pmap.c revision 207163
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 207163 2010-04-24 21:36:52Z kmacy $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#ifdef __GNUC_GNU_INLINE__
166#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167#else
168#define PMAP_INLINE	extern inline
169#endif
170#else
171#define PMAP_INLINE
172#endif
173
174#define PV_STATS
175#ifdef PV_STATS
176#define PV_STAT(x)	do { x ; } while (0)
177#else
178#define PV_STAT(x)	do { } while (0)
179#endif
180
181#define	pa_index(pa)	((pa) >> PDRSHIFT)
182#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183
184/*
185 * Get PDEs and PTEs for user/kernel address space
186 */
187#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189
190#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195
196#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197    atomic_clear_int((u_int *)(pte), PG_W))
198#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199
200struct pmap kernel_pmap_store;
201LIST_HEAD(pmaplist, pmap);
202static struct pmaplist allpmaps;
203static struct mtx allpmaps_lock;
204
205vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
206vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
207int pgeflag = 0;		/* PG_G or-in */
208int pseflag = 0;		/* PG_PS or-in */
209
210static int nkpt = NKPT;
211vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
212extern u_int32_t KERNend;
213extern u_int32_t KPTphys;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217static uma_zone_t pdptzone;
218#endif
219
220static int pat_works = 0;		/* Is page attribute table sane? */
221
222SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pg_ps_enabled = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
226    "Are large page mappings enabled?");
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0, *KPTmap;
251static pt_entry_t *CMAP3;
252static pd_entry_t *KPTD;
253caddr_t CADDR1 = 0, ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
283static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
284static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
285static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
286static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
287static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
288		    vm_offset_t va);
289static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
290
291static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
292static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
293    vm_prot_t prot);
294static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
295    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
296static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
297static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
298static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
299static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
300static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
301static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
302static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
303static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
304static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
305static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
306    vm_prot_t prot);
307static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
308static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
309    vm_page_t *free);
310static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
311    vm_page_t *free);
312static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
313static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
314    vm_page_t *free);
315static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
316					vm_offset_t va);
317static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
318static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
319    vm_page_t m);
320static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
321    pd_entry_t newpde);
322static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
323
324static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
325
326static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
327static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
328static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
329static void pmap_pte_release(pt_entry_t *pte);
330static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
331#ifdef PAE
332static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
333#endif
334static void pmap_set_pg(void);
335
336CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
337CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
338
339/*
340 * If you get an error here, then you set KVA_PAGES wrong! See the
341 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
342 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
343 */
344CTASSERT(KERNBASE % (1 << 24) == 0);
345
346/*
347 *	Bootstrap the system enough to run with virtual memory.
348 *
349 *	On the i386 this is called after mapping has already been enabled
350 *	and just syncs the pmap module with what has already been done.
351 *	[We can't call it easily with mapping off since the kernel is not
352 *	mapped with PA == VA, hence we would have to relocate every address
353 *	from the linked base (virtual) address "KERNBASE" to the actual
354 *	(physical) address starting relative to 0]
355 */
356void
357pmap_bootstrap(vm_paddr_t firstaddr)
358{
359	vm_offset_t va;
360	pt_entry_t *pte, *unused;
361	struct sysmaps *sysmaps;
362	int i;
363
364	/*
365	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
366	 * large. It should instead be correctly calculated in locore.s and
367	 * not based on 'first' (which is a physical address, not a virtual
368	 * address, for the start of unused physical memory). The kernel
369	 * page tables are NOT double mapped and thus should not be included
370	 * in this calculation.
371	 */
372	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
373
374	virtual_end = VM_MAX_KERNEL_ADDRESS;
375
376	/*
377	 * Initialize the kernel pmap (which is statically allocated).
378	 */
379	PMAP_LOCK_INIT(kernel_pmap);
380	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
381#ifdef PAE
382	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
383#endif
384	kernel_pmap->pm_root = NULL;
385	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
386	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
387	LIST_INIT(&allpmaps);
388
389	/*
390	 * Request a spin mutex so that changes to allpmaps cannot be
391	 * preempted by smp_rendezvous_cpus().  Otherwise,
392	 * pmap_update_pde_kernel() could access allpmaps while it is
393	 * being changed.
394	 */
395	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
396	mtx_lock_spin(&allpmaps_lock);
397	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
398	mtx_unlock_spin(&allpmaps_lock);
399
400	/*
401	 * Reserve some special page table entries/VA space for temporary
402	 * mapping of pages.
403	 */
404#define	SYSMAP(c, p, v, n)	\
405	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
406
407	va = virtual_avail;
408	pte = vtopte(va);
409
410	/*
411	 * CMAP1/CMAP2 are used for zeroing and copying pages.
412	 * CMAP3 is used for the idle process page zeroing.
413	 */
414	for (i = 0; i < MAXCPU; i++) {
415		sysmaps = &sysmaps_pcpu[i];
416		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
417		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
418		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
419	}
420	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
421	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
422
423	/*
424	 * Crashdump maps.
425	 */
426	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
427
428	/*
429	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
430	 */
431	SYSMAP(caddr_t, unused, ptvmmap, 1)
432
433	/*
434	 * msgbufp is used to map the system message buffer.
435	 */
436	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
437
438	/*
439	 * KPTmap is used by pmap_kextract().
440	 */
441	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
442
443	for (i = 0; i < NKPT; i++)
444		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
445
446	/*
447	 * Adjust the start of the KPTD and KPTmap so that the implementation
448	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
449	 */
450	KPTD -= KPTDI;
451	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
452
453	/*
454	 * ptemap is used for pmap_pte_quick
455	 */
456	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
457	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
458
459	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
460
461	virtual_avail = va;
462
463	/*
464	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
465	 * physical memory region that is used by the ACPI wakeup code.  This
466	 * mapping must not have PG_G set.
467	 */
468#ifdef XBOX
469	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
470	 * an early stadium, we cannot yet neatly map video memory ... :-(
471	 * Better fixes are very welcome! */
472	if (!arch_i386_is_xbox)
473#endif
474	for (i = 1; i < NKPT; i++)
475		PTD[i] = 0;
476
477	/* Initialize the PAT MSR if present. */
478	pmap_init_pat();
479
480	/* Turn on PG_G on kernel page(s) */
481	pmap_set_pg();
482}
483
484/*
485 * Setup the PAT MSR.
486 */
487void
488pmap_init_pat(void)
489{
490	uint64_t pat_msr;
491	char *sysenv;
492	static int pat_tested = 0;
493
494	/* Bail if this CPU doesn't implement PAT. */
495	if (!(cpu_feature & CPUID_PAT))
496		return;
497
498	/*
499	 * Due to some Intel errata, we can only safely use the lower 4
500	 * PAT entries.
501	 *
502	 *   Intel Pentium III Processor Specification Update
503	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
504	 * or Mode C Paging)
505	 *
506	 *   Intel Pentium IV  Processor Specification Update
507	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
508	 *
509	 * Some Apple Macs based on nVidia chipsets cannot enter ACPI mode
510	 * via SMI# when we use upper 4 PAT entries for unknown reason.
511	 */
512	if (!pat_tested) {
513		if (cpu_vendor_id != CPU_VENDOR_INTEL ||
514		    (CPUID_TO_FAMILY(cpu_id) == 6 &&
515		    CPUID_TO_MODEL(cpu_id) >= 0xe)) {
516			pat_works = 1;
517			sysenv = getenv("smbios.system.product");
518			if (sysenv != NULL) {
519				if (strncmp(sysenv, "MacBook5,1", 10) == 0 ||
520				    strncmp(sysenv, "MacBookPro5,5", 13) == 0 ||
521				    strncmp(sysenv, "Macmini3,1", 10) == 0)
522					pat_works = 0;
523				freeenv(sysenv);
524			}
525		}
526		pat_tested = 1;
527	}
528
529	/* Initialize default PAT entries. */
530	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
531	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
532	    PAT_VALUE(2, PAT_UNCACHED) |
533	    PAT_VALUE(3, PAT_UNCACHEABLE) |
534	    PAT_VALUE(4, PAT_WRITE_BACK) |
535	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
536	    PAT_VALUE(6, PAT_UNCACHED) |
537	    PAT_VALUE(7, PAT_UNCACHEABLE);
538
539	if (pat_works) {
540		/*
541		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
542		 * Program 4 and 5 as WP and WC.
543		 * Leave 6 and 7 as UC- and UC.
544		 */
545		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
546		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
547		    PAT_VALUE(5, PAT_WRITE_COMBINING);
548	} else {
549		/*
550		 * Just replace PAT Index 2 with WC instead of UC-.
551		 */
552		pat_msr &= ~PAT_MASK(2);
553		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
554	}
555	wrmsr(MSR_PAT, pat_msr);
556}
557
558/*
559 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
560 */
561static void
562pmap_set_pg(void)
563{
564	pt_entry_t *pte;
565	vm_offset_t va, endva;
566
567	if (pgeflag == 0)
568		return;
569
570	endva = KERNBASE + KERNend;
571
572	if (pseflag) {
573		va = KERNBASE + KERNLOAD;
574		while (va  < endva) {
575			pdir_pde(PTD, va) |= pgeflag;
576			invltlb();	/* Play it safe, invltlb() every time */
577			va += NBPDR;
578		}
579	} else {
580		va = (vm_offset_t)btext;
581		while (va < endva) {
582			pte = vtopte(va);
583			if (*pte)
584				*pte |= pgeflag;
585			invltlb();	/* Play it safe, invltlb() every time */
586			va += PAGE_SIZE;
587		}
588	}
589}
590
591/*
592 * Initialize a vm_page's machine-dependent fields.
593 */
594void
595pmap_page_init(vm_page_t m)
596{
597
598	TAILQ_INIT(&m->md.pv_list);
599	m->md.pat_mode = PAT_WRITE_BACK;
600}
601
602#ifdef PAE
603static void *
604pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
605{
606
607	/* Inform UMA that this allocator uses kernel_map/object. */
608	*flags = UMA_SLAB_KERNEL;
609	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
610	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
611}
612#endif
613
614/*
615 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
616 * Requirements:
617 *  - Must deal with pages in order to ensure that none of the PG_* bits
618 *    are ever set, PG_V in particular.
619 *  - Assumes we can write to ptes without pte_store() atomic ops, even
620 *    on PAE systems.  This should be ok.
621 *  - Assumes nothing will ever test these addresses for 0 to indicate
622 *    no mapping instead of correctly checking PG_V.
623 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
624 * Because PG_V is never set, there can be no mappings to invalidate.
625 */
626static vm_offset_t
627pmap_ptelist_alloc(vm_offset_t *head)
628{
629	pt_entry_t *pte;
630	vm_offset_t va;
631
632	va = *head;
633	if (va == 0)
634		return (va);	/* Out of memory */
635	pte = vtopte(va);
636	*head = *pte;
637	if (*head & PG_V)
638		panic("pmap_ptelist_alloc: va with PG_V set!");
639	*pte = 0;
640	return (va);
641}
642
643static void
644pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
645{
646	pt_entry_t *pte;
647
648	if (va & PG_V)
649		panic("pmap_ptelist_free: freeing va with PG_V set!");
650	pte = vtopte(va);
651	*pte = *head;		/* virtual! PG_V is 0 though */
652	*head = va;
653}
654
655static void
656pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
657{
658	int i;
659	vm_offset_t va;
660
661	*head = 0;
662	for (i = npages - 1; i >= 0; i--) {
663		va = (vm_offset_t)base + i * PAGE_SIZE;
664		pmap_ptelist_free(head, va);
665	}
666}
667
668
669/*
670 *	Initialize the pmap module.
671 *	Called by vm_init, to initialize any structures that the pmap
672 *	system needs to map virtual memory.
673 */
674void
675pmap_init(void)
676{
677	vm_page_t mpte;
678	vm_size_t s;
679	int i, pv_npg;
680
681	/*
682	 * Initialize the vm page array entries for the kernel pmap's
683	 * page table pages.
684	 */
685	for (i = 0; i < NKPT; i++) {
686		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
687		KASSERT(mpte >= vm_page_array &&
688		    mpte < &vm_page_array[vm_page_array_size],
689		    ("pmap_init: page table page is out of range"));
690		mpte->pindex = i + KPTDI;
691		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
692	}
693
694	/*
695	 * Initialize the address space (zone) for the pv entries.  Set a
696	 * high water mark so that the system can recover from excessive
697	 * numbers of pv entries.
698	 */
699	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
700	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
701	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
702	pv_entry_max = roundup(pv_entry_max, _NPCPV);
703	pv_entry_high_water = 9 * (pv_entry_max / 10);
704
705	/*
706	 * If the kernel is running in a virtual machine on an AMD Family 10h
707	 * processor, then it must assume that MCA is enabled by the virtual
708	 * machine monitor.
709	 */
710	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
711	    CPUID_TO_FAMILY(cpu_id) == 0x10)
712		workaround_erratum383 = 1;
713
714	/*
715	 * Are large page mappings supported and enabled?
716	 */
717	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
718	if (pseflag == 0)
719		pg_ps_enabled = 0;
720	else if (pg_ps_enabled) {
721		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
722		    ("pmap_init: can't assign to pagesizes[1]"));
723		pagesizes[1] = NBPDR;
724	}
725
726	/*
727	 * Calculate the size of the pv head table for superpages.
728	 */
729	for (i = 0; phys_avail[i + 1]; i += 2);
730	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
731
732	/*
733	 * Allocate memory for the pv head table for superpages.
734	 */
735	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
736	s = round_page(s);
737	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
738	for (i = 0; i < pv_npg; i++)
739		TAILQ_INIT(&pv_table[i].pv_list);
740
741	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
742	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
743	    PAGE_SIZE * pv_maxchunks);
744	if (pv_chunkbase == NULL)
745		panic("pmap_init: not enough kvm for pv chunks");
746	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
747#ifdef PAE
748	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
749	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
750	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
751	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
752#endif
753}
754
755
756SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
757	"Max number of PV entries");
758SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
759	"Page share factor per proc");
760
761SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
762    "2/4MB page mapping counters");
763
764static u_long pmap_pde_demotions;
765SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
766    &pmap_pde_demotions, 0, "2/4MB page demotions");
767
768static u_long pmap_pde_mappings;
769SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
770    &pmap_pde_mappings, 0, "2/4MB page mappings");
771
772static u_long pmap_pde_p_failures;
773SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
774    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
775
776static u_long pmap_pde_promotions;
777SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
778    &pmap_pde_promotions, 0, "2/4MB page promotions");
779
780/***************************************************
781 * Low level helper routines.....
782 ***************************************************/
783
784/*
785 * Determine the appropriate bits to set in a PTE or PDE for a specified
786 * caching mode.
787 */
788int
789pmap_cache_bits(int mode, boolean_t is_pde)
790{
791	int pat_flag, pat_index, cache_bits;
792
793	/* The PAT bit is different for PTE's and PDE's. */
794	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
795
796	/* If we don't support PAT, map extended modes to older ones. */
797	if (!(cpu_feature & CPUID_PAT)) {
798		switch (mode) {
799		case PAT_UNCACHEABLE:
800		case PAT_WRITE_THROUGH:
801		case PAT_WRITE_BACK:
802			break;
803		case PAT_UNCACHED:
804		case PAT_WRITE_COMBINING:
805		case PAT_WRITE_PROTECTED:
806			mode = PAT_UNCACHEABLE;
807			break;
808		}
809	}
810
811	/* Map the caching mode to a PAT index. */
812	if (pat_works) {
813		switch (mode) {
814		case PAT_UNCACHEABLE:
815			pat_index = 3;
816			break;
817		case PAT_WRITE_THROUGH:
818			pat_index = 1;
819			break;
820		case PAT_WRITE_BACK:
821			pat_index = 0;
822			break;
823		case PAT_UNCACHED:
824			pat_index = 2;
825			break;
826		case PAT_WRITE_COMBINING:
827			pat_index = 5;
828			break;
829		case PAT_WRITE_PROTECTED:
830			pat_index = 4;
831			break;
832		default:
833			panic("Unknown caching mode %d\n", mode);
834		}
835	} else {
836		switch (mode) {
837		case PAT_UNCACHED:
838		case PAT_UNCACHEABLE:
839		case PAT_WRITE_PROTECTED:
840			pat_index = 3;
841			break;
842		case PAT_WRITE_THROUGH:
843			pat_index = 1;
844			break;
845		case PAT_WRITE_BACK:
846			pat_index = 0;
847			break;
848		case PAT_WRITE_COMBINING:
849			pat_index = 2;
850			break;
851		default:
852			panic("Unknown caching mode %d\n", mode);
853		}
854	}
855
856	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
857	cache_bits = 0;
858	if (pat_index & 0x4)
859		cache_bits |= pat_flag;
860	if (pat_index & 0x2)
861		cache_bits |= PG_NC_PCD;
862	if (pat_index & 0x1)
863		cache_bits |= PG_NC_PWT;
864	return (cache_bits);
865}
866
867/*
868 * The caller is responsible for maintaining TLB consistency.
869 */
870static void
871pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
872{
873	pd_entry_t *pde;
874	pmap_t pmap;
875	boolean_t PTD_updated;
876
877	PTD_updated = FALSE;
878	mtx_lock_spin(&allpmaps_lock);
879	LIST_FOREACH(pmap, &allpmaps, pm_list) {
880		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
881		    PG_FRAME))
882			PTD_updated = TRUE;
883		pde = pmap_pde(pmap, va);
884		pde_store(pde, newpde);
885	}
886	mtx_unlock_spin(&allpmaps_lock);
887	KASSERT(PTD_updated,
888	    ("pmap_kenter_pde: current page table is not in allpmaps"));
889}
890
891/*
892 * After changing the page size for the specified virtual address in the page
893 * table, flush the corresponding entries from the processor's TLB.  Only the
894 * calling processor's TLB is affected.
895 *
896 * The calling thread must be pinned to a processor.
897 */
898static void
899pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
900{
901	u_long cr4;
902
903	if ((newpde & PG_PS) == 0)
904		/* Demotion: flush a specific 2MB page mapping. */
905		invlpg(va);
906	else if ((newpde & PG_G) == 0)
907		/*
908		 * Promotion: flush every 4KB page mapping from the TLB
909		 * because there are too many to flush individually.
