 */
1459void
1460pmap_qremove(vm_offset_t sva, int count)
1461{
1462	vm_offset_t va;
1463
1464	va = sva;
1465	while (count-- > 0) {
1466		pmap_kremove(va);
1467		va += PAGE_SIZE;
1468	}
1469	pmap_invalidate_range(kernel_pmap, sva, va);
1470}
1471
1472/***************************************************
1473 * Page table page management routines.....
1474 ***************************************************/
1475static __inline void
1476pmap_free_zero_pages(vm_page_t free)
1477{
1478	vm_page_t m;
1479
1480	while (free != NULL) {
1481		m = free;
1482		free = m->right;
1483		/* Preserve the page's PG_ZERO setting. */
1484		vm_page_free_toq(m);
1485	}
1486}
1487
1488/*
1489 * Schedule the specified unused page table page to be freed.  Specifically,
1490 * add the page to the specified list of pages that will be released to the
1491 * physical memory manager after the TLB has been updated.
1492 */
1493static __inline void
1494pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1495{
1496
1497	if (set_PG_ZERO)
1498		m->flags |= PG_ZERO;
1499	else
1500		m->flags &= ~PG_ZERO;
1501	m->right = *free;
1502	*free = m;
1503}
1504
1505/*
1506 * Inserts the specified page table page into the specified pmap's collection
1507 * of idle page table pages.  Each of a pmap's page table pages is responsible
1508 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1509 * ordered by this virtual address range.
1510 */
1511static void
1512pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1513{
1514	vm_page_t root;
1515
1516	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1517	root = pmap->pm_root;
1518	if (root == NULL) {
1519		mpte->left = NULL;
1520		mpte->right = NULL;
1521	} else {
1522		root = vm_page_splay(mpte->pindex, root);
1523		if (mpte->pindex < root->pindex) {
1524			mpte->left = root->left;
1525			mpte->right = root;
1526			root->left = NULL;
1527		} else if (mpte->pindex == root->pindex)
1528			panic("pmap_insert_pt_page: pindex already inserted");
1529		else {
1530			mpte->right = root->right;
1531			mpte->left = root;
1532			root->right = NULL;
1533		}
1534	}
1535	pmap->pm_root = mpte;
1536}
1537
1538/*
1539 * Looks for a page table page mapping the specified virtual address in the
1540 * specified pmap's collection of idle page table pages.  Returns NULL if there
1541 * is no page table page corresponding to the specified virtual address.
1542 */
1543static vm_page_t
1544pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1545{
1546	vm_page_t mpte;
1547	vm_pindex_t pindex = va >> PDRSHIFT;
1548
1549	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1550	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1551		mpte = vm_page_splay(pindex, mpte);
1552		if ((pmap->pm_root = mpte)->pindex != pindex)
1553			mpte = NULL;
1554	}
1555	return (mpte);
1556}
1557
1558/*
1559 * Removes the specified page table page from the specified pmap's collection
1560 * of idle page table pages.  The specified page table page must be a member of
1561 * the pmap's collection.
1562 */
1563static void
1564pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1565{
1566	vm_page_t root;
1567
1568	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1569	if (mpte != pmap->pm_root)
1570		vm_page_splay(mpte->pindex, pmap->pm_root);
1571	if (mpte->left == NULL)
1572		root = mpte->right;
1573	else {
1574		root = vm_page_splay(mpte->pindex, mpte->left);
1575		root->right = mpte->right;
1576	}
1577	pmap->pm_root = root;
1578}
1579
1580/*
1581 * This routine unholds page table pages, and if the hold count
1582 * drops to zero, then it decrements the wire count.
1583 */
1584static __inline int
1585pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1586{
1587
1588	--m->wire_count;
1589	if (m->wire_count == 0)
1590		return (_pmap_unwire_pte_hold(pmap, m, free));
1591	else
1592		return (0);
1593}
1594
1595static int
1596_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1597{
1598	vm_offset_t pteva;
1599
1600	/*
1601	 * unmap the page table page
1602	 */
1603	pmap->pm_pdir[m->pindex] = 0;
1604	--pmap->pm_stats.resident_count;
1605
1606	/*
1607	 * This is a release store so that the ordinary store unmapping
1608	 * the page table page is globally performed before TLB shoot-
1609	 * down is begun.
1610	 */
1611	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1612
1613	/*
1614	 * Do an invltlb to make the invalidated mapping
1615	 * take effect immediately.
1616	 */
1617	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1618	pmap_invalidate_page(pmap, pteva);
1619
1620	/*
1621	 * Put page on a list so that it is released after
1622	 * *ALL* TLB shootdown is done
1623	 */
1624	pmap_add_delayed_free_list(m, free, TRUE);
1625
1626	return (1);
1627}
1628
1629/*
1630 * After removing a page table entry, this routine is used to
1631 * conditionally free the page, and manage the hold/wire counts.
1632 */
1633static int
1634pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1635{
1636	pd_entry_t ptepde;
1637	vm_page_t mpte;
1638
1639	if (va >= VM_MAXUSER_ADDRESS)
1640		return (0);
1641	ptepde = *pmap_pde(pmap, va);
1642	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1643	return (pmap_unwire_pte_hold(pmap, mpte, free));
1644}
1645
1646/*
1647 * Initialize the pmap for the swapper process.
1648 */
1649void
1650pmap_pinit0(pmap_t pmap)
1651{
1652
1653	PMAP_LOCK_INIT(pmap);
1654	/*
1655	 * Since the page table directory is shared with the kernel pmap,
1656	 * which is already included in the list "allpmaps", this pmap does
1657	 * not need to be inserted into that list.
1658	 */
1659	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1660#ifdef PAE
1661	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1662#endif
1663	pmap->pm_root = NULL;
1664	pmap->pm_active = 0;
1665	PCPU_SET(curpmap, pmap);
1666	TAILQ_INIT(&pmap->pm_pvchunk);
1667	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1668}
1669
1670/*
1671 * Initialize a preallocated and zeroed pmap structure,
1672 * such as one in a vmspace structure.
1673 */
1674int
1675pmap_pinit(pmap_t pmap)
1676{
1677	vm_page_t m, ptdpg[NPGPTD];
1678	vm_paddr_t pa;
1679	static int color;
1680	int i;
1681
1682	PMAP_LOCK_INIT(pmap);
1683
1684	/*
1685	 * No need to allocate page table space yet but we do need a valid
1686	 * page directory table.
1687	 */
1688	if (pmap->pm_pdir == NULL) {
1689		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1690		    NBPTD);
1691
1692		if (pmap->pm_pdir == NULL) {
1693			PMAP_LOCK_DESTROY(pmap);
1694			return (0);
1695		}
1696#ifdef PAE
1697		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1698		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1699		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1700		    ("pmap_pinit: pdpt misaligned"));
1701		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1702		    ("pmap_pinit: pdpt above 4g"));
1703#endif
1704		pmap->pm_root = NULL;
1705	}
1706	KASSERT(pmap->pm_root == NULL,
1707	    ("pmap_pinit: pmap has reserved page table page(s)"));
1708
1709	/*
1710	 * allocate the page directory page(s)
1711	 */
1712	for (i = 0; i < NPGPTD;) {
1713		m = vm_page_alloc(NULL, color++,
1714		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1715		    VM_ALLOC_ZERO);
1716		if (m == NULL)
1717			VM_WAIT;
1718		else {
1719			ptdpg[i++] = m;
1720		}
1721	}
1722
1723	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1724
1725	for (i = 0; i < NPGPTD; i++) {
1726		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1727			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1728	}
1729
1730	mtx_lock_spin(&allpmaps_lock);
1731	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1732	/* Copy the kernel page table directory entries. */
1733	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1734	mtx_unlock_spin(&allpmaps_lock);
1735
1736	/* install self-referential address mapping entry(s) */
1737	for (i = 0; i < NPGPTD; i++) {
1738		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1739		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1740#ifdef PAE
1741		pmap->pm_pdpt[i] = pa | PG_V;
1742#endif
1743	}
1744
1745	pmap->pm_active = 0;
1746	TAILQ_INIT(&pmap->pm_pvchunk);
1747	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1748
1749	return (1);
1750}
1751
1752/*
1753 * this routine is called if the page table page is not
1754 * mapped correctly.
1755 */
1756static vm_page_t
1757_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1758{
1759	vm_paddr_t ptepa;
1760	vm_page_t m;
1761
1762	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1763	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1764	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1765
1766	/*
1767	 * Allocate a page table page.
1768	 */
1769	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1770	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1771		if (flags & M_WAITOK) {
1772			PMAP_UNLOCK(pmap);
1773			vm_page_unlock_queues();
1774			VM_WAIT;
1775			vm_page_lock_queues();
1776			PMAP_LOCK(pmap);
1777		}
1778
1779		/*
1780		 * Indicate the need to retry.  While waiting, the page table
1781		 * page may have been allocated.
1782		 */
1783		return (NULL);
1784	}
1785	if ((m->flags & PG_ZERO) == 0)
1786		pmap_zero_page(m);
1787
1788	/*
1789	 * Map the pagetable page into the process address space, if
1790	 * it isn't already there.
1791	 */
1792
1793	pmap->pm_stats.resident_count++;
1794
1795	ptepa = VM_PAGE_TO_PHYS(m);
1796	pmap->pm_pdir[ptepindex] =
1797		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1798
1799	return (m);
1800}
1801
1802static vm_page_t
1803pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1804{
1805	unsigned ptepindex;
1806	pd_entry_t ptepa;
1807	vm_page_t m;
1808
1809	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1810	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1811	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1812
1813	/*
1814	 * Calculate pagetable page index
1815	 */
1816	ptepindex = va >> PDRSHIFT;
1817retry:
1818	/*
1819	 * Get the page directory entry
1820	 */
1821	ptepa = pmap->pm_pdir[ptepindex];
1822
1823	/*
1824	 * This supports switching from a 4MB page to a
1825	 * normal 4K page.
1826	 */
1827	if (ptepa & PG_PS) {
1828		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1829		ptepa = pmap->pm_pdir[ptepindex];
1830	}
1831
1832	/*
1833	 * If the page table page is mapped, we just increment the
1834	 * hold count, and activate it.
1835	 */
1836	if (ptepa) {
1837		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1838		m->wire_count++;
1839	} else {
1840		/*
1841		 * Here if the pte page isn't mapped, or if it has
1842		 * been deallocated.
1843		 */
1844		m = _pmap_allocpte(pmap, ptepindex, flags);
1845		if (m == NULL && (flags & M_WAITOK))
1846			goto retry;
1847	}
1848	return (m);
1849}
1850
1851
1852/***************************************************
1853* Pmap allocation/deallocation routines.
1854 ***************************************************/
1855
1856#ifdef SMP
1857/*
1858 * Deal with a SMP shootdown of other users of the pmap that we are
1859 * trying to dispose of.  This can be a bit hairy.
1860 */
1861static cpumask_t *lazymask;
1862static u_int lazyptd;
1863static volatile u_int lazywait;
1864
1865void pmap_lazyfix_action(void);
1866
1867void
1868pmap_lazyfix_action(void)
1869{
1870	cpumask_t mymask = PCPU_GET(cpumask);
1871
1872#ifdef COUNT_IPIS
1873	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1874#endif
1875	if (rcr3() == lazyptd)
1876		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1877	atomic_clear_int(lazymask, mymask);
1878	atomic_store_rel_int(&lazywait, 1);
1879}
1880
1881static void
1882pmap_lazyfix_self(cpumask_t mymask)
1883{
1884
1885	if (rcr3() == lazyptd)
1886		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1887	atomic_clear_int(lazymask, mymask);
1888}
1889
1890
1891static void
1892pmap_lazyfix(pmap_t pmap)
1893{
1894	cpumask_t mymask, mask;
1895	u_int spins;
1896
1897	while ((mask = pmap->pm_active) != 0) {
1898		spins = 50000000;
1899		mask = mask & -mask;	/* Find least significant set bit */
1900		mtx_lock_spin(&smp_ipi_mtx);
1901#ifdef PAE
1902		lazyptd = vtophys(pmap->pm_pdpt);
1903#else
1904		lazyptd = vtophys(pmap->pm_pdir);
1905#endif
1906		mymask = PCPU_GET(cpumask);
1907		if (mask == mymask) {
1908			lazymask = &pmap->pm_active;
1909			pmap_lazyfix_self(mymask);
1910		} else {
1911			atomic_store_rel_int((u_int *)&lazymask,
1912			    (u_int)&pmap->pm_active);
1913			atomic_store_rel_int(&lazywait, 0);
1914			ipi_selected(mask, IPI_LAZYPMAP);
1915			while (lazywait == 0) {
1916				ia32_pause();
1917				if (--spins == 0)
1918					break;
1919			}
1920		}
1921		mtx_unlock_spin(&smp_ipi_mtx);
1922		if (spins == 0)
1923			printf("pmap_lazyfix: spun for 50000000\n");
1924	}
1925}
1926
1927#else	/* SMP */
1928
1929/*
1930 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1931 * unlikely to have to even execute this code, including the fact
1932 * that the cleanup is deferred until the parent does a wait(2), which
1933 * means that another userland process has run.
1934 */
1935static void
1936pmap_lazyfix(pmap_t pmap)
1937{
1938	u_int cr3;
1939
1940	cr3 = vtophys(pmap->pm_pdir);
1941	if (cr3 == rcr3()) {
1942		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1943		pmap->pm_active &= ~(PCPU_GET(cpumask));
1944	}
1945}
1946#endif	/* SMP */
1947
1948/*
1949 * Release any resources held by the given physical map.
1950 * Called when a pmap initialized by pmap_pinit is being released.
1951 * Should only be called if the map contains no valid mappings.
