pmap.c revision 205063
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 205063 2010-03-12 03:08:47Z jhb $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#ifdef __GNUC_GNU_INLINE__
166#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167#else
168#define PMAP_INLINE	extern inline
169#endif
170#else
171#define PMAP_INLINE
172#endif
173
174#define PV_STATS
175#ifdef PV_STATS
176#define PV_STAT(x)	do { x ; } while (0)
177#else
178#define PV_STAT(x)	do { } while (0)
179#endif
180
181#define	pa_index(pa)	((pa) >> PDRSHIFT)
182#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183
184/*
185 * Get PDEs and PTEs for user/kernel address space
186 */
187#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189
190#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195
196#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197    atomic_clear_int((u_int *)(pte), PG_W))
198#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199
200struct pmap kernel_pmap_store;
201LIST_HEAD(pmaplist, pmap);
202static struct pmaplist allpmaps;
203static struct mtx allpmaps_lock;
204
205vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
206vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
207int pgeflag = 0;		/* PG_G or-in */
208int pseflag = 0;		/* PG_PS or-in */
209
210static int nkpt;
211vm_offset_t kernel_vm_end;
212extern u_int32_t KERNend;
213extern u_int32_t KPTphys;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217static uma_zone_t pdptzone;
218#endif
219
220static int pat_works = 0;		/* Is page attribute table sane? */
221
222SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pg_ps_enabled = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
226    "Are large page mappings enabled?");
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0, *KPTmap;
251static pt_entry_t *CMAP3;
252static pd_entry_t *KPTD;
253caddr_t CADDR1 = 0, ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
283static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
284static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
285static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
286static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
287static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
288		    vm_offset_t va);
289static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
290
291static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
292static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
293    vm_prot_t prot);
294static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
295    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
296static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
297static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
298static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
299static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
300static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
301static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
302static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
303static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
304    vm_prot_t prot);
305static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
306static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
307    vm_page_t *free);
308static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
309    vm_page_t *free);
310static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
311static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
312    vm_page_t *free);
313static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
314					vm_offset_t va);
315static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
316static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
317    vm_page_t m);
318
319static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
320
321static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
322static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
323static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
324static void pmap_pte_release(pt_entry_t *pte);
325static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
326#ifdef PAE
327static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
328#endif
329static void pmap_set_pg(void);
330
331CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
332CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
333
334/*
335 * If you get an error here, then you set KVA_PAGES wrong! See the
336 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
337 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
338 */
339CTASSERT(KERNBASE % (1 << 24) == 0);
340
341/*
342 *	Bootstrap the system enough to run with virtual memory.
343 *
344 *	On the i386 this is called after mapping has already been enabled
345 *	and just syncs the pmap module with what has already been done.
346 *	[We can't call it easily with mapping off since the kernel is not
347 *	mapped with PA == VA, hence we would have to relocate every address
348 *	from the linked base (virtual) address "KERNBASE" to the actual
349 *	(physical) address starting relative to 0]
350 */
351void
352pmap_bootstrap(vm_paddr_t firstaddr)
353{
354	vm_offset_t va;
355	pt_entry_t *pte, *unused;
356	struct sysmaps *sysmaps;
357	int i;
358
359	/*
360	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
361	 * large. It should instead be correctly calculated in locore.s and
362	 * not based on 'first' (which is a physical address, not a virtual
363	 * address, for the start of unused physical memory). The kernel
364	 * page tables are NOT double mapped and thus should not be included
365	 * in this calculation.
366	 */
367	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
368
369	virtual_end = VM_MAX_KERNEL_ADDRESS;
370
371	/*
372	 * Initialize the kernel pmap (which is statically allocated).
373	 */
374	PMAP_LOCK_INIT(kernel_pmap);
375	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
376#ifdef PAE
377	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
378#endif
379	kernel_pmap->pm_root = NULL;
380	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
381	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
382	LIST_INIT(&allpmaps);
383	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
384	mtx_lock_spin(&allpmaps_lock);
385	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
386	mtx_unlock_spin(&allpmaps_lock);
387	nkpt = NKPT;
388
389	/*
390	 * Reserve some special page table entries/VA space for temporary
391	 * mapping of pages.
