pmap.c revision 205773
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 205773 2010-03-27 18:24:27Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#ifdef __GNUC_GNU_INLINE__
166#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167#else
168#define PMAP_INLINE	extern inline
169#endif
170#else
171#define PMAP_INLINE
172#endif
173
174#define PV_STATS
175#ifdef PV_STATS
176#define PV_STAT(x)	do { x ; } while (0)
177#else
178#define PV_STAT(x)	do { } while (0)
179#endif
180
181#define	pa_index(pa)	((pa) >> PDRSHIFT)
182#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183
184/*
185 * Get PDEs and PTEs for user/kernel address space
186 */
187#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189
190#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195
196#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197    atomic_clear_int((u_int *)(pte), PG_W))
198#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199
200struct pmap kernel_pmap_store;
201LIST_HEAD(pmaplist, pmap);
202static struct pmaplist allpmaps;
203static struct mtx allpmaps_lock;
204
205vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
206vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
207int pgeflag = 0;		/* PG_G or-in */
208int pseflag = 0;		/* PG_PS or-in */
209
210static int nkpt = NKPT;
211vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
212extern u_int32_t KERNend;
213extern u_int32_t KPTphys;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217static uma_zone_t pdptzone;
218#endif
219
220static int pat_works = 0;		/* Is page attribute table sane? */
221
222SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pg_ps_enabled = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
226    "Are large page mappings enabled?");
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0, *KPTmap;
251static pt_entry_t *CMAP3;
252static pd_entry_t *KPTD;
253caddr_t CADDR1 = 0, ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
283static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
284static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
285static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
286static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
287static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
288		    vm_offset_t va);
289static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
290
291static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
292static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
293    vm_prot_t prot);
294static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
295    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
296static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
297static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
298static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
299static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
300static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
301static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
302static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
303static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
304static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
305    vm_prot_t prot);
306static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
307static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
308    vm_page_t *free);
309static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
310    vm_page_t *free);
311static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
312static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
313    vm_page_t *free);
314static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
315					vm_offset_t va);
316static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
317static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
318    vm_page_t m);
319static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
320    pd_entry_t newpde);
321static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
322
323static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
324
325static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
326static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
327static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
328static void pmap_pte_release(pt_entry_t *pte);
329static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
330#ifdef PAE
331static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
332#endif
333static void pmap_set_pg(void);
334
335CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
336CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
337
338/*
339 * If you get an error here, then you set KVA_PAGES wrong! See the
340 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
341 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
342 */
343CTASSERT(KERNBASE % (1 << 24) == 0);
344
345/*
346 *	Bootstrap the system enough to run with virtual memory.
347 *
348 *	On the i386 this is called after mapping has already been enabled
349 *	and just syncs the pmap module with what has already been done.
350 *	[We can't call it easily with mapping off since the kernel is not
351 *	mapped with PA == VA, hence we would have to relocate every address
352 *	from the linked base (virtual) address "KERNBASE" to the actual
353 *	(physical) address starting relative to 0]
354 */
355void
356pmap_bootstrap(vm_paddr_t firstaddr)
357{
358	vm_offset_t va;
359	pt_entry_t *pte, *unused;
360	struct sysmaps *sysmaps;
361	int i;
362
363	/*
364	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
365	 * large. It should instead be correctly calculated in locore.s and
366	 * not based on 'first' (which is a physical address, not a virtual
367	 * address, for the start of unused physical memory). The kernel
368	 * page tables are NOT double mapped and thus should not be included
369	 * in this calculation.
370	 */
371	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
372
373	virtual_end = VM_MAX_KERNEL_ADDRESS;
374
375	/*
376	 * Initialize the kernel pmap (which is statically allocated).
377	 */
378	PMAP_LOCK_INIT(kernel_pmap);
379	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
380#ifdef PAE
381	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
382#endif
383	kernel_pmap->pm_root = NULL;
384	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
385	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
386	LIST_INIT(&allpmaps);
387
388	/*
389	 * Request a spin mutex so that changes to allpmaps cannot be
390	 * preempted by smp_rendezvous_cpus().  Otherwise,
391	 * pmap_update_pde_kernel() could access allpmaps while it is
392	 * being changed.
393	 */
394	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
395	mtx_lock_spin(&allpmaps_lock);
396	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
397	mtx_unlock_spin(&allpmaps_lock);
398
399	/*
400	 * Reserve some special page table entries/VA space for temporary
401	 * mapping of pages.
402	 */
403#define	SYSMAP(c, p, v, n)	\
404	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
405
406	va = virtual_avail;
407	pte = vtopte(va);
408
409	/*
410	 * CMAP1/CMAP2 are used for zeroing and copying pages.
411	 * CMAP3 is used for the idle process page zeroing.
412	 */
413	for (i = 0; i < MAXCPU; i++) {
414		sysmaps = &sysmaps_pcpu[i];
415		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
416		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
417		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
418	}
419	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
420	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
421
422	/*
423	 * Crashdump maps.
424	 */
425	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
426
427	/*
428	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
429	 */
430	SYSMAP(caddr_t, unused, ptvmmap, 1)
431
432	/*
433	 * msgbufp is used to map the system message buffer.
434	 */
435	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
436
437	/*
438	 * KPTmap is used by pmap_kextract().
439	 */
440	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
441
442	for (i = 0; i < NKPT; i++)
443		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
444
445	/*
446	 * Adjust the start of the KPTD and KPTmap so that the implementation
447	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
448	 */
449	KPTD -= KPTDI;
450	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
451
452	/*
453	 * ptemap is used for pmap_pte_quick
454	 */
455	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
456	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
457
458	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
459
460	virtual_avail = va;
461
462	/*
463	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
464	 * physical memory region that is used by the ACPI wakeup code.  This
465	 * mapping must not have PG_G set.
466	 */
467#ifdef XBOX
468	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
469	 * an early stadium, we cannot yet neatly map video memory ... :-(
470	 * Better fixes are very welcome! */
471	if (!arch_i386_is_xbox)
472#endif
473	for (i = 1; i < NKPT; i++)
474		PTD[i] = 0;
475
476	/* Initialize the PAT MSR if present. */
477	pmap_init_pat();
478
479	/* Turn on PG_G on kernel page(s) */
480	pmap_set_pg();
481}
482
483/*
484 * Setup the PAT MSR.
485 */
486void
487pmap_init_pat(void)
488{
489	uint64_t pat_msr;
490	char *sysenv;
491	static int pat_tested = 0;
492
493	/* Bail if this CPU doesn't implement PAT. */
494	if (!(cpu_feature & CPUID_PAT))
495		return;
496
497	/*
498	 * Due to some Intel errata, we can only safely use the lower 4
499	 * PAT entries.
500	 *
501	 *   Intel Pentium III Processor Specification Update
502	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
503	 * or Mode C Paging)
504	 *
505	 *   Intel Pentium IV  Processor Specification Update
506	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
507	 *
508	 * Some Apple Macs based on nVidia chipsets cannot enter ACPI mode
509	 * via SMI# when we use upper 4 PAT entries for unknown reason.
510	 */
511	if (!pat_tested) {
512		if (cpu_vendor_id != CPU_VENDOR_INTEL ||
513		    (CPUID_TO_FAMILY(cpu_id) == 6 &&
514		    CPUID_TO_MODEL(cpu_id) >= 0xe)) {
515			pat_works = 1;
516			sysenv = getenv("smbios.system.product");
517			if (sysenv != NULL) {
518				if (strncmp(sysenv, "MacBook5,1", 10) == 0 ||
519				    strncmp(sysenv, "MacBookPro5,5", 13) == 0 ||
520				    strncmp(sysenv, "Macmini3,1", 10) == 0)
521					pat_works = 0;
522				freeenv(sysenv);
523			}
524		}
525		pat_tested = 1;
526	}
527
528	/* Initialize default PAT entries. */
529	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
530	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
531	    PAT_VALUE(2, PAT_UNCACHED) |
532	    PAT_VALUE(3, PAT_UNCACHEABLE) |
533	    PAT_VALUE(4, PAT_WRITE_BACK) |
534	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
535	    PAT_VALUE(6, PAT_UNCACHED) |
536	    PAT_VALUE(7, PAT_UNCACHEABLE);
537
538	if (pat_works) {
539		/*
540		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
541		 * Program 4 and 5 as WP and WC.
542		 * Leave 6 and 7 as UC- and UC.
543		 */
544		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
545		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
546		    PAT_VALUE(5, PAT_WRITE_COMBINING);
547	} else {
548		/*
549		 * Just replace PAT Index 2 with WC instead of UC-.
550		 */
551		pat_msr &= ~PAT_MASK(2);
552		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
553	}
554	wrmsr(MSR_PAT, pat_msr);
555}
556
557/*
558 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
559 */
560static void
561pmap_set_pg(void)
562{
563	pt_entry_t *pte;
564	vm_offset_t va, endva;
565
566	if (pgeflag == 0)
567		return;
568
569	endva = KERNBASE + KERNend;
570
571	if (pseflag) {
572		va = KERNBASE + KERNLOAD;
573		while (va  < endva) {
574			pdir_pde(PTD, va) |= pgeflag;
575			invltlb();	/* Play it safe, invltlb() every time */
576			va += NBPDR;
577		}
578	} else {
579		va = (vm_offset_t)btext;
580		while (va < endva) {
581			pte = vtopte(va);
582			if (*pte)
583				*pte |= pgeflag;
584			invltlb();	/* Play it safe, invltlb() every time */
585			va += PAGE_SIZE;
586		}
587	}
588}
589
590/*
591 * Initialize a vm_page's machine-dependent fields.
592 */
593void
594pmap_page_init(vm_page_t m)
595{
596
597	TAILQ_INIT(&m->md.pv_list);
598	m->md.pat_mode = PAT_WRITE_BACK;
599}
600
601#ifdef PAE
602static void *
603pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
604{
605
606	/* Inform UMA that this allocator uses kernel_map/object. */
607	*flags = UMA_SLAB_KERNEL;
608	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
609	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
610}
611#endif
612
613/*
614 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
615 * Requirements:
616 *  - Must deal with pages in order to ensure that none of the PG_* bits
617 *    are ever set, PG_V in particular.
618 *  - Assumes we can write to ptes without pte_store() atomic ops, even
619 *    on PAE systems.  This should be ok.
620 *  - Assumes nothing will ever test these addresses for 0 to indicate
621 *    no mapping instead of correctly checking PG_V.
622 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
623 * Because PG_V is never set, there can be no mappings to invalidate.
624 */
625static vm_offset_t
626pmap_ptelist_alloc(vm_offset_t *head)
627{
628	pt_entry_t *pte;
629	vm_offset_t va;
630
631	va = *head;
632	if (va == 0)
633		return (va);	/* Out of memory */
634	pte = vtopte(va);
635	*head = *pte;
636	if (*head & PG_V)
637		panic("pmap_ptelist_alloc: va with PG_V set!");
638	*pte = 0;
639	return (va);
640}
641
642static void
643pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
644{
645	pt_entry_t *pte;
646
647	if (va & PG_V)
648		panic("pmap_ptelist_free: freeing va with PG_V set!");
649	pte = vtopte(va);
650	*pte = *head;		/* virtual! PG_V is 0 though */
651	*head = va;
652}
653
654static void
655pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
656{
657	int i;
658	vm_offset_t va;
659
660	*head = 0;
661	for (i = npages - 1; i >= 0; i--) {
662		va = (vm_offset_t)base + i * PAGE_SIZE;
663		pmap_ptelist_free(head, va);
664	}
665}
666
667
668/*
669 *	Initialize the pmap module.
670 *	Called by vm_init, to initialize any structures that the pmap
671 *	system needs to map virtual memory.
672 */
673void
674pmap_init(void)
675{
676	vm_page_t mpte;
677	vm_size_t s;
678	int i, pv_npg;
679
680	/*
681	 * Initialize the vm page array entries for the kernel pmap's
682	 * page table pages.
683	 */
684	for (i = 0; i < NKPT; i++) {
685		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
686		KASSERT(mpte >= vm_page_array &&
687		    mpte < &vm_page_array[vm_page_array_size],
688		    ("pmap_init: page table page is out of range"));
689		mpte->pindex = i + KPTDI;
690		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
691	}
692
693	/*
694	 * Initialize the address space (zone) for the pv entries.  Set a
695	 * high water mark so that the system can recover from excessive
696	 * numbers of pv entries.
697	 */
698	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
699	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
700	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
701	pv_entry_max = roundup(pv_entry_max, _NPCPV);
702	pv_entry_high_water = 9 * (pv_entry_max / 10);
703
704	/*
705	 * If the kernel is running in a virtual machine on an AMD Family 10h
706	 * processor, then it must assume that MCA is enabled by the virtual
707	 * machine monitor.
708	 */
709	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
710	    CPUID_TO_FAMILY(cpu_id) == 0x10)
711		workaround_erratum383 = 1;
712
713	/*
714	 * Are large page mappings supported and enabled?
715	 */
716	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
717	if (pseflag == 0)
718		pg_ps_enabled = 0;
719	else if (pg_ps_enabled) {
720		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
721		    ("pmap_init: can't assign to pagesizes[1]"));
722		pagesizes[1] = NBPDR;
723	}
724
725	/*
726	 * Calculate the size of the pv head table for superpages.
727	 */
728	for (i = 0; phys_avail[i + 1]; i += 2);
729	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
730
731	/*
732	 * Allocate memory for the pv head table for superpages.
733	 */
734	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
735	s = round_page(s);
736	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
737	for (i = 0; i < pv_npg; i++)
738		TAILQ_INIT(&pv_table[i].pv_list);
739
740	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
741	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
742	    PAGE_SIZE * pv_maxchunks);
743	if (pv_chunkbase == NULL)
744		panic("pmap_init: not enough kvm for pv chunks");
745	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
746#ifdef PAE
747	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
748	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
749	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
750	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
751#endif
752}
753
754
755SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
756	"Max number of PV entries");
757SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
758	"Page share factor per proc");
759
760SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
761    "2/4MB page mapping counters");
762
763static u_long pmap_pde_demotions;
764SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
765    &pmap_pde_demotions, 0, "2/4MB page demotions");
766
767static u_long pmap_pde_mappings;
768SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
769    &pmap_pde_mappings, 0, "2/4MB page mappings");
770
771static u_long pmap_pde_p_failures;
772SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
773    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
774
775static u_long pmap_pde_promotions;
776SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
777    &pmap_pde_promotions, 0, "2/4MB page promotions");
778
779/***************************************************
780 * Low level helper routines.....
781 ***************************************************/
782
783/*
784 * Determine the appropriate bits to set in a PTE or PDE for a specified
785 * caching mode.
786 */
787int
788pmap_cache_bits(int mode, boolean_t is_pde)
789{
790	int pat_flag, pat_index, cache_bits;
791
792	/* The PAT bit is different for PTE's and PDE's. */
793	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
794
795	/* If we don't support PAT, map extended modes to older ones. */
796	if (!(cpu_feature & CPUID_PAT)) {
797		switch (mode) {
798		case PAT_UNCACHEABLE:
799		case PAT_WRITE_THROUGH:
800		case PAT_WRITE_BACK:
801			break;
802		case PAT_UNCACHED:
803		case PAT_WRITE_COMBINING:
804		case PAT_WRITE_PROTECTED:
805			mode = PAT_UNCACHEABLE;
806			break;
807		}
808	}
809
810	/* Map the caching mode to a PAT index. */
811	if (pat_works) {
812		switch (mode) {
813		case PAT_UNCACHEABLE:
814			pat_index = 3;
815			break;
816		case PAT_WRITE_THROUGH:
817			pat_index = 1;
818			break;
819		case PAT_WRITE_BACK:
820			pat_index = 0;
821			break;
822		case PAT_UNCACHED:
823			pat_index = 2;
824			break;
825		case PAT_WRITE_COMBINING:
826			pat_index = 5;
827			break;
828		case PAT_WRITE_PROTECTED:
829			pat_index = 4;
830			break;
831		default:
832			panic("Unknown caching mode %d\n", mode);
833		}
834	} else {
835		switch (mode) {
836		case PAT_UNCACHED:
837		case PAT_UNCACHEABLE:
838		case PAT_WRITE_PROTECTED:
839			pat_index = 3;
840			break;
841		case PAT_WRITE_THROUGH:
842			pat_index = 1;
843			break;
844		case PAT_WRITE_BACK:
845			pat_index = 0;
846			break;
847		case PAT_WRITE_COMBINING:
848			pat_index = 2;
849			break;
850		default:
851			panic("Unknown caching mode %d\n", mode);
852		}
853	}
854
855	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
856	cache_bits = 0;
857	if (pat_index & 0x4)
858		cache_bits |= pat_flag;
859	if (pat_index & 0x2)
860		cache_bits |= PG_NC_PCD;
861	if (pat_index & 0x1)
862		cache_bits |= PG_NC_PWT;
863	return (cache_bits);
864}
865
866/*
867 * The caller is responsible for maintaining TLB consistency.
868 */
869static void
870pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
871{
872	pd_entry_t *pde;
873	pmap_t pmap;
874	boolean_t PTD_updated;
875
876	PTD_updated = FALSE;
877	mtx_lock_spin(&allpmaps_lock);
878	LIST_FOREACH(pmap, &allpmaps, pm_list) {
879		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
880		    PG_FRAME))
881			PTD_updated = TRUE;
882		pde = pmap_pde(pmap, va);
883		pde_store(pde, newpde);
884	}
885	mtx_unlock_spin(&allpmaps_lock);
886	KASSERT(PTD_updated,
887	    ("pmap_kenter_pde: current page table is not in allpmaps"));
888}
889
890/*
891 * After changing the page size for the specified virtual address in the page
892 * table, flush the corresponding entries from the processor's TLB.  Only the
893 * calling processor's TLB is affected.
894 *
895 * The calling thread must be pinned to a processor.