1952 */
1953void
1954pmap_release(pmap_t pmap)
1955{
1956	vm_page_t m, ptdpg[NPGPTD];
1957	int i;
1958
1959	KASSERT(pmap->pm_stats.resident_count == 0,
1960	    ("pmap_release: pmap resident count %ld != 0",
1961	    pmap->pm_stats.resident_count));
1962	KASSERT(pmap->pm_root == NULL,
1963	    ("pmap_release: pmap has reserved page table page(s)"));
1964
1965	pmap_lazyfix(pmap);
1966	mtx_lock_spin(&allpmaps_lock);
1967	LIST_REMOVE(pmap, pm_list);
1968	mtx_unlock_spin(&allpmaps_lock);
1969
1970	for (i = 0; i < NPGPTD; i++)
1971		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1972		    PG_FRAME);
1973
1974	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1975	    sizeof(*pmap->pm_pdir));
1976
1977	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1978
1979	for (i = 0; i < NPGPTD; i++) {
1980		m = ptdpg[i];
1981#ifdef PAE
1982		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1983		    ("pmap_release: got wrong ptd page"));
1984#endif
1985		m->wire_count--;
1986		atomic_subtract_int(&cnt.v_wire_count, 1);
1987		vm_page_free_zero(m);
1988	}
1989	PMAP_LOCK_DESTROY(pmap);
1990}
1991
1992static int
1993kvm_size(SYSCTL_HANDLER_ARGS)
1994{
1995	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1996
1997	return (sysctl_handle_long(oidp, &ksize, 0, req));
1998}
1999SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2000    0, 0, kvm_size, "IU", "Size of KVM");
2001
2002static int
2003kvm_free(SYSCTL_HANDLER_ARGS)
2004{
2005	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2006
2007	return (sysctl_handle_long(oidp, &kfree, 0, req));
2008}
2009SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2010    0, 0, kvm_free, "IU", "Amount of KVM free");
2011
2012/*
2013 * grow the number of kernel page table entries, if needed
2014 */
2015void
2016pmap_growkernel(vm_offset_t addr)
2017{
2018	vm_paddr_t ptppaddr;
2019	vm_page_t nkpg;
2020	pd_entry_t newpdir;
2021
2022	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2023	addr = roundup2(addr, NBPDR);
2024	if (addr - 1 >= kernel_map->max_offset)
2025		addr = kernel_map->max_offset;
2026	while (kernel_vm_end < addr) {
2027		if (pdir_pde(PTD, kernel_vm_end)) {
2028			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2029			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2030				kernel_vm_end = kernel_map->max_offset;
2031				break;
2032			}
2033			continue;
2034		}
2035
2036		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2037		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2038		    VM_ALLOC_ZERO);
2039		if (nkpg == NULL)
2040			panic("pmap_growkernel: no memory to grow kernel");
2041
2042		nkpt++;
2043
2044		if ((nkpg->flags & PG_ZERO) == 0)
2045			pmap_zero_page(nkpg);
2046		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2047		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2048		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2049
2050		pmap_kenter_pde(kernel_vm_end, newpdir);
2051		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2052		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2053			kernel_vm_end = kernel_map->max_offset;
2054			break;
2055		}
2056	}
2057}
2058
2059
2060/***************************************************
2061 * page management routines.
2062 ***************************************************/
2063
2064CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2065CTASSERT(_NPCM == 11);
2066
2067static __inline struct pv_chunk *
2068pv_to_chunk(pv_entry_t pv)
2069{
2070
2071	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2072}
2073
2074#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2075
2076#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2077#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2078
2079static uint32_t pc_freemask[11] = {
2080	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2081	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2082	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2083	PC_FREE0_9, PC_FREE10
2084};
2085
2086SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2087	"Current number of pv entries");
2088
2089#ifdef PV_STATS
2090static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2091
2092SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2093	"Current number of pv entry chunks");
2094SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2095	"Current number of pv entry chunks allocated");
2096SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2097	"Current number of pv entry chunks frees");
2098SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2099	"Number of times tried to get a chunk page but failed.");
2100
2101static long pv_entry_frees, pv_entry_allocs;
2102static int pv_entry_spare;
2103
2104SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2105	"Current number of pv entry frees");
2106SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2107	"Current number of pv entry allocs");
2108SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2109	"Current number of spare pv entries");
2110
2111static int pmap_collect_inactive, pmap_collect_active;
2112
2113SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2114	"Current number times pmap_collect called on inactive queue");
2115SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2116	"Current number times pmap_collect called on active queue");
2117#endif
2118
2119/*
2120 * We are in a serious low memory condition.  Resort to
2121 * drastic measures to free some pages so we can allocate
2122 * another pv entry chunk.  This is normally called to
2123 * unmap inactive pages, and if necessary, active pages.
2124 */
2125static void
2126pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2127{
2128	pd_entry_t *pde;
2129	pmap_t pmap;
2130	pt_entry_t *pte, tpte;
2131	pv_entry_t next_pv, pv;
2132	vm_offset_t va;
2133	vm_page_t m, free;
2134
2135	sched_pin();
2136	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2137		if (m->hold_count || m->busy)
2138			continue;
2139		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2140			va = pv->pv_va;
2141			pmap = PV_PMAP(pv);
2142			/* Avoid deadlock and lock recursion. */
2143			if (pmap > locked_pmap)
2144				PMAP_LOCK(pmap);
2145			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2146				continue;
2147			pmap->pm_stats.resident_count--;
2148			pde = pmap_pde(pmap, va);
2149			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2150			    " a 4mpage in page %p's pv list", m));
2151			pte = pmap_pte_quick(pmap, va);
2152			tpte = pte_load_clear(pte);
2153			KASSERT((tpte & PG_W) == 0,
2154			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2155			if (tpte & PG_A)
2156				vm_page_flag_set(m, PG_REFERENCED);
2157			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2158				vm_page_dirty(m);
2159			free = NULL;
2160			pmap_unuse_pt(pmap, va, &free);
2161			pmap_invalidate_page(pmap, va);
2162			pmap_free_zero_pages(free);
2163			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2164			free_pv_entry(pmap, pv);
2165			if (pmap != locked_pmap)
2166				PMAP_UNLOCK(pmap);
2167		}
2168		if (TAILQ_EMPTY(&m->md.pv_list) &&
2169		    TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list))
2170			vm_page_flag_clear(m, PG_WRITEABLE);
2171	}
2172	sched_unpin();
2173}
2174
2175
2176/*
2177 * free the pv_entry back to the free list
2178 */
2179static void
2180free_pv_entry(pmap_t pmap, pv_entry_t pv)
2181{
2182	vm_page_t m;
2183	struct pv_chunk *pc;
2184	int idx, field, bit;
2185
2186	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2187	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2188	PV_STAT(pv_entry_frees++);
2189	PV_STAT(pv_entry_spare++);
2190	pv_entry_count--;
2191	pc = pv_to_chunk(pv);
2192	idx = pv - &pc->pc_pventry[0];
2193	field = idx / 32;
2194	bit = idx % 32;
2195	pc->pc_map[field] |= 1ul << bit;
2196	/* move to head of list */
2197	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2198	for (idx = 0; idx < _NPCM; idx++)
2199		if (pc->pc_map[idx] != pc_freemask[idx]) {
2200			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2201			return;
2202		}
2203	PV_STAT(pv_entry_spare -= _NPCPV);
2204	PV_STAT(pc_chunk_count--);
2205	PV_STAT(pc_chunk_frees++);
2206	/* entire chunk is free, return it */
2207	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2208	pmap_qremove((vm_offset_t)pc, 1);
2209	vm_page_unwire(m, 0);
2210	vm_page_free(m);
2211	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2212}
2213
2214/*
2215 * get a new pv_entry, allocating a block from the system
2216 * when needed.
2217 */
2218static pv_entry_t
2219get_pv_entry(pmap_t pmap, int try)
2220{
2221	static const struct timeval printinterval = { 60, 0 };
2222	static struct timeval lastprint;
2223	static vm_pindex_t colour;
2224	struct vpgqueues *pq;
2225	int bit, field;
2226	pv_entry_t pv;
2227	struct pv_chunk *pc;
2228	vm_page_t m;
2229
2230	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2231	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2232	PV_STAT(pv_entry_allocs++);
2233	pv_entry_count++;
2234	if (pv_entry_count > pv_entry_high_water)
2235		if (ratecheck(&lastprint, &printinterval))
2236			printf("Approaching the limit on PV entries, consider "
2237			    "increasing either the vm.pmap.shpgperproc or the "
2238			    "vm.pmap.pv_entry_max tunable.\n");
2239	pq = NULL;
2240retry:
2241	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2242	if (pc != NULL) {
2243		for (field = 0; field < _NPCM; field++) {
2244			if (pc->pc_map[field]) {
2245				bit = bsfl(pc->pc_map[field]);
2246				break;
2247			}
2248		}
2249		if (field < _NPCM) {
2250			pv = &pc->pc_pventry[field * 32 + bit];
2251			pc->pc_map[field] &= ~(1ul << bit);
2252			/* If this was the last item, move it to tail */
2253			for (field = 0; field < _NPCM; field++)
2254				if (pc->pc_map[field] != 0) {
2255					PV_STAT(pv_entry_spare--);
2256					return (pv);	/* not full, return */
2257				}
2258			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2259			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2260			PV_STAT(pv_entry_spare--);
2261			return (pv);
2262		}
2263	}
2264	/*
2265	 * Access to the ptelist "pv_vafree" is synchronized by the page
2266	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2267	 * remain non-empty until pmap_ptelist_alloc() completes.
2268	 */
2269	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2270	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2271	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2272		if (try) {
2273			pv_entry_count--;
2274			PV_STAT(pc_chunk_tryfail++);
2275			return (NULL);
2276		}
2277		/*
2278		 * Reclaim pv entries: At first, destroy mappings to
2279		 * inactive pages.  After that, if a pv chunk entry
2280		 * is still needed, destroy mappings to active pages.
2281		 */
2282		if (pq == NULL) {
2283			PV_STAT(pmap_collect_inactive++);
2284			pq = &vm_page_queues[PQ_INACTIVE];
2285		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2286			PV_STAT(pmap_collect_active++);
2287			pq = &vm_page_queues[PQ_ACTIVE];
2288		} else
2289			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2290		pmap_collect(pmap, pq);
2291		goto retry;
2292	}
2293	PV_STAT(pc_chunk_count++);
2294	PV_STAT(pc_chunk_allocs++);
2295	colour++;
2296	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2297	pmap_qenter((vm_offset_t)pc, &m, 1);
2298	pc->pc_pmap = pmap;
2299	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2300	for (field = 1; field < _NPCM; field++)
2301		pc->pc_map[field] = pc_freemask[field];
2302	pv = &pc->pc_pventry[0];
2303	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2304	PV_STAT(pv_entry_spare += _NPCPV - 1);
2305	return (pv);
2306}
2307
2308static __inline pv_entry_t
2309pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2310{
2311	pv_entry_t pv;
2312
2313	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2314	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2315		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2316			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2317			break;
2318		}
2319	}
2320	return (pv);
2321}
2322
2323static void
2324pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2325{
2326	struct md_page *pvh;
2327	pv_entry_t pv;
2328	vm_offset_t va_last;
2329	vm_page_t m;
2330
2331	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2332	KASSERT((pa & PDRMASK) == 0,
2333	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2334
2335	/*
2336	 * Transfer the 4mpage's pv entry for this mapping to the first
2337	 * page's pv list.
2338	 */
2339	pvh = pa_to_pvh(pa);
2340	va = trunc_4mpage(va);
2341	pv = pmap_pvh_remove(pvh, pmap, va);
2342	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2343	m = PHYS_TO_VM_PAGE(pa);
2344	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2345	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2346	va_last = va + NBPDR - PAGE_SIZE;
2347	do {
2348		m++;
2349		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2350		    ("pmap_pv_demote_pde: page %p is not managed", m));
2351		va += PAGE_SIZE;
2352		pmap_insert_entry(pmap, va, m);
2353	} while (va < va_last);
2354}
2355
2356static void
2357pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2358{
2359	struct md_page *pvh;
2360	pv_entry_t pv;
2361	vm_offset_t va_last;
2362	vm_page_t m;
2363
2364	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2365	KASSERT((pa & PDRMASK) == 0,
2366	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2367
2368	/*
2369	 * Transfer the first page's pv entry for this mapping to the
2370	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2371	 * to get_pv_entry(), a transfer avoids the possibility that
2372	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2373	 * removes one of the mappings that is being promoted.
2374	 */
2375	m = PHYS_TO_VM_PAGE(pa);
2376	va = trunc_4mpage(va);
2377	pv = pmap_pvh_remove(&m->md, pmap, va);
2378	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2379	pvh = pa_to_pvh(pa);
2380	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2381	/* Free the remaining NPTEPG - 1 pv entries. */
2382	va_last = va + NBPDR - PAGE_SIZE;
2383	do {
2384		m++;
2385		va += PAGE_SIZE;
2386		pmap_pvh_free(&m->md, pmap, va);
2387	} while (va < va_last);
2388}
2389
2390static void
2391pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2392{
2393	pv_entry_t pv;
2394
2395	pv = pmap_pvh_remove(pvh, pmap, va);
2396	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2397	free_pv_entry(pmap, pv);
2398}
2399
2400static void
2401pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2402{
2403	struct md_page *pvh;
2404
2405	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2406	pmap_pvh_free(&m->md, pmap, va);
2407	if (TAILQ_EMPTY(&m->md.pv_list)) {
2408		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2409		if (TAILQ_EMPTY(&pvh->pv_list))
2410			vm_page_flag_clear(m, PG_WRITEABLE);
2411	}
2412}
2413
2414/*
2415 * Create a pv entry for page at pa for
2416 * (pmap, va).
2417 */
2418static void
2419pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2420{
2421	pv_entry_t pv;
2422
2423	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2424	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2425	pv = get_pv_entry(pmap, FALSE);
2426	pv->pv_va = va;
2427	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2428}
2429
2430/*
2431 * Conditionally create a pv entry.
2432 */
2433static boolean_t
2434pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2435{
2436	pv_entry_t pv;
2437
2438	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2439	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2440	if (pv_entry_count < pv_entry_high_water &&
2441	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2442		pv->pv_va = va;
2443		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2444		return (TRUE);
2445	} else
2446		return (FALSE);
2447}
2448
2449/*
2450 * Create the pv entries for each of the pages within a superpage.