910		 */
911		invltlb();
912	else {
913		/*
914		 * Promotion: flush every 4KB page mapping from the TLB,
915		 * including any global (PG_G) mappings.
916		 */
917		cr4 = rcr4();
918		load_cr4(cr4 & ~CR4_PGE);
919		/*
920		 * Although preemption at this point could be detrimental to
921		 * performance, it would not lead to an error.  PG_G is simply
922		 * ignored if CR4.PGE is clear.  Moreover, in case this block
923		 * is re-entered, the load_cr4() either above or below will
924		 * modify CR4.PGE flushing the TLB.
925		 */
926		load_cr4(cr4 | CR4_PGE);
927	}
928}
929#ifdef SMP
930/*
931 * For SMP, these functions have to use the IPI mechanism for coherence.
932 *
933 * N.B.: Before calling any of the following TLB invalidation functions,
934 * the calling processor must ensure that all stores updating a non-
935 * kernel page table are globally performed.  Otherwise, another
936 * processor could cache an old, pre-update entry without being
937 * invalidated.  This can happen one of two ways: (1) The pmap becomes
938 * active on another processor after its pm_active field is checked by
939 * one of the following functions but before a store updating the page
940 * table is globally performed. (2) The pmap becomes active on another
941 * processor before its pm_active field is checked but due to
942 * speculative loads one of the following functions stills reads the
943 * pmap as inactive on the other processor.
944 *
945 * The kernel page table is exempt because its pm_active field is
946 * immutable.  The kernel page table is always active on every
947 * processor.
948 */
949void
950pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
951{
952	u_int cpumask;
953	u_int other_cpus;
954
955	sched_pin();
956	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
957		invlpg(va);
958		smp_invlpg(va);
959	} else {
960		cpumask = PCPU_GET(cpumask);
961		other_cpus = PCPU_GET(other_cpus);
962		if (pmap->pm_active & cpumask)
963			invlpg(va);
964		if (pmap->pm_active & other_cpus)
965			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
966	}
967	sched_unpin();
968}
969
970void
971pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
972{
973	u_int cpumask;
974	u_int other_cpus;
975	vm_offset_t addr;
976
977	sched_pin();
978	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
979		for (addr = sva; addr < eva; addr += PAGE_SIZE)
980			invlpg(addr);
981		smp_invlpg_range(sva, eva);
982	} else {
983		cpumask = PCPU_GET(cpumask);
984		other_cpus = PCPU_GET(other_cpus);
985		if (pmap->pm_active & cpumask)
986			for (addr = sva; addr < eva; addr += PAGE_SIZE)
987				invlpg(addr);
988		if (pmap->pm_active & other_cpus)
989			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
990			    sva, eva);
991	}
992	sched_unpin();
993}
994
995void
996pmap_invalidate_all(pmap_t pmap)
997{
998	u_int cpumask;
999	u_int other_cpus;
1000
1001	sched_pin();
1002	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
1003		invltlb();
1004		smp_invltlb();
1005	} else {
1006		cpumask = PCPU_GET(cpumask);
1007		other_cpus = PCPU_GET(other_cpus);
1008		if (pmap->pm_active & cpumask)
1009			invltlb();
1010		if (pmap->pm_active & other_cpus)
1011			smp_masked_invltlb(pmap->pm_active & other_cpus);
1012	}
1013	sched_unpin();
1014}
1015
1016void
1017pmap_invalidate_cache(void)
1018{
1019
1020	sched_pin();
1021	wbinvd();
1022	smp_cache_flush();
1023	sched_unpin();
1024}
1025
1026struct pde_action {
1027	cpumask_t store;	/* processor that updates the PDE */
1028	cpumask_t invalidate;	/* processors that invalidate their TLB */
1029	vm_offset_t va;
1030	pd_entry_t *pde;
1031	pd_entry_t newpde;
1032};
1033
1034static void
1035pmap_update_pde_kernel(void *arg)
1036{
1037	struct pde_action *act = arg;
1038	pd_entry_t *pde;
1039	pmap_t pmap;
1040
1041	if (act->store == PCPU_GET(cpumask))
1042		/*
1043		 * Elsewhere, this operation requires allpmaps_lock for
1044		 * synchronization.  Here, it does not because it is being
1045		 * performed in the context of an all_cpus rendezvous.
1046		 */
1047		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1048			pde = pmap_pde(pmap, act->va);
1049			pde_store(pde, act->newpde);
1050		}
1051}
1052
1053static void
1054pmap_update_pde_user(void *arg)
1055{
1056	struct pde_action *act = arg;
1057
1058	if (act->store == PCPU_GET(cpumask))
1059		pde_store(act->pde, act->newpde);
1060}
1061
1062static void
1063pmap_update_pde_teardown(void *arg)
1064{
1065	struct pde_action *act = arg;
1066
1067	if ((act->invalidate & PCPU_GET(cpumask)) != 0)
1068		pmap_update_pde_invalidate(act->va, act->newpde);
1069}
1070
1071/*
1072 * Change the page size for the specified virtual address in a way that
1073 * prevents any possibility of the TLB ever having two entries that map the
1074 * same virtual address using different page sizes.  This is the recommended
1075 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1076 * machine check exception for a TLB state that is improperly diagnosed as a
1077 * hardware error.
1078 */
1079static void
1080pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1081{
1082	struct pde_action act;
1083	cpumask_t active, cpumask;
1084
1085	sched_pin();
1086	cpumask = PCPU_GET(cpumask);
1087	if (pmap == kernel_pmap)
1088		active = all_cpus;
1089	else
1090		active = pmap->pm_active;
1091	if ((active & PCPU_GET(other_cpus)) != 0) {
1092		act.store = cpumask;
1093		act.invalidate = active;
1094		act.va = va;
1095		act.pde = pde;
1096		act.newpde = newpde;
1097		smp_rendezvous_cpus(cpumask | active,
1098		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1099		    pmap_update_pde_kernel : pmap_update_pde_user,
1100		    pmap_update_pde_teardown, &act);
1101	} else {
1102		if (pmap == kernel_pmap)
1103			pmap_kenter_pde(va, newpde);
1104		else
1105			pde_store(pde, newpde);
1106		if ((active & cpumask) != 0)
1107			pmap_update_pde_invalidate(va, newpde);
1108	}
1109	sched_unpin();
1110}
1111#else /* !SMP */
1112/*
1113 * Normal, non-SMP, 486+ invalidation functions.
1114 * We inline these within pmap.c for speed.
1115 */
1116PMAP_INLINE void
1117pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1118{
1119
1120	if (pmap == kernel_pmap || pmap->pm_active)
1121		invlpg(va);
1122}
1123
1124PMAP_INLINE void
1125pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1126{
1127	vm_offset_t addr;
1128
1129	if (pmap == kernel_pmap || pmap->pm_active)
1130		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1131			invlpg(addr);
1132}
1133
1134PMAP_INLINE void
1135pmap_invalidate_all(pmap_t pmap)
1136{
1137
1138	if (pmap == kernel_pmap || pmap->pm_active)
1139		invltlb();
1140}
1141
1142PMAP_INLINE void
1143pmap_invalidate_cache(void)
1144{
1145
1146	wbinvd();
1147}
1148
1149static void
1150pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1151{
1152
1153	if (pmap == kernel_pmap)
1154		pmap_kenter_pde(va, newpde);
1155	else
1156		pde_store(pde, newpde);
1157	if (pmap == kernel_pmap || pmap->pm_active)
1158		pmap_update_pde_invalidate(va, newpde);
1159}
1160#endif /* !SMP */
1161
1162void
1163pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1164{
1165
1166	KASSERT((sva & PAGE_MASK) == 0,
1167	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1168	KASSERT((eva & PAGE_MASK) == 0,
1169	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1170
1171	if (cpu_feature & CPUID_SS)
1172		; /* If "Self Snoop" is supported, do nothing. */
1173	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1174		 eva - sva < 2 * 1024 * 1024) {
1175
1176		/*
1177		 * Otherwise, do per-cache line flush.  Use the mfence
1178		 * instruction to insure that previous stores are
1179		 * included in the write-back.  The processor
1180		 * propagates flush to other processors in the cache
1181		 * coherence domain.
1182		 */
1183		mfence();
1184		for (; sva < eva; sva += cpu_clflush_line_size)
1185			clflush(sva);
1186		mfence();
1187	} else {
1188
1189		/*
1190		 * No targeted cache flush methods are supported by CPU,
1191		 * or the supplied range is bigger than 2MB.
1192		 * Globally invalidate cache.
1193		 */
1194		pmap_invalidate_cache();
1195	}
1196}
1197
1198/*
1199 * Are we current address space or kernel?  N.B. We return FALSE when
1200 * a pmap's page table is in use because a kernel thread is borrowing
1201 * it.  The borrowed page table can change spontaneously, making any
1202 * dependence on its continued use subject to a race condition.
1203 */
1204static __inline int
1205pmap_is_current(pmap_t pmap)
1206{
1207
1208	return (pmap == kernel_pmap ||
1209		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1210	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1211}
1212
1213/*
1214 * If the given pmap is not the current or kernel pmap, the returned pte must
1215 * be released by passing it to pmap_pte_release().
1216 */
1217pt_entry_t *
1218pmap_pte(pmap_t pmap, vm_offset_t va)
1219{
1220	pd_entry_t newpf;
1221	pd_entry_t *pde;
1222
1223	pde = pmap_pde(pmap, va);
1224	if (*pde & PG_PS)
1225		return (pde);
1226	if (*pde != 0) {
1227		/* are we current address space or kernel? */
1228		if (pmap_is_current(pmap))
1229			return (vtopte(va));
1230		mtx_lock(&PMAP2mutex);
1231		newpf = *pde & PG_FRAME;
1232		if ((*PMAP2 & PG_FRAME) != newpf) {
1233			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1234			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1235		}
1236		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1237	}
1238	return (0);
1239}
1240
1241/*
1242 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1243 * being NULL.
1244 */
1245static __inline void
1246pmap_pte_release(pt_entry_t *pte)
1247{
1248
1249	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1250		mtx_unlock(&PMAP2mutex);
1251}
1252
1253static __inline void
1254invlcaddr(void *caddr)
1255{
1256
1257	invlpg((u_int)caddr);
1258}
1259
1260/*
1261 * Super fast pmap_pte routine best used when scanning
1262 * the pv lists.  This eliminates many coarse-grained
1263 * invltlb calls.  Note that many of the pv list
1264 * scans are across different pmaps.  It is very wasteful
1265 * to do an entire invltlb for checking a single mapping.
1266 *
1267 * If the given pmap is not the current pmap, vm_page_queue_mtx
1268 * must be held and curthread pinned to a CPU.
1269 */
1270static pt_entry_t *
1271pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1272{
1273	pd_entry_t newpf;
1274	pd_entry_t *pde;
1275
1276	pde = pmap_pde(pmap, va);
1277	if (*pde & PG_PS)
1278		return (pde);
1279	if (*pde != 0) {
1280		/* are we current address space or kernel? */
1281		if (pmap_is_current(pmap))
1282			return (vtopte(va));
1283		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1284		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1285		newpf = *pde & PG_FRAME;
1286		if ((*PMAP1 & PG_FRAME) != newpf) {
1287			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1288#ifdef SMP
1289			PMAP1cpu = PCPU_GET(cpuid);
1290#endif
1291			invlcaddr(PADDR1);
1292			PMAP1changed++;
1293		} else
1294#ifdef SMP
1295		if (PMAP1cpu != PCPU_GET(cpuid)) {
1296			PMAP1cpu = PCPU_GET(cpuid);
1297			invlcaddr(PADDR1);
1298			PMAP1changedcpu++;
1299		} else
1300#endif
1301			PMAP1unchanged++;
1302		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1303	}
1304	return (0);
1305}
1306
1307/*
1308 *	Routine:	pmap_extract
1309 *	Function:
1310 *		Extract the physical page address associated
1311 *		with the given map/virtual_address pair.
1312 */
1313vm_paddr_t
1314pmap_extract(pmap_t pmap, vm_offset_t va)
1315{
1316	vm_paddr_t rtval;
1317	pt_entry_t *pte;
1318	pd_entry_t pde;
1319
1320	rtval = 0;
1321	PMAP_LOCK(pmap);
1322	pde = pmap->pm_pdir[va >> PDRSHIFT];
1323	if (pde != 0) {
1324		if ((pde & PG_PS) != 0)
1325			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1326		else {
1327			pte = pmap_pte(pmap, va);
1328			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1329			pmap_pte_release(pte);
1330		}
1331	}
1332	PMAP_UNLOCK(pmap);
1333	return (rtval);
1334}
1335
1336/*
1337 *	Routine:	pmap_extract_and_hold
1338 *	Function:
1339 *		Atomically extract and hold the physical page
1340 *		with the given pmap and virtual address pair
1341 *		if that mapping permits the given protection.
1342 */
1343vm_page_t
1344pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1345{
1346	pd_entry_t pde;
1347	pt_entry_t pte;
1348	vm_page_t m;
1349
1350	m = NULL;
1351	vm_page_lock_queues();
1352	PMAP_LOCK(pmap);
1353	pde = *pmap_pde(pmap, va);
1354	if (pde != 0) {
1355		if (pde & PG_PS) {
1356			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1357				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1358				    (va & PDRMASK));
1359				vm_page_hold(m);
1360			}
1361		} else {
1362			sched_pin();
1363			pte = *pmap_pte_quick(pmap, va);
1364			if (pte != 0 &&
1365			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1366				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1367				vm_page_hold(m);
1368			}
1369			sched_unpin();
1370		}
1371	}
1372	vm_page_unlock_queues();
1373	PMAP_UNLOCK(pmap);
1374	return (m);
1375}
1376
1377/***************************************************
1378 * Low level mapping routines.....
1379 ***************************************************/
1380
1381/*
1382 * Add a wired page to the kva.
1383 * Note: not SMP coherent.
1384 */
1385PMAP_INLINE void
1386pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1387{
1388	pt_entry_t *pte;
1389
1390	pte = vtopte(va);
1391	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1392}
1393
1394static __inline void
1395pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1396{
1397	pt_entry_t *pte;
1398
1399	pte = vtopte(va);
1400	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1401}
1402
1403/*
1404 * Remove a page from the kernel pagetables.
1405 * Note: not SMP coherent.
1406 */
1407PMAP_INLINE void
1408pmap_kremove(vm_offset_t va)
1409{
1410	pt_entry_t *pte;
1411
1412	pte = vtopte(va);
1413	pte_clear(pte);
1414}
1415
1416/*
1417 *	Used to map a range of physical addresses into kernel
1418 *	virtual address space.
1419 *
1420 *	The value passed in '*virt' is a suggested virtual address for
1421 *	the mapping. Architectures which can support a direct-mapped
1422 *	physical to virtual region can return the appropriate address
1423 *	within that region, leaving '*virt' unchanged. Other
1424 *	architectures should map the pages starting at '*virt' and
1425 *	update '*virt' with the first usable address after the mapped
1426 *	region.
1427 */
1428vm_offset_t
1429pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1430{
1431	vm_offset_t va, sva;
1432
1433	va = sva = *virt;
1434	while (start < end) {
1435		pmap_kenter(va, start);
1436		va += PAGE_SIZE;
1437		start += PAGE_SIZE;
1438	}
1439	pmap_invalidate_range(kernel_pmap, sva, va);
1440	*virt = va;
1441	return (sva);
1442}
1443
1444
1445/*
1446 * Add a list of wired pages to the kva
1447 * this routine is only used for temporary
1448 * kernel mappings that do not need to have
1449 * page modification or references recorded.
1450 * Note that old mappings are simply written
1451 * over.  The page *must* be wired.
1452 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1453 */
1454void
1455pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1456{
1457	pt_entry_t *endpte, oldpte, *pte;
1458
1459	oldpte = 0;
1460	pte = vtopte(sva);
1461	endpte = pte + count;
1462	while (pte < endpte) {
1463		oldpte |= *pte;
1464		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1465		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1466		pte++;
1467		ma++;
1468	}
1469	if ((oldpte & PG_V) != 0)
1470		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1471		    PAGE_SIZE);
1472}
1473
1474/*
1475 * This routine tears out page mappings from the
1476 * kernel -- it is meant only for temporary mappings.
1477 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1478 */
1479void
1480pmap_qremove(vm_offset_t sva, int count)
1481{
1482	vm_offset_t va;
1483
1484	va = sva;
1485	while (count-- > 0) {
1486		pmap_kremove(va);
1487		va += PAGE_SIZE;
1488	}
1489	pmap_invalidate_range(kernel_pmap, sva, va);
1490}
1491
1492/***************************************************
1493 * Page table page management routines.....
1494 ***************************************************/
1495static __inline void
1496pmap_free_zero_pages(vm_page_t free)
1497{
1498	vm_page_t m;
1499
1500	while (free != NULL) {
1501		m = free;
1502		free = m->right;
1503		/* Preserve the page's PG_ZERO setting. */
1504		vm_page_free_toq(m);
1505	}
1506}
1507
1508/*
1509 * Schedule the specified unused page table page to be freed.  Specifically,
1510 * add the page to the specified list of pages that will be released to the
1511 * physical memory manager after the TLB has been updated.
1512 */
1513static __inline void
1514pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1515{
1516
1517	if (set_PG_ZERO)
1518		m->flags |= PG_ZERO;
1519	else
1520		m->flags &= ~PG_ZERO;
1521	m->right = *free;
1522	*free = m;
1523}
1524
1525/*
1526 * Inserts the specified page table page into the specified pmap's collection
1527 * of idle page table pages.  Each of a pmap's page table pages is responsible
1528 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1529 * ordered by this virtual address range.
