pmap.c revision 207702
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 207702 2010-05-06 16:39:43Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#ifdef __GNUC_GNU_INLINE__
166#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167#else
168#define PMAP_INLINE	extern inline
169#endif
170#else
171#define PMAP_INLINE
172#endif
173
174#define PV_STATS
175#ifdef PV_STATS
176#define PV_STAT(x)	do { x ; } while (0)
177#else
178#define PV_STAT(x)	do { } while (0)
179#endif
180
181#define	pa_index(pa)	((pa) >> PDRSHIFT)
182#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183
184/*
185 * Get PDEs and PTEs for user/kernel address space
186 */
187#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189
190#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195
196#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197    atomic_clear_int((u_int *)(pte), PG_W))
198#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199
200struct pmap kernel_pmap_store;
201LIST_HEAD(pmaplist, pmap);
202static struct pmaplist allpmaps;
203static struct mtx allpmaps_lock;
204
205vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
206vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
207int pgeflag = 0;		/* PG_G or-in */
208int pseflag = 0;		/* PG_PS or-in */
209
210static int nkpt = NKPT;
211vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
212extern u_int32_t KERNend;
213extern u_int32_t KPTphys;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217static uma_zone_t pdptzone;
218#endif
219
220static int pat_works = 0;		/* Is page attribute table sane? */
221
222SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pg_ps_enabled = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
226    "Are large page mappings enabled?");
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0, *KPTmap;
251static pt_entry_t *CMAP3;
252static pd_entry_t *KPTD;
253caddr_t CADDR1 = 0, ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
283static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
284static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
285static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
286static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
287static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
288		    vm_offset_t va);
289static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
290
291static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
292static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
293    vm_prot_t prot);
294static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
295    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
296static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
297static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
298static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
299static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
300static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
301static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
302static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
303static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
304static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
305static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
306    vm_prot_t prot);
307static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
308static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
309    vm_page_t *free);
310static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
311    vm_page_t *free);
312static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
313static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
314    vm_page_t *free);
315static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
316					vm_offset_t va);
317static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
318static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
319    vm_page_t m);
320static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
321    pd_entry_t newpde);
322static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
323
324static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
325
326static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
327static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
328static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
329static void pmap_pte_release(pt_entry_t *pte);
330static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
331#ifdef PAE
332static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
333#endif
334static void pmap_set_pg(void);
335
336CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
337CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
338
339/*
340 * If you get an error here, then you set KVA_PAGES wrong! See the
341 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
342 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
343 */
344CTASSERT(KERNBASE % (1 << 24) == 0);
345
346/*
347 *	Bootstrap the system enough to run with virtual memory.
348 *
349 *	On the i386 this is called after mapping has already been enabled
350 *	and just syncs the pmap module with what has already been done.
351 *	[We can't call it easily with mapping off since the kernel is not
352 *	mapped with PA == VA, hence we would have to relocate every address
353 *	from the linked base (virtual) address "KERNBASE" to the actual
354 *	(physical) address starting relative to 0]
355 */
356void
357pmap_bootstrap(vm_paddr_t firstaddr)
358{
359	vm_offset_t va;
360	pt_entry_t *pte, *unused;
361	struct sysmaps *sysmaps;
362	int i;
363
364	/*
365	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
366	 * large. It should instead be correctly calculated in locore.s and
367	 * not based on 'first' (which is a physical address, not a virtual
368	 * address, for the start of unused physical memory). The kernel
369	 * page tables are NOT double mapped and thus should not be included
370	 * in this calculation.
371	 */
372	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
373
374	virtual_end = VM_MAX_KERNEL_ADDRESS;
375
376	/*
377	 * Initialize the kernel pmap (which is statically allocated).
378	 */
379	PMAP_LOCK_INIT(kernel_pmap);
380	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
381#ifdef PAE
382	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
383#endif
384	kernel_pmap->pm_root = NULL;
385	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
386	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
387	LIST_INIT(&allpmaps);
388
389	/*
390	 * Request a spin mutex so that changes to allpmaps cannot be
391	 * preempted by smp_rendezvous_cpus().  Otherwise,
392	 * pmap_update_pde_kernel() could access allpmaps while it is
393	 * being changed.
394	 */
395	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
396	mtx_lock_spin(&allpmaps_lock);
397	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
398	mtx_unlock_spin(&allpmaps_lock);
399
400	/*
401	 * Reserve some special page table entries/VA space for temporary
402	 * mapping of pages.
403	 */
404#define	SYSMAP(c, p, v, n)	\
405	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
406
407	va = virtual_avail;
408	pte = vtopte(va);
409
410	/*
411	 * CMAP1/CMAP2 are used for zeroing and copying pages.
412	 * CMAP3 is used for the idle process page zeroing.
413	 */
414	for (i = 0; i < MAXCPU; i++) {
415		sysmaps = &sysmaps_pcpu[i];
416		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
417		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
418		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
419	}
420	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
421	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
422
423	/*
424	 * Crashdump maps.
425	 */
426	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
427
428	/*
429	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
430	 */
431	SYSMAP(caddr_t, unused, ptvmmap, 1)
432
433	/*
434	 * msgbufp is used to map the system message buffer.
435	 */
436	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
437
438	/*
439	 * KPTmap is used by pmap_kextract().
440	 */
441	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
442
443	for (i = 0; i < NKPT; i++)
444		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
445
446	/*
447	 * Adjust the start of the KPTD and KPTmap so that the implementation
448	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
449	 */
450	KPTD -= KPTDI;
451	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
452
453	/*
454	 * ptemap is used for pmap_pte_quick
455	 */
456	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
457	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
458
459	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
460
461	virtual_avail = va;
462
463	/*
464	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
465	 * physical memory region that is used by the ACPI wakeup code.  This
466	 * mapping must not have PG_G set.
467	 */
468#ifdef XBOX
469	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
470	 * an early stadium, we cannot yet neatly map video memory ... :-(
471	 * Better fixes are very welcome! */
472	if (!arch_i386_is_xbox)
473#endif
474	for (i = 1; i < NKPT; i++)
475		PTD[i] = 0;
476
477	/* Initialize the PAT MSR if present. */
478	pmap_init_pat();
479
480	/* Turn on PG_G on kernel page(s) */
481	pmap_set_pg();
482}
483
484/*
485 * Setup the PAT MSR.
486 */
487void
488pmap_init_pat(void)
489{
490	uint64_t pat_msr;
491	char *sysenv;
492	static int pat_tested = 0;
493
494	/* Bail if this CPU doesn't implement PAT. */
495	if (!(cpu_feature & CPUID_PAT))
496		return;
497
498	/*
499	 * Due to some Intel errata, we can only safely use the lower 4
500	 * PAT entries.
501	 *
502	 *   Intel Pentium III Processor Specification Update
503	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
504	 * or Mode C Paging)
505	 *
506	 *   Intel Pentium IV  Processor Specification Update
507	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
508	 *
509	 * Some Apple Macs based on nVidia chipsets cannot enter ACPI mode
510	 * via SMI# when we use upper 4 PAT entries for unknown reason.
511	 */
512	if (!pat_tested) {
513		if (cpu_vendor_id != CPU_VENDOR_INTEL ||
514		    (CPUID_TO_FAMILY(cpu_id) == 6 &&
515		    CPUID_TO_MODEL(cpu_id) >= 0xe)) {
516			pat_works = 1;
517			sysenv = getenv("smbios.system.product");
518			if (sysenv != NULL) {
519				if (strncmp(sysenv, "MacBook5,1", 10) == 0 ||
520				    strncmp(sysenv, "MacBookPro5,5", 13) == 0 ||
521				    strncmp(sysenv, "Macmini3,1", 10) == 0)
522					pat_works = 0;
523				freeenv(sysenv);
524			}
525		}
526		pat_tested = 1;
527	}
528
529	/* Initialize default PAT entries. */
530	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
531	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
532	    PAT_VALUE(2, PAT_UNCACHED) |
533	    PAT_VALUE(3, PAT_UNCACHEABLE) |
534	    PAT_VALUE(4, PAT_WRITE_BACK) |
535	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
536	    PAT_VALUE(6, PAT_UNCACHED) |
537	    PAT_VALUE(7, PAT_UNCACHEABLE);
538
539	if (pat_works) {
540		/*
541		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
542		 * Program 4 and 5 as WP and WC.
543		 * Leave 6 and 7 as UC- and UC.
544		 */
545		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
546		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
547		    PAT_VALUE(5, PAT_WRITE_COMBINING);
548	} else {
549		/*
550		 * Just replace PAT Index 2 with WC instead of UC-.
551		 */
552		pat_msr &= ~PAT_MASK(2);
553		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
554	}
555	wrmsr(MSR_PAT, pat_msr);
556}
557
558/*
559 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
560 */
561static void
562pmap_set_pg(void)
563{
564	pt_entry_t *pte;
565	vm_offset_t va, endva;
566
567	if (pgeflag == 0)
568		return;
569
570	endva = KERNBASE + KERNend;
571
572	if (pseflag) {
573		va = KERNBASE + KERNLOAD;
574		while (va  < endva) {
575			pdir_pde(PTD, va) |= pgeflag;
576			invltlb();	/* Play it safe, invltlb() every time */
577			va += NBPDR;
578		}
579	} else {
580		va = (vm_offset_t)btext;
581		while (va < endva) {
582			pte = vtopte(va);
583			if (*pte)
584				*pte |= pgeflag;
585			invltlb();	/* Play it safe, invltlb() every time */
586			va += PAGE_SIZE;
587		}
588	}
589}
590
591/*
592 * Initialize a vm_page's machine-dependent fields.
593 */
594void
595pmap_page_init(vm_page_t m)
596{
597
598	TAILQ_INIT(&m->md.pv_list);
599	m->md.pat_mode = PAT_WRITE_BACK;
600}
601
602#ifdef PAE
603static void *
604pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
605{
606
607	/* Inform UMA that this allocator uses kernel_map/object. */
608	*flags = UMA_SLAB_KERNEL;
609	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
610	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
611}
612#endif
613
614/*
615 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
616 * Requirements:
617 *  - Must deal with pages in order to ensure that none of the PG_* bits
618 *    are ever set, PG_V in particular.
619 *  - Assumes we can write to ptes without pte_store() atomic ops, even
620 *    on PAE systems.  This should be ok.
621 *  - Assumes nothing will ever test these addresses for 0 to indicate
622 *    no mapping instead of correctly checking PG_V.
623 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
624 * Because PG_V is never set, there can be no mappings to invalidate.
625 */
626static vm_offset_t
627pmap_ptelist_alloc(vm_offset_t *head)
628{
629	pt_entry_t *pte;
630	vm_offset_t va;
631
632	va = *head;
633	if (va == 0)
634		return (va);	/* Out of memory */
635	pte = vtopte(va);
636	*head = *pte;
637	if (*head & PG_V)
638		panic("pmap_ptelist_alloc: va with PG_V set!");
639	*pte = 0;
640	return (va);
641}
642
643static void
644pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
645{
646	pt_entry_t *pte;
647
648	if (va & PG_V)
649		panic("pmap_ptelist_free: freeing va with PG_V set!");
650	pte = vtopte(va);
651	*pte = *head;		/* virtual! PG_V is 0 though */
652	*head = va;
653}
654
655static void
656pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
657{
658	int i;
659	vm_offset_t va;
660
661	*head = 0;
662	for (i = npages - 1; i >= 0; i--) {
663		va = (vm_offset_t)base + i * PAGE_SIZE;
664		pmap_ptelist_free(head, va);
665	}
666}
667
668
669/*
670 *	Initialize the pmap module.
671 *	Called by vm_init, to initialize any structures that the pmap
672 *	system needs to map virtual memory.
673 */
674void
675pmap_init(void)
676{
677	vm_page_t mpte;
678	vm_size_t s;
679	int i, pv_npg;
680
681	/*
682	 * Initialize the vm page array entries for the kernel pmap's
683	 * page table pages.
684	 */
685	for (i = 0; i < NKPT; i++) {
686		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
687		KASSERT(mpte >= vm_page_array &&
688		    mpte < &vm_page_array[vm_page_array_size],
689		    ("pmap_init: page table page is out of range"));
690		mpte->pindex = i + KPTDI;
691		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
692	}
693
694	/*
695	 * Initialize the address space (zone) for the pv entries.  Set a
696	 * high water mark so that the system can recover from excessive
697	 * numbers of pv entries.
698	 */
699	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
700	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
701	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
702	pv_entry_max = roundup(pv_entry_max, _NPCPV);
703	pv_entry_high_water = 9 * (pv_entry_max / 10);
704
705	/*
706	 * If the kernel is running in a virtual machine on an AMD Family 10h
707	 * processor, then it must assume that MCA is enabled by the virtual
708	 * machine monitor.
709	 */
710	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
711	    CPUID_TO_FAMILY(cpu_id) == 0x10)
712		workaround_erratum383 = 1;
713
714	/*
715	 * Are large page mappings supported and enabled?
716	 */
717	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
718	if (pseflag == 0)
719		pg_ps_enabled = 0;
720	else if (pg_ps_enabled) {
721		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
722		    ("pmap_init: can't assign to pagesizes[1]"));
723		pagesizes[1] = NBPDR;
724	}
725
726	/*
727	 * Calculate the size of the pv head table for superpages.
728	 */
729	for (i = 0; phys_avail[i + 1]; i += 2);
730	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
731
732	/*
733	 * Allocate memory for the pv head table for superpages.
734	 */
735	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
736	s = round_page(s);
737	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
738	for (i = 0; i < pv_npg; i++)
739		TAILQ_INIT(&pv_table[i].pv_list);
740
741	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
742	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
743	    PAGE_SIZE * pv_maxchunks);
744	if (pv_chunkbase == NULL)
745		panic("pmap_init: not enough kvm for pv chunks");
746	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
747#ifdef PAE
748	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
749	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
750	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
751	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
752#endif
753}
754
755
756SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
757	"Max number of PV entries");
758SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
759	"Page share factor per proc");
760
761SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
762    "2/4MB page mapping counters");
763
764static u_long pmap_pde_demotions;
765SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
766    &pmap_pde_demotions, 0, "2/4MB page demotions");
767
768static u_long pmap_pde_mappings;
769SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
770    &pmap_pde_mappings, 0, "2/4MB page mappings");
771
772static u_long pmap_pde_p_failures;
773SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
774    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
775
776static u_long pmap_pde_promotions;
777SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
778    &pmap_pde_promotions, 0, "2/4MB page promotions");
779
780/***************************************************
781 * Low level helper routines.....
782 ***************************************************/
783
784/*
785 * Determine the appropriate bits to set in a PTE or PDE for a specified
786 * caching mode.
787 */
788int
789pmap_cache_bits(int mode, boolean_t is_pde)
790{
791	int pat_flag, pat_index, cache_bits;
792
793	/* The PAT bit is different for PTE's and PDE's. */
794	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
795
796	/* If we don't support PAT, map extended modes to older ones. */
797	if (!(cpu_feature & CPUID_PAT)) {
798		switch (mode) {
799		case PAT_UNCACHEABLE:
800		case PAT_WRITE_THROUGH:
801		case PAT_WRITE_BACK:
802			break;
803		case PAT_UNCACHED:
804		case PAT_WRITE_COMBINING:
805		case PAT_WRITE_PROTECTED:
806			mode = PAT_UNCACHEABLE;
807			break;
808		}
809	}
810
811	/* Map the caching mode to a PAT index. */
812	if (pat_works) {
813		switch (mode) {
814		case PAT_UNCACHEABLE:
815			pat_index = 3;
816			break;
817		case PAT_WRITE_THROUGH:
818			pat_index = 1;
819			break;
820		case PAT_WRITE_BACK:
821			pat_index = 0;
822			break;
823		case PAT_UNCACHED:
824			pat_index = 2;
825			break;
826		case PAT_WRITE_COMBINING:
827			pat_index = 5;
828			break;
829		case PAT_WRITE_PROTECTED:
830			pat_index = 4;
831			break;
832		default:
833			panic("Unknown caching mode %d\n", mode);
834		}
835	} else {
836		switch (mode) {
837		case PAT_UNCACHED:
838		case PAT_UNCACHEABLE:
839		case PAT_WRITE_PROTECTED:
840			pat_index = 3;
841			break;
842		case PAT_WRITE_THROUGH:
843			pat_index = 1;
844			break;
845		case PAT_WRITE_BACK:
846			pat_index = 0;
847			break;
848		case PAT_WRITE_COMBINING:
849			pat_index = 2;
850			break;
851		default:
852			panic("Unknown caching mode %d\n", mode);
853		}
854	}
855
856	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
857	cache_bits = 0;
858	if (pat_index & 0x4)
859		cache_bits |= pat_flag;
860	if (pat_index & 0x2)
861		cache_bits |= PG_NC_PCD;
862	if (pat_index & 0x1)
863		cache_bits |= PG_NC_PWT;
864	return (cache_bits);
865}
866
867/*
868 * The caller is responsible for maintaining TLB consistency.
869 */
870static void
871pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
872{
873	pd_entry_t *pde;
874	pmap_t pmap;
875	boolean_t PTD_updated;
876
877	PTD_updated = FALSE;
878	mtx_lock_spin(&allpmaps_lock);
879	LIST_FOREACH(pmap, &allpmaps, pm_list) {
880		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
881		    PG_FRAME))
882			PTD_updated = TRUE;
883		pde = pmap_pde(pmap, va);
884		pde_store(pde, newpde);
885	}
886	mtx_unlock_spin(&allpmaps_lock);
887	KASSERT(PTD_updated,
888	    ("pmap_kenter_pde: current page table is not in allpmaps"));
889}
890
891/*
892 * After changing the page size for the specified virtual address in the page
893 * table, flush the corresponding entries from the processor's TLB.  Only the
894 * calling processor's TLB is affected.
895 *
896 * The calling thread must be pinned to a processor.
897 */
898static void
899pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
900{
901	u_long cr4;
902
903	if ((newpde & PG_PS) == 0)
904		/* Demotion: flush a specific 2MB page mapping. */
905		invlpg(va);
906	else if ((newpde & PG_G) == 0)
907		/*
908		 * Promotion: flush every 4KB page mapping from the TLB
909		 * because there are too many to flush individually.