896 */
897static void
898pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
899{
900	u_long cr4;
901
902	if ((newpde & PG_PS) == 0)
903		/* Demotion: flush a specific 2MB page mapping. */
904		invlpg(va);
905	else if ((newpde & PG_G) == 0)
906		/*
907		 * Promotion: flush every 4KB page mapping from the TLB
908		 * because there are too many to flush individually.
909		 */
910		invltlb();
911	else {
912		/*
913		 * Promotion: flush every 4KB page mapping from the TLB,
914		 * including any global (PG_G) mappings.
915		 */
916		cr4 = rcr4();
917		load_cr4(cr4 & ~CR4_PGE);
918		/*
919		 * Although preemption at this point could be detrimental to
920		 * performance, it would not lead to an error.
921		 */
922		load_cr4(cr4);
923	}
924}
925#ifdef SMP
926/*
927 * For SMP, these functions have to use the IPI mechanism for coherence.
928 *
929 * N.B.: Before calling any of the following TLB invalidation functions,
930 * the calling processor must ensure that all stores updating a non-
931 * kernel page table are globally performed.  Otherwise, another
932 * processor could cache an old, pre-update entry without being
933 * invalidated.  This can happen one of two ways: (1) The pmap becomes
934 * active on another processor after its pm_active field is checked by
935 * one of the following functions but before a store updating the page
936 * table is globally performed. (2) The pmap becomes active on another
937 * processor before its pm_active field is checked but due to
938 * speculative loads one of the following functions stills reads the
939 * pmap as inactive on the other processor.
940 *
941 * The kernel page table is exempt because its pm_active field is
942 * immutable.  The kernel page table is always active on every
943 * processor.
944 */
945void
946pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
947{
948	u_int cpumask;
949	u_int other_cpus;
950
951	sched_pin();
952	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
953		invlpg(va);
954		smp_invlpg(va);
955	} else {
956		cpumask = PCPU_GET(cpumask);
957		other_cpus = PCPU_GET(other_cpus);
958		if (pmap->pm_active & cpumask)
959			invlpg(va);
960		if (pmap->pm_active & other_cpus)
961			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
962	}
963	sched_unpin();
964}
965
966void
967pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
968{
969	u_int cpumask;
970	u_int other_cpus;
971	vm_offset_t addr;
972
973	sched_pin();
974	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
975		for (addr = sva; addr < eva; addr += PAGE_SIZE)
976			invlpg(addr);
977		smp_invlpg_range(sva, eva);
978	} else {
979		cpumask = PCPU_GET(cpumask);
980		other_cpus = PCPU_GET(other_cpus);
981		if (pmap->pm_active & cpumask)
982			for (addr = sva; addr < eva; addr += PAGE_SIZE)
983				invlpg(addr);
984		if (pmap->pm_active & other_cpus)
985			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
986			    sva, eva);
987	}
988	sched_unpin();
989}
990
991void
992pmap_invalidate_all(pmap_t pmap)
993{
994	u_int cpumask;
995	u_int other_cpus;
996
997	sched_pin();
998	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
999		invltlb();
1000		smp_invltlb();
1001	} else {
1002		cpumask = PCPU_GET(cpumask);
1003		other_cpus = PCPU_GET(other_cpus);
1004		if (pmap->pm_active & cpumask)
1005			invltlb();
1006		if (pmap->pm_active & other_cpus)
1007			smp_masked_invltlb(pmap->pm_active & other_cpus);
1008	}
1009	sched_unpin();
1010}
1011
1012void
1013pmap_invalidate_cache(void)
1014{
1015
1016	sched_pin();
1017	wbinvd();
1018	smp_cache_flush();
1019	sched_unpin();
1020}
1021
1022struct pde_action {
1023	cpumask_t store;	/* processor that updates the PDE */
1024	cpumask_t invalidate;	/* processors that invalidate their TLB */
1025	vm_offset_t va;
1026	pd_entry_t *pde;
1027	pd_entry_t newpde;
1028};
1029
1030static void
1031pmap_update_pde_kernel(void *arg)
1032{
1033	struct pde_action *act = arg;
1034	pd_entry_t *pde;
1035	pmap_t pmap;
1036
1037	if (act->store == PCPU_GET(cpumask))
1038		/*
1039		 * Elsewhere, this operation requires allpmaps_lock for
1040		 * synchronization.  Here, it does not because it is being
1041		 * performed in the context of an all_cpus rendezvous.
1042		 */
1043		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1044			pde = pmap_pde(pmap, act->va);
1045			pde_store(pde, act->newpde);
1046		}
1047}
1048
1049static void
1050pmap_update_pde_user(void *arg)
1051{
1052	struct pde_action *act = arg;
1053
1054	if (act->store == PCPU_GET(cpumask))
1055		pde_store(act->pde, act->newpde);
1056}
1057
1058static void
1059pmap_update_pde_teardown(void *arg)
1060{
1061	struct pde_action *act = arg;
1062
1063	if ((act->invalidate & PCPU_GET(cpumask)) != 0)
1064		pmap_update_pde_invalidate(act->va, act->newpde);
1065}
1066
1067/*
1068 * Change the page size for the specified virtual address in a way that
1069 * prevents any possibility of the TLB ever having two entries that map the
1070 * same virtual address using different page sizes.  This is the recommended
1071 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1072 * machine check exception for a TLB state that is improperly diagnosed as a
1073 * hardware error.
1074 */
1075static void
1076pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1077{
1078	struct pde_action act;
1079	cpumask_t active, cpumask;
1080
1081	sched_pin();
1082	cpumask = PCPU_GET(cpumask);
1083	if (pmap == kernel_pmap)
1084		active = all_cpus;
1085	else
1086		active = pmap->pm_active;
1087	if ((active & PCPU_GET(other_cpus)) != 0) {
1088		act.store = cpumask;
1089		act.invalidate = active;
1090		act.va = va;
1091		act.pde = pde;
1092		act.newpde = newpde;
1093		smp_rendezvous_cpus(cpumask | active,
1094		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1095		    pmap_update_pde_kernel : pmap_update_pde_user,
1096		    pmap_update_pde_teardown, &act);
1097	} else {
1098		if (pmap == kernel_pmap)
1099			pmap_kenter_pde(va, newpde);
1100		else
1101			pde_store(pde, newpde);
1102		if ((active & cpumask) != 0)
1103			pmap_update_pde_invalidate(va, newpde);
1104	}
1105	sched_unpin();
1106}
1107#else /* !SMP */
1108/*
1109 * Normal, non-SMP, 486+ invalidation functions.
1110 * We inline these within pmap.c for speed.
1111 */
1112PMAP_INLINE void
1113pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1114{
1115
1116	if (pmap == kernel_pmap || pmap->pm_active)
1117		invlpg(va);
1118}
1119
1120PMAP_INLINE void
1121pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1122{
1123	vm_offset_t addr;
1124
1125	if (pmap == kernel_pmap || pmap->pm_active)
1126		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1127			invlpg(addr);
1128}
1129
1130PMAP_INLINE void
1131pmap_invalidate_all(pmap_t pmap)
1132{
1133
1134	if (pmap == kernel_pmap || pmap->pm_active)
1135		invltlb();
1136}
1137
1138PMAP_INLINE void
1139pmap_invalidate_cache(void)
1140{
1141
1142	wbinvd();
1143}
1144
1145static void
1146pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1147{
1148
1149	if (pmap == kernel_pmap)
1150		pmap_kenter_pde(va, newpde);
1151	else
1152		pde_store(pde, newpde);
1153	if (pmap == kernel_pmap || pmap->pm_active)
1154		pmap_update_pde_invalidate(va, newpde);
1155}
1156#endif /* !SMP */
1157
1158void
1159pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1160{
1161
1162	KASSERT((sva & PAGE_MASK) == 0,
1163	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1164	KASSERT((eva & PAGE_MASK) == 0,
1165	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1166
1167	if (cpu_feature & CPUID_SS)
1168		; /* If "Self Snoop" is supported, do nothing. */
1169	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1170		 eva - sva < 2 * 1024 * 1024) {
1171
1172		/*
1173		 * Otherwise, do per-cache line flush.  Use the mfence
1174		 * instruction to insure that previous stores are
1175		 * included in the write-back.  The processor
1176		 * propagates flush to other processors in the cache
1177		 * coherence domain.
1178		 */
1179		mfence();
1180		for (; sva < eva; sva += cpu_clflush_line_size)
1181			clflush(sva);
1182		mfence();
1183	} else {
1184
1185		/*
1186		 * No targeted cache flush methods are supported by CPU,
1187		 * or the supplied range is bigger than 2MB.
1188		 * Globally invalidate cache.
1189		 */
1190		pmap_invalidate_cache();
1191	}
1192}
1193
1194/*
1195 * Are we current address space or kernel?  N.B. We return FALSE when
1196 * a pmap's page table is in use because a kernel thread is borrowing
1197 * it.  The borrowed page table can change spontaneously, making any
1198 * dependence on its continued use subject to a race condition.
1199 */
1200static __inline int
1201pmap_is_current(pmap_t pmap)
1202{
1203
1204	return (pmap == kernel_pmap ||
1205		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1206	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1207}
1208
1209/*
1210 * If the given pmap is not the current or kernel pmap, the returned pte must
1211 * be released by passing it to pmap_pte_release().
1212 */
1213pt_entry_t *
1214pmap_pte(pmap_t pmap, vm_offset_t va)
1215{
1216	pd_entry_t newpf;
1217	pd_entry_t *pde;
1218
1219	pde = pmap_pde(pmap, va);
1220	if (*pde & PG_PS)
1221		return (pde);
1222	if (*pde != 0) {
1223		/* are we current address space or kernel? */
1224		if (pmap_is_current(pmap))
1225			return (vtopte(va));
1226		mtx_lock(&PMAP2mutex);
1227		newpf = *pde & PG_FRAME;
1228		if ((*PMAP2 & PG_FRAME) != newpf) {
1229			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1230			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1231		}
1232		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1233	}
1234	return (0);
1235}
1236
1237/*
1238 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1239 * being NULL.
1240 */
1241static __inline void
1242pmap_pte_release(pt_entry_t *pte)
1243{
1244
1245	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1246		mtx_unlock(&PMAP2mutex);
1247}
1248
1249static __inline void
1250invlcaddr(void *caddr)
1251{
1252
1253	invlpg((u_int)caddr);
1254}
1255
1256/*
1257 * Super fast pmap_pte routine best used when scanning
1258 * the pv lists.  This eliminates many coarse-grained
1259 * invltlb calls.  Note that many of the pv list
1260 * scans are across different pmaps.  It is very wasteful
1261 * to do an entire invltlb for checking a single mapping.
1262 *
1263 * If the given pmap is not the current pmap, vm_page_queue_mtx
1264 * must be held and curthread pinned to a CPU.
1265 */
1266static pt_entry_t *
1267pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1268{
1269	pd_entry_t newpf;
1270	pd_entry_t *pde;
1271
1272	pde = pmap_pde(pmap, va);
1273	if (*pde & PG_PS)
1274		return (pde);
1275	if (*pde != 0) {
1276		/* are we current address space or kernel? */
1277		if (pmap_is_current(pmap))
1278			return (vtopte(va));
1279		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1280		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1281		newpf = *pde & PG_FRAME;
1282		if ((*PMAP1 & PG_FRAME) != newpf) {
1283			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1284#ifdef SMP
1285			PMAP1cpu = PCPU_GET(cpuid);
1286#endif
1287			invlcaddr(PADDR1);
1288			PMAP1changed++;
1289		} else
1290#ifdef SMP
1291		if (PMAP1cpu != PCPU_GET(cpuid)) {
1292			PMAP1cpu = PCPU_GET(cpuid);
1293			invlcaddr(PADDR1);
1294			PMAP1changedcpu++;
1295		} else
1296#endif
1297			PMAP1unchanged++;
1298		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1299	}
1300	return (0);
1301}
1302
1303/*
1304 *	Routine:	pmap_extract
1305 *	Function:
1306 *		Extract the physical page address associated
1307 *		with the given map/virtual_address pair.
1308 */
1309vm_paddr_t
1310pmap_extract(pmap_t pmap, vm_offset_t va)
1311{
1312	vm_paddr_t rtval;
1313	pt_entry_t *pte;
1314	pd_entry_t pde;
1315
1316	rtval = 0;
1317	PMAP_LOCK(pmap);
1318	pde = pmap->pm_pdir[va >> PDRSHIFT];
1319	if (pde != 0) {
1320		if ((pde & PG_PS) != 0)
1321			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1322		else {
1323			pte = pmap_pte(pmap, va);
1324			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1325			pmap_pte_release(pte);
1326		}
1327	}
1328	PMAP_UNLOCK(pmap);
1329	return (rtval);
1330}
1331
1332/*
1333 *	Routine:	pmap_extract_and_hold
1334 *	Function:
1335 *		Atomically extract and hold the physical page
1336 *		with the given pmap and virtual address pair
1337 *		if that mapping permits the given protection.
1338 */
1339vm_page_t
1340pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1341{
1342	pd_entry_t pde;
1343	pt_entry_t pte;
1344	vm_page_t m;
1345
1346	m = NULL;
1347	vm_page_lock_queues();
1348	PMAP_LOCK(pmap);
1349	pde = *pmap_pde(pmap, va);
1350	if (pde != 0) {
1351		if (pde & PG_PS) {
1352			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1353				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1354				    (va & PDRMASK));
1355				vm_page_hold(m);
1356			}
1357		} else {
1358			sched_pin();
1359			pte = *pmap_pte_quick(pmap, va);
1360			if (pte != 0 &&
1361			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1362				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1363				vm_page_hold(m);
1364			}
1365			sched_unpin();
1366		}
1367	}
1368	vm_page_unlock_queues();
1369	PMAP_UNLOCK(pmap);
1370	return (m);
1371}
1372
1373/***************************************************
1374 * Low level mapping routines.....
1375 ***************************************************/
1376
1377/*
1378 * Add a wired page to the kva.
1379 * Note: not SMP coherent.
1380 */
1381PMAP_INLINE void
1382pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1383{
1384	pt_entry_t *pte;
1385
1386	pte = vtopte(va);
1387	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1388}
1389
1390static __inline void
1391pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1392{
1393	pt_entry_t *pte;
1394
1395	pte = vtopte(va);
1396	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1397}
1398
1399/*
1400 * Remove a page from the kernel pagetables.
1401 * Note: not SMP coherent.
1402 */
1403PMAP_INLINE void
1404pmap_kremove(vm_offset_t va)
1405{
1406	pt_entry_t *pte;
1407
1408	pte = vtopte(va);
1409	pte_clear(pte);
1410}
1411
1412/*
1413 *	Used to map a range of physical addresses into kernel
1414 *	virtual address space.
1415 *
1416 *	The value passed in '*virt' is a suggested virtual address for
1417 *	the mapping. Architectures which can support a direct-mapped
1418 *	physical to virtual region can return the appropriate address
1419 *	within that region, leaving '*virt' unchanged. Other
1420 *	architectures should map the pages starting at '*virt' and
1421 *	update '*virt' with the first usable address after the mapped
1422 *	region.
1423 */
1424vm_offset_t
1425pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1426{
1427	vm_offset_t va, sva;
1428
1429	va = sva = *virt;
1430	while (start < end) {
1431		pmap_kenter(va, start);
1432		va += PAGE_SIZE;
1433		start += PAGE_SIZE;
1434	}
1435	pmap_invalidate_range(kernel_pmap, sva, va);
1436	*virt = va;
1437	return (sva);
1438}
1439
1440
1441/*
1442 * Add a list of wired pages to the kva
1443 * this routine is only used for temporary
1444 * kernel mappings that do not need to have
1445 * page modification or references recorded.
1446 * Note that old mappings are simply written
1447 * over.  The page *must* be wired.
1448 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1449 */
1450void
1451pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1452{
1453	pt_entry_t *endpte, oldpte, *pte;
1454
1455	oldpte = 0;
1456	pte = vtopte(sva);
1457	endpte = pte + count;
1458	while (pte < endpte) {
1459		oldpte |= *pte;
1460		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1461		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1462		pte++;
1463		ma++;
1464	}
1465	if ((oldpte & PG_V) != 0)
1466		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1467		    PAGE_SIZE);
1468}
1469
1470/*
1471 * This routine tears out page mappings from the
1472 * kernel -- it is meant only for temporary mappings.
1473 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1474 */
1475void
1476pmap_qremove(vm_offset_t sva, int count)
1477{
1478	vm_offset_t va;
1479
1480	va = sva;
1481	while (count-- > 0) {
1482		pmap_kremove(va);
1483		va += PAGE_SIZE;
1484	}
1485	pmap_invalidate_range(kernel_pmap, sva, va);
1486}
1487
1488/***************************************************
1489 * Page table page management routines.....
1490 ***************************************************/
1491static __inline void
1492pmap_free_zero_pages(vm_page_t free)
1493{
1494	vm_page_t m;
1495
1496	while (free != NULL) {
1497		m = free;
1498		free = m->right;
1499		/* Preserve the page's PG_ZERO setting. */
1500		vm_page_free_toq(m);
1501	}
1502}
1503
1504/*
1505 * Schedule the specified unused page table page to be freed.  Specifically,
1506 * add the page to the specified list of pages that will be released to the
1507 * physical memory manager after the TLB has been updated.
1508 */
1509static __inline void
1510pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1511{
1512
1513	if (set_PG_ZERO)
1514		m->flags |= PG_ZERO;
1515	else
1516		m->flags &= ~PG_ZERO;
1517	m->right = *free;
1518	*free = m;
1519}
1520
1521/*
1522 * Inserts the specified page table page into the specified pmap's collection
1523 * of idle page table pages.  Each of a pmap's page table pages is responsible
1524 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1525 * ordered by this virtual address range.