1530 */
1531static void
1532pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1533{
1534	vm_page_t root;
1535
1536	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1537	root = pmap->pm_root;
1538	if (root == NULL) {
1539		mpte->left = NULL;
1540		mpte->right = NULL;
1541	} else {
1542		root = vm_page_splay(mpte->pindex, root);
1543		if (mpte->pindex < root->pindex) {
1544			mpte->left = root->left;
1545			mpte->right = root;
1546			root->left = NULL;
1547		} else if (mpte->pindex == root->pindex)
1548			panic("pmap_insert_pt_page: pindex already inserted");
1549		else {
1550			mpte->right = root->right;
1551			mpte->left = root;
1552			root->right = NULL;
1553		}
1554	}
1555	pmap->pm_root = mpte;
1556}
1557
1558/*
1559 * Looks for a page table page mapping the specified virtual address in the
1560 * specified pmap's collection of idle page table pages.  Returns NULL if there
1561 * is no page table page corresponding to the specified virtual address.
1562 */
1563static vm_page_t
1564pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1565{
1566	vm_page_t mpte;
1567	vm_pindex_t pindex = va >> PDRSHIFT;
1568
1569	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1570	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1571		mpte = vm_page_splay(pindex, mpte);
1572		if ((pmap->pm_root = mpte)->pindex != pindex)
1573			mpte = NULL;
1574	}
1575	return (mpte);
1576}
1577
1578/*
1579 * Removes the specified page table page from the specified pmap's collection
1580 * of idle page table pages.  The specified page table page must be a member of
1581 * the pmap's collection.
1582 */
1583static void
1584pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1585{
1586	vm_page_t root;
1587
1588	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1589	if (mpte != pmap->pm_root)
1590		vm_page_splay(mpte->pindex, pmap->pm_root);
1591	if (mpte->left == NULL)
1592		root = mpte->right;
1593	else {
1594		root = vm_page_splay(mpte->pindex, mpte->left);
1595		root->right = mpte->right;
1596	}
1597	pmap->pm_root = root;
1598}
1599
1600/*
1601 * This routine unholds page table pages, and if the hold count
1602 * drops to zero, then it decrements the wire count.
1603 */
1604static __inline int
1605pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1606{
1607
1608	--m->wire_count;
1609	if (m->wire_count == 0)
1610		return (_pmap_unwire_pte_hold(pmap, m, free));
1611	else
1612		return (0);
1613}
1614
1615static int
1616_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1617{
1618	vm_offset_t pteva;
1619
1620	/*
1621	 * unmap the page table page
1622	 */
1623	pmap->pm_pdir[m->pindex] = 0;
1624	--pmap->pm_stats.resident_count;
1625
1626	/*
1627	 * This is a release store so that the ordinary store unmapping
1628	 * the page table page is globally performed before TLB shoot-
1629	 * down is begun.
1630	 */
1631	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1632
1633	/*
1634	 * Do an invltlb to make the invalidated mapping
1635	 * take effect immediately.
1636	 */
1637	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1638	pmap_invalidate_page(pmap, pteva);
1639
1640	/*
1641	 * Put page on a list so that it is released after
1642	 * *ALL* TLB shootdown is done
1643	 */
1644	pmap_add_delayed_free_list(m, free, TRUE);
1645
1646	return (1);
1647}
1648
1649/*
1650 * After removing a page table entry, this routine is used to
1651 * conditionally free the page, and manage the hold/wire counts.
1652 */
1653static int
1654pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1655{
1656	pd_entry_t ptepde;
1657	vm_page_t mpte;
1658
1659	if (va >= VM_MAXUSER_ADDRESS)
1660		return (0);
1661	ptepde = *pmap_pde(pmap, va);
1662	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1663	return (pmap_unwire_pte_hold(pmap, mpte, free));
1664}
1665
1666void
1667pmap_pinit0(pmap_t pmap)
1668{
1669
1670	PMAP_LOCK_INIT(pmap);
1671	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1672#ifdef PAE
1673	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1674#endif
1675	pmap->pm_root = NULL;
1676	pmap->pm_active = 0;
1677	PCPU_SET(curpmap, pmap);
1678	TAILQ_INIT(&pmap->pm_pvchunk);
1679	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1680	mtx_lock_spin(&allpmaps_lock);
1681	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1682	mtx_unlock_spin(&allpmaps_lock);
1683}
1684
1685/*
1686 * Initialize a preallocated and zeroed pmap structure,
1687 * such as one in a vmspace structure.
1688 */
1689int
1690pmap_pinit(pmap_t pmap)
1691{
1692	vm_page_t m, ptdpg[NPGPTD];
1693	vm_paddr_t pa;
1694	static int color;
1695	int i;
1696
1697	PMAP_LOCK_INIT(pmap);
1698
1699	/*
1700	 * No need to allocate page table space yet but we do need a valid
1701	 * page directory table.
1702	 */
1703	if (pmap->pm_pdir == NULL) {
1704		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1705		    NBPTD);
1706
1707		if (pmap->pm_pdir == NULL) {
1708			PMAP_LOCK_DESTROY(pmap);
1709			return (0);
1710		}
1711#ifdef PAE
1712		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1713		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1714		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1715		    ("pmap_pinit: pdpt misaligned"));
1716		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1717		    ("pmap_pinit: pdpt above 4g"));
1718#endif
1719		pmap->pm_root = NULL;
1720	}
1721	KASSERT(pmap->pm_root == NULL,
1722	    ("pmap_pinit: pmap has reserved page table page(s)"));
1723
1724	/*
1725	 * allocate the page directory page(s)
1726	 */
1727	for (i = 0; i < NPGPTD;) {
1728		m = vm_page_alloc(NULL, color++,
1729		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1730		    VM_ALLOC_ZERO);
1731		if (m == NULL)
1732			VM_WAIT;
1733		else {
1734			ptdpg[i++] = m;
1735		}
1736	}
1737
1738	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1739
1740	for (i = 0; i < NPGPTD; i++) {
1741		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1742			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1743	}
1744
1745	mtx_lock_spin(&allpmaps_lock);
1746	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1747	mtx_unlock_spin(&allpmaps_lock);
1748	/* Wire in kernel global address entries. */
1749	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1750
1751	/* install self-referential address mapping entry(s) */
1752	for (i = 0; i < NPGPTD; i++) {
1753		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1754		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1755#ifdef PAE
1756		pmap->pm_pdpt[i] = pa | PG_V;
1757#endif
1758	}
1759
1760	pmap->pm_active = 0;
1761	TAILQ_INIT(&pmap->pm_pvchunk);
1762	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1763
1764	return (1);
1765}
1766
1767/*
1768 * this routine is called if the page table page is not
1769 * mapped correctly.
1770 */
1771static vm_page_t
1772_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1773{
1774	vm_paddr_t ptepa;
1775	vm_page_t m;
1776
1777	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1778	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1779	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1780
1781	/*
1782	 * Allocate a page table page.
1783	 */
1784	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1785	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1786		if (flags & M_WAITOK) {
1787			PMAP_UNLOCK(pmap);
1788			vm_page_unlock_queues();
1789			VM_WAIT;
1790			vm_page_lock_queues();
1791			PMAP_LOCK(pmap);
1792		}
1793
1794		/*
1795		 * Indicate the need to retry.  While waiting, the page table
1796		 * page may have been allocated.
1797		 */
1798		return (NULL);
1799	}
1800	if ((m->flags & PG_ZERO) == 0)
1801		pmap_zero_page(m);
1802
1803	/*
1804	 * Map the pagetable page into the process address space, if
1805	 * it isn't already there.
1806	 */
1807
1808	pmap->pm_stats.resident_count++;
1809
1810	ptepa = VM_PAGE_TO_PHYS(m);
1811	pmap->pm_pdir[ptepindex] =
1812		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1813
1814	return (m);
1815}
1816
1817static vm_page_t
1818pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1819{
1820	unsigned ptepindex;
1821	pd_entry_t ptepa;
1822	vm_page_t m;
1823
1824	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1825	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1826	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1827
1828	/*
1829	 * Calculate pagetable page index
1830	 */
1831	ptepindex = va >> PDRSHIFT;
1832retry:
1833	/*
1834	 * Get the page directory entry
1835	 */
1836	ptepa = pmap->pm_pdir[ptepindex];
1837
1838	/*
1839	 * This supports switching from a 4MB page to a
1840	 * normal 4K page.
1841	 */
1842	if (ptepa & PG_PS) {
1843		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1844		ptepa = pmap->pm_pdir[ptepindex];
1845	}
1846
1847	/*
1848	 * If the page table page is mapped, we just increment the
1849	 * hold count, and activate it.
1850	 */
1851	if (ptepa) {
1852		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1853		m->wire_count++;
1854	} else {
1855		/*
1856		 * Here if the pte page isn't mapped, or if it has
1857		 * been deallocated.
1858		 */
1859		m = _pmap_allocpte(pmap, ptepindex, flags);
1860		if (m == NULL && (flags & M_WAITOK))
1861			goto retry;
1862	}
1863	return (m);
1864}
1865
1866
1867/***************************************************
1868* Pmap allocation/deallocation routines.
1869 ***************************************************/
1870
1871#ifdef SMP
1872/*
1873 * Deal with a SMP shootdown of other users of the pmap that we are
1874 * trying to dispose of.  This can be a bit hairy.
1875 */
1876static cpumask_t *lazymask;
1877static u_int lazyptd;
1878static volatile u_int lazywait;
1879
1880void pmap_lazyfix_action(void);
1881
1882void
1883pmap_lazyfix_action(void)
1884{
1885	cpumask_t mymask = PCPU_GET(cpumask);
1886
1887#ifdef COUNT_IPIS
1888	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1889#endif
1890	if (rcr3() == lazyptd)
1891		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1892	atomic_clear_int(lazymask, mymask);
1893	atomic_store_rel_int(&lazywait, 1);
1894}
1895
1896static void
1897pmap_lazyfix_self(cpumask_t mymask)
1898{
1899
1900	if (rcr3() == lazyptd)
1901		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1902	atomic_clear_int(lazymask, mymask);
1903}
1904
1905
1906static void
1907pmap_lazyfix(pmap_t pmap)
1908{
1909	cpumask_t mymask, mask;
1910	u_int spins;
1911
1912	while ((mask = pmap->pm_active) != 0) {
1913		spins = 50000000;
1914		mask = mask & -mask;	/* Find least significant set bit */
1915		mtx_lock_spin(&smp_ipi_mtx);
1916#ifdef PAE
1917		lazyptd = vtophys(pmap->pm_pdpt);
1918#else
1919		lazyptd = vtophys(pmap->pm_pdir);
1920#endif
1921		mymask = PCPU_GET(cpumask);
1922		if (mask == mymask) {
1923			lazymask = &pmap->pm_active;
1924			pmap_lazyfix_self(mymask);
1925		} else {
1926			atomic_store_rel_int((u_int *)&lazymask,
1927			    (u_int)&pmap->pm_active);
1928			atomic_store_rel_int(&lazywait, 0);
1929			ipi_selected(mask, IPI_LAZYPMAP);
1930			while (lazywait == 0) {
1931				ia32_pause();
1932				if (--spins == 0)
1933					break;
1934			}
1935		}
1936		mtx_unlock_spin(&smp_ipi_mtx);
1937		if (spins == 0)
1938			printf("pmap_lazyfix: spun for 50000000\n");
1939	}
1940}
1941
1942#else	/* SMP */
1943
1944/*
1945 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1946 * unlikely to have to even execute this code, including the fact
1947 * that the cleanup is deferred until the parent does a wait(2), which
1948 * means that another userland process has run.
1949 */
1950static void
1951pmap_lazyfix(pmap_t pmap)
1952{
1953	u_int cr3;
1954
1955	cr3 = vtophys(pmap->pm_pdir);
1956	if (cr3 == rcr3()) {
1957		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1958		pmap->pm_active &= ~(PCPU_GET(cpumask));
1959	}
1960}
1961#endif	/* SMP */
1962
1963/*
1964 * Release any resources held by the given physical map.
1965 * Called when a pmap initialized by pmap_pinit is being released.
1966 * Should only be called if the map contains no valid mappings.
1967 */
1968void
1969pmap_release(pmap_t pmap)
1970{
1971	vm_page_t m, ptdpg[NPGPTD];
1972	int i;
1973
1974	KASSERT(pmap->pm_stats.resident_count == 0,
1975	    ("pmap_release: pmap resident count %ld != 0",
1976	    pmap->pm_stats.resident_count));
1977	KASSERT(pmap->pm_root == NULL,
1978	    ("pmap_release: pmap has reserved page table page(s)"));
1979
1980	pmap_lazyfix(pmap);
1981	mtx_lock_spin(&allpmaps_lock);
1982	LIST_REMOVE(pmap, pm_list);
1983	mtx_unlock_spin(&allpmaps_lock);
1984
1985	for (i = 0; i < NPGPTD; i++)
1986		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1987		    PG_FRAME);
1988
1989	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1990	    sizeof(*pmap->pm_pdir));
1991
1992	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1993
1994	for (i = 0; i < NPGPTD; i++) {
1995		m = ptdpg[i];
1996#ifdef PAE
1997		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1998		    ("pmap_release: got wrong ptd page"));
1999#endif
2000		m->wire_count--;
2001		atomic_subtract_int(&cnt.v_wire_count, 1);
2002		vm_page_free_zero(m);
2003	}
2004	PMAP_LOCK_DESTROY(pmap);
2005}
2006
2007static int
2008kvm_size(SYSCTL_HANDLER_ARGS)
2009{
2010	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2011
2012	return (sysctl_handle_long(oidp, &ksize, 0, req));
2013}
2014SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2015    0, 0, kvm_size, "IU", "Size of KVM");
2016
2017static int
2018kvm_free(SYSCTL_HANDLER_ARGS)
2019{
2020	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2021
2022	return (sysctl_handle_long(oidp, &kfree, 0, req));
2023}
2024SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2025    0, 0, kvm_free, "IU", "Amount of KVM free");
2026
2027/*
2028 * grow the number of kernel page table entries, if needed
2029 */
2030void
2031pmap_growkernel(vm_offset_t addr)
2032{
2033	vm_paddr_t ptppaddr;
2034	vm_page_t nkpg;
2035	pd_entry_t newpdir;
2036
2037	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2038	addr = roundup2(addr, NBPDR);
2039	if (addr - 1 >= kernel_map->max_offset)
2040		addr = kernel_map->max_offset;
2041	while (kernel_vm_end < addr) {
2042		if (pdir_pde(PTD, kernel_vm_end)) {
2043			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2044			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2045				kernel_vm_end = kernel_map->max_offset;
2046				break;
2047			}
2048			continue;
2049		}
2050
2051		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2052		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2053		    VM_ALLOC_ZERO);
2054		if (nkpg == NULL)
2055			panic("pmap_growkernel: no memory to grow kernel");
2056
2057		nkpt++;
2058
2059		if ((nkpg->flags & PG_ZERO) == 0)
2060			pmap_zero_page(nkpg);
2061		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2062		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2063		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2064
2065		pmap_kenter_pde(kernel_vm_end, newpdir);
2066		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2067		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2068			kernel_vm_end = kernel_map->max_offset;
2069			break;
2070		}
2071	}
2072}
2073
2074
2075/***************************************************
2076 * page management routines.
2077 ***************************************************/
2078
2079CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2080CTASSERT(_NPCM == 11);
2081
2082static __inline struct pv_chunk *
2083pv_to_chunk(pv_entry_t pv)
2084{
2085
2086	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2087}
2088
2089#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2090
2091#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2092#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2093
2094static uint32_t pc_freemask[11] = {
2095	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2096	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2097	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2098	PC_FREE0_9, PC_FREE10
2099};
2100
2101SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2102	"Current number of pv entries");
2103
2104#ifdef PV_STATS
2105static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2106
2107SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2108	"Current number of pv entry chunks");
2109SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2110	"Current number of pv entry chunks allocated");
2111SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2112	"Current number of pv entry chunks frees");
2113SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2114	"Number of times tried to get a chunk page but failed.");
2115
2116static long pv_entry_frees, pv_entry_allocs;
2117static int pv_entry_spare;
2118
2119SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2120	"Current number of pv entry frees");
2121SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2122	"Current number of pv entry allocs");
2123SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2124	"Current number of spare pv entries");
2125
2126static int pmap_collect_inactive, pmap_collect_active;
2127
2128SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2129	"Current number times pmap_collect called on inactive queue");
2130SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2131	"Current number times pmap_collect called on active queue");
2132#endif
2133
2134/*
2135 * We are in a serious low memory condition.  Resort to
2136 * drastic measures to free some pages so we can allocate
2137 * another pv entry chunk.  This is normally called to
2138 * unmap inactive pages, and if necessary, active pages.
2139 */
2140static void
2141pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2142{
2143	struct md_page *pvh;
2144	pd_entry_t *pde;
2145	pmap_t pmap;
2146	pt_entry_t *pte, tpte;
2147	pv_entry_t next_pv, pv;
2148	vm_offset_t va;
2149	vm_page_t m, free;
2150
2151	sched_pin();
2152	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2153		if (m->hold_count || m->busy)
2154			continue;
2155		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2156			va = pv->pv_va;
2157			pmap = PV_PMAP(pv);
2158			/* Avoid deadlock and lock recursion. */
2159			if (pmap > locked_pmap)
2160				PMAP_LOCK(pmap);
2161			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2162				continue;
2163			pmap->pm_stats.resident_count--;
2164			pde = pmap_pde(pmap, va);
2165			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2166			    " a 4mpage in page %p's pv list", m));
2167			pte = pmap_pte_quick(pmap, va);
2168			tpte = pte_load_clear(pte);
2169			KASSERT((tpte & PG_W) == 0,
2170			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2171			if (tpte & PG_A)
2172				vm_page_flag_set(m, PG_REFERENCED);
2173			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2174				vm_page_dirty(m);
2175			free = NULL;
2176			pmap_unuse_pt(pmap, va, &free);
2177			pmap_invalidate_page(pmap, va);
2178			pmap_free_zero_pages(free);
2179			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2180			if (TAILQ_EMPTY(&m->md.pv_list)) {
2181				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2182				if (TAILQ_EMPTY(&pvh->pv_list))
2183					vm_page_flag_clear(m, PG_WRITEABLE);
2184			}
2185			free_pv_entry(pmap, pv);
2186			if (pmap != locked_pmap)
2187				PMAP_UNLOCK(pmap);
2188		}
2189	}
2190	sched_unpin();
2191}
2192
2193
2194/*
2195 * free the pv_entry back to the free list
2196 */
2197static void
2198free_pv_entry(pmap_t pmap, pv_entry_t pv)
2199{
2200	vm_page_t m;
2201	struct pv_chunk *pc;
2202	int idx, field, bit;
2203
2204	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2205	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2206	PV_STAT(pv_entry_frees++);
2207	PV_STAT(pv_entry_spare++);
2208	pv_entry_count--;
2209	pc = pv_to_chunk(pv);
2210	idx = pv - &pc->pc_pventry[0];
2211	field = idx / 32;
2212	bit = idx % 32;
2213	pc->pc_map[field] |= 1ul << bit;
2214	/* move to head of list */
2215	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2216	for (idx = 0; idx < _NPCM; idx++)
2217		if (pc->pc_map[idx] != pc_freemask[idx]) {
2218			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2219			return;
2220		}
2221	PV_STAT(pv_entry_spare -= _NPCPV);
2222	PV_STAT(pc_chunk_count--);
2223	PV_STAT(pc_chunk_frees++);
2224	/* entire chunk is free, return it */
2225	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2226	pmap_qremove((vm_offset_t)pc, 1);
2227	vm_page_unwire(m, 0);
2228	vm_page_free(m);
2229	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2230}
2231
2232/*
2233 * get a new pv_entry, allocating a block from the system
2234 * when needed.