910		 */
911		invltlb();
912	else {
913		/*
914		 * Promotion: flush every 4KB page mapping from the TLB,
915		 * including any global (PG_G) mappings.
916		 */
917		cr4 = rcr4();
918		load_cr4(cr4 & ~CR4_PGE);
919		/*
920		 * Although preemption at this point could be detrimental to
921		 * performance, it would not lead to an error.  PG_G is simply
922		 * ignored if CR4.PGE is clear.  Moreover, in case this block
923		 * is re-entered, the load_cr4() either above or below will
924		 * modify CR4.PGE flushing the TLB.
925		 */
926		load_cr4(cr4 | CR4_PGE);
927	}
928}
929#ifdef SMP
930/*
931 * For SMP, these functions have to use the IPI mechanism for coherence.
932 *
933 * N.B.: Before calling any of the following TLB invalidation functions,
934 * the calling processor must ensure that all stores updating a non-
935 * kernel page table are globally performed.  Otherwise, another
936 * processor could cache an old, pre-update entry without being
937 * invalidated.  This can happen one of two ways: (1) The pmap becomes
938 * active on another processor after its pm_active field is checked by
939 * one of the following functions but before a store updating the page
940 * table is globally performed. (2) The pmap becomes active on another
941 * processor before its pm_active field is checked but due to
942 * speculative loads one of the following functions stills reads the
943 * pmap as inactive on the other processor.
944 *
945 * The kernel page table is exempt because its pm_active field is
946 * immutable.  The kernel page table is always active on every
947 * processor.
948 */
949void
950pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
951{
952	u_int cpumask;
953	u_int other_cpus;
954
955	sched_pin();
956	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
957		invlpg(va);
958		smp_invlpg(va);
959	} else {
960		cpumask = PCPU_GET(cpumask);
961		other_cpus = PCPU_GET(other_cpus);
962		if (pmap->pm_active & cpumask)
963			invlpg(va);
964		if (pmap->pm_active & other_cpus)
965			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
966	}
967	sched_unpin();
968}
969
970void
971pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
972{
973	u_int cpumask;
974	u_int other_cpus;
975	vm_offset_t addr;
976
977	sched_pin();
978	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
979		for (addr = sva; addr < eva; addr += PAGE_SIZE)
980			invlpg(addr);
981		smp_invlpg_range(sva, eva);
982	} else {
983		cpumask = PCPU_GET(cpumask);
984		other_cpus = PCPU_GET(other_cpus);
985		if (pmap->pm_active & cpumask)
986			for (addr = sva; addr < eva; addr += PAGE_SIZE)
987				invlpg(addr);
988		if (pmap->pm_active & other_cpus)
989			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
990			    sva, eva);
991	}
992	sched_unpin();
993}
994
995void
996pmap_invalidate_all(pmap_t pmap)
997{
998	u_int cpumask;
999	u_int other_cpus;
1000
1001	sched_pin();
1002	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
1003		invltlb();
1004		smp_invltlb();
1005	} else {
1006		cpumask = PCPU_GET(cpumask);
1007		other_cpus = PCPU_GET(other_cpus);
1008		if (pmap->pm_active & cpumask)
1009			invltlb();
1010		if (pmap->pm_active & other_cpus)
1011			smp_masked_invltlb(pmap->pm_active & other_cpus);
1012	}
1013	sched_unpin();
1014}
1015
1016void
1017pmap_invalidate_cache(void)
1018{
1019
1020	sched_pin();
1021	wbinvd();
1022	smp_cache_flush();
1023	sched_unpin();
1024}
1025
1026struct pde_action {
1027	cpumask_t store;	/* processor that updates the PDE */
1028	cpumask_t invalidate;	/* processors that invalidate their TLB */
1029	vm_offset_t va;
1030	pd_entry_t *pde;
1031	pd_entry_t newpde;
1032};
1033
1034static void
1035pmap_update_pde_kernel(void *arg)
1036{
1037	struct pde_action *act = arg;
1038	pd_entry_t *pde;
1039	pmap_t pmap;
1040
1041	if (act->store == PCPU_GET(cpumask))
1042		/*
1043		 * Elsewhere, this operation requires allpmaps_lock for
1044		 * synchronization.  Here, it does not because it is being
1045		 * performed in the context of an all_cpus rendezvous.
1046		 */
1047		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1048			pde = pmap_pde(pmap, act->va);
1049			pde_store(pde, act->newpde);
1050		}
1051}
1052
1053static void
1054pmap_update_pde_user(void *arg)
1055{
1056	struct pde_action *act = arg;
1057
1058	if (act->store == PCPU_GET(cpumask))
1059		pde_store(act->pde, act->newpde);
1060}
1061
1062static void
1063pmap_update_pde_teardown(void *arg)
1064{
1065	struct pde_action *act = arg;
1066
1067	if ((act->invalidate & PCPU_GET(cpumask)) != 0)
1068		pmap_update_pde_invalidate(act->va, act->newpde);
1069}
1070
1071/*
1072 * Change the page size for the specified virtual address in a way that
1073 * prevents any possibility of the TLB ever having two entries that map the
1074 * same virtual address using different page sizes.  This is the recommended
1075 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1076 * machine check exception for a TLB state that is improperly diagnosed as a
1077 * hardware error.
1078 */
1079static void
1080pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1081{
1082	struct pde_action act;
1083	cpumask_t active, cpumask;
1084
1085	sched_pin();
1086	cpumask = PCPU_GET(cpumask);
1087	if (pmap == kernel_pmap)
1088		active = all_cpus;
1089	else
1090		active = pmap->pm_active;
1091	if ((active & PCPU_GET(other_cpus)) != 0) {
1092		act.store = cpumask;
1093		act.invalidate = active;
1094		act.va = va;
1095		act.pde = pde;
1096		act.newpde = newpde;
1097		smp_rendezvous_cpus(cpumask | active,
1098		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1099		    pmap_update_pde_kernel : pmap_update_pde_user,
1100		    pmap_update_pde_teardown, &act);
1101	} else {
1102		if (pmap == kernel_pmap)
1103			pmap_kenter_pde(va, newpde);
1104		else
1105			pde_store(pde, newpde);
1106		if ((active & cpumask) != 0)
1107			pmap_update_pde_invalidate(va, newpde);
1108	}
1109	sched_unpin();
1110}
1111#else /* !SMP */
1112/*
1113 * Normal, non-SMP, 486+ invalidation functions.
1114 * We inline these within pmap.c for speed.
1115 */
1116PMAP_INLINE void
1117pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1118{
1119
1120	if (pmap == kernel_pmap || pmap->pm_active)
1121		invlpg(va);
1122}
1123
1124PMAP_INLINE void
1125pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1126{
1127	vm_offset_t addr;
1128
1129	if (pmap == kernel_pmap || pmap->pm_active)
1130		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1131			invlpg(addr);
1132}
1133
1134PMAP_INLINE void
1135pmap_invalidate_all(pmap_t pmap)
1136{
1137
1138	if (pmap == kernel_pmap || pmap->pm_active)
1139		invltlb();
1140}
1141
1142PMAP_INLINE void
1143pmap_invalidate_cache(void)
1144{
1145
1146	wbinvd();
1147}
1148
1149static void
1150pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1151{
1152
1153	if (pmap == kernel_pmap)
1154		pmap_kenter_pde(va, newpde);
1155	else
1156		pde_store(pde, newpde);
1157	if (pmap == kernel_pmap || pmap->pm_active)
1158		pmap_update_pde_invalidate(va, newpde);
1159}
1160#endif /* !SMP */
1161
1162void
1163pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1164{
1165
1166	KASSERT((sva & PAGE_MASK) == 0,
1167	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1168	KASSERT((eva & PAGE_MASK) == 0,
1169	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1170
1171	if (cpu_feature & CPUID_SS)
1172		; /* If "Self Snoop" is supported, do nothing. */
1173	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1174		 eva - sva < 2 * 1024 * 1024) {
1175
1176		/*
1177		 * Otherwise, do per-cache line flush.  Use the mfence
1178		 * instruction to insure that previous stores are
1179		 * included in the write-back.  The processor
1180		 * propagates flush to other processors in the cache
1181		 * coherence domain.
1182		 */
1183		mfence();
1184		for (; sva < eva; sva += cpu_clflush_line_size)
1185			clflush(sva);
1186		mfence();
1187	} else {
1188
1189		/*
1190		 * No targeted cache flush methods are supported by CPU,
1191		 * or the supplied range is bigger than 2MB.
1192		 * Globally invalidate cache.
1193		 */
1194		pmap_invalidate_cache();
1195	}
1196}
1197
1198/*
1199 * Are we current address space or kernel?  N.B. We return FALSE when
1200 * a pmap's page table is in use because a kernel thread is borrowing
1201 * it.  The borrowed page table can change spontaneously, making any
1202 * dependence on its continued use subject to a race condition.
1203 */
1204static __inline int
1205pmap_is_current(pmap_t pmap)
1206{
1207
1208	return (pmap == kernel_pmap ||
1209		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1210	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1211}
1212
1213/*
1214 * If the given pmap is not the current or kernel pmap, the returned pte must
1215 * be released by passing it to pmap_pte_release().
1216 */
1217pt_entry_t *
1218pmap_pte(pmap_t pmap, vm_offset_t va)
1219{
1220	pd_entry_t newpf;
1221	pd_entry_t *pde;
1222
1223	pde = pmap_pde(pmap, va);
1224	if (*pde & PG_PS)
1225		return (pde);
1226	if (*pde != 0) {
1227		/* are we current address space or kernel? */
1228		if (pmap_is_current(pmap))
1229			return (vtopte(va));
1230		mtx_lock(&PMAP2mutex);
1231		newpf = *pde & PG_FRAME;
1232		if ((*PMAP2 & PG_FRAME) != newpf) {
1233			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1234			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1235		}
1236		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1237	}
1238	return (0);
1239}
1240
1241/*
1242 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1243 * being NULL.
1244 */
1245static __inline void
1246pmap_pte_release(pt_entry_t *pte)
1247{
1248
1249	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1250		mtx_unlock(&PMAP2mutex);
1251}
1252
1253static __inline void
1254invlcaddr(void *caddr)
1255{
1256
1257	invlpg((u_int)caddr);
1258}
1259
1260/*
1261 * Super fast pmap_pte routine best used when scanning
1262 * the pv lists.  This eliminates many coarse-grained
1263 * invltlb calls.  Note that many of the pv list
1264 * scans are across different pmaps.  It is very wasteful
1265 * to do an entire invltlb for checking a single mapping.
1266 *
1267 * If the given pmap is not the current pmap, vm_page_queue_mtx
1268 * must be held and curthread pinned to a CPU.
1269 */
1270static pt_entry_t *
1271pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1272{
1273	pd_entry_t newpf;
1274	pd_entry_t *pde;
1275
1276	pde = pmap_pde(pmap, va);
1277	if (*pde & PG_PS)
1278		return (pde);
1279	if (*pde != 0) {
1280		/* are we current address space or kernel? */
1281		if (pmap_is_current(pmap))
1282			return (vtopte(va));
1283		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1284		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1285		newpf = *pde & PG_FRAME;
1286		if ((*PMAP1 & PG_FRAME) != newpf) {
1287			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1288#ifdef SMP
1289			PMAP1cpu = PCPU_GET(cpuid);
1290#endif
1291			invlcaddr(PADDR1);
1292			PMAP1changed++;
1293		} else
1294#ifdef SMP
1295		if (PMAP1cpu != PCPU_GET(cpuid)) {
1296			PMAP1cpu = PCPU_GET(cpuid);
1297			invlcaddr(PADDR1);
1298			PMAP1changedcpu++;
1299		} else
1300#endif
1301			PMAP1unchanged++;
1302		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1303	}
1304	return (0);
1305}
1306
1307/*
1308 *	Routine:	pmap_extract
1309 *	Function:
1310 *		Extract the physical page address associated
1311 *		with the given map/virtual_address pair.
1312 */
1313vm_paddr_t
1314pmap_extract(pmap_t pmap, vm_offset_t va)
1315{
1316	vm_paddr_t rtval;
1317	pt_entry_t *pte;
1318	pd_entry_t pde;
1319
1320	rtval = 0;
1321	PMAP_LOCK(pmap);
1322	pde = pmap->pm_pdir[va >> PDRSHIFT];
1323	if (pde != 0) {
1324		if ((pde & PG_PS) != 0)
1325			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1326		else {
1327			pte = pmap_pte(pmap, va);
1328			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1329			pmap_pte_release(pte);
1330		}
1331	}
1332	PMAP_UNLOCK(pmap);
1333	return (rtval);
1334}
1335
1336/*
1337 *	Routine:	pmap_extract_and_hold
1338 *	Function:
1339 *		Atomically extract and hold the physical page
1340 *		with the given pmap and virtual address pair
1341 *		if that mapping permits the given protection.
1342 */
1343vm_page_t
1344pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1345{
1346	pd_entry_t pde;
1347	pt_entry_t pte;
1348	vm_page_t m;
1349	vm_paddr_t pa;
1350
1351	pa = 0;
1352	m = NULL;
1353	PMAP_LOCK(pmap);
1354retry:
1355	pde = *pmap_pde(pmap, va);
1356	if (pde != 0) {
1357		if (pde & PG_PS) {
1358			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1359				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1360				       (va & PDRMASK), &pa))
1361					goto retry;
1362				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1363				    (va & PDRMASK));
1364				vm_page_hold(m);
1365			}
1366		} else {
1367			sched_pin();
1368			pte = *pmap_pte_quick(pmap, va);
1369			if (pte != 0 &&
1370			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1371				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1372					goto retry;
1373				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1374				vm_page_hold(m);
1375			}
1376			sched_unpin();
1377		}
1378	}
1379	PA_UNLOCK_COND(pa);
1380	PMAP_UNLOCK(pmap);
1381	return (m);
1382}
1383
1384/***************************************************
1385 * Low level mapping routines.....
1386 ***************************************************/
1387
1388/*
1389 * Add a wired page to the kva.
1390 * Note: not SMP coherent.
1391 */
1392PMAP_INLINE void
1393pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1394{
1395	pt_entry_t *pte;
1396
1397	pte = vtopte(va);
1398	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1399}
1400
1401static __inline void
1402pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1403{
1404	pt_entry_t *pte;
1405
1406	pte = vtopte(va);
1407	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1408}
1409
1410/*
1411 * Remove a page from the kernel pagetables.
1412 * Note: not SMP coherent.
1413 */
1414PMAP_INLINE void
1415pmap_kremove(vm_offset_t va)
1416{
1417	pt_entry_t *pte;
1418
1419	pte = vtopte(va);
1420	pte_clear(pte);
1421}
1422
1423/*
1424 *	Used to map a range of physical addresses into kernel
1425 *	virtual address space.
1426 *
1427 *	The value passed in '*virt' is a suggested virtual address for
1428 *	the mapping. Architectures which can support a direct-mapped
1429 *	physical to virtual region can return the appropriate address
1430 *	within that region, leaving '*virt' unchanged. Other
1431 *	architectures should map the pages starting at '*virt' and
1432 *	update '*virt' with the first usable address after the mapped
1433 *	region.
1434 */
1435vm_offset_t
1436pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1437{
1438	vm_offset_t va, sva;
1439
1440	va = sva = *virt;
1441	while (start < end) {
1442		pmap_kenter(va, start);
1443		va += PAGE_SIZE;
1444		start += PAGE_SIZE;
1445	}
1446	pmap_invalidate_range(kernel_pmap, sva, va);
1447	*virt = va;
1448	return (sva);
1449}
1450
1451
1452/*
1453 * Add a list of wired pages to the kva
1454 * this routine is only used for temporary
1455 * kernel mappings that do not need to have
1456 * page modification or references recorded.
1457 * Note that old mappings are simply written
1458 * over.  The page *must* be wired.
1459 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1460 */
1461void
1462pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1463{
1464	pt_entry_t *endpte, oldpte, *pte;
1465
1466	oldpte = 0;
1467	pte = vtopte(sva);
1468	endpte = pte + count;
1469	while (pte < endpte) {
1470		oldpte |= *pte;
1471		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1472		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1473		pte++;
1474		ma++;
1475	}
1476	if ((oldpte & PG_V) != 0)
1477		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1478		    PAGE_SIZE);
1479}
1480
1481/*
1482 * This routine tears out page mappings from the
1483 * kernel -- it is meant only for temporary mappings.
1484 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1485 */
1486void
1487pmap_qremove(vm_offset_t sva, int count)
1488{
1489	vm_offset_t va;
1490
1491	va = sva;
1492	while (count-- > 0) {
1493		pmap_kremove(va);
1494		va += PAGE_SIZE;
1495	}
1496	pmap_invalidate_range(kernel_pmap, sva, va);
1497}
1498
1499/***************************************************
1500 * Page table page management routines.....
1501 ***************************************************/
1502static __inline void
1503pmap_free_zero_pages(vm_page_t free)
1504{
1505	vm_page_t m;
1506
1507	while (free != NULL) {
1508		m = free;
1509		free = m->right;
1510		/* Preserve the page's PG_ZERO setting. */
1511		vm_page_free_toq(m);
1512	}
1513}
1514
1515/*
1516 * Schedule the specified unused page table page to be freed.  Specifically,
1517 * add the page to the specified list of pages that will be released to the
1518 * physical memory manager after the TLB has been updated.
1519 */
1520static __inline void
1521pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1522{
1523
1524	if (set_PG_ZERO)
1525		m->flags |= PG_ZERO;
1526	else
1527		m->flags &= ~PG_ZERO;
1528	m->right = *free;
1529	*free = m;
1530}
1531
1532/*
1533 * Inserts the specified page table page into the specified pmap's collection
1534 * of idle page table pages.  Each of a pmap's page table pages is responsible
1535 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1536 * ordered by this virtual address range.