1526 */
1527static void
1528pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1529{
1530	vm_page_t root;
1531
1532	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1533	root = pmap->pm_root;
1534	if (root == NULL) {
1535		mpte->left = NULL;
1536		mpte->right = NULL;
1537	} else {
1538		root = vm_page_splay(mpte->pindex, root);
1539		if (mpte->pindex < root->pindex) {
1540			mpte->left = root->left;
1541			mpte->right = root;
1542			root->left = NULL;
1543		} else if (mpte->pindex == root->pindex)
1544			panic("pmap_insert_pt_page: pindex already inserted");
1545		else {
1546			mpte->right = root->right;
1547			mpte->left = root;
1548			root->right = NULL;
1549		}
1550	}
1551	pmap->pm_root = mpte;
1552}
1553
1554/*
1555 * Looks for a page table page mapping the specified virtual address in the
1556 * specified pmap's collection of idle page table pages.  Returns NULL if there
1557 * is no page table page corresponding to the specified virtual address.
1558 */
1559static vm_page_t
1560pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1561{
1562	vm_page_t mpte;
1563	vm_pindex_t pindex = va >> PDRSHIFT;
1564
1565	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1566	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1567		mpte = vm_page_splay(pindex, mpte);
1568		if ((pmap->pm_root = mpte)->pindex != pindex)
1569			mpte = NULL;
1570	}
1571	return (mpte);
1572}
1573
1574/*
1575 * Removes the specified page table page from the specified pmap's collection
1576 * of idle page table pages.  The specified page table page must be a member of
1577 * the pmap's collection.
1578 */
1579static void
1580pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1581{
1582	vm_page_t root;
1583
1584	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1585	if (mpte != pmap->pm_root)
1586		vm_page_splay(mpte->pindex, pmap->pm_root);
1587	if (mpte->left == NULL)
1588		root = mpte->right;
1589	else {
1590		root = vm_page_splay(mpte->pindex, mpte->left);
1591		root->right = mpte->right;
1592	}
1593	pmap->pm_root = root;
1594}
1595
1596/*
1597 * This routine unholds page table pages, and if the hold count
1598 * drops to zero, then it decrements the wire count.
1599 */
1600static __inline int
1601pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1602{
1603
1604	--m->wire_count;
1605	if (m->wire_count == 0)
1606		return _pmap_unwire_pte_hold(pmap, m, free);
1607	else
1608		return 0;
1609}
1610
1611static int
1612_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1613{
1614	vm_offset_t pteva;
1615
1616	/*
1617	 * unmap the page table page
1618	 */
1619	pmap->pm_pdir[m->pindex] = 0;
1620	--pmap->pm_stats.resident_count;
1621
1622	/*
1623	 * This is a release store so that the ordinary store unmapping
1624	 * the page table page is globally performed before TLB shoot-
1625	 * down is begun.
1626	 */
1627	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1628
1629	/*
1630	 * Do an invltlb to make the invalidated mapping
1631	 * take effect immediately.
1632	 */
1633	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1634	pmap_invalidate_page(pmap, pteva);
1635
1636	/*
1637	 * Put page on a list so that it is released after
1638	 * *ALL* TLB shootdown is done
1639	 */
1640	pmap_add_delayed_free_list(m, free, TRUE);
1641
1642	return 1;
1643}
1644
1645/*
1646 * After removing a page table entry, this routine is used to
1647 * conditionally free the page, and manage the hold/wire counts.
1648 */
1649static int
1650pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1651{
1652	pd_entry_t ptepde;
1653	vm_page_t mpte;
1654
1655	if (va >= VM_MAXUSER_ADDRESS)
1656		return 0;
1657	ptepde = *pmap_pde(pmap, va);
1658	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1659	return pmap_unwire_pte_hold(pmap, mpte, free);
1660}
1661
1662void
1663pmap_pinit0(pmap_t pmap)
1664{
1665
1666	PMAP_LOCK_INIT(pmap);
1667	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1668#ifdef PAE
1669	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1670#endif
1671	pmap->pm_root = NULL;
1672	pmap->pm_active = 0;
1673	PCPU_SET(curpmap, pmap);
1674	TAILQ_INIT(&pmap->pm_pvchunk);
1675	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1676	mtx_lock_spin(&allpmaps_lock);
1677	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1678	mtx_unlock_spin(&allpmaps_lock);
1679}
1680
1681/*
1682 * Initialize a preallocated and zeroed pmap structure,
1683 * such as one in a vmspace structure.
1684 */
1685int
1686pmap_pinit(pmap_t pmap)
1687{
1688	vm_page_t m, ptdpg[NPGPTD];
1689	vm_paddr_t pa;
1690	static int color;
1691	int i;
1692
1693	PMAP_LOCK_INIT(pmap);
1694
1695	/*
1696	 * No need to allocate page table space yet but we do need a valid
1697	 * page directory table.
1698	 */
1699	if (pmap->pm_pdir == NULL) {
1700		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1701		    NBPTD);
1702
1703		if (pmap->pm_pdir == NULL) {
1704			PMAP_LOCK_DESTROY(pmap);
1705			return (0);
1706		}
1707#ifdef PAE
1708		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1709		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1710		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1711		    ("pmap_pinit: pdpt misaligned"));
1712		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1713		    ("pmap_pinit: pdpt above 4g"));
1714#endif
1715		pmap->pm_root = NULL;
1716	}
1717	KASSERT(pmap->pm_root == NULL,
1718	    ("pmap_pinit: pmap has reserved page table page(s)"));
1719
1720	/*
1721	 * allocate the page directory page(s)
1722	 */
1723	for (i = 0; i < NPGPTD;) {
1724		m = vm_page_alloc(NULL, color++,
1725		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1726		    VM_ALLOC_ZERO);
1727		if (m == NULL)
1728			VM_WAIT;
1729		else {
1730			ptdpg[i++] = m;
1731		}
1732	}
1733
1734	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1735
1736	for (i = 0; i < NPGPTD; i++) {
1737		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1738			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1739	}
1740
1741	mtx_lock_spin(&allpmaps_lock);
1742	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1743	mtx_unlock_spin(&allpmaps_lock);
1744	/* Wire in kernel global address entries. */
1745	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1746
1747	/* install self-referential address mapping entry(s) */
1748	for (i = 0; i < NPGPTD; i++) {
1749		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1750		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1751#ifdef PAE
1752		pmap->pm_pdpt[i] = pa | PG_V;
1753#endif
1754	}
1755
1756	pmap->pm_active = 0;
1757	TAILQ_INIT(&pmap->pm_pvchunk);
1758	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1759
1760	return (1);
1761}
1762
1763/*
1764 * this routine is called if the page table page is not
1765 * mapped correctly.
1766 */
1767static vm_page_t
1768_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1769{
1770	vm_paddr_t ptepa;
1771	vm_page_t m;
1772
1773	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1774	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1775	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1776
1777	/*
1778	 * Allocate a page table page.
1779	 */
1780	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1781	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1782		if (flags & M_WAITOK) {
1783			PMAP_UNLOCK(pmap);
1784			vm_page_unlock_queues();
1785			VM_WAIT;
1786			vm_page_lock_queues();
1787			PMAP_LOCK(pmap);
1788		}
1789
1790		/*
1791		 * Indicate the need to retry.  While waiting, the page table
1792		 * page may have been allocated.
1793		 */
1794		return (NULL);
1795	}
1796	if ((m->flags & PG_ZERO) == 0)
1797		pmap_zero_page(m);
1798
1799	/*
1800	 * Map the pagetable page into the process address space, if
1801	 * it isn't already there.
1802	 */
1803
1804	pmap->pm_stats.resident_count++;
1805
1806	ptepa = VM_PAGE_TO_PHYS(m);
1807	pmap->pm_pdir[ptepindex] =
1808		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1809
1810	return m;
1811}
1812
1813static vm_page_t
1814pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1815{
1816	unsigned ptepindex;
1817	pd_entry_t ptepa;
1818	vm_page_t m;
1819
1820	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1821	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1822	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1823
1824	/*
1825	 * Calculate pagetable page index
1826	 */
1827	ptepindex = va >> PDRSHIFT;
1828retry:
1829	/*
1830	 * Get the page directory entry
1831	 */
1832	ptepa = pmap->pm_pdir[ptepindex];
1833
1834	/*
1835	 * This supports switching from a 4MB page to a
1836	 * normal 4K page.
1837	 */
1838	if (ptepa & PG_PS) {
1839		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1840		ptepa = pmap->pm_pdir[ptepindex];
1841	}
1842
1843	/*
1844	 * If the page table page is mapped, we just increment the
1845	 * hold count, and activate it.
1846	 */
1847	if (ptepa) {
1848		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1849		m->wire_count++;
1850	} else {
1851		/*
1852		 * Here if the pte page isn't mapped, or if it has
1853		 * been deallocated.
1854		 */
1855		m = _pmap_allocpte(pmap, ptepindex, flags);
1856		if (m == NULL && (flags & M_WAITOK))
1857			goto retry;
1858	}
1859	return (m);
1860}
1861
1862
1863/***************************************************
1864* Pmap allocation/deallocation routines.
1865 ***************************************************/
1866
1867#ifdef SMP
1868/*
1869 * Deal with a SMP shootdown of other users of the pmap that we are
1870 * trying to dispose of.  This can be a bit hairy.
1871 */
1872static cpumask_t *lazymask;
1873static u_int lazyptd;
1874static volatile u_int lazywait;
1875
1876void pmap_lazyfix_action(void);
1877
1878void
1879pmap_lazyfix_action(void)
1880{
1881	cpumask_t mymask = PCPU_GET(cpumask);
1882
1883#ifdef COUNT_IPIS
1884	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1885#endif
1886	if (rcr3() == lazyptd)
1887		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1888	atomic_clear_int(lazymask, mymask);
1889	atomic_store_rel_int(&lazywait, 1);
1890}
1891
1892static void
1893pmap_lazyfix_self(cpumask_t mymask)
1894{
1895
1896	if (rcr3() == lazyptd)
1897		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1898	atomic_clear_int(lazymask, mymask);
1899}
1900
1901
1902static void
1903pmap_lazyfix(pmap_t pmap)
1904{
1905	cpumask_t mymask, mask;
1906	u_int spins;
1907
1908	while ((mask = pmap->pm_active) != 0) {
1909		spins = 50000000;
1910		mask = mask & -mask;	/* Find least significant set bit */
1911		mtx_lock_spin(&smp_ipi_mtx);
1912#ifdef PAE
1913		lazyptd = vtophys(pmap->pm_pdpt);
1914#else
1915		lazyptd = vtophys(pmap->pm_pdir);
1916#endif
1917		mymask = PCPU_GET(cpumask);
1918		if (mask == mymask) {
1919			lazymask = &pmap->pm_active;
1920			pmap_lazyfix_self(mymask);
1921		} else {
1922			atomic_store_rel_int((u_int *)&lazymask,
1923			    (u_int)&pmap->pm_active);
1924			atomic_store_rel_int(&lazywait, 0);
1925			ipi_selected(mask, IPI_LAZYPMAP);
1926			while (lazywait == 0) {
1927				ia32_pause();
1928				if (--spins == 0)
1929					break;
1930			}
1931		}
1932		mtx_unlock_spin(&smp_ipi_mtx);
1933		if (spins == 0)
1934			printf("pmap_lazyfix: spun for 50000000\n");
1935	}
1936}
1937
1938#else	/* SMP */
1939
1940/*
1941 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1942 * unlikely to have to even execute this code, including the fact
1943 * that the cleanup is deferred until the parent does a wait(2), which
1944 * means that another userland process has run.
1945 */
1946static void
1947pmap_lazyfix(pmap_t pmap)
1948{
1949	u_int cr3;
1950
1951	cr3 = vtophys(pmap->pm_pdir);
1952	if (cr3 == rcr3()) {
1953		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1954		pmap->pm_active &= ~(PCPU_GET(cpumask));
1955	}
1956}
1957#endif	/* SMP */
1958
1959/*
1960 * Release any resources held by the given physical map.
1961 * Called when a pmap initialized by pmap_pinit is being released.
1962 * Should only be called if the map contains no valid mappings.
1963 */
1964void
1965pmap_release(pmap_t pmap)
1966{
1967	vm_page_t m, ptdpg[NPGPTD];
1968	int i;
1969
1970	KASSERT(pmap->pm_stats.resident_count == 0,
1971	    ("pmap_release: pmap resident count %ld != 0",
1972	    pmap->pm_stats.resident_count));
1973	KASSERT(pmap->pm_root == NULL,
1974	    ("pmap_release: pmap has reserved page table page(s)"));
1975
1976	pmap_lazyfix(pmap);
1977	mtx_lock_spin(&allpmaps_lock);
1978	LIST_REMOVE(pmap, pm_list);
1979	mtx_unlock_spin(&allpmaps_lock);
1980
1981	for (i = 0; i < NPGPTD; i++)
1982		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1983		    PG_FRAME);
1984
1985	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1986	    sizeof(*pmap->pm_pdir));
1987
1988	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1989
1990	for (i = 0; i < NPGPTD; i++) {
1991		m = ptdpg[i];
1992#ifdef PAE
1993		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1994		    ("pmap_release: got wrong ptd page"));
1995#endif
1996		m->wire_count--;
1997		atomic_subtract_int(&cnt.v_wire_count, 1);
1998		vm_page_free_zero(m);
1999	}
2000	PMAP_LOCK_DESTROY(pmap);
2001}
2002
2003static int
2004kvm_size(SYSCTL_HANDLER_ARGS)
2005{
2006	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2007
2008	return sysctl_handle_long(oidp, &ksize, 0, req);
2009}
2010SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2011    0, 0, kvm_size, "IU", "Size of KVM");
2012
2013static int
2014kvm_free(SYSCTL_HANDLER_ARGS)
2015{
2016	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2017
2018	return sysctl_handle_long(oidp, &kfree, 0, req);
2019}
2020SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2021    0, 0, kvm_free, "IU", "Amount of KVM free");
2022
2023/*
2024 * grow the number of kernel page table entries, if needed
2025 */
2026void
2027pmap_growkernel(vm_offset_t addr)
2028{
2029	vm_paddr_t ptppaddr;
2030	vm_page_t nkpg;
2031	pd_entry_t newpdir;
2032
2033	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2034	addr = roundup2(addr, NBPDR);
2035	if (addr - 1 >= kernel_map->max_offset)
2036		addr = kernel_map->max_offset;
2037	while (kernel_vm_end < addr) {
2038		if (pdir_pde(PTD, kernel_vm_end)) {
2039			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2040			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2041				kernel_vm_end = kernel_map->max_offset;
2042				break;
2043			}
2044			continue;
2045		}
2046
2047		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2048		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2049		    VM_ALLOC_ZERO);
2050		if (nkpg == NULL)
2051			panic("pmap_growkernel: no memory to grow kernel");
2052
2053		nkpt++;
2054
2055		if ((nkpg->flags & PG_ZERO) == 0)
2056			pmap_zero_page(nkpg);
2057		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2058		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2059		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2060
2061		pmap_kenter_pde(kernel_vm_end, newpdir);
2062		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2063		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2064			kernel_vm_end = kernel_map->max_offset;
2065			break;
2066		}
2067	}
2068}
2069
2070
2071/***************************************************
2072 * page management routines.
2073 ***************************************************/
2074
2075CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2076CTASSERT(_NPCM == 11);
2077
2078static __inline struct pv_chunk *
2079pv_to_chunk(pv_entry_t pv)
2080{
2081
2082	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
2083}
2084
2085#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2086
2087#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2088#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2089
2090static uint32_t pc_freemask[11] = {
2091	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2092	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2093	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2094	PC_FREE0_9, PC_FREE10
2095};
2096
2097SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2098	"Current number of pv entries");
2099
2100#ifdef PV_STATS
2101static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2102
2103SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2104	"Current number of pv entry chunks");
2105SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2106	"Current number of pv entry chunks allocated");
2107SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2108	"Current number of pv entry chunks frees");
2109SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2110	"Number of times tried to get a chunk page but failed.");
2111
2112static long pv_entry_frees, pv_entry_allocs;
2113static int pv_entry_spare;
2114
2115SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2116	"Current number of pv entry frees");
2117SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2118	"Current number of pv entry allocs");
2119SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2120	"Current number of spare pv entries");
2121
2122static int pmap_collect_inactive, pmap_collect_active;
2123
2124SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2125	"Current number times pmap_collect called on inactive queue");
2126SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2127	"Current number times pmap_collect called on active queue");
2128#endif
2129
2130/*
2131 * We are in a serious low memory condition.  Resort to
2132 * drastic measures to free some pages so we can allocate
2133 * another pv entry chunk.  This is normally called to
2134 * unmap inactive pages, and if necessary, active pages.