2451 */
2452static boolean_t
2453pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2454{
2455	struct md_page *pvh;
2456	pv_entry_t pv;
2457
2458	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2459	if (pv_entry_count < pv_entry_high_water &&
2460	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2461		pv->pv_va = va;
2462		pvh = pa_to_pvh(pa);
2463		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2464		return (TRUE);
2465	} else
2466		return (FALSE);
2467}
2468
2469/*
2470 * Fills a page table page with mappings to consecutive physical pages.
2471 */
2472static void
2473pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2474{
2475	pt_entry_t *pte;
2476
2477	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2478		*pte = newpte;
2479		newpte += PAGE_SIZE;
2480	}
2481}
2482
2483/*
2484 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2485 * 2- or 4MB page mapping is invalidated.
2486 */
2487static boolean_t
2488pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2489{
2490	pd_entry_t newpde, oldpde;
2491	pt_entry_t *firstpte, newpte;
2492	vm_paddr_t mptepa;
2493	vm_page_t free, mpte;
2494
2495	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2496	oldpde = *pde;
2497	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2498	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2499	mpte = pmap_lookup_pt_page(pmap, va);
2500	if (mpte != NULL)
2501		pmap_remove_pt_page(pmap, mpte);
2502	else {
2503		KASSERT((oldpde & PG_W) == 0,
2504		    ("pmap_demote_pde: page table page for a wired mapping"
2505		    " is missing"));
2506
2507		/*
2508		 * Invalidate the 2- or 4MB page mapping and return
2509		 * "failure" if the mapping was never accessed or the
2510		 * allocation of the new page table page fails.
2511		 */
2512		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2513		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2514		    VM_ALLOC_WIRED)) == NULL) {
2515			free = NULL;
2516			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2517			pmap_invalidate_page(pmap, trunc_4mpage(va));
2518			pmap_free_zero_pages(free);
2519			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2520			    " in pmap %p", va, pmap);
2521			return (FALSE);
2522		}
2523		if (va < VM_MAXUSER_ADDRESS)
2524			pmap->pm_stats.resident_count++;
2525	}
2526	mptepa = VM_PAGE_TO_PHYS(mpte);
2527
2528	/*
2529	 * If the page mapping is in the kernel's address space, then the
2530	 * KPTmap can provide access to the page table page.  Otherwise,
2531	 * temporarily map the page table page (mpte) into the kernel's
2532	 * address space at either PADDR1 or PADDR2.
2533	 */
2534	if (va >= KERNBASE)
2535		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2536	else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2537		if ((*PMAP1 & PG_FRAME) != mptepa) {
2538			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2539#ifdef SMP
2540			PMAP1cpu = PCPU_GET(cpuid);
2541#endif
2542			invlcaddr(PADDR1);
2543			PMAP1changed++;
2544		} else
2545#ifdef SMP
2546		if (PMAP1cpu != PCPU_GET(cpuid)) {
2547			PMAP1cpu = PCPU_GET(cpuid);
2548			invlcaddr(PADDR1);
2549			PMAP1changedcpu++;
2550		} else
2551#endif
2552			PMAP1unchanged++;
2553		firstpte = PADDR1;
2554	} else {
2555		mtx_lock(&PMAP2mutex);
2556		if ((*PMAP2 & PG_FRAME) != mptepa) {
2557			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2558			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2559		}
2560		firstpte = PADDR2;
2561	}
2562	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2563	KASSERT((oldpde & PG_A) != 0,
2564	    ("pmap_demote_pde: oldpde is missing PG_A"));
2565	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2566	    ("pmap_demote_pde: oldpde is missing PG_M"));
2567	newpte = oldpde & ~PG_PS;
2568	if ((newpte & PG_PDE_PAT) != 0)
2569		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2570
2571	/*
2572	 * If the page table page is new, initialize it.
2573	 */
2574	if (mpte->wire_count == 1) {
2575		mpte->wire_count = NPTEPG;
2576		pmap_fill_ptp(firstpte, newpte);
2577	}
2578	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2579	    ("pmap_demote_pde: firstpte and newpte map different physical"
2580	    " addresses"));
2581
2582	/*
2583	 * If the mapping has changed attributes, update the page table
2584	 * entries.
2585	 */
2586	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2587		pmap_fill_ptp(firstpte, newpte);
2588
2589	/*
2590	 * Demote the mapping.  This pmap is locked.  The old PDE has
2591	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2592	 * set.  Thus, there is no danger of a race with another
2593	 * processor changing the setting of PG_A and/or PG_M between
2594	 * the read above and the store below.
2595	 */
2596	if (workaround_erratum383)
2597		pmap_update_pde(pmap, va, pde, newpde);
2598	else if (pmap == kernel_pmap)
2599		pmap_kenter_pde(va, newpde);
2600	else
2601		pde_store(pde, newpde);
2602	if (firstpte == PADDR2)
2603		mtx_unlock(&PMAP2mutex);
2604
2605	/*
2606	 * Invalidate the recursive mapping of the page table page.
2607	 */
2608	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2609
2610	/*
2611	 * Demote the pv entry.  This depends on the earlier demotion
2612	 * of the mapping.  Specifically, the (re)creation of a per-
2613	 * page pv entry might trigger the execution of pmap_collect(),
2614	 * which might reclaim a newly (re)created per-page pv entry
2615	 * and destroy the associated mapping.  In order to destroy
2616	 * the mapping, the PDE must have already changed from mapping
2617	 * the 2mpage to referencing the page table page.
2618	 */
2619	if ((oldpde & PG_MANAGED) != 0)
2620		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2621
2622	pmap_pde_demotions++;
2623	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2624	    " in pmap %p", va, pmap);
2625	return (TRUE);
2626}
2627
2628/*
2629 * pmap_remove_pde: do the things to unmap a superpage in a process
2630 */
2631static void
2632pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2633    vm_page_t *free)
2634{
2635	struct md_page *pvh;
2636	pd_entry_t oldpde;
2637	vm_offset_t eva, va;
2638	vm_page_t m, mpte;
2639
2640	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2641	KASSERT((sva & PDRMASK) == 0,
2642	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2643	oldpde = pte_load_clear(pdq);
2644	if (oldpde & PG_W)
2645		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2646
2647	/*
2648	 * Machines that don't support invlpg, also don't support
2649	 * PG_G.
2650	 */
2651	if (oldpde & PG_G)
2652		pmap_invalidate_page(kernel_pmap, sva);
2653	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2654	if (oldpde & PG_MANAGED) {
2655		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2656		pmap_pvh_free(pvh, pmap, sva);
2657		eva = sva + NBPDR;
2658		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2659		    va < eva; va += PAGE_SIZE, m++) {
2660			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2661				vm_page_dirty(m);
2662			if (oldpde & PG_A)
2663				vm_page_flag_set(m, PG_REFERENCED);
2664			if (TAILQ_EMPTY(&m->md.pv_list) &&
2665			    TAILQ_EMPTY(&pvh->pv_list))
2666				vm_page_flag_clear(m, PG_WRITEABLE);
2667		}
2668	}
2669	if (pmap == kernel_pmap) {
2670		if (!pmap_demote_pde(pmap, pdq, sva))
2671			panic("pmap_remove_pde: failed demotion");
2672	} else {
2673		mpte = pmap_lookup_pt_page(pmap, sva);
2674		if (mpte != NULL) {
2675			pmap_remove_pt_page(pmap, mpte);
2676			pmap->pm_stats.resident_count--;
2677			KASSERT(mpte->wire_count == NPTEPG,
2678			    ("pmap_remove_pde: pte page wire count error"));
2679			mpte->wire_count = 0;
2680			pmap_add_delayed_free_list(mpte, free, FALSE);
2681			atomic_subtract_int(&cnt.v_wire_count, 1);
2682		}
2683	}
2684}
2685
2686/*
2687 * pmap_remove_pte: do the things to unmap a page in a process
2688 */
2689static int
2690pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2691{
2692	pt_entry_t oldpte;
2693	vm_page_t m;
2694
2695	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2696	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2697	oldpte = pte_load_clear(ptq);
2698	if (oldpte & PG_W)
2699		pmap->pm_stats.wired_count -= 1;
2700	/*
2701	 * Machines that don't support invlpg, also don't support
2702	 * PG_G.
2703	 */
2704	if (oldpte & PG_G)
2705		pmap_invalidate_page(kernel_pmap, va);
2706	pmap->pm_stats.resident_count -= 1;
2707	if (oldpte & PG_MANAGED) {
2708		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2709		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2710			vm_page_dirty(m);
2711		if (oldpte & PG_A)
2712			vm_page_flag_set(m, PG_REFERENCED);
2713		pmap_remove_entry(pmap, m, va);
2714	}
2715	return (pmap_unuse_pt(pmap, va, free));
2716}
2717
2718/*
2719 * Remove a single page from a process address space
2720 */
2721static void
2722pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2723{
2724	pt_entry_t *pte;
2725
2726	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2727	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2728	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2729	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2730		return;
2731	pmap_remove_pte(pmap, pte, va, free);
2732	pmap_invalidate_page(pmap, va);
2733}
2734
2735/*
2736 *	Remove the given range of addresses from the specified map.
2737 *
2738 *	It is assumed that the start and end are properly
2739 *	rounded to the page size.
2740 */
2741void
2742pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2743{
2744	vm_offset_t pdnxt;
2745	pd_entry_t ptpaddr;
2746	pt_entry_t *pte;
2747	vm_page_t free = NULL;
2748	int anyvalid;
2749
2750	/*
2751	 * Perform an unsynchronized read.  This is, however, safe.
2752	 */
2753	if (pmap->pm_stats.resident_count == 0)
2754		return;
2755
2756	anyvalid = 0;
2757
2758	vm_page_lock_queues();
2759	sched_pin();
2760	PMAP_LOCK(pmap);
2761
2762	/*
2763	 * special handling of removing one page.  a very
2764	 * common operation and easy to short circuit some
2765	 * code.
2766	 */
2767	if ((sva + PAGE_SIZE == eva) &&
2768	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2769		pmap_remove_page(pmap, sva, &free);
2770		goto out;
2771	}
2772
2773	for (; sva < eva; sva = pdnxt) {
2774		unsigned pdirindex;
2775
2776		/*
2777		 * Calculate index for next page table.
2778		 */
2779		pdnxt = (sva + NBPDR) & ~PDRMASK;
2780		if (pdnxt < sva)
2781			pdnxt = eva;
2782		if (pmap->pm_stats.resident_count == 0)
2783			break;
2784
2785		pdirindex = sva >> PDRSHIFT;
2786		ptpaddr = pmap->pm_pdir[pdirindex];
2787
2788		/*
2789		 * Weed out invalid mappings. Note: we assume that the page
2790		 * directory table is always allocated, and in kernel virtual.
2791		 */
2792		if (ptpaddr == 0)
2793			continue;
2794
2795		/*
2796		 * Check for large page.
2797		 */
2798		if ((ptpaddr & PG_PS) != 0) {
2799			/*
2800			 * Are we removing the entire large page?  If not,
2801			 * demote the mapping and fall through.
2802			 */
2803			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2804				/*
2805				 * The TLB entry for a PG_G mapping is
2806				 * invalidated by pmap_remove_pde().
2807				 */
2808				if ((ptpaddr & PG_G) == 0)
2809					anyvalid = 1;
2810				pmap_remove_pde(pmap,
2811				    &pmap->pm_pdir[pdirindex], sva, &free);
2812				continue;
2813			} else if (!pmap_demote_pde(pmap,
2814			    &pmap->pm_pdir[pdirindex], sva)) {
2815				/* The large page mapping was destroyed. */
2816				continue;
2817			}
2818		}
2819
2820		/*
2821		 * Limit our scan to either the end of the va represented
2822		 * by the current page table page, or to the end of the
2823		 * range being removed.
2824		 */
2825		if (pdnxt > eva)
2826			pdnxt = eva;
2827
2828		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2829		    sva += PAGE_SIZE) {
2830			if (*pte == 0)
2831				continue;
2832
2833			/*
2834			 * The TLB entry for a PG_G mapping is invalidated
2835			 * by pmap_remove_pte().
2836			 */
2837			if ((*pte & PG_G) == 0)
2838				anyvalid = 1;
2839			if (pmap_remove_pte(pmap, pte, sva, &free))
2840				break;
2841		}
2842	}
2843out:
2844	sched_unpin();
2845	if (anyvalid)
2846		pmap_invalidate_all(pmap);
2847	vm_page_unlock_queues();
2848	PMAP_UNLOCK(pmap);
2849	pmap_free_zero_pages(free);
2850}
2851
2852/*
2853 *	Routine:	pmap_remove_all
2854 *	Function:
2855 *		Removes this physical page from
2856 *		all physical maps in which it resides.
2857 *		Reflects back modify bits to the pager.
2858 *
2859 *	Notes:
2860 *		Original versions of this routine were very
2861 *		inefficient because they iteratively called
2862 *		pmap_remove (slow...)
2863 */
2864
2865void
2866pmap_remove_all(vm_page_t m)
2867{
2868	struct md_page *pvh;
2869	pv_entry_t pv;
2870	pmap_t pmap;
2871	pt_entry_t *pte, tpte;
2872	pd_entry_t *pde;
2873	vm_offset_t va;
2874	vm_page_t free;
2875
2876	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2877	    ("pmap_remove_all: page %p is fictitious", m));
2878	free = NULL;
2879	vm_page_lock_queues();
2880	sched_pin();
2881	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2882	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2883		va = pv->pv_va;
2884		pmap = PV_PMAP(pv);
2885		PMAP_LOCK(pmap);
2886		pde = pmap_pde(pmap, va);
2887		(void)pmap_demote_pde(pmap, pde, va);
2888		PMAP_UNLOCK(pmap);
2889	}
2890	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2891		pmap = PV_PMAP(pv);
2892		PMAP_LOCK(pmap);
2893		pmap->pm_stats.resident_count--;
2894		pde = pmap_pde(pmap, pv->pv_va);
2895		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2896		    " a 4mpage in page %p's pv list", m));
2897		pte = pmap_pte_quick(pmap, pv->pv_va);
2898		tpte = pte_load_clear(pte);
2899		if (tpte & PG_W)
2900			pmap->pm_stats.wired_count--;
2901		if (tpte & PG_A)
2902			vm_page_flag_set(m, PG_REFERENCED);
2903
2904		/*
2905		 * Update the vm_page_t clean and reference bits.
