pmap.c revision 208657
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 208657 2010-05-30 18:48:41Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#ifdef __GNUC_GNU_INLINE__
166#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167#else
168#define PMAP_INLINE	extern inline
169#endif
170#else
171#define PMAP_INLINE
172#endif
173
174#define PV_STATS
175#ifdef PV_STATS
176#define PV_STAT(x)	do { x ; } while (0)
177#else
178#define PV_STAT(x)	do { } while (0)
179#endif
180
181#define	pa_index(pa)	((pa) >> PDRSHIFT)
182#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183
184/*
185 * Get PDEs and PTEs for user/kernel address space
186 */
187#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189
190#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195
196#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197    atomic_clear_int((u_int *)(pte), PG_W))
198#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199
200struct pmap kernel_pmap_store;
201LIST_HEAD(pmaplist, pmap);
202static struct pmaplist allpmaps;
203static struct mtx allpmaps_lock;
204
205vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
206vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
207int pgeflag = 0;		/* PG_G or-in */
208int pseflag = 0;		/* PG_PS or-in */
209
210static int nkpt = NKPT;
211vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
212extern u_int32_t KERNend;
213extern u_int32_t KPTphys;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217static uma_zone_t pdptzone;
218#endif
219
220static int pat_works = 0;		/* Is page attribute table sane? */
221
222SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pg_ps_enabled = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
226    "Are large page mappings enabled?");
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0, *KPTmap;
251static pt_entry_t *CMAP3;
252static pd_entry_t *KPTD;
253caddr_t CADDR1 = 0, ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
283static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
284static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
285static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
286static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
287static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
288		    vm_offset_t va);
289static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
290
291static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
292static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
293    vm_prot_t prot);
294static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
295    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
296static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
297static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
298static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
299static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
300static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
301static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
302static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
303static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
304static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
305static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
306    vm_prot_t prot);
307static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
308static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
309    vm_page_t *free);
310static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
311    vm_page_t *free);
312static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
313static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
314    vm_page_t *free);
315static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
316					vm_offset_t va);
317static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
318static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
319    vm_page_t m);
320static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
321    pd_entry_t newpde);
322static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
323
324static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
325
326static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
327static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
328static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
329static void pmap_pte_release(pt_entry_t *pte);
330static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
331#ifdef PAE
332static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
333#endif
334static void pmap_set_pg(void);
335
336CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
337CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
338
339/*
340 * If you get an error here, then you set KVA_PAGES wrong! See the
341 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
342 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
343 */
344CTASSERT(KERNBASE % (1 << 24) == 0);
345
346/*
347 *	Bootstrap the system enough to run with virtual memory.
348 *
349 *	On the i386 this is called after mapping has already been enabled
350 *	and just syncs the pmap module with what has already been done.
351 *	[We can't call it easily with mapping off since the kernel is not
352 *	mapped with PA == VA, hence we would have to relocate every address
353 *	from the linked base (virtual) address "KERNBASE" to the actual
354 *	(physical) address starting relative to 0]
355 */
356void
357pmap_bootstrap(vm_paddr_t firstaddr)
358{
359	vm_offset_t va;
360	pt_entry_t *pte, *unused;
361	struct sysmaps *sysmaps;
362	int i;
363
364	/*
365	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
366	 * large. It should instead be correctly calculated in locore.s and
367	 * not based on 'first' (which is a physical address, not a virtual
368	 * address, for the start of unused physical memory). The kernel
369	 * page tables are NOT double mapped and thus should not be included
370	 * in this calculation.
371	 */
372	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
373
374	virtual_end = VM_MAX_KERNEL_ADDRESS;
375
376	/*
377	 * Initialize the kernel pmap (which is statically allocated).
378	 */
379	PMAP_LOCK_INIT(kernel_pmap);
380	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
381#ifdef PAE
382	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
383#endif
384	kernel_pmap->pm_root = NULL;
385	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
386	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
387	LIST_INIT(&allpmaps);
388
389	/*
390	 * Request a spin mutex so that changes to allpmaps cannot be
391	 * preempted by smp_rendezvous_cpus().  Otherwise,
392	 * pmap_update_pde_kernel() could access allpmaps while it is
393	 * being changed.
394	 */
395	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
396	mtx_lock_spin(&allpmaps_lock);
397	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
398	mtx_unlock_spin(&allpmaps_lock);
399
400	/*
401	 * Reserve some special page table entries/VA space for temporary
402	 * mapping of pages.
403	 */
404#define	SYSMAP(c, p, v, n)	\
405	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
406
407	va = virtual_avail;
408	pte = vtopte(va);
409
410	/*
411	 * CMAP1/CMAP2 are used for zeroing and copying pages.
412	 * CMAP3 is used for the idle process page zeroing.
413	 */
414	for (i = 0; i < MAXCPU; i++) {
415		sysmaps = &sysmaps_pcpu[i];
416		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
417		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
418		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
419	}
420	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
421	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
422
423	/*
424	 * Crashdump maps.
425	 */
426	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
427
428	/*
429	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
430	 */
431	SYSMAP(caddr_t, unused, ptvmmap, 1)
432
433	/*
434	 * msgbufp is used to map the system message buffer.
435	 */
436	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
437
438	/*
439	 * KPTmap is used by pmap_kextract().
440	 */
441	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
442
443	for (i = 0; i < NKPT; i++)
444		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
445
446	/*
447	 * Adjust the start of the KPTD and KPTmap so that the implementation
448	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
449	 */
450	KPTD -= KPTDI;
451	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
452
453	/*
454	 * ptemap is used for pmap_pte_quick
455	 */
456	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
457	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
458
459	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
460
461	virtual_avail = va;
462
463	/*
464	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
465	 * physical memory region that is used by the ACPI wakeup code.  This
466	 * mapping must not have PG_G set.
467	 */
468#ifdef XBOX
469	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
470	 * an early stadium, we cannot yet neatly map video memory ... :-(
471	 * Better fixes are very welcome! */
472	if (!arch_i386_is_xbox)
473#endif
474	for (i = 1; i < NKPT; i++)
475		PTD[i] = 0;
476
477	/* Initialize the PAT MSR if present. */
478	pmap_init_pat();
479
480	/* Turn on PG_G on kernel page(s) */
481	pmap_set_pg();
482}
483
484/*
485 * Setup the PAT MSR.
486 */
487void
488pmap_init_pat(void)
489{
490	uint64_t pat_msr;
491	char *sysenv;
492	static int pat_tested = 0;
493
494	/* Bail if this CPU doesn't implement PAT. */
495	if (!(cpu_feature & CPUID_PAT))
496		return;
497
498	/*
499	 * Due to some Intel errata, we can only safely use the lower 4
500	 * PAT entries.
501	 *
502	 *   Intel Pentium III Processor Specification Update
503	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
504	 * or Mode C Paging)
505	 *
506	 *   Intel Pentium IV  Processor Specification Update
507	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
508	 *
509	 * Some Apple Macs based on nVidia chipsets cannot enter ACPI mode
510	 * via SMI# when we use upper 4 PAT entries for unknown reason.
511	 */
512	if (!pat_tested) {
513		if (cpu_vendor_id != CPU_VENDOR_INTEL ||
514		    (CPUID_TO_FAMILY(cpu_id) == 6 &&
515		    CPUID_TO_MODEL(cpu_id) >= 0xe)) {
516			pat_works = 1;
517			sysenv = getenv("smbios.system.product");
518			if (sysenv != NULL) {
519				if (strncmp(sysenv, "MacBook5,1", 10) == 0 ||
520				    strncmp(sysenv, "MacBookPro5,5", 13) == 0 ||
521				    strncmp(sysenv, "Macmini3,1", 10) == 0)
522					pat_works = 0;
523				freeenv(sysenv);
524			}
525		}
526		pat_tested = 1;
527	}
528
529	/* Initialize default PAT entries. */
530	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
531	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
532	    PAT_VALUE(2, PAT_UNCACHED) |
533	    PAT_VALUE(3, PAT_UNCACHEABLE) |
534	    PAT_VALUE(4, PAT_WRITE_BACK) |
535	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
536	    PAT_VALUE(6, PAT_UNCACHED) |
537	    PAT_VALUE(7, PAT_UNCACHEABLE);
538
539	if (pat_works) {
540		/*
541		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
542		 * Program 4 and 5 as WP and WC.
543		 * Leave 6 and 7 as UC- and UC.
544		 */
545		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
546		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
547		    PAT_VALUE(5, PAT_WRITE_COMBINING);
548	} else {
549		/*
550		 * Just replace PAT Index 2 with WC instead of UC-.
551		 */
552		pat_msr &= ~PAT_MASK(2);
553		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
554	}
555	wrmsr(MSR_PAT, pat_msr);
556}
557
558/*
559 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
560 */
561static void
562pmap_set_pg(void)
563{
564	pt_entry_t *pte;
565	vm_offset_t va, endva;
566
567	if (pgeflag == 0)
568		return;
569
570	endva = KERNBASE + KERNend;
571
572	if (pseflag) {
573		va = KERNBASE + KERNLOAD;
574		while (va  < endva) {
575			pdir_pde(PTD, va) |= pgeflag;
576			invltlb();	/* Play it safe, invltlb() every time */
577			va += NBPDR;
578		}
579	} else {
580		va = (vm_offset_t)btext;
581		while (va < endva) {
582			pte = vtopte(va);
583			if (*pte)
584				*pte |= pgeflag;
585			invltlb();	/* Play it safe, invltlb() every time */
586			va += PAGE_SIZE;
587		}
588	}
589}
590
591/*
592 * Initialize a vm_page's machine-dependent fields.
593 */
594void
595pmap_page_init(vm_page_t m)
596{
597
598	TAILQ_INIT(&m->md.pv_list);
599	m->md.pat_mode = PAT_WRITE_BACK;
600}
601
602#ifdef PAE
603static void *
604pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
605{
606
607	/* Inform UMA that this allocator uses kernel_map/object. */
608	*flags = UMA_SLAB_KERNEL;
609	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
610	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
611}
612#endif
613
614/*
615 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
616 * Requirements:
617 *  - Must deal with pages in order to ensure that none of the PG_* bits
618 *    are ever set, PG_V in particular.
619 *  - Assumes we can write to ptes without pte_store() atomic ops, even
620 *    on PAE systems.  This should be ok.
621 *  - Assumes nothing will ever test these addresses for 0 to indicate
622 *    no mapping instead of correctly checking PG_V.
623 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
624 * Because PG_V is never set, there can be no mappings to invalidate.
625 */
626static vm_offset_t
627pmap_ptelist_alloc(vm_offset_t *head)
628{
629	pt_entry_t *pte;
630	vm_offset_t va;
631
632	va = *head;
633	if (va == 0)
634		return (va);	/* Out of memory */
635	pte = vtopte(va);
636	*head = *pte;
637	if (*head & PG_V)
638		panic("pmap_ptelist_alloc: va with PG_V set!");
639	*pte = 0;
640	return (va);
641}
642
643static void
644pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
645{
646	pt_entry_t *pte;
647
648	if (va & PG_V)
649		panic("pmap_ptelist_free: freeing va with PG_V set!");
650	pte = vtopte(va);
651	*pte = *head;		/* virtual! PG_V is 0 though */
652	*head = va;
653}
654
655static void
656pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
657{
658	int i;
659	vm_offset_t va;
660
661	*head = 0;
662	for (i = npages - 1; i >= 0; i--) {
663		va = (vm_offset_t)base + i * PAGE_SIZE;
664		pmap_ptelist_free(head, va);
665	}
666}
667
668
669/*
670 *	Initialize the pmap module.
671 *	Called by vm_init, to initialize any structures that the pmap
672 *	system needs to map virtual memory.
673 */
674void
675pmap_init(void)
676{
677	vm_page_t mpte;
678	vm_size_t s;
679	int i, pv_npg;
680
681	/*
682	 * Initialize the vm page array entries for the kernel pmap's
683	 * page table pages.
684	 */
685	for (i = 0; i < NKPT; i++) {
686		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
687		KASSERT(mpte >= vm_page_array &&
688		    mpte < &vm_page_array[vm_page_array_size],
689		    ("pmap_init: page table page is out of range"));
690		mpte->pindex = i + KPTDI;
691		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
692	}
693
694	/*
695	 * Initialize the address space (zone) for the pv entries.  Set a
696	 * high water mark so that the system can recover from excessive
697	 * numbers of pv entries.
698	 */
699	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
700	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
701	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
702	pv_entry_max = roundup(pv_entry_max, _NPCPV);
703	pv_entry_high_water = 9 * (pv_entry_max / 10);
704
705	/*
706	 * If the kernel is running in a virtual machine on an AMD Family 10h
707	 * processor, then it must assume that MCA is enabled by the virtual
708	 * machine monitor.
709	 */
710	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
711	    CPUID_TO_FAMILY(cpu_id) == 0x10)
712		workaround_erratum383 = 1;
713
714	/*
715	 * Are large page mappings supported and enabled?
716	 */
717	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
718	if (pseflag == 0)
719		pg_ps_enabled = 0;
720	else if (pg_ps_enabled) {
721		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
722		    ("pmap_init: can't assign to pagesizes[1]"));
723		pagesizes[1] = NBPDR;
724	}
725
726	/*
727	 * Calculate the size of the pv head table for superpages.
728	 */
729	for (i = 0; phys_avail[i + 1]; i += 2);
730	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
731
732	/*
733	 * Allocate memory for the pv head table for superpages.
734	 */
735	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
736	s = round_page(s);
737	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
738	for (i = 0; i < pv_npg; i++)
739		TAILQ_INIT(&pv_table[i].pv_list);
740
741	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
742	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
743	    PAGE_SIZE * pv_maxchunks);
744	if (pv_chunkbase == NULL)
745		panic("pmap_init: not enough kvm for pv chunks");
746	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
747#ifdef PAE
748	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
749	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
750	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
751	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
752#endif
753}
754
755
756SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
757	"Max number of PV entries");
758SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
759	"Page share factor per proc");
760
761SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
762    "2/4MB page mapping counters");
763
764static u_long pmap_pde_demotions;
765SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
766    &pmap_pde_demotions, 0, "2/4MB page demotions");
767
768static u_long pmap_pde_mappings;
769SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
770    &pmap_pde_mappings, 0, "2/4MB page mappings");
771
772static u_long pmap_pde_p_failures;
773SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
774    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
775
776static u_long pmap_pde_promotions;
777SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
778    &pmap_pde_promotions, 0, "2/4MB page promotions");
779
780/***************************************************
781 * Low level helper routines.....
782 ***************************************************/
783
784/*
785 * Determine the appropriate bits to set in a PTE or PDE for a specified
786 * caching mode.
787 */
788int
789pmap_cache_bits(int mode, boolean_t is_pde)
790{
791	int pat_flag, pat_index, cache_bits;
792
793	/* The PAT bit is different for PTE's and PDE's. */
794	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
795
796	/* If we don't support PAT, map extended modes to older ones. */
797	if (!(cpu_feature & CPUID_PAT)) {
798		switch (mode) {
799		case PAT_UNCACHEABLE:
800		case PAT_WRITE_THROUGH:
801		case PAT_WRITE_BACK:
802			break;
803		case PAT_UNCACHED:
804		case PAT_WRITE_COMBINING:
805		case PAT_WRITE_PROTECTED:
806			mode = PAT_UNCACHEABLE;
807			break;
808		}
809	}
810
811	/* Map the caching mode to a PAT index. */
812	if (pat_works) {
813		switch (mode) {
814		case PAT_UNCACHEABLE:
815			pat_index = 3;
816			break;
817		case PAT_WRITE_THROUGH:
818			pat_index = 1;
819			break;
820		case PAT_WRITE_BACK:
821			pat_index = 0;
822			break;
823		case PAT_UNCACHED:
824			pat_index = 2;
825			break;
826		case PAT_WRITE_COMBINING:
827			pat_index = 5;
828			break;
829		case PAT_WRITE_PROTECTED:
830			pat_index = 4;
831			break;
832		default:
833			panic("Unknown caching mode %d\n", mode);
834		}
835	} else {
836		switch (mode) {
837		case PAT_UNCACHED:
838		case PAT_UNCACHEABLE:
839		case PAT_WRITE_PROTECTED:
840			pat_index = 3;
841			break;
842		case PAT_WRITE_THROUGH:
843			pat_index = 1;
844			break;
845		case PAT_WRITE_BACK:
846			pat_index = 0;
847			break;
848		case PAT_WRITE_COMBINING:
849			pat_index = 2;
850			break;
851		default:
852			panic("Unknown caching mode %d\n", mode);
853		}
854	}
855
856	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
857	cache_bits = 0;
858	if (pat_index & 0x4)
859		cache_bits |= pat_flag;
860	if (pat_index & 0x2)
861		cache_bits |= PG_NC_PCD;
862	if (pat_index & 0x1)
863		cache_bits |= PG_NC_PWT;
864	return (cache_bits);
865}
866
867/*
868 * The caller is responsible for maintaining TLB consistency.
869 */
870static void
871pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
872{
873	pd_entry_t *pde;
874	pmap_t pmap;
875	boolean_t PTD_updated;
876
877	PTD_updated = FALSE;
878	mtx_lock_spin(&allpmaps_lock);
879	LIST_FOREACH(pmap, &allpmaps, pm_list) {
880		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
881		    PG_FRAME))
882			PTD_updated = TRUE;
883		pde = pmap_pde(pmap, va);
884		pde_store(pde, newpde);
885	}
886	mtx_unlock_spin(&allpmaps_lock);
887	KASSERT(PTD_updated,
888	    ("pmap_kenter_pde: current page table is not in allpmaps"));
889}
890
891/*
892 * After changing the page size for the specified virtual address in the page
893 * table, flush the corresponding entries from the processor's TLB.  Only the
894 * calling processor's TLB is affected.
895 *
896 * The calling thread must be pinned to a processor.
897 */
898static void
899pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
900{
901	u_long cr4;
902
903	if ((newpde & PG_PS) == 0)
904		/* Demotion: flush a specific 2MB page mapping. */
905		invlpg(va);
906	else if ((newpde & PG_G) == 0)
907		/*
908		 * Promotion: flush every 4KB page mapping from the TLB
909		 * because there are too many to flush individually.