1537 */
1538static void
1539pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1540{
1541	vm_page_t root;
1542
1543	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1544	root = pmap->pm_root;
1545	if (root == NULL) {
1546		mpte->left = NULL;
1547		mpte->right = NULL;
1548	} else {
1549		root = vm_page_splay(mpte->pindex, root);
1550		if (mpte->pindex < root->pindex) {
1551			mpte->left = root->left;
1552			mpte->right = root;
1553			root->left = NULL;
1554		} else if (mpte->pindex == root->pindex)
1555			panic("pmap_insert_pt_page: pindex already inserted");
1556		else {
1557			mpte->right = root->right;
1558			mpte->left = root;
1559			root->right = NULL;
1560		}
1561	}
1562	pmap->pm_root = mpte;
1563}
1564
1565/*
1566 * Looks for a page table page mapping the specified virtual address in the
1567 * specified pmap's collection of idle page table pages.  Returns NULL if there
1568 * is no page table page corresponding to the specified virtual address.
1569 */
1570static vm_page_t
1571pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1572{
1573	vm_page_t mpte;
1574	vm_pindex_t pindex = va >> PDRSHIFT;
1575
1576	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1577	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1578		mpte = vm_page_splay(pindex, mpte);
1579		if ((pmap->pm_root = mpte)->pindex != pindex)
1580			mpte = NULL;
1581	}
1582	return (mpte);
1583}
1584
1585/*
1586 * Removes the specified page table page from the specified pmap's collection
1587 * of idle page table pages.  The specified page table page must be a member of
1588 * the pmap's collection.
1589 */
1590static void
1591pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1592{
1593	vm_page_t root;
1594
1595	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1596	if (mpte != pmap->pm_root)
1597		vm_page_splay(mpte->pindex, pmap->pm_root);
1598	if (mpte->left == NULL)
1599		root = mpte->right;
1600	else {
1601		root = vm_page_splay(mpte->pindex, mpte->left);
1602		root->right = mpte->right;
1603	}
1604	pmap->pm_root = root;
1605}
1606
1607/*
1608 * This routine unholds page table pages, and if the hold count
1609 * drops to zero, then it decrements the wire count.
1610 */
1611static __inline int
1612pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1613{
1614
1615	--m->wire_count;
1616	if (m->wire_count == 0)
1617		return (_pmap_unwire_pte_hold(pmap, m, free));
1618	else
1619		return (0);
1620}
1621
1622static int
1623_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1624{
1625	vm_offset_t pteva;
1626
1627	/*
1628	 * unmap the page table page
1629	 */
1630	pmap->pm_pdir[m->pindex] = 0;
1631	--pmap->pm_stats.resident_count;
1632
1633	/*
1634	 * This is a release store so that the ordinary store unmapping
1635	 * the page table page is globally performed before TLB shoot-
1636	 * down is begun.
1637	 */
1638	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1639
1640	/*
1641	 * Do an invltlb to make the invalidated mapping
1642	 * take effect immediately.
1643	 */
1644	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1645	pmap_invalidate_page(pmap, pteva);
1646
1647	/*
1648	 * Put page on a list so that it is released after
1649	 * *ALL* TLB shootdown is done
1650	 */
1651	pmap_add_delayed_free_list(m, free, TRUE);
1652
1653	return (1);
1654}
1655
1656/*
1657 * After removing a page table entry, this routine is used to
1658 * conditionally free the page, and manage the hold/wire counts.
1659 */
1660static int
1661pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1662{
1663	pd_entry_t ptepde;
1664	vm_page_t mpte;
1665
1666	if (va >= VM_MAXUSER_ADDRESS)
1667		return (0);
1668	ptepde = *pmap_pde(pmap, va);
1669	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1670	return (pmap_unwire_pte_hold(pmap, mpte, free));
1671}
1672
1673void
1674pmap_pinit0(pmap_t pmap)
1675{
1676
1677	PMAP_LOCK_INIT(pmap);
1678	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1679#ifdef PAE
1680	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1681#endif
1682	pmap->pm_root = NULL;
1683	pmap->pm_active = 0;
1684	PCPU_SET(curpmap, pmap);
1685	TAILQ_INIT(&pmap->pm_pvchunk);
1686	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1687	mtx_lock_spin(&allpmaps_lock);
1688	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1689	mtx_unlock_spin(&allpmaps_lock);
1690}
1691
1692/*
1693 * Initialize a preallocated and zeroed pmap structure,
1694 * such as one in a vmspace structure.
1695 */
1696int
1697pmap_pinit(pmap_t pmap)
1698{
1699	vm_page_t m, ptdpg[NPGPTD];
1700	vm_paddr_t pa;
1701	static int color;
1702	int i;
1703
1704	PMAP_LOCK_INIT(pmap);
1705
1706	/*
1707	 * No need to allocate page table space yet but we do need a valid
1708	 * page directory table.
1709	 */
1710	if (pmap->pm_pdir == NULL) {
1711		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1712		    NBPTD);
1713
1714		if (pmap->pm_pdir == NULL) {
1715			PMAP_LOCK_DESTROY(pmap);
1716			return (0);
1717		}
1718#ifdef PAE
1719		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1720		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1721		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1722		    ("pmap_pinit: pdpt misaligned"));
1723		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1724		    ("pmap_pinit: pdpt above 4g"));
1725#endif
1726		pmap->pm_root = NULL;
1727	}
1728	KASSERT(pmap->pm_root == NULL,
1729	    ("pmap_pinit: pmap has reserved page table page(s)"));
1730
1731	/*
1732	 * allocate the page directory page(s)
1733	 */
1734	for (i = 0; i < NPGPTD;) {
1735		m = vm_page_alloc(NULL, color++,
1736		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1737		    VM_ALLOC_ZERO);
1738		if (m == NULL)
1739			VM_WAIT;
1740		else {
1741			ptdpg[i++] = m;
1742		}
1743	}
1744
1745	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1746
1747	for (i = 0; i < NPGPTD; i++) {
1748		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1749			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1750	}
1751
1752	mtx_lock_spin(&allpmaps_lock);
1753	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1754	mtx_unlock_spin(&allpmaps_lock);
1755	/* Wire in kernel global address entries. */
1756	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1757
1758	/* install self-referential address mapping entry(s) */
1759	for (i = 0; i < NPGPTD; i++) {
1760		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1761		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1762#ifdef PAE
1763		pmap->pm_pdpt[i] = pa | PG_V;
1764#endif
1765	}
1766
1767	pmap->pm_active = 0;
1768	TAILQ_INIT(&pmap->pm_pvchunk);
1769	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1770
1771	return (1);
1772}
1773
1774/*
1775 * this routine is called if the page table page is not
1776 * mapped correctly.
1777 */
1778static vm_page_t
1779_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1780{
1781	vm_paddr_t ptepa;
1782	vm_page_t m;
1783
1784	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1785	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1786	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1787
1788	/*
1789	 * Allocate a page table page.
1790	 */
1791	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1792	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1793		if (flags & M_WAITOK) {
1794			PMAP_UNLOCK(pmap);
1795			vm_page_unlock_queues();
1796			VM_WAIT;
1797			vm_page_lock_queues();
1798			PMAP_LOCK(pmap);
1799		}
1800
1801		/*
1802		 * Indicate the need to retry.  While waiting, the page table
1803		 * page may have been allocated.
1804		 */
1805		return (NULL);
1806	}
1807	if ((m->flags & PG_ZERO) == 0)
1808		pmap_zero_page(m);
1809
1810	/*
1811	 * Map the pagetable page into the process address space, if
1812	 * it isn't already there.
1813	 */
1814
1815	pmap->pm_stats.resident_count++;
1816
1817	ptepa = VM_PAGE_TO_PHYS(m);
1818	pmap->pm_pdir[ptepindex] =
1819		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1820
1821	return (m);
1822}
1823
1824static vm_page_t
1825pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1826{
1827	unsigned ptepindex;
1828	pd_entry_t ptepa;
1829	vm_page_t m;
1830
1831	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1832	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1833	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1834
1835	/*
1836	 * Calculate pagetable page index
1837	 */
1838	ptepindex = va >> PDRSHIFT;
1839retry:
1840	/*
1841	 * Get the page directory entry
1842	 */
1843	ptepa = pmap->pm_pdir[ptepindex];
1844
1845	/*
1846	 * This supports switching from a 4MB page to a
1847	 * normal 4K page.
1848	 */
1849	if (ptepa & PG_PS) {
1850		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1851		ptepa = pmap->pm_pdir[ptepindex];
1852	}
1853
1854	/*
1855	 * If the page table page is mapped, we just increment the
1856	 * hold count, and activate it.
1857	 */
1858	if (ptepa) {
1859		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1860		m->wire_count++;
1861	} else {
1862		/*
1863		 * Here if the pte page isn't mapped, or if it has
1864		 * been deallocated.
1865		 */
1866		m = _pmap_allocpte(pmap, ptepindex, flags);
1867		if (m == NULL && (flags & M_WAITOK))
1868			goto retry;
1869	}
1870	return (m);
1871}
1872
1873
1874/***************************************************
1875* Pmap allocation/deallocation routines.
1876 ***************************************************/
1877
1878#ifdef SMP
1879/*
1880 * Deal with a SMP shootdown of other users of the pmap that we are
1881 * trying to dispose of.  This can be a bit hairy.
1882 */
1883static cpumask_t *lazymask;
1884static u_int lazyptd;
1885static volatile u_int lazywait;
1886
1887void pmap_lazyfix_action(void);
1888
1889void
1890pmap_lazyfix_action(void)
1891{
1892	cpumask_t mymask = PCPU_GET(cpumask);
1893
1894#ifdef COUNT_IPIS
1895	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1896#endif
1897	if (rcr3() == lazyptd)
1898		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1899	atomic_clear_int(lazymask, mymask);
1900	atomic_store_rel_int(&lazywait, 1);
1901}
1902
1903static void
1904pmap_lazyfix_self(cpumask_t mymask)
1905{
1906
1907	if (rcr3() == lazyptd)
1908		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1909	atomic_clear_int(lazymask, mymask);
1910}
1911
1912
1913static void
1914pmap_lazyfix(pmap_t pmap)
1915{
1916	cpumask_t mymask, mask;
1917	u_int spins;
1918
1919	while ((mask = pmap->pm_active) != 0) {
1920		spins = 50000000;
1921		mask = mask & -mask;	/* Find least significant set bit */
1922		mtx_lock_spin(&smp_ipi_mtx);
1923#ifdef PAE
1924		lazyptd = vtophys(pmap->pm_pdpt);
1925#else
1926		lazyptd = vtophys(pmap->pm_pdir);
1927#endif
1928		mymask = PCPU_GET(cpumask);
1929		if (mask == mymask) {
1930			lazymask = &pmap->pm_active;
1931			pmap_lazyfix_self(mymask);
1932		} else {
1933			atomic_store_rel_int((u_int *)&lazymask,
1934			    (u_int)&pmap->pm_active);
1935			atomic_store_rel_int(&lazywait, 0);
1936			ipi_selected(mask, IPI_LAZYPMAP);
1937			while (lazywait == 0) {
1938				ia32_pause();
1939				if (--spins == 0)
1940					break;
1941			}
1942		}
1943		mtx_unlock_spin(&smp_ipi_mtx);
1944		if (spins == 0)
1945			printf("pmap_lazyfix: spun for 50000000\n");
1946	}
1947}
1948
1949#else	/* SMP */
1950
1951/*
1952 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1953 * unlikely to have to even execute this code, including the fact
1954 * that the cleanup is deferred until the parent does a wait(2), which
1955 * means that another userland process has run.
1956 */
1957static void
1958pmap_lazyfix(pmap_t pmap)
1959{
1960	u_int cr3;
1961
1962	cr3 = vtophys(pmap->pm_pdir);
1963	if (cr3 == rcr3()) {
1964		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1965		pmap->pm_active &= ~(PCPU_GET(cpumask));
1966	}
1967}
1968#endif	/* SMP */
1969
1970/*
1971 * Release any resources held by the given physical map.
1972 * Called when a pmap initialized by pmap_pinit is being released.
1973 * Should only be called if the map contains no valid mappings.
1974 */
1975void
1976pmap_release(pmap_t pmap)
1977{
1978	vm_page_t m, ptdpg[NPGPTD];
1979	int i;
1980
1981	KASSERT(pmap->pm_stats.resident_count == 0,
1982	    ("pmap_release: pmap resident count %ld != 0",
1983	    pmap->pm_stats.resident_count));
1984	KASSERT(pmap->pm_root == NULL,
1985	    ("pmap_release: pmap has reserved page table page(s)"));
1986
1987	pmap_lazyfix(pmap);
1988	mtx_lock_spin(&allpmaps_lock);
1989	LIST_REMOVE(pmap, pm_list);
1990	mtx_unlock_spin(&allpmaps_lock);
1991
1992	for (i = 0; i < NPGPTD; i++)
1993		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1994		    PG_FRAME);
1995
1996	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1997	    sizeof(*pmap->pm_pdir));
1998
1999	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2000
2001	for (i = 0; i < NPGPTD; i++) {
2002		m = ptdpg[i];
2003#ifdef PAE
2004		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2005		    ("pmap_release: got wrong ptd page"));
2006#endif
2007		m->wire_count--;
2008		atomic_subtract_int(&cnt.v_wire_count, 1);
2009		vm_page_free_zero(m);
2010	}
2011	PMAP_LOCK_DESTROY(pmap);
2012}
2013
2014static int
2015kvm_size(SYSCTL_HANDLER_ARGS)
2016{
2017	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2018
2019	return (sysctl_handle_long(oidp, &ksize, 0, req));
2020}
2021SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2022    0, 0, kvm_size, "IU", "Size of KVM");
2023
2024static int
2025kvm_free(SYSCTL_HANDLER_ARGS)
2026{
2027	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2028
2029	return (sysctl_handle_long(oidp, &kfree, 0, req));
2030}
2031SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2032    0, 0, kvm_free, "IU", "Amount of KVM free");
2033
2034/*
2035 * grow the number of kernel page table entries, if needed
2036 */
2037void
2038pmap_growkernel(vm_offset_t addr)
2039{
2040	vm_paddr_t ptppaddr;
2041	vm_page_t nkpg;
2042	pd_entry_t newpdir;
2043
2044	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2045	addr = roundup2(addr, NBPDR);
2046	if (addr - 1 >= kernel_map->max_offset)
2047		addr = kernel_map->max_offset;
2048	while (kernel_vm_end < addr) {
2049		if (pdir_pde(PTD, kernel_vm_end)) {
2050			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2051			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2052				kernel_vm_end = kernel_map->max_offset;
2053				break;
2054			}
2055			continue;
2056		}
2057
2058		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2059		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2060		    VM_ALLOC_ZERO);
2061		if (nkpg == NULL)
2062			panic("pmap_growkernel: no memory to grow kernel");
2063
2064		nkpt++;
2065
2066		if ((nkpg->flags & PG_ZERO) == 0)
2067			pmap_zero_page(nkpg);
2068		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2069		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2070		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2071
2072		pmap_kenter_pde(kernel_vm_end, newpdir);
2073		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2074		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2075			kernel_vm_end = kernel_map->max_offset;
2076			break;
2077		}
2078	}
2079}
2080
2081
2082/***************************************************
2083 * page management routines.
2084 ***************************************************/
2085
2086CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2087CTASSERT(_NPCM == 11);
2088
2089static __inline struct pv_chunk *
2090pv_to_chunk(pv_entry_t pv)
2091{
2092
2093	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2094}
2095
2096#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2097
2098#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2099#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2100
2101static uint32_t pc_freemask[11] = {
2102	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2103	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2104	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2105	PC_FREE0_9, PC_FREE10
2106};
2107
2108SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2109	"Current number of pv entries");
2110
2111#ifdef PV_STATS
2112static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2113
2114SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2115	"Current number of pv entry chunks");
2116SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2117	"Current number of pv entry chunks allocated");
2118SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2119	"Current number of pv entry chunks frees");
2120SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2121	"Number of times tried to get a chunk page but failed.");
2122
2123static long pv_entry_frees, pv_entry_allocs;
2124static int pv_entry_spare;
2125
2126SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2127	"Current number of pv entry frees");
2128SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2129	"Current number of pv entry allocs");
2130SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2131	"Current number of spare pv entries");
2132
2133static int pmap_collect_inactive, pmap_collect_active;
2134
2135SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2136	"Current number times pmap_collect called on inactive queue");
2137SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2138	"Current number times pmap_collect called on active queue");
2139#endif
2140
2141/*
2142 * We are in a serious low memory condition.  Resort to
2143 * drastic measures to free some pages so we can allocate
2144 * another pv entry chunk.  This is normally called to
2145 * unmap inactive pages, and if necessary, active pages.