2135 */
2136static void
2137pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2138{
2139	struct md_page *pvh;
2140	pd_entry_t *pde;
2141	pmap_t pmap;
2142	pt_entry_t *pte, tpte;
2143	pv_entry_t next_pv, pv;
2144	vm_offset_t va;
2145	vm_page_t m, free;
2146
2147	sched_pin();
2148	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2149		if (m->hold_count || m->busy)
2150			continue;
2151		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2152			va = pv->pv_va;
2153			pmap = PV_PMAP(pv);
2154			/* Avoid deadlock and lock recursion. */
2155			if (pmap > locked_pmap)
2156				PMAP_LOCK(pmap);
2157			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2158				continue;
2159			pmap->pm_stats.resident_count--;
2160			pde = pmap_pde(pmap, va);
2161			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2162			    " a 4mpage in page %p's pv list", m));
2163			pte = pmap_pte_quick(pmap, va);
2164			tpte = pte_load_clear(pte);
2165			KASSERT((tpte & PG_W) == 0,
2166			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2167			if (tpte & PG_A)
2168				vm_page_flag_set(m, PG_REFERENCED);
2169			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2170				vm_page_dirty(m);
2171			free = NULL;
2172			pmap_unuse_pt(pmap, va, &free);
2173			pmap_invalidate_page(pmap, va);
2174			pmap_free_zero_pages(free);
2175			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2176			if (TAILQ_EMPTY(&m->md.pv_list)) {
2177				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2178				if (TAILQ_EMPTY(&pvh->pv_list))
2179					vm_page_flag_clear(m, PG_WRITEABLE);
2180			}
2181			free_pv_entry(pmap, pv);
2182			if (pmap != locked_pmap)
2183				PMAP_UNLOCK(pmap);
2184		}
2185	}
2186	sched_unpin();
2187}
2188
2189
2190/*
2191 * free the pv_entry back to the free list
2192 */
2193static void
2194free_pv_entry(pmap_t pmap, pv_entry_t pv)
2195{
2196	vm_page_t m;
2197	struct pv_chunk *pc;
2198	int idx, field, bit;
2199
2200	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2201	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2202	PV_STAT(pv_entry_frees++);
2203	PV_STAT(pv_entry_spare++);
2204	pv_entry_count--;
2205	pc = pv_to_chunk(pv);
2206	idx = pv - &pc->pc_pventry[0];
2207	field = idx / 32;
2208	bit = idx % 32;
2209	pc->pc_map[field] |= 1ul << bit;
2210	/* move to head of list */
2211	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2212	for (idx = 0; idx < _NPCM; idx++)
2213		if (pc->pc_map[idx] != pc_freemask[idx]) {
2214			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2215			return;
2216		}
2217	PV_STAT(pv_entry_spare -= _NPCPV);
2218	PV_STAT(pc_chunk_count--);
2219	PV_STAT(pc_chunk_frees++);
2220	/* entire chunk is free, return it */
2221	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2222	pmap_qremove((vm_offset_t)pc, 1);
2223	vm_page_unwire(m, 0);
2224	vm_page_free(m);
2225	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2226}
2227
2228/*
2229 * get a new pv_entry, allocating a block from the system
2230 * when needed.
2231 */
2232static pv_entry_t
2233get_pv_entry(pmap_t pmap, int try)
2234{
2235	static const struct timeval printinterval = { 60, 0 };
2236	static struct timeval lastprint;
2237	static vm_pindex_t colour;
2238	struct vpgqueues *pq;
2239	int bit, field;
2240	pv_entry_t pv;
2241	struct pv_chunk *pc;
2242	vm_page_t m;
2243
2244	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2245	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2246	PV_STAT(pv_entry_allocs++);
2247	pv_entry_count++;
2248	if (pv_entry_count > pv_entry_high_water)
2249		if (ratecheck(&lastprint, &printinterval))
2250			printf("Approaching the limit on PV entries, consider "
2251			    "increasing either the vm.pmap.shpgperproc or the "
2252			    "vm.pmap.pv_entry_max tunable.\n");
2253	pq = NULL;
2254retry:
2255	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2256	if (pc != NULL) {
2257		for (field = 0; field < _NPCM; field++) {
2258			if (pc->pc_map[field]) {
2259				bit = bsfl(pc->pc_map[field]);
2260				break;
2261			}
2262		}
2263		if (field < _NPCM) {
2264			pv = &pc->pc_pventry[field * 32 + bit];
2265			pc->pc_map[field] &= ~(1ul << bit);
2266			/* If this was the last item, move it to tail */
2267			for (field = 0; field < _NPCM; field++)
2268				if (pc->pc_map[field] != 0) {
2269					PV_STAT(pv_entry_spare--);
2270					return (pv);	/* not full, return */
2271				}
2272			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2273			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2274			PV_STAT(pv_entry_spare--);
2275			return (pv);
2276		}
2277	}
2278	/*
2279	 * Access to the ptelist "pv_vafree" is synchronized by the page
2280	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2281	 * remain non-empty until pmap_ptelist_alloc() completes.
2282	 */
2283	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2284	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2285	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2286		if (try) {
2287			pv_entry_count--;
2288			PV_STAT(pc_chunk_tryfail++);
2289			return (NULL);
2290		}
2291		/*
2292		 * Reclaim pv entries: At first, destroy mappings to
2293		 * inactive pages.  After that, if a pv chunk entry
2294		 * is still needed, destroy mappings to active pages.
2295		 */
2296		if (pq == NULL) {
2297			PV_STAT(pmap_collect_inactive++);
2298			pq = &vm_page_queues[PQ_INACTIVE];
2299		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2300			PV_STAT(pmap_collect_active++);
2301			pq = &vm_page_queues[PQ_ACTIVE];
2302		} else
2303			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2304		pmap_collect(pmap, pq);
2305		goto retry;
2306	}
2307	PV_STAT(pc_chunk_count++);
2308	PV_STAT(pc_chunk_allocs++);
2309	colour++;
2310	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2311	pmap_qenter((vm_offset_t)pc, &m, 1);
2312	pc->pc_pmap = pmap;
2313	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2314	for (field = 1; field < _NPCM; field++)
2315		pc->pc_map[field] = pc_freemask[field];
2316	pv = &pc->pc_pventry[0];
2317	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2318	PV_STAT(pv_entry_spare += _NPCPV - 1);
2319	return (pv);
2320}
2321
2322static __inline pv_entry_t
2323pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2324{
2325	pv_entry_t pv;
2326
2327	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2328	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2329		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2330			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2331			break;
2332		}
2333	}
2334	return (pv);
2335}
2336
2337static void
2338pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2339{
2340	struct md_page *pvh;
2341	pv_entry_t pv;
2342	vm_offset_t va_last;
2343	vm_page_t m;
2344
2345	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2346	KASSERT((pa & PDRMASK) == 0,
2347	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2348
2349	/*
2350	 * Transfer the 4mpage's pv entry for this mapping to the first
2351	 * page's pv list.
2352	 */
2353	pvh = pa_to_pvh(pa);
2354	va = trunc_4mpage(va);
2355	pv = pmap_pvh_remove(pvh, pmap, va);
2356	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2357	m = PHYS_TO_VM_PAGE(pa);
2358	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2359	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2360	va_last = va + NBPDR - PAGE_SIZE;
2361	do {
2362		m++;
2363		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2364		    ("pmap_pv_demote_pde: page %p is not managed", m));
2365		va += PAGE_SIZE;
2366		pmap_insert_entry(pmap, va, m);
2367	} while (va < va_last);
2368}
2369
2370static void
2371pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2372{
2373	struct md_page *pvh;
2374	pv_entry_t pv;
2375	vm_offset_t va_last;
2376	vm_page_t m;
2377
2378	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2379	KASSERT((pa & PDRMASK) == 0,
2380	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2381
2382	/*
2383	 * Transfer the first page's pv entry for this mapping to the
2384	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2385	 * to get_pv_entry(), a transfer avoids the possibility that
2386	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2387	 * removes one of the mappings that is being promoted.
2388	 */
2389	m = PHYS_TO_VM_PAGE(pa);
2390	va = trunc_4mpage(va);
2391	pv = pmap_pvh_remove(&m->md, pmap, va);
2392	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2393	pvh = pa_to_pvh(pa);
2394	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2395	/* Free the remaining NPTEPG - 1 pv entries. */
2396	va_last = va + NBPDR - PAGE_SIZE;
2397	do {
2398		m++;
2399		va += PAGE_SIZE;
2400		pmap_pvh_free(&m->md, pmap, va);
2401	} while (va < va_last);
2402}
2403
2404static void
2405pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2406{
2407	pv_entry_t pv;
2408
2409	pv = pmap_pvh_remove(pvh, pmap, va);
2410	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2411	free_pv_entry(pmap, pv);
2412}
2413
2414static void
2415pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2416{
2417	struct md_page *pvh;
2418
2419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2420	pmap_pvh_free(&m->md, pmap, va);
2421	if (TAILQ_EMPTY(&m->md.pv_list)) {
2422		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2423		if (TAILQ_EMPTY(&pvh->pv_list))
2424			vm_page_flag_clear(m, PG_WRITEABLE);
2425	}
2426}
2427
2428/*
2429 * Create a pv entry for page at pa for
2430 * (pmap, va).
2431 */
2432static void
2433pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2434{
2435	pv_entry_t pv;
2436
2437	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2438	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2439	pv = get_pv_entry(pmap, FALSE);
2440	pv->pv_va = va;
2441	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2442}
2443
2444/*
2445 * Conditionally create a pv entry.
2446 */
2447static boolean_t
2448pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2449{
2450	pv_entry_t pv;
2451
2452	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2453	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2454	if (pv_entry_count < pv_entry_high_water &&
2455	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2456		pv->pv_va = va;
2457		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2458		return (TRUE);
2459	} else
2460		return (FALSE);
2461}
2462
2463/*
2464 * Create the pv entries for each of the pages within a superpage.
2465 */
2466static boolean_t
2467pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2468{
2469	struct md_page *pvh;
2470	pv_entry_t pv;
2471
2472	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2473	if (pv_entry_count < pv_entry_high_water &&
2474	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2475		pv->pv_va = va;
2476		pvh = pa_to_pvh(pa);
2477		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2478		return (TRUE);
2479	} else
2480		return (FALSE);
2481}
2482
2483/*
2484 * Fills a page table page with mappings to consecutive physical pages.
2485 */
2486static void
2487pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2488{
2489	pt_entry_t *pte;
2490
2491	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2492		*pte = newpte;
2493		newpte += PAGE_SIZE;
2494	}
2495}
2496
2497/*
2498 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2499 * 2- or 4MB page mapping is invalidated.
2500 */
2501static boolean_t
2502pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2503{
2504	pd_entry_t newpde, oldpde;
2505	pt_entry_t *firstpte, newpte;
2506	vm_paddr_t mptepa;
2507	vm_page_t free, mpte;
2508
2509	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2510	oldpde = *pde;
2511	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2512	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2513	mpte = pmap_lookup_pt_page(pmap, va);
2514	if (mpte != NULL)
2515		pmap_remove_pt_page(pmap, mpte);
2516	else {
2517		KASSERT((oldpde & PG_W) == 0,
2518		    ("pmap_demote_pde: page table page for a wired mapping"
2519		    " is missing"));
2520
2521		/*
2522		 * Invalidate the 2- or 4MB page mapping and return
2523		 * "failure" if the mapping was never accessed or the
2524		 * allocation of the new page table page fails.
2525		 */
2526		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2527		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2528		    VM_ALLOC_WIRED)) == NULL) {
2529			free = NULL;
2530			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2531			pmap_invalidate_page(pmap, trunc_4mpage(va));
2532			pmap_free_zero_pages(free);
2533			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2534			    " in pmap %p", va, pmap);
2535			return (FALSE);
2536		}
2537		if (va < VM_MAXUSER_ADDRESS)
2538			pmap->pm_stats.resident_count++;
2539	}
2540	mptepa = VM_PAGE_TO_PHYS(mpte);
2541
2542	/*
2543	 * If the page mapping is in the kernel's address space, then the
2544	 * KPTmap can provide access to the page table page.  Otherwise,
2545	 * temporarily map the page table page (mpte) into the kernel's
2546	 * address space at either PADDR1 or PADDR2.
2547	 */
2548	if (va >= KERNBASE)
2549		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2550	else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2551		if ((*PMAP1 & PG_FRAME) != mptepa) {
2552			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2553#ifdef SMP
2554			PMAP1cpu = PCPU_GET(cpuid);
2555#endif
2556			invlcaddr(PADDR1);
2557			PMAP1changed++;
2558		} else
2559#ifdef SMP
2560		if (PMAP1cpu != PCPU_GET(cpuid)) {
2561			PMAP1cpu = PCPU_GET(cpuid);
2562			invlcaddr(PADDR1);
2563			PMAP1changedcpu++;
2564		} else
2565#endif
2566			PMAP1unchanged++;
2567		firstpte = PADDR1;
2568	} else {
2569		mtx_lock(&PMAP2mutex);
2570		if ((*PMAP2 & PG_FRAME) != mptepa) {
2571			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2572			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2573		}
2574		firstpte = PADDR2;
2575	}
2576	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2577	KASSERT((oldpde & PG_A) != 0,
2578	    ("pmap_demote_pde: oldpde is missing PG_A"));
2579	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2580	    ("pmap_demote_pde: oldpde is missing PG_M"));
2581	newpte = oldpde & ~PG_PS;
2582	if ((newpte & PG_PDE_PAT) != 0)
2583		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2584
2585	/*
2586	 * If the page table page is new, initialize it.
2587	 */
2588	if (mpte->wire_count == 1) {
2589		mpte->wire_count = NPTEPG;
2590		pmap_fill_ptp(firstpte, newpte);
2591	}
2592	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2593	    ("pmap_demote_pde: firstpte and newpte map different physical"
2594	    " addresses"));
2595
2596	/*
2597	 * If the mapping has changed attributes, update the page table
2598	 * entries.
2599	 */
2600	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2601		pmap_fill_ptp(firstpte, newpte);
2602
2603	/*
2604	 * Demote the mapping.  This pmap is locked.  The old PDE has
2605	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2606	 * set.  Thus, there is no danger of a race with another
2607	 * processor changing the setting of PG_A and/or PG_M between
2608	 * the read above and the store below.
2609	 */
2610	if (workaround_erratum383)
2611		pmap_update_pde(pmap, va, pde, newpde);
2612	else if (pmap == kernel_pmap)
2613		pmap_kenter_pde(va, newpde);
2614	else
2615		pde_store(pde, newpde);
2616	if (firstpte == PADDR2)
2617		mtx_unlock(&PMAP2mutex);
2618
2619	/*
2620	 * Invalidate the recursive mapping of the page table page.
2621	 */
2622	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2623
2624	/*
2625	 * Demote the pv entry.  This depends on the earlier demotion
2626	 * of the mapping.  Specifically, the (re)creation of a per-
2627	 * page pv entry might trigger the execution of pmap_collect(),
2628	 * which might reclaim a newly (re)created per-page pv entry
2629	 * and destroy the associated mapping.  In order to destroy
2630	 * the mapping, the PDE must have already changed from mapping
2631	 * the 2mpage to referencing the page table page.
2632	 */
2633	if ((oldpde & PG_MANAGED) != 0)
2634		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2635
2636	pmap_pde_demotions++;
2637	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2638	    " in pmap %p", va, pmap);
2639	return (TRUE);
2640}
2641
2642/*
2643 * pmap_remove_pde: do the things to unmap a superpage in a process
2644 */
2645static void
2646pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2647    vm_page_t *free)
2648{
2649	struct md_page *pvh;
2650	pd_entry_t oldpde;
2651	vm_offset_t eva, va;
2652	vm_page_t m, mpte;
2653
2654	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2655	KASSERT((sva & PDRMASK) == 0,
2656	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2657	oldpde = pte_load_clear(pdq);
2658	if (oldpde & PG_W)
2659		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2660
2661	/*
2662	 * Machines that don't support invlpg, also don't support
2663	 * PG_G.
2664	 */
2665	if (oldpde & PG_G)
2666		pmap_invalidate_page(kernel_pmap, sva);
2667	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2668	if (oldpde & PG_MANAGED) {
2669		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2670		pmap_pvh_free(pvh, pmap, sva);
2671		eva = sva + NBPDR;
2672		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2673		    va < eva; va += PAGE_SIZE, m++) {
2674			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2675				vm_page_dirty(m);
2676			if (oldpde & PG_A)
2677				vm_page_flag_set(m, PG_REFERENCED);
2678			if (TAILQ_EMPTY(&m->md.pv_list) &&
2679			    TAILQ_EMPTY(&pvh->pv_list))
2680				vm_page_flag_clear(m, PG_WRITEABLE);
2681		}
2682	}
2683	if (pmap == kernel_pmap) {
2684		if (!pmap_demote_pde(pmap, pdq, sva))
2685			panic("pmap_remove_pde: failed demotion");
2686	} else {
2687		mpte = pmap_lookup_pt_page(pmap, sva);
2688		if (mpte != NULL) {
2689			pmap_remove_pt_page(pmap, mpte);
2690			pmap->pm_stats.resident_count--;
2691			KASSERT(mpte->wire_count == NPTEPG,
2692			    ("pmap_remove_pde: pte page wire count error"));
2693			mpte->wire_count = 0;
2694			pmap_add_delayed_free_list(mpte, free, FALSE);
2695			atomic_subtract_int(&cnt.v_wire_count, 1);
2696		}
2697	}
2698}
2699
2700/*
2701 * pmap_remove_pte: do the things to unmap a page in a process
2702 */
2703static int
2704pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2705{
2706	pt_entry_t oldpte;
2707	vm_page_t m;
2708
2709	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2710	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2711	oldpte = pte_load_clear(ptq);
2712	if (oldpte & PG_W)
2713		pmap->pm_stats.wired_count -= 1;
2714	/*
2715	 * Machines that don't support invlpg, also don't support
2716	 * PG_G.
2717	 */
2718	if (oldpte & PG_G)
2719		pmap_invalidate_page(kernel_pmap, va);
2720	pmap->pm_stats.resident_count -= 1;
2721	if (oldpte & PG_MANAGED) {
2722		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2723		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2724			vm_page_dirty(m);
2725		if (oldpte & PG_A)
2726			vm_page_flag_set(m, PG_REFERENCED);
2727		pmap_remove_entry(pmap, m, va);
2728	}
2729	return (pmap_unuse_pt(pmap, va, free));
2730}
2731
2732/*
2733 * Remove a single page from a process address space
2734 */
2735static void
2736pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2737{
2738	pt_entry_t *pte;
2739
2740	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2741	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2742	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2743	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2744		return;
2745	pmap_remove_pte(pmap, pte, va, free);
2746	pmap_invalidate_page(pmap, va);
2747}
2748
2749/*
2750 *	Remove the given range of addresses from the specified map.
2751 *
2752 *	It is assumed that the start and end are properly
2753 *	rounded to the page size.
2754 */
2755void
2756pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2757{
2758	vm_offset_t pdnxt;
2759	pd_entry_t ptpaddr;
2760	pt_entry_t *pte;
2761	vm_page_t free = NULL;
2762	int anyvalid;
2763
2764	/*
2765	 * Perform an unsynchronized read.  This is, however, safe.