2235 */
2236static pv_entry_t
2237get_pv_entry(pmap_t pmap, int try)
2238{
2239	static const struct timeval printinterval = { 60, 0 };
2240	static struct timeval lastprint;
2241	static vm_pindex_t colour;
2242	struct vpgqueues *pq;
2243	int bit, field;
2244	pv_entry_t pv;
2245	struct pv_chunk *pc;
2246	vm_page_t m;
2247
2248	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2249	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2250	PV_STAT(pv_entry_allocs++);
2251	pv_entry_count++;
2252	if (pv_entry_count > pv_entry_high_water)
2253		if (ratecheck(&lastprint, &printinterval))
2254			printf("Approaching the limit on PV entries, consider "
2255			    "increasing either the vm.pmap.shpgperproc or the "
2256			    "vm.pmap.pv_entry_max tunable.\n");
2257	pq = NULL;
2258retry:
2259	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2260	if (pc != NULL) {
2261		for (field = 0; field < _NPCM; field++) {
2262			if (pc->pc_map[field]) {
2263				bit = bsfl(pc->pc_map[field]);
2264				break;
2265			}
2266		}
2267		if (field < _NPCM) {
2268			pv = &pc->pc_pventry[field * 32 + bit];
2269			pc->pc_map[field] &= ~(1ul << bit);
2270			/* If this was the last item, move it to tail */
2271			for (field = 0; field < _NPCM; field++)
2272				if (pc->pc_map[field] != 0) {
2273					PV_STAT(pv_entry_spare--);
2274					return (pv);	/* not full, return */
2275				}
2276			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2277			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2278			PV_STAT(pv_entry_spare--);
2279			return (pv);
2280		}
2281	}
2282	/*
2283	 * Access to the ptelist "pv_vafree" is synchronized by the page
2284	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2285	 * remain non-empty until pmap_ptelist_alloc() completes.
2286	 */
2287	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2288	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2289	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2290		if (try) {
2291			pv_entry_count--;
2292			PV_STAT(pc_chunk_tryfail++);
2293			return (NULL);
2294		}
2295		/*
2296		 * Reclaim pv entries: At first, destroy mappings to
2297		 * inactive pages.  After that, if a pv chunk entry
2298		 * is still needed, destroy mappings to active pages.
2299		 */
2300		if (pq == NULL) {
2301			PV_STAT(pmap_collect_inactive++);
2302			pq = &vm_page_queues[PQ_INACTIVE];
2303		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2304			PV_STAT(pmap_collect_active++);
2305			pq = &vm_page_queues[PQ_ACTIVE];
2306		} else
2307			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2308		pmap_collect(pmap, pq);
2309		goto retry;
2310	}
2311	PV_STAT(pc_chunk_count++);
2312	PV_STAT(pc_chunk_allocs++);
2313	colour++;
2314	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2315	pmap_qenter((vm_offset_t)pc, &m, 1);
2316	pc->pc_pmap = pmap;
2317	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2318	for (field = 1; field < _NPCM; field++)
2319		pc->pc_map[field] = pc_freemask[field];
2320	pv = &pc->pc_pventry[0];
2321	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2322	PV_STAT(pv_entry_spare += _NPCPV - 1);
2323	return (pv);
2324}
2325
2326static __inline pv_entry_t
2327pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2328{
2329	pv_entry_t pv;
2330
2331	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2332	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2333		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2334			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2335			break;
2336		}
2337	}
2338	return (pv);
2339}
2340
2341static void
2342pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2343{
2344	struct md_page *pvh;
2345	pv_entry_t pv;
2346	vm_offset_t va_last;
2347	vm_page_t m;
2348
2349	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2350	KASSERT((pa & PDRMASK) == 0,
2351	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2352
2353	/*
2354	 * Transfer the 4mpage's pv entry for this mapping to the first
2355	 * page's pv list.
2356	 */
2357	pvh = pa_to_pvh(pa);
2358	va = trunc_4mpage(va);
2359	pv = pmap_pvh_remove(pvh, pmap, va);
2360	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2361	m = PHYS_TO_VM_PAGE(pa);
2362	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2363	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2364	va_last = va + NBPDR - PAGE_SIZE;
2365	do {
2366		m++;
2367		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2368		    ("pmap_pv_demote_pde: page %p is not managed", m));
2369		va += PAGE_SIZE;
2370		pmap_insert_entry(pmap, va, m);
2371	} while (va < va_last);
2372}
2373
2374static void
2375pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2376{
2377	struct md_page *pvh;
2378	pv_entry_t pv;
2379	vm_offset_t va_last;
2380	vm_page_t m;
2381
2382	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2383	KASSERT((pa & PDRMASK) == 0,
2384	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2385
2386	/*
2387	 * Transfer the first page's pv entry for this mapping to the
2388	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2389	 * to get_pv_entry(), a transfer avoids the possibility that
2390	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2391	 * removes one of the mappings that is being promoted.
2392	 */
2393	m = PHYS_TO_VM_PAGE(pa);
2394	va = trunc_4mpage(va);
2395	pv = pmap_pvh_remove(&m->md, pmap, va);
2396	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2397	pvh = pa_to_pvh(pa);
2398	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2399	/* Free the remaining NPTEPG - 1 pv entries. */
2400	va_last = va + NBPDR - PAGE_SIZE;
2401	do {
2402		m++;
2403		va += PAGE_SIZE;
2404		pmap_pvh_free(&m->md, pmap, va);
2405	} while (va < va_last);
2406}
2407
2408static void
2409pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2410{
2411	pv_entry_t pv;
2412
2413	pv = pmap_pvh_remove(pvh, pmap, va);
2414	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2415	free_pv_entry(pmap, pv);
2416}
2417
2418static void
2419pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2420{
2421	struct md_page *pvh;
2422
2423	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2424	pmap_pvh_free(&m->md, pmap, va);
2425	if (TAILQ_EMPTY(&m->md.pv_list)) {
2426		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2427		if (TAILQ_EMPTY(&pvh->pv_list))
2428			vm_page_flag_clear(m, PG_WRITEABLE);
2429	}
2430}
2431
2432/*
2433 * Create a pv entry for page at pa for
2434 * (pmap, va).
2435 */
2436static void
2437pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2438{
2439	pv_entry_t pv;
2440
2441	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2442	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2443	pv = get_pv_entry(pmap, FALSE);
2444	pv->pv_va = va;
2445	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2446}
2447
2448/*
2449 * Conditionally create a pv entry.
2450 */
2451static boolean_t
2452pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2453{
2454	pv_entry_t pv;
2455
2456	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2457	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2458	if (pv_entry_count < pv_entry_high_water &&
2459	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2460		pv->pv_va = va;
2461		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2462		return (TRUE);
2463	} else
2464		return (FALSE);
2465}
2466
2467/*
2468 * Create the pv entries for each of the pages within a superpage.
2469 */
2470static boolean_t
2471pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2472{
2473	struct md_page *pvh;
2474	pv_entry_t pv;
2475
2476	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2477	if (pv_entry_count < pv_entry_high_water &&
2478	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2479		pv->pv_va = va;
2480		pvh = pa_to_pvh(pa);
2481		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2482		return (TRUE);
2483	} else
2484		return (FALSE);
2485}
2486
2487/*
2488 * Fills a page table page with mappings to consecutive physical pages.
2489 */
2490static void
2491pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2492{
2493	pt_entry_t *pte;
2494
2495	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2496		*pte = newpte;
2497		newpte += PAGE_SIZE;
2498	}
2499}
2500
2501/*
2502 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2503 * 2- or 4MB page mapping is invalidated.
2504 */
2505static boolean_t
2506pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2507{
2508	pd_entry_t newpde, oldpde;
2509	pt_entry_t *firstpte, newpte;
2510	vm_paddr_t mptepa;
2511	vm_page_t free, mpte;
2512
2513	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2514	oldpde = *pde;
2515	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2516	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2517	mpte = pmap_lookup_pt_page(pmap, va);
2518	if (mpte != NULL)
2519		pmap_remove_pt_page(pmap, mpte);
2520	else {
2521		KASSERT((oldpde & PG_W) == 0,
2522		    ("pmap_demote_pde: page table page for a wired mapping"
2523		    " is missing"));
2524
2525		/*
2526		 * Invalidate the 2- or 4MB page mapping and return
2527		 * "failure" if the mapping was never accessed or the
2528		 * allocation of the new page table page fails.
2529		 */
2530		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2531		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2532		    VM_ALLOC_WIRED)) == NULL) {
2533			free = NULL;
2534			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2535			pmap_invalidate_page(pmap, trunc_4mpage(va));
2536			pmap_free_zero_pages(free);
2537			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2538			    " in pmap %p", va, pmap);
2539			return (FALSE);
2540		}
2541		if (va < VM_MAXUSER_ADDRESS)
2542			pmap->pm_stats.resident_count++;
2543	}
2544	mptepa = VM_PAGE_TO_PHYS(mpte);
2545
2546	/*
2547	 * If the page mapping is in the kernel's address space, then the
2548	 * KPTmap can provide access to the page table page.  Otherwise,
2549	 * temporarily map the page table page (mpte) into the kernel's
2550	 * address space at either PADDR1 or PADDR2.
2551	 */
2552	if (va >= KERNBASE)
2553		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2554	else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2555		if ((*PMAP1 & PG_FRAME) != mptepa) {
2556			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2557#ifdef SMP
2558			PMAP1cpu = PCPU_GET(cpuid);
2559#endif
2560			invlcaddr(PADDR1);
2561			PMAP1changed++;
2562		} else
2563#ifdef SMP
2564		if (PMAP1cpu != PCPU_GET(cpuid)) {
2565			PMAP1cpu = PCPU_GET(cpuid);
2566			invlcaddr(PADDR1);
2567			PMAP1changedcpu++;
2568		} else
2569#endif
2570			PMAP1unchanged++;
2571		firstpte = PADDR1;
2572	} else {
2573		mtx_lock(&PMAP2mutex);
2574		if ((*PMAP2 & PG_FRAME) != mptepa) {
2575			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2576			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2577		}
2578		firstpte = PADDR2;
2579	}
2580	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2581	KASSERT((oldpde & PG_A) != 0,
2582	    ("pmap_demote_pde: oldpde is missing PG_A"));
2583	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2584	    ("pmap_demote_pde: oldpde is missing PG_M"));
2585	newpte = oldpde & ~PG_PS;
2586	if ((newpte & PG_PDE_PAT) != 0)
2587		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2588
2589	/*
2590	 * If the page table page is new, initialize it.
2591	 */
2592	if (mpte->wire_count == 1) {
2593		mpte->wire_count = NPTEPG;
2594		pmap_fill_ptp(firstpte, newpte);
2595	}
2596	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2597	    ("pmap_demote_pde: firstpte and newpte map different physical"
2598	    " addresses"));
2599
2600	/*
2601	 * If the mapping has changed attributes, update the page table
2602	 * entries.
2603	 */
2604	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2605		pmap_fill_ptp(firstpte, newpte);
2606
2607	/*
2608	 * Demote the mapping.  This pmap is locked.  The old PDE has
2609	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2610	 * set.  Thus, there is no danger of a race with another
2611	 * processor changing the setting of PG_A and/or PG_M between
2612	 * the read above and the store below.
2613	 */
2614	if (workaround_erratum383)
2615		pmap_update_pde(pmap, va, pde, newpde);
2616	else if (pmap == kernel_pmap)
2617		pmap_kenter_pde(va, newpde);
2618	else
2619		pde_store(pde, newpde);
2620	if (firstpte == PADDR2)
2621		mtx_unlock(&PMAP2mutex);
2622
2623	/*
2624	 * Invalidate the recursive mapping of the page table page.
2625	 */
2626	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2627
2628	/*
2629	 * Demote the pv entry.  This depends on the earlier demotion
2630	 * of the mapping.  Specifically, the (re)creation of a per-
2631	 * page pv entry might trigger the execution of pmap_collect(),
2632	 * which might reclaim a newly (re)created per-page pv entry
2633	 * and destroy the associated mapping.  In order to destroy
2634	 * the mapping, the PDE must have already changed from mapping
2635	 * the 2mpage to referencing the page table page.
2636	 */
2637	if ((oldpde & PG_MANAGED) != 0)
2638		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2639
2640	pmap_pde_demotions++;
2641	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2642	    " in pmap %p", va, pmap);
2643	return (TRUE);
2644}
2645
2646/*
2647 * pmap_remove_pde: do the things to unmap a superpage in a process
2648 */
2649static void
2650pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2651    vm_page_t *free)
2652{
2653	struct md_page *pvh;
2654	pd_entry_t oldpde;
2655	vm_offset_t eva, va;
2656	vm_page_t m, mpte;
2657
2658	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2659	KASSERT((sva & PDRMASK) == 0,
2660	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2661	oldpde = pte_load_clear(pdq);
2662	if (oldpde & PG_W)
2663		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2664
2665	/*
2666	 * Machines that don't support invlpg, also don't support
2667	 * PG_G.
2668	 */
2669	if (oldpde & PG_G)
2670		pmap_invalidate_page(kernel_pmap, sva);
2671	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2672	if (oldpde & PG_MANAGED) {
2673		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2674		pmap_pvh_free(pvh, pmap, sva);
2675		eva = sva + NBPDR;
2676		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2677		    va < eva; va += PAGE_SIZE, m++) {
2678			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2679				vm_page_dirty(m);
2680			if (oldpde & PG_A)
2681				vm_page_flag_set(m, PG_REFERENCED);
2682			if (TAILQ_EMPTY(&m->md.pv_list) &&
2683			    TAILQ_EMPTY(&pvh->pv_list))
2684				vm_page_flag_clear(m, PG_WRITEABLE);
2685		}
2686	}
2687	if (pmap == kernel_pmap) {
2688		if (!pmap_demote_pde(pmap, pdq, sva))
2689			panic("pmap_remove_pde: failed demotion");
2690	} else {
2691		mpte = pmap_lookup_pt_page(pmap, sva);
2692		if (mpte != NULL) {
2693			pmap_remove_pt_page(pmap, mpte);
2694			pmap->pm_stats.resident_count--;
2695			KASSERT(mpte->wire_count == NPTEPG,
2696			    ("pmap_remove_pde: pte page wire count error"));
2697			mpte->wire_count = 0;
2698			pmap_add_delayed_free_list(mpte, free, FALSE);
2699			atomic_subtract_int(&cnt.v_wire_count, 1);
2700		}
2701	}
2702}
2703
2704/*
2705 * pmap_remove_pte: do the things to unmap a page in a process
2706 */
2707static int
2708pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2709{
2710	pt_entry_t oldpte;
2711	vm_page_t m;
2712
2713	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2714	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2715	oldpte = pte_load_clear(ptq);
2716	if (oldpte & PG_W)
2717		pmap->pm_stats.wired_count -= 1;
2718	/*
2719	 * Machines that don't support invlpg, also don't support
2720	 * PG_G.
2721	 */
2722	if (oldpte & PG_G)
2723		pmap_invalidate_page(kernel_pmap, va);
2724	pmap->pm_stats.resident_count -= 1;
2725	if (oldpte & PG_MANAGED) {
2726		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2727		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2728			vm_page_dirty(m);
2729		if (oldpte & PG_A)
2730			vm_page_flag_set(m, PG_REFERENCED);
2731		pmap_remove_entry(pmap, m, va);
2732	}
2733	return (pmap_unuse_pt(pmap, va, free));
2734}
2735
2736/*
2737 * Remove a single page from a process address space
2738 */
2739static void
2740pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2741{
2742	pt_entry_t *pte;
2743
2744	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2745	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2746	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2747	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2748		return;
2749	pmap_remove_pte(pmap, pte, va, free);
2750	pmap_invalidate_page(pmap, va);
2751}
2752
2753/*
2754 *	Remove the given range of addresses from the specified map.
2755 *
2756 *	It is assumed that the start and end are properly
2757 *	rounded to the page size.
2758 */
2759void
2760pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2761{
2762	vm_offset_t pdnxt;
2763	pd_entry_t ptpaddr;
2764	pt_entry_t *pte;
2765	vm_page_t free = NULL;
2766	int anyvalid;
2767
2768	/*
2769	 * Perform an unsynchronized read.  This is, however, safe.
2770	 */
2771	if (pmap->pm_stats.resident_count == 0)
2772		return;
2773
2774	anyvalid = 0;
2775
2776	vm_page_lock_queues();
2777	sched_pin();
2778	PMAP_LOCK(pmap);
2779
2780	/*
2781	 * special handling of removing one page.  a very
2782	 * common operation and easy to short circuit some
2783	 * code.
2784	 */
2785	if ((sva + PAGE_SIZE == eva) &&
2786	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2787		pmap_remove_page(pmap, sva, &free);
2788		goto out;
2789	}
2790
2791	for (; sva < eva; sva = pdnxt) {
2792		unsigned pdirindex;
2793
2794		/*
2795		 * Calculate index for next page table.