2146 */
2147static void
2148pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2149{
2150	struct md_page *pvh;
2151	pd_entry_t *pde;
2152	pmap_t pmap;
2153	pt_entry_t *pte, tpte;
2154	pv_entry_t next_pv, pv;
2155	vm_offset_t va;
2156	vm_page_t m, free;
2157
2158	sched_pin();
2159	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2160		if (m->hold_count || m->busy)
2161			continue;
2162		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2163			va = pv->pv_va;
2164			pmap = PV_PMAP(pv);
2165			/* Avoid deadlock and lock recursion. */
2166			if (pmap > locked_pmap)
2167				PMAP_LOCK(pmap);
2168			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2169				continue;
2170			pmap->pm_stats.resident_count--;
2171			pde = pmap_pde(pmap, va);
2172			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2173			    " a 4mpage in page %p's pv list", m));
2174			pte = pmap_pte_quick(pmap, va);
2175			tpte = pte_load_clear(pte);
2176			KASSERT((tpte & PG_W) == 0,
2177			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2178			if (tpte & PG_A)
2179				vm_page_flag_set(m, PG_REFERENCED);
2180			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2181				vm_page_dirty(m);
2182			free = NULL;
2183			pmap_unuse_pt(pmap, va, &free);
2184			pmap_invalidate_page(pmap, va);
2185			pmap_free_zero_pages(free);
2186			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2187			if (TAILQ_EMPTY(&m->md.pv_list)) {
2188				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2189				if (TAILQ_EMPTY(&pvh->pv_list))
2190					vm_page_flag_clear(m, PG_WRITEABLE);
2191			}
2192			free_pv_entry(pmap, pv);
2193			if (pmap != locked_pmap)
2194				PMAP_UNLOCK(pmap);
2195		}
2196	}
2197	sched_unpin();
2198}
2199
2200
2201/*
2202 * free the pv_entry back to the free list
2203 */
2204static void
2205free_pv_entry(pmap_t pmap, pv_entry_t pv)
2206{
2207	vm_page_t m;
2208	struct pv_chunk *pc;
2209	int idx, field, bit;
2210
2211	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2212	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2213	PV_STAT(pv_entry_frees++);
2214	PV_STAT(pv_entry_spare++);
2215	pv_entry_count--;
2216	pc = pv_to_chunk(pv);
2217	idx = pv - &pc->pc_pventry[0];
2218	field = idx / 32;
2219	bit = idx % 32;
2220	pc->pc_map[field] |= 1ul << bit;
2221	/* move to head of list */
2222	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2223	for (idx = 0; idx < _NPCM; idx++)
2224		if (pc->pc_map[idx] != pc_freemask[idx]) {
2225			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2226			return;
2227		}
2228	PV_STAT(pv_entry_spare -= _NPCPV);
2229	PV_STAT(pc_chunk_count--);
2230	PV_STAT(pc_chunk_frees++);
2231	/* entire chunk is free, return it */
2232	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2233	pmap_qremove((vm_offset_t)pc, 1);
2234	vm_page_unwire(m, 0);
2235	vm_page_free(m);
2236	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2237}
2238
2239/*
2240 * get a new pv_entry, allocating a block from the system
2241 * when needed.
2242 */
2243static pv_entry_t
2244get_pv_entry(pmap_t pmap, int try)
2245{
2246	static const struct timeval printinterval = { 60, 0 };
2247	static struct timeval lastprint;
2248	static vm_pindex_t colour;
2249	struct vpgqueues *pq;
2250	int bit, field;
2251	pv_entry_t pv;
2252	struct pv_chunk *pc;
2253	vm_page_t m;
2254
2255	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2256	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2257	PV_STAT(pv_entry_allocs++);
2258	pv_entry_count++;
2259	if (pv_entry_count > pv_entry_high_water)
2260		if (ratecheck(&lastprint, &printinterval))
2261			printf("Approaching the limit on PV entries, consider "
2262			    "increasing either the vm.pmap.shpgperproc or the "
2263			    "vm.pmap.pv_entry_max tunable.\n");
2264	pq = NULL;
2265retry:
2266	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2267	if (pc != NULL) {
2268		for (field = 0; field < _NPCM; field++) {
2269			if (pc->pc_map[field]) {
2270				bit = bsfl(pc->pc_map[field]);
2271				break;
2272			}
2273		}
2274		if (field < _NPCM) {
2275			pv = &pc->pc_pventry[field * 32 + bit];
2276			pc->pc_map[field] &= ~(1ul << bit);
2277			/* If this was the last item, move it to tail */
2278			for (field = 0; field < _NPCM; field++)
2279				if (pc->pc_map[field] != 0) {
2280					PV_STAT(pv_entry_spare--);
2281					return (pv);	/* not full, return */
2282				}
2283			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2284			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2285			PV_STAT(pv_entry_spare--);
2286			return (pv);
2287		}
2288	}
2289	/*
2290	 * Access to the ptelist "pv_vafree" is synchronized by the page
2291	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2292	 * remain non-empty until pmap_ptelist_alloc() completes.
2293	 */
2294	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2295	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2296	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2297		if (try) {
2298			pv_entry_count--;
2299			PV_STAT(pc_chunk_tryfail++);
2300			return (NULL);
2301		}
2302		/*
2303		 * Reclaim pv entries: At first, destroy mappings to
2304		 * inactive pages.  After that, if a pv chunk entry
2305		 * is still needed, destroy mappings to active pages.
2306		 */
2307		if (pq == NULL) {
2308			PV_STAT(pmap_collect_inactive++);
2309			pq = &vm_page_queues[PQ_INACTIVE];
2310		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2311			PV_STAT(pmap_collect_active++);
2312			pq = &vm_page_queues[PQ_ACTIVE];
2313		} else
2314			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2315		pmap_collect(pmap, pq);
2316		goto retry;
2317	}
2318	PV_STAT(pc_chunk_count++);
2319	PV_STAT(pc_chunk_allocs++);
2320	colour++;
2321	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2322	pmap_qenter((vm_offset_t)pc, &m, 1);
2323	pc->pc_pmap = pmap;
2324	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2325	for (field = 1; field < _NPCM; field++)
2326		pc->pc_map[field] = pc_freemask[field];
2327	pv = &pc->pc_pventry[0];
2328	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2329	PV_STAT(pv_entry_spare += _NPCPV - 1);
2330	return (pv);
2331}
2332
2333static __inline pv_entry_t
2334pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2335{
2336	pv_entry_t pv;
2337
2338	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2339	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2340		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2341			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2342			break;
2343		}
2344	}
2345	return (pv);
2346}
2347
2348static void
2349pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2350{
2351	struct md_page *pvh;
2352	pv_entry_t pv;
2353	vm_offset_t va_last;
2354	vm_page_t m;
2355
2356	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2357	KASSERT((pa & PDRMASK) == 0,
2358	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2359
2360	/*
2361	 * Transfer the 4mpage's pv entry for this mapping to the first
2362	 * page's pv list.
2363	 */
2364	pvh = pa_to_pvh(pa);
2365	va = trunc_4mpage(va);
2366	pv = pmap_pvh_remove(pvh, pmap, va);
2367	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2368	m = PHYS_TO_VM_PAGE(pa);
2369	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2370	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2371	va_last = va + NBPDR - PAGE_SIZE;
2372	do {
2373		m++;
2374		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2375		    ("pmap_pv_demote_pde: page %p is not managed", m));
2376		va += PAGE_SIZE;
2377		pmap_insert_entry(pmap, va, m);
2378	} while (va < va_last);
2379}
2380
2381static void
2382pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2383{
2384	struct md_page *pvh;
2385	pv_entry_t pv;
2386	vm_offset_t va_last;
2387	vm_page_t m;
2388
2389	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2390	KASSERT((pa & PDRMASK) == 0,
2391	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2392
2393	/*
2394	 * Transfer the first page's pv entry for this mapping to the
2395	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2396	 * to get_pv_entry(), a transfer avoids the possibility that
2397	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2398	 * removes one of the mappings that is being promoted.
2399	 */
2400	m = PHYS_TO_VM_PAGE(pa);
2401	va = trunc_4mpage(va);
2402	pv = pmap_pvh_remove(&m->md, pmap, va);
2403	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2404	pvh = pa_to_pvh(pa);
2405	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2406	/* Free the remaining NPTEPG - 1 pv entries. */
2407	va_last = va + NBPDR - PAGE_SIZE;
2408	do {
2409		m++;
2410		va += PAGE_SIZE;
2411		pmap_pvh_free(&m->md, pmap, va);
2412	} while (va < va_last);
2413}
2414
2415static void
2416pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2417{
2418	pv_entry_t pv;
2419
2420	pv = pmap_pvh_remove(pvh, pmap, va);
2421	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2422	free_pv_entry(pmap, pv);
2423}
2424
2425static void
2426pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2427{
2428	struct md_page *pvh;
2429
2430	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2431	pmap_pvh_free(&m->md, pmap, va);
2432	if (TAILQ_EMPTY(&m->md.pv_list)) {
2433		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2434		if (TAILQ_EMPTY(&pvh->pv_list))
2435			vm_page_flag_clear(m, PG_WRITEABLE);
2436	}
2437}
2438
2439/*
2440 * Create a pv entry for page at pa for
2441 * (pmap, va).
2442 */
2443static void
2444pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2445{
2446	pv_entry_t pv;
2447
2448	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2449	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2450	pv = get_pv_entry(pmap, FALSE);
2451	pv->pv_va = va;
2452	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2453}
2454
2455/*
2456 * Conditionally create a pv entry.
2457 */
2458static boolean_t
2459pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2460{
2461	pv_entry_t pv;
2462
2463	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2464	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2465	if (pv_entry_count < pv_entry_high_water &&
2466	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2467		pv->pv_va = va;
2468		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2469		return (TRUE);
2470	} else
2471		return (FALSE);
2472}
2473
2474/*
2475 * Create the pv entries for each of the pages within a superpage.
2476 */
2477static boolean_t
2478pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2479{
2480	struct md_page *pvh;
2481	pv_entry_t pv;
2482
2483	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2484	if (pv_entry_count < pv_entry_high_water &&
2485	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2486		pv->pv_va = va;
2487		pvh = pa_to_pvh(pa);
2488		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2489		return (TRUE);
2490	} else
2491		return (FALSE);
2492}
2493
2494/*
2495 * Fills a page table page with mappings to consecutive physical pages.
2496 */
2497static void
2498pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2499{
2500	pt_entry_t *pte;
2501
2502	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2503		*pte = newpte;
2504		newpte += PAGE_SIZE;
2505	}
2506}
2507
2508/*
2509 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2510 * 2- or 4MB page mapping is invalidated.
2511 */
2512static boolean_t
2513pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2514{
2515	pd_entry_t newpde, oldpde;
2516	pt_entry_t *firstpte, newpte;
2517	vm_paddr_t mptepa;
2518	vm_page_t free, mpte;
2519
2520	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2521	oldpde = *pde;
2522	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2523	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2524	mpte = pmap_lookup_pt_page(pmap, va);
2525	if (mpte != NULL)
2526		pmap_remove_pt_page(pmap, mpte);
2527	else {
2528		KASSERT((oldpde & PG_W) == 0,
2529		    ("pmap_demote_pde: page table page for a wired mapping"
2530		    " is missing"));
2531
2532		/*
2533		 * Invalidate the 2- or 4MB page mapping and return
2534		 * "failure" if the mapping was never accessed or the
2535		 * allocation of the new page table page fails.
2536		 */
2537		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2538		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2539		    VM_ALLOC_WIRED)) == NULL) {
2540			free = NULL;
2541			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2542			pmap_invalidate_page(pmap, trunc_4mpage(va));
2543			pmap_free_zero_pages(free);
2544			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2545			    " in pmap %p", va, pmap);
2546			return (FALSE);
2547		}
2548		if (va < VM_MAXUSER_ADDRESS)
2549			pmap->pm_stats.resident_count++;
2550	}
2551	mptepa = VM_PAGE_TO_PHYS(mpte);
2552
2553	/*
2554	 * If the page mapping is in the kernel's address space, then the
2555	 * KPTmap can provide access to the page table page.  Otherwise,
2556	 * temporarily map the page table page (mpte) into the kernel's
2557	 * address space at either PADDR1 or PADDR2.
2558	 */
2559	if (va >= KERNBASE)
2560		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2561	else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2562		if ((*PMAP1 & PG_FRAME) != mptepa) {
2563			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2564#ifdef SMP
2565			PMAP1cpu = PCPU_GET(cpuid);
2566#endif
2567			invlcaddr(PADDR1);
2568			PMAP1changed++;
2569		} else
2570#ifdef SMP
2571		if (PMAP1cpu != PCPU_GET(cpuid)) {
2572			PMAP1cpu = PCPU_GET(cpuid);
2573			invlcaddr(PADDR1);
2574			PMAP1changedcpu++;
2575		} else
2576#endif
2577			PMAP1unchanged++;
2578		firstpte = PADDR1;
2579	} else {
2580		mtx_lock(&PMAP2mutex);
2581		if ((*PMAP2 & PG_FRAME) != mptepa) {
2582			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2583			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2584		}
2585		firstpte = PADDR2;
2586	}
2587	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2588	KASSERT((oldpde & PG_A) != 0,
2589	    ("pmap_demote_pde: oldpde is missing PG_A"));
2590	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2591	    ("pmap_demote_pde: oldpde is missing PG_M"));
2592	newpte = oldpde & ~PG_PS;
2593	if ((newpte & PG_PDE_PAT) != 0)
2594		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2595
2596	/*
2597	 * If the page table page is new, initialize it.
2598	 */
2599	if (mpte->wire_count == 1) {
2600		mpte->wire_count = NPTEPG;
2601		pmap_fill_ptp(firstpte, newpte);
2602	}
2603	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2604	    ("pmap_demote_pde: firstpte and newpte map different physical"
2605	    " addresses"));
2606
2607	/*
2608	 * If the mapping has changed attributes, update the page table
2609	 * entries.
2610	 */
2611	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2612		pmap_fill_ptp(firstpte, newpte);
2613
2614	/*
2615	 * Demote the mapping.  This pmap is locked.  The old PDE has
2616	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2617	 * set.  Thus, there is no danger of a race with another
2618	 * processor changing the setting of PG_A and/or PG_M between
2619	 * the read above and the store below.
2620	 */
2621	if (workaround_erratum383)
2622		pmap_update_pde(pmap, va, pde, newpde);
2623	else if (pmap == kernel_pmap)
2624		pmap_kenter_pde(va, newpde);
2625	else
2626		pde_store(pde, newpde);
2627	if (firstpte == PADDR2)
2628		mtx_unlock(&PMAP2mutex);
2629
2630	/*
2631	 * Invalidate the recursive mapping of the page table page.
2632	 */
2633	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2634
2635	/*
2636	 * Demote the pv entry.  This depends on the earlier demotion
2637	 * of the mapping.  Specifically, the (re)creation of a per-
2638	 * page pv entry might trigger the execution of pmap_collect(),
2639	 * which might reclaim a newly (re)created per-page pv entry
2640	 * and destroy the associated mapping.  In order to destroy
2641	 * the mapping, the PDE must have already changed from mapping
2642	 * the 2mpage to referencing the page table page.
2643	 */
2644	if ((oldpde & PG_MANAGED) != 0)
2645		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2646
2647	pmap_pde_demotions++;
2648	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2649	    " in pmap %p", va, pmap);
2650	return (TRUE);
2651}
2652
2653/*
2654 * pmap_remove_pde: do the things to unmap a superpage in a process
2655 */
2656static void
2657pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2658    vm_page_t *free)
2659{
2660	struct md_page *pvh;
2661	pd_entry_t oldpde;
2662	vm_offset_t eva, va;
2663	vm_page_t m, mpte;
2664
2665	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2666	KASSERT((sva & PDRMASK) == 0,
2667	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2668	oldpde = pte_load_clear(pdq);
2669	if (oldpde & PG_W)
2670		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2671
2672	/*
2673	 * Machines that don't support invlpg, also don't support
2674	 * PG_G.
2675	 */
2676	if (oldpde & PG_G)
2677		pmap_invalidate_page(kernel_pmap, sva);
2678	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2679	if (oldpde & PG_MANAGED) {
2680		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2681		pmap_pvh_free(pvh, pmap, sva);
2682		eva = sva + NBPDR;
2683		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2684		    va < eva; va += PAGE_SIZE, m++) {
2685			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2686				vm_page_dirty(m);
2687			if (oldpde & PG_A)
2688				vm_page_flag_set(m, PG_REFERENCED);
2689			if (TAILQ_EMPTY(&m->md.pv_list) &&
2690			    TAILQ_EMPTY(&pvh->pv_list))
2691				vm_page_flag_clear(m, PG_WRITEABLE);
2692		}
2693	}
2694	if (pmap == kernel_pmap) {
2695		if (!pmap_demote_pde(pmap, pdq, sva))
2696			panic("pmap_remove_pde: failed demotion");
2697	} else {
2698		mpte = pmap_lookup_pt_page(pmap, sva);
2699		if (mpte != NULL) {
2700			pmap_remove_pt_page(pmap, mpte);
2701			pmap->pm_stats.resident_count--;
2702			KASSERT(mpte->wire_count == NPTEPG,
2703			    ("pmap_remove_pde: pte page wire count error"));
2704			mpte->wire_count = 0;
2705			pmap_add_delayed_free_list(mpte, free, FALSE);
2706			atomic_subtract_int(&cnt.v_wire_count, 1);
2707		}
2708	}
2709}
2710
2711/*
2712 * pmap_remove_pte: do the things to unmap a page in a process
2713 */
2714static int
2715pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2716{
2717	pt_entry_t oldpte;
2718	vm_page_t m;
2719
2720	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2721	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2722	oldpte = pte_load_clear(ptq);
2723	if (oldpte & PG_W)
2724		pmap->pm_stats.wired_count -= 1;
2725	/*
2726	 * Machines that don't support invlpg, also don't support
2727	 * PG_G.
2728	 */
2729	if (oldpte & PG_G)
2730		pmap_invalidate_page(kernel_pmap, va);
2731	pmap->pm_stats.resident_count -= 1;
2732	if (oldpte & PG_MANAGED) {
2733		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2734		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2735			vm_page_dirty(m);
2736		if (oldpte & PG_A)
2737			vm_page_flag_set(m, PG_REFERENCED);
2738		pmap_remove_entry(pmap, m, va);
2739	}
2740	return (pmap_unuse_pt(pmap, va, free));
2741}
2742
2743/*
2744 * Remove a single page from a process address space
2745 */
2746static void
2747pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2748{
2749	pt_entry_t *pte;
2750
2751	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2752	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2753	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2754	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2755		return;
2756	pmap_remove_pte(pmap, pte, va, free);
2757	pmap_invalidate_page(pmap, va);
2758}
2759
2760/*
2761 *	Remove the given range of addresses from the specified map.
2762 *
2763 *	It is assumed that the start and end are properly
2764 *	rounded to the page size.
2765 */
2766void
2767pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2768{
2769	vm_offset_t pdnxt;
2770	pd_entry_t ptpaddr;
2771	pt_entry_t *pte;
2772	vm_page_t free = NULL;
2773	int anyvalid;
2774
2775	/*
2776	 * Perform an unsynchronized read.  This is, however, safe.
2777	 */
2778	if (pmap->pm_stats.resident_count == 0)
2779		return;
2780
2781	anyvalid = 0;
2782
2783	vm_page_lock_queues();
2784	sched_pin();
2785	PMAP_LOCK(pmap);
2786
2787	/*
2788	 * special handling of removing one page.  a very
2789	 * common operation and easy to short circuit some
2790	 * code.