910		 */
911		invltlb();
912	else {
913		/*
914		 * Promotion: flush every 4KB page mapping from the TLB,
915		 * including any global (PG_G) mappings.
916		 */
917		cr4 = rcr4();
918		load_cr4(cr4 & ~CR4_PGE);
919		/*
920		 * Although preemption at this point could be detrimental to
921		 * performance, it would not lead to an error.  PG_G is simply
922		 * ignored if CR4.PGE is clear.  Moreover, in case this block
923		 * is re-entered, the load_cr4() either above or below will
924		 * modify CR4.PGE flushing the TLB.
925		 */
926		load_cr4(cr4 | CR4_PGE);
927	}
928}
929#ifdef SMP
930/*
931 * For SMP, these functions have to use the IPI mechanism for coherence.
932 *
933 * N.B.: Before calling any of the following TLB invalidation functions,
934 * the calling processor must ensure that all stores updating a non-
935 * kernel page table are globally performed.  Otherwise, another
936 * processor could cache an old, pre-update entry without being
937 * invalidated.  This can happen one of two ways: (1) The pmap becomes
938 * active on another processor after its pm_active field is checked by
939 * one of the following functions but before a store updating the page
940 * table is globally performed. (2) The pmap becomes active on another
941 * processor before its pm_active field is checked but due to
942 * speculative loads one of the following functions stills reads the
943 * pmap as inactive on the other processor.
944 *
945 * The kernel page table is exempt because its pm_active field is
946 * immutable.  The kernel page table is always active on every
947 * processor.
948 */
949void
950pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
951{
952	u_int cpumask;
953	u_int other_cpus;
954
955	sched_pin();
956	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
957		invlpg(va);
958		smp_invlpg(va);
959	} else {
960		cpumask = PCPU_GET(cpumask);
961		other_cpus = PCPU_GET(other_cpus);
962		if (pmap->pm_active & cpumask)
963			invlpg(va);
964		if (pmap->pm_active & other_cpus)
965			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
966	}
967	sched_unpin();
968}
969
970void
971pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
972{
973	u_int cpumask;
974	u_int other_cpus;
975	vm_offset_t addr;
976
977	sched_pin();
978	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
979		for (addr = sva; addr < eva; addr += PAGE_SIZE)
980			invlpg(addr);
981		smp_invlpg_range(sva, eva);
982	} else {
983		cpumask = PCPU_GET(cpumask);
984		other_cpus = PCPU_GET(other_cpus);
985		if (pmap->pm_active & cpumask)
986			for (addr = sva; addr < eva; addr += PAGE_SIZE)
987				invlpg(addr);
988		if (pmap->pm_active & other_cpus)
989			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
990			    sva, eva);
991	}
992	sched_unpin();
993}
994
995void
996pmap_invalidate_all(pmap_t pmap)
997{
998	u_int cpumask;
999	u_int other_cpus;
1000
1001	sched_pin();
1002	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
1003		invltlb();
1004		smp_invltlb();
1005	} else {
1006		cpumask = PCPU_GET(cpumask);
1007		other_cpus = PCPU_GET(other_cpus);
1008		if (pmap->pm_active & cpumask)
1009			invltlb();
1010		if (pmap->pm_active & other_cpus)
1011			smp_masked_invltlb(pmap->pm_active & other_cpus);
1012	}
1013	sched_unpin();
1014}
1015
1016void
1017pmap_invalidate_cache(void)
1018{
1019
1020	sched_pin();
1021	wbinvd();
1022	smp_cache_flush();
1023	sched_unpin();
1024}
1025
1026struct pde_action {
1027	cpumask_t store;	/* processor that updates the PDE */
1028	cpumask_t invalidate;	/* processors that invalidate their TLB */
1029	vm_offset_t va;
1030	pd_entry_t *pde;
1031	pd_entry_t newpde;
1032};
1033
1034static void
1035pmap_update_pde_kernel(void *arg)
1036{
1037	struct pde_action *act = arg;
1038	pd_entry_t *pde;
1039	pmap_t pmap;
1040
1041	if (act->store == PCPU_GET(cpumask))
1042		/*
1043		 * Elsewhere, this operation requires allpmaps_lock for
1044		 * synchronization.  Here, it does not because it is being
1045		 * performed in the context of an all_cpus rendezvous.
1046		 */
1047		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1048			pde = pmap_pde(pmap, act->va);
1049			pde_store(pde, act->newpde);
1050		}
1051}
1052
1053static void
1054pmap_update_pde_user(void *arg)
1055{
1056	struct pde_action *act = arg;
1057
1058	if (act->store == PCPU_GET(cpumask))
1059		pde_store(act->pde, act->newpde);
1060}
1061
1062static void
1063pmap_update_pde_teardown(void *arg)
1064{
1065	struct pde_action *act = arg;
1066
1067	if ((act->invalidate & PCPU_GET(cpumask)) != 0)
1068		pmap_update_pde_invalidate(act->va, act->newpde);
1069}
1070
1071/*
1072 * Change the page size for the specified virtual address in a way that
1073 * prevents any possibility of the TLB ever having two entries that map the
1074 * same virtual address using different page sizes.  This is the recommended
1075 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1076 * machine check exception for a TLB state that is improperly diagnosed as a
1077 * hardware error.
1078 */
1079static void
1080pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1081{
1082	struct pde_action act;
1083	cpumask_t active, cpumask;
1084
1085	sched_pin();
1086	cpumask = PCPU_GET(cpumask);
1087	if (pmap == kernel_pmap)
1088		active = all_cpus;
1089	else
1090		active = pmap->pm_active;
1091	if ((active & PCPU_GET(other_cpus)) != 0) {
1092		act.store = cpumask;
1093		act.invalidate = active;
1094		act.va = va;
1095		act.pde = pde;
1096		act.newpde = newpde;
1097		smp_rendezvous_cpus(cpumask | active,
1098		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1099		    pmap_update_pde_kernel : pmap_update_pde_user,
1100		    pmap_update_pde_teardown, &act);
1101	} else {
1102		if (pmap == kernel_pmap)
1103			pmap_kenter_pde(va, newpde);
1104		else
1105			pde_store(pde, newpde);
1106		if ((active & cpumask) != 0)
1107			pmap_update_pde_invalidate(va, newpde);
1108	}
1109	sched_unpin();
1110}
1111#else /* !SMP */
1112/*
1113 * Normal, non-SMP, 486+ invalidation functions.
1114 * We inline these within pmap.c for speed.
1115 */
1116PMAP_INLINE void
1117pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1118{
1119
1120	if (pmap == kernel_pmap || pmap->pm_active)
1121		invlpg(va);
1122}
1123
1124PMAP_INLINE void
1125pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1126{
1127	vm_offset_t addr;
1128
1129	if (pmap == kernel_pmap || pmap->pm_active)
1130		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1131			invlpg(addr);
1132}
1133
1134PMAP_INLINE void
1135pmap_invalidate_all(pmap_t pmap)
1136{
1137
1138	if (pmap == kernel_pmap || pmap->pm_active)
1139		invltlb();
1140}
1141
1142PMAP_INLINE void
1143pmap_invalidate_cache(void)
1144{
1145
1146	wbinvd();
1147}
1148
1149static void
1150pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1151{
1152
1153	if (pmap == kernel_pmap)
1154		pmap_kenter_pde(va, newpde);
1155	else
1156		pde_store(pde, newpde);
1157	if (pmap == kernel_pmap || pmap->pm_active)
1158		pmap_update_pde_invalidate(va, newpde);
1159}
1160#endif /* !SMP */
1161
1162void
1163pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1164{
1165
1166	KASSERT((sva & PAGE_MASK) == 0,
1167	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1168	KASSERT((eva & PAGE_MASK) == 0,
1169	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1170
1171	if (cpu_feature & CPUID_SS)
1172		; /* If "Self Snoop" is supported, do nothing. */
1173	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1174		 eva - sva < 2 * 1024 * 1024) {
1175
1176		/*
1177		 * Otherwise, do per-cache line flush.  Use the mfence
1178		 * instruction to insure that previous stores are
1179		 * included in the write-back.  The processor
1180		 * propagates flush to other processors in the cache
1181		 * coherence domain.
1182		 */
1183		mfence();
1184		for (; sva < eva; sva += cpu_clflush_line_size)
1185			clflush(sva);
1186		mfence();
1187	} else {
1188
1189		/*
1190		 * No targeted cache flush methods are supported by CPU,
1191		 * or the supplied range is bigger than 2MB.
1192		 * Globally invalidate cache.
1193		 */
1194		pmap_invalidate_cache();
1195	}
1196}
1197
1198/*
1199 * Are we current address space or kernel?  N.B. We return FALSE when
1200 * a pmap's page table is in use because a kernel thread is borrowing
1201 * it.  The borrowed page table can change spontaneously, making any
1202 * dependence on its continued use subject to a race condition.
1203 */
1204static __inline int
1205pmap_is_current(pmap_t pmap)
1206{
1207
1208	return (pmap == kernel_pmap ||
1209		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1210	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1211}
1212
1213/*
1214 * If the given pmap is not the current or kernel pmap, the returned pte must
1215 * be released by passing it to pmap_pte_release().
1216 */
1217pt_entry_t *
1218pmap_pte(pmap_t pmap, vm_offset_t va)
1219{
1220	pd_entry_t newpf;
1221	pd_entry_t *pde;
1222
1223	pde = pmap_pde(pmap, va);
1224	if (*pde & PG_PS)
1225		return (pde);
1226	if (*pde != 0) {
1227		/* are we current address space or kernel? */
1228		if (pmap_is_current(pmap))
1229			return (vtopte(va));
1230		mtx_lock(&PMAP2mutex);
1231		newpf = *pde & PG_FRAME;
1232		if ((*PMAP2 & PG_FRAME) != newpf) {
1233			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1234			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1235		}
1236		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1237	}
1238	return (0);
1239}
1240
1241/*
1242 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1243 * being NULL.
1244 */
1245static __inline void
1246pmap_pte_release(pt_entry_t *pte)
1247{
1248
1249	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1250		mtx_unlock(&PMAP2mutex);
1251}
1252
1253static __inline void
1254invlcaddr(void *caddr)
1255{
1256
1257	invlpg((u_int)caddr);
1258}
1259
1260/*
1261 * Super fast pmap_pte routine best used when scanning
1262 * the pv lists.  This eliminates many coarse-grained
1263 * invltlb calls.  Note that many of the pv list
1264 * scans are across different pmaps.  It is very wasteful
1265 * to do an entire invltlb for checking a single mapping.
1266 *
1267 * If the given pmap is not the current pmap, vm_page_queue_mtx
1268 * must be held and curthread pinned to a CPU.
1269 */
1270static pt_entry_t *
1271pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1272{
1273	pd_entry_t newpf;
1274	pd_entry_t *pde;
1275
1276	pde = pmap_pde(pmap, va);
1277	if (*pde & PG_PS)
1278		return (pde);
1279	if (*pde != 0) {
1280		/* are we current address space or kernel? */
1281		if (pmap_is_current(pmap))
1282			return (vtopte(va));
1283		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1284		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1285		newpf = *pde & PG_FRAME;
1286		if ((*PMAP1 & PG_FRAME) != newpf) {
1287			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1288#ifdef SMP
1289			PMAP1cpu = PCPU_GET(cpuid);
1290#endif
1291			invlcaddr(PADDR1);
1292			PMAP1changed++;
1293		} else
1294#ifdef SMP
1295		if (PMAP1cpu != PCPU_GET(cpuid)) {
1296			PMAP1cpu = PCPU_GET(cpuid);
1297			invlcaddr(PADDR1);
1298			PMAP1changedcpu++;
1299		} else
1300#endif
1301			PMAP1unchanged++;
1302		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1303	}
1304	return (0);
1305}
1306
1307/*
1308 *	Routine:	pmap_extract
1309 *	Function:
1310 *		Extract the physical page address associated
1311 *		with the given map/virtual_address pair.
1312 */
1313vm_paddr_t
1314pmap_extract(pmap_t pmap, vm_offset_t va)
1315{
1316	vm_paddr_t rtval;
1317	pt_entry_t *pte;
1318	pd_entry_t pde;
1319
1320	rtval = 0;
1321	PMAP_LOCK(pmap);
1322	pde = pmap->pm_pdir[va >> PDRSHIFT];
1323	if (pde != 0) {
1324		if ((pde & PG_PS) != 0)
1325			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1326		else {
1327			pte = pmap_pte(pmap, va);
1328			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1329			pmap_pte_release(pte);
1330		}
1331	}
1332	PMAP_UNLOCK(pmap);
1333	return (rtval);
1334}
1335
1336/*
1337 *	Routine:	pmap_extract_and_hold
1338 *	Function:
1339 *		Atomically extract and hold the physical page
1340 *		with the given pmap and virtual address pair
1341 *		if that mapping permits the given protection.
1342 */
1343vm_page_t
1344pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1345{
1346	pd_entry_t pde;
1347	pt_entry_t pte;
1348	vm_page_t m;
1349	vm_paddr_t pa;
1350
1351	pa = 0;
1352	m = NULL;
1353	PMAP_LOCK(pmap);
1354retry:
1355	pde = *pmap_pde(pmap, va);
1356	if (pde != 0) {
1357		if (pde & PG_PS) {
1358			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1359				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1360				       (va & PDRMASK), &pa))
1361					goto retry;
1362				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1363				    (va & PDRMASK));
1364				vm_page_hold(m);
1365			}
1366		} else {
1367			sched_pin();
1368			pte = *pmap_pte_quick(pmap, va);
1369			if (pte != 0 &&
1370			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1371				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1372					goto retry;
1373				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1374				vm_page_hold(m);
1375			}
1376			sched_unpin();
1377		}
1378	}
1379	PA_UNLOCK_COND(pa);
1380	PMAP_UNLOCK(pmap);
1381	return (m);
1382}
1383
1384/***************************************************
1385 * Low level mapping routines.....
1386 ***************************************************/
1387
1388/*
1389 * Add a wired page to the kva.
1390 * Note: not SMP coherent.
1391 */
1392PMAP_INLINE void
1393pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1394{
1395	pt_entry_t *pte;
1396
1397	pte = vtopte(va);
1398	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1399}
1400
1401static __inline void
1402pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1403{
1404	pt_entry_t *pte;
1405
1406	pte = vtopte(va);
1407	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1408}
1409
1410/*
1411 * Remove a page from the kernel pagetables.
1412 * Note: not SMP coherent.
1413 */
1414PMAP_INLINE void
1415pmap_kremove(vm_offset_t va)
1416{
1417	pt_entry_t *pte;
1418
1419	pte = vtopte(va);
1420	pte_clear(pte);
1421}
1422
1423/*
1424 *	Used to map a range of physical addresses into kernel
1425 *	virtual address space.
1426 *
1427 *	The value passed in '*virt' is a suggested virtual address for
1428 *	the mapping. Architectures which can support a direct-mapped
1429 *	physical to virtual region can return the appropriate address
1430 *	within that region, leaving '*virt' unchanged. Other
1431 *	architectures should map the pages starting at '*virt' and
1432 *	update '*virt' with the first usable address after the mapped
1433 *	region.
1434 */
1435vm_offset_t
1436pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1437{
1438	vm_offset_t va, sva;
1439
1440	va = sva = *virt;
1441	while (start < end) {
1442		pmap_kenter(va, start);
1443		va += PAGE_SIZE;
1444		start += PAGE_SIZE;
1445	}
1446	pmap_invalidate_range(kernel_pmap, sva, va);
1447	*virt = va;
1448	return (sva);
1449}
1450
1451
1452/*
1453 * Add a list of wired pages to the kva
1454 * this routine is only used for temporary
1455 * kernel mappings that do not need to have
1456 * page modification or references recorded.
1457 * Note that old mappings are simply written
1458 * over.  The page *must* be wired.
1459 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1460 */
1461void
1462pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1463{
1464	pt_entry_t *endpte, oldpte, *pte;
1465
1466	oldpte = 0;
1467	pte = vtopte(sva);
1468	endpte = pte + count;
1469	while (pte < endpte) {
1470		oldpte |= *pte;
1471		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1472		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1473		pte++;
1474		ma++;
1475	}
1476	if ((oldpte & PG_V) != 0)
1477		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1478		    PAGE_SIZE);
1479}
1480
1481/*
1482 * This routine tears out page mappings from the
1483 * kernel -- it is meant only for temporary mappings.
1484 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1485 */
1486void
1487pmap_qremove(vm_offset_t sva, int count)
1488{
1489	vm_offset_t va;
1490
1491	va = sva;
1492	while (count-- > 0) {
1493		pmap_kremove(va);
1494		va += PAGE_SIZE;
1495	}
1496	pmap_invalidate_range(kernel_pmap, sva, va);
1497}
1498
1499/***************************************************
1500 * Page table page management routines.....
1501 ***************************************************/
1502static __inline void
1503pmap_free_zero_pages(vm_page_t free)
1504{
1505	vm_page_t m;
1506
1507	while (free != NULL) {
1508		m = free;
1509		free = m->right;
1510		/* Preserve the page's PG_ZERO setting. */
1511		vm_page_free_toq(m);
1512	}
1513}
1514
1515/*
1516 * Schedule the specified unused page table page to be freed.  Specifically,
1517 * add the page to the specified list of pages that will be released to the
1518 * physical memory manager after the TLB has been updated.
1519 */
1520static __inline void
1521pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1522{
1523
1524	if (set_PG_ZERO)
1525		m->flags |= PG_ZERO;
1526	else
1527		m->flags &= ~PG_ZERO;
1528	m->right = *free;
1529	*free = m;
1530}
1531
1532/*
1533 * Inserts the specified page table page into the specified pmap's collection
1534 * of idle page table pages.  Each of a pmap's page table pages is responsible
1535 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1536 * ordered by this virtual address range.