2906		 */
2907		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2908			vm_page_dirty(m);
2909		pmap_unuse_pt(pmap, pv->pv_va, &free);
2910		pmap_invalidate_page(pmap, pv->pv_va);
2911		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2912		free_pv_entry(pmap, pv);
2913		PMAP_UNLOCK(pmap);
2914	}
2915	vm_page_flag_clear(m, PG_WRITEABLE);
2916	sched_unpin();
2917	vm_page_unlock_queues();
2918	pmap_free_zero_pages(free);
2919}
2920
2921/*
2922 * pmap_protect_pde: do the things to protect a 4mpage in a process
2923 */
2924static boolean_t
2925pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2926{
2927	pd_entry_t newpde, oldpde;
2928	vm_offset_t eva, va;
2929	vm_page_t m;
2930	boolean_t anychanged;
2931
2932	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2933	KASSERT((sva & PDRMASK) == 0,
2934	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2935	anychanged = FALSE;
2936retry:
2937	oldpde = newpde = *pde;
2938	if (oldpde & PG_MANAGED) {
2939		eva = sva + NBPDR;
2940		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2941		    va < eva; va += PAGE_SIZE, m++)
2942			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2943				vm_page_dirty(m);
2944	}
2945	if ((prot & VM_PROT_WRITE) == 0)
2946		newpde &= ~(PG_RW | PG_M);
2947#ifdef PAE
2948	if ((prot & VM_PROT_EXECUTE) == 0)
2949		newpde |= pg_nx;
2950#endif
2951	if (newpde != oldpde) {
2952		if (!pde_cmpset(pde, oldpde, newpde))
2953			goto retry;
2954		if (oldpde & PG_G)
2955			pmap_invalidate_page(pmap, sva);
2956		else
2957			anychanged = TRUE;
2958	}
2959	return (anychanged);
2960}
2961
2962/*
2963 *	Set the physical protection on the
2964 *	specified range of this map as requested.
2965 */
2966void
2967pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2968{
2969	vm_offset_t pdnxt;
2970	pd_entry_t ptpaddr;
2971	pt_entry_t *pte;
2972	int anychanged;
2973
2974	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2975		pmap_remove(pmap, sva, eva);
2976		return;
2977	}
2978
2979#ifdef PAE
2980	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2981	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2982		return;
2983#else
2984	if (prot & VM_PROT_WRITE)
2985		return;
2986#endif
2987
2988	anychanged = 0;
2989
2990	vm_page_lock_queues();
2991	sched_pin();
2992	PMAP_LOCK(pmap);
2993	for (; sva < eva; sva = pdnxt) {
2994		pt_entry_t obits, pbits;
2995		unsigned pdirindex;
2996
2997		pdnxt = (sva + NBPDR) & ~PDRMASK;
2998		if (pdnxt < sva)
2999			pdnxt = eva;
3000
3001		pdirindex = sva >> PDRSHIFT;
3002		ptpaddr = pmap->pm_pdir[pdirindex];
3003
3004		/*
3005		 * Weed out invalid mappings. Note: we assume that the page
3006		 * directory table is always allocated, and in kernel virtual.
3007		 */
3008		if (ptpaddr == 0)
3009			continue;
3010
3011		/*
3012		 * Check for large page.
3013		 */
3014		if ((ptpaddr & PG_PS) != 0) {
3015			/*
3016			 * Are we protecting the entire large page?  If not,
3017			 * demote the mapping and fall through.
3018			 */
3019			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3020				/*
3021				 * The TLB entry for a PG_G mapping is
3022				 * invalidated by pmap_protect_pde().
3023				 */
3024				if (pmap_protect_pde(pmap,
3025				    &pmap->pm_pdir[pdirindex], sva, prot))
3026					anychanged = 1;
3027				continue;
3028			} else if (!pmap_demote_pde(pmap,
3029			    &pmap->pm_pdir[pdirindex], sva)) {
3030				/* The large page mapping was destroyed. */
3031				continue;
3032			}
3033		}
3034
3035		if (pdnxt > eva)
3036			pdnxt = eva;
3037
3038		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3039		    sva += PAGE_SIZE) {
3040			vm_page_t m;
3041
3042retry:
3043			/*
3044			 * Regardless of whether a pte is 32 or 64 bits in
3045			 * size, PG_RW, PG_A, and PG_M are among the least
3046			 * significant 32 bits.
3047			 */
3048			obits = pbits = *pte;
3049			if ((pbits & PG_V) == 0)
3050				continue;
3051
3052			if ((prot & VM_PROT_WRITE) == 0) {
3053				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3054				    (PG_MANAGED | PG_M | PG_RW)) {
3055					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3056					vm_page_dirty(m);
3057				}
3058				pbits &= ~(PG_RW | PG_M);
3059			}
3060#ifdef PAE
3061			if ((prot & VM_PROT_EXECUTE) == 0)
3062				pbits |= pg_nx;
3063#endif
3064
3065			if (pbits != obits) {
3066#ifdef PAE
3067				if (!atomic_cmpset_64(pte, obits, pbits))
3068					goto retry;
3069#else
3070				if (!atomic_cmpset_int((u_int *)pte, obits,
3071				    pbits))
3072					goto retry;
3073#endif
3074				if (obits & PG_G)
3075					pmap_invalidate_page(pmap, sva);
3076				else
3077					anychanged = 1;
3078			}
3079		}
3080	}
3081	sched_unpin();
3082	if (anychanged)
3083		pmap_invalidate_all(pmap);
3084	vm_page_unlock_queues();
3085	PMAP_UNLOCK(pmap);
3086}
3087
3088/*
3089 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3090 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3091 * For promotion to occur, two conditions must be met: (1) the 4KB page
3092 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3093 * mappings must have identical characteristics.
3094 *
3095 * Managed (PG_MANAGED) mappings within the kernel address space are not
3096 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3097 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3098 * pmap.
3099 */
3100static void
3101pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3102{
3103	pd_entry_t newpde;
3104	pt_entry_t *firstpte, oldpte, pa, *pte;
3105	vm_offset_t oldpteva;
3106	vm_page_t mpte;
3107
3108	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3109
3110	/*
3111	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3112	 * either invalid, unused, or does not map the first 4KB physical page
3113	 * within a 2- or 4MB page.
3114	 */
3115	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3116setpde:
3117	newpde = *firstpte;
3118	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3119		pmap_pde_p_failures++;
3120		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3121		    " in pmap %p", va, pmap);
3122		return;
3123	}
3124	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3125		pmap_pde_p_failures++;
3126		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3127		    " in pmap %p", va, pmap);
3128		return;
3129	}
3130	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3131		/*
3132		 * When PG_M is already clear, PG_RW can be cleared without
3133		 * a TLB invalidation.
3134		 */
3135		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3136		    ~PG_RW))
3137			goto setpde;
3138		newpde &= ~PG_RW;
3139	}
3140
3141	/*
3142	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3143	 * PTE maps an unexpected 4KB physical page or does not have identical
3144	 * characteristics to the first PTE.
3145	 */
3146	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3147	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3148setpte:
3149		oldpte = *pte;
3150		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3151			pmap_pde_p_failures++;
3152			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3153			    " in pmap %p", va, pmap);
3154			return;
3155		}
3156		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3157			/*
3158			 * When PG_M is already clear, PG_RW can be cleared
3159			 * without a TLB invalidation.
3160			 */
3161			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3162			    oldpte & ~PG_RW))
3163				goto setpte;
3164			oldpte &= ~PG_RW;
3165			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3166			    (va & ~PDRMASK);
3167			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3168			    " in pmap %p", oldpteva, pmap);
3169		}
3170		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3171			pmap_pde_p_failures++;
3172			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3173			    " in pmap %p", va, pmap);
3174			return;
3175		}
3176		pa -= PAGE_SIZE;
3177	}
3178
3179	/*
3180	 * Save the page table page in its current state until the PDE
3181	 * mapping the superpage is demoted by pmap_demote_pde() or
3182	 * destroyed by pmap_remove_pde().
3183	 */
3184	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3185	KASSERT(mpte >= vm_page_array &&
3186	    mpte < &vm_page_array[vm_page_array_size],
3187	    ("pmap_promote_pde: page table page is out of range"));
3188	KASSERT(mpte->pindex == va >> PDRSHIFT,
3189	    ("pmap_promote_pde: page table page's pindex is wrong"));
3190	pmap_insert_pt_page(pmap, mpte);
3191
3192	/*
3193	 * Promote the pv entries.
3194	 */
3195	if ((newpde & PG_MANAGED) != 0)
3196		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3197
3198	/*
3199	 * Propagate the PAT index to its proper position.
3200	 */
3201	if ((newpde & PG_PTE_PAT) != 0)
3202		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3203
3204	/*
3205	 * Map the superpage.
3206	 */
3207	if (workaround_erratum383)
3208		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3209	else if (pmap == kernel_pmap)
3210		pmap_kenter_pde(va, PG_PS | newpde);
3211	else
3212		pde_store(pde, PG_PS | newpde);
3213
3214	pmap_pde_promotions++;
3215	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3216	    " in pmap %p", va, pmap);
3217}
3218
3219/*
3220 *	Insert the given physical page (p) at
3221 *	the specified virtual address (v) in the
3222 *	target physical map with the protection requested.
3223 *
3224 *	If specified, the page will be wired down, meaning
3225 *	that the related pte can not be reclaimed.
3226 *
3227 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3228 *	or lose information.  That is, this routine must actually
3229 *	insert this page into the given map NOW.
3230 */
3231void
3232pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3233    vm_prot_t prot, boolean_t wired)
3234{
3235	pd_entry_t *pde;
3236	pt_entry_t *pte;
3237	pt_entry_t newpte, origpte;
3238	pv_entry_t pv;
3239	vm_paddr_t opa, pa;
3240	vm_page_t mpte, om;
3241	boolean_t invlva;
3242
3243	va = trunc_page(va);
3244	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3245	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3246	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3247	    va));
3248	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
3249	    (m->oflags & VPO_BUSY) != 0,
3250	    ("pmap_enter: page %p is not busy", m));
3251
3252	mpte = NULL;
3253
3254	vm_page_lock_queues();
3255	PMAP_LOCK(pmap);
3256	sched_pin();
3257
3258	/*
3259	 * In the case that a page table page is not
3260	 * resident, we are creating it here.
3261	 */
3262	if (va < VM_MAXUSER_ADDRESS) {
3263		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3264	}
3265
3266	pde = pmap_pde(pmap, va);
3267	if ((*pde & PG_PS) != 0)
3268		panic("pmap_enter: attempted pmap_enter on 4MB page");
3269	pte = pmap_pte_quick(pmap, va);
3270
3271	/*
3272	 * Page Directory table entry not valid, we need a new PT page
3273	 */
3274	if (pte == NULL) {
3275		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3276			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3277	}
3278
3279	pa = VM_PAGE_TO_PHYS(m);
3280	om = NULL;
3281	origpte = *pte;
3282	opa = origpte & PG_FRAME;
3283
3284	/*
3285	 * Mapping has not changed, must be protection or wiring change.
3286	 */
3287	if (origpte && (opa == pa)) {
3288		/*
3289		 * Wiring change, just update stats. We don't worry about
3290		 * wiring PT pages as they remain resident as long as there
3291		 * are valid mappings in them. Hence, if a user page is wired,
3292		 * the PT page will be also.
3293		 */
3294		if (wired && ((origpte & PG_W) == 0))
3295			pmap->pm_stats.wired_count++;
3296		else if (!wired && (origpte & PG_W))
3297			pmap->pm_stats.wired_count--;
3298
3299		/*
3300		 * Remove extra pte reference
3301		 */
3302		if (mpte)
3303			mpte->wire_count--;
3304
3305		if (origpte & PG_MANAGED) {
3306			om = m;
3307			pa |= PG_MANAGED;
3308		}
3309		goto validate;
3310	}
3311
3312	pv = NULL;
3313
3314	/*
3315	 * Mapping has changed, invalidate old range and fall through to
3316	 * handle validating new mapping.
3317	 */
3318	if (opa) {
3319		if (origpte & PG_W)
3320			pmap->pm_stats.wired_count--;
3321		if (origpte & PG_MANAGED) {
3322			om = PHYS_TO_VM_PAGE(opa);
3323			pv = pmap_pvh_remove(&om->md, pmap, va);
3324		}
3325		if (mpte != NULL) {
3326			mpte->wire_count--;
3327			KASSERT(mpte->wire_count > 0,
3328			    ("pmap_enter: missing reference to page table page,"
3329			     " va: 0x%x", va));
3330		}
3331	} else
3332		pmap->pm_stats.resident_count++;
3333
3334	/*
3335	 * Enter on the PV list if part of our managed memory.
3336	 */
3337	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3338		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3339		    ("pmap_enter: managed mapping within the clean submap"));
3340		if (pv == NULL)
3341			pv = get_pv_entry(pmap, FALSE);
3342		pv->pv_va = va;
3343		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3344		pa |= PG_MANAGED;
3345	} else if (pv != NULL)
3346		free_pv_entry(pmap, pv);
3347
3348	/*
3349	 * Increment counters
3350	 */
3351	if (wired)
3352		pmap->pm_stats.wired_count++;
3353
3354validate:
3355	/*
3356	 * Now validate mapping with desired protection/wiring.