2791	 */
2792	if ((sva + PAGE_SIZE == eva) &&
2793	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2794		pmap_remove_page(pmap, sva, &free);
2795		goto out;
2796	}
2797
2798	for (; sva < eva; sva = pdnxt) {
2799		unsigned pdirindex;
2800
2801		/*
2802		 * Calculate index for next page table.
2803		 */
2804		pdnxt = (sva + NBPDR) & ~PDRMASK;
2805		if (pdnxt < sva)
2806			pdnxt = eva;
2807		if (pmap->pm_stats.resident_count == 0)
2808			break;
2809
2810		pdirindex = sva >> PDRSHIFT;
2811		ptpaddr = pmap->pm_pdir[pdirindex];
2812
2813		/*
2814		 * Weed out invalid mappings. Note: we assume that the page
2815		 * directory table is always allocated, and in kernel virtual.
2816		 */
2817		if (ptpaddr == 0)
2818			continue;
2819
2820		/*
2821		 * Check for large page.
2822		 */
2823		if ((ptpaddr & PG_PS) != 0) {
2824			/*
2825			 * Are we removing the entire large page?  If not,
2826			 * demote the mapping and fall through.
2827			 */
2828			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2829				/*
2830				 * The TLB entry for a PG_G mapping is
2831				 * invalidated by pmap_remove_pde().
2832				 */
2833				if ((ptpaddr & PG_G) == 0)
2834					anyvalid = 1;
2835				pmap_remove_pde(pmap,
2836				    &pmap->pm_pdir[pdirindex], sva, &free);
2837				continue;
2838			} else if (!pmap_demote_pde(pmap,
2839			    &pmap->pm_pdir[pdirindex], sva)) {
2840				/* The large page mapping was destroyed. */
2841				continue;
2842			}
2843		}
2844
2845		/*
2846		 * Limit our scan to either the end of the va represented
2847		 * by the current page table page, or to the end of the
2848		 * range being removed.
2849		 */
2850		if (pdnxt > eva)
2851			pdnxt = eva;
2852
2853		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2854		    sva += PAGE_SIZE) {
2855			if (*pte == 0)
2856				continue;
2857
2858			/*
2859			 * The TLB entry for a PG_G mapping is invalidated
2860			 * by pmap_remove_pte().
2861			 */
2862			if ((*pte & PG_G) == 0)
2863				anyvalid = 1;
2864			if (pmap_remove_pte(pmap, pte, sva, &free))
2865				break;
2866		}
2867	}
2868out:
2869	sched_unpin();
2870	if (anyvalid)
2871		pmap_invalidate_all(pmap);
2872	vm_page_unlock_queues();
2873	PMAP_UNLOCK(pmap);
2874	pmap_free_zero_pages(free);
2875}
2876
2877/*
2878 *	Routine:	pmap_remove_all
2879 *	Function:
2880 *		Removes this physical page from
2881 *		all physical maps in which it resides.
2882 *		Reflects back modify bits to the pager.
2883 *
2884 *	Notes:
2885 *		Original versions of this routine were very
2886 *		inefficient because they iteratively called
2887 *		pmap_remove (slow...)
2888 */
2889
2890void
2891pmap_remove_all(vm_page_t m)
2892{
2893	struct md_page *pvh;
2894	pv_entry_t pv;
2895	pmap_t pmap;
2896	pt_entry_t *pte, tpte;
2897	pd_entry_t *pde;
2898	vm_offset_t va;
2899	vm_page_t free;
2900
2901	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2902	    ("pmap_remove_all: page %p is fictitious", m));
2903	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2904	sched_pin();
2905	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2906	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2907		va = pv->pv_va;
2908		pmap = PV_PMAP(pv);
2909		PMAP_LOCK(pmap);
2910		pde = pmap_pde(pmap, va);
2911		(void)pmap_demote_pde(pmap, pde, va);
2912		PMAP_UNLOCK(pmap);
2913	}
2914	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2915		pmap = PV_PMAP(pv);
2916		PMAP_LOCK(pmap);
2917		pmap->pm_stats.resident_count--;
2918		pde = pmap_pde(pmap, pv->pv_va);
2919		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2920		    " a 4mpage in page %p's pv list", m));
2921		pte = pmap_pte_quick(pmap, pv->pv_va);
2922		tpte = pte_load_clear(pte);
2923		if (tpte & PG_W)
2924			pmap->pm_stats.wired_count--;
2925		if (tpte & PG_A)
2926			vm_page_flag_set(m, PG_REFERENCED);
2927
2928		/*
2929		 * Update the vm_page_t clean and reference bits.
2930		 */
2931		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2932			vm_page_dirty(m);
2933		free = NULL;
2934		pmap_unuse_pt(pmap, pv->pv_va, &free);
2935		pmap_invalidate_page(pmap, pv->pv_va);
2936		pmap_free_zero_pages(free);
2937		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2938		free_pv_entry(pmap, pv);
2939		PMAP_UNLOCK(pmap);
2940	}
2941	vm_page_flag_clear(m, PG_WRITEABLE);
2942	sched_unpin();
2943}
2944
2945/*
2946 * pmap_protect_pde: do the things to protect a 4mpage in a process
2947 */
2948static boolean_t
2949pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2950{
2951	pd_entry_t newpde, oldpde;
2952	vm_offset_t eva, va;
2953	vm_page_t m;
2954	boolean_t anychanged;
2955
2956	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2957	KASSERT((sva & PDRMASK) == 0,
2958	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2959	anychanged = FALSE;
2960retry:
2961	oldpde = newpde = *pde;
2962	if (oldpde & PG_MANAGED) {
2963		eva = sva + NBPDR;
2964		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2965		    va < eva; va += PAGE_SIZE, m++)
2966			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2967				vm_page_dirty(m);
2968	}
2969	if ((prot & VM_PROT_WRITE) == 0)
2970		newpde &= ~(PG_RW | PG_M);
2971#ifdef PAE
2972	if ((prot & VM_PROT_EXECUTE) == 0)
2973		newpde |= pg_nx;
2974#endif
2975	if (newpde != oldpde) {
2976		if (!pde_cmpset(pde, oldpde, newpde))
2977			goto retry;
2978		if (oldpde & PG_G)
2979			pmap_invalidate_page(pmap, sva);
2980		else
2981			anychanged = TRUE;
2982	}
2983	return (anychanged);
2984}
2985
2986/*
2987 *	Set the physical protection on the
2988 *	specified range of this map as requested.
2989 */
2990void
2991pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2992{
2993	vm_offset_t pdnxt;
2994	pd_entry_t ptpaddr;
2995	pt_entry_t *pte;
2996	int anychanged;
2997
2998	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2999		pmap_remove(pmap, sva, eva);
3000		return;
3001	}
3002
3003#ifdef PAE
3004	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3005	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3006		return;
3007#else
3008	if (prot & VM_PROT_WRITE)
3009		return;
3010#endif
3011
3012	anychanged = 0;
3013
3014	vm_page_lock_queues();
3015	sched_pin();
3016	PMAP_LOCK(pmap);
3017	for (; sva < eva; sva = pdnxt) {
3018		pt_entry_t obits, pbits;
3019		unsigned pdirindex;
3020
3021		pdnxt = (sva + NBPDR) & ~PDRMASK;
3022		if (pdnxt < sva)
3023			pdnxt = eva;
3024
3025		pdirindex = sva >> PDRSHIFT;
3026		ptpaddr = pmap->pm_pdir[pdirindex];
3027
3028		/*
3029		 * Weed out invalid mappings. Note: we assume that the page
3030		 * directory table is always allocated, and in kernel virtual.
3031		 */
3032		if (ptpaddr == 0)
3033			continue;
3034
3035		/*
3036		 * Check for large page.
3037		 */
3038		if ((ptpaddr & PG_PS) != 0) {
3039			/*
3040			 * Are we protecting the entire large page?  If not,
3041			 * demote the mapping and fall through.
3042			 */
3043			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3044				/*
3045				 * The TLB entry for a PG_G mapping is
3046				 * invalidated by pmap_protect_pde().
3047				 */
3048				if (pmap_protect_pde(pmap,
3049				    &pmap->pm_pdir[pdirindex], sva, prot))
3050					anychanged = 1;
3051				continue;
3052			} else if (!pmap_demote_pde(pmap,
3053			    &pmap->pm_pdir[pdirindex], sva)) {
3054				/* The large page mapping was destroyed. */
3055				continue;
3056			}
3057		}
3058
3059		if (pdnxt > eva)
3060			pdnxt = eva;
3061
3062		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3063		    sva += PAGE_SIZE) {
3064			vm_page_t m;
3065
3066retry:
3067			/*
3068			 * Regardless of whether a pte is 32 or 64 bits in
3069			 * size, PG_RW, PG_A, and PG_M are among the least
3070			 * significant 32 bits.
3071			 */
3072			obits = pbits = *pte;
3073			if ((pbits & PG_V) == 0)
3074				continue;
3075
3076			if ((prot & VM_PROT_WRITE) == 0) {
3077				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3078				    (PG_MANAGED | PG_M | PG_RW)) {
3079					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3080					vm_page_dirty(m);
3081				}
3082				pbits &= ~(PG_RW | PG_M);
3083			}
3084#ifdef PAE
3085			if ((prot & VM_PROT_EXECUTE) == 0)
3086				pbits |= pg_nx;
3087#endif
3088
3089			if (pbits != obits) {
3090#ifdef PAE
3091				if (!atomic_cmpset_64(pte, obits, pbits))
3092					goto retry;
3093#else
3094				if (!atomic_cmpset_int((u_int *)pte, obits,
3095				    pbits))
3096					goto retry;
3097#endif
3098				if (obits & PG_G)
3099					pmap_invalidate_page(pmap, sva);
3100				else
3101					anychanged = 1;
3102			}
3103		}
3104	}
3105	sched_unpin();
3106	if (anychanged)
3107		pmap_invalidate_all(pmap);
3108	vm_page_unlock_queues();
3109	PMAP_UNLOCK(pmap);
3110}
3111
3112/*
3113 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3114 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3115 * For promotion to occur, two conditions must be met: (1) the 4KB page
3116 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3117 * mappings must have identical characteristics.
3118 *
3119 * Managed (PG_MANAGED) mappings within the kernel address space are not
3120 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3121 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3122 * pmap.
3123 */
3124static void
3125pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3126{
3127	pd_entry_t newpde;
3128	pt_entry_t *firstpte, oldpte, pa, *pte;
3129	vm_offset_t oldpteva;
3130	vm_page_t mpte;
3131
3132	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3133
3134	/*
3135	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3136	 * either invalid, unused, or does not map the first 4KB physical page
3137	 * within a 2- or 4MB page.
3138	 */
3139	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3140setpde:
3141	newpde = *firstpte;
3142	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3143		pmap_pde_p_failures++;
3144		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3145		    " in pmap %p", va, pmap);
3146		return;
3147	}
3148	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3149		pmap_pde_p_failures++;
3150		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3151		    " in pmap %p", va, pmap);
3152		return;
3153	}
3154	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3155		/*
3156		 * When PG_M is already clear, PG_RW can be cleared without
3157		 * a TLB invalidation.
3158		 */
3159		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3160		    ~PG_RW))
3161			goto setpde;
3162		newpde &= ~PG_RW;
3163	}
3164
3165	/*
3166	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3167	 * PTE maps an unexpected 4KB physical page or does not have identical
3168	 * characteristics to the first PTE.
3169	 */
3170	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3171	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3172setpte:
3173		oldpte = *pte;
3174		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3175			pmap_pde_p_failures++;
3176			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3177			    " in pmap %p", va, pmap);
3178			return;
3179		}
3180		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3181			/*
3182			 * When PG_M is already clear, PG_RW can be cleared
3183			 * without a TLB invalidation.
3184			 */
3185			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3186			    oldpte & ~PG_RW))
3187				goto setpte;
3188			oldpte &= ~PG_RW;
3189			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3190			    (va & ~PDRMASK);
3191			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3192			    " in pmap %p", oldpteva, pmap);
3193		}
3194		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3195			pmap_pde_p_failures++;
3196			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3197			    " in pmap %p", va, pmap);
3198			return;
3199		}
3200		pa -= PAGE_SIZE;
3201	}
3202
3203	/*
3204	 * Save the page table page in its current state until the PDE
3205	 * mapping the superpage is demoted by pmap_demote_pde() or
3206	 * destroyed by pmap_remove_pde().
3207	 */
3208	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3209	KASSERT(mpte >= vm_page_array &&
3210	    mpte < &vm_page_array[vm_page_array_size],
3211	    ("pmap_promote_pde: page table page is out of range"));
3212	KASSERT(mpte->pindex == va >> PDRSHIFT,
3213	    ("pmap_promote_pde: page table page's pindex is wrong"));
3214	pmap_insert_pt_page(pmap, mpte);
3215
3216	/*
3217	 * Promote the pv entries.
3218	 */
3219	if ((newpde & PG_MANAGED) != 0)
3220		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3221
3222	/*
3223	 * Propagate the PAT index to its proper position.
3224	 */
3225	if ((newpde & PG_PTE_PAT) != 0)
3226		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3227
3228	/*
3229	 * Map the superpage.
3230	 */
3231	if (workaround_erratum383)
3232		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3233	else if (pmap == kernel_pmap)
3234		pmap_kenter_pde(va, PG_PS | newpde);
3235	else
3236		pde_store(pde, PG_PS | newpde);
3237
3238	pmap_pde_promotions++;
3239	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3240	    " in pmap %p", va, pmap);
3241}
3242
3243/*
3244 *	Insert the given physical page (p) at
3245 *	the specified virtual address (v) in the
3246 *	target physical map with the protection requested.
3247 *
3248 *	If specified, the page will be wired down, meaning
3249 *	that the related pte can not be reclaimed.
3250 *
3251 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3252 *	or lose information.  That is, this routine must actually
3253 *	insert this page into the given map NOW.
3254 */
3255void
3256pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3257    vm_prot_t prot, boolean_t wired)
3258{
3259	vm_paddr_t pa;
3260	pd_entry_t *pde;
3261	pt_entry_t *pte;
3262	vm_paddr_t opa;
3263	pt_entry_t origpte, newpte;
3264	vm_page_t mpte, om;
3265	boolean_t invlva;
3266
3267	va = trunc_page(va);
3268	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3269	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3270	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3271
3272	mpte = NULL;
3273
3274	vm_page_lock_queues();
3275	PMAP_LOCK(pmap);
3276	sched_pin();
3277
3278	/*
3279	 * In the case that a page table page is not
3280	 * resident, we are creating it here.
3281	 */
3282	if (va < VM_MAXUSER_ADDRESS) {
3283		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3284	}
3285
3286	pde = pmap_pde(pmap, va);
3287	if ((*pde & PG_PS) != 0)
3288		panic("pmap_enter: attempted pmap_enter on 4MB page");
3289	pte = pmap_pte_quick(pmap, va);
3290
3291	/*
3292	 * Page Directory table entry not valid, we need a new PT page
3293	 */
3294	if (pte == NULL) {
3295		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3296			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3297	}
3298
3299	pa = VM_PAGE_TO_PHYS(m);
3300	om = NULL;
3301	origpte = *pte;
3302	opa = origpte & PG_FRAME;
3303
3304	/*
3305	 * Mapping has not changed, must be protection or wiring change.
3306	 */
3307	if (origpte && (opa == pa)) {
3308		/*
3309		 * Wiring change, just update stats. We don't worry about
3310		 * wiring PT pages as they remain resident as long as there
3311		 * are valid mappings in them. Hence, if a user page is wired,
3312		 * the PT page will be also.
3313		 */
3314		if (wired && ((origpte & PG_W) == 0))
3315			pmap->pm_stats.wired_count++;
3316		else if (!wired && (origpte & PG_W))
3317			pmap->pm_stats.wired_count--;
3318
3319		/*
3320		 * Remove extra pte reference
3321		 */
3322		if (mpte)
3323			mpte->wire_count--;
3324
3325		/*
3326		 * We might be turning off write access to the page,
3327		 * so we go ahead and sense modify status.
3328		 */
3329		if (origpte & PG_MANAGED) {
3330			om = m;
3331			pa |= PG_MANAGED;
3332		}
3333		goto validate;
3334	}
3335	/*
3336	 * Mapping has changed, invalidate old range and fall through to
3337	 * handle validating new mapping.
3338	 */
3339	if (opa) {
3340		if (origpte & PG_W)
3341			pmap->pm_stats.wired_count--;
3342		if (origpte & PG_MANAGED) {
3343			om = PHYS_TO_VM_PAGE(opa);
3344			pmap_remove_entry(pmap, om, va);
3345		}
3346		if (mpte != NULL) {
3347			mpte->wire_count--;
3348			KASSERT(mpte->wire_count > 0,
3349			    ("pmap_enter: missing reference to page table page,"
3350			     " va: 0x%x", va));
3351		}
3352	} else
3353		pmap->pm_stats.resident_count++;
3354
3355	/*
3356	 * Enter on the PV list if part of our managed memory.
3357	 */
3358	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3359		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3360		    ("pmap_enter: managed mapping within the clean submap"));
3361		pmap_insert_entry(pmap, va, m);
3362		pa |= PG_MANAGED;
3363	}
3364
3365	/*
3366	 * Increment counters
3367	 */
3368	if (wired)
3369		pmap->pm_stats.wired_count++;
3370
3371validate:
3372	/*
3373	 * Now validate mapping with desired protection/wiring.
3374	 */
3375	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3376	if ((prot & VM_PROT_WRITE) != 0) {
3377		newpte |= PG_RW;
3378		vm_page_flag_set(m, PG_WRITEABLE);
3379	}
3380#ifdef PAE
3381	if ((prot & VM_PROT_EXECUTE) == 0)
3382		newpte |= pg_nx;
3383#endif
3384	if (wired)
3385		newpte |= PG_W;
3386	if (va < VM_MAXUSER_ADDRESS)
3387		newpte |= PG_U;
3388	if (pmap == kernel_pmap)
3389		newpte |= pgeflag;
3390
3391	/*
3392	 * if the mapping or permission bits are different, we need
3393	 * to update the pte.