392	 */
393#define	SYSMAP(c, p, v, n)	\
394	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
395
396	va = virtual_avail;
397	pte = vtopte(va);
398
399	/*
400	 * CMAP1/CMAP2 are used for zeroing and copying pages.
401	 * CMAP3 is used for the idle process page zeroing.
402	 */
403	for (i = 0; i < MAXCPU; i++) {
404		sysmaps = &sysmaps_pcpu[i];
405		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
406		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
407		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
408	}
409	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
410	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
411
412	/*
413	 * Crashdump maps.
414	 */
415	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
416
417	/*
418	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
419	 */
420	SYSMAP(caddr_t, unused, ptvmmap, 1)
421
422	/*
423	 * msgbufp is used to map the system message buffer.
424	 */
425	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
426
427	/*
428	 * KPTmap is used by pmap_kextract().
429	 */
430	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
431
432	for (i = 0; i < NKPT; i++)
433		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
434
435	/*
436	 * Adjust the start of the KPTD and KPTmap so that the implementation
437	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
438	 */
439	KPTD -= KPTDI;
440	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
441
442	/*
443	 * ptemap is used for pmap_pte_quick
444	 */
445	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
446	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
447
448	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
449
450	virtual_avail = va;
451
452	/*
453	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
454	 * physical memory region that is used by the ACPI wakeup code.  This
455	 * mapping must not have PG_G set.
456	 */
457#ifdef XBOX
458	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
459	 * an early stadium, we cannot yet neatly map video memory ... :-(
460	 * Better fixes are very welcome! */
461	if (!arch_i386_is_xbox)
462#endif
463	for (i = 1; i < NKPT; i++)
464		PTD[i] = 0;
465
466	/* Initialize the PAT MSR if present. */
467	pmap_init_pat();
468
469	/* Turn on PG_G on kernel page(s) */
470	pmap_set_pg();
471}
472
473/*
474 * Setup the PAT MSR.
475 */
476void
477pmap_init_pat(void)
478{
479	uint64_t pat_msr;
480	char *sysenv;
481	static int pat_tested = 0;
482
483	/* Bail if this CPU doesn't implement PAT. */
484	if (!(cpu_feature & CPUID_PAT))
485		return;
486
487	/*
488	 * Due to some Intel errata, we can only safely use the lower 4
489	 * PAT entries.
490	 *
491	 *   Intel Pentium III Processor Specification Update
492	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
493	 * or Mode C Paging)
494	 *
495	 *   Intel Pentium IV  Processor Specification Update
496	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
497	 *
498	 * Some Apple Macs based on nVidia chipsets cannot enter ACPI mode
499	 * via SMI# when we use upper 4 PAT entries for unknown reason.
500	 */
501	if (!pat_tested) {
502		if (cpu_vendor_id != CPU_VENDOR_INTEL ||
503		    (CPUID_TO_FAMILY(cpu_id) == 6 &&
504		    CPUID_TO_MODEL(cpu_id) >= 0xe)) {
505			pat_works = 1;
506			sysenv = getenv("smbios.system.product");
507			if (sysenv != NULL) {
508				if (strncmp(sysenv, "MacBook5,1", 10) == 0 ||
509				    strncmp(sysenv, "MacBookPro5,5", 13) == 0 ||
510				    strncmp(sysenv, "Macmini3,1", 10) == 0)
511					pat_works = 0;
512				freeenv(sysenv);
513			}
514		}
515		pat_tested = 1;
516	}
517
518	/* Initialize default PAT entries. */
519	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
520	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
521	    PAT_VALUE(2, PAT_UNCACHED) |
522	    PAT_VALUE(3, PAT_UNCACHEABLE) |
523	    PAT_VALUE(4, PAT_WRITE_BACK) |
524	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
525	    PAT_VALUE(6, PAT_UNCACHED) |
526	    PAT_VALUE(7, PAT_UNCACHEABLE);
527
528	if (pat_works) {
529		/*
530		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
531		 * Program 4 and 5 as WP and WC.
532		 * Leave 6 and 7 as UC- and UC.
533		 */
534		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
535		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
536		    PAT_VALUE(5, PAT_WRITE_COMBINING);
537	} else {
538		/*
539		 * Just replace PAT Index 2 with WC instead of UC-.