1537 */
1538static void
1539pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1540{
1541	vm_page_t root;
1542
1543	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1544	root = pmap->pm_root;
1545	if (root == NULL) {
1546		mpte->left = NULL;
1547		mpte->right = NULL;
1548	} else {
1549		root = vm_page_splay(mpte->pindex, root);
1550		if (mpte->pindex < root->pindex) {
1551			mpte->left = root->left;
1552			mpte->right = root;
1553			root->left = NULL;
1554		} else if (mpte->pindex == root->pindex)
1555			panic("pmap_insert_pt_page: pindex already inserted");
1556		else {
1557			mpte->right = root->right;
1558			mpte->left = root;
1559			root->right = NULL;
1560		}
1561	}
1562	pmap->pm_root = mpte;
1563}
1564
1565/*
1566 * Looks for a page table page mapping the specified virtual address in the
1567 * specified pmap's collection of idle page table pages.  Returns NULL if there
1568 * is no page table page corresponding to the specified virtual address.
1569 */
1570static vm_page_t
1571pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1572{
1573	vm_page_t mpte;
1574	vm_pindex_t pindex = va >> PDRSHIFT;
1575
1576	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1577	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1578		mpte = vm_page_splay(pindex, mpte);
1579		if ((pmap->pm_root = mpte)->pindex != pindex)
1580			mpte = NULL;
1581	}
1582	return (mpte);
1583}
1584
1585/*
1586 * Removes the specified page table page from the specified pmap's collection
1587 * of idle page table pages.  The specified page table page must be a member of
1588 * the pmap's collection.
1589 */
1590static void
1591pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1592{
1593	vm_page_t root;
1594
1595	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1596	if (mpte != pmap->pm_root)
1597		vm_page_splay(mpte->pindex, pmap->pm_root);
1598	if (mpte->left == NULL)
1599		root = mpte->right;
1600	else {
1601		root = vm_page_splay(mpte->pindex, mpte->left);
1602		root->right = mpte->right;
1603	}
1604	pmap->pm_root = root;
1605}
1606
1607/*
1608 * This routine unholds page table pages, and if the hold count
1609 * drops to zero, then it decrements the wire count.
1610 */
1611static __inline int
1612pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1613{
1614
1615	--m->wire_count;
1616	if (m->wire_count == 0)
1617		return (_pmap_unwire_pte_hold(pmap, m, free));
1618	else
1619		return (0);
1620}
1621
1622static int
1623_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1624{
1625	vm_offset_t pteva;
1626
1627	/*
1628	 * unmap the page table page
1629	 */
1630	pmap->pm_pdir[m->pindex] = 0;
1631	--pmap->pm_stats.resident_count;
1632
1633	/*
1634	 * This is a release store so that the ordinary store unmapping
1635	 * the page table page is globally performed before TLB shoot-
1636	 * down is begun.
1637	 */
1638	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1639
1640	/*
1641	 * Do an invltlb to make the invalidated mapping
1642	 * take effect immediately.
1643	 */
1644	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1645	pmap_invalidate_page(pmap, pteva);
1646
1647	/*
1648	 * Put page on a list so that it is released after
1649	 * *ALL* TLB shootdown is done
1650	 */
1651	pmap_add_delayed_free_list(m, free, TRUE);
1652
1653	return (1);
1654}
1655
1656/*
1657 * After removing a page table entry, this routine is used to
1658 * conditionally free the page, and manage the hold/wire counts.
1659 */
1660static int
1661pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1662{
1663	pd_entry_t ptepde;
1664	vm_page_t mpte;
1665
1666	if (va >= VM_MAXUSER_ADDRESS)
1667		return (0);
1668	ptepde = *pmap_pde(pmap, va);
1669	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1670	return (pmap_unwire_pte_hold(pmap, mpte, free));
1671}
1672
1673void
1674pmap_pinit0(pmap_t pmap)
1675{
1676
1677	PMAP_LOCK_INIT(pmap);
1678	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1679#ifdef PAE
1680	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1681#endif
1682	pmap->pm_root = NULL;
1683	pmap->pm_active = 0;
1684	PCPU_SET(curpmap, pmap);
1685	TAILQ_INIT(&pmap->pm_pvchunk);
1686	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1687	mtx_lock_spin(&allpmaps_lock);
1688	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1689	mtx_unlock_spin(&allpmaps_lock);
1690}
1691
1692/*
1693 * Initialize a preallocated and zeroed pmap structure,
1694 * such as one in a vmspace structure.
1695 */
1696int
1697pmap_pinit(pmap_t pmap)
1698{
1699	vm_page_t m, ptdpg[NPGPTD];
1700	vm_paddr_t pa;
1701	static int color;
1702	int i;
1703
1704	PMAP_LOCK_INIT(pmap);
1705
1706	/*
1707	 * No need to allocate page table space yet but we do need a valid
1708	 * page directory table.
1709	 */
1710	if (pmap->pm_pdir == NULL) {
1711		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1712		    NBPTD);
1713
1714		if (pmap->pm_pdir == NULL) {
1715			PMAP_LOCK_DESTROY(pmap);
1716			return (0);
1717		}
1718#ifdef PAE
1719		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1720		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1721		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1722		    ("pmap_pinit: pdpt misaligned"));
1723		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1724		    ("pmap_pinit: pdpt above 4g"));
1725#endif
1726		pmap->pm_root = NULL;
1727	}
1728	KASSERT(pmap->pm_root == NULL,
1729	    ("pmap_pinit: pmap has reserved page table page(s)"));
1730
1731	/*
1732	 * allocate the page directory page(s)
1733	 */
1734	for (i = 0; i < NPGPTD;) {
1735		m = vm_page_alloc(NULL, color++,
1736		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1737		    VM_ALLOC_ZERO);
1738		if (m == NULL)
1739			VM_WAIT;
1740		else {
1741			ptdpg[i++] = m;
1742		}
1743	}
1744
1745	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1746
1747	for (i = 0; i < NPGPTD; i++) {
1748		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1749			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1750	}
1751
1752	mtx_lock_spin(&allpmaps_lock);
1753	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1754	mtx_unlock_spin(&allpmaps_lock);
1755	/* Wire in kernel global address entries. */
1756	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1757
1758	/* install self-referential address mapping entry(s) */
1759	for (i = 0; i < NPGPTD; i++) {
1760		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1761		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1762#ifdef PAE
1763		pmap->pm_pdpt[i] = pa | PG_V;
1764#endif
1765	}
1766
1767	pmap->pm_active = 0;
1768	TAILQ_INIT(&pmap->pm_pvchunk);
1769	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1770
1771	return (1);
1772}
1773
1774/*
1775 * this routine is called if the page table page is not
1776 * mapped correctly.
1777 */
1778static vm_page_t
1779_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1780{
1781	vm_paddr_t ptepa;
1782	vm_page_t m;
1783
1784	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1785	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1786	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1787
1788	/*
1789	 * Allocate a page table page.
1790	 */
1791	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1792	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1793		if (flags & M_WAITOK) {
1794			PMAP_UNLOCK(pmap);
1795			vm_page_unlock_queues();
1796			VM_WAIT;
1797			vm_page_lock_queues();
1798			PMAP_LOCK(pmap);
1799		}
1800
1801		/*
1802		 * Indicate the need to retry.  While waiting, the page table
1803		 * page may have been allocated.
1804		 */
1805		return (NULL);
1806	}
1807	if ((m->flags & PG_ZERO) == 0)
1808		pmap_zero_page(m);
1809
1810	/*
1811	 * Map the pagetable page into the process address space, if
1812	 * it isn't already there.
1813	 */
1814
1815	pmap->pm_stats.resident_count++;
1816
1817	ptepa = VM_PAGE_TO_PHYS(m);
1818	pmap->pm_pdir[ptepindex] =
1819		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1820
1821	return (m);
1822}
1823
1824static vm_page_t
1825pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1826{
1827	unsigned ptepindex;
1828	pd_entry_t ptepa;
1829	vm_page_t m;
1830
1831	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1832	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1833	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1834
1835	/*
1836	 * Calculate pagetable page index
1837	 */
1838	ptepindex = va >> PDRSHIFT;
1839retry:
1840	/*
1841	 * Get the page directory entry
1842	 */
1843	ptepa = pmap->pm_pdir[ptepindex];
1844
1845	/*
1846	 * This supports switching from a 4MB page to a
1847	 * normal 4K page.
1848	 */
1849	if (ptepa & PG_PS) {
1850		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1851		ptepa = pmap->pm_pdir[ptepindex];
1852	}
1853
1854	/*
1855	 * If the page table page is mapped, we just increment the
1856	 * hold count, and activate it.
1857	 */
1858	if (ptepa) {
1859		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1860		m->wire_count++;
1861	} else {
1862		/*
1863		 * Here if the pte page isn't mapped, or if it has
1864		 * been deallocated.
1865		 */
1866		m = _pmap_allocpte(pmap, ptepindex, flags);
1867		if (m == NULL && (flags & M_WAITOK))
1868			goto retry;
1869	}
1870	return (m);
1871}
1872
1873
1874/***************************************************
1875* Pmap allocation/deallocation routines.
1876 ***************************************************/
1877
1878#ifdef SMP
1879/*
1880 * Deal with a SMP shootdown of other users of the pmap that we are
1881 * trying to dispose of.  This can be a bit hairy.
1882 */
1883static cpumask_t *lazymask;
1884static u_int lazyptd;
1885static volatile u_int lazywait;
1886
1887void pmap_lazyfix_action(void);
1888
1889void
1890pmap_lazyfix_action(void)
1891{
1892	cpumask_t mymask = PCPU_GET(cpumask);
1893
1894#ifdef COUNT_IPIS
1895	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1896#endif
1897	if (rcr3() == lazyptd)
1898		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1899	atomic_clear_int(lazymask, mymask);
1900	atomic_store_rel_int(&lazywait, 1);
1901}
1902
1903static void
1904pmap_lazyfix_self(cpumask_t mymask)
1905{
1906
1907	if (rcr3() == lazyptd)
1908		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1909	atomic_clear_int(lazymask, mymask);
1910}
1911
1912
1913static void
1914pmap_lazyfix(pmap_t pmap)
1915{
1916	cpumask_t mymask, mask;
1917	u_int spins;
1918
1919	while ((mask = pmap->pm_active) != 0) {
1920		spins = 50000000;
1921		mask = mask & -mask;	/* Find least significant set bit */
1922		mtx_lock_spin(&smp_ipi_mtx);
1923#ifdef PAE
1924		lazyptd = vtophys(pmap->pm_pdpt);
1925#else
1926		lazyptd = vtophys(pmap->pm_pdir);
1927#endif
1928		mymask = PCPU_GET(cpumask);
1929		if (mask == mymask) {
1930			lazymask = &pmap->pm_active;
1931			pmap_lazyfix_self(mymask);
1932		} else {
1933			atomic_store_rel_int((u_int *)&lazymask,
1934			    (u_int)&pmap->pm_active);
1935			atomic_store_rel_int(&lazywait, 0);
1936			ipi_selected(mask, IPI_LAZYPMAP);
1937			while (lazywait == 0) {
1938				ia32_pause();
1939				if (--spins == 0)
1940					break;
1941			}
1942		}
1943		mtx_unlock_spin(&smp_ipi_mtx);
1944		if (spins == 0)
1945			printf("pmap_lazyfix: spun for 50000000\n");
1946	}
1947}
1948
1949#else	/* SMP */
1950
1951/*
1952 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1953 * unlikely to have to even execute this code, including the fact
1954 * that the cleanup is deferred until the parent does a wait(2), which
1955 * means that another userland process has run.
1956 */
1957static void
1958pmap_lazyfix(pmap_t pmap)
1959{
1960	u_int cr3;
1961
1962	cr3 = vtophys(pmap->pm_pdir);
1963	if (cr3 == rcr3()) {
1964		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1965		pmap->pm_active &= ~(PCPU_GET(cpumask));
1966	}
1967}
1968#endif	/* SMP */
1969
1970/*
1971 * Release any resources held by the given physical map.
1972 * Called when a pmap initialized by pmap_pinit is being released.
1973 * Should only be called if the map contains no valid mappings.
1974 */
1975void
1976pmap_release(pmap_t pmap)
1977{
1978	vm_page_t m, ptdpg[NPGPTD];
1979	int i;
1980
1981	KASSERT(pmap->pm_stats.resident_count == 0,
1982	    ("pmap_release: pmap resident count %ld != 0",
1983	    pmap->pm_stats.resident_count));
1984	KASSERT(pmap->pm_root == NULL,
1985	    ("pmap_release: pmap has reserved page table page(s)"));
1986
1987	pmap_lazyfix(pmap);
1988	mtx_lock_spin(&allpmaps_lock);
1989	LIST_REMOVE(pmap, pm_list);
1990	mtx_unlock_spin(&allpmaps_lock);
1991
1992	for (i = 0; i < NPGPTD; i++)
1993		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1994		    PG_FRAME);
1995
1996	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1997	    sizeof(*pmap->pm_pdir));
1998
1999	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2000
2001	for (i = 0; i < NPGPTD; i++) {
2002		m = ptdpg[i];
2003#ifdef PAE
2004		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2005		    ("pmap_release: got wrong ptd page"));
2006#endif
2007		m->wire_count--;
2008		atomic_subtract_int(&cnt.v_wire_count, 1);
2009		vm_page_free_zero(m);
2010	}
2011	PMAP_LOCK_DESTROY(pmap);
2012}
2013
2014static int
2015kvm_size(SYSCTL_HANDLER_ARGS)
2016{
2017	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2018
2019	return (sysctl_handle_long(oidp, &ksize, 0, req));
2020}
2021SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2022    0, 0, kvm_size, "IU", "Size of KVM");
2023
2024static int
2025kvm_free(SYSCTL_HANDLER_ARGS)
2026{
2027	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2028
2029	return (sysctl_handle_long(oidp, &kfree, 0, req));
2030}
2031SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2032    0, 0, kvm_free, "IU", "Amount of KVM free");
2033
2034/*
2035 * grow the number of kernel page table entries, if needed
2036 */
2037void
2038pmap_growkernel(vm_offset_t addr)
2039{
2040	vm_paddr_t ptppaddr;
2041	vm_page_t nkpg;
2042	pd_entry_t newpdir;
2043
2044	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2045	addr = roundup2(addr, NBPDR);
2046	if (addr - 1 >= kernel_map->max_offset)
2047		addr = kernel_map->max_offset;
2048	while (kernel_vm_end < addr) {
2049		if (pdir_pde(PTD, kernel_vm_end)) {
2050			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2051			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2052				kernel_vm_end = kernel_map->max_offset;
2053				break;
2054			}
2055			continue;
2056		}
2057
2058		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2059		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2060		    VM_ALLOC_ZERO);
2061		if (nkpg == NULL)
2062			panic("pmap_growkernel: no memory to grow kernel");
2063
2064		nkpt++;
2065
2066		if ((nkpg->flags & PG_ZERO) == 0)
2067			pmap_zero_page(nkpg);
2068		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2069		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2070		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2071
2072		pmap_kenter_pde(kernel_vm_end, newpdir);
2073		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2074		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2075			kernel_vm_end = kernel_map->max_offset;
2076			break;
2077		}
2078	}
2079}
2080
2081
2082/***************************************************
2083 * page management routines.
2084 ***************************************************/
2085
2086CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2087CTASSERT(_NPCM == 11);
2088
2089static __inline struct pv_chunk *
2090pv_to_chunk(pv_entry_t pv)
2091{
2092
2093	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2094}
2095
2096#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2097
2098#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2099#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2100
2101static uint32_t pc_freemask[11] = {
2102	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2103	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2104	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2105	PC_FREE0_9, PC_FREE10
2106};
2107
2108SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2109	"Current number of pv entries");
2110
2111#ifdef PV_STATS
2112static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2113
2114SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2115	"Current number of pv entry chunks");
2116SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2117	"Current number of pv entry chunks allocated");
2118SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2119	"Current number of pv entry chunks frees");
2120SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2121	"Number of times tried to get a chunk page but failed.");
2122
2123static long pv_entry_frees, pv_entry_allocs;
2124static int pv_entry_spare;
2125
2126SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2127	"Current number of pv entry frees");
2128SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2129	"Current number of pv entry allocs");
2130SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2131	"Current number of spare pv entries");
2132
2133static int pmap_collect_inactive, pmap_collect_active;
2134
2135SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2136	"Current number times pmap_collect called on inactive queue");
2137SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2138	"Current number times pmap_collect called on active queue");
2139#endif
2140
2141/*
2142 * We are in a serious low memory condition.  Resort to
2143 * drastic measures to free some pages so we can allocate
2144 * another pv entry chunk.  This is normally called to
2145 * unmap inactive pages, and if necessary, active pages.
2146 */
2147static void
2148pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2149{
2150	pd_entry_t *pde;
2151	pmap_t pmap;
2152	pt_entry_t *pte, tpte;
2153	pv_entry_t next_pv, pv;
2154	vm_offset_t va;
2155	vm_page_t m, free;
2156
2157	sched_pin();
2158	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2159		if (m->hold_count || m->busy)
2160			continue;
2161		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2162			va = pv->pv_va;
2163			pmap = PV_PMAP(pv);
2164			/* Avoid deadlock and lock recursion. */
2165			if (pmap > locked_pmap)
2166				PMAP_LOCK(pmap);
2167			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2168				continue;
2169			pmap->pm_stats.resident_count--;
2170			pde = pmap_pde(pmap, va);
2171			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2172			    " a 4mpage in page %p's pv list", m));
2173			pte = pmap_pte_quick(pmap, va);
2174			tpte = pte_load_clear(pte);
2175			KASSERT((tpte & PG_W) == 0,
2176			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2177			if (tpte & PG_A)
2178				vm_page_flag_set(m, PG_REFERENCED);
2179			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2180				vm_page_dirty(m);
2181			free = NULL;
2182			pmap_unuse_pt(pmap, va, &free);
2183			pmap_invalidate_page(pmap, va);
2184			pmap_free_zero_pages(free);
2185			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2186			free_pv_entry(pmap, pv);
2187			if (pmap != locked_pmap)
2188				PMAP_UNLOCK(pmap);
2189		}
2190		if (TAILQ_EMPTY(&m->md.pv_list) &&
2191		    TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list))
2192			vm_page_flag_clear(m, PG_WRITEABLE);
2193	}
2194	sched_unpin();
2195}
2196
2197
2198/*
2199 * free the pv_entry back to the free list
2200 */
2201static void
2202free_pv_entry(pmap_t pmap, pv_entry_t pv)
2203{
2204	vm_page_t m;
2205	struct pv_chunk *pc;
2206	int idx, field, bit;
2207
2208	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2209	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2210	PV_STAT(pv_entry_frees++);
2211	PV_STAT(pv_entry_spare++);
2212	pv_entry_count--;
2213	pc = pv_to_chunk(pv);
2214	idx = pv - &pc->pc_pventry[0];
2215	field = idx / 32;
2216	bit = idx % 32;
2217	pc->pc_map[field] |= 1ul << bit;
2218	/* move to head of list */
2219	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2220	for (idx = 0; idx < _NPCM; idx++)
2221		if (pc->pc_map[idx] != pc_freemask[idx]) {
2222			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2223			return;
2224		}
2225	PV_STAT(pv_entry_spare -= _NPCPV);
2226	PV_STAT(pc_chunk_count--);
2227	PV_STAT(pc_chunk_frees++);
2228	/* entire chunk is free, return it */
2229	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2230	pmap_qremove((vm_offset_t)pc, 1);
2231	vm_page_unwire(m, 0);
2232	vm_page_free(m);
2233	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2234}
2235
2236/*
2237 * get a new pv_entry, allocating a block from the system
2238 * when needed.