3394	 */
3395	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3396		newpte |= PG_A;
3397		if ((access & VM_PROT_WRITE) != 0)
3398			newpte |= PG_M;
3399		if (origpte & PG_V) {
3400			invlva = FALSE;
3401			origpte = pte_load_store(pte, newpte);
3402			if (origpte & PG_A) {
3403				if (origpte & PG_MANAGED)
3404					vm_page_flag_set(om, PG_REFERENCED);
3405				if (opa != VM_PAGE_TO_PHYS(m))
3406					invlva = TRUE;
3407#ifdef PAE
3408				if ((origpte & PG_NX) == 0 &&
3409				    (newpte & PG_NX) != 0)
3410					invlva = TRUE;
3411#endif
3412			}
3413			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3414				if ((origpte & PG_MANAGED) != 0)
3415					vm_page_dirty(om);
3416				if ((prot & VM_PROT_WRITE) == 0)
3417					invlva = TRUE;
3418			}
3419			if (invlva)
3420				pmap_invalidate_page(pmap, va);
3421		} else
3422			pte_store(pte, newpte);
3423	}
3424
3425	/*
3426	 * If both the page table page and the reservation are fully
3427	 * populated, then attempt promotion.
3428	 */
3429	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3430	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3431		pmap_promote_pde(pmap, pde, va);
3432
3433	sched_unpin();
3434	vm_page_unlock_queues();
3435	PMAP_UNLOCK(pmap);
3436}
3437
3438/*
3439 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3440 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3441 * blocking, (2) a mapping already exists at the specified virtual address, or
3442 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3443 */
3444static boolean_t
3445pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3446{
3447	pd_entry_t *pde, newpde;
3448
3449	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3450	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3451	pde = pmap_pde(pmap, va);
3452	if (*pde != 0) {
3453		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3454		    " in pmap %p", va, pmap);
3455		return (FALSE);
3456	}
3457	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3458	    PG_PS | PG_V;
3459	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3460		newpde |= PG_MANAGED;
3461
3462		/*
3463		 * Abort this mapping if its PV entry could not be created.
3464		 */
3465		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3466			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3467			    " in pmap %p", va, pmap);
3468			return (FALSE);
3469		}
3470	}
3471#ifdef PAE
3472	if ((prot & VM_PROT_EXECUTE) == 0)
3473		newpde |= pg_nx;
3474#endif
3475	if (va < VM_MAXUSER_ADDRESS)
3476		newpde |= PG_U;
3477
3478	/*
3479	 * Increment counters.
3480	 */
3481	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3482
3483	/*
3484	 * Map the superpage.
3485	 */
3486	pde_store(pde, newpde);
3487
3488	pmap_pde_mappings++;
3489	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3490	    " in pmap %p", va, pmap);
3491	return (TRUE);
3492}
3493
3494/*
3495 * Maps a sequence of resident pages belonging to the same object.
3496 * The sequence begins with the given page m_start.  This page is
3497 * mapped at the given virtual address start.  Each subsequent page is
3498 * mapped at a virtual address that is offset from start by the same
3499 * amount as the page is offset from m_start within the object.  The
3500 * last page in the sequence is the page with the largest offset from
3501 * m_start that can be mapped at a virtual address less than the given
3502 * virtual address end.  Not every virtual page between start and end
3503 * is mapped; only those for which a resident page exists with the
3504 * corresponding offset from m_start are mapped.
3505 */
3506void
3507pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3508    vm_page_t m_start, vm_prot_t prot)
3509{
3510	vm_offset_t va;
3511	vm_page_t m, mpte;
3512	vm_pindex_t diff, psize;
3513
3514	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3515	psize = atop(end - start);
3516	mpte = NULL;
3517	m = m_start;
3518	PMAP_LOCK(pmap);
3519	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3520		va = start + ptoa(diff);
3521		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3522		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3523		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3524		    pmap_enter_pde(pmap, va, m, prot))
3525			m = &m[NBPDR / PAGE_SIZE - 1];
3526		else
3527			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3528			    mpte);
3529		m = TAILQ_NEXT(m, listq);
3530	}
3531 	PMAP_UNLOCK(pmap);
3532}
3533
3534/*
3535 * this code makes some *MAJOR* assumptions:
3536 * 1. Current pmap & pmap exists.
3537 * 2. Not wired.
3538 * 3. Read access.
3539 * 4. No page table pages.
3540 * but is *MUCH* faster than pmap_enter...
3541 */
3542
3543void
3544pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3545{
3546
3547	PMAP_LOCK(pmap);
3548	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3549	PMAP_UNLOCK(pmap);
3550}
3551
3552static vm_page_t
3553pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3554    vm_prot_t prot, vm_page_t mpte)
3555{
3556	pt_entry_t *pte;
3557	vm_paddr_t pa;
3558	vm_page_t free;
3559
3560	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3561	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3562	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3563	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3564	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3565
3566	/*
3567	 * In the case that a page table page is not
3568	 * resident, we are creating it here.
3569	 */
3570	if (va < VM_MAXUSER_ADDRESS) {
3571		unsigned ptepindex;
3572		pd_entry_t ptepa;
3573
3574		/*
3575		 * Calculate pagetable page index
3576		 */
3577		ptepindex = va >> PDRSHIFT;
3578		if (mpte && (mpte->pindex == ptepindex)) {
3579			mpte->wire_count++;
3580		} else {
3581			/*
3582			 * Get the page directory entry
3583			 */
3584			ptepa = pmap->pm_pdir[ptepindex];
3585
3586			/*
3587			 * If the page table page is mapped, we just increment
3588			 * the hold count, and activate it.
3589			 */
3590			if (ptepa) {
3591				if (ptepa & PG_PS)
3592					return (NULL);
3593				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3594				mpte->wire_count++;
3595			} else {
3596				mpte = _pmap_allocpte(pmap, ptepindex,
3597				    M_NOWAIT);
3598				if (mpte == NULL)
3599					return (mpte);
3600			}
3601		}
3602	} else {
3603		mpte = NULL;
3604	}
3605
3606	/*
3607	 * This call to vtopte makes the assumption that we are
3608	 * entering the page into the current pmap.  In order to support
3609	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3610	 * But that isn't as quick as vtopte.
3611	 */
3612	pte = vtopte(va);
3613	if (*pte) {
3614		if (mpte != NULL) {
3615			mpte->wire_count--;
3616			mpte = NULL;
3617		}
3618		return (mpte);
3619	}
3620
3621	/*
3622	 * Enter on the PV list if part of our managed memory.
3623	 */
3624	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3625	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3626		if (mpte != NULL) {
3627			free = NULL;
3628			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3629				pmap_invalidate_page(pmap, va);
3630				pmap_free_zero_pages(free);
3631			}
3632
3633			mpte = NULL;
3634		}
3635		return (mpte);
3636	}
3637
3638	/*
3639	 * Increment counters
3640	 */
3641	pmap->pm_stats.resident_count++;
3642
3643	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3644#ifdef PAE
3645	if ((prot & VM_PROT_EXECUTE) == 0)
3646		pa |= pg_nx;
3647#endif
3648
3649	/*
3650	 * Now validate mapping with RO protection
3651	 */
3652	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3653		pte_store(pte, pa | PG_V | PG_U);
3654	else
3655		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3656	return (mpte);
3657}
3658
3659/*
3660 * Make a temporary mapping for a physical address.  This is only intended
3661 * to be used for panic dumps.
3662 */
3663void *
3664pmap_kenter_temporary(vm_paddr_t pa, int i)
3665{
3666	vm_offset_t va;
3667
3668	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3669	pmap_kenter(va, pa);
3670	invlpg(va);
3671	return ((void *)crashdumpmap);
3672}
3673
3674/*
3675 * This code maps large physical mmap regions into the
3676 * processor address space.  Note that some shortcuts
3677 * are taken, but the code works.
3678 */
3679void
3680pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3681    vm_pindex_t pindex, vm_size_t size)
3682{
3683	pd_entry_t *pde;
3684	vm_paddr_t pa, ptepa;
3685	vm_page_t p;
3686	int pat_mode;
3687
3688	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3689	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3690	    ("pmap_object_init_pt: non-device object"));
3691	if (pseflag &&
3692	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3693		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3694			return;
3695		p = vm_page_lookup(object, pindex);
3696		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3697		    ("pmap_object_init_pt: invalid page %p", p));
3698		pat_mode = p->md.pat_mode;
3699
3700		/*
3701		 * Abort the mapping if the first page is not physically
3702		 * aligned to a 2/4MB page boundary.
3703		 */
3704		ptepa = VM_PAGE_TO_PHYS(p);
3705		if (ptepa & (NBPDR - 1))
3706			return;
3707
3708		/*
3709		 * Skip the first page.  Abort the mapping if the rest of
3710		 * the pages are not physically contiguous or have differing
3711		 * memory attributes.
3712		 */
3713		p = TAILQ_NEXT(p, listq);
3714		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3715		    pa += PAGE_SIZE) {
3716			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3717			    ("pmap_object_init_pt: invalid page %p", p));
3718			if (pa != VM_PAGE_TO_PHYS(p) ||
3719			    pat_mode != p->md.pat_mode)
3720				return;
3721			p = TAILQ_NEXT(p, listq);
3722		}
3723
3724		/*
3725		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3726		 * "size" is a multiple of 2/4M, adding the PAT setting to
3727		 * "pa" will not affect the termination of this loop.
3728		 */
3729		PMAP_LOCK(pmap);
3730		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3731		    size; pa += NBPDR) {
3732			pde = pmap_pde(pmap, addr);
3733			if (*pde == 0) {
3734				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3735				    PG_U | PG_RW | PG_V);
3736				pmap->pm_stats.resident_count += NBPDR /
3737				    PAGE_SIZE;
3738				pmap_pde_mappings++;
3739			}
3740			/* Else continue on if the PDE is already valid. */
3741			addr += NBPDR;
3742		}
3743		PMAP_UNLOCK(pmap);
3744	}
3745}
3746
3747/*
3748 *	Routine:	pmap_change_wiring
3749 *	Function:	Change the wiring attribute for a map/virtual-address
3750 *			pair.
3751 *	In/out conditions:
3752 *			The mapping must already exist in the pmap.
3753 */
3754void
3755pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3756{
3757	pd_entry_t *pde;
3758	pt_entry_t *pte;
3759	boolean_t are_queues_locked;
3760
3761	are_queues_locked = FALSE;
3762retry:
3763	PMAP_LOCK(pmap);
3764	pde = pmap_pde(pmap, va);
3765	if ((*pde & PG_PS) != 0) {
3766		if (!wired != ((*pde & PG_W) == 0)) {
3767			if (!are_queues_locked) {
3768				are_queues_locked = TRUE;
3769				if (!mtx_trylock(&vm_page_queue_mtx)) {
3770					PMAP_UNLOCK(pmap);
3771					vm_page_lock_queues();
3772					goto retry;
3773				}
3774			}
3775			if (!pmap_demote_pde(pmap, pde, va))
3776				panic("pmap_change_wiring: demotion failed");
3777		} else
3778			goto out;
3779	}
3780	pte = pmap_pte(pmap, va);
3781
3782	if (wired && !pmap_pte_w(pte))
3783		pmap->pm_stats.wired_count++;
3784	else if (!wired && pmap_pte_w(pte))
3785		pmap->pm_stats.wired_count--;
3786
3787	/*
3788	 * Wiring is not a hardware characteristic so there is no need to
3789	 * invalidate TLB.
3790	 */
3791	pmap_pte_set_w(pte, wired);
3792	pmap_pte_release(pte);
3793out:
3794	if (are_queues_locked)
3795		vm_page_unlock_queues();
3796	PMAP_UNLOCK(pmap);
3797}
3798
3799
3800
3801/*
3802 *	Copy the range specified by src_addr/len
3803 *	from the source map to the range dst_addr/len
3804 *	in the destination map.
3805 *
3806 *	This routine is only advisory and need not do anything.
3807 */
3808
3809void
3810pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3811    vm_offset_t src_addr)
3812{
3813	vm_page_t   free;
3814	vm_offset_t addr;
3815	vm_offset_t end_addr = src_addr + len;
3816	vm_offset_t pdnxt;
3817
3818	if (dst_addr != src_addr)
3819		return;
3820
3821	if (!pmap_is_current(src_pmap))
3822		return;
3823
3824	vm_page_lock_queues();
3825	if (dst_pmap < src_pmap) {
3826		PMAP_LOCK(dst_pmap);
3827		PMAP_LOCK(src_pmap);
3828	} else {
3829		PMAP_LOCK(src_pmap);
3830		PMAP_LOCK(dst_pmap);
3831	}
3832	sched_pin();
3833	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3834		pt_entry_t *src_pte, *dst_pte;
3835		vm_page_t dstmpte, srcmpte;
3836		pd_entry_t srcptepaddr;
3837		unsigned ptepindex;
3838
3839		KASSERT(addr < UPT_MIN_ADDRESS,
3840		    ("pmap_copy: invalid to pmap_copy page tables"));
3841
3842		pdnxt = (addr + NBPDR) & ~PDRMASK;
3843		if (pdnxt < addr)
3844			pdnxt = end_addr;
3845		ptepindex = addr >> PDRSHIFT;
3846
3847		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3848		if (srcptepaddr == 0)
3849			continue;
3850
3851		if (srcptepaddr & PG_PS) {
3852			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3853			    ((srcptepaddr & PG_MANAGED) == 0 ||
3854			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3855			    PG_PS_FRAME))) {
3856				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3857				    ~PG_W;
3858				dst_pmap->pm_stats.resident_count +=
3859				    NBPDR / PAGE_SIZE;
3860			}
3861			continue;
3862		}
3863
3864		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3865		KASSERT(srcmpte->wire_count > 0,
3866		    ("pmap_copy: source page table page is unused"));
3867
3868		if (pdnxt > end_addr)
3869			pdnxt = end_addr;
3870
3871		src_pte = vtopte(addr);
3872		while (addr < pdnxt) {
3873			pt_entry_t ptetemp;
3874			ptetemp = *src_pte;
3875			/*
3876			 * we only virtual copy managed pages
3877			 */
3878			if ((ptetemp & PG_MANAGED) != 0) {
3879				dstmpte = pmap_allocpte(dst_pmap, addr,
3880				    M_NOWAIT);
3881				if (dstmpte == NULL)
3882					goto out;
3883				dst_pte = pmap_pte_quick(dst_pmap, addr);
3884				if (*dst_pte == 0 &&
3885				    pmap_try_insert_pv_entry(dst_pmap, addr,
3886				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3887					/*
3888					 * Clear the wired, modified, and
3889					 * accessed (referenced) bits
3890					 * during the copy.
3891					 */
3892					*dst_pte = ptetemp & ~(PG_W | PG_M |
3893					    PG_A);
3894					dst_pmap->pm_stats.resident_count++;
3895	 			} else {
3896					free = NULL;
3897					if (pmap_unwire_pte_hold(dst_pmap,
3898					    dstmpte, &free)) {
3899						pmap_invalidate_page(dst_pmap,
3900						    addr);
3901						pmap_free_zero_pages(free);
3902					}
3903					goto out;
3904				}
3905				if (dstmpte->wire_count >= srcmpte->wire_count)
3906					break;
3907			}
3908			addr += PAGE_SIZE;
3909			src_pte++;
3910		}
3911	}
3912out:
3913	sched_unpin();
3914	vm_page_unlock_queues();
3915	PMAP_UNLOCK(src_pmap);
3916	PMAP_UNLOCK(dst_pmap);
3917}
3918
3919static __inline void
3920pagezero(void *page)
3921{
3922#if defined(I686_CPU)
3923	if (cpu_class == CPUCLASS_686) {
3924#if defined(CPU_ENABLE_SSE)
3925		if (cpu_feature & CPUID_SSE2)
3926			sse2_pagezero(page);
3927		else
3928#endif
3929			i686_pagezero(page);
3930	} else
3931#endif
3932		bzero(page, PAGE_SIZE);
3933}
3934
3935/*
3936 *	pmap_zero_page zeros the specified hardware page by mapping
3937 *	the page into KVM and using bzero to clear its contents.
3938 */
3939void
3940pmap_zero_page(vm_page_t m)
3941{
3942	struct sysmaps *sysmaps;
3943
3944	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3945	mtx_lock(&sysmaps->lock);
3946	if (*sysmaps->CMAP2)
3947		panic("pmap_zero_page: CMAP2 busy");
3948	sched_pin();
3949	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3950	    pmap_cache_bits(m->md.pat_mode, 0);
3951	invlcaddr(sysmaps->CADDR2);
3952	pagezero(sysmaps->CADDR2);
3953	*sysmaps->CMAP2 = 0;
3954	sched_unpin();
3955	mtx_unlock(&sysmaps->lock);
3956}
3957
3958/*
3959 *	pmap_zero_page_area zeros the specified hardware page by mapping
3960 *	the page into KVM and using bzero to clear its contents.
3961 *
3962 *	off and size may not cover an area beyond a single hardware page.
3963 */
3964void
3965pmap_zero_page_area(vm_page_t m, int off, int size)
3966{
3967	struct sysmaps *sysmaps;
3968
3969	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3970	mtx_lock(&sysmaps->lock);
3971	if (*sysmaps->CMAP2)
3972		panic("pmap_zero_page_area: CMAP2 busy");
3973	sched_pin();
3974	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3975	    pmap_cache_bits(m->md.pat_mode, 0);
3976	invlcaddr(sysmaps->CADDR2);
3977	if (off == 0 && size == PAGE_SIZE)
3978		pagezero(sysmaps->CADDR2);
3979	else
3980		bzero((char *)sysmaps->CADDR2 + off, size);
3981	*sysmaps->CMAP2 = 0;
3982	sched_unpin();
3983	mtx_unlock(&sysmaps->lock);
3984}
3985
3986/*
3987 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3988 *	the page into KVM and using bzero to clear its contents.  This
3989 *	is intended to be called from the vm_pagezero process only and
3990 *	outside of Giant.