540		 */
541		pat_msr &= ~PAT_MASK(2);
542		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
543	}
544	wrmsr(MSR_PAT, pat_msr);
545}
546
547/*
548 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
549 */
550static void
551pmap_set_pg(void)
552{
553	pt_entry_t *pte;
554	vm_offset_t va, endva;
555
556	if (pgeflag == 0)
557		return;
558
559	endva = KERNBASE + KERNend;
560
561	if (pseflag) {
562		va = KERNBASE + KERNLOAD;
563		while (va  < endva) {
564			pdir_pde(PTD, va) |= pgeflag;
565			invltlb();	/* Play it safe, invltlb() every time */
566			va += NBPDR;
567		}
568	} else {
569		va = (vm_offset_t)btext;
570		while (va < endva) {
571			pte = vtopte(va);
572			if (*pte)
573				*pte |= pgeflag;
574			invltlb();	/* Play it safe, invltlb() every time */
575			va += PAGE_SIZE;
576		}
577	}
578}
579
580/*
581 * Initialize a vm_page's machine-dependent fields.
582 */
583void
584pmap_page_init(vm_page_t m)
585{
586
587	TAILQ_INIT(&m->md.pv_list);
588	m->md.pat_mode = PAT_WRITE_BACK;
589}
590
591#ifdef PAE
592static void *
593pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
594{
595
596	/* Inform UMA that this allocator uses kernel_map/object. */
597	*flags = UMA_SLAB_KERNEL;
598	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
599	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
600}
601#endif
602
603/*
604 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
605 * Requirements:
606 *  - Must deal with pages in order to ensure that none of the PG_* bits
607 *    are ever set, PG_V in particular.
608 *  - Assumes we can write to ptes without pte_store() atomic ops, even
609 *    on PAE systems.  This should be ok.
610 *  - Assumes nothing will ever test these addresses for 0 to indicate
611 *    no mapping instead of correctly checking PG_V.
612 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
613 * Because PG_V is never set, there can be no mappings to invalidate.
614 */
615static vm_offset_t
616pmap_ptelist_alloc(vm_offset_t *head)
617{
618	pt_entry_t *pte;
619	vm_offset_t va;
620
621	va = *head;
622	if (va == 0)
623		return (va);	/* Out of memory */
624	pte = vtopte(va);
625	*head = *pte;
626	if (*head & PG_V)
627		panic("pmap_ptelist_alloc: va with PG_V set!");
628	*pte = 0;
629	return (va);
630}
631
632static void
633pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
634{
635	pt_entry_t *pte;
636
637	if (va & PG_V)
638		panic("pmap_ptelist_free: freeing va with PG_V set!");
639	pte = vtopte(va);
640	*pte = *head;		/* virtual! PG_V is 0 though */
641	*head = va;
642}
643
644static void
645pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
646{
647	int i;
648	vm_offset_t va;
649
650	*head = 0;
651	for (i = npages - 1; i >= 0; i--) {
652		va = (vm_offset_t)base + i * PAGE_SIZE;
653		pmap_ptelist_free(head, va);
654	}
655}
656
657
658/*
659 *	Initialize the pmap module.
660 *	Called by vm_init, to initialize any structures that the pmap
661 *	system needs to map virtual memory.
662 */
663void
664pmap_init(void)
665{
666	vm_page_t mpte;
667	vm_size_t s;
668	int i, pv_npg;
669
670	/*
671	 * Initialize the vm page array entries for the kernel pmap's
672	 * page table pages.
673	 */
674	for (i = 0; i < NKPT; i++) {
675		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
676		KASSERT(mpte >= vm_page_array &&
677		    mpte < &vm_page_array[vm_page_array_size],
678		    ("pmap_init: page table page is out of range"));
679		mpte->pindex = i + KPTDI;
680		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
681	}
682
683	/*
684	 * Initialize the address space (zone) for the pv entries.  Set a
685	 * high water mark so that the system can recover from excessive
686	 * numbers of pv entries.
687	 */
688	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
689	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
690	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
691	pv_entry_max = roundup(pv_entry_max, _NPCPV);
692	pv_entry_high_water = 9 * (pv_entry_max / 10);
693
694	/*
695	 * Disable large page mappings by default if the kernel is running in
696	 * a virtual machine on an AMD Family 10h processor.  This is a work-
697	 * around for Erratum 383.