2239 */
2240static pv_entry_t
2241get_pv_entry(pmap_t pmap, int try)
2242{
2243	static const struct timeval printinterval = { 60, 0 };
2244	static struct timeval lastprint;
2245	static vm_pindex_t colour;
2246	struct vpgqueues *pq;
2247	int bit, field;
2248	pv_entry_t pv;
2249	struct pv_chunk *pc;
2250	vm_page_t m;
2251
2252	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2253	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2254	PV_STAT(pv_entry_allocs++);
2255	pv_entry_count++;
2256	if (pv_entry_count > pv_entry_high_water)
2257		if (ratecheck(&lastprint, &printinterval))
2258			printf("Approaching the limit on PV entries, consider "
2259			    "increasing either the vm.pmap.shpgperproc or the "
2260			    "vm.pmap.pv_entry_max tunable.\n");
2261	pq = NULL;
2262retry:
2263	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2264	if (pc != NULL) {
2265		for (field = 0; field < _NPCM; field++) {
2266			if (pc->pc_map[field]) {
2267				bit = bsfl(pc->pc_map[field]);
2268				break;
2269			}
2270		}
2271		if (field < _NPCM) {
2272			pv = &pc->pc_pventry[field * 32 + bit];
2273			pc->pc_map[field] &= ~(1ul << bit);
2274			/* If this was the last item, move it to tail */
2275			for (field = 0; field < _NPCM; field++)
2276				if (pc->pc_map[field] != 0) {
2277					PV_STAT(pv_entry_spare--);
2278					return (pv);	/* not full, return */
2279				}
2280			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2281			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2282			PV_STAT(pv_entry_spare--);
2283			return (pv);
2284		}
2285	}
2286	/*
2287	 * Access to the ptelist "pv_vafree" is synchronized by the page
2288	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2289	 * remain non-empty until pmap_ptelist_alloc() completes.
2290	 */
2291	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2292	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2293	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2294		if (try) {
2295			pv_entry_count--;
2296			PV_STAT(pc_chunk_tryfail++);
2297			return (NULL);
2298		}
2299		/*
2300		 * Reclaim pv entries: At first, destroy mappings to
2301		 * inactive pages.  After that, if a pv chunk entry
2302		 * is still needed, destroy mappings to active pages.
2303		 */
2304		if (pq == NULL) {
2305			PV_STAT(pmap_collect_inactive++);
2306			pq = &vm_page_queues[PQ_INACTIVE];
2307		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2308			PV_STAT(pmap_collect_active++);
2309			pq = &vm_page_queues[PQ_ACTIVE];
2310		} else
2311			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2312		pmap_collect(pmap, pq);
2313		goto retry;
2314	}
2315	PV_STAT(pc_chunk_count++);
2316	PV_STAT(pc_chunk_allocs++);
2317	colour++;
2318	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2319	pmap_qenter((vm_offset_t)pc, &m, 1);
2320	pc->pc_pmap = pmap;
2321	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2322	for (field = 1; field < _NPCM; field++)
2323		pc->pc_map[field] = pc_freemask[field];
2324	pv = &pc->pc_pventry[0];
2325	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2326	PV_STAT(pv_entry_spare += _NPCPV - 1);
2327	return (pv);
2328}
2329
2330static __inline pv_entry_t
2331pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2332{
2333	pv_entry_t pv;
2334
2335	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2336	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2337		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2338			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2339			break;
2340		}
2341	}
2342	return (pv);
2343}
2344
2345static void
2346pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2347{
2348	struct md_page *pvh;
2349	pv_entry_t pv;
2350	vm_offset_t va_last;
2351	vm_page_t m;
2352
2353	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2354	KASSERT((pa & PDRMASK) == 0,
2355	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2356
2357	/*
2358	 * Transfer the 4mpage's pv entry for this mapping to the first
2359	 * page's pv list.
2360	 */
2361	pvh = pa_to_pvh(pa);
2362	va = trunc_4mpage(va);
2363	pv = pmap_pvh_remove(pvh, pmap, va);
2364	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2365	m = PHYS_TO_VM_PAGE(pa);
2366	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2367	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2368	va_last = va + NBPDR - PAGE_SIZE;
2369	do {
2370		m++;
2371		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2372		    ("pmap_pv_demote_pde: page %p is not managed", m));
2373		va += PAGE_SIZE;
2374		pmap_insert_entry(pmap, va, m);
2375	} while (va < va_last);
2376}
2377
2378static void
2379pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2380{
2381	struct md_page *pvh;
2382	pv_entry_t pv;
2383	vm_offset_t va_last;
2384	vm_page_t m;
2385
2386	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2387	KASSERT((pa & PDRMASK) == 0,
2388	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2389
2390	/*
2391	 * Transfer the first page's pv entry for this mapping to the
2392	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2393	 * to get_pv_entry(), a transfer avoids the possibility that
2394	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2395	 * removes one of the mappings that is being promoted.
2396	 */
2397	m = PHYS_TO_VM_PAGE(pa);
2398	va = trunc_4mpage(va);
2399	pv = pmap_pvh_remove(&m->md, pmap, va);
2400	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2401	pvh = pa_to_pvh(pa);
2402	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2403	/* Free the remaining NPTEPG - 1 pv entries. */
2404	va_last = va + NBPDR - PAGE_SIZE;
2405	do {
2406		m++;
2407		va += PAGE_SIZE;
2408		pmap_pvh_free(&m->md, pmap, va);
2409	} while (va < va_last);
2410}
2411
2412static void
2413pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2414{
2415	pv_entry_t pv;
2416
2417	pv = pmap_pvh_remove(pvh, pmap, va);
2418	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2419	free_pv_entry(pmap, pv);
2420}
2421
2422static void
2423pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2424{
2425	struct md_page *pvh;
2426
2427	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2428	pmap_pvh_free(&m->md, pmap, va);
2429	if (TAILQ_EMPTY(&m->md.pv_list)) {
2430		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2431		if (TAILQ_EMPTY(&pvh->pv_list))
2432			vm_page_flag_clear(m, PG_WRITEABLE);
2433	}
2434}
2435
2436/*
2437 * Create a pv entry for page at pa for
2438 * (pmap, va).
2439 */
2440static void
2441pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2442{
2443	pv_entry_t pv;
2444
2445	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2446	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2447	pv = get_pv_entry(pmap, FALSE);
2448	pv->pv_va = va;
2449	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2450}
2451
2452/*
2453 * Conditionally create a pv entry.
2454 */
2455static boolean_t
2456pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2457{
2458	pv_entry_t pv;
2459
2460	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2461	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2462	if (pv_entry_count < pv_entry_high_water &&
2463	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2464		pv->pv_va = va;
2465		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2466		return (TRUE);
2467	} else
2468		return (FALSE);
2469}
2470
2471/*
2472 * Create the pv entries for each of the pages within a superpage.
2473 */
2474static boolean_t
2475pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2476{
2477	struct md_page *pvh;
2478	pv_entry_t pv;
2479
2480	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2481	if (pv_entry_count < pv_entry_high_water &&
2482	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2483		pv->pv_va = va;
2484		pvh = pa_to_pvh(pa);
2485		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2486		return (TRUE);
2487	} else
2488		return (FALSE);
2489}
2490
2491/*
2492 * Fills a page table page with mappings to consecutive physical pages.
2493 */
2494static void
2495pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2496{
2497	pt_entry_t *pte;
2498
2499	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2500		*pte = newpte;
2501		newpte += PAGE_SIZE;
2502	}
2503}
2504
2505/*
2506 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2507 * 2- or 4MB page mapping is invalidated.
2508 */
2509static boolean_t
2510pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2511{
2512	pd_entry_t newpde, oldpde;
2513	pt_entry_t *firstpte, newpte;
2514	vm_paddr_t mptepa;
2515	vm_page_t free, mpte;
2516
2517	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2518	oldpde = *pde;
2519	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2520	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2521	mpte = pmap_lookup_pt_page(pmap, va);
2522	if (mpte != NULL)
2523		pmap_remove_pt_page(pmap, mpte);
2524	else {
2525		KASSERT((oldpde & PG_W) == 0,
2526		    ("pmap_demote_pde: page table page for a wired mapping"
2527		    " is missing"));
2528
2529		/*
2530		 * Invalidate the 2- or 4MB page mapping and return
2531		 * "failure" if the mapping was never accessed or the
2532		 * allocation of the new page table page fails.
2533		 */
2534		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2535		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2536		    VM_ALLOC_WIRED)) == NULL) {
2537			free = NULL;
2538			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2539			pmap_invalidate_page(pmap, trunc_4mpage(va));
2540			pmap_free_zero_pages(free);
2541			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2542			    " in pmap %p", va, pmap);
2543			return (FALSE);
2544		}
2545		if (va < VM_MAXUSER_ADDRESS)
2546			pmap->pm_stats.resident_count++;
2547	}
2548	mptepa = VM_PAGE_TO_PHYS(mpte);
2549
2550	/*
2551	 * If the page mapping is in the kernel's address space, then the
2552	 * KPTmap can provide access to the page table page.  Otherwise,
2553	 * temporarily map the page table page (mpte) into the kernel's
2554	 * address space at either PADDR1 or PADDR2.
2555	 */
2556	if (va >= KERNBASE)
2557		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2558	else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2559		if ((*PMAP1 & PG_FRAME) != mptepa) {
2560			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2561#ifdef SMP
2562			PMAP1cpu = PCPU_GET(cpuid);
2563#endif
2564			invlcaddr(PADDR1);
2565			PMAP1changed++;
2566		} else
2567#ifdef SMP
2568		if (PMAP1cpu != PCPU_GET(cpuid)) {
2569			PMAP1cpu = PCPU_GET(cpuid);
2570			invlcaddr(PADDR1);
2571			PMAP1changedcpu++;
2572		} else
2573#endif
2574			PMAP1unchanged++;
2575		firstpte = PADDR1;
2576	} else {
2577		mtx_lock(&PMAP2mutex);
2578		if ((*PMAP2 & PG_FRAME) != mptepa) {
2579			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2580			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2581		}
2582		firstpte = PADDR2;
2583	}
2584	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2585	KASSERT((oldpde & PG_A) != 0,
2586	    ("pmap_demote_pde: oldpde is missing PG_A"));
2587	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2588	    ("pmap_demote_pde: oldpde is missing PG_M"));
2589	newpte = oldpde & ~PG_PS;
2590	if ((newpte & PG_PDE_PAT) != 0)
2591		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2592
2593	/*
2594	 * If the page table page is new, initialize it.
2595	 */
2596	if (mpte->wire_count == 1) {
2597		mpte->wire_count = NPTEPG;
2598		pmap_fill_ptp(firstpte, newpte);
2599	}
2600	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2601	    ("pmap_demote_pde: firstpte and newpte map different physical"
2602	    " addresses"));
2603
2604	/*
2605	 * If the mapping has changed attributes, update the page table
2606	 * entries.
2607	 */
2608	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2609		pmap_fill_ptp(firstpte, newpte);
2610
2611	/*
2612	 * Demote the mapping.  This pmap is locked.  The old PDE has
2613	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2614	 * set.  Thus, there is no danger of a race with another
2615	 * processor changing the setting of PG_A and/or PG_M between
2616	 * the read above and the store below.
2617	 */
2618	if (workaround_erratum383)
2619		pmap_update_pde(pmap, va, pde, newpde);
2620	else if (pmap == kernel_pmap)
2621		pmap_kenter_pde(va, newpde);
2622	else
2623		pde_store(pde, newpde);
2624	if (firstpte == PADDR2)
2625		mtx_unlock(&PMAP2mutex);
2626
2627	/*
2628	 * Invalidate the recursive mapping of the page table page.
2629	 */
2630	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2631
2632	/*
2633	 * Demote the pv entry.  This depends on the earlier demotion
2634	 * of the mapping.  Specifically, the (re)creation of a per-
2635	 * page pv entry might trigger the execution of pmap_collect(),
2636	 * which might reclaim a newly (re)created per-page pv entry
2637	 * and destroy the associated mapping.  In order to destroy
2638	 * the mapping, the PDE must have already changed from mapping
2639	 * the 2mpage to referencing the page table page.
2640	 */
2641	if ((oldpde & PG_MANAGED) != 0)
2642		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2643
2644	pmap_pde_demotions++;
2645	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2646	    " in pmap %p", va, pmap);
2647	return (TRUE);
2648}
2649
2650/*
2651 * pmap_remove_pde: do the things to unmap a superpage in a process
2652 */
2653static void
2654pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2655    vm_page_t *free)
2656{
2657	struct md_page *pvh;
2658	pd_entry_t oldpde;
2659	vm_offset_t eva, va;
2660	vm_page_t m, mpte;
2661
2662	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2663	KASSERT((sva & PDRMASK) == 0,
2664	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2665	oldpde = pte_load_clear(pdq);
2666	if (oldpde & PG_W)
2667		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2668
2669	/*
2670	 * Machines that don't support invlpg, also don't support
2671	 * PG_G.
2672	 */
2673	if (oldpde & PG_G)
2674		pmap_invalidate_page(kernel_pmap, sva);
2675	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2676	if (oldpde & PG_MANAGED) {
2677		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2678		pmap_pvh_free(pvh, pmap, sva);
2679		eva = sva + NBPDR;
2680		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2681		    va < eva; va += PAGE_SIZE, m++) {
2682			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2683				vm_page_dirty(m);
2684			if (oldpde & PG_A)
2685				vm_page_flag_set(m, PG_REFERENCED);
2686			if (TAILQ_EMPTY(&m->md.pv_list) &&
2687			    TAILQ_EMPTY(&pvh->pv_list))
2688				vm_page_flag_clear(m, PG_WRITEABLE);
2689		}
2690	}
2691	if (pmap == kernel_pmap) {
2692		if (!pmap_demote_pde(pmap, pdq, sva))
2693			panic("pmap_remove_pde: failed demotion");
2694	} else {
2695		mpte = pmap_lookup_pt_page(pmap, sva);
2696		if (mpte != NULL) {
2697			pmap_remove_pt_page(pmap, mpte);
2698			pmap->pm_stats.resident_count--;
2699			KASSERT(mpte->wire_count == NPTEPG,
2700			    ("pmap_remove_pde: pte page wire count error"));
2701			mpte->wire_count = 0;
2702			pmap_add_delayed_free_list(mpte, free, FALSE);
2703			atomic_subtract_int(&cnt.v_wire_count, 1);
2704		}
2705	}
2706}
2707
2708/*
2709 * pmap_remove_pte: do the things to unmap a page in a process
2710 */
2711static int
2712pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2713{
2714	pt_entry_t oldpte;
2715	vm_page_t m;
2716
2717	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2718	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2719	oldpte = pte_load_clear(ptq);
2720	if (oldpte & PG_W)
2721		pmap->pm_stats.wired_count -= 1;
2722	/*
2723	 * Machines that don't support invlpg, also don't support
2724	 * PG_G.
2725	 */
2726	if (oldpte & PG_G)
2727		pmap_invalidate_page(kernel_pmap, va);
2728	pmap->pm_stats.resident_count -= 1;
2729	if (oldpte & PG_MANAGED) {
2730		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2731		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2732			vm_page_dirty(m);
2733		if (oldpte & PG_A)
2734			vm_page_flag_set(m, PG_REFERENCED);
2735		pmap_remove_entry(pmap, m, va);
2736	}
2737	return (pmap_unuse_pt(pmap, va, free));
2738}
2739
2740/*
2741 * Remove a single page from a process address space
2742 */
2743static void
2744pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2745{
2746	pt_entry_t *pte;
2747
2748	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2749	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2750	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2751	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2752		return;
2753	pmap_remove_pte(pmap, pte, va, free);
2754	pmap_invalidate_page(pmap, va);
2755}
2756
2757/*
2758 *	Remove the given range of addresses from the specified map.
2759 *
2760 *	It is assumed that the start and end are properly
2761 *	rounded to the page size.
2762 */
2763void
2764pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2765{
2766	vm_offset_t pdnxt;
2767	pd_entry_t ptpaddr;
2768	pt_entry_t *pte;
2769	vm_page_t free = NULL;
2770	int anyvalid;
2771
2772	/*
2773	 * Perform an unsynchronized read.  This is, however, safe.
2774	 */
2775	if (pmap->pm_stats.resident_count == 0)
2776		return;
2777
2778	anyvalid = 0;
2779
2780	vm_page_lock_queues();
2781	sched_pin();
2782	PMAP_LOCK(pmap);
2783
2784	/*
2785	 * special handling of removing one page.  a very
2786	 * common operation and easy to short circuit some
2787	 * code.
2788	 */
2789	if ((sva + PAGE_SIZE == eva) &&
2790	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2791		pmap_remove_page(pmap, sva, &free);
2792		goto out;
2793	}
2794
2795	for (; sva < eva; sva = pdnxt) {
2796		unsigned pdirindex;
2797
2798		/*
2799		 * Calculate index for next page table.
2800		 */
2801		pdnxt = (sva + NBPDR) & ~PDRMASK;
2802		if (pdnxt < sva)
2803			pdnxt = eva;
2804		if (pmap->pm_stats.resident_count == 0)
2805			break;
2806
2807		pdirindex = sva >> PDRSHIFT;
2808		ptpaddr = pmap->pm_pdir[pdirindex];
2809
2810		/*
2811		 * Weed out invalid mappings. Note: we assume that the page
2812		 * directory table is always allocated, and in kernel virtual.