3991 */
3992void
3993pmap_zero_page_idle(vm_page_t m)
3994{
3995
3996	if (*CMAP3)
3997		panic("pmap_zero_page_idle: CMAP3 busy");
3998	sched_pin();
3999	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4000	    pmap_cache_bits(m->md.pat_mode, 0);
4001	invlcaddr(CADDR3);
4002	pagezero(CADDR3);
4003	*CMAP3 = 0;
4004	sched_unpin();
4005}
4006
4007/*
4008 *	pmap_copy_page copies the specified (machine independent)
4009 *	page by mapping the page into virtual memory and using
4010 *	bcopy to copy the page, one machine dependent page at a
4011 *	time.
4012 */
4013void
4014pmap_copy_page(vm_page_t src, vm_page_t dst)
4015{
4016	struct sysmaps *sysmaps;
4017
4018	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4019	mtx_lock(&sysmaps->lock);
4020	if (*sysmaps->CMAP1)
4021		panic("pmap_copy_page: CMAP1 busy");
4022	if (*sysmaps->CMAP2)
4023		panic("pmap_copy_page: CMAP2 busy");
4024	sched_pin();
4025	invlpg((u_int)sysmaps->CADDR1);
4026	invlpg((u_int)sysmaps->CADDR2);
4027	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4028	    pmap_cache_bits(src->md.pat_mode, 0);
4029	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4030	    pmap_cache_bits(dst->md.pat_mode, 0);
4031	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4032	*sysmaps->CMAP1 = 0;
4033	*sysmaps->CMAP2 = 0;
4034	sched_unpin();
4035	mtx_unlock(&sysmaps->lock);
4036}
4037
4038/*
4039 * Returns true if the pmap's pv is one of the first
4040 * 16 pvs linked to from this page.  This count may
4041 * be changed upwards or downwards in the future; it
4042 * is only necessary that true be returned for a small
4043 * subset of pmaps for proper page aging.
4044 */
4045boolean_t
4046pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4047{
4048	struct md_page *pvh;
4049	pv_entry_t pv;
4050	int loops = 0;
4051
4052	if (m->flags & PG_FICTITIOUS)
4053		return (FALSE);
4054
4055	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4056	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4057		if (PV_PMAP(pv) == pmap) {
4058			return (TRUE);
4059		}
4060		loops++;
4061		if (loops >= 16)
4062			break;
4063	}
4064	if (loops < 16) {
4065		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4066		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4067			if (PV_PMAP(pv) == pmap)
4068				return (TRUE);
4069			loops++;
4070			if (loops >= 16)
4071				break;
4072		}
4073	}
4074	return (FALSE);
4075}
4076
4077/*
4078 *	pmap_page_wired_mappings:
4079 *
4080 *	Return the number of managed mappings to the given physical page
4081 *	that are wired.
4082 */
4083int
4084pmap_page_wired_mappings(vm_page_t m)
4085{
4086	int count;
4087
4088	count = 0;
4089	if ((m->flags & PG_FICTITIOUS) != 0)
4090		return (count);
4091	count = pmap_pvh_wired_mappings(&m->md, count);
4092	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
4093}
4094
4095/*
4096 *	pmap_pvh_wired_mappings:
4097 *
4098 *	Return the updated number "count" of managed mappings that are wired.
4099 */
4100static int
4101pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4102{
4103	pmap_t pmap;
4104	pt_entry_t *pte;
4105	pv_entry_t pv;
4106
4107	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4108	sched_pin();
4109	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4110		pmap = PV_PMAP(pv);
4111		PMAP_LOCK(pmap);
4112		pte = pmap_pte_quick(pmap, pv->pv_va);
4113		if ((*pte & PG_W) != 0)
4114			count++;
4115		PMAP_UNLOCK(pmap);
4116	}
4117	sched_unpin();
4118	return (count);
4119}
4120
4121/*
4122 * Returns TRUE if the given page is mapped individually or as part of
4123 * a 4mpage.  Otherwise, returns FALSE.
4124 */
4125boolean_t
4126pmap_page_is_mapped(vm_page_t m)
4127{
4128	boolean_t rv;
4129
4130	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
4131		return (FALSE);
4132	vm_page_lock_queues();
4133	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4134	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
4135	vm_page_unlock_queues();
4136	return (rv);
4137}
4138
4139/*
4140 * Remove all pages from specified address space
4141 * this aids process exit speeds.  Also, this code
4142 * is special cased for current process only, but
4143 * can have the more generic (and slightly slower)
4144 * mode enabled.  This is much faster than pmap_remove
4145 * in the case of running down an entire address space.
4146 */
4147void
4148pmap_remove_pages(pmap_t pmap)
4149{
4150	pt_entry_t *pte, tpte;
4151	vm_page_t free = NULL;
4152	vm_page_t m, mpte, mt;
4153	pv_entry_t pv;
4154	struct md_page *pvh;
4155	struct pv_chunk *pc, *npc;
4156	int field, idx;
4157	int32_t bit;
4158	uint32_t inuse, bitmask;
4159	int allfree;
4160
4161	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
4162		printf("warning: pmap_remove_pages called with non-current pmap\n");
4163		return;
4164	}
4165	vm_page_lock_queues();
4166	PMAP_LOCK(pmap);
4167	sched_pin();
4168	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4169		allfree = 1;
4170		for (field = 0; field < _NPCM; field++) {
4171			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4172			while (inuse != 0) {
4173				bit = bsfl(inuse);
4174				bitmask = 1UL << bit;
4175				idx = field * 32 + bit;
4176				pv = &pc->pc_pventry[idx];
4177				inuse &= ~bitmask;
4178
4179				pte = pmap_pde(pmap, pv->pv_va);
4180				tpte = *pte;
4181				if ((tpte & PG_PS) == 0) {
4182					pte = vtopte(pv->pv_va);
4183					tpte = *pte & ~PG_PTE_PAT;
4184				}
4185
4186				if (tpte == 0) {
4187					printf(
4188					    "TPTE at %p  IS ZERO @ VA %08x\n",
4189					    pte, pv->pv_va);
4190					panic("bad pte");
4191				}
4192
4193/*
4194 * We cannot remove wired pages from a process' mapping at this time
4195 */
4196				if (tpte & PG_W) {
4197					allfree = 0;
4198					continue;
4199				}
4200
4201				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4202				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4203				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4204				    m, (uintmax_t)m->phys_addr,
4205				    (uintmax_t)tpte));
4206
4207				KASSERT(m < &vm_page_array[vm_page_array_size],
4208					("pmap_remove_pages: bad tpte %#jx",
4209					(uintmax_t)tpte));
4210
4211				pte_clear(pte);
4212
4213				/*
4214				 * Update the vm_page_t clean/reference bits.
4215				 */
4216				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4217					if ((tpte & PG_PS) != 0) {
4218						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4219							vm_page_dirty(mt);
4220					} else
4221						vm_page_dirty(m);
4222				}
4223
4224				/* Mark free */
4225				PV_STAT(pv_entry_frees++);
4226				PV_STAT(pv_entry_spare++);
4227				pv_entry_count--;
4228				pc->pc_map[field] |= bitmask;
4229				if ((tpte & PG_PS) != 0) {
4230					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4231					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4232					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4233					if (TAILQ_EMPTY(&pvh->pv_list)) {
4234						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4235							if (TAILQ_EMPTY(&mt->md.pv_list))
4236								vm_page_flag_clear(mt, PG_WRITEABLE);
4237					}
4238					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4239					if (mpte != NULL) {
4240						pmap_remove_pt_page(pmap, mpte);
4241						pmap->pm_stats.resident_count--;
4242						KASSERT(mpte->wire_count == NPTEPG,
4243						    ("pmap_remove_pages: pte page wire count error"));
4244						mpte->wire_count = 0;
4245						pmap_add_delayed_free_list(mpte, &free, FALSE);
4246						atomic_subtract_int(&cnt.v_wire_count, 1);
4247					}
4248				} else {
4249					pmap->pm_stats.resident_count--;
4250					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4251					if (TAILQ_EMPTY(&m->md.pv_list)) {
4252						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4253						if (TAILQ_EMPTY(&pvh->pv_list))
4254							vm_page_flag_clear(m, PG_WRITEABLE);
4255					}
4256					pmap_unuse_pt(pmap, pv->pv_va, &free);
4257				}
4258			}
4259		}
4260		if (allfree) {
4261			PV_STAT(pv_entry_spare -= _NPCPV);
4262			PV_STAT(pc_chunk_count--);
4263			PV_STAT(pc_chunk_frees++);
4264			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4265			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4266			pmap_qremove((vm_offset_t)pc, 1);
4267			vm_page_unwire(m, 0);
4268			vm_page_free(m);
4269			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4270		}
4271	}
4272	sched_unpin();
4273	pmap_invalidate_all(pmap);
4274	vm_page_unlock_queues();
4275	PMAP_UNLOCK(pmap);
4276	pmap_free_zero_pages(free);
4277}
4278
4279/*
4280 *	pmap_is_modified:
4281 *
4282 *	Return whether or not the specified physical page was modified
4283 *	in any physical maps.
4284 */
4285boolean_t
4286pmap_is_modified(vm_page_t m)
4287{
4288
4289	if (m->flags & PG_FICTITIOUS)
4290		return (FALSE);
4291	if (pmap_is_modified_pvh(&m->md))
4292		return (TRUE);
4293	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4294}
4295
4296/*
4297 * Returns TRUE if any of the given mappings were used to modify
4298 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4299 * mappings are supported.
4300 */
4301static boolean_t
4302pmap_is_modified_pvh(struct md_page *pvh)
4303{
4304	pv_entry_t pv;
4305	pt_entry_t *pte;
4306	pmap_t pmap;
4307	boolean_t rv;
4308
4309	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4310	rv = FALSE;
4311	sched_pin();
4312	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4313		pmap = PV_PMAP(pv);
4314		PMAP_LOCK(pmap);
4315		pte = pmap_pte_quick(pmap, pv->pv_va);
4316		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4317		PMAP_UNLOCK(pmap);
4318		if (rv)
4319			break;
4320	}
4321	sched_unpin();
4322	return (rv);
4323}
4324
4325/*
4326 *	pmap_is_prefaultable:
4327 *
4328 *	Return whether or not the specified virtual address is elgible
4329 *	for prefault.
4330 */
4331boolean_t
4332pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4333{
4334	pd_entry_t *pde;
4335	pt_entry_t *pte;
4336	boolean_t rv;
4337
4338	rv = FALSE;
4339	PMAP_LOCK(pmap);
4340	pde = pmap_pde(pmap, addr);
4341	if (*pde != 0 && (*pde & PG_PS) == 0) {
4342		pte = vtopte(addr);
4343		rv = *pte == 0;
4344	}
4345	PMAP_UNLOCK(pmap);
4346	return (rv);
4347}
4348
4349/*
4350 *	pmap_is_referenced:
4351 *
4352 *	Return whether or not the specified physical page was referenced
4353 *	in any physical maps.
4354 */
4355boolean_t
4356pmap_is_referenced(vm_page_t m)
4357{
4358
4359	if (m->flags & PG_FICTITIOUS)
4360		return (FALSE);
4361	if (pmap_is_referenced_pvh(&m->md))
4362		return (TRUE);
4363	return (pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4364}
4365
4366/*
4367 * Returns TRUE if any of the given mappings were referenced and FALSE
4368 * otherwise.  Both page and 4mpage mappings are supported.
4369 */
4370static boolean_t
4371pmap_is_referenced_pvh(struct md_page *pvh)
4372{
4373	pv_entry_t pv;
4374	pt_entry_t *pte;
4375	pmap_t pmap;
4376	boolean_t rv;
4377
4378	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4379	rv = FALSE;
4380	sched_pin();
4381	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4382		pmap = PV_PMAP(pv);
4383		PMAP_LOCK(pmap);
4384		pte = pmap_pte_quick(pmap, pv->pv_va);
4385		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4386		PMAP_UNLOCK(pmap);
4387		if (rv)
4388			break;
4389	}
4390	sched_unpin();
4391	return (rv);
4392}
4393
4394/*
4395 * Clear the write and modified bits in each of the given page's mappings.
4396 */
4397void
4398pmap_remove_write(vm_page_t m)
4399{
4400	struct md_page *pvh;
4401	pv_entry_t next_pv, pv;
4402	pmap_t pmap;
4403	pd_entry_t *pde;
4404	pt_entry_t oldpte, *pte;
4405	vm_offset_t va;
4406
4407	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4408	if ((m->flags & PG_FICTITIOUS) != 0 ||
4409	    (m->flags & PG_WRITEABLE) == 0)
4410		return;
4411	sched_pin();
4412	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4413	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4414		va = pv->pv_va;
4415		pmap = PV_PMAP(pv);
4416		PMAP_LOCK(pmap);
4417		pde = pmap_pde(pmap, va);
4418		if ((*pde & PG_RW) != 0)
4419			(void)pmap_demote_pde(pmap, pde, va);
4420		PMAP_UNLOCK(pmap);
4421	}
4422	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4423		pmap = PV_PMAP(pv);
4424		PMAP_LOCK(pmap);
4425		pde = pmap_pde(pmap, pv->pv_va);
4426		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4427		    " a 4mpage in page %p's pv list", m));
4428		pte = pmap_pte_quick(pmap, pv->pv_va);
4429retry:
4430		oldpte = *pte;
4431		if ((oldpte & PG_RW) != 0) {
4432			/*
4433			 * Regardless of whether a pte is 32 or 64 bits
4434			 * in size, PG_RW and PG_M are among the least
4435			 * significant 32 bits.
4436			 */
4437			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4438			    oldpte & ~(PG_RW | PG_M)))
4439				goto retry;
4440			if ((oldpte & PG_M) != 0)
4441				vm_page_dirty(m);
4442			pmap_invalidate_page(pmap, pv->pv_va);
4443		}
4444		PMAP_UNLOCK(pmap);
4445	}
4446	vm_page_flag_clear(m, PG_WRITEABLE);
4447	sched_unpin();
4448}
4449
4450/*
4451 *	pmap_ts_referenced:
4452 *
4453 *	Return a count of reference bits for a page, clearing those bits.
4454 *	It is not necessary for every reference bit to be cleared, but it
4455 *	is necessary that 0 only be returned when there are truly no
4456 *	reference bits set.
4457 *
4458 *	XXX: The exact number of bits to check and clear is a matter that
4459 *	should be tested and standardized at some point in the future for
4460 *	optimal aging of shared pages.
4461 */
4462int
4463pmap_ts_referenced(vm_page_t m)
4464{
4465	struct md_page *pvh;
4466	pv_entry_t pv, pvf, pvn;
4467	pmap_t pmap;
4468	pd_entry_t oldpde, *pde;
4469	pt_entry_t *pte;
4470	vm_offset_t va;
4471	int rtval = 0;
4472
4473	if (m->flags & PG_FICTITIOUS)
4474		return (rtval);
4475	sched_pin();
4476	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4477	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4478	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4479		va = pv->pv_va;
4480		pmap = PV_PMAP(pv);
4481		PMAP_LOCK(pmap);
4482		pde = pmap_pde(pmap, va);
4483		oldpde = *pde;
4484		if ((oldpde & PG_A) != 0) {
4485			if (pmap_demote_pde(pmap, pde, va)) {
4486				if ((oldpde & PG_W) == 0) {
4487					/*
4488					 * Remove the mapping to a single page
4489					 * so that a subsequent access may
4490					 * repromote.  Since the underlying
4491					 * page table page is fully populated,
4492					 * this removal never frees a page
4493					 * table page.
4494					 */
4495					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4496					    PG_PS_FRAME);
4497					pmap_remove_page(pmap, va, NULL);
4498					rtval++;
4499					if (rtval > 4) {
4500						PMAP_UNLOCK(pmap);
4501						return (rtval);
4502					}
4503				}
4504			}
4505		}
4506		PMAP_UNLOCK(pmap);
4507	}
4508	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4509		pvf = pv;
4510		do {
4511			pvn = TAILQ_NEXT(pv, pv_list);
4512			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4513			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4514			pmap = PV_PMAP(pv);
4515			PMAP_LOCK(pmap);
4516			pde = pmap_pde(pmap, pv->pv_va);
4517			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4518			    " found a 4mpage in page %p's pv list", m));
4519			pte = pmap_pte_quick(pmap, pv->pv_va);
4520			if ((*pte & PG_A) != 0) {
4521				atomic_clear_int((u_int *)pte, PG_A);
4522				pmap_invalidate_page(pmap, pv->pv_va);
4523				rtval++;
4524				if (rtval > 4)
4525					pvn = NULL;
4526			}
4527			PMAP_UNLOCK(pmap);
4528		} while ((pv = pvn) != NULL && pv != pvf);
4529	}
4530	sched_unpin();
4531	return (rtval);
4532}
4533
4534/*
4535 *	Clear the modify bits on the specified physical page.
4536 */
4537void
4538pmap_clear_modify(vm_page_t m)
4539{
4540	struct md_page *pvh;
4541	pv_entry_t next_pv, pv;
4542	pmap_t pmap;
4543	pd_entry_t oldpde, *pde;
4544	pt_entry_t oldpte, *pte;
4545	vm_offset_t va;
4546
4547	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4548	if ((m->flags & PG_FICTITIOUS) != 0)
4549		return;
4550	sched_pin();
4551	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4552	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4553		va = pv->pv_va;
4554		pmap = PV_PMAP(pv);
4555		PMAP_LOCK(pmap);
4556		pde = pmap_pde(pmap, va);
4557		oldpde = *pde;
4558		if ((oldpde & PG_RW) != 0) {
4559			if (pmap_demote_pde(pmap, pde, va)) {
4560				if ((oldpde & PG_W) == 0) {
4561					/*
4562					 * Write protect the mapping to a
4563					 * single page so that a subsequent
4564					 * write access may repromote.