2766	 */
2767	if (pmap->pm_stats.resident_count == 0)
2768		return;
2769
2770	anyvalid = 0;
2771
2772	vm_page_lock_queues();
2773	sched_pin();
2774	PMAP_LOCK(pmap);
2775
2776	/*
2777	 * special handling of removing one page.  a very
2778	 * common operation and easy to short circuit some
2779	 * code.
2780	 */
2781	if ((sva + PAGE_SIZE == eva) &&
2782	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2783		pmap_remove_page(pmap, sva, &free);
2784		goto out;
2785	}
2786
2787	for (; sva < eva; sva = pdnxt) {
2788		unsigned pdirindex;
2789
2790		/*
2791		 * Calculate index for next page table.
2792		 */
2793		pdnxt = (sva + NBPDR) & ~PDRMASK;
2794		if (pdnxt < sva)
2795			pdnxt = eva;
2796		if (pmap->pm_stats.resident_count == 0)
2797			break;
2798
2799		pdirindex = sva >> PDRSHIFT;
2800		ptpaddr = pmap->pm_pdir[pdirindex];
2801
2802		/*
2803		 * Weed out invalid mappings. Note: we assume that the page
2804		 * directory table is always allocated, and in kernel virtual.
2805		 */
2806		if (ptpaddr == 0)
2807			continue;
2808
2809		/*
2810		 * Check for large page.
2811		 */
2812		if ((ptpaddr & PG_PS) != 0) {
2813			/*
2814			 * Are we removing the entire large page?  If not,
2815			 * demote the mapping and fall through.
2816			 */
2817			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2818				/*
2819				 * The TLB entry for a PG_G mapping is
2820				 * invalidated by pmap_remove_pde().
2821				 */
2822				if ((ptpaddr & PG_G) == 0)
2823					anyvalid = 1;
2824				pmap_remove_pde(pmap,
2825				    &pmap->pm_pdir[pdirindex], sva, &free);
2826				continue;
2827			} else if (!pmap_demote_pde(pmap,
2828			    &pmap->pm_pdir[pdirindex], sva)) {
2829				/* The large page mapping was destroyed. */
2830				continue;
2831			}
2832		}
2833
2834		/*
2835		 * Limit our scan to either the end of the va represented
2836		 * by the current page table page, or to the end of the
2837		 * range being removed.
2838		 */
2839		if (pdnxt > eva)
2840			pdnxt = eva;
2841
2842		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2843		    sva += PAGE_SIZE) {
2844			if (*pte == 0)
2845				continue;
2846
2847			/*
2848			 * The TLB entry for a PG_G mapping is invalidated
2849			 * by pmap_remove_pte().
2850			 */
2851			if ((*pte & PG_G) == 0)
2852				anyvalid = 1;
2853			if (pmap_remove_pte(pmap, pte, sva, &free))
2854				break;
2855		}
2856	}
2857out:
2858	sched_unpin();
2859	if (anyvalid)
2860		pmap_invalidate_all(pmap);
2861	vm_page_unlock_queues();
2862	PMAP_UNLOCK(pmap);
2863	pmap_free_zero_pages(free);
2864}
2865
2866/*
2867 *	Routine:	pmap_remove_all
2868 *	Function:
2869 *		Removes this physical page from
2870 *		all physical maps in which it resides.
2871 *		Reflects back modify bits to the pager.
2872 *
2873 *	Notes:
2874 *		Original versions of this routine were very
2875 *		inefficient because they iteratively called
2876 *		pmap_remove (slow...)
2877 */
2878
2879void
2880pmap_remove_all(vm_page_t m)
2881{
2882	struct md_page *pvh;
2883	pv_entry_t pv;
2884	pmap_t pmap;
2885	pt_entry_t *pte, tpte;
2886	pd_entry_t *pde;
2887	vm_offset_t va;
2888	vm_page_t free;
2889
2890	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2891	    ("pmap_remove_all: page %p is fictitious", m));
2892	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2893	sched_pin();
2894	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2895	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2896		va = pv->pv_va;
2897		pmap = PV_PMAP(pv);
2898		PMAP_LOCK(pmap);
2899		pde = pmap_pde(pmap, va);
2900		(void)pmap_demote_pde(pmap, pde, va);
2901		PMAP_UNLOCK(pmap);
2902	}
2903	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2904		pmap = PV_PMAP(pv);
2905		PMAP_LOCK(pmap);
2906		pmap->pm_stats.resident_count--;
2907		pde = pmap_pde(pmap, pv->pv_va);
2908		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2909		    " a 4mpage in page %p's pv list", m));
2910		pte = pmap_pte_quick(pmap, pv->pv_va);
2911		tpte = pte_load_clear(pte);
2912		if (tpte & PG_W)
2913			pmap->pm_stats.wired_count--;
2914		if (tpte & PG_A)
2915			vm_page_flag_set(m, PG_REFERENCED);
2916
2917		/*
2918		 * Update the vm_page_t clean and reference bits.
2919		 */
2920		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2921			vm_page_dirty(m);
2922		free = NULL;
2923		pmap_unuse_pt(pmap, pv->pv_va, &free);
2924		pmap_invalidate_page(pmap, pv->pv_va);
2925		pmap_free_zero_pages(free);
2926		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2927		free_pv_entry(pmap, pv);
2928		PMAP_UNLOCK(pmap);
2929	}
2930	vm_page_flag_clear(m, PG_WRITEABLE);
2931	sched_unpin();
2932}
2933
2934/*
2935 * pmap_protect_pde: do the things to protect a 4mpage in a process
2936 */
2937static boolean_t
2938pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2939{
2940	pd_entry_t newpde, oldpde;
2941	vm_offset_t eva, va;
2942	vm_page_t m;
2943	boolean_t anychanged;
2944
2945	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2946	KASSERT((sva & PDRMASK) == 0,
2947	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2948	anychanged = FALSE;
2949retry:
2950	oldpde = newpde = *pde;
2951	if (oldpde & PG_MANAGED) {
2952		eva = sva + NBPDR;
2953		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2954		    va < eva; va += PAGE_SIZE, m++) {
2955			/*
2956			 * In contrast to the analogous operation on a 4KB page
2957			 * mapping, the mapping's PG_A flag is not cleared and
2958			 * the page's PG_REFERENCED flag is not set.  The
2959			 * reason is that pmap_demote_pde() expects that a 2/4MB
2960			 * page mapping with a stored page table page has PG_A
2961			 * set.
2962			 */
2963			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2964				vm_page_dirty(m);
2965		}
2966	}
2967	if ((prot & VM_PROT_WRITE) == 0)
2968		newpde &= ~(PG_RW | PG_M);
2969#ifdef PAE
2970	if ((prot & VM_PROT_EXECUTE) == 0)
2971		newpde |= pg_nx;
2972#endif
2973	if (newpde != oldpde) {
2974		if (!pde_cmpset(pde, oldpde, newpde))
2975			goto retry;
2976		if (oldpde & PG_G)
2977			pmap_invalidate_page(pmap, sva);
2978		else
2979			anychanged = TRUE;
2980	}
2981	return (anychanged);
2982}
2983
2984/*
2985 *	Set the physical protection on the
2986 *	specified range of this map as requested.
2987 */
2988void
2989pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2990{
2991	vm_offset_t pdnxt;
2992	pd_entry_t ptpaddr;
2993	pt_entry_t *pte;
2994	int anychanged;
2995
2996	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2997		pmap_remove(pmap, sva, eva);
2998		return;
2999	}
3000
3001#ifdef PAE
3002	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3003	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3004		return;
3005#else
3006	if (prot & VM_PROT_WRITE)
3007		return;
3008#endif
3009
3010	anychanged = 0;
3011
3012	vm_page_lock_queues();
3013	sched_pin();
3014	PMAP_LOCK(pmap);
3015	for (; sva < eva; sva = pdnxt) {
3016		pt_entry_t obits, pbits;
3017		unsigned pdirindex;
3018
3019		pdnxt = (sva + NBPDR) & ~PDRMASK;
3020		if (pdnxt < sva)
3021			pdnxt = eva;
3022
3023		pdirindex = sva >> PDRSHIFT;
3024		ptpaddr = pmap->pm_pdir[pdirindex];
3025
3026		/*
3027		 * Weed out invalid mappings. Note: we assume that the page
3028		 * directory table is always allocated, and in kernel virtual.
3029		 */
3030		if (ptpaddr == 0)
3031			continue;
3032
3033		/*
3034		 * Check for large page.
3035		 */
3036		if ((ptpaddr & PG_PS) != 0) {
3037			/*
3038			 * Are we protecting the entire large page?  If not,
3039			 * demote the mapping and fall through.
3040			 */
3041			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3042				/*
3043				 * The TLB entry for a PG_G mapping is
3044				 * invalidated by pmap_protect_pde().
3045				 */
3046				if (pmap_protect_pde(pmap,
3047				    &pmap->pm_pdir[pdirindex], sva, prot))
3048					anychanged = 1;
3049				continue;
3050			} else if (!pmap_demote_pde(pmap,
3051			    &pmap->pm_pdir[pdirindex], sva)) {
3052				/* The large page mapping was destroyed. */
3053				continue;
3054			}
3055		}
3056
3057		if (pdnxt > eva)
3058			pdnxt = eva;
3059
3060		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3061		    sva += PAGE_SIZE) {
3062			vm_page_t m;
3063
3064retry:
3065			/*
3066			 * Regardless of whether a pte is 32 or 64 bits in
3067			 * size, PG_RW, PG_A, and PG_M are among the least
3068			 * significant 32 bits.
3069			 */
3070			obits = pbits = *pte;
3071			if ((pbits & PG_V) == 0)
3072				continue;
3073			if (pbits & PG_MANAGED) {
3074				m = NULL;
3075				if (pbits & PG_A) {
3076					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3077					vm_page_flag_set(m, PG_REFERENCED);
3078					pbits &= ~PG_A;
3079				}
3080				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3081					if (m == NULL)
3082						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3083					vm_page_dirty(m);
3084				}
3085			}
3086
3087			if ((prot & VM_PROT_WRITE) == 0)
3088				pbits &= ~(PG_RW | PG_M);
3089#ifdef PAE
3090			if ((prot & VM_PROT_EXECUTE) == 0)
3091				pbits |= pg_nx;
3092#endif
3093
3094			if (pbits != obits) {
3095#ifdef PAE
3096				if (!atomic_cmpset_64(pte, obits, pbits))
3097					goto retry;
3098#else
3099				if (!atomic_cmpset_int((u_int *)pte, obits,
3100				    pbits))
3101					goto retry;
3102#endif
3103				if (obits & PG_G)
3104					pmap_invalidate_page(pmap, sva);
3105				else
3106					anychanged = 1;
3107			}
3108		}
3109	}
3110	sched_unpin();
3111	if (anychanged)
3112		pmap_invalidate_all(pmap);
3113	vm_page_unlock_queues();
3114	PMAP_UNLOCK(pmap);
3115}
3116
3117/*
3118 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3119 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3120 * For promotion to occur, two conditions must be met: (1) the 4KB page
3121 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3122 * mappings must have identical characteristics.
3123 *
3124 * Managed (PG_MANAGED) mappings within the kernel address space are not
3125 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3126 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3127 * pmap.
3128 */
3129static void
3130pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3131{
3132	pd_entry_t newpde;
3133	pt_entry_t *firstpte, oldpte, pa, *pte;
3134	vm_offset_t oldpteva;
3135	vm_page_t mpte;
3136
3137	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3138
3139	/*
3140	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3141	 * either invalid, unused, or does not map the first 4KB physical page
3142	 * within a 2- or 4MB page.
3143	 */
3144	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3145setpde:
3146	newpde = *firstpte;
3147	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3148		pmap_pde_p_failures++;
3149		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3150		    " in pmap %p", va, pmap);
3151		return;
3152	}
3153	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3154		pmap_pde_p_failures++;
3155		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3156		    " in pmap %p", va, pmap);
3157		return;
3158	}
3159	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3160		/*
3161		 * When PG_M is already clear, PG_RW can be cleared without
3162		 * a TLB invalidation.
3163		 */
3164		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3165		    ~PG_RW))
3166			goto setpde;
3167		newpde &= ~PG_RW;
3168	}
3169
3170	/*
3171	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3172	 * PTE maps an unexpected 4KB physical page or does not have identical
3173	 * characteristics to the first PTE.
3174	 */
3175	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3176	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3177setpte:
3178		oldpte = *pte;
3179		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3180			pmap_pde_p_failures++;
3181			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3182			    " in pmap %p", va, pmap);
3183			return;
3184		}
3185		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3186			/*
3187			 * When PG_M is already clear, PG_RW can be cleared
3188			 * without a TLB invalidation.
3189			 */
3190			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3191			    oldpte & ~PG_RW))
3192				goto setpte;
3193			oldpte &= ~PG_RW;
3194			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3195			    (va & ~PDRMASK);
3196			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3197			    " in pmap %p", oldpteva, pmap);
3198		}
3199		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3200			pmap_pde_p_failures++;
3201			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3202			    " in pmap %p", va, pmap);
3203			return;
3204		}
3205		pa -= PAGE_SIZE;
3206	}
3207
3208	/*
3209	 * Save the page table page in its current state until the PDE
3210	 * mapping the superpage is demoted by pmap_demote_pde() or
3211	 * destroyed by pmap_remove_pde().
3212	 */
3213	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3214	KASSERT(mpte >= vm_page_array &&
3215	    mpte < &vm_page_array[vm_page_array_size],
3216	    ("pmap_promote_pde: page table page is out of range"));
3217	KASSERT(mpte->pindex == va >> PDRSHIFT,
3218	    ("pmap_promote_pde: page table page's pindex is wrong"));
3219	pmap_insert_pt_page(pmap, mpte);
3220
3221	/*
3222	 * Promote the pv entries.
3223	 */
3224	if ((newpde & PG_MANAGED) != 0)
3225		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3226
3227	/*
3228	 * Propagate the PAT index to its proper position.
3229	 */
3230	if ((newpde & PG_PTE_PAT) != 0)
3231		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3232
3233	/*
3234	 * Map the superpage.
3235	 */
3236	if (workaround_erratum383)
3237		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3238	else if (pmap == kernel_pmap)
3239		pmap_kenter_pde(va, PG_PS | newpde);
3240	else
3241		pde_store(pde, PG_PS | newpde);
3242
3243	pmap_pde_promotions++;
3244	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3245	    " in pmap %p", va, pmap);
3246}
3247
3248/*
3249 *	Insert the given physical page (p) at
3250 *	the specified virtual address (v) in the
3251 *	target physical map with the protection requested.
3252 *
3253 *	If specified, the page will be wired down, meaning
3254 *	that the related pte can not be reclaimed.
3255 *
3256 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3257 *	or lose information.  That is, this routine must actually
3258 *	insert this page into the given map NOW.
3259 */
3260void
3261pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3262    vm_prot_t prot, boolean_t wired)
3263{
3264	vm_paddr_t pa;
3265	pd_entry_t *pde;
3266	pt_entry_t *pte;
3267	vm_paddr_t opa;
3268	pt_entry_t origpte, newpte;
3269	vm_page_t mpte, om;
3270	boolean_t invlva;
3271
3272	va = trunc_page(va);
3273	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3274	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3275	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3276
3277	mpte = NULL;
3278
3279	vm_page_lock_queues();
3280	PMAP_LOCK(pmap);
3281	sched_pin();
3282
3283	/*
3284	 * In the case that a page table page is not
3285	 * resident, we are creating it here.
3286	 */
3287	if (va < VM_MAXUSER_ADDRESS) {
3288		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3289	}
3290
3291	pde = pmap_pde(pmap, va);
3292	if ((*pde & PG_PS) != 0)
3293		panic("pmap_enter: attempted pmap_enter on 4MB page");
3294	pte = pmap_pte_quick(pmap, va);
3295
3296	/*
3297	 * Page Directory table entry not valid, we need a new PT page
3298	 */
3299	if (pte == NULL) {
3300		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3301			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3302	}
3303
3304	pa = VM_PAGE_TO_PHYS(m);
3305	om = NULL;
3306	origpte = *pte;
3307	opa = origpte & PG_FRAME;
3308
3309	/*
3310	 * Mapping has not changed, must be protection or wiring change.
3311	 */
3312	if (origpte && (opa == pa)) {
3313		/*
3314		 * Wiring change, just update stats. We don't worry about
3315		 * wiring PT pages as they remain resident as long as there
3316		 * are valid mappings in them. Hence, if a user page is wired,
3317		 * the PT page will be also.
3318		 */
3319		if (wired && ((origpte & PG_W) == 0))
3320			pmap->pm_stats.wired_count++;
3321		else if (!wired && (origpte & PG_W))
3322			pmap->pm_stats.wired_count--;
3323
3324		/*
3325		 * Remove extra pte reference
3326		 */
3327		if (mpte)
3328			mpte->wire_count--;
3329
3330		/*
3331		 * We might be turning off write access to the page,
3332		 * so we go ahead and sense modify status.
3333		 */
3334		if (origpte & PG_MANAGED) {
3335			om = m;
3336			pa |= PG_MANAGED;
3337		}
3338		goto validate;
3339	}
3340	/*
3341	 * Mapping has changed, invalidate old range and fall through to
3342	 * handle validating new mapping.
3343	 */
3344	if (opa) {
3345		if (origpte & PG_W)
3346			pmap->pm_stats.wired_count--;
3347		if (origpte & PG_MANAGED) {
3348			om = PHYS_TO_VM_PAGE(opa);
3349			pmap_remove_entry(pmap, om, va);
3350		}
3351		if (mpte != NULL) {
3352			mpte->wire_count--;
3353			KASSERT(mpte->wire_count > 0,
3354			    ("pmap_enter: missing reference to page table page,"
3355			     " va: 0x%x", va));
3356		}
3357	} else
3358		pmap->pm_stats.resident_count++;
3359
3360	/*
3361	 * Enter on the PV list if part of our managed memory.