698	 */
699	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
700	    CPUID_TO_FAMILY(cpu_id) == 0x10)
701		pg_ps_enabled = 0;
702
703	/*
704	 * Are large page mappings enabled?
705	 */
706	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
707	if (pg_ps_enabled) {
708		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
709		    ("pmap_init: can't assign to pagesizes[1]"));
710		pagesizes[1] = NBPDR;
711	}
712
713	/*
714	 * Calculate the size of the pv head table for superpages.
715	 */
716	for (i = 0; phys_avail[i + 1]; i += 2);
717	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
718
719	/*
720	 * Allocate memory for the pv head table for superpages.
721	 */
722	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
723	s = round_page(s);
724	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
725	for (i = 0; i < pv_npg; i++)
726		TAILQ_INIT(&pv_table[i].pv_list);
727
728	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
729	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
730	    PAGE_SIZE * pv_maxchunks);
731	if (pv_chunkbase == NULL)
732		panic("pmap_init: not enough kvm for pv chunks");
733	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
734#ifdef PAE
735	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
736	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
737	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
738	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
739#endif
740}
741
742
743SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
744	"Max number of PV entries");
745SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
746	"Page share factor per proc");
747
748SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
749    "2/4MB page mapping counters");
750
751static u_long pmap_pde_demotions;
752SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
753    &pmap_pde_demotions, 0, "2/4MB page demotions");
754
755static u_long pmap_pde_mappings;
756SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
757    &pmap_pde_mappings, 0, "2/4MB page mappings");
758
759static u_long pmap_pde_p_failures;
760SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
761    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
762
763static u_long pmap_pde_promotions;
764SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
765    &pmap_pde_promotions, 0, "2/4MB page promotions");
766
767/***************************************************
768 * Low level helper routines.....
769 ***************************************************/
770
771/*
772 * Determine the appropriate bits to set in a PTE or PDE for a specified
773 * caching mode.
774 */
775int
776pmap_cache_bits(int mode, boolean_t is_pde)
777{
778	int pat_flag, pat_index, cache_bits;
779
780	/* The PAT bit is different for PTE's and PDE's. */
781	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
782
783	/* If we don't support PAT, map extended modes to older ones. */
784	if (!(cpu_feature & CPUID_PAT)) {
785		switch (mode) {
786		case PAT_UNCACHEABLE:
787		case PAT_WRITE_THROUGH:
788		case PAT_WRITE_BACK:
789			break;
790		case PAT_UNCACHED:
791		case PAT_WRITE_COMBINING:
792		case PAT_WRITE_PROTECTED:
793			mode = PAT_UNCACHEABLE;
794			break;
795		}
796	}
797
798	/* Map the caching mode to a PAT index. */
799	if (pat_works) {
800		switch (mode) {
801		case PAT_UNCACHEABLE:
802			pat_index = 3;
803			break;
804		case PAT_WRITE_THROUGH:
805			pat_index = 1;
806			break;
807		case PAT_WRITE_BACK:
808			pat_index = 0;
809			break;
810		case PAT_UNCACHED:
811			pat_index = 2;
812			break;
813		case PAT_WRITE_COMBINING:
814			pat_index = 5;
815			break;
816		case PAT_WRITE_PROTECTED:
817			pat_index = 4;
818			break;
819		default:
820			panic("Unknown caching mode %d\n", mode);
821		}
822	} else {
823		switch (mode) {
824		case PAT_UNCACHED:
825		case PAT_UNCACHEABLE:
826		case PAT_WRITE_PROTECTED:
827			pat_index = 3;
828			break;
829		case PAT_WRITE_THROUGH:
830			pat_index = 1;
831			break;
832		case PAT_WRITE_BACK:
833			pat_index = 0;
834			break;
835		case PAT_WRITE_COMBINING:
836			pat_index = 2;
837			break;
838		default:
839			panic("Unknown caching mode %d\n", mode);
840		}
841	}
842
843	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
844	cache_bits = 0;
845	if (pat_index & 0x4)
846		cache_bits |= pat_flag;
847	if (pat_index & 0x2)
848		cache_bits |= PG_NC_PCD;
849	if (pat_index & 0x1)
850		cache_bits |= PG_NC_PWT;
851	return (cache_bits);
852}
853#ifdef SMP
854/*
855 * For SMP, these functions have to use the IPI mechanism for coherence.