4565					 */
4566					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4567					    PG_PS_FRAME);
4568					pte = pmap_pte_quick(pmap, va);
4569					oldpte = *pte;
4570					if ((oldpte & PG_V) != 0) {
4571						/*
4572						 * Regardless of whether a pte is 32 or 64 bits
4573						 * in size, PG_RW and PG_M are among the least
4574						 * significant 32 bits.
4575						 */
4576						while (!atomic_cmpset_int((u_int *)pte,
4577						    oldpte,
4578						    oldpte & ~(PG_M | PG_RW)))
4579							oldpte = *pte;
4580						vm_page_dirty(m);
4581						pmap_invalidate_page(pmap, va);
4582					}
4583				}
4584			}
4585		}
4586		PMAP_UNLOCK(pmap);
4587	}
4588	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4589		pmap = PV_PMAP(pv);
4590		PMAP_LOCK(pmap);
4591		pde = pmap_pde(pmap, pv->pv_va);
4592		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4593		    " a 4mpage in page %p's pv list", m));
4594		pte = pmap_pte_quick(pmap, pv->pv_va);
4595		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4596			/*
4597			 * Regardless of whether a pte is 32 or 64 bits
4598			 * in size, PG_M is among the least significant
4599			 * 32 bits.
4600			 */
4601			atomic_clear_int((u_int *)pte, PG_M);
4602			pmap_invalidate_page(pmap, pv->pv_va);
4603		}
4604		PMAP_UNLOCK(pmap);
4605	}
4606	sched_unpin();
4607}
4608
4609/*
4610 *	pmap_clear_reference:
4611 *
4612 *	Clear the reference bit on the specified physical page.
4613 */
4614void
4615pmap_clear_reference(vm_page_t m)
4616{
4617	struct md_page *pvh;
4618	pv_entry_t next_pv, pv;
4619	pmap_t pmap;
4620	pd_entry_t oldpde, *pde;
4621	pt_entry_t *pte;
4622	vm_offset_t va;
4623
4624	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4625	if ((m->flags & PG_FICTITIOUS) != 0)
4626		return;
4627	sched_pin();
4628	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4629	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4630		va = pv->pv_va;
4631		pmap = PV_PMAP(pv);
4632		PMAP_LOCK(pmap);
4633		pde = pmap_pde(pmap, va);
4634		oldpde = *pde;
4635		if ((oldpde & PG_A) != 0) {
4636			if (pmap_demote_pde(pmap, pde, va)) {
4637				/*
4638				 * Remove the mapping to a single page so
4639				 * that a subsequent access may repromote.
4640				 * Since the underlying page table page is
4641				 * fully populated, this removal never frees
4642				 * a page table page.
4643				 */
4644				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4645				    PG_PS_FRAME);
4646				pmap_remove_page(pmap, va, NULL);
4647			}
4648		}
4649		PMAP_UNLOCK(pmap);
4650	}
4651	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4652		pmap = PV_PMAP(pv);
4653		PMAP_LOCK(pmap);
4654		pde = pmap_pde(pmap, pv->pv_va);
4655		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4656		    " a 4mpage in page %p's pv list", m));
4657		pte = pmap_pte_quick(pmap, pv->pv_va);
4658		if ((*pte & PG_A) != 0) {
4659			/*
4660			 * Regardless of whether a pte is 32 or 64 bits
4661			 * in size, PG_A is among the least significant
4662			 * 32 bits.
4663			 */
4664			atomic_clear_int((u_int *)pte, PG_A);
4665			pmap_invalidate_page(pmap, pv->pv_va);
4666		}
4667		PMAP_UNLOCK(pmap);
4668	}
4669	sched_unpin();
4670}
4671
4672/*
4673 * Miscellaneous support routines follow
4674 */
4675
4676/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4677static __inline void
4678pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4679{
4680	u_int opte, npte;
4681
4682	/*
4683	 * The cache mode bits are all in the low 32-bits of the
4684	 * PTE, so we can just spin on updating the low 32-bits.
4685	 */
4686	do {
4687		opte = *(u_int *)pte;
4688		npte = opte & ~PG_PTE_CACHE;
4689		npte |= cache_bits;
4690	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4691}
4692
4693/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4694static __inline void
4695pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4696{
4697	u_int opde, npde;
4698
4699	/*
4700	 * The cache mode bits are all in the low 32-bits of the
4701	 * PDE, so we can just spin on updating the low 32-bits.
4702	 */
4703	do {
4704		opde = *(u_int *)pde;
4705		npde = opde & ~PG_PDE_CACHE;
4706		npde |= cache_bits;
4707	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4708}
4709
4710/*
4711 * Map a set of physical memory pages into the kernel virtual
4712 * address space. Return a pointer to where it is mapped. This
4713 * routine is intended to be used for mapping device memory,
4714 * NOT real memory.
4715 */
4716void *
4717pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4718{
4719	vm_offset_t va, offset;
4720	vm_size_t tmpsize;
4721
4722	offset = pa & PAGE_MASK;
4723	size = roundup(offset + size, PAGE_SIZE);
4724	pa = pa & PG_FRAME;
4725
4726	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4727		va = KERNBASE + pa;
4728	else
4729		va = kmem_alloc_nofault(kernel_map, size);
4730	if (!va)
4731		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4732
4733	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4734		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4735	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4736	pmap_invalidate_cache_range(va, va + size);
4737	return ((void *)(va + offset));
4738}
4739
4740void *
4741pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4742{
4743
4744	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4745}
4746
4747void *
4748pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4749{
4750
4751	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4752}
4753
4754void
4755pmap_unmapdev(vm_offset_t va, vm_size_t size)
4756{
4757	vm_offset_t base, offset, tmpva;
4758
4759	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4760		return;
4761	base = trunc_page(va);
4762	offset = va & PAGE_MASK;
4763	size = roundup(offset + size, PAGE_SIZE);
4764	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4765		pmap_kremove(tmpva);
4766	pmap_invalidate_range(kernel_pmap, va, tmpva);
4767	kmem_free(kernel_map, base, size);
4768}
4769
4770/*
4771 * Sets the memory attribute for the specified page.
4772 */
4773void
4774pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4775{
4776	struct sysmaps *sysmaps;
4777	vm_offset_t sva, eva;
4778
4779	m->md.pat_mode = ma;
4780	if ((m->flags & PG_FICTITIOUS) != 0)
4781		return;
4782
4783	/*
4784	 * If "m" is a normal page, flush it from the cache.
4785	 * See pmap_invalidate_cache_range().
4786	 *
4787	 * First, try to find an existing mapping of the page by sf
4788	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4789	 * flushes the cache.
4790	 */
4791	if (sf_buf_invalidate_cache(m))
4792		return;
4793
4794	/*
4795	 * If page is not mapped by sf buffer, but CPU does not
4796	 * support self snoop, map the page transient and do
4797	 * invalidation. In the worst case, whole cache is flushed by
4798	 * pmap_invalidate_cache_range().
4799	 */
4800	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4801		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4802		mtx_lock(&sysmaps->lock);
4803		if (*sysmaps->CMAP2)
4804			panic("pmap_page_set_memattr: CMAP2 busy");
4805		sched_pin();
4806		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4807		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4808		invlcaddr(sysmaps->CADDR2);
4809		sva = (vm_offset_t)sysmaps->CADDR2;
4810		eva = sva + PAGE_SIZE;
4811	} else
4812		sva = eva = 0; /* gcc */
4813	pmap_invalidate_cache_range(sva, eva);
4814	if (sva != 0) {
4815		*sysmaps->CMAP2 = 0;
4816		sched_unpin();
4817		mtx_unlock(&sysmaps->lock);
4818	}
4819}
4820
4821/*
4822 * Changes the specified virtual address range's memory type to that given by
4823 * the parameter "mode".  The specified virtual address range must be
4824 * completely contained within either the kernel map.
4825 *
4826 * Returns zero if the change completed successfully, and either EINVAL or
4827 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4828 * of the virtual address range was not mapped, and ENOMEM is returned if
4829 * there was insufficient memory available to complete the change.
4830 */
4831int
4832pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4833{
4834	vm_offset_t base, offset, tmpva;
4835	pd_entry_t *pde;
4836	pt_entry_t *pte;
4837	int cache_bits_pte, cache_bits_pde;
4838	boolean_t changed;
4839
4840	base = trunc_page(va);
4841	offset = va & PAGE_MASK;
4842	size = roundup(offset + size, PAGE_SIZE);
4843
4844	/*
4845	 * Only supported on kernel virtual addresses above the recursive map.
4846	 */
4847	if (base < VM_MIN_KERNEL_ADDRESS)
4848		return (EINVAL);
4849
4850	cache_bits_pde = pmap_cache_bits(mode, 1);
4851	cache_bits_pte = pmap_cache_bits(mode, 0);
4852	changed = FALSE;
4853
4854	/*
4855	 * Pages that aren't mapped aren't supported.  Also break down
4856	 * 2/4MB pages into 4KB pages if required.
4857	 */
4858	PMAP_LOCK(kernel_pmap);
4859	for (tmpva = base; tmpva < base + size; ) {
4860		pde = pmap_pde(kernel_pmap, tmpva);
4861		if (*pde == 0) {
4862			PMAP_UNLOCK(kernel_pmap);
4863			return (EINVAL);
4864		}
4865		if (*pde & PG_PS) {
4866			/*
4867			 * If the current 2/4MB page already has
4868			 * the required memory type, then we need not
4869			 * demote this page.  Just increment tmpva to
4870			 * the next 2/4MB page frame.
4871			 */
4872			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4873				tmpva = trunc_4mpage(tmpva) + NBPDR;
4874				continue;
4875			}
4876
4877			/*
4878			 * If the current offset aligns with a 2/4MB
4879			 * page frame and there is at least 2/4MB left
4880			 * within the range, then we need not break
4881			 * down this page into 4KB pages.
4882			 */
4883			if ((tmpva & PDRMASK) == 0 &&
4884			    tmpva + PDRMASK < base + size) {
4885				tmpva += NBPDR;
4886				continue;
4887			}
4888			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4889				PMAP_UNLOCK(kernel_pmap);
4890				return (ENOMEM);
4891			}
4892		}
4893		pte = vtopte(tmpva);
4894		if (*pte == 0) {
4895			PMAP_UNLOCK(kernel_pmap);
4896			return (EINVAL);
4897		}
4898		tmpva += PAGE_SIZE;
4899	}
4900	PMAP_UNLOCK(kernel_pmap);
4901
4902	/*
4903	 * Ok, all the pages exist, so run through them updating their
4904	 * cache mode if required.
4905	 */
4906	for (tmpva = base; tmpva < base + size; ) {
4907		pde = pmap_pde(kernel_pmap, tmpva);
4908		if (*pde & PG_PS) {
4909			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4910				pmap_pde_attr(pde, cache_bits_pde);
4911				changed = TRUE;
4912			}
4913			tmpva = trunc_4mpage(tmpva) + NBPDR;
4914		} else {
4915			pte = vtopte(tmpva);
4916			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4917				pmap_pte_attr(pte, cache_bits_pte);
4918				changed = TRUE;
4919			}
4920			tmpva += PAGE_SIZE;
4921		}
4922	}
4923
4924	/*
4925	 * Flush CPU caches to make sure any data isn't cached that
4926	 * shouldn't be, etc.
4927	 */
4928	if (changed) {
4929		pmap_invalidate_range(kernel_pmap, base, tmpva);
4930		pmap_invalidate_cache_range(base, tmpva);
4931	}
4932	return (0);
4933}
4934
4935/*
4936 * perform the pmap work for mincore
4937 */
4938int
4939pmap_mincore(pmap_t pmap, vm_offset_t addr)
4940{
4941	pd_entry_t *pdep;
4942	pt_entry_t *ptep, pte;
4943	vm_paddr_t pa;
4944	vm_page_t m;
4945	int val = 0;
4946
4947	PMAP_LOCK(pmap);
4948	pdep = pmap_pde(pmap, addr);
4949	if (*pdep != 0) {
4950		if (*pdep & PG_PS) {
4951			pte = *pdep;
4952			val = MINCORE_SUPER;
4953			/* Compute the physical address of the 4KB page. */
4954			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4955			    PG_FRAME;
4956		} else {
4957			ptep = pmap_pte(pmap, addr);
4958			pte = *ptep;
4959			pmap_pte_release(ptep);
4960			pa = pte & PG_FRAME;
4961		}
4962	} else {
4963		pte = 0;
4964		pa = 0;
4965	}
4966	PMAP_UNLOCK(pmap);
4967
4968	if (pte != 0) {
4969		val |= MINCORE_INCORE;
4970		if ((pte & PG_MANAGED) == 0)
4971			return (val);
4972
4973		m = PHYS_TO_VM_PAGE(pa);
4974
4975		/*
4976		 * Modified by us
4977		 */
4978		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4979			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4980		else {
4981			/*
4982			 * Modified by someone else
4983			 */
4984			vm_page_lock_queues();
4985			if (m->dirty || pmap_is_modified(m))
4986				val |= MINCORE_MODIFIED_OTHER;
4987			vm_page_unlock_queues();
4988		}
4989		/*
4990		 * Referenced by us
4991		 */
4992		if (pte & PG_A)
4993			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4994		else {
4995			/*
4996			 * Referenced by someone else
4997			 */
4998			vm_page_lock_queues();
4999			if ((m->flags & PG_REFERENCED) ||
5000			    pmap_is_referenced(m))
5001				val |= MINCORE_REFERENCED_OTHER;
5002			vm_page_unlock_queues();
5003		}
5004	}
5005	return (val);
5006}
5007
5008void
5009pmap_activate(struct thread *td)
5010{
5011	pmap_t	pmap, oldpmap;
5012	u_int32_t  cr3;
5013
5014	critical_enter();
5015	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5016	oldpmap = PCPU_GET(curpmap);
5017#if defined(SMP)
5018	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
5019	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
5020#else
5021	oldpmap->pm_active &= ~1;
5022	pmap->pm_active |= 1;
5023#endif
5024#ifdef PAE
5025	cr3 = vtophys(pmap->pm_pdpt);
5026#else
5027	cr3 = vtophys(pmap->pm_pdir);
5028#endif
5029	/*
5030	 * pmap_activate is for the current thread on the current cpu
5031	 */
5032	td->td_pcb->pcb_cr3 = cr3;
5033	load_cr3(cr3);
5034	PCPU_SET(curpmap, pmap);
5035	critical_exit();
5036}
5037
5038void
5039pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5040{
5041}
5042
5043/*
5044 *	Increase the starting virtual address of the given mapping if a
5045 *	different alignment might result in more superpage mappings.
5046 */
5047void
5048pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5049    vm_offset_t *addr, vm_size_t size)
5050{
5051	vm_offset_t superpage_offset;
5052
5053	if (size < NBPDR)
5054		return;
5055	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5056		offset += ptoa(object->pg_color);
5057	superpage_offset = offset & PDRMASK;
5058	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5059	    (*addr & PDRMASK) == superpage_offset)
5060		return;
5061	if ((*addr & PDRMASK) < superpage_offset)
5062		*addr = (*addr & ~PDRMASK) + superpage_offset;
5063	else
5064		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5065}
5066
5067
5068#if defined(PMAP_DEBUG)
5069pmap_pid_dump(int pid)
5070{
5071	pmap_t pmap;
5072	struct proc *p;
5073	int npte = 0;
5074	int index;
5075
5076	sx_slock(&allproc_lock);
5077	FOREACH_PROC_IN_SYSTEM(p) {
5078		if (p->p_pid != pid)
5079			continue;
5080
5081		if (p->p_vmspace) {
5082			int i,j;
5083			index = 0;
5084			pmap = vmspace_pmap(p->p_vmspace);
5085			for (i = 0; i < NPDEPTD; i++) {
5086				pd_entry_t *pde;
5087				pt_entry_t *pte;
5088				vm_offset_t base = i << PDRSHIFT;
5089
5090				pde = &pmap->pm_pdir[i];
5091				if (pde && pmap_pde_v(pde)) {
5092					for (j = 0; j < NPTEPG; j++) {
5093						vm_offset_t va = base + (j << PAGE_SHIFT);
5094						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5095							if (index) {
5096								index = 0;
5097								printf("\n");
5098							}
5099							sx_sunlock(&allproc_lock);
5100							return (npte);
5101						}
5102						pte = pmap_pte(pmap, va);
5103						if (pte && pmap_pte_v(pte)) {
5104							pt_entry_t pa;
5105							vm_page_t m;
5106							pa = *pte;
5107							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5108							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5109								va, pa, m->hold_count, m->wire_count, m->flags);
5110							npte++;
5111							index++;
5112							if (index >= 2) {
5113								index = 0;
5114								printf("\n");
5115							} else {
5116								printf(" ");
5117							}
5118						}
5119					}
5120				}
5121			}
5122		}
5123	}
5124	sx_sunlock(&allproc_lock);
5125	return (npte);
5126}
5127#endif
5128
5129#if defined(DEBUG)
5130
5131static void	pads(pmap_t pm);
5132void		pmap_pvdump(vm_offset_t pa);
5133
5134/* print address space of pmap*/
5135static void
5136pads(pmap_t pm)
5137{
5138	int i, j;
5139	vm_paddr_t va;
5140	pt_entry_t *ptep;
5141
5142	if (pm == kernel_pmap)
5143		return;
5144	for (i = 0; i < NPDEPTD; i++)
5145		if (pm->pm_pdir[i])
5146			for (j = 0; j < NPTEPG; j++) {
5147				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5148				if (pm == kernel_pmap && va < KERNBASE)
5149					continue;
5150				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5151					continue;
5152				ptep = pmap_pte(pm, va);
5153				if (pmap_pte_v(ptep))
5154					printf("%x:%x ", va, *ptep);
5155			};
5156
5157}
5158
5159void
5160pmap_pvdump(vm_paddr_t pa)
5161{
5162	pv_entry_t pv;
5163	pmap_t pmap;
5164	vm_page_t m;
5165
5166	printf("pa %x", pa);
5167	m = PHYS_TO_VM_PAGE(pa);
5168	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5169		pmap = PV_PMAP(pv);
5170		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5171		pads(pmap);
5172	}
5173	printf(" ");
5174}
5175#endif
5176