3362	 */
3363	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3364		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3365		    ("pmap_enter: managed mapping within the clean submap"));
3366		pmap_insert_entry(pmap, va, m);
3367		pa |= PG_MANAGED;
3368	}
3369
3370	/*
3371	 * Increment counters
3372	 */
3373	if (wired)
3374		pmap->pm_stats.wired_count++;
3375
3376validate:
3377	/*
3378	 * Now validate mapping with desired protection/wiring.
3379	 */
3380	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3381	if ((prot & VM_PROT_WRITE) != 0) {
3382		newpte |= PG_RW;
3383		vm_page_flag_set(m, PG_WRITEABLE);
3384	}
3385#ifdef PAE
3386	if ((prot & VM_PROT_EXECUTE) == 0)
3387		newpte |= pg_nx;
3388#endif
3389	if (wired)
3390		newpte |= PG_W;
3391	if (va < VM_MAXUSER_ADDRESS)
3392		newpte |= PG_U;
3393	if (pmap == kernel_pmap)
3394		newpte |= pgeflag;
3395
3396	/*
3397	 * if the mapping or permission bits are different, we need
3398	 * to update the pte.
3399	 */
3400	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3401		newpte |= PG_A;
3402		if ((access & VM_PROT_WRITE) != 0)
3403			newpte |= PG_M;
3404		if (origpte & PG_V) {
3405			invlva = FALSE;
3406			origpte = pte_load_store(pte, newpte);
3407			if (origpte & PG_A) {
3408				if (origpte & PG_MANAGED)
3409					vm_page_flag_set(om, PG_REFERENCED);
3410				if (opa != VM_PAGE_TO_PHYS(m))
3411					invlva = TRUE;
3412#ifdef PAE
3413				if ((origpte & PG_NX) == 0 &&
3414				    (newpte & PG_NX) != 0)
3415					invlva = TRUE;
3416#endif
3417			}
3418			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3419				if ((origpte & PG_MANAGED) != 0)
3420					vm_page_dirty(om);
3421				if ((prot & VM_PROT_WRITE) == 0)
3422					invlva = TRUE;
3423			}
3424			if (invlva)
3425				pmap_invalidate_page(pmap, va);
3426		} else
3427			pte_store(pte, newpte);
3428	}
3429
3430	/*
3431	 * If both the page table page and the reservation are fully
3432	 * populated, then attempt promotion.
3433	 */
3434	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3435	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3436		pmap_promote_pde(pmap, pde, va);
3437
3438	sched_unpin();
3439	vm_page_unlock_queues();
3440	PMAP_UNLOCK(pmap);
3441}
3442
3443/*
3444 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3445 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3446 * blocking, (2) a mapping already exists at the specified virtual address, or
3447 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3448 */
3449static boolean_t
3450pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3451{
3452	pd_entry_t *pde, newpde;
3453
3454	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3455	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3456	pde = pmap_pde(pmap, va);
3457	if (*pde != 0) {
3458		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3459		    " in pmap %p", va, pmap);
3460		return (FALSE);
3461	}
3462	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3463	    PG_PS | PG_V;
3464	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3465		newpde |= PG_MANAGED;
3466
3467		/*
3468		 * Abort this mapping if its PV entry could not be created.
3469		 */
3470		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3471			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3472			    " in pmap %p", va, pmap);
3473			return (FALSE);
3474		}
3475	}
3476#ifdef PAE
3477	if ((prot & VM_PROT_EXECUTE) == 0)
3478		newpde |= pg_nx;
3479#endif
3480	if (va < VM_MAXUSER_ADDRESS)
3481		newpde |= PG_U;
3482
3483	/*
3484	 * Increment counters.
3485	 */
3486	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3487
3488	/*
3489	 * Map the superpage.
3490	 */
3491	pde_store(pde, newpde);
3492
3493	pmap_pde_mappings++;
3494	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3495	    " in pmap %p", va, pmap);
3496	return (TRUE);
3497}
3498
3499/*
3500 * Maps a sequence of resident pages belonging to the same object.
3501 * The sequence begins with the given page m_start.  This page is
3502 * mapped at the given virtual address start.  Each subsequent page is
3503 * mapped at a virtual address that is offset from start by the same
3504 * amount as the page is offset from m_start within the object.  The
3505 * last page in the sequence is the page with the largest offset from
3506 * m_start that can be mapped at a virtual address less than the given
3507 * virtual address end.  Not every virtual page between start and end
3508 * is mapped; only those for which a resident page exists with the
3509 * corresponding offset from m_start are mapped.
3510 */
3511void
3512pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3513    vm_page_t m_start, vm_prot_t prot)
3514{
3515	vm_offset_t va;
3516	vm_page_t m, mpte;
3517	vm_pindex_t diff, psize;
3518
3519	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3520	psize = atop(end - start);
3521	mpte = NULL;
3522	m = m_start;
3523	PMAP_LOCK(pmap);
3524	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3525		va = start + ptoa(diff);
3526		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3527		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3528		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3529		    pmap_enter_pde(pmap, va, m, prot))
3530			m = &m[NBPDR / PAGE_SIZE - 1];
3531		else
3532			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3533			    mpte);
3534		m = TAILQ_NEXT(m, listq);
3535	}
3536 	PMAP_UNLOCK(pmap);
3537}
3538
3539/*
3540 * this code makes some *MAJOR* assumptions:
3541 * 1. Current pmap & pmap exists.
3542 * 2. Not wired.
3543 * 3. Read access.
3544 * 4. No page table pages.
3545 * but is *MUCH* faster than pmap_enter...
3546 */
3547
3548void
3549pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3550{
3551
3552	PMAP_LOCK(pmap);
3553	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3554	PMAP_UNLOCK(pmap);
3555}
3556
3557static vm_page_t
3558pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3559    vm_prot_t prot, vm_page_t mpte)
3560{
3561	pt_entry_t *pte;
3562	vm_paddr_t pa;
3563	vm_page_t free;
3564
3565	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3566	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3567	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3568	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3569	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3570
3571	/*
3572	 * In the case that a page table page is not
3573	 * resident, we are creating it here.
3574	 */
3575	if (va < VM_MAXUSER_ADDRESS) {
3576		unsigned ptepindex;
3577		pd_entry_t ptepa;
3578
3579		/*
3580		 * Calculate pagetable page index
3581		 */
3582		ptepindex = va >> PDRSHIFT;
3583		if (mpte && (mpte->pindex == ptepindex)) {
3584			mpte->wire_count++;
3585		} else {
3586			/*
3587			 * Get the page directory entry
3588			 */
3589			ptepa = pmap->pm_pdir[ptepindex];
3590
3591			/*
3592			 * If the page table page is mapped, we just increment
3593			 * the hold count, and activate it.
3594			 */
3595			if (ptepa) {
3596				if (ptepa & PG_PS)
3597					return (NULL);
3598				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3599				mpte->wire_count++;
3600			} else {
3601				mpte = _pmap_allocpte(pmap, ptepindex,
3602				    M_NOWAIT);
3603				if (mpte == NULL)
3604					return (mpte);
3605			}
3606		}
3607	} else {
3608		mpte = NULL;
3609	}
3610
3611	/*
3612	 * This call to vtopte makes the assumption that we are
3613	 * entering the page into the current pmap.  In order to support
3614	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3615	 * But that isn't as quick as vtopte.
3616	 */
3617	pte = vtopte(va);
3618	if (*pte) {
3619		if (mpte != NULL) {
3620			mpte->wire_count--;
3621			mpte = NULL;
3622		}
3623		return (mpte);
3624	}
3625
3626	/*
3627	 * Enter on the PV list if part of our managed memory.
3628	 */
3629	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3630	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3631		if (mpte != NULL) {
3632			free = NULL;
3633			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3634				pmap_invalidate_page(pmap, va);
3635				pmap_free_zero_pages(free);
3636			}
3637
3638			mpte = NULL;
3639		}
3640		return (mpte);
3641	}
3642
3643	/*
3644	 * Increment counters
3645	 */
3646	pmap->pm_stats.resident_count++;
3647
3648	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3649#ifdef PAE
3650	if ((prot & VM_PROT_EXECUTE) == 0)
3651		pa |= pg_nx;
3652#endif
3653
3654	/*
3655	 * Now validate mapping with RO protection
3656	 */
3657	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3658		pte_store(pte, pa | PG_V | PG_U);
3659	else
3660		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3661	return mpte;
3662}
3663
3664/*
3665 * Make a temporary mapping for a physical address.  This is only intended
3666 * to be used for panic dumps.
3667 */
3668void *
3669pmap_kenter_temporary(vm_paddr_t pa, int i)
3670{
3671	vm_offset_t va;
3672
3673	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3674	pmap_kenter(va, pa);
3675	invlpg(va);
3676	return ((void *)crashdumpmap);
3677}
3678
3679/*
3680 * This code maps large physical mmap regions into the
3681 * processor address space.  Note that some shortcuts
3682 * are taken, but the code works.
3683 */
3684void
3685pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3686    vm_pindex_t pindex, vm_size_t size)
3687{
3688	pd_entry_t *pde;
3689	vm_paddr_t pa, ptepa;
3690	vm_page_t p;
3691	int pat_mode;
3692
3693	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3694	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3695	    ("pmap_object_init_pt: non-device object"));
3696	if (pseflag &&
3697	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3698		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3699			return;
3700		p = vm_page_lookup(object, pindex);
3701		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3702		    ("pmap_object_init_pt: invalid page %p", p));
3703		pat_mode = p->md.pat_mode;
3704
3705		/*
3706		 * Abort the mapping if the first page is not physically
3707		 * aligned to a 2/4MB page boundary.
3708		 */
3709		ptepa = VM_PAGE_TO_PHYS(p);
3710		if (ptepa & (NBPDR - 1))
3711			return;
3712
3713		/*
3714		 * Skip the first page.  Abort the mapping if the rest of
3715		 * the pages are not physically contiguous or have differing
3716		 * memory attributes.
3717		 */
3718		p = TAILQ_NEXT(p, listq);
3719		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3720		    pa += PAGE_SIZE) {
3721			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3722			    ("pmap_object_init_pt: invalid page %p", p));
3723			if (pa != VM_PAGE_TO_PHYS(p) ||
3724			    pat_mode != p->md.pat_mode)
3725				return;
3726			p = TAILQ_NEXT(p, listq);
3727		}
3728
3729		/*
3730		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3731		 * "size" is a multiple of 2/4M, adding the PAT setting to
3732		 * "pa" will not affect the termination of this loop.
3733		 */
3734		PMAP_LOCK(pmap);
3735		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3736		    size; pa += NBPDR) {
3737			pde = pmap_pde(pmap, addr);
3738			if (*pde == 0) {
3739				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3740				    PG_U | PG_RW | PG_V);
3741				pmap->pm_stats.resident_count += NBPDR /
3742				    PAGE_SIZE;
3743				pmap_pde_mappings++;
3744			}
3745			/* Else continue on if the PDE is already valid. */
3746			addr += NBPDR;
3747		}
3748		PMAP_UNLOCK(pmap);
3749	}
3750}
3751
3752/*
3753 *	Routine:	pmap_change_wiring
3754 *	Function:	Change the wiring attribute for a map/virtual-address
3755 *			pair.
3756 *	In/out conditions:
3757 *			The mapping must already exist in the pmap.
3758 */
3759void
3760pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3761{
3762	pd_entry_t *pde;
3763	pt_entry_t *pte;
3764	boolean_t are_queues_locked;
3765
3766	are_queues_locked = FALSE;
3767retry:
3768	PMAP_LOCK(pmap);
3769	pde = pmap_pde(pmap, va);
3770	if ((*pde & PG_PS) != 0) {
3771		if (!wired != ((*pde & PG_W) == 0)) {
3772			if (!are_queues_locked) {
3773				are_queues_locked = TRUE;
3774				if (!mtx_trylock(&vm_page_queue_mtx)) {
3775					PMAP_UNLOCK(pmap);
3776					vm_page_lock_queues();
3777					goto retry;
3778				}
3779			}
3780			if (!pmap_demote_pde(pmap, pde, va))
3781				panic("pmap_change_wiring: demotion failed");
3782		} else
3783			goto out;
3784	}
3785	pte = pmap_pte(pmap, va);
3786
3787	if (wired && !pmap_pte_w(pte))
3788		pmap->pm_stats.wired_count++;
3789	else if (!wired && pmap_pte_w(pte))
3790		pmap->pm_stats.wired_count--;
3791
3792	/*
3793	 * Wiring is not a hardware characteristic so there is no need to
3794	 * invalidate TLB.
3795	 */
3796	pmap_pte_set_w(pte, wired);
3797	pmap_pte_release(pte);
3798out:
3799	if (are_queues_locked)
3800		vm_page_unlock_queues();
3801	PMAP_UNLOCK(pmap);
3802}
3803
3804
3805
3806/*
3807 *	Copy the range specified by src_addr/len
3808 *	from the source map to the range dst_addr/len
3809 *	in the destination map.
3810 *
3811 *	This routine is only advisory and need not do anything.
3812 */
3813
3814void
3815pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3816    vm_offset_t src_addr)
3817{
3818	vm_page_t   free;
3819	vm_offset_t addr;
3820	vm_offset_t end_addr = src_addr + len;
3821	vm_offset_t pdnxt;
3822
3823	if (dst_addr != src_addr)
3824		return;
3825
3826	if (!pmap_is_current(src_pmap))
3827		return;
3828
3829	vm_page_lock_queues();
3830	if (dst_pmap < src_pmap) {
3831		PMAP_LOCK(dst_pmap);
3832		PMAP_LOCK(src_pmap);
3833	} else {
3834		PMAP_LOCK(src_pmap);
3835		PMAP_LOCK(dst_pmap);
3836	}
3837	sched_pin();
3838	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3839		pt_entry_t *src_pte, *dst_pte;
3840		vm_page_t dstmpte, srcmpte;
3841		pd_entry_t srcptepaddr;
3842		unsigned ptepindex;
3843
3844		KASSERT(addr < UPT_MIN_ADDRESS,
3845		    ("pmap_copy: invalid to pmap_copy page tables"));
3846
3847		pdnxt = (addr + NBPDR) & ~PDRMASK;
3848		if (pdnxt < addr)
3849			pdnxt = end_addr;
3850		ptepindex = addr >> PDRSHIFT;
3851
3852		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3853		if (srcptepaddr == 0)
3854			continue;
3855
3856		if (srcptepaddr & PG_PS) {
3857			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3858			    ((srcptepaddr & PG_MANAGED) == 0 ||
3859			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3860			    PG_PS_FRAME))) {
3861				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3862				    ~PG_W;
3863				dst_pmap->pm_stats.resident_count +=
3864				    NBPDR / PAGE_SIZE;
3865			}
3866			continue;
3867		}
3868
3869		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3870		KASSERT(srcmpte->wire_count > 0,
3871		    ("pmap_copy: source page table page is unused"));
3872
3873		if (pdnxt > end_addr)
3874			pdnxt = end_addr;
3875
3876		src_pte = vtopte(addr);
3877		while (addr < pdnxt) {
3878			pt_entry_t ptetemp;
3879			ptetemp = *src_pte;
3880			/*
3881			 * we only virtual copy managed pages
3882			 */
3883			if ((ptetemp & PG_MANAGED) != 0) {
3884				dstmpte = pmap_allocpte(dst_pmap, addr,
3885				    M_NOWAIT);
3886				if (dstmpte == NULL)
3887					goto out;
3888				dst_pte = pmap_pte_quick(dst_pmap, addr);
3889				if (*dst_pte == 0 &&
3890				    pmap_try_insert_pv_entry(dst_pmap, addr,
3891				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3892					/*
3893					 * Clear the wired, modified, and
3894					 * accessed (referenced) bits
3895					 * during the copy.
3896					 */
3897					*dst_pte = ptetemp & ~(PG_W | PG_M |
3898					    PG_A);
3899					dst_pmap->pm_stats.resident_count++;
3900	 			} else {
3901					free = NULL;
3902					if (pmap_unwire_pte_hold(dst_pmap,
3903					    dstmpte, &free)) {
3904						pmap_invalidate_page(dst_pmap,
3905						    addr);
3906						pmap_free_zero_pages(free);
3907					}
3908					goto out;
3909				}
3910				if (dstmpte->wire_count >= srcmpte->wire_count)
3911					break;
3912			}
3913			addr += PAGE_SIZE;
3914			src_pte++;
3915		}
3916	}
3917out:
3918	sched_unpin();
3919	vm_page_unlock_queues();
3920	PMAP_UNLOCK(src_pmap);
3921	PMAP_UNLOCK(dst_pmap);
3922}
3923
3924static __inline void
3925pagezero(void *page)
3926{
3927#if defined(I686_CPU)
3928	if (cpu_class == CPUCLASS_686) {
3929#if defined(CPU_ENABLE_SSE)
3930		if (cpu_feature & CPUID_SSE2)
3931			sse2_pagezero(page);
3932		else
3933#endif
3934			i686_pagezero(page);
3935	} else
3936#endif
3937		bzero(page, PAGE_SIZE);
3938}
3939
3940/*
3941 *	pmap_zero_page zeros the specified hardware page by mapping
3942 *	the page into KVM and using bzero to clear its contents.
3943 */
3944void
3945pmap_zero_page(vm_page_t m)
3946{
3947	struct sysmaps *sysmaps;
3948
3949	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3950	mtx_lock(&sysmaps->lock);
3951	if (*sysmaps->CMAP2)
3952		panic("pmap_zero_page: CMAP2 busy");
3953	sched_pin();
3954	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3955	    pmap_cache_bits(m->md.pat_mode, 0);
3956	invlcaddr(sysmaps->CADDR2);
3957	pagezero(sysmaps->CADDR2);
3958	*sysmaps->CMAP2 = 0;
3959	sched_unpin();
3960	mtx_unlock(&sysmaps->lock);
3961}
3962
3963/*
3964 *	pmap_zero_page_area zeros the specified hardware page by mapping
3965 *	the page into KVM and using bzero to clear its contents.
3966 *
3967 *	off and size may not cover an area beyond a single hardware page.