3357	 */
3358	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3359	if ((prot & VM_PROT_WRITE) != 0) {
3360		newpte |= PG_RW;
3361		if ((newpte & PG_MANAGED) != 0)
3362			vm_page_flag_set(m, PG_WRITEABLE);
3363	}
3364#ifdef PAE
3365	if ((prot & VM_PROT_EXECUTE) == 0)
3366		newpte |= pg_nx;
3367#endif
3368	if (wired)
3369		newpte |= PG_W;
3370	if (va < VM_MAXUSER_ADDRESS)
3371		newpte |= PG_U;
3372	if (pmap == kernel_pmap)
3373		newpte |= pgeflag;
3374
3375	/*
3376	 * if the mapping or permission bits are different, we need
3377	 * to update the pte.
3378	 */
3379	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3380		newpte |= PG_A;
3381		if ((access & VM_PROT_WRITE) != 0)
3382			newpte |= PG_M;
3383		if (origpte & PG_V) {
3384			invlva = FALSE;
3385			origpte = pte_load_store(pte, newpte);
3386			if (origpte & PG_A) {
3387				if (origpte & PG_MANAGED)
3388					vm_page_flag_set(om, PG_REFERENCED);
3389				if (opa != VM_PAGE_TO_PHYS(m))
3390					invlva = TRUE;
3391#ifdef PAE
3392				if ((origpte & PG_NX) == 0 &&
3393				    (newpte & PG_NX) != 0)
3394					invlva = TRUE;
3395#endif
3396			}
3397			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3398				if ((origpte & PG_MANAGED) != 0)
3399					vm_page_dirty(om);
3400				if ((prot & VM_PROT_WRITE) == 0)
3401					invlva = TRUE;
3402			}
3403			if ((origpte & PG_MANAGED) != 0 &&
3404			    TAILQ_EMPTY(&om->md.pv_list) &&
3405			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list))
3406				vm_page_flag_clear(om, PG_WRITEABLE);
3407			if (invlva)
3408				pmap_invalidate_page(pmap, va);
3409		} else
3410			pte_store(pte, newpte);
3411	}
3412
3413	/*
3414	 * If both the page table page and the reservation are fully
3415	 * populated, then attempt promotion.
3416	 */
3417	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3418	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3419		pmap_promote_pde(pmap, pde, va);
3420
3421	sched_unpin();
3422	vm_page_unlock_queues();
3423	PMAP_UNLOCK(pmap);
3424}
3425
3426/*
3427 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3428 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3429 * blocking, (2) a mapping already exists at the specified virtual address, or
3430 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3431 */
3432static boolean_t
3433pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3434{
3435	pd_entry_t *pde, newpde;
3436
3437	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3438	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3439	pde = pmap_pde(pmap, va);
3440	if (*pde != 0) {
3441		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3442		    " in pmap %p", va, pmap);
3443		return (FALSE);
3444	}
3445	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3446	    PG_PS | PG_V;
3447	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3448		newpde |= PG_MANAGED;
3449
3450		/*
3451		 * Abort this mapping if its PV entry could not be created.
3452		 */
3453		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3454			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3455			    " in pmap %p", va, pmap);
3456			return (FALSE);
3457		}
3458	}
3459#ifdef PAE
3460	if ((prot & VM_PROT_EXECUTE) == 0)
3461		newpde |= pg_nx;
3462#endif
3463	if (va < VM_MAXUSER_ADDRESS)
3464		newpde |= PG_U;
3465
3466	/*
3467	 * Increment counters.
3468	 */
3469	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3470
3471	/*
3472	 * Map the superpage.
3473	 */
3474	pde_store(pde, newpde);
3475
3476	pmap_pde_mappings++;
3477	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3478	    " in pmap %p", va, pmap);
3479	return (TRUE);
3480}
3481
3482/*
3483 * Maps a sequence of resident pages belonging to the same object.
3484 * The sequence begins with the given page m_start.  This page is
3485 * mapped at the given virtual address start.  Each subsequent page is
3486 * mapped at a virtual address that is offset from start by the same
3487 * amount as the page is offset from m_start within the object.  The
3488 * last page in the sequence is the page with the largest offset from
3489 * m_start that can be mapped at a virtual address less than the given
3490 * virtual address end.  Not every virtual page between start and end
3491 * is mapped; only those for which a resident page exists with the
3492 * corresponding offset from m_start are mapped.
3493 */
3494void
3495pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3496    vm_page_t m_start, vm_prot_t prot)
3497{
3498	vm_offset_t va;
3499	vm_page_t m, mpte;
3500	vm_pindex_t diff, psize;
3501
3502	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3503	psize = atop(end - start);
3504	mpte = NULL;
3505	m = m_start;
3506	vm_page_lock_queues();
3507	PMAP_LOCK(pmap);
3508	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3509		va = start + ptoa(diff);
3510		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3511		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3512		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3513		    pmap_enter_pde(pmap, va, m, prot))
3514			m = &m[NBPDR / PAGE_SIZE - 1];
3515		else
3516			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3517			    mpte);
3518		m = TAILQ_NEXT(m, listq);
3519	}
3520	vm_page_unlock_queues();
3521 	PMAP_UNLOCK(pmap);
3522}
3523
3524/*
3525 * this code makes some *MAJOR* assumptions:
3526 * 1. Current pmap & pmap exists.
3527 * 2. Not wired.
3528 * 3. Read access.
3529 * 4. No page table pages.
3530 * but is *MUCH* faster than pmap_enter...
3531 */
3532
3533void
3534pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3535{
3536
3537	vm_page_lock_queues();
3538	PMAP_LOCK(pmap);
3539	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3540	vm_page_unlock_queues();
3541	PMAP_UNLOCK(pmap);
3542}
3543
3544static vm_page_t
3545pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3546    vm_prot_t prot, vm_page_t mpte)
3547{
3548	pt_entry_t *pte;
3549	vm_paddr_t pa;
3550	vm_page_t free;
3551
3552	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3553	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3554	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3555	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3556	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3557
3558	/*
3559	 * In the case that a page table page is not
3560	 * resident, we are creating it here.
3561	 */
3562	if (va < VM_MAXUSER_ADDRESS) {
3563		unsigned ptepindex;
3564		pd_entry_t ptepa;
3565
3566		/*
3567		 * Calculate pagetable page index
3568		 */
3569		ptepindex = va >> PDRSHIFT;
3570		if (mpte && (mpte->pindex == ptepindex)) {
3571			mpte->wire_count++;
3572		} else {
3573			/*
3574			 * Get the page directory entry
3575			 */
3576			ptepa = pmap->pm_pdir[ptepindex];
3577
3578			/*
3579			 * If the page table page is mapped, we just increment
3580			 * the hold count, and activate it.
3581			 */
3582			if (ptepa) {
3583				if (ptepa & PG_PS)
3584					return (NULL);
3585				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3586				mpte->wire_count++;
3587			} else {
3588				mpte = _pmap_allocpte(pmap, ptepindex,
3589				    M_NOWAIT);
3590				if (mpte == NULL)
3591					return (mpte);
3592			}
3593		}
3594	} else {
3595		mpte = NULL;
3596	}
3597
3598	/*
3599	 * This call to vtopte makes the assumption that we are
3600	 * entering the page into the current pmap.  In order to support
3601	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3602	 * But that isn't as quick as vtopte.
3603	 */
3604	pte = vtopte(va);
3605	if (*pte) {
3606		if (mpte != NULL) {
3607			mpte->wire_count--;
3608			mpte = NULL;
3609		}
3610		return (mpte);
3611	}
3612
3613	/*
3614	 * Enter on the PV list if part of our managed memory.
3615	 */
3616	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3617	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3618		if (mpte != NULL) {
3619			free = NULL;
3620			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3621				pmap_invalidate_page(pmap, va);
3622				pmap_free_zero_pages(free);
3623			}
3624
3625			mpte = NULL;
3626		}
3627		return (mpte);
3628	}
3629
3630	/*
3631	 * Increment counters
3632	 */
3633	pmap->pm_stats.resident_count++;
3634
3635	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3636#ifdef PAE
3637	if ((prot & VM_PROT_EXECUTE) == 0)
3638		pa |= pg_nx;
3639#endif
3640
3641	/*
3642	 * Now validate mapping with RO protection
3643	 */
3644	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3645		pte_store(pte, pa | PG_V | PG_U);
3646	else
3647		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3648	return (mpte);
3649}
3650
3651/*
3652 * Make a temporary mapping for a physical address.  This is only intended
3653 * to be used for panic dumps.
3654 */
3655void *
3656pmap_kenter_temporary(vm_paddr_t pa, int i)
3657{
3658	vm_offset_t va;
3659
3660	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3661	pmap_kenter(va, pa);
3662	invlpg(va);
3663	return ((void *)crashdumpmap);
3664}
3665
3666/*
3667 * This code maps large physical mmap regions into the
3668 * processor address space.  Note that some shortcuts
3669 * are taken, but the code works.
3670 */
3671void
3672pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3673    vm_pindex_t pindex, vm_size_t size)
3674{
3675	pd_entry_t *pde;
3676	vm_paddr_t pa, ptepa;
3677	vm_page_t p;
3678	int pat_mode;
3679
3680	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3681	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3682	    ("pmap_object_init_pt: non-device object"));
3683	if (pseflag &&
3684	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3685		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3686			return;
3687		p = vm_page_lookup(object, pindex);
3688		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3689		    ("pmap_object_init_pt: invalid page %p", p));
3690		pat_mode = p->md.pat_mode;
3691
3692		/*
3693		 * Abort the mapping if the first page is not physically
3694		 * aligned to a 2/4MB page boundary.
3695		 */
3696		ptepa = VM_PAGE_TO_PHYS(p);
3697		if (ptepa & (NBPDR - 1))
3698			return;
3699
3700		/*
3701		 * Skip the first page.  Abort the mapping if the rest of
3702		 * the pages are not physically contiguous or have differing
3703		 * memory attributes.
3704		 */
3705		p = TAILQ_NEXT(p, listq);
3706		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3707		    pa += PAGE_SIZE) {
3708			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3709			    ("pmap_object_init_pt: invalid page %p", p));
3710			if (pa != VM_PAGE_TO_PHYS(p) ||
3711			    pat_mode != p->md.pat_mode)
3712				return;
3713			p = TAILQ_NEXT(p, listq);
3714		}
3715
3716		/*
3717		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3718		 * "size" is a multiple of 2/4M, adding the PAT setting to
3719		 * "pa" will not affect the termination of this loop.
3720		 */
3721		PMAP_LOCK(pmap);
3722		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3723		    size; pa += NBPDR) {
3724			pde = pmap_pde(pmap, addr);
3725			if (*pde == 0) {
3726				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3727				    PG_U | PG_RW | PG_V);
3728				pmap->pm_stats.resident_count += NBPDR /
3729				    PAGE_SIZE;
3730				pmap_pde_mappings++;
3731			}
3732			/* Else continue on if the PDE is already valid. */
3733			addr += NBPDR;
3734		}
3735		PMAP_UNLOCK(pmap);
3736	}
3737}
3738
3739/*
3740 *	Routine:	pmap_change_wiring
3741 *	Function:	Change the wiring attribute for a map/virtual-address
3742 *			pair.
3743 *	In/out conditions:
3744 *			The mapping must already exist in the pmap.
3745 */
3746void
3747pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3748{
3749	pd_entry_t *pde;
3750	pt_entry_t *pte;
3751	boolean_t are_queues_locked;
3752
3753	are_queues_locked = FALSE;
3754retry:
3755	PMAP_LOCK(pmap);
3756	pde = pmap_pde(pmap, va);
3757	if ((*pde & PG_PS) != 0) {
3758		if (!wired != ((*pde & PG_W) == 0)) {
3759			if (!are_queues_locked) {
3760				are_queues_locked = TRUE;
3761				if (!mtx_trylock(&vm_page_queue_mtx)) {
3762					PMAP_UNLOCK(pmap);
3763					vm_page_lock_queues();
3764					goto retry;
3765				}
3766			}
3767			if (!pmap_demote_pde(pmap, pde, va))
3768				panic("pmap_change_wiring: demotion failed");
3769		} else
3770			goto out;
3771	}
3772	pte = pmap_pte(pmap, va);
3773
3774	if (wired && !pmap_pte_w(pte))
3775		pmap->pm_stats.wired_count++;
3776	else if (!wired && pmap_pte_w(pte))
3777		pmap->pm_stats.wired_count--;
3778
3779	/*
3780	 * Wiring is not a hardware characteristic so there is no need to
3781	 * invalidate TLB.
3782	 */
3783	pmap_pte_set_w(pte, wired);
3784	pmap_pte_release(pte);
3785out:
3786	if (are_queues_locked)
3787		vm_page_unlock_queues();
3788	PMAP_UNLOCK(pmap);
3789}
3790
3791
3792
3793/*
3794 *	Copy the range specified by src_addr/len
3795 *	from the source map to the range dst_addr/len
3796 *	in the destination map.
3797 *
3798 *	This routine is only advisory and need not do anything.