2796		 */
2797		pdnxt = (sva + NBPDR) & ~PDRMASK;
2798		if (pdnxt < sva)
2799			pdnxt = eva;
2800		if (pmap->pm_stats.resident_count == 0)
2801			break;
2802
2803		pdirindex = sva >> PDRSHIFT;
2804		ptpaddr = pmap->pm_pdir[pdirindex];
2805
2806		/*
2807		 * Weed out invalid mappings. Note: we assume that the page
2808		 * directory table is always allocated, and in kernel virtual.
2809		 */
2810		if (ptpaddr == 0)
2811			continue;
2812
2813		/*
2814		 * Check for large page.
2815		 */
2816		if ((ptpaddr & PG_PS) != 0) {
2817			/*
2818			 * Are we removing the entire large page?  If not,
2819			 * demote the mapping and fall through.
2820			 */
2821			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2822				/*
2823				 * The TLB entry for a PG_G mapping is
2824				 * invalidated by pmap_remove_pde().
2825				 */
2826				if ((ptpaddr & PG_G) == 0)
2827					anyvalid = 1;
2828				pmap_remove_pde(pmap,
2829				    &pmap->pm_pdir[pdirindex], sva, &free);
2830				continue;
2831			} else if (!pmap_demote_pde(pmap,
2832			    &pmap->pm_pdir[pdirindex], sva)) {
2833				/* The large page mapping was destroyed. */
2834				continue;
2835			}
2836		}
2837
2838		/*
2839		 * Limit our scan to either the end of the va represented
2840		 * by the current page table page, or to the end of the
2841		 * range being removed.
2842		 */
2843		if (pdnxt > eva)
2844			pdnxt = eva;
2845
2846		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2847		    sva += PAGE_SIZE) {
2848			if (*pte == 0)
2849				continue;
2850
2851			/*
2852			 * The TLB entry for a PG_G mapping is invalidated
2853			 * by pmap_remove_pte().
2854			 */
2855			if ((*pte & PG_G) == 0)
2856				anyvalid = 1;
2857			if (pmap_remove_pte(pmap, pte, sva, &free))
2858				break;
2859		}
2860	}
2861out:
2862	sched_unpin();
2863	if (anyvalid)
2864		pmap_invalidate_all(pmap);
2865	vm_page_unlock_queues();
2866	PMAP_UNLOCK(pmap);
2867	pmap_free_zero_pages(free);
2868}
2869
2870/*
2871 *	Routine:	pmap_remove_all
2872 *	Function:
2873 *		Removes this physical page from
2874 *		all physical maps in which it resides.
2875 *		Reflects back modify bits to the pager.
2876 *
2877 *	Notes:
2878 *		Original versions of this routine were very
2879 *		inefficient because they iteratively called
2880 *		pmap_remove (slow...)
2881 */
2882
2883void
2884pmap_remove_all(vm_page_t m)
2885{
2886	struct md_page *pvh;
2887	pv_entry_t pv;
2888	pmap_t pmap;
2889	pt_entry_t *pte, tpte;
2890	pd_entry_t *pde;
2891	vm_offset_t va;
2892	vm_page_t free;
2893
2894	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2895	    ("pmap_remove_all: page %p is fictitious", m));
2896	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2897	sched_pin();
2898	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2899	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2900		va = pv->pv_va;
2901		pmap = PV_PMAP(pv);
2902		PMAP_LOCK(pmap);
2903		pde = pmap_pde(pmap, va);
2904		(void)pmap_demote_pde(pmap, pde, va);
2905		PMAP_UNLOCK(pmap);
2906	}
2907	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2908		pmap = PV_PMAP(pv);
2909		PMAP_LOCK(pmap);
2910		pmap->pm_stats.resident_count--;
2911		pde = pmap_pde(pmap, pv->pv_va);
2912		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2913		    " a 4mpage in page %p's pv list", m));
2914		pte = pmap_pte_quick(pmap, pv->pv_va);
2915		tpte = pte_load_clear(pte);
2916		if (tpte & PG_W)
2917			pmap->pm_stats.wired_count--;
2918		if (tpte & PG_A)
2919			vm_page_flag_set(m, PG_REFERENCED);
2920
2921		/*
2922		 * Update the vm_page_t clean and reference bits.
2923		 */
2924		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2925			vm_page_dirty(m);
2926		free = NULL;
2927		pmap_unuse_pt(pmap, pv->pv_va, &free);
2928		pmap_invalidate_page(pmap, pv->pv_va);
2929		pmap_free_zero_pages(free);
2930		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2931		free_pv_entry(pmap, pv);
2932		PMAP_UNLOCK(pmap);
2933	}
2934	vm_page_flag_clear(m, PG_WRITEABLE);
2935	sched_unpin();
2936}
2937
2938/*
2939 * pmap_protect_pde: do the things to protect a 4mpage in a process
2940 */
2941static boolean_t
2942pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2943{
2944	pd_entry_t newpde, oldpde;
2945	vm_offset_t eva, va;
2946	vm_page_t m;
2947	boolean_t anychanged;
2948
2949	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2950	KASSERT((sva & PDRMASK) == 0,
2951	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2952	anychanged = FALSE;
2953retry:
2954	oldpde = newpde = *pde;
2955	if (oldpde & PG_MANAGED) {
2956		eva = sva + NBPDR;
2957		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2958		    va < eva; va += PAGE_SIZE, m++) {
2959			/*
2960			 * In contrast to the analogous operation on a 4KB page
2961			 * mapping, the mapping's PG_A flag is not cleared and
2962			 * the page's PG_REFERENCED flag is not set.  The
2963			 * reason is that pmap_demote_pde() expects that a 2/4MB
2964			 * page mapping with a stored page table page has PG_A
2965			 * set.
2966			 */
2967			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2968				vm_page_dirty(m);
2969		}
2970	}
2971	if ((prot & VM_PROT_WRITE) == 0)
2972		newpde &= ~(PG_RW | PG_M);
2973#ifdef PAE
2974	if ((prot & VM_PROT_EXECUTE) == 0)
2975		newpde |= pg_nx;
2976#endif
2977	if (newpde != oldpde) {
2978		if (!pde_cmpset(pde, oldpde, newpde))
2979			goto retry;
2980		if (oldpde & PG_G)
2981			pmap_invalidate_page(pmap, sva);
2982		else
2983			anychanged = TRUE;
2984	}
2985	return (anychanged);
2986}
2987
2988/*
2989 *	Set the physical protection on the
2990 *	specified range of this map as requested.
2991 */
2992void
2993pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2994{
2995	vm_offset_t pdnxt;
2996	pd_entry_t ptpaddr;
2997	pt_entry_t *pte;
2998	int anychanged;
2999
3000	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3001		pmap_remove(pmap, sva, eva);
3002		return;
3003	}
3004
3005#ifdef PAE
3006	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3007	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3008		return;
3009#else
3010	if (prot & VM_PROT_WRITE)
3011		return;
3012#endif
3013
3014	anychanged = 0;
3015
3016	vm_page_lock_queues();
3017	sched_pin();
3018	PMAP_LOCK(pmap);
3019	for (; sva < eva; sva = pdnxt) {
3020		pt_entry_t obits, pbits;
3021		unsigned pdirindex;
3022
3023		pdnxt = (sva + NBPDR) & ~PDRMASK;
3024		if (pdnxt < sva)
3025			pdnxt = eva;
3026
3027		pdirindex = sva >> PDRSHIFT;
3028		ptpaddr = pmap->pm_pdir[pdirindex];
3029
3030		/*
3031		 * Weed out invalid mappings. Note: we assume that the page
3032		 * directory table is always allocated, and in kernel virtual.
3033		 */
3034		if (ptpaddr == 0)
3035			continue;
3036
3037		/*
3038		 * Check for large page.
3039		 */
3040		if ((ptpaddr & PG_PS) != 0) {
3041			/*
3042			 * Are we protecting the entire large page?  If not,
3043			 * demote the mapping and fall through.
3044			 */
3045			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3046				/*
3047				 * The TLB entry for a PG_G mapping is
3048				 * invalidated by pmap_protect_pde().
3049				 */
3050				if (pmap_protect_pde(pmap,
3051				    &pmap->pm_pdir[pdirindex], sva, prot))
3052					anychanged = 1;
3053				continue;
3054			} else if (!pmap_demote_pde(pmap,
3055			    &pmap->pm_pdir[pdirindex], sva)) {
3056				/* The large page mapping was destroyed. */
3057				continue;
3058			}
3059		}
3060
3061		if (pdnxt > eva)
3062			pdnxt = eva;
3063
3064		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3065		    sva += PAGE_SIZE) {
3066			vm_page_t m;
3067
3068retry:
3069			/*
3070			 * Regardless of whether a pte is 32 or 64 bits in
3071			 * size, PG_RW, PG_A, and PG_M are among the least
3072			 * significant 32 bits.
3073			 */
3074			obits = pbits = *pte;
3075			if ((pbits & PG_V) == 0)
3076				continue;
3077			if (pbits & PG_MANAGED) {
3078				m = NULL;
3079				if (pbits & PG_A) {
3080					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3081					vm_page_flag_set(m, PG_REFERENCED);
3082					pbits &= ~PG_A;
3083				}
3084				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3085					if (m == NULL)
3086						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3087					vm_page_dirty(m);
3088				}
3089			}
3090
3091			if ((prot & VM_PROT_WRITE) == 0)
3092				pbits &= ~(PG_RW | PG_M);
3093#ifdef PAE
3094			if ((prot & VM_PROT_EXECUTE) == 0)
3095				pbits |= pg_nx;
3096#endif
3097
3098			if (pbits != obits) {
3099#ifdef PAE
3100				if (!atomic_cmpset_64(pte, obits, pbits))
3101					goto retry;
3102#else
3103				if (!atomic_cmpset_int((u_int *)pte, obits,
3104				    pbits))
3105					goto retry;
3106#endif
3107				if (obits & PG_G)
3108					pmap_invalidate_page(pmap, sva);
3109				else
3110					anychanged = 1;
3111			}
3112		}
3113	}
3114	sched_unpin();
3115	if (anychanged)
3116		pmap_invalidate_all(pmap);
3117	vm_page_unlock_queues();
3118	PMAP_UNLOCK(pmap);
3119}
3120
3121/*
3122 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3123 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3124 * For promotion to occur, two conditions must be met: (1) the 4KB page
3125 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3126 * mappings must have identical characteristics.
3127 *
3128 * Managed (PG_MANAGED) mappings within the kernel address space are not
3129 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3130 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3131 * pmap.
3132 */
3133static void
3134pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3135{
3136	pd_entry_t newpde;
3137	pt_entry_t *firstpte, oldpte, pa, *pte;
3138	vm_offset_t oldpteva;
3139	vm_page_t mpte;
3140
3141	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3142
3143	/*
3144	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3145	 * either invalid, unused, or does not map the first 4KB physical page
3146	 * within a 2- or 4MB page.
3147	 */
3148	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3149setpde:
3150	newpde = *firstpte;
3151	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3152		pmap_pde_p_failures++;
3153		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3154		    " in pmap %p", va, pmap);
3155		return;
3156	}
3157	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3158		pmap_pde_p_failures++;
3159		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3160		    " in pmap %p", va, pmap);
3161		return;
3162	}
3163	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3164		/*
3165		 * When PG_M is already clear, PG_RW can be cleared without
3166		 * a TLB invalidation.
3167		 */
3168		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3169		    ~PG_RW))
3170			goto setpde;
3171		newpde &= ~PG_RW;
3172	}
3173
3174	/*
3175	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3176	 * PTE maps an unexpected 4KB physical page or does not have identical
3177	 * characteristics to the first PTE.
3178	 */
3179	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3180	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3181setpte:
3182		oldpte = *pte;
3183		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3184			pmap_pde_p_failures++;
3185			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3186			    " in pmap %p", va, pmap);
3187			return;
3188		}
3189		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3190			/*
3191			 * When PG_M is already clear, PG_RW can be cleared
3192			 * without a TLB invalidation.
3193			 */
3194			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3195			    oldpte & ~PG_RW))
3196				goto setpte;
3197			oldpte &= ~PG_RW;
3198			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3199			    (va & ~PDRMASK);
3200			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3201			    " in pmap %p", oldpteva, pmap);
3202		}
3203		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3204			pmap_pde_p_failures++;
3205			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3206			    " in pmap %p", va, pmap);
3207			return;
3208		}
3209		pa -= PAGE_SIZE;
3210	}
3211
3212	/*
3213	 * Save the page table page in its current state until the PDE
3214	 * mapping the superpage is demoted by pmap_demote_pde() or
3215	 * destroyed by pmap_remove_pde().
3216	 */
3217	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3218	KASSERT(mpte >= vm_page_array &&
3219	    mpte < &vm_page_array[vm_page_array_size],
3220	    ("pmap_promote_pde: page table page is out of range"));
3221	KASSERT(mpte->pindex == va >> PDRSHIFT,
3222	    ("pmap_promote_pde: page table page's pindex is wrong"));
3223	pmap_insert_pt_page(pmap, mpte);
3224
3225	/*
3226	 * Promote the pv entries.
3227	 */
3228	if ((newpde & PG_MANAGED) != 0)
3229		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3230
3231	/*
3232	 * Propagate the PAT index to its proper position.
3233	 */
3234	if ((newpde & PG_PTE_PAT) != 0)
3235		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3236
3237	/*
3238	 * Map the superpage.
3239	 */
3240	if (workaround_erratum383)
3241		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3242	else if (pmap == kernel_pmap)
3243		pmap_kenter_pde(va, PG_PS | newpde);
3244	else
3245		pde_store(pde, PG_PS | newpde);
3246
3247	pmap_pde_promotions++;
3248	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3249	    " in pmap %p", va, pmap);
3250}
3251
3252/*
3253 *	Insert the given physical page (p) at
3254 *	the specified virtual address (v) in the
3255 *	target physical map with the protection requested.
3256 *
3257 *	If specified, the page will be wired down, meaning
3258 *	that the related pte can not be reclaimed.
3259 *
3260 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3261 *	or lose information.  That is, this routine must actually
3262 *	insert this page into the given map NOW.
3263 */
3264void
3265pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3266    vm_prot_t prot, boolean_t wired)
3267{
3268	vm_paddr_t pa;
3269	pd_entry_t *pde;
3270	pt_entry_t *pte;
3271	vm_paddr_t opa;
3272	pt_entry_t origpte, newpte;
3273	vm_page_t mpte, om;
3274	boolean_t invlva;
3275
3276	va = trunc_page(va);
3277	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3278	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3279	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3280
3281	mpte = NULL;
3282
3283	vm_page_lock_queues();
3284	PMAP_LOCK(pmap);
3285	sched_pin();
3286
3287	/*
3288	 * In the case that a page table page is not
3289	 * resident, we are creating it here.
3290	 */
3291	if (va < VM_MAXUSER_ADDRESS) {
3292		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3293	}
3294
3295	pde = pmap_pde(pmap, va);
3296	if ((*pde & PG_PS) != 0)
3297		panic("pmap_enter: attempted pmap_enter on 4MB page");
3298	pte = pmap_pte_quick(pmap, va);
3299
3300	/*
3301	 * Page Directory table entry not valid, we need a new PT page
3302	 */
3303	if (pte == NULL) {
3304		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3305			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3306	}
3307
3308	pa = VM_PAGE_TO_PHYS(m);
3309	om = NULL;
3310	origpte = *pte;
3311	opa = origpte & PG_FRAME;
3312
3313	/*
3314	 * Mapping has not changed, must be protection or wiring change.
3315	 */
3316	if (origpte && (opa == pa)) {
3317		/*
3318		 * Wiring change, just update stats. We don't worry about
3319		 * wiring PT pages as they remain resident as long as there
3320		 * are valid mappings in them. Hence, if a user page is wired,
3321		 * the PT page will be also.
3322		 */
3323		if (wired && ((origpte & PG_W) == 0))
3324			pmap->pm_stats.wired_count++;
3325		else if (!wired && (origpte & PG_W))
3326			pmap->pm_stats.wired_count--;
3327
3328		/*
3329		 * Remove extra pte reference
3330		 */
3331		if (mpte)
3332			mpte->wire_count--;
3333
3334		/*
3335		 * We might be turning off write access to the page,
3336		 * so we go ahead and sense modify status.
3337		 */
3338		if (origpte & PG_MANAGED) {
3339			om = m;
3340			pa |= PG_MANAGED;
3341		}
3342		goto validate;
3343	}
3344	/*
3345	 * Mapping has changed, invalidate old range and fall through to
3346	 * handle validating new mapping.
3347	 */
3348	if (opa) {
3349		if (origpte & PG_W)
3350			pmap->pm_stats.wired_count--;
3351		if (origpte & PG_MANAGED) {
3352			om = PHYS_TO_VM_PAGE(opa);
3353			pmap_remove_entry(pmap, om, va);
3354		}
3355		if (mpte != NULL) {
3356			mpte->wire_count--;
3357			KASSERT(mpte->wire_count > 0,
3358			    ("pmap_enter: missing reference to page table page,"
3359			     " va: 0x%x", va));
3360		}
3361	} else
3362		pmap->pm_stats.resident_count++;
3363
3364	/*
3365	 * Enter on the PV list if part of our managed memory.
3366	 */
3367	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3368		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3369		    ("pmap_enter: managed mapping within the clean submap"));
3370		pmap_insert_entry(pmap, va, m);
3371		pa |= PG_MANAGED;
3372	}
3373
3374	/*
3375	 * Increment counters
3376	 */
3377	if (wired)
3378		pmap->pm_stats.wired_count++;
3379
3380validate:
3381	/*
3382	 * Now validate mapping with desired protection/wiring.
3383	 */
3384	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3385	if ((prot & VM_PROT_WRITE) != 0) {
3386		newpte |= PG_RW;
3387		vm_page_flag_set(m, PG_WRITEABLE);
3388	}
3389#ifdef PAE
3390	if ((prot & VM_PROT_EXECUTE) == 0)
3391		newpte |= pg_nx;
3392#endif
3393	if (wired)
3394		newpte |= PG_W;
3395	if (va < VM_MAXUSER_ADDRESS)
3396		newpte |= PG_U;
3397	if (pmap == kernel_pmap)
3398		newpte |= pgeflag;
3399
3400	/*
3401	 * if the mapping or permission bits are different, we need
3402	 * to update the pte.