3968 */
3969void
3970pmap_zero_page_area(vm_page_t m, int off, int size)
3971{
3972	struct sysmaps *sysmaps;
3973
3974	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3975	mtx_lock(&sysmaps->lock);
3976	if (*sysmaps->CMAP2)
3977		panic("pmap_zero_page_area: CMAP2 busy");
3978	sched_pin();
3979	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3980	    pmap_cache_bits(m->md.pat_mode, 0);
3981	invlcaddr(sysmaps->CADDR2);
3982	if (off == 0 && size == PAGE_SIZE)
3983		pagezero(sysmaps->CADDR2);
3984	else
3985		bzero((char *)sysmaps->CADDR2 + off, size);
3986	*sysmaps->CMAP2 = 0;
3987	sched_unpin();
3988	mtx_unlock(&sysmaps->lock);
3989}
3990
3991/*
3992 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3993 *	the page into KVM and using bzero to clear its contents.  This
3994 *	is intended to be called from the vm_pagezero process only and
3995 *	outside of Giant.
3996 */
3997void
3998pmap_zero_page_idle(vm_page_t m)
3999{
4000
4001	if (*CMAP3)
4002		panic("pmap_zero_page_idle: CMAP3 busy");
4003	sched_pin();
4004	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4005	    pmap_cache_bits(m->md.pat_mode, 0);
4006	invlcaddr(CADDR3);
4007	pagezero(CADDR3);
4008	*CMAP3 = 0;
4009	sched_unpin();
4010}
4011
4012/*
4013 *	pmap_copy_page copies the specified (machine independent)
4014 *	page by mapping the page into virtual memory and using
4015 *	bcopy to copy the page, one machine dependent page at a
4016 *	time.
4017 */
4018void
4019pmap_copy_page(vm_page_t src, vm_page_t dst)
4020{
4021	struct sysmaps *sysmaps;
4022
4023	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4024	mtx_lock(&sysmaps->lock);
4025	if (*sysmaps->CMAP1)
4026		panic("pmap_copy_page: CMAP1 busy");
4027	if (*sysmaps->CMAP2)
4028		panic("pmap_copy_page: CMAP2 busy");
4029	sched_pin();
4030	invlpg((u_int)sysmaps->CADDR1);
4031	invlpg((u_int)sysmaps->CADDR2);
4032	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4033	    pmap_cache_bits(src->md.pat_mode, 0);
4034	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4035	    pmap_cache_bits(dst->md.pat_mode, 0);
4036	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4037	*sysmaps->CMAP1 = 0;
4038	*sysmaps->CMAP2 = 0;
4039	sched_unpin();
4040	mtx_unlock(&sysmaps->lock);
4041}
4042
4043/*
4044 * Returns true if the pmap's pv is one of the first
4045 * 16 pvs linked to from this page.  This count may
4046 * be changed upwards or downwards in the future; it
4047 * is only necessary that true be returned for a small
4048 * subset of pmaps for proper page aging.
4049 */
4050boolean_t
4051pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4052{
4053	struct md_page *pvh;
4054	pv_entry_t pv;
4055	int loops = 0;
4056
4057	if (m->flags & PG_FICTITIOUS)
4058		return FALSE;
4059
4060	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4061	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4062		if (PV_PMAP(pv) == pmap) {
4063			return TRUE;
4064		}
4065		loops++;
4066		if (loops >= 16)
4067			break;
4068	}
4069	if (loops < 16) {
4070		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4071		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4072			if (PV_PMAP(pv) == pmap)
4073				return (TRUE);
4074			loops++;
4075			if (loops >= 16)
4076				break;
4077		}
4078	}
4079	return (FALSE);
4080}
4081
4082/*
4083 *	pmap_page_wired_mappings:
4084 *
4085 *	Return the number of managed mappings to the given physical page
4086 *	that are wired.
4087 */
4088int
4089pmap_page_wired_mappings(vm_page_t m)
4090{
4091	int count;
4092
4093	count = 0;
4094	if ((m->flags & PG_FICTITIOUS) != 0)
4095		return (count);
4096	count = pmap_pvh_wired_mappings(&m->md, count);
4097	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
4098}
4099
4100/*
4101 *	pmap_pvh_wired_mappings:
4102 *
4103 *	Return the updated number "count" of managed mappings that are wired.
4104 */
4105static int
4106pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4107{
4108	pmap_t pmap;
4109	pt_entry_t *pte;
4110	pv_entry_t pv;
4111
4112	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4113	sched_pin();
4114	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4115		pmap = PV_PMAP(pv);
4116		PMAP_LOCK(pmap);
4117		pte = pmap_pte_quick(pmap, pv->pv_va);
4118		if ((*pte & PG_W) != 0)
4119			count++;
4120		PMAP_UNLOCK(pmap);
4121	}
4122	sched_unpin();
4123	return (count);
4124}
4125
4126/*
4127 * Returns TRUE if the given page is mapped individually or as part of
4128 * a 4mpage.  Otherwise, returns FALSE.
4129 */
4130boolean_t
4131pmap_page_is_mapped(vm_page_t m)
4132{
4133	struct md_page *pvh;
4134
4135	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
4136		return (FALSE);
4137	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4138	if (TAILQ_EMPTY(&m->md.pv_list)) {
4139		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4140		return (!TAILQ_EMPTY(&pvh->pv_list));
4141	} else
4142		return (TRUE);
4143}
4144
4145/*
4146 * Remove all pages from specified address space
4147 * this aids process exit speeds.  Also, this code
4148 * is special cased for current process only, but
4149 * can have the more generic (and slightly slower)
4150 * mode enabled.  This is much faster than pmap_remove
4151 * in the case of running down an entire address space.
4152 */
4153void
4154pmap_remove_pages(pmap_t pmap)
4155{
4156	pt_entry_t *pte, tpte;
4157	vm_page_t free = NULL;
4158	vm_page_t m, mpte, mt;
4159	pv_entry_t pv;
4160	struct md_page *pvh;
4161	struct pv_chunk *pc, *npc;
4162	int field, idx;
4163	int32_t bit;
4164	uint32_t inuse, bitmask;
4165	int allfree;
4166
4167	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
4168		printf("warning: pmap_remove_pages called with non-current pmap\n");
4169		return;
4170	}
4171	vm_page_lock_queues();
4172	PMAP_LOCK(pmap);
4173	sched_pin();
4174	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4175		allfree = 1;
4176		for (field = 0; field < _NPCM; field++) {
4177			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4178			while (inuse != 0) {
4179				bit = bsfl(inuse);
4180				bitmask = 1UL << bit;
4181				idx = field * 32 + bit;
4182				pv = &pc->pc_pventry[idx];
4183				inuse &= ~bitmask;
4184
4185				pte = pmap_pde(pmap, pv->pv_va);
4186				tpte = *pte;
4187				if ((tpte & PG_PS) == 0) {
4188					pte = vtopte(pv->pv_va);
4189					tpte = *pte & ~PG_PTE_PAT;
4190				}
4191
4192				if (tpte == 0) {
4193					printf(
4194					    "TPTE at %p  IS ZERO @ VA %08x\n",
4195					    pte, pv->pv_va);
4196					panic("bad pte");
4197				}
4198
4199/*
4200 * We cannot remove wired pages from a process' mapping at this time
4201 */
4202				if (tpte & PG_W) {
4203					allfree = 0;
4204					continue;
4205				}
4206
4207				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4208				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4209				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4210				    m, (uintmax_t)m->phys_addr,
4211				    (uintmax_t)tpte));
4212
4213				KASSERT(m < &vm_page_array[vm_page_array_size],
4214					("pmap_remove_pages: bad tpte %#jx",
4215					(uintmax_t)tpte));
4216
4217				pte_clear(pte);
4218
4219				/*
4220				 * Update the vm_page_t clean/reference bits.
4221				 */
4222				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4223					if ((tpte & PG_PS) != 0) {
4224						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4225							vm_page_dirty(mt);
4226					} else
4227						vm_page_dirty(m);
4228				}
4229
4230				/* Mark free */
4231				PV_STAT(pv_entry_frees++);
4232				PV_STAT(pv_entry_spare++);
4233				pv_entry_count--;
4234				pc->pc_map[field] |= bitmask;
4235				if ((tpte & PG_PS) != 0) {
4236					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4237					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4238					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4239					if (TAILQ_EMPTY(&pvh->pv_list)) {
4240						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4241							if (TAILQ_EMPTY(&mt->md.pv_list))
4242								vm_page_flag_clear(mt, PG_WRITEABLE);
4243					}
4244					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4245					if (mpte != NULL) {
4246						pmap_remove_pt_page(pmap, mpte);
4247						pmap->pm_stats.resident_count--;
4248						KASSERT(mpte->wire_count == NPTEPG,
4249						    ("pmap_remove_pages: pte page wire count error"));
4250						mpte->wire_count = 0;
4251						pmap_add_delayed_free_list(mpte, &free, FALSE);
4252						atomic_subtract_int(&cnt.v_wire_count, 1);
4253					}
4254				} else {
4255					pmap->pm_stats.resident_count--;
4256					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4257					if (TAILQ_EMPTY(&m->md.pv_list)) {
4258						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4259						if (TAILQ_EMPTY(&pvh->pv_list))
4260							vm_page_flag_clear(m, PG_WRITEABLE);
4261					}
4262					pmap_unuse_pt(pmap, pv->pv_va, &free);
4263				}
4264			}
4265		}
4266		if (allfree) {
4267			PV_STAT(pv_entry_spare -= _NPCPV);
4268			PV_STAT(pc_chunk_count--);
4269			PV_STAT(pc_chunk_frees++);
4270			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4271			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4272			pmap_qremove((vm_offset_t)pc, 1);
4273			vm_page_unwire(m, 0);
4274			vm_page_free(m);
4275			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4276		}
4277	}
4278	sched_unpin();
4279	pmap_invalidate_all(pmap);
4280	vm_page_unlock_queues();
4281	PMAP_UNLOCK(pmap);
4282	pmap_free_zero_pages(free);
4283}
4284
4285/*
4286 *	pmap_is_modified:
4287 *
4288 *	Return whether or not the specified physical page was modified
4289 *	in any physical maps.
4290 */
4291boolean_t
4292pmap_is_modified(vm_page_t m)
4293{
4294
4295	if (m->flags & PG_FICTITIOUS)
4296		return (FALSE);
4297	if (pmap_is_modified_pvh(&m->md))
4298		return (TRUE);
4299	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4300}
4301
4302/*
4303 * Returns TRUE if any of the given mappings were used to modify
4304 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4305 * mappings are supported.
4306 */
4307static boolean_t
4308pmap_is_modified_pvh(struct md_page *pvh)
4309{
4310	pv_entry_t pv;
4311	pt_entry_t *pte;
4312	pmap_t pmap;
4313	boolean_t rv;
4314
4315	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4316	rv = FALSE;
4317	sched_pin();
4318	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4319		pmap = PV_PMAP(pv);
4320		PMAP_LOCK(pmap);
4321		pte = pmap_pte_quick(pmap, pv->pv_va);
4322		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4323		PMAP_UNLOCK(pmap);
4324		if (rv)
4325			break;
4326	}
4327	sched_unpin();
4328	return (rv);
4329}
4330
4331/*
4332 *	pmap_is_prefaultable:
4333 *
4334 *	Return whether or not the specified virtual address is elgible
4335 *	for prefault.
4336 */
4337boolean_t
4338pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4339{
4340	pd_entry_t *pde;
4341	pt_entry_t *pte;
4342	boolean_t rv;
4343
4344	rv = FALSE;
4345	PMAP_LOCK(pmap);
4346	pde = pmap_pde(pmap, addr);
4347	if (*pde != 0 && (*pde & PG_PS) == 0) {
4348		pte = vtopte(addr);
4349		rv = *pte == 0;
4350	}
4351	PMAP_UNLOCK(pmap);
4352	return (rv);
4353}
4354
4355/*
4356 * Clear the write and modified bits in each of the given page's mappings.
4357 */
4358void
4359pmap_remove_write(vm_page_t m)
4360{
4361	struct md_page *pvh;
4362	pv_entry_t next_pv, pv;
4363	pmap_t pmap;
4364	pd_entry_t *pde;
4365	pt_entry_t oldpte, *pte;
4366	vm_offset_t va;
4367
4368	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4369	if ((m->flags & PG_FICTITIOUS) != 0 ||
4370	    (m->flags & PG_WRITEABLE) == 0)
4371		return;
4372	sched_pin();
4373	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4374	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4375		va = pv->pv_va;
4376		pmap = PV_PMAP(pv);
4377		PMAP_LOCK(pmap);
4378		pde = pmap_pde(pmap, va);
4379		if ((*pde & PG_RW) != 0)
4380			(void)pmap_demote_pde(pmap, pde, va);
4381		PMAP_UNLOCK(pmap);
4382	}
4383	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4384		pmap = PV_PMAP(pv);
4385		PMAP_LOCK(pmap);
4386		pde = pmap_pde(pmap, pv->pv_va);
4387		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4388		    " a 4mpage in page %p's pv list", m));
4389		pte = pmap_pte_quick(pmap, pv->pv_va);
4390retry:
4391		oldpte = *pte;
4392		if ((oldpte & PG_RW) != 0) {
4393			/*
4394			 * Regardless of whether a pte is 32 or 64 bits
4395			 * in size, PG_RW and PG_M are among the least
4396			 * significant 32 bits.
4397			 */
4398			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4399			    oldpte & ~(PG_RW | PG_M)))
4400				goto retry;
4401			if ((oldpte & PG_M) != 0)
4402				vm_page_dirty(m);
4403			pmap_invalidate_page(pmap, pv->pv_va);
4404		}
4405		PMAP_UNLOCK(pmap);
4406	}
4407	vm_page_flag_clear(m, PG_WRITEABLE);
4408	sched_unpin();
4409}
4410
4411/*
4412 *	pmap_ts_referenced:
4413 *
4414 *	Return a count of reference bits for a page, clearing those bits.
4415 *	It is not necessary for every reference bit to be cleared, but it
4416 *	is necessary that 0 only be returned when there are truly no
4417 *	reference bits set.
4418 *
4419 *	XXX: The exact number of bits to check and clear is a matter that
4420 *	should be tested and standardized at some point in the future for
4421 *	optimal aging of shared pages.
4422 */
4423int
4424pmap_ts_referenced(vm_page_t m)
4425{
4426	struct md_page *pvh;
4427	pv_entry_t pv, pvf, pvn;
4428	pmap_t pmap;
4429	pd_entry_t oldpde, *pde;
4430	pt_entry_t *pte;
4431	vm_offset_t va;
4432	int rtval = 0;
4433
4434	if (m->flags & PG_FICTITIOUS)
4435		return (rtval);
4436	sched_pin();
4437	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4438	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4439	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4440		va = pv->pv_va;
4441		pmap = PV_PMAP(pv);
4442		PMAP_LOCK(pmap);
4443		pde = pmap_pde(pmap, va);
4444		oldpde = *pde;
4445		if ((oldpde & PG_A) != 0) {
4446			if (pmap_demote_pde(pmap, pde, va)) {
4447				if ((oldpde & PG_W) == 0) {
4448					/*
4449					 * Remove the mapping to a single page
4450					 * so that a subsequent access may
4451					 * repromote.  Since the underlying
4452					 * page table page is fully populated,
4453					 * this removal never frees a page
4454					 * table page.
4455					 */
4456					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4457					    PG_PS_FRAME);
4458					pmap_remove_page(pmap, va, NULL);
4459					rtval++;
4460					if (rtval > 4) {
4461						PMAP_UNLOCK(pmap);
4462						return (rtval);
4463					}
4464				}
4465			}
4466		}
4467		PMAP_UNLOCK(pmap);
4468	}
4469	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4470		pvf = pv;
4471		do {
4472			pvn = TAILQ_NEXT(pv, pv_list);
4473			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4474			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4475			pmap = PV_PMAP(pv);
4476			PMAP_LOCK(pmap);
4477			pde = pmap_pde(pmap, pv->pv_va);
4478			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4479			    " found a 4mpage in page %p's pv list", m));
4480			pte = pmap_pte_quick(pmap, pv->pv_va);
4481			if ((*pte & PG_A) != 0) {
4482				atomic_clear_int((u_int *)pte, PG_A);
4483				pmap_invalidate_page(pmap, pv->pv_va);
4484				rtval++;
4485				if (rtval > 4)
4486					pvn = NULL;
4487			}
4488			PMAP_UNLOCK(pmap);
4489		} while ((pv = pvn) != NULL && pv != pvf);
4490	}
4491	sched_unpin();
4492	return (rtval);
4493}
4494
4495/*
4496 *	Clear the modify bits on the specified physical page.
4497 */
4498void
4499pmap_clear_modify(vm_page_t m)
4500{
4501	struct md_page *pvh;
4502	pv_entry_t next_pv, pv;
4503	pmap_t pmap;
4504	pd_entry_t oldpde, *pde;
4505	pt_entry_t oldpte, *pte;
4506	vm_offset_t va;
4507
4508	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4509	if ((m->flags & PG_FICTITIOUS) != 0)
4510		return;
4511	sched_pin();
4512	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4513	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4514		va = pv->pv_va;
4515		pmap = PV_PMAP(pv);
4516		PMAP_LOCK(pmap);
4517		pde = pmap_pde(pmap, va);
4518		oldpde = *pde;
4519		if ((oldpde & PG_RW) != 0) {
4520			if (pmap_demote_pde(pmap, pde, va)) {
4521				if ((oldpde & PG_W) == 0) {
4522					/*
4523					 * Write protect the mapping to a
4524					 * single page so that a subsequent
4525					 * write access may repromote.
4526					 */
4527					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4528					    PG_PS_FRAME);
4529					pte = pmap_pte_quick(pmap, va);
4530					oldpte = *pte;
4531					if ((oldpte & PG_V) != 0) {
4532						/*
4533						 * Regardless of whether a pte is 32 or 64 bits
4534						 * in size, PG_RW and PG_M are among the least
4535						 * significant 32 bits.