3799 */
3800
3801void
3802pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3803    vm_offset_t src_addr)
3804{
3805	vm_page_t   free;
3806	vm_offset_t addr;
3807	vm_offset_t end_addr = src_addr + len;
3808	vm_offset_t pdnxt;
3809
3810	if (dst_addr != src_addr)
3811		return;
3812
3813	if (!pmap_is_current(src_pmap))
3814		return;
3815
3816	vm_page_lock_queues();
3817	if (dst_pmap < src_pmap) {
3818		PMAP_LOCK(dst_pmap);
3819		PMAP_LOCK(src_pmap);
3820	} else {
3821		PMAP_LOCK(src_pmap);
3822		PMAP_LOCK(dst_pmap);
3823	}
3824	sched_pin();
3825	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3826		pt_entry_t *src_pte, *dst_pte;
3827		vm_page_t dstmpte, srcmpte;
3828		pd_entry_t srcptepaddr;
3829		unsigned ptepindex;
3830
3831		KASSERT(addr < UPT_MIN_ADDRESS,
3832		    ("pmap_copy: invalid to pmap_copy page tables"));
3833
3834		pdnxt = (addr + NBPDR) & ~PDRMASK;
3835		if (pdnxt < addr)
3836			pdnxt = end_addr;
3837		ptepindex = addr >> PDRSHIFT;
3838
3839		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3840		if (srcptepaddr == 0)
3841			continue;
3842
3843		if (srcptepaddr & PG_PS) {
3844			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3845			    ((srcptepaddr & PG_MANAGED) == 0 ||
3846			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3847			    PG_PS_FRAME))) {
3848				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3849				    ~PG_W;
3850				dst_pmap->pm_stats.resident_count +=
3851				    NBPDR / PAGE_SIZE;
3852			}
3853			continue;
3854		}
3855
3856		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3857		KASSERT(srcmpte->wire_count > 0,
3858		    ("pmap_copy: source page table page is unused"));
3859
3860		if (pdnxt > end_addr)
3861			pdnxt = end_addr;
3862
3863		src_pte = vtopte(addr);
3864		while (addr < pdnxt) {
3865			pt_entry_t ptetemp;
3866			ptetemp = *src_pte;
3867			/*
3868			 * we only virtual copy managed pages
3869			 */
3870			if ((ptetemp & PG_MANAGED) != 0) {
3871				dstmpte = pmap_allocpte(dst_pmap, addr,
3872				    M_NOWAIT);
3873				if (dstmpte == NULL)
3874					goto out;
3875				dst_pte = pmap_pte_quick(dst_pmap, addr);
3876				if (*dst_pte == 0 &&
3877				    pmap_try_insert_pv_entry(dst_pmap, addr,
3878				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3879					/*
3880					 * Clear the wired, modified, and
3881					 * accessed (referenced) bits
3882					 * during the copy.
3883					 */
3884					*dst_pte = ptetemp & ~(PG_W | PG_M |
3885					    PG_A);
3886					dst_pmap->pm_stats.resident_count++;
3887	 			} else {
3888					free = NULL;
3889					if (pmap_unwire_pte_hold(dst_pmap,
3890					    dstmpte, &free)) {
3891						pmap_invalidate_page(dst_pmap,
3892						    addr);
3893						pmap_free_zero_pages(free);
3894					}
3895					goto out;
3896				}
3897				if (dstmpte->wire_count >= srcmpte->wire_count)
3898					break;
3899			}
3900			addr += PAGE_SIZE;
3901			src_pte++;
3902		}
3903	}
3904out:
3905	sched_unpin();
3906	vm_page_unlock_queues();
3907	PMAP_UNLOCK(src_pmap);
3908	PMAP_UNLOCK(dst_pmap);
3909}
3910
3911static __inline void
3912pagezero(void *page)
3913{
3914#if defined(I686_CPU)
3915	if (cpu_class == CPUCLASS_686) {
3916#if defined(CPU_ENABLE_SSE)
3917		if (cpu_feature & CPUID_SSE2)
3918			sse2_pagezero(page);
3919		else
3920#endif
3921			i686_pagezero(page);
3922	} else
3923#endif
3924		bzero(page, PAGE_SIZE);
3925}
3926
3927/*
3928 *	pmap_zero_page zeros the specified hardware page by mapping
3929 *	the page into KVM and using bzero to clear its contents.
3930 */
3931void
3932pmap_zero_page(vm_page_t m)
3933{
3934	struct sysmaps *sysmaps;
3935
3936	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3937	mtx_lock(&sysmaps->lock);
3938	if (*sysmaps->CMAP2)
3939		panic("pmap_zero_page: CMAP2 busy");
3940	sched_pin();
3941	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3942	    pmap_cache_bits(m->md.pat_mode, 0);
3943	invlcaddr(sysmaps->CADDR2);
3944	pagezero(sysmaps->CADDR2);
3945	*sysmaps->CMAP2 = 0;
3946	sched_unpin();
3947	mtx_unlock(&sysmaps->lock);
3948}
3949
3950/*
3951 *	pmap_zero_page_area zeros the specified hardware page by mapping
3952 *	the page into KVM and using bzero to clear its contents.
3953 *
3954 *	off and size may not cover an area beyond a single hardware page.
3955 */
3956void
3957pmap_zero_page_area(vm_page_t m, int off, int size)
3958{
3959	struct sysmaps *sysmaps;
3960
3961	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3962	mtx_lock(&sysmaps->lock);
3963	if (*sysmaps->CMAP2)
3964		panic("pmap_zero_page_area: CMAP2 busy");
3965	sched_pin();
3966	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3967	    pmap_cache_bits(m->md.pat_mode, 0);
3968	invlcaddr(sysmaps->CADDR2);
3969	if (off == 0 && size == PAGE_SIZE)
3970		pagezero(sysmaps->CADDR2);
3971	else
3972		bzero((char *)sysmaps->CADDR2 + off, size);
3973	*sysmaps->CMAP2 = 0;
3974	sched_unpin();
3975	mtx_unlock(&sysmaps->lock);
3976}
3977
3978/*
3979 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3980 *	the page into KVM and using bzero to clear its contents.  This
3981 *	is intended to be called from the vm_pagezero process only and
3982 *	outside of Giant.
3983 */
3984void
3985pmap_zero_page_idle(vm_page_t m)
3986{
3987
3988	if (*CMAP3)
3989		panic("pmap_zero_page_idle: CMAP3 busy");
3990	sched_pin();
3991	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3992	    pmap_cache_bits(m->md.pat_mode, 0);
3993	invlcaddr(CADDR3);
3994	pagezero(CADDR3);
3995	*CMAP3 = 0;
3996	sched_unpin();
3997}
3998
3999/*
4000 *	pmap_copy_page copies the specified (machine independent)
4001 *	page by mapping the page into virtual memory and using
4002 *	bcopy to copy the page, one machine dependent page at a
4003 *	time.
4004 */
4005void
4006pmap_copy_page(vm_page_t src, vm_page_t dst)
4007{
4008	struct sysmaps *sysmaps;
4009
4010	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4011	mtx_lock(&sysmaps->lock);
4012	if (*sysmaps->CMAP1)
4013		panic("pmap_copy_page: CMAP1 busy");
4014	if (*sysmaps->CMAP2)
4015		panic("pmap_copy_page: CMAP2 busy");
4016	sched_pin();
4017	invlpg((u_int)sysmaps->CADDR1);
4018	invlpg((u_int)sysmaps->CADDR2);
4019	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4020	    pmap_cache_bits(src->md.pat_mode, 0);
4021	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4022	    pmap_cache_bits(dst->md.pat_mode, 0);
4023	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4024	*sysmaps->CMAP1 = 0;
4025	*sysmaps->CMAP2 = 0;
4026	sched_unpin();
4027	mtx_unlock(&sysmaps->lock);
4028}
4029
4030/*
4031 * Returns true if the pmap's pv is one of the first
4032 * 16 pvs linked to from this page.  This count may
4033 * be changed upwards or downwards in the future; it
4034 * is only necessary that true be returned for a small
4035 * subset of pmaps for proper page aging.
4036 */
4037boolean_t
4038pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4039{
4040	struct md_page *pvh;
4041	pv_entry_t pv;
4042	int loops = 0;
4043	boolean_t rv;
4044
4045	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4046	    ("pmap_page_exists_quick: page %p is not managed", m));
4047	rv = FALSE;
4048	vm_page_lock_queues();
4049	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4050		if (PV_PMAP(pv) == pmap) {
4051			rv = TRUE;
4052			break;
4053		}
4054		loops++;
4055		if (loops >= 16)
4056			break;
4057	}
4058	if (!rv && loops < 16) {
4059		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4060		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4061			if (PV_PMAP(pv) == pmap) {
4062				rv = TRUE;
4063				break;
4064			}
4065			loops++;
4066			if (loops >= 16)
4067				break;
4068		}
4069	}
4070	vm_page_unlock_queues();
4071	return (rv);
4072}
4073
4074/*
4075 *	pmap_page_wired_mappings:
4076 *
4077 *	Return the number of managed mappings to the given physical page
4078 *	that are wired.
4079 */
4080int
4081pmap_page_wired_mappings(vm_page_t m)
4082{
4083	int count;
4084
4085	count = 0;
4086	if ((m->flags & PG_FICTITIOUS) != 0)
4087		return (count);
4088	vm_page_lock_queues();
4089	count = pmap_pvh_wired_mappings(&m->md, count);
4090	count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count);
4091	vm_page_unlock_queues();
4092	return (count);
4093}
4094
4095/*
4096 *	pmap_pvh_wired_mappings:
4097 *
4098 *	Return the updated number "count" of managed mappings that are wired.
4099 */
4100static int
4101pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4102{
4103	pmap_t pmap;
4104	pt_entry_t *pte;
4105	pv_entry_t pv;
4106
4107	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4108	sched_pin();
4109	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4110		pmap = PV_PMAP(pv);
4111		PMAP_LOCK(pmap);
4112		pte = pmap_pte_quick(pmap, pv->pv_va);
4113		if ((*pte & PG_W) != 0)
4114			count++;
4115		PMAP_UNLOCK(pmap);
4116	}
4117	sched_unpin();
4118	return (count);
4119}
4120
4121/*
4122 * Returns TRUE if the given page is mapped individually or as part of
4123 * a 4mpage.  Otherwise, returns FALSE.
4124 */
4125boolean_t
4126pmap_page_is_mapped(vm_page_t m)
4127{
4128	boolean_t rv;
4129
4130	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
4131		return (FALSE);
4132	vm_page_lock_queues();
4133	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4134	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
4135	vm_page_unlock_queues();
4136	return (rv);
4137}
4138
4139/*
4140 * Remove all pages from specified address space
4141 * this aids process exit speeds.  Also, this code
4142 * is special cased for current process only, but
4143 * can have the more generic (and slightly slower)
4144 * mode enabled.  This is much faster than pmap_remove
4145 * in the case of running down an entire address space.
4146 */
4147void
4148pmap_remove_pages(pmap_t pmap)
4149{
4150	pt_entry_t *pte, tpte;
4151	vm_page_t free = NULL;
4152	vm_page_t m, mpte, mt;
4153	pv_entry_t pv;
4154	struct md_page *pvh;
4155	struct pv_chunk *pc, *npc;
4156	int field, idx;
4157	int32_t bit;
4158	uint32_t inuse, bitmask;
4159	int allfree;
4160
4161	if (pmap != PCPU_GET(curpmap)) {
4162		printf("warning: pmap_remove_pages called with non-current pmap\n");
4163		return;
4164	}
4165	vm_page_lock_queues();
4166	PMAP_LOCK(pmap);
4167	sched_pin();
4168	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4169		allfree = 1;
4170		for (field = 0; field < _NPCM; field++) {
4171			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4172			while (inuse != 0) {
4173				bit = bsfl(inuse);
4174				bitmask = 1UL << bit;
4175				idx = field * 32 + bit;
4176				pv = &pc->pc_pventry[idx];
4177				inuse &= ~bitmask;
4178
4179				pte = pmap_pde(pmap, pv->pv_va);
4180				tpte = *pte;
4181				if ((tpte & PG_PS) == 0) {
4182					pte = vtopte(pv->pv_va);
4183					tpte = *pte & ~PG_PTE_PAT;
4184				}
4185
4186				if (tpte == 0) {
4187					printf(
4188					    "TPTE at %p  IS ZERO @ VA %08x\n",
4189					    pte, pv->pv_va);
4190					panic("bad pte");
4191				}
4192
4193/*
4194 * We cannot remove wired pages from a process' mapping at this time
4195 */
4196				if (tpte & PG_W) {
4197					allfree = 0;
4198					continue;
4199				}
4200
4201				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4202				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4203				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4204				    m, (uintmax_t)m->phys_addr,
4205				    (uintmax_t)tpte));
4206
4207				KASSERT(m < &vm_page_array[vm_page_array_size],
4208					("pmap_remove_pages: bad tpte %#jx",
4209					(uintmax_t)tpte));
4210
4211				pte_clear(pte);
4212
4213				/*
4214				 * Update the vm_page_t clean/reference bits.
4215				 */
4216				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4217					if ((tpte & PG_PS) != 0) {
4218						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4219							vm_page_dirty(mt);
4220					} else
4221						vm_page_dirty(m);
4222				}
4223
4224				/* Mark free */
4225				PV_STAT(pv_entry_frees++);
4226				PV_STAT(pv_entry_spare++);
4227				pv_entry_count--;
4228				pc->pc_map[field] |= bitmask;
4229				if ((tpte & PG_PS) != 0) {
4230					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4231					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4232					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4233					if (TAILQ_EMPTY(&pvh->pv_list)) {
4234						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4235							if (TAILQ_EMPTY(&mt->md.pv_list))
4236								vm_page_flag_clear(mt, PG_WRITEABLE);
4237					}
4238					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4239					if (mpte != NULL) {
4240						pmap_remove_pt_page(pmap, mpte);
4241						pmap->pm_stats.resident_count--;
4242						KASSERT(mpte->wire_count == NPTEPG,
4243						    ("pmap_remove_pages: pte page wire count error"));
4244						mpte->wire_count = 0;
4245						pmap_add_delayed_free_list(mpte, &free, FALSE);
4246						atomic_subtract_int(&cnt.v_wire_count, 1);
4247					}
4248				} else {
4249					pmap->pm_stats.resident_count--;
4250					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4251					if (TAILQ_EMPTY(&m->md.pv_list)) {
4252						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4253						if (TAILQ_EMPTY(&pvh->pv_list))
4254							vm_page_flag_clear(m, PG_WRITEABLE);
4255					}
4256					pmap_unuse_pt(pmap, pv->pv_va, &free);
4257				}
4258			}
4259		}
4260		if (allfree) {
4261			PV_STAT(pv_entry_spare -= _NPCPV);
4262			PV_STAT(pc_chunk_count--);
4263			PV_STAT(pc_chunk_frees++);
4264			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4265			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4266			pmap_qremove((vm_offset_t)pc, 1);
4267			vm_page_unwire(m, 0);
4268			vm_page_free(m);
4269			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4270		}
4271	}
4272	sched_unpin();
4273	pmap_invalidate_all(pmap);
4274	vm_page_unlock_queues();
4275	PMAP_UNLOCK(pmap);
4276	pmap_free_zero_pages(free);
4277}
4278
4279/*
4280 *	pmap_is_modified:
4281 *
4282 *	Return whether or not the specified physical page was modified
4283 *	in any physical maps.