3403	 */
3404	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3405		newpte |= PG_A;
3406		if ((access & VM_PROT_WRITE) != 0)
3407			newpte |= PG_M;
3408		if (origpte & PG_V) {
3409			invlva = FALSE;
3410			origpte = pte_load_store(pte, newpte);
3411			if (origpte & PG_A) {
3412				if (origpte & PG_MANAGED)
3413					vm_page_flag_set(om, PG_REFERENCED);
3414				if (opa != VM_PAGE_TO_PHYS(m))
3415					invlva = TRUE;
3416#ifdef PAE
3417				if ((origpte & PG_NX) == 0 &&
3418				    (newpte & PG_NX) != 0)
3419					invlva = TRUE;
3420#endif
3421			}
3422			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3423				if ((origpte & PG_MANAGED) != 0)
3424					vm_page_dirty(om);
3425				if ((prot & VM_PROT_WRITE) == 0)
3426					invlva = TRUE;
3427			}
3428			if (invlva)
3429				pmap_invalidate_page(pmap, va);
3430		} else
3431			pte_store(pte, newpte);
3432	}
3433
3434	/*
3435	 * If both the page table page and the reservation are fully
3436	 * populated, then attempt promotion.
3437	 */
3438	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3439	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3440		pmap_promote_pde(pmap, pde, va);
3441
3442	sched_unpin();
3443	vm_page_unlock_queues();
3444	PMAP_UNLOCK(pmap);
3445}
3446
3447/*
3448 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3449 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3450 * blocking, (2) a mapping already exists at the specified virtual address, or
3451 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3452 */
3453static boolean_t
3454pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3455{
3456	pd_entry_t *pde, newpde;
3457
3458	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3459	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3460	pde = pmap_pde(pmap, va);
3461	if (*pde != 0) {
3462		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3463		    " in pmap %p", va, pmap);
3464		return (FALSE);
3465	}
3466	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3467	    PG_PS | PG_V;
3468	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3469		newpde |= PG_MANAGED;
3470
3471		/*
3472		 * Abort this mapping if its PV entry could not be created.
3473		 */
3474		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3475			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3476			    " in pmap %p", va, pmap);
3477			return (FALSE);
3478		}
3479	}
3480#ifdef PAE
3481	if ((prot & VM_PROT_EXECUTE) == 0)
3482		newpde |= pg_nx;
3483#endif
3484	if (va < VM_MAXUSER_ADDRESS)
3485		newpde |= PG_U;
3486
3487	/*
3488	 * Increment counters.
3489	 */
3490	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3491
3492	/*
3493	 * Map the superpage.
3494	 */
3495	pde_store(pde, newpde);
3496
3497	pmap_pde_mappings++;
3498	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3499	    " in pmap %p", va, pmap);
3500	return (TRUE);
3501}
3502
3503/*
3504 * Maps a sequence of resident pages belonging to the same object.
3505 * The sequence begins with the given page m_start.  This page is
3506 * mapped at the given virtual address start.  Each subsequent page is
3507 * mapped at a virtual address that is offset from start by the same
3508 * amount as the page is offset from m_start within the object.  The
3509 * last page in the sequence is the page with the largest offset from
3510 * m_start that can be mapped at a virtual address less than the given
3511 * virtual address end.  Not every virtual page between start and end
3512 * is mapped; only those for which a resident page exists with the
3513 * corresponding offset from m_start are mapped.
3514 */
3515void
3516pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3517    vm_page_t m_start, vm_prot_t prot)
3518{
3519	vm_offset_t va;
3520	vm_page_t m, mpte;
3521	vm_pindex_t diff, psize;
3522
3523	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3524	psize = atop(end - start);
3525	mpte = NULL;
3526	m = m_start;
3527	PMAP_LOCK(pmap);
3528	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3529		va = start + ptoa(diff);
3530		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3531		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3532		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3533		    pmap_enter_pde(pmap, va, m, prot))
3534			m = &m[NBPDR / PAGE_SIZE - 1];
3535		else
3536			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3537			    mpte);
3538		m = TAILQ_NEXT(m, listq);
3539	}
3540 	PMAP_UNLOCK(pmap);
3541}
3542
3543/*
3544 * this code makes some *MAJOR* assumptions:
3545 * 1. Current pmap & pmap exists.
3546 * 2. Not wired.
3547 * 3. Read access.
3548 * 4. No page table pages.
3549 * but is *MUCH* faster than pmap_enter...
3550 */
3551
3552void
3553pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3554{
3555
3556	PMAP_LOCK(pmap);
3557	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3558	PMAP_UNLOCK(pmap);
3559}
3560
3561static vm_page_t
3562pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3563    vm_prot_t prot, vm_page_t mpte)
3564{
3565	pt_entry_t *pte;
3566	vm_paddr_t pa;
3567	vm_page_t free;
3568
3569	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3570	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3571	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3572	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3573	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3574
3575	/*
3576	 * In the case that a page table page is not
3577	 * resident, we are creating it here.
3578	 */
3579	if (va < VM_MAXUSER_ADDRESS) {
3580		unsigned ptepindex;
3581		pd_entry_t ptepa;
3582
3583		/*
3584		 * Calculate pagetable page index
3585		 */
3586		ptepindex = va >> PDRSHIFT;
3587		if (mpte && (mpte->pindex == ptepindex)) {
3588			mpte->wire_count++;
3589		} else {
3590			/*
3591			 * Get the page directory entry
3592			 */
3593			ptepa = pmap->pm_pdir[ptepindex];
3594
3595			/*
3596			 * If the page table page is mapped, we just increment
3597			 * the hold count, and activate it.
3598			 */
3599			if (ptepa) {
3600				if (ptepa & PG_PS)
3601					return (NULL);
3602				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3603				mpte->wire_count++;
3604			} else {
3605				mpte = _pmap_allocpte(pmap, ptepindex,
3606				    M_NOWAIT);
3607				if (mpte == NULL)
3608					return (mpte);
3609			}
3610		}
3611	} else {
3612		mpte = NULL;
3613	}
3614
3615	/*
3616	 * This call to vtopte makes the assumption that we are
3617	 * entering the page into the current pmap.  In order to support
3618	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3619	 * But that isn't as quick as vtopte.
3620	 */
3621	pte = vtopte(va);
3622	if (*pte) {
3623		if (mpte != NULL) {
3624			mpte->wire_count--;
3625			mpte = NULL;
3626		}
3627		return (mpte);
3628	}
3629
3630	/*
3631	 * Enter on the PV list if part of our managed memory.
3632	 */
3633	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3634	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3635		if (mpte != NULL) {
3636			free = NULL;
3637			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3638				pmap_invalidate_page(pmap, va);
3639				pmap_free_zero_pages(free);
3640			}
3641
3642			mpte = NULL;
3643		}
3644		return (mpte);
3645	}
3646
3647	/*
3648	 * Increment counters
3649	 */
3650	pmap->pm_stats.resident_count++;
3651
3652	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3653#ifdef PAE
3654	if ((prot & VM_PROT_EXECUTE) == 0)
3655		pa |= pg_nx;
3656#endif
3657
3658	/*
3659	 * Now validate mapping with RO protection
3660	 */
3661	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3662		pte_store(pte, pa | PG_V | PG_U);
3663	else
3664		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3665	return (mpte);
3666}
3667
3668/*
3669 * Make a temporary mapping for a physical address.  This is only intended
3670 * to be used for panic dumps.
3671 */
3672void *
3673pmap_kenter_temporary(vm_paddr_t pa, int i)
3674{
3675	vm_offset_t va;
3676
3677	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3678	pmap_kenter(va, pa);
3679	invlpg(va);
3680	return ((void *)crashdumpmap);
3681}
3682
3683/*
3684 * This code maps large physical mmap regions into the
3685 * processor address space.  Note that some shortcuts
3686 * are taken, but the code works.
3687 */
3688void
3689pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3690    vm_pindex_t pindex, vm_size_t size)
3691{
3692	pd_entry_t *pde;
3693	vm_paddr_t pa, ptepa;
3694	vm_page_t p;
3695	int pat_mode;
3696
3697	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3698	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3699	    ("pmap_object_init_pt: non-device object"));
3700	if (pseflag &&
3701	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3702		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3703			return;
3704		p = vm_page_lookup(object, pindex);
3705		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3706		    ("pmap_object_init_pt: invalid page %p", p));
3707		pat_mode = p->md.pat_mode;
3708
3709		/*
3710		 * Abort the mapping if the first page is not physically
3711		 * aligned to a 2/4MB page boundary.
3712		 */
3713		ptepa = VM_PAGE_TO_PHYS(p);
3714		if (ptepa & (NBPDR - 1))
3715			return;
3716
3717		/*
3718		 * Skip the first page.  Abort the mapping if the rest of
3719		 * the pages are not physically contiguous or have differing
3720		 * memory attributes.
3721		 */
3722		p = TAILQ_NEXT(p, listq);
3723		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3724		    pa += PAGE_SIZE) {
3725			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3726			    ("pmap_object_init_pt: invalid page %p", p));
3727			if (pa != VM_PAGE_TO_PHYS(p) ||
3728			    pat_mode != p->md.pat_mode)
3729				return;
3730			p = TAILQ_NEXT(p, listq);
3731		}
3732
3733		/*
3734		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3735		 * "size" is a multiple of 2/4M, adding the PAT setting to
3736		 * "pa" will not affect the termination of this loop.
3737		 */
3738		PMAP_LOCK(pmap);
3739		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3740		    size; pa += NBPDR) {
3741			pde = pmap_pde(pmap, addr);
3742			if (*pde == 0) {
3743				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3744				    PG_U | PG_RW | PG_V);
3745				pmap->pm_stats.resident_count += NBPDR /
3746				    PAGE_SIZE;
3747				pmap_pde_mappings++;
3748			}
3749			/* Else continue on if the PDE is already valid. */
3750			addr += NBPDR;
3751		}
3752		PMAP_UNLOCK(pmap);
3753	}
3754}
3755
3756/*
3757 *	Routine:	pmap_change_wiring
3758 *	Function:	Change the wiring attribute for a map/virtual-address
3759 *			pair.
3760 *	In/out conditions:
3761 *			The mapping must already exist in the pmap.
3762 */
3763void
3764pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3765{
3766	pd_entry_t *pde;
3767	pt_entry_t *pte;
3768	boolean_t are_queues_locked;
3769
3770	are_queues_locked = FALSE;
3771retry:
3772	PMAP_LOCK(pmap);
3773	pde = pmap_pde(pmap, va);
3774	if ((*pde & PG_PS) != 0) {
3775		if (!wired != ((*pde & PG_W) == 0)) {
3776			if (!are_queues_locked) {
3777				are_queues_locked = TRUE;
3778				if (!mtx_trylock(&vm_page_queue_mtx)) {
3779					PMAP_UNLOCK(pmap);
3780					vm_page_lock_queues();
3781					goto retry;
3782				}
3783			}
3784			if (!pmap_demote_pde(pmap, pde, va))
3785				panic("pmap_change_wiring: demotion failed");
3786		} else
3787			goto out;
3788	}
3789	pte = pmap_pte(pmap, va);
3790
3791	if (wired && !pmap_pte_w(pte))
3792		pmap->pm_stats.wired_count++;
3793	else if (!wired && pmap_pte_w(pte))
3794		pmap->pm_stats.wired_count--;
3795
3796	/*
3797	 * Wiring is not a hardware characteristic so there is no need to
3798	 * invalidate TLB.
3799	 */
3800	pmap_pte_set_w(pte, wired);
3801	pmap_pte_release(pte);
3802out:
3803	if (are_queues_locked)
3804		vm_page_unlock_queues();
3805	PMAP_UNLOCK(pmap);
3806}
3807
3808
3809
3810/*
3811 *	Copy the range specified by src_addr/len
3812 *	from the source map to the range dst_addr/len
3813 *	in the destination map.
3814 *
3815 *	This routine is only advisory and need not do anything.
3816 */
3817
3818void
3819pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3820    vm_offset_t src_addr)
3821{
3822	vm_page_t   free;
3823	vm_offset_t addr;
3824	vm_offset_t end_addr = src_addr + len;
3825	vm_offset_t pdnxt;
3826
3827	if (dst_addr != src_addr)
3828		return;
3829
3830	if (!pmap_is_current(src_pmap))
3831		return;
3832
3833	vm_page_lock_queues();
3834	if (dst_pmap < src_pmap) {
3835		PMAP_LOCK(dst_pmap);
3836		PMAP_LOCK(src_pmap);
3837	} else {
3838		PMAP_LOCK(src_pmap);
3839		PMAP_LOCK(dst_pmap);
3840	}
3841	sched_pin();
3842	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3843		pt_entry_t *src_pte, *dst_pte;
3844		vm_page_t dstmpte, srcmpte;
3845		pd_entry_t srcptepaddr;
3846		unsigned ptepindex;
3847
3848		KASSERT(addr < UPT_MIN_ADDRESS,
3849		    ("pmap_copy: invalid to pmap_copy page tables"));
3850
3851		pdnxt = (addr + NBPDR) & ~PDRMASK;
3852		if (pdnxt < addr)
3853			pdnxt = end_addr;
3854		ptepindex = addr >> PDRSHIFT;
3855
3856		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3857		if (srcptepaddr == 0)
3858			continue;
3859
3860		if (srcptepaddr & PG_PS) {
3861			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3862			    ((srcptepaddr & PG_MANAGED) == 0 ||
3863			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3864			    PG_PS_FRAME))) {
3865				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3866				    ~PG_W;
3867				dst_pmap->pm_stats.resident_count +=
3868				    NBPDR / PAGE_SIZE;
3869			}
3870			continue;
3871		}
3872
3873		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3874		KASSERT(srcmpte->wire_count > 0,
3875		    ("pmap_copy: source page table page is unused"));
3876
3877		if (pdnxt > end_addr)
3878			pdnxt = end_addr;
3879
3880		src_pte = vtopte(addr);
3881		while (addr < pdnxt) {
3882			pt_entry_t ptetemp;
3883			ptetemp = *src_pte;
3884			/*
3885			 * we only virtual copy managed pages
3886			 */
3887			if ((ptetemp & PG_MANAGED) != 0) {
3888				dstmpte = pmap_allocpte(dst_pmap, addr,
3889				    M_NOWAIT);
3890				if (dstmpte == NULL)
3891					goto out;
3892				dst_pte = pmap_pte_quick(dst_pmap, addr);
3893				if (*dst_pte == 0 &&
3894				    pmap_try_insert_pv_entry(dst_pmap, addr,
3895				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3896					/*
3897					 * Clear the wired, modified, and
3898					 * accessed (referenced) bits
3899					 * during the copy.
3900					 */
3901					*dst_pte = ptetemp & ~(PG_W | PG_M |
3902					    PG_A);
3903					dst_pmap->pm_stats.resident_count++;
3904	 			} else {
3905					free = NULL;
3906					if (pmap_unwire_pte_hold(dst_pmap,
3907					    dstmpte, &free)) {
3908						pmap_invalidate_page(dst_pmap,
3909						    addr);
3910						pmap_free_zero_pages(free);
3911					}
3912					goto out;
3913				}
3914				if (dstmpte->wire_count >= srcmpte->wire_count)
3915					break;
3916			}
3917			addr += PAGE_SIZE;
3918			src_pte++;
3919		}
3920	}
3921out:
3922	sched_unpin();
3923	vm_page_unlock_queues();
3924	PMAP_UNLOCK(src_pmap);
3925	PMAP_UNLOCK(dst_pmap);
3926}
3927
3928static __inline void
3929pagezero(void *page)
3930{
3931#if defined(I686_CPU)
3932	if (cpu_class == CPUCLASS_686) {
3933#if defined(CPU_ENABLE_SSE)
3934		if (cpu_feature & CPUID_SSE2)
3935			sse2_pagezero(page);
3936		else
3937#endif
3938			i686_pagezero(page);
3939	} else
3940#endif
3941		bzero(page, PAGE_SIZE);
3942}
3943
3944/*
3945 *	pmap_zero_page zeros the specified hardware page by mapping
3946 *	the page into KVM and using bzero to clear its contents.
3947 */
3948void
3949pmap_zero_page(vm_page_t m)
3950{
3951	struct sysmaps *sysmaps;
3952
3953	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3954	mtx_lock(&sysmaps->lock);
3955	if (*sysmaps->CMAP2)
3956		panic("pmap_zero_page: CMAP2 busy");
3957	sched_pin();
3958	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3959	    pmap_cache_bits(m->md.pat_mode, 0);
3960	invlcaddr(sysmaps->CADDR2);
3961	pagezero(sysmaps->CADDR2);
3962	*sysmaps->CMAP2 = 0;
3963	sched_unpin();
3964	mtx_unlock(&sysmaps->lock);
3965}
3966
3967/*
3968 *	pmap_zero_page_area zeros the specified hardware page by mapping
3969 *	the page into KVM and using bzero to clear its contents.
3970 *
3971 *	off and size may not cover an area beyond a single hardware page.
3972 */
3973void
3974pmap_zero_page_area(vm_page_t m, int off, int size)
3975{
3976	struct sysmaps *sysmaps;
3977
3978	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3979	mtx_lock(&sysmaps->lock);
3980	if (*sysmaps->CMAP2)
3981		panic("pmap_zero_page_area: CMAP2 busy");
3982	sched_pin();
3983	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3984	    pmap_cache_bits(m->md.pat_mode, 0);
3985	invlcaddr(sysmaps->CADDR2);
3986	if (off == 0 && size == PAGE_SIZE)
3987		pagezero(sysmaps->CADDR2);
3988	else
3989		bzero((char *)sysmaps->CADDR2 + off, size);
3990	*sysmaps->CMAP2 = 0;
3991	sched_unpin();
3992	mtx_unlock(&sysmaps->lock);
3993}
3994
3995/*
3996 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3997 *	the page into KVM and using bzero to clear its contents.  This
3998 *	is intended to be called from the vm_pagezero process only and
3999 *	outside of Giant.