2813		 */
2814		if (ptpaddr == 0)
2815			continue;
2816
2817		/*
2818		 * Check for large page.
2819		 */
2820		if ((ptpaddr & PG_PS) != 0) {
2821			/*
2822			 * Are we removing the entire large page?  If not,
2823			 * demote the mapping and fall through.
2824			 */
2825			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2826				/*
2827				 * The TLB entry for a PG_G mapping is
2828				 * invalidated by pmap_remove_pde().
2829				 */
2830				if ((ptpaddr & PG_G) == 0)
2831					anyvalid = 1;
2832				pmap_remove_pde(pmap,
2833				    &pmap->pm_pdir[pdirindex], sva, &free);
2834				continue;
2835			} else if (!pmap_demote_pde(pmap,
2836			    &pmap->pm_pdir[pdirindex], sva)) {
2837				/* The large page mapping was destroyed. */
2838				continue;
2839			}
2840		}
2841
2842		/*
2843		 * Limit our scan to either the end of the va represented
2844		 * by the current page table page, or to the end of the
2845		 * range being removed.
2846		 */
2847		if (pdnxt > eva)
2848			pdnxt = eva;
2849
2850		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2851		    sva += PAGE_SIZE) {
2852			if (*pte == 0)
2853				continue;
2854
2855			/*
2856			 * The TLB entry for a PG_G mapping is invalidated
2857			 * by pmap_remove_pte().
2858			 */
2859			if ((*pte & PG_G) == 0)
2860				anyvalid = 1;
2861			if (pmap_remove_pte(pmap, pte, sva, &free))
2862				break;
2863		}
2864	}
2865out:
2866	sched_unpin();
2867	if (anyvalid)
2868		pmap_invalidate_all(pmap);
2869	vm_page_unlock_queues();
2870	PMAP_UNLOCK(pmap);
2871	pmap_free_zero_pages(free);
2872}
2873
2874/*
2875 *	Routine:	pmap_remove_all
2876 *	Function:
2877 *		Removes this physical page from
2878 *		all physical maps in which it resides.
2879 *		Reflects back modify bits to the pager.
2880 *
2881 *	Notes:
2882 *		Original versions of this routine were very
2883 *		inefficient because they iteratively called
2884 *		pmap_remove (slow...)
2885 */
2886
2887void
2888pmap_remove_all(vm_page_t m)
2889{
2890	struct md_page *pvh;
2891	pv_entry_t pv;
2892	pmap_t pmap;
2893	pt_entry_t *pte, tpte;
2894	pd_entry_t *pde;
2895	vm_offset_t va;
2896	vm_page_t free;
2897
2898	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2899	    ("pmap_remove_all: page %p is fictitious", m));
2900	free = NULL;
2901	vm_page_lock_queues();
2902	sched_pin();
2903	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2904	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2905		va = pv->pv_va;
2906		pmap = PV_PMAP(pv);
2907		PMAP_LOCK(pmap);
2908		pde = pmap_pde(pmap, va);
2909		(void)pmap_demote_pde(pmap, pde, va);
2910		PMAP_UNLOCK(pmap);
2911	}
2912	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2913		pmap = PV_PMAP(pv);
2914		PMAP_LOCK(pmap);
2915		pmap->pm_stats.resident_count--;
2916		pde = pmap_pde(pmap, pv->pv_va);
2917		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2918		    " a 4mpage in page %p's pv list", m));
2919		pte = pmap_pte_quick(pmap, pv->pv_va);
2920		tpte = pte_load_clear(pte);
2921		if (tpte & PG_W)
2922			pmap->pm_stats.wired_count--;
2923		if (tpte & PG_A)
2924			vm_page_flag_set(m, PG_REFERENCED);
2925
2926		/*
2927		 * Update the vm_page_t clean and reference bits.
2928		 */
2929		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2930			vm_page_dirty(m);
2931		pmap_unuse_pt(pmap, pv->pv_va, &free);
2932		pmap_invalidate_page(pmap, pv->pv_va);
2933		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2934		free_pv_entry(pmap, pv);
2935		PMAP_UNLOCK(pmap);
2936	}
2937	vm_page_flag_clear(m, PG_WRITEABLE);
2938	sched_unpin();
2939	vm_page_unlock_queues();
2940	pmap_free_zero_pages(free);
2941}
2942
2943/*
2944 * pmap_protect_pde: do the things to protect a 4mpage in a process
2945 */
2946static boolean_t
2947pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2948{
2949	pd_entry_t newpde, oldpde;
2950	vm_offset_t eva, va;
2951	vm_page_t m;
2952	boolean_t anychanged;
2953
2954	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2955	KASSERT((sva & PDRMASK) == 0,
2956	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2957	anychanged = FALSE;
2958retry:
2959	oldpde = newpde = *pde;
2960	if (oldpde & PG_MANAGED) {
2961		eva = sva + NBPDR;
2962		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2963		    va < eva; va += PAGE_SIZE, m++)
2964			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2965				vm_page_dirty(m);
2966	}
2967	if ((prot & VM_PROT_WRITE) == 0)
2968		newpde &= ~(PG_RW | PG_M);
2969#ifdef PAE
2970	if ((prot & VM_PROT_EXECUTE) == 0)
2971		newpde |= pg_nx;
2972#endif
2973	if (newpde != oldpde) {
2974		if (!pde_cmpset(pde, oldpde, newpde))
2975			goto retry;
2976		if (oldpde & PG_G)
2977			pmap_invalidate_page(pmap, sva);
2978		else
2979			anychanged = TRUE;
2980	}
2981	return (anychanged);
2982}
2983
2984/*
2985 *	Set the physical protection on the
2986 *	specified range of this map as requested.
2987 */
2988void
2989pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2990{
2991	vm_offset_t pdnxt;
2992	pd_entry_t ptpaddr;
2993	pt_entry_t *pte;
2994	int anychanged;
2995
2996	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2997		pmap_remove(pmap, sva, eva);
2998		return;
2999	}
3000
3001#ifdef PAE
3002	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3003	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3004		return;
3005#else
3006	if (prot & VM_PROT_WRITE)
3007		return;
3008#endif
3009
3010	anychanged = 0;
3011
3012	vm_page_lock_queues();
3013	sched_pin();
3014	PMAP_LOCK(pmap);
3015	for (; sva < eva; sva = pdnxt) {
3016		pt_entry_t obits, pbits;
3017		unsigned pdirindex;
3018
3019		pdnxt = (sva + NBPDR) & ~PDRMASK;
3020		if (pdnxt < sva)
3021			pdnxt = eva;
3022
3023		pdirindex = sva >> PDRSHIFT;
3024		ptpaddr = pmap->pm_pdir[pdirindex];
3025
3026		/*
3027		 * Weed out invalid mappings. Note: we assume that the page
3028		 * directory table is always allocated, and in kernel virtual.
3029		 */
3030		if (ptpaddr == 0)
3031			continue;
3032
3033		/*
3034		 * Check for large page.
3035		 */
3036		if ((ptpaddr & PG_PS) != 0) {
3037			/*
3038			 * Are we protecting the entire large page?  If not,
3039			 * demote the mapping and fall through.
3040			 */
3041			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3042				/*
3043				 * The TLB entry for a PG_G mapping is
3044				 * invalidated by pmap_protect_pde().
3045				 */
3046				if (pmap_protect_pde(pmap,
3047				    &pmap->pm_pdir[pdirindex], sva, prot))
3048					anychanged = 1;
3049				continue;
3050			} else if (!pmap_demote_pde(pmap,
3051			    &pmap->pm_pdir[pdirindex], sva)) {
3052				/* The large page mapping was destroyed. */
3053				continue;
3054			}
3055		}
3056
3057		if (pdnxt > eva)
3058			pdnxt = eva;
3059
3060		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3061		    sva += PAGE_SIZE) {
3062			vm_page_t m;
3063
3064retry:
3065			/*
3066			 * Regardless of whether a pte is 32 or 64 bits in
3067			 * size, PG_RW, PG_A, and PG_M are among the least
3068			 * significant 32 bits.
3069			 */
3070			obits = pbits = *pte;
3071			if ((pbits & PG_V) == 0)
3072				continue;
3073
3074			if ((prot & VM_PROT_WRITE) == 0) {
3075				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3076				    (PG_MANAGED | PG_M | PG_RW)) {
3077					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3078					vm_page_dirty(m);
3079				}
3080				pbits &= ~(PG_RW | PG_M);
3081			}
3082#ifdef PAE
3083			if ((prot & VM_PROT_EXECUTE) == 0)
3084				pbits |= pg_nx;
3085#endif
3086
3087			if (pbits != obits) {
3088#ifdef PAE
3089				if (!atomic_cmpset_64(pte, obits, pbits))
3090					goto retry;
3091#else
3092				if (!atomic_cmpset_int((u_int *)pte, obits,
3093				    pbits))
3094					goto retry;
3095#endif
3096				if (obits & PG_G)
3097					pmap_invalidate_page(pmap, sva);
3098				else
3099					anychanged = 1;
3100			}
3101		}
3102	}
3103	sched_unpin();
3104	if (anychanged)
3105		pmap_invalidate_all(pmap);
3106	vm_page_unlock_queues();
3107	PMAP_UNLOCK(pmap);
3108}
3109
3110/*
3111 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3112 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3113 * For promotion to occur, two conditions must be met: (1) the 4KB page
3114 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3115 * mappings must have identical characteristics.
3116 *
3117 * Managed (PG_MANAGED) mappings within the kernel address space are not
3118 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3119 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3120 * pmap.
3121 */
3122static void
3123pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3124{
3125	pd_entry_t newpde;
3126	pt_entry_t *firstpte, oldpte, pa, *pte;
3127	vm_offset_t oldpteva;
3128	vm_page_t mpte;
3129
3130	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3131
3132	/*
3133	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3134	 * either invalid, unused, or does not map the first 4KB physical page
3135	 * within a 2- or 4MB page.
3136	 */
3137	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3138setpde:
3139	newpde = *firstpte;
3140	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3141		pmap_pde_p_failures++;
3142		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3143		    " in pmap %p", va, pmap);
3144		return;
3145	}
3146	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3147		pmap_pde_p_failures++;
3148		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3149		    " in pmap %p", va, pmap);
3150		return;
3151	}
3152	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3153		/*
3154		 * When PG_M is already clear, PG_RW can be cleared without
3155		 * a TLB invalidation.
3156		 */
3157		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3158		    ~PG_RW))
3159			goto setpde;
3160		newpde &= ~PG_RW;
3161	}
3162
3163	/*
3164	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3165	 * PTE maps an unexpected 4KB physical page or does not have identical
3166	 * characteristics to the first PTE.
3167	 */
3168	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3169	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3170setpte:
3171		oldpte = *pte;
3172		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3173			pmap_pde_p_failures++;
3174			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3175			    " in pmap %p", va, pmap);
3176			return;
3177		}
3178		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3179			/*
3180			 * When PG_M is already clear, PG_RW can be cleared
3181			 * without a TLB invalidation.
3182			 */
3183			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3184			    oldpte & ~PG_RW))
3185				goto setpte;
3186			oldpte &= ~PG_RW;
3187			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3188			    (va & ~PDRMASK);
3189			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3190			    " in pmap %p", oldpteva, pmap);
3191		}
3192		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3193			pmap_pde_p_failures++;
3194			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3195			    " in pmap %p", va, pmap);
3196			return;
3197		}
3198		pa -= PAGE_SIZE;
3199	}
3200
3201	/*
3202	 * Save the page table page in its current state until the PDE
3203	 * mapping the superpage is demoted by pmap_demote_pde() or
3204	 * destroyed by pmap_remove_pde().
3205	 */
3206	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3207	KASSERT(mpte >= vm_page_array &&
3208	    mpte < &vm_page_array[vm_page_array_size],
3209	    ("pmap_promote_pde: page table page is out of range"));
3210	KASSERT(mpte->pindex == va >> PDRSHIFT,
3211	    ("pmap_promote_pde: page table page's pindex is wrong"));
3212	pmap_insert_pt_page(pmap, mpte);
3213
3214	/*
3215	 * Promote the pv entries.
3216	 */
3217	if ((newpde & PG_MANAGED) != 0)
3218		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3219
3220	/*
3221	 * Propagate the PAT index to its proper position.
3222	 */
3223	if ((newpde & PG_PTE_PAT) != 0)
3224		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3225
3226	/*
3227	 * Map the superpage.
3228	 */
3229	if (workaround_erratum383)
3230		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3231	else if (pmap == kernel_pmap)
3232		pmap_kenter_pde(va, PG_PS | newpde);
3233	else
3234		pde_store(pde, PG_PS | newpde);
3235
3236	pmap_pde_promotions++;
3237	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3238	    " in pmap %p", va, pmap);
3239}
3240
3241/*
3242 *	Insert the given physical page (p) at
3243 *	the specified virtual address (v) in the
3244 *	target physical map with the protection requested.
3245 *
3246 *	If specified, the page will be wired down, meaning
3247 *	that the related pte can not be reclaimed.
3248 *
3249 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3250 *	or lose information.  That is, this routine must actually
3251 *	insert this page into the given map NOW.
3252 */
3253void
3254pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3255    vm_prot_t prot, boolean_t wired)
3256{
3257	pd_entry_t *pde;
3258	pt_entry_t *pte;
3259	pt_entry_t newpte, origpte;
3260	pv_entry_t pv;
3261	vm_paddr_t opa, pa;
3262	vm_page_t mpte, om;
3263	boolean_t invlva;
3264
3265	va = trunc_page(va);
3266	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3267	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3268	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3269	    va));
3270	KASSERT((m->oflags & VPO_BUSY) != 0,
3271	    ("pmap_enter: page %p is not busy", m));
3272
3273	mpte = NULL;
3274
3275	vm_page_lock_queues();
3276	PMAP_LOCK(pmap);
3277	sched_pin();
3278
3279	/*
3280	 * In the case that a page table page is not
3281	 * resident, we are creating it here.
3282	 */
3283	if (va < VM_MAXUSER_ADDRESS) {
3284		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3285	}
3286
3287	pde = pmap_pde(pmap, va);
3288	if ((*pde & PG_PS) != 0)
3289		panic("pmap_enter: attempted pmap_enter on 4MB page");
3290	pte = pmap_pte_quick(pmap, va);
3291
3292	/*
3293	 * Page Directory table entry not valid, we need a new PT page
3294	 */
3295	if (pte == NULL) {
3296		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3297			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3298	}
3299
3300	pa = VM_PAGE_TO_PHYS(m);
3301	om = NULL;
3302	origpte = *pte;
3303	opa = origpte & PG_FRAME;
3304
3305	/*
3306	 * Mapping has not changed, must be protection or wiring change.
3307	 */
3308	if (origpte && (opa == pa)) {
3309		/*
3310		 * Wiring change, just update stats. We don't worry about
3311		 * wiring PT pages as they remain resident as long as there
3312		 * are valid mappings in them. Hence, if a user page is wired,
3313		 * the PT page will be also.
3314		 */
3315		if (wired && ((origpte & PG_W) == 0))
3316			pmap->pm_stats.wired_count++;
3317		else if (!wired && (origpte & PG_W))
3318			pmap->pm_stats.wired_count--;
3319
3320		/*
3321		 * Remove extra pte reference
3322		 */
3323		if (mpte)
3324			mpte->wire_count--;
3325
3326		/*
3327		 * We might be turning off write access to the page,
3328		 * so we go ahead and sense modify status.
3329		 */
3330		if (origpte & PG_MANAGED) {
3331			om = m;
3332			pa |= PG_MANAGED;
3333		}
3334		goto validate;
3335	}
3336
3337	pv = NULL;
3338
3339	/*
3340	 * Mapping has changed, invalidate old range and fall through to
3341	 * handle validating new mapping.
3342	 */
3343	if (opa) {
3344		if (origpte & PG_W)
3345			pmap->pm_stats.wired_count--;
3346		if (origpte & PG_MANAGED) {
3347			om = PHYS_TO_VM_PAGE(opa);
3348			pv = pmap_pvh_remove(&om->md, pmap, va);
3349		}
3350		if (mpte != NULL) {
3351			mpte->wire_count--;
3352			KASSERT(mpte->wire_count > 0,
3353			    ("pmap_enter: missing reference to page table page,"
3354			     " va: 0x%x", va));
3355		}
3356	} else
3357		pmap->pm_stats.resident_count++;
3358
3359	/*
3360	 * Enter on the PV list if part of our managed memory.
3361	 */
3362	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3363		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3364		    ("pmap_enter: managed mapping within the clean submap"));
3365		if (pv == NULL)
3366			pv = get_pv_entry(pmap, FALSE);
3367		pv->pv_va = va;
3368		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3369		pa |= PG_MANAGED;
3370	} else if (pv != NULL)
3371		free_pv_entry(pmap, pv);
3372
3373	/*
3374	 * Increment counters
3375	 */
3376	if (wired)
3377		pmap->pm_stats.wired_count++;
3378
3379validate:
3380	/*
3381	 * Now validate mapping with desired protection/wiring.
3382	 */
3383	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3384	if ((prot & VM_PROT_WRITE) != 0) {
3385		newpte |= PG_RW;
3386		if ((newpte & PG_MANAGED) != 0)
3387			vm_page_flag_set(m, PG_WRITEABLE);
3388	}
3389#ifdef PAE
3390	if ((prot & VM_PROT_EXECUTE) == 0)
3391		newpte |= pg_nx;
3392#endif
3393	if (wired)
3394		newpte |= PG_W;
3395	if (va < VM_MAXUSER_ADDRESS)
3396		newpte |= PG_U;
3397	if (pmap == kernel_pmap)
3398		newpte |= pgeflag;
3399
3400	/*
3401	 * if the mapping or permission bits are different, we need
3402	 * to update the pte.