4536						 */
4537						while (!atomic_cmpset_int((u_int *)pte,
4538						    oldpte,
4539						    oldpte & ~(PG_M | PG_RW)))
4540							oldpte = *pte;
4541						vm_page_dirty(m);
4542						pmap_invalidate_page(pmap, va);
4543					}
4544				}
4545			}
4546		}
4547		PMAP_UNLOCK(pmap);
4548	}
4549	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4550		pmap = PV_PMAP(pv);
4551		PMAP_LOCK(pmap);
4552		pde = pmap_pde(pmap, pv->pv_va);
4553		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4554		    " a 4mpage in page %p's pv list", m));
4555		pte = pmap_pte_quick(pmap, pv->pv_va);
4556		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4557			/*
4558			 * Regardless of whether a pte is 32 or 64 bits
4559			 * in size, PG_M is among the least significant
4560			 * 32 bits.
4561			 */
4562			atomic_clear_int((u_int *)pte, PG_M);
4563			pmap_invalidate_page(pmap, pv->pv_va);
4564		}
4565		PMAP_UNLOCK(pmap);
4566	}
4567	sched_unpin();
4568}
4569
4570/*
4571 *	pmap_clear_reference:
4572 *
4573 *	Clear the reference bit on the specified physical page.
4574 */
4575void
4576pmap_clear_reference(vm_page_t m)
4577{
4578	struct md_page *pvh;
4579	pv_entry_t next_pv, pv;
4580	pmap_t pmap;
4581	pd_entry_t oldpde, *pde;
4582	pt_entry_t *pte;
4583	vm_offset_t va;
4584
4585	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4586	if ((m->flags & PG_FICTITIOUS) != 0)
4587		return;
4588	sched_pin();
4589	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4590	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4591		va = pv->pv_va;
4592		pmap = PV_PMAP(pv);
4593		PMAP_LOCK(pmap);
4594		pde = pmap_pde(pmap, va);
4595		oldpde = *pde;
4596		if ((oldpde & PG_A) != 0) {
4597			if (pmap_demote_pde(pmap, pde, va)) {
4598				/*
4599				 * Remove the mapping to a single page so
4600				 * that a subsequent access may repromote.
4601				 * Since the underlying page table page is
4602				 * fully populated, this removal never frees
4603				 * a page table page.
4604				 */
4605				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4606				    PG_PS_FRAME);
4607				pmap_remove_page(pmap, va, NULL);
4608			}
4609		}
4610		PMAP_UNLOCK(pmap);
4611	}
4612	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4613		pmap = PV_PMAP(pv);
4614		PMAP_LOCK(pmap);
4615		pde = pmap_pde(pmap, pv->pv_va);
4616		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4617		    " a 4mpage in page %p's pv list", m));
4618		pte = pmap_pte_quick(pmap, pv->pv_va);
4619		if ((*pte & PG_A) != 0) {
4620			/*
4621			 * Regardless of whether a pte is 32 or 64 bits
4622			 * in size, PG_A is among the least significant
4623			 * 32 bits.
4624			 */
4625			atomic_clear_int((u_int *)pte, PG_A);
4626			pmap_invalidate_page(pmap, pv->pv_va);
4627		}
4628		PMAP_UNLOCK(pmap);
4629	}
4630	sched_unpin();
4631}
4632
4633/*
4634 * Miscellaneous support routines follow
4635 */
4636
4637/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4638static __inline void
4639pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4640{
4641	u_int opte, npte;
4642
4643	/*
4644	 * The cache mode bits are all in the low 32-bits of the
4645	 * PTE, so we can just spin on updating the low 32-bits.
4646	 */
4647	do {
4648		opte = *(u_int *)pte;
4649		npte = opte & ~PG_PTE_CACHE;
4650		npte |= cache_bits;
4651	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4652}
4653
4654/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4655static __inline void
4656pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4657{
4658	u_int opde, npde;
4659
4660	/*
4661	 * The cache mode bits are all in the low 32-bits of the
4662	 * PDE, so we can just spin on updating the low 32-bits.
4663	 */
4664	do {
4665		opde = *(u_int *)pde;
4666		npde = opde & ~PG_PDE_CACHE;
4667		npde |= cache_bits;
4668	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4669}
4670
4671/*
4672 * Map a set of physical memory pages into the kernel virtual
4673 * address space. Return a pointer to where it is mapped. This
4674 * routine is intended to be used for mapping device memory,
4675 * NOT real memory.
4676 */
4677void *
4678pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4679{
4680	vm_offset_t va, offset;
4681	vm_size_t tmpsize;
4682
4683	offset = pa & PAGE_MASK;
4684	size = roundup(offset + size, PAGE_SIZE);
4685	pa = pa & PG_FRAME;
4686
4687	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4688		va = KERNBASE + pa;
4689	else
4690		va = kmem_alloc_nofault(kernel_map, size);
4691	if (!va)
4692		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4693
4694	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4695		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4696	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4697	pmap_invalidate_cache_range(va, va + size);
4698	return ((void *)(va + offset));
4699}
4700
4701void *
4702pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4703{
4704
4705	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4706}
4707
4708void *
4709pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4710{
4711
4712	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4713}
4714
4715void
4716pmap_unmapdev(vm_offset_t va, vm_size_t size)
4717{
4718	vm_offset_t base, offset, tmpva;
4719
4720	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4721		return;
4722	base = trunc_page(va);
4723	offset = va & PAGE_MASK;
4724	size = roundup(offset + size, PAGE_SIZE);
4725	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4726		pmap_kremove(tmpva);
4727	pmap_invalidate_range(kernel_pmap, va, tmpva);
4728	kmem_free(kernel_map, base, size);
4729}
4730
4731/*
4732 * Sets the memory attribute for the specified page.
4733 */
4734void
4735pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4736{
4737	struct sysmaps *sysmaps;
4738	vm_offset_t sva, eva;
4739
4740	m->md.pat_mode = ma;
4741	if ((m->flags & PG_FICTITIOUS) != 0)
4742		return;
4743
4744	/*
4745	 * If "m" is a normal page, flush it from the cache.
4746	 * See pmap_invalidate_cache_range().
4747	 *
4748	 * First, try to find an existing mapping of the page by sf
4749	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4750	 * flushes the cache.
4751	 */
4752	if (sf_buf_invalidate_cache(m))
4753		return;
4754
4755	/*
4756	 * If page is not mapped by sf buffer, but CPU does not
4757	 * support self snoop, map the page transient and do
4758	 * invalidation. In the worst case, whole cache is flushed by
4759	 * pmap_invalidate_cache_range().
4760	 */
4761	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4762		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4763		mtx_lock(&sysmaps->lock);
4764		if (*sysmaps->CMAP2)
4765			panic("pmap_page_set_memattr: CMAP2 busy");
4766		sched_pin();
4767		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4768		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4769		invlcaddr(sysmaps->CADDR2);
4770		sva = (vm_offset_t)sysmaps->CADDR2;
4771		eva = sva + PAGE_SIZE;
4772	} else
4773		sva = eva = 0; /* gcc */
4774	pmap_invalidate_cache_range(sva, eva);
4775	if (sva != 0) {
4776		*sysmaps->CMAP2 = 0;
4777		sched_unpin();
4778		mtx_unlock(&sysmaps->lock);
4779	}
4780}
4781
4782/*
4783 * Changes the specified virtual address range's memory type to that given by
4784 * the parameter "mode".  The specified virtual address range must be
4785 * completely contained within either the kernel map.
4786 *
4787 * Returns zero if the change completed successfully, and either EINVAL or
4788 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4789 * of the virtual address range was not mapped, and ENOMEM is returned if
4790 * there was insufficient memory available to complete the change.
4791 */
4792int
4793pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4794{
4795	vm_offset_t base, offset, tmpva;
4796	pd_entry_t *pde;
4797	pt_entry_t *pte;
4798	int cache_bits_pte, cache_bits_pde;
4799	boolean_t changed;
4800
4801	base = trunc_page(va);
4802	offset = va & PAGE_MASK;
4803	size = roundup(offset + size, PAGE_SIZE);
4804
4805	/*
4806	 * Only supported on kernel virtual addresses above the recursive map.
4807	 */
4808	if (base < VM_MIN_KERNEL_ADDRESS)
4809		return (EINVAL);
4810
4811	cache_bits_pde = pmap_cache_bits(mode, 1);
4812	cache_bits_pte = pmap_cache_bits(mode, 0);
4813	changed = FALSE;
4814
4815	/*
4816	 * Pages that aren't mapped aren't supported.  Also break down
4817	 * 2/4MB pages into 4KB pages if required.
4818	 */
4819	PMAP_LOCK(kernel_pmap);
4820	for (tmpva = base; tmpva < base + size; ) {
4821		pde = pmap_pde(kernel_pmap, tmpva);
4822		if (*pde == 0) {
4823			PMAP_UNLOCK(kernel_pmap);
4824			return (EINVAL);
4825		}
4826		if (*pde & PG_PS) {
4827			/*
4828			 * If the current 2/4MB page already has
4829			 * the required memory type, then we need not
4830			 * demote this page.  Just increment tmpva to
4831			 * the next 2/4MB page frame.
4832			 */
4833			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4834				tmpva = trunc_4mpage(tmpva) + NBPDR;
4835				continue;
4836			}
4837
4838			/*
4839			 * If the current offset aligns with a 2/4MB
4840			 * page frame and there is at least 2/4MB left
4841			 * within the range, then we need not break
4842			 * down this page into 4KB pages.
4843			 */
4844			if ((tmpva & PDRMASK) == 0 &&
4845			    tmpva + PDRMASK < base + size) {
4846				tmpva += NBPDR;
4847				continue;
4848			}
4849			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4850				PMAP_UNLOCK(kernel_pmap);
4851				return (ENOMEM);
4852			}
4853		}
4854		pte = vtopte(tmpva);
4855		if (*pte == 0) {
4856			PMAP_UNLOCK(kernel_pmap);
4857			return (EINVAL);
4858		}
4859		tmpva += PAGE_SIZE;
4860	}
4861	PMAP_UNLOCK(kernel_pmap);
4862
4863	/*
4864	 * Ok, all the pages exist, so run through them updating their
4865	 * cache mode if required.
4866	 */
4867	for (tmpva = base; tmpva < base + size; ) {
4868		pde = pmap_pde(kernel_pmap, tmpva);
4869		if (*pde & PG_PS) {
4870			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4871				pmap_pde_attr(pde, cache_bits_pde);
4872				changed = TRUE;
4873			}
4874			tmpva = trunc_4mpage(tmpva) + NBPDR;
4875		} else {
4876			pte = vtopte(tmpva);
4877			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4878				pmap_pte_attr(pte, cache_bits_pte);
4879				changed = TRUE;
4880			}
4881			tmpva += PAGE_SIZE;
4882		}
4883	}
4884
4885	/*
4886	 * Flush CPU caches to make sure any data isn't cached that
4887	 * shouldn't be, etc.
4888	 */
4889	if (changed) {
4890		pmap_invalidate_range(kernel_pmap, base, tmpva);
4891		pmap_invalidate_cache_range(base, tmpva);
4892	}
4893	return (0);
4894}
4895
4896/*
4897 * perform the pmap work for mincore
4898 */
4899int
4900pmap_mincore(pmap_t pmap, vm_offset_t addr)
4901{
4902	pd_entry_t *pdep;
4903	pt_entry_t *ptep, pte;
4904	vm_paddr_t pa;
4905	vm_page_t m;
4906	int val = 0;
4907
4908	PMAP_LOCK(pmap);
4909	pdep = pmap_pde(pmap, addr);
4910	if (*pdep != 0) {
4911		if (*pdep & PG_PS) {
4912			pte = *pdep;
4913			val = MINCORE_SUPER;
4914			/* Compute the physical address of the 4KB page. */
4915			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4916			    PG_FRAME;
4917		} else {
4918			ptep = pmap_pte(pmap, addr);
4919			pte = *ptep;
4920			pmap_pte_release(ptep);
4921			pa = pte & PG_FRAME;
4922		}
4923	} else {
4924		pte = 0;
4925		pa = 0;
4926	}
4927	PMAP_UNLOCK(pmap);
4928
4929	if (pte != 0) {
4930		val |= MINCORE_INCORE;
4931		if ((pte & PG_MANAGED) == 0)
4932			return val;
4933
4934		m = PHYS_TO_VM_PAGE(pa);
4935
4936		/*
4937		 * Modified by us
4938		 */
4939		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4940			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4941		else {
4942			/*
4943			 * Modified by someone else
4944			 */
4945			vm_page_lock_queues();
4946			if (m->dirty || pmap_is_modified(m))
4947				val |= MINCORE_MODIFIED_OTHER;
4948			vm_page_unlock_queues();
4949		}
4950		/*
4951		 * Referenced by us
4952		 */
4953		if (pte & PG_A)
4954			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4955		else {
4956			/*
4957			 * Referenced by someone else
4958			 */
4959			vm_page_lock_queues();
4960			if ((m->flags & PG_REFERENCED) ||
4961			    pmap_ts_referenced(m)) {
4962				val |= MINCORE_REFERENCED_OTHER;
4963				vm_page_flag_set(m, PG_REFERENCED);
4964			}
4965			vm_page_unlock_queues();
4966		}
4967	}
4968	return val;
4969}
4970
4971void
4972pmap_activate(struct thread *td)
4973{
4974	pmap_t	pmap, oldpmap;
4975	u_int32_t  cr3;
4976
4977	critical_enter();
4978	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4979	oldpmap = PCPU_GET(curpmap);
4980#if defined(SMP)
4981	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4982	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4983#else
4984	oldpmap->pm_active &= ~1;
4985	pmap->pm_active |= 1;
4986#endif
4987#ifdef PAE
4988	cr3 = vtophys(pmap->pm_pdpt);
4989#else
4990	cr3 = vtophys(pmap->pm_pdir);
4991#endif
4992	/*
4993	 * pmap_activate is for the current thread on the current cpu
4994	 */
4995	td->td_pcb->pcb_cr3 = cr3;
4996	load_cr3(cr3);
4997	PCPU_SET(curpmap, pmap);
4998	critical_exit();
4999}
5000
5001void
5002pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5003{
5004}
5005
5006/*
5007 *	Increase the starting virtual address of the given mapping if a
5008 *	different alignment might result in more superpage mappings.
5009 */
5010void
5011pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5012    vm_offset_t *addr, vm_size_t size)
5013{
5014	vm_offset_t superpage_offset;
5015
5016	if (size < NBPDR)
5017		return;
5018	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5019		offset += ptoa(object->pg_color);
5020	superpage_offset = offset & PDRMASK;
5021	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5022	    (*addr & PDRMASK) == superpage_offset)
5023		return;
5024	if ((*addr & PDRMASK) < superpage_offset)
5025		*addr = (*addr & ~PDRMASK) + superpage_offset;
5026	else
5027		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5028}
5029
5030
5031#if defined(PMAP_DEBUG)
5032pmap_pid_dump(int pid)
5033{
5034	pmap_t pmap;
5035	struct proc *p;
5036	int npte = 0;
5037	int index;
5038
5039	sx_slock(&allproc_lock);
5040	FOREACH_PROC_IN_SYSTEM(p) {
5041		if (p->p_pid != pid)
5042			continue;
5043
5044		if (p->p_vmspace) {
5045			int i,j;
5046			index = 0;
5047			pmap = vmspace_pmap(p->p_vmspace);
5048			for (i = 0; i < NPDEPTD; i++) {
5049				pd_entry_t *pde;
5050				pt_entry_t *pte;
5051				vm_offset_t base = i << PDRSHIFT;
5052
5053				pde = &pmap->pm_pdir[i];
5054				if (pde && pmap_pde_v(pde)) {
5055					for (j = 0; j < NPTEPG; j++) {
5056						vm_offset_t va = base + (j << PAGE_SHIFT);
5057						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5058							if (index) {
5059								index = 0;
5060								printf("\n");
5061							}
5062							sx_sunlock(&allproc_lock);
5063							return npte;
5064						}
5065						pte = pmap_pte(pmap, va);
5066						if (pte && pmap_pte_v(pte)) {
5067							pt_entry_t pa;
5068							vm_page_t m;
5069							pa = *pte;
5070							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5071							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5072								va, pa, m->hold_count, m->wire_count, m->flags);
5073							npte++;
5074							index++;
5075							if (index >= 2) {
5076								index = 0;
5077								printf("\n");
5078							} else {
5079								printf(" ");
5080							}
5081						}
5082					}
5083				}
5084			}
5085		}
5086	}
5087	sx_sunlock(&allproc_lock);
5088	return npte;
5089}
5090#endif
5091
5092#if defined(DEBUG)
5093
5094static void	pads(pmap_t pm);
5095void		pmap_pvdump(vm_offset_t pa);
5096
5097/* print address space of pmap*/
5098static void
5099pads(pmap_t pm)
5100{
5101	int i, j;
5102	vm_paddr_t va;
5103	pt_entry_t *ptep;
5104
5105	if (pm == kernel_pmap)
5106		return;
5107	for (i = 0; i < NPDEPTD; i++)
5108		if (pm->pm_pdir[i])
5109			for (j = 0; j < NPTEPG; j++) {
5110				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5111				if (pm == kernel_pmap && va < KERNBASE)
5112					continue;
5113				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5114					continue;
5115				ptep = pmap_pte(pm, va);
5116				if (pmap_pte_v(ptep))
5117					printf("%x:%x ", va, *ptep);
5118			};
5119
5120}
5121
5122void
5123pmap_pvdump(vm_paddr_t pa)
5124{
5125	pv_entry_t pv;
5126	pmap_t pmap;
5127	vm_page_t m;
5128
5129	printf("pa %x", pa);
5130	m = PHYS_TO_VM_PAGE(pa);
5131	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5132		pmap = PV_PMAP(pv);
5133		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5134		pads(pmap);
5135	}
5136	printf(" ");
5137}
5138#endif
5139