4000 */
4001void
4002pmap_zero_page_idle(vm_page_t m)
4003{
4004
4005	if (*CMAP3)
4006		panic("pmap_zero_page_idle: CMAP3 busy");
4007	sched_pin();
4008	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4009	    pmap_cache_bits(m->md.pat_mode, 0);
4010	invlcaddr(CADDR3);
4011	pagezero(CADDR3);
4012	*CMAP3 = 0;
4013	sched_unpin();
4014}
4015
4016/*
4017 *	pmap_copy_page copies the specified (machine independent)
4018 *	page by mapping the page into virtual memory and using
4019 *	bcopy to copy the page, one machine dependent page at a
4020 *	time.
4021 */
4022void
4023pmap_copy_page(vm_page_t src, vm_page_t dst)
4024{
4025	struct sysmaps *sysmaps;
4026
4027	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4028	mtx_lock(&sysmaps->lock);
4029	if (*sysmaps->CMAP1)
4030		panic("pmap_copy_page: CMAP1 busy");
4031	if (*sysmaps->CMAP2)
4032		panic("pmap_copy_page: CMAP2 busy");
4033	sched_pin();
4034	invlpg((u_int)sysmaps->CADDR1);
4035	invlpg((u_int)sysmaps->CADDR2);
4036	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4037	    pmap_cache_bits(src->md.pat_mode, 0);
4038	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4039	    pmap_cache_bits(dst->md.pat_mode, 0);
4040	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4041	*sysmaps->CMAP1 = 0;
4042	*sysmaps->CMAP2 = 0;
4043	sched_unpin();
4044	mtx_unlock(&sysmaps->lock);
4045}
4046
4047/*
4048 * Returns true if the pmap's pv is one of the first
4049 * 16 pvs linked to from this page.  This count may
4050 * be changed upwards or downwards in the future; it
4051 * is only necessary that true be returned for a small
4052 * subset of pmaps for proper page aging.
4053 */
4054boolean_t
4055pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4056{
4057	struct md_page *pvh;
4058	pv_entry_t pv;
4059	int loops = 0;
4060
4061	if (m->flags & PG_FICTITIOUS)
4062		return (FALSE);
4063
4064	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4065	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4066		if (PV_PMAP(pv) == pmap) {
4067			return (TRUE);
4068		}
4069		loops++;
4070		if (loops >= 16)
4071			break;
4072	}
4073	if (loops < 16) {
4074		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4075		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4076			if (PV_PMAP(pv) == pmap)
4077				return (TRUE);
4078			loops++;
4079			if (loops >= 16)
4080				break;
4081		}
4082	}
4083	return (FALSE);
4084}
4085
4086/*
4087 *	pmap_page_wired_mappings:
4088 *
4089 *	Return the number of managed mappings to the given physical page
4090 *	that are wired.
4091 */
4092int
4093pmap_page_wired_mappings(vm_page_t m)
4094{
4095	int count;
4096
4097	count = 0;
4098	if ((m->flags & PG_FICTITIOUS) != 0)
4099		return (count);
4100	count = pmap_pvh_wired_mappings(&m->md, count);
4101	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
4102}
4103
4104/*
4105 *	pmap_pvh_wired_mappings:
4106 *
4107 *	Return the updated number "count" of managed mappings that are wired.
4108 */
4109static int
4110pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4111{
4112	pmap_t pmap;
4113	pt_entry_t *pte;
4114	pv_entry_t pv;
4115
4116	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4117	sched_pin();
4118	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4119		pmap = PV_PMAP(pv);
4120		PMAP_LOCK(pmap);
4121		pte = pmap_pte_quick(pmap, pv->pv_va);
4122		if ((*pte & PG_W) != 0)
4123			count++;
4124		PMAP_UNLOCK(pmap);
4125	}
4126	sched_unpin();
4127	return (count);
4128}
4129
4130/*
4131 * Returns TRUE if the given page is mapped individually or as part of
4132 * a 4mpage.  Otherwise, returns FALSE.
4133 */
4134boolean_t
4135pmap_page_is_mapped(vm_page_t m)
4136{
4137	struct md_page *pvh;
4138
4139	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
4140		return (FALSE);
4141	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4142	if (TAILQ_EMPTY(&m->md.pv_list)) {
4143		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4144		return (!TAILQ_EMPTY(&pvh->pv_list));
4145	} else
4146		return (TRUE);
4147}
4148
4149/*
4150 * Remove all pages from specified address space
4151 * this aids process exit speeds.  Also, this code
4152 * is special cased for current process only, but
4153 * can have the more generic (and slightly slower)
4154 * mode enabled.  This is much faster than pmap_remove
4155 * in the case of running down an entire address space.
4156 */
4157void
4158pmap_remove_pages(pmap_t pmap)
4159{
4160	pt_entry_t *pte, tpte;
4161	vm_page_t free = NULL;
4162	vm_page_t m, mpte, mt;
4163	pv_entry_t pv;
4164	struct md_page *pvh;
4165	struct pv_chunk *pc, *npc;
4166	int field, idx;
4167	int32_t bit;
4168	uint32_t inuse, bitmask;
4169	int allfree;
4170
4171	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
4172		printf("warning: pmap_remove_pages called with non-current pmap\n");
4173		return;
4174	}
4175	vm_page_lock_queues();
4176	PMAP_LOCK(pmap);
4177	sched_pin();
4178	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4179		allfree = 1;
4180		for (field = 0; field < _NPCM; field++) {
4181			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4182			while (inuse != 0) {
4183				bit = bsfl(inuse);
4184				bitmask = 1UL << bit;
4185				idx = field * 32 + bit;
4186				pv = &pc->pc_pventry[idx];
4187				inuse &= ~bitmask;
4188
4189				pte = pmap_pde(pmap, pv->pv_va);
4190				tpte = *pte;
4191				if ((tpte & PG_PS) == 0) {
4192					pte = vtopte(pv->pv_va);
4193					tpte = *pte & ~PG_PTE_PAT;
4194				}
4195
4196				if (tpte == 0) {
4197					printf(
4198					    "TPTE at %p  IS ZERO @ VA %08x\n",
4199					    pte, pv->pv_va);
4200					panic("bad pte");
4201				}
4202
4203/*
4204 * We cannot remove wired pages from a process' mapping at this time
4205 */
4206				if (tpte & PG_W) {
4207					allfree = 0;
4208					continue;
4209				}
4210
4211				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4212				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4213				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4214				    m, (uintmax_t)m->phys_addr,
4215				    (uintmax_t)tpte));
4216
4217				KASSERT(m < &vm_page_array[vm_page_array_size],
4218					("pmap_remove_pages: bad tpte %#jx",
4219					(uintmax_t)tpte));
4220
4221				pte_clear(pte);
4222
4223				/*
4224				 * Update the vm_page_t clean/reference bits.
4225				 */
4226				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4227					if ((tpte & PG_PS) != 0) {
4228						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4229							vm_page_dirty(mt);
4230					} else
4231						vm_page_dirty(m);
4232				}
4233
4234				/* Mark free */
4235				PV_STAT(pv_entry_frees++);
4236				PV_STAT(pv_entry_spare++);
4237				pv_entry_count--;
4238				pc->pc_map[field] |= bitmask;
4239				if ((tpte & PG_PS) != 0) {
4240					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4241					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4242					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4243					if (TAILQ_EMPTY(&pvh->pv_list)) {
4244						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4245							if (TAILQ_EMPTY(&mt->md.pv_list))
4246								vm_page_flag_clear(mt, PG_WRITEABLE);
4247					}
4248					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4249					if (mpte != NULL) {
4250						pmap_remove_pt_page(pmap, mpte);
4251						pmap->pm_stats.resident_count--;
4252						KASSERT(mpte->wire_count == NPTEPG,
4253						    ("pmap_remove_pages: pte page wire count error"));
4254						mpte->wire_count = 0;
4255						pmap_add_delayed_free_list(mpte, &free, FALSE);
4256						atomic_subtract_int(&cnt.v_wire_count, 1);
4257					}
4258				} else {
4259					pmap->pm_stats.resident_count--;
4260					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4261					if (TAILQ_EMPTY(&m->md.pv_list)) {
4262						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4263						if (TAILQ_EMPTY(&pvh->pv_list))
4264							vm_page_flag_clear(m, PG_WRITEABLE);
4265					}
4266					pmap_unuse_pt(pmap, pv->pv_va, &free);
4267				}
4268			}
4269		}
4270		if (allfree) {
4271			PV_STAT(pv_entry_spare -= _NPCPV);
4272			PV_STAT(pc_chunk_count--);
4273			PV_STAT(pc_chunk_frees++);
4274			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4275			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4276			pmap_qremove((vm_offset_t)pc, 1);
4277			vm_page_unwire(m, 0);
4278			vm_page_free(m);
4279			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4280		}
4281	}
4282	sched_unpin();
4283	pmap_invalidate_all(pmap);
4284	vm_page_unlock_queues();
4285	PMAP_UNLOCK(pmap);
4286	pmap_free_zero_pages(free);
4287}
4288
4289/*
4290 *	pmap_is_modified:
4291 *
4292 *	Return whether or not the specified physical page was modified
4293 *	in any physical maps.
4294 */
4295boolean_t
4296pmap_is_modified(vm_page_t m)
4297{
4298
4299	if (m->flags & PG_FICTITIOUS)
4300		return (FALSE);
4301	if (pmap_is_modified_pvh(&m->md))
4302		return (TRUE);
4303	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4304}
4305
4306/*
4307 * Returns TRUE if any of the given mappings were used to modify
4308 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4309 * mappings are supported.
4310 */
4311static boolean_t
4312pmap_is_modified_pvh(struct md_page *pvh)
4313{
4314	pv_entry_t pv;
4315	pt_entry_t *pte;
4316	pmap_t pmap;
4317	boolean_t rv;
4318
4319	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4320	rv = FALSE;
4321	sched_pin();
4322	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4323		pmap = PV_PMAP(pv);
4324		PMAP_LOCK(pmap);
4325		pte = pmap_pte_quick(pmap, pv->pv_va);
4326		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4327		PMAP_UNLOCK(pmap);
4328		if (rv)
4329			break;
4330	}
4331	sched_unpin();
4332	return (rv);
4333}
4334
4335/*
4336 *	pmap_is_prefaultable:
4337 *
4338 *	Return whether or not the specified virtual address is elgible
4339 *	for prefault.
4340 */
4341boolean_t
4342pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4343{
4344	pd_entry_t *pde;
4345	pt_entry_t *pte;
4346	boolean_t rv;
4347
4348	rv = FALSE;
4349	PMAP_LOCK(pmap);
4350	pde = pmap_pde(pmap, addr);
4351	if (*pde != 0 && (*pde & PG_PS) == 0) {
4352		pte = vtopte(addr);
4353		rv = *pte == 0;
4354	}
4355	PMAP_UNLOCK(pmap);
4356	return (rv);
4357}
4358
4359/*
4360 *	pmap_is_referenced:
4361 *
4362 *	Return whether or not the specified physical page was referenced
4363 *	in any physical maps.
4364 */
4365boolean_t
4366pmap_is_referenced(vm_page_t m)
4367{
4368
4369	if (m->flags & PG_FICTITIOUS)
4370		return (FALSE);
4371	if (pmap_is_referenced_pvh(&m->md))
4372		return (TRUE);
4373	return (pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4374}
4375
4376/*
4377 * Returns TRUE if any of the given mappings were referenced and FALSE
4378 * otherwise.  Both page and 4mpage mappings are supported.
4379 */
4380static boolean_t
4381pmap_is_referenced_pvh(struct md_page *pvh)
4382{
4383	pv_entry_t pv;
4384	pt_entry_t *pte;
4385	pmap_t pmap;
4386	boolean_t rv;
4387
4388	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4389	rv = FALSE;
4390	sched_pin();
4391	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4392		pmap = PV_PMAP(pv);
4393		PMAP_LOCK(pmap);
4394		pte = pmap_pte_quick(pmap, pv->pv_va);
4395		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4396		PMAP_UNLOCK(pmap);
4397		if (rv)
4398			break;
4399	}
4400	sched_unpin();
4401	return (rv);
4402}
4403
4404/*
4405 * Clear the write and modified bits in each of the given page's mappings.
4406 */
4407void
4408pmap_remove_write(vm_page_t m)
4409{
4410	struct md_page *pvh;
4411	pv_entry_t next_pv, pv;
4412	pmap_t pmap;
4413	pd_entry_t *pde;
4414	pt_entry_t oldpte, *pte;
4415	vm_offset_t va;
4416
4417	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4418	if ((m->flags & PG_FICTITIOUS) != 0 ||
4419	    (m->flags & PG_WRITEABLE) == 0)
4420		return;
4421	sched_pin();
4422	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4423	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4424		va = pv->pv_va;
4425		pmap = PV_PMAP(pv);
4426		PMAP_LOCK(pmap);
4427		pde = pmap_pde(pmap, va);
4428		if ((*pde & PG_RW) != 0)
4429			(void)pmap_demote_pde(pmap, pde, va);
4430		PMAP_UNLOCK(pmap);
4431	}
4432	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4433		pmap = PV_PMAP(pv);
4434		PMAP_LOCK(pmap);
4435		pde = pmap_pde(pmap, pv->pv_va);
4436		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4437		    " a 4mpage in page %p's pv list", m));
4438		pte = pmap_pte_quick(pmap, pv->pv_va);
4439retry:
4440		oldpte = *pte;
4441		if ((oldpte & PG_RW) != 0) {
4442			/*
4443			 * Regardless of whether a pte is 32 or 64 bits
4444			 * in size, PG_RW and PG_M are among the least
4445			 * significant 32 bits.
4446			 */
4447			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4448			    oldpte & ~(PG_RW | PG_M)))
4449				goto retry;
4450			if ((oldpte & PG_M) != 0)
4451				vm_page_dirty(m);
4452			pmap_invalidate_page(pmap, pv->pv_va);
4453		}
4454		PMAP_UNLOCK(pmap);
4455	}
4456	vm_page_flag_clear(m, PG_WRITEABLE);
4457	sched_unpin();
4458}
4459
4460/*
4461 *	pmap_ts_referenced:
4462 *
4463 *	Return a count of reference bits for a page, clearing those bits.
4464 *	It is not necessary for every reference bit to be cleared, but it
4465 *	is necessary that 0 only be returned when there are truly no
4466 *	reference bits set.
4467 *
4468 *	XXX: The exact number of bits to check and clear is a matter that
4469 *	should be tested and standardized at some point in the future for
4470 *	optimal aging of shared pages.
4471 */
4472int
4473pmap_ts_referenced(vm_page_t m)
4474{
4475	struct md_page *pvh;
4476	pv_entry_t pv, pvf, pvn;
4477	pmap_t pmap;
4478	pd_entry_t oldpde, *pde;
4479	pt_entry_t *pte;
4480	vm_offset_t va;
4481	int rtval = 0;
4482
4483	if (m->flags & PG_FICTITIOUS)
4484		return (rtval);
4485	sched_pin();
4486	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4487	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4488	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4489		va = pv->pv_va;
4490		pmap = PV_PMAP(pv);
4491		PMAP_LOCK(pmap);
4492		pde = pmap_pde(pmap, va);
4493		oldpde = *pde;
4494		if ((oldpde & PG_A) != 0) {
4495			if (pmap_demote_pde(pmap, pde, va)) {
4496				if ((oldpde & PG_W) == 0) {
4497					/*
4498					 * Remove the mapping to a single page
4499					 * so that a subsequent access may
4500					 * repromote.  Since the underlying
4501					 * page table page is fully populated,
4502					 * this removal never frees a page
4503					 * table page.
4504					 */
4505					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4506					    PG_PS_FRAME);
4507					pmap_remove_page(pmap, va, NULL);
4508					rtval++;
4509					if (rtval > 4) {
4510						PMAP_UNLOCK(pmap);
4511						return (rtval);
4512					}
4513				}
4514			}
4515		}
4516		PMAP_UNLOCK(pmap);
4517	}
4518	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4519		pvf = pv;
4520		do {
4521			pvn = TAILQ_NEXT(pv, pv_list);
4522			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4523			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4524			pmap = PV_PMAP(pv);
4525			PMAP_LOCK(pmap);
4526			pde = pmap_pde(pmap, pv->pv_va);
4527			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4528			    " found a 4mpage in page %p's pv list", m));
4529			pte = pmap_pte_quick(pmap, pv->pv_va);
4530			if ((*pte & PG_A) != 0) {
4531				atomic_clear_int((u_int *)pte, PG_A);
4532				pmap_invalidate_page(pmap, pv->pv_va);
4533				rtval++;
4534				if (rtval > 4)
4535					pvn = NULL;
4536			}
4537			PMAP_UNLOCK(pmap);
4538		} while ((pv = pvn) != NULL && pv != pvf);
4539	}
4540	sched_unpin();
4541	return (rtval);
4542}
4543
4544/*
4545 *	Clear the modify bits on the specified physical page.
4546 */
4547void
4548pmap_clear_modify(vm_page_t m)
4549{
4550	struct md_page *pvh;
4551	pv_entry_t next_pv, pv;
4552	pmap_t pmap;
4553	pd_entry_t oldpde, *pde;
4554	pt_entry_t oldpte, *pte;
4555	vm_offset_t va;
4556
4557	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4558	if ((m->flags & PG_FICTITIOUS) != 0)
4559		return;
4560	sched_pin();
4561	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4562	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4563		va = pv->pv_va;
4564		pmap = PV_PMAP(pv);
4565		PMAP_LOCK(pmap);
4566		pde = pmap_pde(pmap, va);
4567		oldpde = *pde;
4568		if ((oldpde & PG_RW) != 0) {
4569			if (pmap_demote_pde(pmap, pde, va)) {
4570				if ((oldpde & PG_W) == 0) {
4571					/*
4572					 * Write protect the mapping to a
4573					 * single page so that a subsequent
4574					 * write access may repromote.