3403	 */
3404	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3405		newpte |= PG_A;
3406		if ((access & VM_PROT_WRITE) != 0)
3407			newpte |= PG_M;
3408		if (origpte & PG_V) {
3409			invlva = FALSE;
3410			origpte = pte_load_store(pte, newpte);
3411			if (origpte & PG_A) {
3412				if (origpte & PG_MANAGED)
3413					vm_page_flag_set(om, PG_REFERENCED);
3414				if (opa != VM_PAGE_TO_PHYS(m))
3415					invlva = TRUE;
3416#ifdef PAE
3417				if ((origpte & PG_NX) == 0 &&
3418				    (newpte & PG_NX) != 0)
3419					invlva = TRUE;
3420#endif
3421			}
3422			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3423				if ((origpte & PG_MANAGED) != 0)
3424					vm_page_dirty(om);
3425				if ((prot & VM_PROT_WRITE) == 0)
3426					invlva = TRUE;
3427			}
3428			if ((origpte & PG_MANAGED) != 0 &&
3429			    TAILQ_EMPTY(&om->md.pv_list) &&
3430			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list))
3431				vm_page_flag_clear(om, PG_WRITEABLE);
3432			if (invlva)
3433				pmap_invalidate_page(pmap, va);
3434		} else
3435			pte_store(pte, newpte);
3436	}
3437
3438	/*
3439	 * If both the page table page and the reservation are fully
3440	 * populated, then attempt promotion.
3441	 */
3442	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3443	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3444		pmap_promote_pde(pmap, pde, va);
3445
3446	sched_unpin();
3447	vm_page_unlock_queues();
3448	PMAP_UNLOCK(pmap);
3449}
3450
3451/*
3452 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3453 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3454 * blocking, (2) a mapping already exists at the specified virtual address, or
3455 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3456 */
3457static boolean_t
3458pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3459{
3460	pd_entry_t *pde, newpde;
3461
3462	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3463	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3464	pde = pmap_pde(pmap, va);
3465	if (*pde != 0) {
3466		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3467		    " in pmap %p", va, pmap);
3468		return (FALSE);
3469	}
3470	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3471	    PG_PS | PG_V;
3472	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3473		newpde |= PG_MANAGED;
3474
3475		/*
3476		 * Abort this mapping if its PV entry could not be created.
3477		 */
3478		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3479			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3480			    " in pmap %p", va, pmap);
3481			return (FALSE);
3482		}
3483	}
3484#ifdef PAE
3485	if ((prot & VM_PROT_EXECUTE) == 0)
3486		newpde |= pg_nx;
3487#endif
3488	if (va < VM_MAXUSER_ADDRESS)
3489		newpde |= PG_U;
3490
3491	/*
3492	 * Increment counters.
3493	 */
3494	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3495
3496	/*
3497	 * Map the superpage.
3498	 */
3499	pde_store(pde, newpde);
3500
3501	pmap_pde_mappings++;
3502	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3503	    " in pmap %p", va, pmap);
3504	return (TRUE);
3505}
3506
3507/*
3508 * Maps a sequence of resident pages belonging to the same object.
3509 * The sequence begins with the given page m_start.  This page is
3510 * mapped at the given virtual address start.  Each subsequent page is
3511 * mapped at a virtual address that is offset from start by the same
3512 * amount as the page is offset from m_start within the object.  The
3513 * last page in the sequence is the page with the largest offset from
3514 * m_start that can be mapped at a virtual address less than the given
3515 * virtual address end.  Not every virtual page between start and end
3516 * is mapped; only those for which a resident page exists with the
3517 * corresponding offset from m_start are mapped.
3518 */
3519void
3520pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3521    vm_page_t m_start, vm_prot_t prot)
3522{
3523	vm_offset_t va;
3524	vm_page_t m, mpte;
3525	vm_pindex_t diff, psize;
3526
3527	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3528	psize = atop(end - start);
3529	mpte = NULL;
3530	m = m_start;
3531	vm_page_lock_queues();
3532	PMAP_LOCK(pmap);
3533	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3534		va = start + ptoa(diff);
3535		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3536		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3537		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3538		    pmap_enter_pde(pmap, va, m, prot))
3539			m = &m[NBPDR / PAGE_SIZE - 1];
3540		else
3541			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3542			    mpte);
3543		m = TAILQ_NEXT(m, listq);
3544	}
3545	vm_page_unlock_queues();
3546 	PMAP_UNLOCK(pmap);
3547}
3548
3549/*
3550 * this code makes some *MAJOR* assumptions:
3551 * 1. Current pmap & pmap exists.
3552 * 2. Not wired.
3553 * 3. Read access.
3554 * 4. No page table pages.
3555 * but is *MUCH* faster than pmap_enter...
3556 */
3557
3558void
3559pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3560{
3561
3562	vm_page_lock_queues();
3563	PMAP_LOCK(pmap);
3564	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3565	vm_page_unlock_queues();
3566	PMAP_UNLOCK(pmap);
3567}
3568
3569static vm_page_t
3570pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3571    vm_prot_t prot, vm_page_t mpte)
3572{
3573	pt_entry_t *pte;
3574	vm_paddr_t pa;
3575	vm_page_t free;
3576
3577	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3578	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3579	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3580	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3581	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3582
3583	/*
3584	 * In the case that a page table page is not
3585	 * resident, we are creating it here.
3586	 */
3587	if (va < VM_MAXUSER_ADDRESS) {
3588		unsigned ptepindex;
3589		pd_entry_t ptepa;
3590
3591		/*
3592		 * Calculate pagetable page index
3593		 */
3594		ptepindex = va >> PDRSHIFT;
3595		if (mpte && (mpte->pindex == ptepindex)) {
3596			mpte->wire_count++;
3597		} else {
3598			/*
3599			 * Get the page directory entry
3600			 */
3601			ptepa = pmap->pm_pdir[ptepindex];
3602
3603			/*
3604			 * If the page table page is mapped, we just increment
3605			 * the hold count, and activate it.
3606			 */
3607			if (ptepa) {
3608				if (ptepa & PG_PS)
3609					return (NULL);
3610				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3611				mpte->wire_count++;
3612			} else {
3613				mpte = _pmap_allocpte(pmap, ptepindex,
3614				    M_NOWAIT);
3615				if (mpte == NULL)
3616					return (mpte);
3617			}
3618		}
3619	} else {
3620		mpte = NULL;
3621	}
3622
3623	/*
3624	 * This call to vtopte makes the assumption that we are
3625	 * entering the page into the current pmap.  In order to support
3626	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3627	 * But that isn't as quick as vtopte.
3628	 */
3629	pte = vtopte(va);
3630	if (*pte) {
3631		if (mpte != NULL) {
3632			mpte->wire_count--;
3633			mpte = NULL;
3634		}
3635		return (mpte);
3636	}
3637
3638	/*
3639	 * Enter on the PV list if part of our managed memory.
3640	 */
3641	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3642	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3643		if (mpte != NULL) {
3644			free = NULL;
3645			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3646				pmap_invalidate_page(pmap, va);
3647				pmap_free_zero_pages(free);
3648			}
3649
3650			mpte = NULL;
3651		}
3652		return (mpte);
3653	}
3654
3655	/*
3656	 * Increment counters
3657	 */
3658	pmap->pm_stats.resident_count++;
3659
3660	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3661#ifdef PAE
3662	if ((prot & VM_PROT_EXECUTE) == 0)
3663		pa |= pg_nx;
3664#endif
3665
3666	/*
3667	 * Now validate mapping with RO protection
3668	 */
3669	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3670		pte_store(pte, pa | PG_V | PG_U);
3671	else
3672		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3673	return (mpte);
3674}
3675
3676/*
3677 * Make a temporary mapping for a physical address.  This is only intended
3678 * to be used for panic dumps.
3679 */
3680void *
3681pmap_kenter_temporary(vm_paddr_t pa, int i)
3682{
3683	vm_offset_t va;
3684
3685	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3686	pmap_kenter(va, pa);
3687	invlpg(va);
3688	return ((void *)crashdumpmap);
3689}
3690
3691/*
3692 * This code maps large physical mmap regions into the
3693 * processor address space.  Note that some shortcuts
3694 * are taken, but the code works.
3695 */
3696void
3697pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3698    vm_pindex_t pindex, vm_size_t size)
3699{
3700	pd_entry_t *pde;
3701	vm_paddr_t pa, ptepa;
3702	vm_page_t p;
3703	int pat_mode;
3704
3705	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3706	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3707	    ("pmap_object_init_pt: non-device object"));
3708	if (pseflag &&
3709	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3710		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3711			return;
3712		p = vm_page_lookup(object, pindex);
3713		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3714		    ("pmap_object_init_pt: invalid page %p", p));
3715		pat_mode = p->md.pat_mode;
3716
3717		/*
3718		 * Abort the mapping if the first page is not physically
3719		 * aligned to a 2/4MB page boundary.
3720		 */
3721		ptepa = VM_PAGE_TO_PHYS(p);
3722		if (ptepa & (NBPDR - 1))
3723			return;
3724
3725		/*
3726		 * Skip the first page.  Abort the mapping if the rest of
3727		 * the pages are not physically contiguous or have differing
3728		 * memory attributes.
3729		 */
3730		p = TAILQ_NEXT(p, listq);
3731		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3732		    pa += PAGE_SIZE) {
3733			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3734			    ("pmap_object_init_pt: invalid page %p", p));
3735			if (pa != VM_PAGE_TO_PHYS(p) ||
3736			    pat_mode != p->md.pat_mode)
3737				return;
3738			p = TAILQ_NEXT(p, listq);
3739		}
3740
3741		/*
3742		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3743		 * "size" is a multiple of 2/4M, adding the PAT setting to
3744		 * "pa" will not affect the termination of this loop.
3745		 */
3746		PMAP_LOCK(pmap);
3747		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3748		    size; pa += NBPDR) {
3749			pde = pmap_pde(pmap, addr);
3750			if (*pde == 0) {
3751				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3752				    PG_U | PG_RW | PG_V);
3753				pmap->pm_stats.resident_count += NBPDR /
3754				    PAGE_SIZE;
3755				pmap_pde_mappings++;
3756			}
3757			/* Else continue on if the PDE is already valid. */
3758			addr += NBPDR;
3759		}
3760		PMAP_UNLOCK(pmap);
3761	}
3762}
3763
3764/*
3765 *	Routine:	pmap_change_wiring
3766 *	Function:	Change the wiring attribute for a map/virtual-address
3767 *			pair.
3768 *	In/out conditions:
3769 *			The mapping must already exist in the pmap.
3770 */
3771void
3772pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3773{
3774	pd_entry_t *pde;
3775	pt_entry_t *pte;
3776	boolean_t are_queues_locked;
3777
3778	are_queues_locked = FALSE;
3779retry:
3780	PMAP_LOCK(pmap);
3781	pde = pmap_pde(pmap, va);
3782	if ((*pde & PG_PS) != 0) {
3783		if (!wired != ((*pde & PG_W) == 0)) {
3784			if (!are_queues_locked) {
3785				are_queues_locked = TRUE;
3786				if (!mtx_trylock(&vm_page_queue_mtx)) {
3787					PMAP_UNLOCK(pmap);
3788					vm_page_lock_queues();
3789					goto retry;
3790				}
3791			}
3792			if (!pmap_demote_pde(pmap, pde, va))
3793				panic("pmap_change_wiring: demotion failed");
3794		} else
3795			goto out;
3796	}
3797	pte = pmap_pte(pmap, va);
3798
3799	if (wired && !pmap_pte_w(pte))
3800		pmap->pm_stats.wired_count++;
3801	else if (!wired && pmap_pte_w(pte))
3802		pmap->pm_stats.wired_count--;
3803
3804	/*
3805	 * Wiring is not a hardware characteristic so there is no need to
3806	 * invalidate TLB.
3807	 */
3808	pmap_pte_set_w(pte, wired);
3809	pmap_pte_release(pte);
3810out:
3811	if (are_queues_locked)
3812		vm_page_unlock_queues();
3813	PMAP_UNLOCK(pmap);
3814}
3815
3816
3817
3818/*
3819 *	Copy the range specified by src_addr/len
3820 *	from the source map to the range dst_addr/len
3821 *	in the destination map.
3822 *
3823 *	This routine is only advisory and need not do anything.
3824 */
3825
3826void
3827pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3828    vm_offset_t src_addr)
3829{
3830	vm_page_t   free;
3831	vm_offset_t addr;
3832	vm_offset_t end_addr = src_addr + len;
3833	vm_offset_t pdnxt;
3834
3835	if (dst_addr != src_addr)
3836		return;
3837
3838	if (!pmap_is_current(src_pmap))
3839		return;
3840
3841	vm_page_lock_queues();
3842	if (dst_pmap < src_pmap) {
3843		PMAP_LOCK(dst_pmap);
3844		PMAP_LOCK(src_pmap);
3845	} else {
3846		PMAP_LOCK(src_pmap);
3847		PMAP_LOCK(dst_pmap);
3848	}
3849	sched_pin();
3850	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3851		pt_entry_t *src_pte, *dst_pte;
3852		vm_page_t dstmpte, srcmpte;
3853		pd_entry_t srcptepaddr;
3854		unsigned ptepindex;
3855
3856		KASSERT(addr < UPT_MIN_ADDRESS,
3857		    ("pmap_copy: invalid to pmap_copy page tables"));
3858
3859		pdnxt = (addr + NBPDR) & ~PDRMASK;
3860		if (pdnxt < addr)
3861			pdnxt = end_addr;
3862		ptepindex = addr >> PDRSHIFT;
3863
3864		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3865		if (srcptepaddr == 0)
3866			continue;
3867
3868		if (srcptepaddr & PG_PS) {
3869			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3870			    ((srcptepaddr & PG_MANAGED) == 0 ||
3871			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3872			    PG_PS_FRAME))) {
3873				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3874				    ~PG_W;
3875				dst_pmap->pm_stats.resident_count +=
3876				    NBPDR / PAGE_SIZE;
3877			}
3878			continue;
3879		}
3880
3881		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3882		KASSERT(srcmpte->wire_count > 0,
3883		    ("pmap_copy: source page table page is unused"));
3884
3885		if (pdnxt > end_addr)
3886			pdnxt = end_addr;
3887
3888		src_pte = vtopte(addr);
3889		while (addr < pdnxt) {
3890			pt_entry_t ptetemp;
3891			ptetemp = *src_pte;
3892			/*
3893			 * we only virtual copy managed pages
3894			 */
3895			if ((ptetemp & PG_MANAGED) != 0) {
3896				dstmpte = pmap_allocpte(dst_pmap, addr,
3897				    M_NOWAIT);
3898				if (dstmpte == NULL)
3899					goto out;
3900				dst_pte = pmap_pte_quick(dst_pmap, addr);
3901				if (*dst_pte == 0 &&
3902				    pmap_try_insert_pv_entry(dst_pmap, addr,
3903				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3904					/*
3905					 * Clear the wired, modified, and
3906					 * accessed (referenced) bits
3907					 * during the copy.
3908					 */
3909					*dst_pte = ptetemp & ~(PG_W | PG_M |
3910					    PG_A);
3911					dst_pmap->pm_stats.resident_count++;
3912	 			} else {
3913					free = NULL;
3914					if (pmap_unwire_pte_hold(dst_pmap,
3915					    dstmpte, &free)) {
3916						pmap_invalidate_page(dst_pmap,
3917						    addr);
3918						pmap_free_zero_pages(free);
3919					}
3920					goto out;
3921				}
3922				if (dstmpte->wire_count >= srcmpte->wire_count)
3923					break;
3924			}
3925			addr += PAGE_SIZE;
3926			src_pte++;
3927		}
3928	}
3929out:
3930	sched_unpin();
3931	vm_page_unlock_queues();
3932	PMAP_UNLOCK(src_pmap);
3933	PMAP_UNLOCK(dst_pmap);
3934}
3935
3936static __inline void
3937pagezero(void *page)
3938{
3939#if defined(I686_CPU)
3940	if (cpu_class == CPUCLASS_686) {
3941#if defined(CPU_ENABLE_SSE)
3942		if (cpu_feature & CPUID_SSE2)
3943			sse2_pagezero(page);
3944		else
3945#endif
3946			i686_pagezero(page);
3947	} else
3948#endif
3949		bzero(page, PAGE_SIZE);
3950}
3951
3952/*
3953 *	pmap_zero_page zeros the specified hardware page by mapping
3954 *	the page into KVM and using bzero to clear its contents.
3955 */
3956void
3957pmap_zero_page(vm_page_t m)
3958{
3959	struct sysmaps *sysmaps;
3960
3961	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3962	mtx_lock(&sysmaps->lock);
3963	if (*sysmaps->CMAP2)
3964		panic("pmap_zero_page: CMAP2 busy");
3965	sched_pin();
3966	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3967	    pmap_cache_bits(m->md.pat_mode, 0);
3968	invlcaddr(sysmaps->CADDR2);
3969	pagezero(sysmaps->CADDR2);
3970	*sysmaps->CMAP2 = 0;
3971	sched_unpin();
3972	mtx_unlock(&sysmaps->lock);
3973}
3974
3975/*
3976 *	pmap_zero_page_area zeros the specified hardware page by mapping
3977 *	the page into KVM and using bzero to clear its contents.
3978 *
3979 *	off and size may not cover an area beyond a single hardware page.
3980 */
3981void
3982pmap_zero_page_area(vm_page_t m, int off, int size)
3983{
3984	struct sysmaps *sysmaps;
3985
3986	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3987	mtx_lock(&sysmaps->lock);
3988	if (*sysmaps->CMAP2)
3989		panic("pmap_zero_page_area: CMAP2 busy");
3990	sched_pin();
3991	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3992	    pmap_cache_bits(m->md.pat_mode, 0);
3993	invlcaddr(sysmaps->CADDR2);
3994	if (off == 0 && size == PAGE_SIZE)
3995		pagezero(sysmaps->CADDR2);
3996	else
3997		bzero((char *)sysmaps->CADDR2 + off, size);
3998	*sysmaps->CMAP2 = 0;
3999	sched_unpin();
4000	mtx_unlock(&sysmaps->lock);
4001}
4002
4003/*
4004 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4005 *	the page into KVM and using bzero to clear its contents.  This
4006 *	is intended to be called from the vm_pagezero process only and
4007 *	outside of Giant.