4284 */
4285boolean_t
4286pmap_is_modified(vm_page_t m)
4287{
4288	boolean_t rv;
4289
4290	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4291	    ("pmap_is_modified: page %p is not managed", m));
4292
4293	/*
4294	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
4295	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
4296	 * is clear, no PTEs can have PG_M set.
4297	 */
4298	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4299	if ((m->oflags & VPO_BUSY) == 0 &&
4300	    (m->flags & PG_WRITEABLE) == 0)
4301		return (FALSE);
4302	vm_page_lock_queues();
4303	rv = pmap_is_modified_pvh(&m->md) ||
4304	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m)));
4305	vm_page_unlock_queues();
4306	return (rv);
4307}
4308
4309/*
4310 * Returns TRUE if any of the given mappings were used to modify
4311 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4312 * mappings are supported.
4313 */
4314static boolean_t
4315pmap_is_modified_pvh(struct md_page *pvh)
4316{
4317	pv_entry_t pv;
4318	pt_entry_t *pte;
4319	pmap_t pmap;
4320	boolean_t rv;
4321
4322	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4323	rv = FALSE;
4324	sched_pin();
4325	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4326		pmap = PV_PMAP(pv);
4327		PMAP_LOCK(pmap);
4328		pte = pmap_pte_quick(pmap, pv->pv_va);
4329		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4330		PMAP_UNLOCK(pmap);
4331		if (rv)
4332			break;
4333	}
4334	sched_unpin();
4335	return (rv);
4336}
4337
4338/*
4339 *	pmap_is_prefaultable:
4340 *
4341 *	Return whether or not the specified virtual address is elgible
4342 *	for prefault.
4343 */
4344boolean_t
4345pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4346{
4347	pd_entry_t *pde;
4348	pt_entry_t *pte;
4349	boolean_t rv;
4350
4351	rv = FALSE;
4352	PMAP_LOCK(pmap);
4353	pde = pmap_pde(pmap, addr);
4354	if (*pde != 0 && (*pde & PG_PS) == 0) {
4355		pte = vtopte(addr);
4356		rv = *pte == 0;
4357	}
4358	PMAP_UNLOCK(pmap);
4359	return (rv);
4360}
4361
4362/*
4363 *	pmap_is_referenced:
4364 *
4365 *	Return whether or not the specified physical page was referenced
4366 *	in any physical maps.
4367 */
4368boolean_t
4369pmap_is_referenced(vm_page_t m)
4370{
4371	boolean_t rv;
4372
4373	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4374	    ("pmap_is_referenced: page %p is not managed", m));
4375	vm_page_lock_queues();
4376	rv = pmap_is_referenced_pvh(&m->md) ||
4377	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m)));
4378	vm_page_unlock_queues();
4379	return (rv);
4380}
4381
4382/*
4383 * Returns TRUE if any of the given mappings were referenced and FALSE
4384 * otherwise.  Both page and 4mpage mappings are supported.
4385 */
4386static boolean_t
4387pmap_is_referenced_pvh(struct md_page *pvh)
4388{
4389	pv_entry_t pv;
4390	pt_entry_t *pte;
4391	pmap_t pmap;
4392	boolean_t rv;
4393
4394	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4395	rv = FALSE;
4396	sched_pin();
4397	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4398		pmap = PV_PMAP(pv);
4399		PMAP_LOCK(pmap);
4400		pte = pmap_pte_quick(pmap, pv->pv_va);
4401		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4402		PMAP_UNLOCK(pmap);
4403		if (rv)
4404			break;
4405	}
4406	sched_unpin();
4407	return (rv);
4408}
4409
4410/*
4411 * Clear the write and modified bits in each of the given page's mappings.
4412 */
4413void
4414pmap_remove_write(vm_page_t m)
4415{
4416	struct md_page *pvh;
4417	pv_entry_t next_pv, pv;
4418	pmap_t pmap;
4419	pd_entry_t *pde;
4420	pt_entry_t oldpte, *pte;
4421	vm_offset_t va;
4422
4423	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4424	    ("pmap_remove_write: page %p is not managed", m));
4425
4426	/*
4427	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
4428	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
4429	 * is clear, no page table entries need updating.
4430	 */
4431	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4432	if ((m->oflags & VPO_BUSY) == 0 &&
4433	    (m->flags & PG_WRITEABLE) == 0)
4434		return;
4435	vm_page_lock_queues();
4436	sched_pin();
4437	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4438	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4439		va = pv->pv_va;
4440		pmap = PV_PMAP(pv);
4441		PMAP_LOCK(pmap);
4442		pde = pmap_pde(pmap, va);
4443		if ((*pde & PG_RW) != 0)
4444			(void)pmap_demote_pde(pmap, pde, va);
4445		PMAP_UNLOCK(pmap);
4446	}
4447	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4448		pmap = PV_PMAP(pv);
4449		PMAP_LOCK(pmap);
4450		pde = pmap_pde(pmap, pv->pv_va);
4451		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4452		    " a 4mpage in page %p's pv list", m));
4453		pte = pmap_pte_quick(pmap, pv->pv_va);
4454retry:
4455		oldpte = *pte;
4456		if ((oldpte & PG_RW) != 0) {
4457			/*
4458			 * Regardless of whether a pte is 32 or 64 bits
4459			 * in size, PG_RW and PG_M are among the least
4460			 * significant 32 bits.
4461			 */
4462			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4463			    oldpte & ~(PG_RW | PG_M)))
4464				goto retry;
4465			if ((oldpte & PG_M) != 0)
4466				vm_page_dirty(m);
4467			pmap_invalidate_page(pmap, pv->pv_va);
4468		}
4469		PMAP_UNLOCK(pmap);
4470	}
4471	vm_page_flag_clear(m, PG_WRITEABLE);
4472	sched_unpin();
4473	vm_page_unlock_queues();
4474}
4475
4476/*
4477 *	pmap_ts_referenced:
4478 *
4479 *	Return a count of reference bits for a page, clearing those bits.
4480 *	It is not necessary for every reference bit to be cleared, but it
4481 *	is necessary that 0 only be returned when there are truly no
4482 *	reference bits set.
4483 *
4484 *	XXX: The exact number of bits to check and clear is a matter that
4485 *	should be tested and standardized at some point in the future for
4486 *	optimal aging of shared pages.
4487 */
4488int
4489pmap_ts_referenced(vm_page_t m)
4490{
4491	struct md_page *pvh;
4492	pv_entry_t pv, pvf, pvn;
4493	pmap_t pmap;
4494	pd_entry_t oldpde, *pde;
4495	pt_entry_t *pte;
4496	vm_offset_t va;
4497	int rtval = 0;
4498
4499	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4500	    ("pmap_ts_referenced: page %p is not managed", m));
4501	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4502	vm_page_lock_queues();
4503	sched_pin();
4504	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4505		va = pv->pv_va;
4506		pmap = PV_PMAP(pv);
4507		PMAP_LOCK(pmap);
4508		pde = pmap_pde(pmap, va);
4509		oldpde = *pde;
4510		if ((oldpde & PG_A) != 0) {
4511			if (pmap_demote_pde(pmap, pde, va)) {
4512				if ((oldpde & PG_W) == 0) {
4513					/*
4514					 * Remove the mapping to a single page
4515					 * so that a subsequent access may
4516					 * repromote.  Since the underlying
4517					 * page table page is fully populated,
4518					 * this removal never frees a page
4519					 * table page.
4520					 */
4521					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4522					    PG_PS_FRAME);
4523					pmap_remove_page(pmap, va, NULL);
4524					rtval++;
4525					if (rtval > 4) {
4526						PMAP_UNLOCK(pmap);
4527						goto out;
4528					}
4529				}
4530			}
4531		}
4532		PMAP_UNLOCK(pmap);
4533	}
4534	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4535		pvf = pv;
4536		do {
4537			pvn = TAILQ_NEXT(pv, pv_list);
4538			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4539			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4540			pmap = PV_PMAP(pv);
4541			PMAP_LOCK(pmap);
4542			pde = pmap_pde(pmap, pv->pv_va);
4543			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4544			    " found a 4mpage in page %p's pv list", m));
4545			pte = pmap_pte_quick(pmap, pv->pv_va);
4546			if ((*pte & PG_A) != 0) {
4547				atomic_clear_int((u_int *)pte, PG_A);
4548				pmap_invalidate_page(pmap, pv->pv_va);
4549				rtval++;
4550				if (rtval > 4)
4551					pvn = NULL;
4552			}
4553			PMAP_UNLOCK(pmap);
4554		} while ((pv = pvn) != NULL && pv != pvf);
4555	}
4556out:
4557	sched_unpin();
4558	vm_page_unlock_queues();
4559	return (rtval);
4560}
4561
4562/*
4563 *	Clear the modify bits on the specified physical page.
4564 */
4565void
4566pmap_clear_modify(vm_page_t m)
4567{
4568	struct md_page *pvh;
4569	pv_entry_t next_pv, pv;
4570	pmap_t pmap;
4571	pd_entry_t oldpde, *pde;
4572	pt_entry_t oldpte, *pte;
4573	vm_offset_t va;
4574
4575	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4576	    ("pmap_clear_modify: page %p is not managed", m));
4577	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4578	KASSERT((m->oflags & VPO_BUSY) == 0,
4579	    ("pmap_clear_modify: page %p is busy", m));
4580
4581	/*
4582	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
4583	 * If the object containing the page is locked and the page is not
4584	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
4585	 */
4586	if ((m->flags & PG_WRITEABLE) == 0)
4587		return;
4588	vm_page_lock_queues();
4589	sched_pin();
4590	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4591	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4592		va = pv->pv_va;
4593		pmap = PV_PMAP(pv);
4594		PMAP_LOCK(pmap);
4595		pde = pmap_pde(pmap, va);
4596		oldpde = *pde;
4597		if ((oldpde & PG_RW) != 0) {
4598			if (pmap_demote_pde(pmap, pde, va)) {
4599				if ((oldpde & PG_W) == 0) {
4600					/*
4601					 * Write protect the mapping to a
4602					 * single page so that a subsequent
4603					 * write access may repromote.
4604					 */
4605					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4606					    PG_PS_FRAME);
4607					pte = pmap_pte_quick(pmap, va);
4608					oldpte = *pte;
4609					if ((oldpte & PG_V) != 0) {
4610						/*
4611						 * Regardless of whether a pte is 32 or 64 bits
4612						 * in size, PG_RW and PG_M are among the least
4613						 * significant 32 bits.
4614						 */
4615						while (!atomic_cmpset_int((u_int *)pte,
4616						    oldpte,
4617						    oldpte & ~(PG_M | PG_RW)))
4618							oldpte = *pte;
4619						vm_page_dirty(m);
4620						pmap_invalidate_page(pmap, va);
4621					}
4622				}
4623			}
4624		}
4625		PMAP_UNLOCK(pmap);
4626	}
4627	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4628		pmap = PV_PMAP(pv);
4629		PMAP_LOCK(pmap);
4630		pde = pmap_pde(pmap, pv->pv_va);
4631		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4632		    " a 4mpage in page %p's pv list", m));
4633		pte = pmap_pte_quick(pmap, pv->pv_va);
4634		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4635			/*
4636			 * Regardless of whether a pte is 32 or 64 bits
4637			 * in size, PG_M is among the least significant
4638			 * 32 bits.
4639			 */
4640			atomic_clear_int((u_int *)pte, PG_M);
4641			pmap_invalidate_page(pmap, pv->pv_va);
4642		}
4643		PMAP_UNLOCK(pmap);
4644	}
4645	sched_unpin();
4646	vm_page_unlock_queues();
4647}
4648
4649/*
4650 *	pmap_clear_reference:
4651 *
4652 *	Clear the reference bit on the specified physical page.
4653 */
4654void
4655pmap_clear_reference(vm_page_t m)
4656{
4657	struct md_page *pvh;
4658	pv_entry_t next_pv, pv;
4659	pmap_t pmap;
4660	pd_entry_t oldpde, *pde;
4661	pt_entry_t *pte;
4662	vm_offset_t va;
4663
4664	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4665	    ("pmap_clear_reference: page %p is not managed", m));
4666	vm_page_lock_queues();
4667	sched_pin();
4668	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4669	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4670		va = pv->pv_va;
4671		pmap = PV_PMAP(pv);
4672		PMAP_LOCK(pmap);
4673		pde = pmap_pde(pmap, va);
4674		oldpde = *pde;
4675		if ((oldpde & PG_A) != 0) {
4676			if (pmap_demote_pde(pmap, pde, va)) {
4677				/*
4678				 * Remove the mapping to a single page so
4679				 * that a subsequent access may repromote.
4680				 * Since the underlying page table page is
4681				 * fully populated, this removal never frees
4682				 * a page table page.
4683				 */
4684				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4685				    PG_PS_FRAME);
4686				pmap_remove_page(pmap, va, NULL);
4687			}
4688		}
4689		PMAP_UNLOCK(pmap);
4690	}
4691	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4692		pmap = PV_PMAP(pv);
4693		PMAP_LOCK(pmap);
4694		pde = pmap_pde(pmap, pv->pv_va);
4695		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4696		    " a 4mpage in page %p's pv list", m));
4697		pte = pmap_pte_quick(pmap, pv->pv_va);
4698		if ((*pte & PG_A) != 0) {
4699			/*
4700			 * Regardless of whether a pte is 32 or 64 bits
4701			 * in size, PG_A is among the least significant
4702			 * 32 bits.