4575					 */
4576					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4577					    PG_PS_FRAME);
4578					pte = pmap_pte_quick(pmap, va);
4579					oldpte = *pte;
4580					if ((oldpte & PG_V) != 0) {
4581						/*
4582						 * Regardless of whether a pte is 32 or 64 bits
4583						 * in size, PG_RW and PG_M are among the least
4584						 * significant 32 bits.
4585						 */
4586						while (!atomic_cmpset_int((u_int *)pte,
4587						    oldpte,
4588						    oldpte & ~(PG_M | PG_RW)))
4589							oldpte = *pte;
4590						vm_page_dirty(m);
4591						pmap_invalidate_page(pmap, va);
4592					}
4593				}
4594			}
4595		}
4596		PMAP_UNLOCK(pmap);
4597	}
4598	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4599		pmap = PV_PMAP(pv);
4600		PMAP_LOCK(pmap);
4601		pde = pmap_pde(pmap, pv->pv_va);
4602		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4603		    " a 4mpage in page %p's pv list", m));
4604		pte = pmap_pte_quick(pmap, pv->pv_va);
4605		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4606			/*
4607			 * Regardless of whether a pte is 32 or 64 bits
4608			 * in size, PG_M is among the least significant
4609			 * 32 bits.
4610			 */
4611			atomic_clear_int((u_int *)pte, PG_M);
4612			pmap_invalidate_page(pmap, pv->pv_va);
4613		}
4614		PMAP_UNLOCK(pmap);
4615	}
4616	sched_unpin();
4617}
4618
4619/*
4620 *	pmap_clear_reference:
4621 *
4622 *	Clear the reference bit on the specified physical page.
4623 */
4624void
4625pmap_clear_reference(vm_page_t m)
4626{
4627	struct md_page *pvh;
4628	pv_entry_t next_pv, pv;
4629	pmap_t pmap;
4630	pd_entry_t oldpde, *pde;
4631	pt_entry_t *pte;
4632	vm_offset_t va;
4633
4634	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4635	if ((m->flags & PG_FICTITIOUS) != 0)
4636		return;
4637	sched_pin();
4638	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4639	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4640		va = pv->pv_va;
4641		pmap = PV_PMAP(pv);
4642		PMAP_LOCK(pmap);
4643		pde = pmap_pde(pmap, va);
4644		oldpde = *pde;
4645		if ((oldpde & PG_A) != 0) {
4646			if (pmap_demote_pde(pmap, pde, va)) {
4647				/*
4648				 * Remove the mapping to a single page so
4649				 * that a subsequent access may repromote.
4650				 * Since the underlying page table page is
4651				 * fully populated, this removal never frees
4652				 * a page table page.
4653				 */
4654				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4655				    PG_PS_FRAME);
4656				pmap_remove_page(pmap, va, NULL);
4657			}
4658		}
4659		PMAP_UNLOCK(pmap);
4660	}
4661	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4662		pmap = PV_PMAP(pv);
4663		PMAP_LOCK(pmap);
4664		pde = pmap_pde(pmap, pv->pv_va);
4665		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4666		    " a 4mpage in page %p's pv list", m));
4667		pte = pmap_pte_quick(pmap, pv->pv_va);
4668		if ((*pte & PG_A) != 0) {
4669			/*
4670			 * Regardless of whether a pte is 32 or 64 bits
4671			 * in size, PG_A is among the least significant
4672			 * 32 bits.
4673			 */
4674			atomic_clear_int((u_int *)pte, PG_A);
4675			pmap_invalidate_page(pmap, pv->pv_va);
4676		}
4677		PMAP_UNLOCK(pmap);
4678	}
4679	sched_unpin();
4680}
4681
4682/*
4683 * Miscellaneous support routines follow
4684 */
4685
4686/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4687static __inline void
4688pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4689{
4690	u_int opte, npte;
4691
4692	/*
4693	 * The cache mode bits are all in the low 32-bits of the
4694	 * PTE, so we can just spin on updating the low 32-bits.
4695	 */
4696	do {
4697		opte = *(u_int *)pte;
4698		npte = opte & ~PG_PTE_CACHE;
4699		npte |= cache_bits;
4700	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4701}
4702
4703/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4704static __inline void
4705pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4706{
4707	u_int opde, npde;
4708
4709	/*
4710	 * The cache mode bits are all in the low 32-bits of the
4711	 * PDE, so we can just spin on updating the low 32-bits.
4712	 */
4713	do {
4714		opde = *(u_int *)pde;
4715		npde = opde & ~PG_PDE_CACHE;
4716		npde |= cache_bits;
4717	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4718}
4719
4720/*
4721 * Map a set of physical memory pages into the kernel virtual
4722 * address space. Return a pointer to where it is mapped. This
4723 * routine is intended to be used for mapping device memory,
4724 * NOT real memory.
4725 */
4726void *
4727pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4728{
4729	vm_offset_t va, offset;
4730	vm_size_t tmpsize;
4731
4732	offset = pa & PAGE_MASK;
4733	size = roundup(offset + size, PAGE_SIZE);
4734	pa = pa & PG_FRAME;
4735
4736	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4737		va = KERNBASE + pa;
4738	else
4739		va = kmem_alloc_nofault(kernel_map, size);
4740	if (!va)
4741		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4742
4743	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4744		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4745	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4746	pmap_invalidate_cache_range(va, va + size);
4747	return ((void *)(va + offset));
4748}
4749
4750void *
4751pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4752{
4753
4754	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4755}
4756
4757void *
4758pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4759{
4760
4761	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4762}
4763
4764void
4765pmap_unmapdev(vm_offset_t va, vm_size_t size)
4766{
4767	vm_offset_t base, offset, tmpva;
4768
4769	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4770		return;
4771	base = trunc_page(va);
4772	offset = va & PAGE_MASK;
4773	size = roundup(offset + size, PAGE_SIZE);
4774	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4775		pmap_kremove(tmpva);
4776	pmap_invalidate_range(kernel_pmap, va, tmpva);
4777	kmem_free(kernel_map, base, size);
4778}
4779
4780/*
4781 * Sets the memory attribute for the specified page.
4782 */
4783void
4784pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4785{
4786	struct sysmaps *sysmaps;
4787	vm_offset_t sva, eva;
4788
4789	m->md.pat_mode = ma;
4790	if ((m->flags & PG_FICTITIOUS) != 0)
4791		return;
4792
4793	/*
4794	 * If "m" is a normal page, flush it from the cache.
4795	 * See pmap_invalidate_cache_range().
4796	 *
4797	 * First, try to find an existing mapping of the page by sf
4798	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4799	 * flushes the cache.
4800	 */
4801	if (sf_buf_invalidate_cache(m))
4802		return;
4803
4804	/*
4805	 * If page is not mapped by sf buffer, but CPU does not
4806	 * support self snoop, map the page transient and do
4807	 * invalidation. In the worst case, whole cache is flushed by
4808	 * pmap_invalidate_cache_range().
4809	 */
4810	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4811		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4812		mtx_lock(&sysmaps->lock);
4813		if (*sysmaps->CMAP2)
4814			panic("pmap_page_set_memattr: CMAP2 busy");
4815		sched_pin();
4816		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4817		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4818		invlcaddr(sysmaps->CADDR2);
4819		sva = (vm_offset_t)sysmaps->CADDR2;
4820		eva = sva + PAGE_SIZE;
4821	} else
4822		sva = eva = 0; /* gcc */
4823	pmap_invalidate_cache_range(sva, eva);
4824	if (sva != 0) {
4825		*sysmaps->CMAP2 = 0;
4826		sched_unpin();
4827		mtx_unlock(&sysmaps->lock);
4828	}
4829}
4830
4831/*
4832 * Changes the specified virtual address range's memory type to that given by
4833 * the parameter "mode".  The specified virtual address range must be
4834 * completely contained within either the kernel map.
4835 *
4836 * Returns zero if the change completed successfully, and either EINVAL or
4837 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4838 * of the virtual address range was not mapped, and ENOMEM is returned if
4839 * there was insufficient memory available to complete the change.
4840 */
4841int
4842pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4843{
4844	vm_offset_t base, offset, tmpva;
4845	pd_entry_t *pde;
4846	pt_entry_t *pte;
4847	int cache_bits_pte, cache_bits_pde;
4848	boolean_t changed;
4849
4850	base = trunc_page(va);
4851	offset = va & PAGE_MASK;
4852	size = roundup(offset + size, PAGE_SIZE);
4853
4854	/*
4855	 * Only supported on kernel virtual addresses above the recursive map.
4856	 */
4857	if (base < VM_MIN_KERNEL_ADDRESS)
4858		return (EINVAL);
4859
4860	cache_bits_pde = pmap_cache_bits(mode, 1);
4861	cache_bits_pte = pmap_cache_bits(mode, 0);
4862	changed = FALSE;
4863
4864	/*
4865	 * Pages that aren't mapped aren't supported.  Also break down
4866	 * 2/4MB pages into 4KB pages if required.
4867	 */
4868	PMAP_LOCK(kernel_pmap);
4869	for (tmpva = base; tmpva < base + size; ) {
4870		pde = pmap_pde(kernel_pmap, tmpva);
4871		if (*pde == 0) {
4872			PMAP_UNLOCK(kernel_pmap);
4873			return (EINVAL);
4874		}
4875		if (*pde & PG_PS) {
4876			/*
4877			 * If the current 2/4MB page already has
4878			 * the required memory type, then we need not
4879			 * demote this page.  Just increment tmpva to
4880			 * the next 2/4MB page frame.
4881			 */
4882			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4883				tmpva = trunc_4mpage(tmpva) + NBPDR;
4884				continue;
4885			}
4886
4887			/*
4888			 * If the current offset aligns with a 2/4MB
4889			 * page frame and there is at least 2/4MB left
4890			 * within the range, then we need not break
4891			 * down this page into 4KB pages.
4892			 */
4893			if ((tmpva & PDRMASK) == 0 &&
4894			    tmpva + PDRMASK < base + size) {
4895				tmpva += NBPDR;
4896				continue;
4897			}
4898			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4899				PMAP_UNLOCK(kernel_pmap);
4900				return (ENOMEM);
4901			}
4902		}
4903		pte = vtopte(tmpva);
4904		if (*pte == 0) {
4905			PMAP_UNLOCK(kernel_pmap);
4906			return (EINVAL);
4907		}
4908		tmpva += PAGE_SIZE;
4909	}
4910	PMAP_UNLOCK(kernel_pmap);
4911
4912	/*
4913	 * Ok, all the pages exist, so run through them updating their
4914	 * cache mode if required.
4915	 */
4916	for (tmpva = base; tmpva < base + size; ) {
4917		pde = pmap_pde(kernel_pmap, tmpva);
4918		if (*pde & PG_PS) {
4919			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4920				pmap_pde_attr(pde, cache_bits_pde);
4921				changed = TRUE;
4922			}
4923			tmpva = trunc_4mpage(tmpva) + NBPDR;
4924		} else {
4925			pte = vtopte(tmpva);
4926			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4927				pmap_pte_attr(pte, cache_bits_pte);
4928				changed = TRUE;
4929			}
4930			tmpva += PAGE_SIZE;
4931		}
4932	}
4933
4934	/*
4935	 * Flush CPU caches to make sure any data isn't cached that
4936	 * shouldn't be, etc.
4937	 */
4938	if (changed) {
4939		pmap_invalidate_range(kernel_pmap, base, tmpva);
4940		pmap_invalidate_cache_range(base, tmpva);
4941	}
4942	return (0);
4943}
4944
4945/*
4946 * perform the pmap work for mincore
4947 */
4948int
4949pmap_mincore(pmap_t pmap, vm_offset_t addr)
4950{
4951	pd_entry_t *pdep;
4952	pt_entry_t *ptep, pte;
4953	vm_paddr_t pa;
4954	vm_page_t m;
4955	int val = 0;
4956
4957	PMAP_LOCK(pmap);
4958	pdep = pmap_pde(pmap, addr);
4959	if (*pdep != 0) {
4960		if (*pdep & PG_PS) {
4961			pte = *pdep;
4962			val = MINCORE_SUPER;
4963			/* Compute the physical address of the 4KB page. */
4964			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4965			    PG_FRAME;
4966		} else {
4967			ptep = pmap_pte(pmap, addr);
4968			pte = *ptep;
4969			pmap_pte_release(ptep);
4970			pa = pte & PG_FRAME;
4971		}
4972	} else {
4973		pte = 0;
4974		pa = 0;
4975	}
4976	PMAP_UNLOCK(pmap);
4977
4978	if (pte != 0) {
4979		val |= MINCORE_INCORE;
4980		if ((pte & PG_MANAGED) == 0)
4981			return (val);
4982
4983		m = PHYS_TO_VM_PAGE(pa);
4984
4985		/*
4986		 * Modified by us
4987		 */
4988		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4989			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4990		else {
4991			/*
4992			 * Modified by someone else
4993			 */
4994			vm_page_lock_queues();
4995			if (m->dirty || pmap_is_modified(m))
4996				val |= MINCORE_MODIFIED_OTHER;
4997			vm_page_unlock_queues();
4998		}
4999		/*
5000		 * Referenced by us
5001		 */
5002		if (pte & PG_A)
5003			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5004		else {
5005			/*
5006			 * Referenced by someone else
5007			 */
5008			vm_page_lock_queues();
5009			if ((m->flags & PG_REFERENCED) ||
5010			    pmap_is_referenced(m))
5011				val |= MINCORE_REFERENCED_OTHER;
5012			vm_page_unlock_queues();
5013		}
5014	}
5015	return (val);
5016}
5017
5018void
5019pmap_activate(struct thread *td)
5020{
5021	pmap_t	pmap, oldpmap;
5022	u_int32_t  cr3;
5023
5024	critical_enter();
5025	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5026	oldpmap = PCPU_GET(curpmap);
5027#if defined(SMP)
5028	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
5029	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
5030#else
5031	oldpmap->pm_active &= ~1;
5032	pmap->pm_active |= 1;
5033#endif
5034#ifdef PAE
5035	cr3 = vtophys(pmap->pm_pdpt);
5036#else
5037	cr3 = vtophys(pmap->pm_pdir);
5038#endif
5039	/*
5040	 * pmap_activate is for the current thread on the current cpu
5041	 */
5042	td->td_pcb->pcb_cr3 = cr3;
5043	load_cr3(cr3);
5044	PCPU_SET(curpmap, pmap);
5045	critical_exit();
5046}
5047
5048void
5049pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5050{
5051}
5052
5053/*
5054 *	Increase the starting virtual address of the given mapping if a
5055 *	different alignment might result in more superpage mappings.
5056 */
5057void
5058pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5059    vm_offset_t *addr, vm_size_t size)
5060{
5061	vm_offset_t superpage_offset;
5062
5063	if (size < NBPDR)
5064		return;
5065	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5066		offset += ptoa(object->pg_color);
5067	superpage_offset = offset & PDRMASK;
5068	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5069	    (*addr & PDRMASK) == superpage_offset)
5070		return;
5071	if ((*addr & PDRMASK) < superpage_offset)
5072		*addr = (*addr & ~PDRMASK) + superpage_offset;
5073	else
5074		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5075}
5076
5077
5078#if defined(PMAP_DEBUG)
5079pmap_pid_dump(int pid)
5080{
5081	pmap_t pmap;
5082	struct proc *p;
5083	int npte = 0;
5084	int index;
5085
5086	sx_slock(&allproc_lock);
5087	FOREACH_PROC_IN_SYSTEM(p) {
5088		if (p->p_pid != pid)
5089			continue;
5090
5091		if (p->p_vmspace) {
5092			int i,j;
5093			index = 0;
5094			pmap = vmspace_pmap(p->p_vmspace);
5095			for (i = 0; i < NPDEPTD; i++) {
5096				pd_entry_t *pde;
5097				pt_entry_t *pte;
5098				vm_offset_t base = i << PDRSHIFT;
5099
5100				pde = &pmap->pm_pdir[i];
5101				if (pde && pmap_pde_v(pde)) {
5102					for (j = 0; j < NPTEPG; j++) {
5103						vm_offset_t va = base + (j << PAGE_SHIFT);
5104						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5105							if (index) {
5106								index = 0;
5107								printf("\n");
5108							}
5109							sx_sunlock(&allproc_lock);
5110							return (npte);
5111						}
5112						pte = pmap_pte(pmap, va);
5113						if (pte && pmap_pte_v(pte)) {
5114							pt_entry_t pa;
5115							vm_page_t m;
5116							pa = *pte;
5117							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5118							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5119								va, pa, m->hold_count, m->wire_count, m->flags);
5120							npte++;
5121							index++;
5122							if (index >= 2) {
5123								index = 0;
5124								printf("\n");
5125							} else {
5126								printf(" ");
5127							}
5128						}
5129					}
5130				}
5131			}
5132		}
5133	}
5134	sx_sunlock(&allproc_lock);
5135	return (npte);
5136}
5137#endif
5138
5139#if defined(DEBUG)
5140
5141static void	pads(pmap_t pm);
5142void		pmap_pvdump(vm_offset_t pa);
5143
5144/* print address space of pmap*/
5145static void
5146pads(pmap_t pm)
5147{
5148	int i, j;
5149	vm_paddr_t va;
5150	pt_entry_t *ptep;
5151
5152	if (pm == kernel_pmap)
5153		return;
5154	for (i = 0; i < NPDEPTD; i++)
5155		if (pm->pm_pdir[i])
5156			for (j = 0; j < NPTEPG; j++) {
5157				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5158				if (pm == kernel_pmap && va < KERNBASE)
5159					continue;
5160				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5161					continue;
5162				ptep = pmap_pte(pm, va);
5163				if (pmap_pte_v(ptep))
5164					printf("%x:%x ", va, *ptep);
5165			};
5166
5167}
5168
5169void
5170pmap_pvdump(vm_paddr_t pa)
5171{
5172	pv_entry_t pv;
5173	pmap_t pmap;
5174	vm_page_t m;
5175
5176	printf("pa %x", pa);
5177	m = PHYS_TO_VM_PAGE(pa);
5178	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5179		pmap = PV_PMAP(pv);
5180		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5181		pads(pmap);
5182	}
5183	printf(" ");
5184}
5185#endif
5186