4008 */
4009void
4010pmap_zero_page_idle(vm_page_t m)
4011{
4012
4013	if (*CMAP3)
4014		panic("pmap_zero_page_idle: CMAP3 busy");
4015	sched_pin();
4016	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4017	    pmap_cache_bits(m->md.pat_mode, 0);
4018	invlcaddr(CADDR3);
4019	pagezero(CADDR3);
4020	*CMAP3 = 0;
4021	sched_unpin();
4022}
4023
4024/*
4025 *	pmap_copy_page copies the specified (machine independent)
4026 *	page by mapping the page into virtual memory and using
4027 *	bcopy to copy the page, one machine dependent page at a
4028 *	time.
4029 */
4030void
4031pmap_copy_page(vm_page_t src, vm_page_t dst)
4032{
4033	struct sysmaps *sysmaps;
4034
4035	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4036	mtx_lock(&sysmaps->lock);
4037	if (*sysmaps->CMAP1)
4038		panic("pmap_copy_page: CMAP1 busy");
4039	if (*sysmaps->CMAP2)
4040		panic("pmap_copy_page: CMAP2 busy");
4041	sched_pin();
4042	invlpg((u_int)sysmaps->CADDR1);
4043	invlpg((u_int)sysmaps->CADDR2);
4044	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4045	    pmap_cache_bits(src->md.pat_mode, 0);
4046	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4047	    pmap_cache_bits(dst->md.pat_mode, 0);
4048	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4049	*sysmaps->CMAP1 = 0;
4050	*sysmaps->CMAP2 = 0;
4051	sched_unpin();
4052	mtx_unlock(&sysmaps->lock);
4053}
4054
4055/*
4056 * Returns true if the pmap's pv is one of the first
4057 * 16 pvs linked to from this page.  This count may
4058 * be changed upwards or downwards in the future; it
4059 * is only necessary that true be returned for a small
4060 * subset of pmaps for proper page aging.
4061 */
4062boolean_t
4063pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4064{
4065	struct md_page *pvh;
4066	pv_entry_t pv;
4067	int loops = 0;
4068
4069	if (m->flags & PG_FICTITIOUS)
4070		return (FALSE);
4071
4072	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4073	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4074		if (PV_PMAP(pv) == pmap) {
4075			return (TRUE);
4076		}
4077		loops++;
4078		if (loops >= 16)
4079			break;
4080	}
4081	if (loops < 16) {
4082		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4083		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4084			if (PV_PMAP(pv) == pmap)
4085				return (TRUE);
4086			loops++;
4087			if (loops >= 16)
4088				break;
4089		}
4090	}
4091	return (FALSE);
4092}
4093
4094/*
4095 *	pmap_page_wired_mappings:
4096 *
4097 *	Return the number of managed mappings to the given physical page
4098 *	that are wired.
4099 */
4100int
4101pmap_page_wired_mappings(vm_page_t m)
4102{
4103	int count;
4104
4105	count = 0;
4106	if ((m->flags & PG_FICTITIOUS) != 0)
4107		return (count);
4108	vm_page_lock_queues();
4109	count = pmap_pvh_wired_mappings(&m->md, count);
4110	count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count);
4111	vm_page_unlock_queues();
4112	return (count);
4113}
4114
4115/*
4116 *	pmap_pvh_wired_mappings:
4117 *
4118 *	Return the updated number "count" of managed mappings that are wired.
4119 */
4120static int
4121pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4122{
4123	pmap_t pmap;
4124	pt_entry_t *pte;
4125	pv_entry_t pv;
4126
4127	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4128	sched_pin();
4129	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4130		pmap = PV_PMAP(pv);
4131		PMAP_LOCK(pmap);
4132		pte = pmap_pte_quick(pmap, pv->pv_va);
4133		if ((*pte & PG_W) != 0)
4134			count++;
4135		PMAP_UNLOCK(pmap);
4136	}
4137	sched_unpin();
4138	return (count);
4139}
4140
4141/*
4142 * Returns TRUE if the given page is mapped individually or as part of
4143 * a 4mpage.  Otherwise, returns FALSE.
4144 */
4145boolean_t
4146pmap_page_is_mapped(vm_page_t m)
4147{
4148	boolean_t rv;
4149
4150	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
4151		return (FALSE);
4152	vm_page_lock_queues();
4153	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4154	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
4155	vm_page_unlock_queues();
4156	return (rv);
4157}
4158
4159/*
4160 * Remove all pages from specified address space
4161 * this aids process exit speeds.  Also, this code
4162 * is special cased for current process only, but
4163 * can have the more generic (and slightly slower)
4164 * mode enabled.  This is much faster than pmap_remove
4165 * in the case of running down an entire address space.
4166 */
4167void
4168pmap_remove_pages(pmap_t pmap)
4169{
4170	pt_entry_t *pte, tpte;
4171	vm_page_t free = NULL;
4172	vm_page_t m, mpte, mt;
4173	pv_entry_t pv;
4174	struct md_page *pvh;
4175	struct pv_chunk *pc, *npc;
4176	int field, idx;
4177	int32_t bit;
4178	uint32_t inuse, bitmask;
4179	int allfree;
4180
4181	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
4182		printf("warning: pmap_remove_pages called with non-current pmap\n");
4183		return;
4184	}
4185	vm_page_lock_queues();
4186	PMAP_LOCK(pmap);
4187	sched_pin();
4188	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4189		allfree = 1;
4190		for (field = 0; field < _NPCM; field++) {
4191			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4192			while (inuse != 0) {
4193				bit = bsfl(inuse);
4194				bitmask = 1UL << bit;
4195				idx = field * 32 + bit;
4196				pv = &pc->pc_pventry[idx];
4197				inuse &= ~bitmask;
4198
4199				pte = pmap_pde(pmap, pv->pv_va);
4200				tpte = *pte;
4201				if ((tpte & PG_PS) == 0) {
4202					pte = vtopte(pv->pv_va);
4203					tpte = *pte & ~PG_PTE_PAT;
4204				}
4205
4206				if (tpte == 0) {
4207					printf(
4208					    "TPTE at %p  IS ZERO @ VA %08x\n",
4209					    pte, pv->pv_va);
4210					panic("bad pte");
4211				}
4212
4213/*
4214 * We cannot remove wired pages from a process' mapping at this time
4215 */
4216				if (tpte & PG_W) {
4217					allfree = 0;
4218					continue;
4219				}
4220
4221				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4222				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4223				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4224				    m, (uintmax_t)m->phys_addr,
4225				    (uintmax_t)tpte));
4226
4227				KASSERT(m < &vm_page_array[vm_page_array_size],
4228					("pmap_remove_pages: bad tpte %#jx",
4229					(uintmax_t)tpte));
4230
4231				pte_clear(pte);
4232
4233				/*
4234				 * Update the vm_page_t clean/reference bits.
4235				 */
4236				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4237					if ((tpte & PG_PS) != 0) {
4238						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4239							vm_page_dirty(mt);
4240					} else
4241						vm_page_dirty(m);
4242				}
4243
4244				/* Mark free */
4245				PV_STAT(pv_entry_frees++);
4246				PV_STAT(pv_entry_spare++);
4247				pv_entry_count--;
4248				pc->pc_map[field] |= bitmask;
4249				if ((tpte & PG_PS) != 0) {
4250					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4251					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4252					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4253					if (TAILQ_EMPTY(&pvh->pv_list)) {
4254						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4255							if (TAILQ_EMPTY(&mt->md.pv_list))
4256								vm_page_flag_clear(mt, PG_WRITEABLE);
4257					}
4258					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4259					if (mpte != NULL) {
4260						pmap_remove_pt_page(pmap, mpte);
4261						pmap->pm_stats.resident_count--;
4262						KASSERT(mpte->wire_count == NPTEPG,
4263						    ("pmap_remove_pages: pte page wire count error"));
4264						mpte->wire_count = 0;
4265						pmap_add_delayed_free_list(mpte, &free, FALSE);
4266						atomic_subtract_int(&cnt.v_wire_count, 1);
4267					}
4268				} else {
4269					pmap->pm_stats.resident_count--;
4270					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4271					if (TAILQ_EMPTY(&m->md.pv_list)) {
4272						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4273						if (TAILQ_EMPTY(&pvh->pv_list))
4274							vm_page_flag_clear(m, PG_WRITEABLE);
4275					}
4276					pmap_unuse_pt(pmap, pv->pv_va, &free);
4277				}
4278			}
4279		}
4280		if (allfree) {
4281			PV_STAT(pv_entry_spare -= _NPCPV);
4282			PV_STAT(pc_chunk_count--);
4283			PV_STAT(pc_chunk_frees++);
4284			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4285			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4286			pmap_qremove((vm_offset_t)pc, 1);
4287			vm_page_unwire(m, 0);
4288			vm_page_free(m);
4289			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4290		}
4291	}
4292	sched_unpin();
4293	pmap_invalidate_all(pmap);
4294	vm_page_unlock_queues();
4295	PMAP_UNLOCK(pmap);
4296	pmap_free_zero_pages(free);
4297}
4298
4299/*
4300 *	pmap_is_modified:
4301 *
4302 *	Return whether or not the specified physical page was modified
4303 *	in any physical maps.
4304 */
4305boolean_t
4306pmap_is_modified(vm_page_t m)
4307{
4308	boolean_t rv;
4309
4310	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4311	    ("pmap_is_modified: page %p is not managed", m));
4312
4313	/*
4314	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
4315	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
4316	 * is clear, no PTEs can have PG_M set.
4317	 */
4318	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4319	if ((m->oflags & VPO_BUSY) == 0 &&
4320	    (m->flags & PG_WRITEABLE) == 0)
4321		return (FALSE);
4322	vm_page_lock_queues();
4323	rv = pmap_is_modified_pvh(&m->md) ||
4324	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m)));
4325	vm_page_unlock_queues();
4326	return (rv);
4327}
4328
4329/*
4330 * Returns TRUE if any of the given mappings were used to modify
4331 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4332 * mappings are supported.
4333 */
4334static boolean_t
4335pmap_is_modified_pvh(struct md_page *pvh)
4336{
4337	pv_entry_t pv;
4338	pt_entry_t *pte;
4339	pmap_t pmap;
4340	boolean_t rv;
4341
4342	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4343	rv = FALSE;
4344	sched_pin();
4345	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4346		pmap = PV_PMAP(pv);
4347		PMAP_LOCK(pmap);
4348		pte = pmap_pte_quick(pmap, pv->pv_va);
4349		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4350		PMAP_UNLOCK(pmap);
4351		if (rv)
4352			break;
4353	}
4354	sched_unpin();
4355	return (rv);
4356}
4357
4358/*
4359 *	pmap_is_prefaultable:
4360 *
4361 *	Return whether or not the specified virtual address is elgible
4362 *	for prefault.
4363 */
4364boolean_t
4365pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4366{
4367	pd_entry_t *pde;
4368	pt_entry_t *pte;
4369	boolean_t rv;
4370
4371	rv = FALSE;
4372	PMAP_LOCK(pmap);
4373	pde = pmap_pde(pmap, addr);
4374	if (*pde != 0 && (*pde & PG_PS) == 0) {
4375		pte = vtopte(addr);
4376		rv = *pte == 0;
4377	}
4378	PMAP_UNLOCK(pmap);
4379	return (rv);
4380}
4381
4382/*
4383 *	pmap_is_referenced:
4384 *
4385 *	Return whether or not the specified physical page was referenced
4386 *	in any physical maps.
4387 */
4388boolean_t
4389pmap_is_referenced(vm_page_t m)
4390{
4391	boolean_t rv;
4392
4393	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4394	    ("pmap_is_referenced: page %p is not managed", m));
4395	vm_page_lock_queues();
4396	rv = pmap_is_referenced_pvh(&m->md) ||
4397	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m)));
4398	vm_page_unlock_queues();
4399	return (rv);
4400}
4401
4402/*
4403 * Returns TRUE if any of the given mappings were referenced and FALSE
4404 * otherwise.  Both page and 4mpage mappings are supported.
4405 */
4406static boolean_t
4407pmap_is_referenced_pvh(struct md_page *pvh)
4408{
4409	pv_entry_t pv;
4410	pt_entry_t *pte;
4411	pmap_t pmap;
4412	boolean_t rv;
4413
4414	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4415	rv = FALSE;
4416	sched_pin();
4417	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4418		pmap = PV_PMAP(pv);
4419		PMAP_LOCK(pmap);
4420		pte = pmap_pte_quick(pmap, pv->pv_va);
4421		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4422		PMAP_UNLOCK(pmap);
4423		if (rv)
4424			break;
4425	}
4426	sched_unpin();
4427	return (rv);
4428}
4429
4430/*
4431 * Clear the write and modified bits in each of the given page's mappings.
4432 */
4433void
4434pmap_remove_write(vm_page_t m)
4435{
4436	struct md_page *pvh;
4437	pv_entry_t next_pv, pv;
4438	pmap_t pmap;
4439	pd_entry_t *pde;
4440	pt_entry_t oldpte, *pte;
4441	vm_offset_t va;
4442
4443	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4444	    ("pmap_remove_write: page %p is not managed", m));
4445
4446	/*
4447	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
4448	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
4449	 * is clear, no page table entries need updating.
4450	 */
4451	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4452	if ((m->oflags & VPO_BUSY) == 0 &&
4453	    (m->flags & PG_WRITEABLE) == 0)
4454		return;
4455	vm_page_lock_queues();
4456	sched_pin();
4457	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4458	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4459		va = pv->pv_va;
4460		pmap = PV_PMAP(pv);
4461		PMAP_LOCK(pmap);
4462		pde = pmap_pde(pmap, va);
4463		if ((*pde & PG_RW) != 0)
4464			(void)pmap_demote_pde(pmap, pde, va);
4465		PMAP_UNLOCK(pmap);
4466	}
4467	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4468		pmap = PV_PMAP(pv);
4469		PMAP_LOCK(pmap);
4470		pde = pmap_pde(pmap, pv->pv_va);
4471		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4472		    " a 4mpage in page %p's pv list", m));
4473		pte = pmap_pte_quick(pmap, pv->pv_va);
4474retry:
4475		oldpte = *pte;
4476		if ((oldpte & PG_RW) != 0) {
4477			/*
4478			 * Regardless of whether a pte is 32 or 64 bits
4479			 * in size, PG_RW and PG_M are among the least
4480			 * significant 32 bits.
4481			 */
4482			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4483			    oldpte & ~(PG_RW | PG_M)))
4484				goto retry;
4485			if ((oldpte & PG_M) != 0)
4486				vm_page_dirty(m);
4487			pmap_invalidate_page(pmap, pv->pv_va);
4488		}
4489		PMAP_UNLOCK(pmap);
4490	}
4491	vm_page_flag_clear(m, PG_WRITEABLE);
4492	sched_unpin();
4493	vm_page_unlock_queues();
4494}
4495
4496/*
4497 *	pmap_ts_referenced:
4498 *
4499 *	Return a count of reference bits for a page, clearing those bits.
4500 *	It is not necessary for every reference bit to be cleared, but it
4501 *	is necessary that 0 only be returned when there are truly no
4502 *	reference bits set.
4503 *
4504 *	XXX: The exact number of bits to check and clear is a matter that
4505 *	should be tested and standardized at some point in the future for
4506 *	optimal aging of shared pages.
4507 */
4508int
4509pmap_ts_referenced(vm_page_t m)
4510{
4511	struct md_page *pvh;
4512	pv_entry_t pv, pvf, pvn;
4513	pmap_t pmap;
4514	pd_entry_t oldpde, *pde;
4515	pt_entry_t *pte;
4516	vm_offset_t va;
4517	int rtval = 0;
4518
4519	if (m->flags & PG_FICTITIOUS)
4520		return (rtval);
4521	sched_pin();
4522	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4523	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4524	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4525		va = pv->pv_va;
4526		pmap = PV_PMAP(pv);
4527		PMAP_LOCK(pmap);
4528		pde = pmap_pde(pmap, va);
4529		oldpde = *pde;
4530		if ((oldpde & PG_A) != 0) {
4531			if (pmap_demote_pde(pmap, pde, va)) {
4532				if ((oldpde & PG_W) == 0) {
4533					/*
4534					 * Remove the mapping to a single page
4535					 * so that a subsequent access may
4536					 * repromote.  Since the underlying
4537					 * page table page is fully populated,
4538					 * this removal never frees a page
4539					 * table page.
4540					 */
4541					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4542					    PG_PS_FRAME);
4543					pmap_remove_page(pmap, va, NULL);
4544					rtval++;
4545					if (rtval > 4) {
4546						PMAP_UNLOCK(pmap);
4547						return (rtval);
4548					}
4549				}
4550			}
4551		}
4552		PMAP_UNLOCK(pmap);
4553	}
4554	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4555		pvf = pv;
4556		do {
4557			pvn = TAILQ_NEXT(pv, pv_list);
4558			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4559			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4560			pmap = PV_PMAP(pv);
4561			PMAP_LOCK(pmap);
4562			pde = pmap_pde(pmap, pv->pv_va);
4563			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4564			    " found a 4mpage in page %p's pv list", m));
4565			pte = pmap_pte_quick(pmap, pv->pv_va);
4566			if ((*pte & PG_A) != 0) {
4567				atomic_clear_int((u_int *)pte, PG_A);
4568				pmap_invalidate_page(pmap, pv->pv_va);
4569				rtval++;
4570				if (rtval > 4)
4571					pvn = NULL;
4572			}
4573			PMAP_UNLOCK(pmap);
4574		} while ((pv = pvn) != NULL && pv != pvf);
4575	}
4576	sched_unpin();
4577	return (rtval);
4578}
4579
4580/*
4581 *	Clear the modify bits on the specified physical page.