4703			 */
4704			atomic_clear_int((u_int *)pte, PG_A);
4705			pmap_invalidate_page(pmap, pv->pv_va);
4706		}
4707		PMAP_UNLOCK(pmap);
4708	}
4709	sched_unpin();
4710	vm_page_unlock_queues();
4711}
4712
4713/*
4714 * Miscellaneous support routines follow
4715 */
4716
4717/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4718static __inline void
4719pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4720{
4721	u_int opte, npte;
4722
4723	/*
4724	 * The cache mode bits are all in the low 32-bits of the
4725	 * PTE, so we can just spin on updating the low 32-bits.
4726	 */
4727	do {
4728		opte = *(u_int *)pte;
4729		npte = opte & ~PG_PTE_CACHE;
4730		npte |= cache_bits;
4731	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4732}
4733
4734/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4735static __inline void
4736pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4737{
4738	u_int opde, npde;
4739
4740	/*
4741	 * The cache mode bits are all in the low 32-bits of the
4742	 * PDE, so we can just spin on updating the low 32-bits.
4743	 */
4744	do {
4745		opde = *(u_int *)pde;
4746		npde = opde & ~PG_PDE_CACHE;
4747		npde |= cache_bits;
4748	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4749}
4750
4751/*
4752 * Map a set of physical memory pages into the kernel virtual
4753 * address space. Return a pointer to where it is mapped. This
4754 * routine is intended to be used for mapping device memory,
4755 * NOT real memory.
4756 */
4757void *
4758pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4759{
4760	vm_offset_t va, offset;
4761	vm_size_t tmpsize;
4762
4763	offset = pa & PAGE_MASK;
4764	size = roundup(offset + size, PAGE_SIZE);
4765	pa = pa & PG_FRAME;
4766
4767	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4768		va = KERNBASE + pa;
4769	else
4770		va = kmem_alloc_nofault(kernel_map, size);
4771	if (!va)
4772		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4773
4774	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4775		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4776	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4777	pmap_invalidate_cache_range(va, va + size);
4778	return ((void *)(va + offset));
4779}
4780
4781void *
4782pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4783{
4784
4785	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4786}
4787
4788void *
4789pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4790{
4791
4792	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4793}
4794
4795void
4796pmap_unmapdev(vm_offset_t va, vm_size_t size)
4797{
4798	vm_offset_t base, offset, tmpva;
4799
4800	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4801		return;
4802	base = trunc_page(va);
4803	offset = va & PAGE_MASK;
4804	size = roundup(offset + size, PAGE_SIZE);
4805	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4806		pmap_kremove(tmpva);
4807	pmap_invalidate_range(kernel_pmap, va, tmpva);
4808	kmem_free(kernel_map, base, size);
4809}
4810
4811/*
4812 * Sets the memory attribute for the specified page.
4813 */
4814void
4815pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4816{
4817	struct sysmaps *sysmaps;
4818	vm_offset_t sva, eva;
4819
4820	m->md.pat_mode = ma;
4821	if ((m->flags & PG_FICTITIOUS) != 0)
4822		return;
4823
4824	/*
4825	 * If "m" is a normal page, flush it from the cache.
4826	 * See pmap_invalidate_cache_range().
4827	 *
4828	 * First, try to find an existing mapping of the page by sf
4829	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4830	 * flushes the cache.
4831	 */
4832	if (sf_buf_invalidate_cache(m))
4833		return;
4834
4835	/*
4836	 * If page is not mapped by sf buffer, but CPU does not
4837	 * support self snoop, map the page transient and do
4838	 * invalidation. In the worst case, whole cache is flushed by
4839	 * pmap_invalidate_cache_range().
4840	 */
4841	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4842		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4843		mtx_lock(&sysmaps->lock);
4844		if (*sysmaps->CMAP2)
4845			panic("pmap_page_set_memattr: CMAP2 busy");
4846		sched_pin();
4847		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4848		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4849		invlcaddr(sysmaps->CADDR2);
4850		sva = (vm_offset_t)sysmaps->CADDR2;
4851		eva = sva + PAGE_SIZE;
4852	} else
4853		sva = eva = 0; /* gcc */
4854	pmap_invalidate_cache_range(sva, eva);
4855	if (sva != 0) {
4856		*sysmaps->CMAP2 = 0;
4857		sched_unpin();
4858		mtx_unlock(&sysmaps->lock);
4859	}
4860}
4861
4862/*
4863 * Changes the specified virtual address range's memory type to that given by
4864 * the parameter "mode".  The specified virtual address range must be
4865 * completely contained within either the kernel map.
4866 *
4867 * Returns zero if the change completed successfully, and either EINVAL or
4868 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4869 * of the virtual address range was not mapped, and ENOMEM is returned if
4870 * there was insufficient memory available to complete the change.
4871 */
4872int
4873pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4874{
4875	vm_offset_t base, offset, tmpva;
4876	pd_entry_t *pde;
4877	pt_entry_t *pte;
4878	int cache_bits_pte, cache_bits_pde;
4879	boolean_t changed;
4880
4881	base = trunc_page(va);
4882	offset = va & PAGE_MASK;
4883	size = roundup(offset + size, PAGE_SIZE);
4884
4885	/*
4886	 * Only supported on kernel virtual addresses above the recursive map.
4887	 */
4888	if (base < VM_MIN_KERNEL_ADDRESS)
4889		return (EINVAL);
4890
4891	cache_bits_pde = pmap_cache_bits(mode, 1);
4892	cache_bits_pte = pmap_cache_bits(mode, 0);
4893	changed = FALSE;
4894
4895	/*
4896	 * Pages that aren't mapped aren't supported.  Also break down
4897	 * 2/4MB pages into 4KB pages if required.
4898	 */
4899	PMAP_LOCK(kernel_pmap);
4900	for (tmpva = base; tmpva < base + size; ) {
4901		pde = pmap_pde(kernel_pmap, tmpva);
4902		if (*pde == 0) {
4903			PMAP_UNLOCK(kernel_pmap);
4904			return (EINVAL);
4905		}
4906		if (*pde & PG_PS) {
4907			/*
4908			 * If the current 2/4MB page already has
4909			 * the required memory type, then we need not
4910			 * demote this page.  Just increment tmpva to
4911			 * the next 2/4MB page frame.
4912			 */
4913			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4914				tmpva = trunc_4mpage(tmpva) + NBPDR;
4915				continue;
4916			}
4917
4918			/*
4919			 * If the current offset aligns with a 2/4MB
4920			 * page frame and there is at least 2/4MB left
4921			 * within the range, then we need not break
4922			 * down this page into 4KB pages.
4923			 */
4924			if ((tmpva & PDRMASK) == 0 &&
4925			    tmpva + PDRMASK < base + size) {
4926				tmpva += NBPDR;
4927				continue;
4928			}
4929			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4930				PMAP_UNLOCK(kernel_pmap);
4931				return (ENOMEM);
4932			}
4933		}
4934		pte = vtopte(tmpva);
4935		if (*pte == 0) {
4936			PMAP_UNLOCK(kernel_pmap);
4937			return (EINVAL);
4938		}
4939		tmpva += PAGE_SIZE;
4940	}
4941	PMAP_UNLOCK(kernel_pmap);
4942
4943	/*
4944	 * Ok, all the pages exist, so run through them updating their
4945	 * cache mode if required.
4946	 */
4947	for (tmpva = base; tmpva < base + size; ) {
4948		pde = pmap_pde(kernel_pmap, tmpva);
4949		if (*pde & PG_PS) {
4950			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4951				pmap_pde_attr(pde, cache_bits_pde);
4952				changed = TRUE;
4953			}
4954			tmpva = trunc_4mpage(tmpva) + NBPDR;
4955		} else {
4956			pte = vtopte(tmpva);
4957			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4958				pmap_pte_attr(pte, cache_bits_pte);
4959				changed = TRUE;
4960			}
4961			tmpva += PAGE_SIZE;
4962		}
4963	}
4964
4965	/*
4966	 * Flush CPU caches to make sure any data isn't cached that
4967	 * shouldn't be, etc.
4968	 */
4969	if (changed) {
4970		pmap_invalidate_range(kernel_pmap, base, tmpva);
4971		pmap_invalidate_cache_range(base, tmpva);
4972	}
4973	return (0);
4974}
4975
4976/*
4977 * perform the pmap work for mincore
4978 */
4979int
4980pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4981{
4982	pt_entry_t *ptep, pte;
4983	vm_paddr_t pa;
4984	int val;
4985
4986	PMAP_LOCK(pmap);
4987retry:
4988	ptep = pmap_pte(pmap, addr);
4989	pte = (ptep != NULL) ? *ptep : 0;
4990	pmap_pte_release(ptep);
4991	if ((pte & PG_V) != 0) {
4992		val = MINCORE_INCORE;
4993		if ((pte & PG_PS) != 0) {
4994			val |= MINCORE_SUPER;
4995			/* Compute the physical address of the 4KB page. */
4996			pa = (pte & PG_PS_FRAME) | (addr & PG_FRAME & PDRMASK);
4997		} else
4998			pa = pte & PG_FRAME;
4999		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5000			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5001		if ((pte & PG_A) != 0)
5002			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5003	} else {
5004		val = 0;
5005		pa = 0;
5006	}
5007	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5008	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5009	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5010		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5011		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5012			goto retry;
5013	} else
5014		PA_UNLOCK_COND(*locked_pa);
5015	PMAP_UNLOCK(pmap);
5016	return (val);
5017}
5018
5019void
5020pmap_activate(struct thread *td)
5021{
5022	pmap_t	pmap, oldpmap;
5023	u_int32_t  cr3;
5024
5025	critical_enter();
5026	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5027	oldpmap = PCPU_GET(curpmap);
5028#if defined(SMP)
5029	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
5030	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
5031#else
5032	oldpmap->pm_active &= ~1;
5033	pmap->pm_active |= 1;
5034#endif
5035#ifdef PAE
5036	cr3 = vtophys(pmap->pm_pdpt);
5037#else
5038	cr3 = vtophys(pmap->pm_pdir);
5039#endif
5040	/*
5041	 * pmap_activate is for the current thread on the current cpu
5042	 */
5043	td->td_pcb->pcb_cr3 = cr3;
5044	load_cr3(cr3);
5045	PCPU_SET(curpmap, pmap);
5046	critical_exit();
5047}
5048
5049void
5050pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5051{
5052}
5053
5054/*
5055 *	Increase the starting virtual address of the given mapping if a
5056 *	different alignment might result in more superpage mappings.
5057 */
5058void
5059pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5060    vm_offset_t *addr, vm_size_t size)
5061{
5062	vm_offset_t superpage_offset;
5063
5064	if (size < NBPDR)
5065		return;
5066	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5067		offset += ptoa(object->pg_color);
5068	superpage_offset = offset & PDRMASK;
5069	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5070	    (*addr & PDRMASK) == superpage_offset)
5071		return;
5072	if ((*addr & PDRMASK) < superpage_offset)
5073		*addr = (*addr & ~PDRMASK) + superpage_offset;
5074	else
5075		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5076}
5077
5078
5079#if defined(PMAP_DEBUG)
5080pmap_pid_dump(int pid)
5081{
5082	pmap_t pmap;
5083	struct proc *p;
5084	int npte = 0;
5085	int index;
5086
5087	sx_slock(&allproc_lock);
5088	FOREACH_PROC_IN_SYSTEM(p) {
5089		if (p->p_pid != pid)
5090			continue;
5091
5092		if (p->p_vmspace) {
5093			int i,j;
5094			index = 0;
5095			pmap = vmspace_pmap(p->p_vmspace);
5096			for (i = 0; i < NPDEPTD; i++) {
5097				pd_entry_t *pde;
5098				pt_entry_t *pte;
5099				vm_offset_t base = i << PDRSHIFT;
5100
5101				pde = &pmap->pm_pdir[i];
5102				if (pde && pmap_pde_v(pde)) {
5103					for (j = 0; j < NPTEPG; j++) {
5104						vm_offset_t va = base + (j << PAGE_SHIFT);
5105						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5106							if (index) {
5107								index = 0;
5108								printf("\n");
5109							}
5110							sx_sunlock(&allproc_lock);
5111							return (npte);
5112						}
5113						pte = pmap_pte(pmap, va);
5114						if (pte && pmap_pte_v(pte)) {
5115							pt_entry_t pa;
5116							vm_page_t m;
5117							pa = *pte;
5118							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5119							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5120								va, pa, m->hold_count, m->wire_count, m->flags);
5121							npte++;
5122							index++;
5123							if (index >= 2) {
5124								index = 0;
5125								printf("\n");
5126							} else {
5127								printf(" ");
5128							}
5129						}
5130					}
5131				}
5132			}
5133		}
5134	}
5135	sx_sunlock(&allproc_lock);
5136	return (npte);
5137}
5138#endif
5139
5140#if defined(DEBUG)
5141
5142static void	pads(pmap_t pm);
5143void		pmap_pvdump(vm_offset_t pa);
5144
5145/* print address space of pmap*/
5146static void
5147pads(pmap_t pm)
5148{
5149	int i, j;
5150	vm_paddr_t va;
5151	pt_entry_t *ptep;
5152
5153	if (pm == kernel_pmap)
5154		return;
5155	for (i = 0; i < NPDEPTD; i++)
5156		if (pm->pm_pdir[i])
5157			for (j = 0; j < NPTEPG; j++) {
5158				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5159				if (pm == kernel_pmap && va < KERNBASE)
5160					continue;
5161				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5162					continue;
5163				ptep = pmap_pte(pm, va);
5164				if (pmap_pte_v(ptep))
5165					printf("%x:%x ", va, *ptep);
5166			};
5167
5168}
5169
5170void
5171pmap_pvdump(vm_paddr_t pa)
5172{
5173	pv_entry_t pv;
5174	pmap_t pmap;
5175	vm_page_t m;
5176
5177	printf("pa %x", pa);
5178	m = PHYS_TO_VM_PAGE(pa);
5179	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5180		pmap = PV_PMAP(pv);
5181		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5182		pads(pmap);
5183	}
5184	printf(" ");
5185}
5186#endif
5187