4582 */
4583void
4584pmap_clear_modify(vm_page_t m)
4585{
4586	struct md_page *pvh;
4587	pv_entry_t next_pv, pv;
4588	pmap_t pmap;
4589	pd_entry_t oldpde, *pde;
4590	pt_entry_t oldpte, *pte;
4591	vm_offset_t va;
4592
4593	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4594	    ("pmap_clear_modify: page %p is not managed", m));
4595	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4596	KASSERT((m->oflags & VPO_BUSY) == 0,
4597	    ("pmap_clear_modify: page %p is busy", m));
4598
4599	/*
4600	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
4601	 * If the object containing the page is locked and the page is not
4602	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
4603	 */
4604	if ((m->flags & PG_WRITEABLE) == 0)
4605		return;
4606	vm_page_lock_queues();
4607	sched_pin();
4608	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4609	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4610		va = pv->pv_va;
4611		pmap = PV_PMAP(pv);
4612		PMAP_LOCK(pmap);
4613		pde = pmap_pde(pmap, va);
4614		oldpde = *pde;
4615		if ((oldpde & PG_RW) != 0) {
4616			if (pmap_demote_pde(pmap, pde, va)) {
4617				if ((oldpde & PG_W) == 0) {
4618					/*
4619					 * Write protect the mapping to a
4620					 * single page so that a subsequent
4621					 * write access may repromote.
4622					 */
4623					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4624					    PG_PS_FRAME);
4625					pte = pmap_pte_quick(pmap, va);
4626					oldpte = *pte;
4627					if ((oldpte & PG_V) != 0) {
4628						/*
4629						 * Regardless of whether a pte is 32 or 64 bits
4630						 * in size, PG_RW and PG_M are among the least
4631						 * significant 32 bits.
4632						 */
4633						while (!atomic_cmpset_int((u_int *)pte,
4634						    oldpte,
4635						    oldpte & ~(PG_M | PG_RW)))
4636							oldpte = *pte;
4637						vm_page_dirty(m);
4638						pmap_invalidate_page(pmap, va);
4639					}
4640				}
4641			}
4642		}
4643		PMAP_UNLOCK(pmap);
4644	}
4645	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4646		pmap = PV_PMAP(pv);
4647		PMAP_LOCK(pmap);
4648		pde = pmap_pde(pmap, pv->pv_va);
4649		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4650		    " a 4mpage in page %p's pv list", m));
4651		pte = pmap_pte_quick(pmap, pv->pv_va);
4652		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4653			/*
4654			 * Regardless of whether a pte is 32 or 64 bits
4655			 * in size, PG_M is among the least significant
4656			 * 32 bits.
4657			 */
4658			atomic_clear_int((u_int *)pte, PG_M);
4659			pmap_invalidate_page(pmap, pv->pv_va);
4660		}
4661		PMAP_UNLOCK(pmap);
4662	}
4663	sched_unpin();
4664	vm_page_unlock_queues();
4665}
4666
4667/*
4668 *	pmap_clear_reference:
4669 *
4670 *	Clear the reference bit on the specified physical page.
4671 */
4672void
4673pmap_clear_reference(vm_page_t m)
4674{
4675	struct md_page *pvh;
4676	pv_entry_t next_pv, pv;
4677	pmap_t pmap;
4678	pd_entry_t oldpde, *pde;
4679	pt_entry_t *pte;
4680	vm_offset_t va;
4681
4682	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4683	    ("pmap_clear_reference: page %p is not managed", m));
4684	vm_page_lock_queues();
4685	sched_pin();
4686	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4687	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4688		va = pv->pv_va;
4689		pmap = PV_PMAP(pv);
4690		PMAP_LOCK(pmap);
4691		pde = pmap_pde(pmap, va);
4692		oldpde = *pde;
4693		if ((oldpde & PG_A) != 0) {
4694			if (pmap_demote_pde(pmap, pde, va)) {
4695				/*
4696				 * Remove the mapping to a single page so
4697				 * that a subsequent access may repromote.
4698				 * Since the underlying page table page is
4699				 * fully populated, this removal never frees
4700				 * a page table page.
4701				 */
4702				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4703				    PG_PS_FRAME);
4704				pmap_remove_page(pmap, va, NULL);
4705			}
4706		}
4707		PMAP_UNLOCK(pmap);
4708	}
4709	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4710		pmap = PV_PMAP(pv);
4711		PMAP_LOCK(pmap);
4712		pde = pmap_pde(pmap, pv->pv_va);
4713		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4714		    " a 4mpage in page %p's pv list", m));
4715		pte = pmap_pte_quick(pmap, pv->pv_va);
4716		if ((*pte & PG_A) != 0) {
4717			/*
4718			 * Regardless of whether a pte is 32 or 64 bits
4719			 * in size, PG_A is among the least significant
4720			 * 32 bits.
4721			 */
4722			atomic_clear_int((u_int *)pte, PG_A);
4723			pmap_invalidate_page(pmap, pv->pv_va);
4724		}
4725		PMAP_UNLOCK(pmap);
4726	}
4727	sched_unpin();
4728	vm_page_unlock_queues();
4729}
4730
4731/*
4732 * Miscellaneous support routines follow
4733 */
4734
4735/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4736static __inline void
4737pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4738{
4739	u_int opte, npte;
4740
4741	/*
4742	 * The cache mode bits are all in the low 32-bits of the
4743	 * PTE, so we can just spin on updating the low 32-bits.
4744	 */
4745	do {
4746		opte = *(u_int *)pte;
4747		npte = opte & ~PG_PTE_CACHE;
4748		npte |= cache_bits;
4749	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4750}
4751
4752/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4753static __inline void
4754pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4755{
4756	u_int opde, npde;
4757
4758	/*
4759	 * The cache mode bits are all in the low 32-bits of the
4760	 * PDE, so we can just spin on updating the low 32-bits.
4761	 */
4762	do {
4763		opde = *(u_int *)pde;
4764		npde = opde & ~PG_PDE_CACHE;
4765		npde |= cache_bits;
4766	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4767}
4768
4769/*
4770 * Map a set of physical memory pages into the kernel virtual
4771 * address space. Return a pointer to where it is mapped. This
4772 * routine is intended to be used for mapping device memory,
4773 * NOT real memory.
4774 */
4775void *
4776pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4777{
4778	vm_offset_t va, offset;
4779	vm_size_t tmpsize;
4780
4781	offset = pa & PAGE_MASK;
4782	size = roundup(offset + size, PAGE_SIZE);
4783	pa = pa & PG_FRAME;
4784
4785	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4786		va = KERNBASE + pa;
4787	else
4788		va = kmem_alloc_nofault(kernel_map, size);
4789	if (!va)
4790		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4791
4792	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4793		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4794	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4795	pmap_invalidate_cache_range(va, va + size);
4796	return ((void *)(va + offset));
4797}
4798
4799void *
4800pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4801{
4802
4803	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4804}
4805
4806void *
4807pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4808{
4809
4810	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4811}
4812
4813void
4814pmap_unmapdev(vm_offset_t va, vm_size_t size)
4815{
4816	vm_offset_t base, offset, tmpva;
4817
4818	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4819		return;
4820	base = trunc_page(va);
4821	offset = va & PAGE_MASK;
4822	size = roundup(offset + size, PAGE_SIZE);
4823	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4824		pmap_kremove(tmpva);
4825	pmap_invalidate_range(kernel_pmap, va, tmpva);
4826	kmem_free(kernel_map, base, size);
4827}
4828
4829/*
4830 * Sets the memory attribute for the specified page.
4831 */
4832void
4833pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4834{
4835	struct sysmaps *sysmaps;
4836	vm_offset_t sva, eva;
4837
4838	m->md.pat_mode = ma;
4839	if ((m->flags & PG_FICTITIOUS) != 0)
4840		return;
4841
4842	/*
4843	 * If "m" is a normal page, flush it from the cache.
4844	 * See pmap_invalidate_cache_range().
4845	 *
4846	 * First, try to find an existing mapping of the page by sf
4847	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4848	 * flushes the cache.
4849	 */
4850	if (sf_buf_invalidate_cache(m))
4851		return;
4852
4853	/*
4854	 * If page is not mapped by sf buffer, but CPU does not
4855	 * support self snoop, map the page transient and do
4856	 * invalidation. In the worst case, whole cache is flushed by
4857	 * pmap_invalidate_cache_range().
4858	 */
4859	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4860		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4861		mtx_lock(&sysmaps->lock);
4862		if (*sysmaps->CMAP2)
4863			panic("pmap_page_set_memattr: CMAP2 busy");
4864		sched_pin();
4865		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4866		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4867		invlcaddr(sysmaps->CADDR2);
4868		sva = (vm_offset_t)sysmaps->CADDR2;
4869		eva = sva + PAGE_SIZE;
4870	} else
4871		sva = eva = 0; /* gcc */
4872	pmap_invalidate_cache_range(sva, eva);
4873	if (sva != 0) {
4874		*sysmaps->CMAP2 = 0;
4875		sched_unpin();
4876		mtx_unlock(&sysmaps->lock);
4877	}
4878}
4879
4880/*
4881 * Changes the specified virtual address range's memory type to that given by
4882 * the parameter "mode".  The specified virtual address range must be
4883 * completely contained within either the kernel map.
4884 *
4885 * Returns zero if the change completed successfully, and either EINVAL or
4886 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4887 * of the virtual address range was not mapped, and ENOMEM is returned if
4888 * there was insufficient memory available to complete the change.
4889 */
4890int
4891pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4892{
4893	vm_offset_t base, offset, tmpva;
4894	pd_entry_t *pde;
4895	pt_entry_t *pte;
4896	int cache_bits_pte, cache_bits_pde;
4897	boolean_t changed;
4898
4899	base = trunc_page(va);
4900	offset = va & PAGE_MASK;
4901	size = roundup(offset + size, PAGE_SIZE);
4902
4903	/*
4904	 * Only supported on kernel virtual addresses above the recursive map.
4905	 */
4906	if (base < VM_MIN_KERNEL_ADDRESS)
4907		return (EINVAL);
4908
4909	cache_bits_pde = pmap_cache_bits(mode, 1);
4910	cache_bits_pte = pmap_cache_bits(mode, 0);
4911	changed = FALSE;
4912
4913	/*
4914	 * Pages that aren't mapped aren't supported.  Also break down
4915	 * 2/4MB pages into 4KB pages if required.
4916	 */
4917	PMAP_LOCK(kernel_pmap);
4918	for (tmpva = base; tmpva < base + size; ) {
4919		pde = pmap_pde(kernel_pmap, tmpva);
4920		if (*pde == 0) {
4921			PMAP_UNLOCK(kernel_pmap);
4922			return (EINVAL);
4923		}
4924		if (*pde & PG_PS) {
4925			/*
4926			 * If the current 2/4MB page already has
4927			 * the required memory type, then we need not
4928			 * demote this page.  Just increment tmpva to
4929			 * the next 2/4MB page frame.
4930			 */
4931			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4932				tmpva = trunc_4mpage(tmpva) + NBPDR;
4933				continue;
4934			}
4935
4936			/*
4937			 * If the current offset aligns with a 2/4MB
4938			 * page frame and there is at least 2/4MB left
4939			 * within the range, then we need not break
4940			 * down this page into 4KB pages.
4941			 */
4942			if ((tmpva & PDRMASK) == 0 &&
4943			    tmpva + PDRMASK < base + size) {
4944				tmpva += NBPDR;
4945				continue;
4946			}
4947			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4948				PMAP_UNLOCK(kernel_pmap);
4949				return (ENOMEM);
4950			}
4951		}
4952		pte = vtopte(tmpva);
4953		if (*pte == 0) {
4954			PMAP_UNLOCK(kernel_pmap);
4955			return (EINVAL);
4956		}
4957		tmpva += PAGE_SIZE;
4958	}
4959	PMAP_UNLOCK(kernel_pmap);
4960
4961	/*
4962	 * Ok, all the pages exist, so run through them updating their
4963	 * cache mode if required.
4964	 */
4965	for (tmpva = base; tmpva < base + size; ) {
4966		pde = pmap_pde(kernel_pmap, tmpva);
4967		if (*pde & PG_PS) {
4968			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4969				pmap_pde_attr(pde, cache_bits_pde);
4970				changed = TRUE;
4971			}
4972			tmpva = trunc_4mpage(tmpva) + NBPDR;
4973		} else {
4974			pte = vtopte(tmpva);
4975			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4976				pmap_pte_attr(pte, cache_bits_pte);
4977				changed = TRUE;
4978			}
4979			tmpva += PAGE_SIZE;
4980		}
4981	}
4982
4983	/*
4984	 * Flush CPU caches to make sure any data isn't cached that
4985	 * shouldn't be, etc.
4986	 */
4987	if (changed) {
4988		pmap_invalidate_range(kernel_pmap, base, tmpva);
4989		pmap_invalidate_cache_range(base, tmpva);
4990	}
4991	return (0);
4992}
4993
4994/*
4995 * perform the pmap work for mincore
4996 */
4997int
4998pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4999{
5000	pd_entry_t *pdep;
5001	pt_entry_t *ptep, pte;
5002	vm_paddr_t pa;
5003	int val;
5004
5005	PMAP_LOCK(pmap);
5006retry:
5007	pdep = pmap_pde(pmap, addr);
5008	if (*pdep != 0) {
5009		if (*pdep & PG_PS) {
5010			pte = *pdep;
5011			/* Compute the physical address of the 4KB page. */
5012			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5013			    PG_FRAME;
5014			val = MINCORE_SUPER;
5015		} else {
5016			ptep = pmap_pte(pmap, addr);
5017			pte = *ptep;
5018			pmap_pte_release(ptep);
5019			pa = pte & PG_FRAME;
5020			val = 0;
5021		}
5022	} else {
5023		pte = 0;
5024		pa = 0;
5025		val = 0;
5026	}
5027	if ((pte & PG_V) != 0) {
5028		val |= MINCORE_INCORE;
5029		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5030			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5031		if ((pte & PG_A) != 0)
5032			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5033	}
5034	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5035	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5036	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5037		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5038		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5039			goto retry;
5040	} else
5041		PA_UNLOCK_COND(*locked_pa);
5042	PMAP_UNLOCK(pmap);
5043	return (val);
5044}
5045
5046void
5047pmap_activate(struct thread *td)
5048{
5049	pmap_t	pmap, oldpmap;
5050	u_int32_t  cr3;
5051
5052	critical_enter();
5053	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5054	oldpmap = PCPU_GET(curpmap);
5055#if defined(SMP)
5056	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
5057	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
5058#else
5059	oldpmap->pm_active &= ~1;
5060	pmap->pm_active |= 1;
5061#endif
5062#ifdef PAE
5063	cr3 = vtophys(pmap->pm_pdpt);
5064#else
5065	cr3 = vtophys(pmap->pm_pdir);
5066#endif
5067	/*
5068	 * pmap_activate is for the current thread on the current cpu
5069	 */
5070	td->td_pcb->pcb_cr3 = cr3;
5071	load_cr3(cr3);
5072	PCPU_SET(curpmap, pmap);
5073	critical_exit();
5074}
5075
5076void
5077pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5078{
5079}
5080
5081/*
5082 *	Increase the starting virtual address of the given mapping if a
5083 *	different alignment might result in more superpage mappings.
5084 */
5085void
5086pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5087    vm_offset_t *addr, vm_size_t size)
5088{
5089	vm_offset_t superpage_offset;
5090
5091	if (size < NBPDR)
5092		return;
5093	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5094		offset += ptoa(object->pg_color);
5095	superpage_offset = offset & PDRMASK;
5096	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5097	    (*addr & PDRMASK) == superpage_offset)
5098		return;
5099	if ((*addr & PDRMASK) < superpage_offset)
5100		*addr = (*addr & ~PDRMASK) + superpage_offset;
5101	else
5102		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5103}
5104
5105
5106#if defined(PMAP_DEBUG)
5107pmap_pid_dump(int pid)
5108{
5109	pmap_t pmap;
5110	struct proc *p;
5111	int npte = 0;
5112	int index;
5113
5114	sx_slock(&allproc_lock);
5115	FOREACH_PROC_IN_SYSTEM(p) {
5116		if (p->p_pid != pid)
5117			continue;
5118
5119		if (p->p_vmspace) {
5120			int i,j;
5121			index = 0;
5122			pmap = vmspace_pmap(p->p_vmspace);
5123			for (i = 0; i < NPDEPTD; i++) {
5124				pd_entry_t *pde;
5125				pt_entry_t *pte;
5126				vm_offset_t base = i << PDRSHIFT;
5127
5128				pde = &pmap->pm_pdir[i];
5129				if (pde && pmap_pde_v(pde)) {
5130					for (j = 0; j < NPTEPG; j++) {
5131						vm_offset_t va = base + (j << PAGE_SHIFT);
5132						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5133							if (index) {
5134								index = 0;
5135								printf("\n");
5136							}
5137							sx_sunlock(&allproc_lock);
5138							return (npte);
5139						}
5140						pte = pmap_pte(pmap, va);
5141						if (pte && pmap_pte_v(pte)) {
5142							pt_entry_t pa;
5143							vm_page_t m;
5144							pa = *pte;
5145							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5146							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5147								va, pa, m->hold_count, m->wire_count, m->flags);
5148							npte++;
5149							index++;
5150							if (index >= 2) {
5151								index = 0;
5152								printf("\n");
5153							} else {
5154								printf(" ");
5155							}
5156						}
5157					}
5158				}
5159			}
5160		}
5161	}
5162	sx_sunlock(&allproc_lock);
5163	return (npte);
5164}
5165#endif
5166
5167#if defined(DEBUG)
5168
5169static void	pads(pmap_t pm);
5170void		pmap_pvdump(vm_offset_t pa);
5171
5172/* print address space of pmap*/
5173static void
5174pads(pmap_t pm)
5175{
5176	int i, j;
5177	vm_paddr_t va;
5178	pt_entry_t *ptep;
5179
5180	if (pm == kernel_pmap)
5181		return;
5182	for (i = 0; i < NPDEPTD; i++)
5183		if (pm->pm_pdir[i])
5184			for (j = 0; j < NPTEPG; j++) {
5185				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5186				if (pm == kernel_pmap && va < KERNBASE)
5187					continue;
5188				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5189					continue;
5190				ptep = pmap_pte(pm, va);
5191				if (pmap_pte_v(ptep))
5192					printf("%x:%x ", va, *ptep);
5193			};
5194
5195}
5196
5197void
5198pmap_pvdump(vm_paddr_t pa)
5199{
5200	pv_entry_t pv;
5201	pmap_t pmap;
5202	vm_page_t m;
5203
5204	printf("pa %x", pa);
5205	m = PHYS_TO_VM_PAGE(pa);
5206	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5207		pmap = PV_PMAP(pv);
5208		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5209		pads(pmap);
5210	}
5211	printf(" ");
5212}
5213#endif
5214