856 *
857 * N.B.: Before calling any of the following TLB invalidation functions,
858 * the calling processor must ensure that all stores updating a non-
859 * kernel page table are globally performed.  Otherwise, another
860 * processor could cache an old, pre-update entry without being
861 * invalidated.  This can happen one of two ways: (1) The pmap becomes
862 * active on another processor after its pm_active field is checked by
863 * one of the following functions but before a store updating the page
864 * table is globally performed. (2) The pmap becomes active on another
865 * processor before its pm_active field is checked but due to
866 * speculative loads one of the following functions stills reads the
867 * pmap as inactive on the other processor.
868 *
869 * The kernel page table is exempt because its pm_active field is
870 * immutable.  The kernel page table is always active on every
871 * processor.
872 */
873void
874pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
875{
876	u_int cpumask;
877	u_int other_cpus;
878
879	sched_pin();
880	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
881		invlpg(va);
882		smp_invlpg(va);
883	} else {
884		cpumask = PCPU_GET(cpumask);
885		other_cpus = PCPU_GET(other_cpus);
886		if (pmap->pm_active & cpumask)
887			invlpg(va);
888		if (pmap->pm_active & other_cpus)
889			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
890	}
891	sched_unpin();
892}
893
894void
895pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
896{
897	u_int cpumask;
898	u_int other_cpus;
899	vm_offset_t addr;
900
901	sched_pin();
902	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
903		for (addr = sva; addr < eva; addr += PAGE_SIZE)
904			invlpg(addr);
905		smp_invlpg_range(sva, eva);
906	} else {
907		cpumask = PCPU_GET(cpumask);
908		other_cpus = PCPU_GET(other_cpus);
909		if (pmap->pm_active & cpumask)
910			for (addr = sva; addr < eva; addr += PAGE_SIZE)
911				invlpg(addr);
912		if (pmap->pm_active & other_cpus)
913			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
914			    sva, eva);
915	}
916	sched_unpin();
917}
918
919void
920pmap_invalidate_all(pmap_t pmap)
921{
922	u_int cpumask;
923	u_int other_cpus;
924
925	sched_pin();
926	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
927		invltlb();
928		smp_invltlb();
929	} else {
930		cpumask = PCPU_GET(cpumask);
931		other_cpus = PCPU_GET(other_cpus);
932		if (pmap->pm_active & cpumask)
933			invltlb();
934		if (pmap->pm_active & other_cpus)
935			smp_masked_invltlb(pmap->pm_active & other_cpus);
936	}
937	sched_unpin();
938}
939
940void
941pmap_invalidate_cache(void)
942{
943
944	sched_pin();
945	wbinvd();
946	smp_cache_flush();
947	sched_unpin();
948}
949#else /* !SMP */
950/*
951 * Normal, non-SMP, 486+ invalidation functions.
952 * We inline these within pmap.c for speed.
953 */
954PMAP_INLINE void
955pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
956{
957
958	if (pmap == kernel_pmap || pmap->pm_active)
959		invlpg(va);
960}
961
962PMAP_INLINE void
963pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
964{
965	vm_offset_t addr;
966
967	if (pmap == kernel_pmap || pmap->pm_active)
968		for (addr = sva; addr < eva; addr += PAGE_SIZE)
969			invlpg(addr);
970}
971
972PMAP_INLINE void
973pmap_invalidate_all(pmap_t pmap)
974{
975
976	if (pmap == kernel_pmap || pmap->pm_active)
977		invltlb();
978}
979
980PMAP_INLINE void
981pmap_invalidate_cache(void)
982{
983
984	wbinvd();
985}
986#endif /* !SMP */
987
988void
989pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
990{
991
992	KASSERT((sva & PAGE_MASK) == 0,
993	    ("pmap_invalidate_cache_range: sva not page-aligned"));
994	KASSERT((eva & PAGE_MASK) == 0,
995	    ("pmap_invalidate_cache_range: eva not page-aligned"));
996
997	if (cpu_feature & CPUID_SS)
998		; /* If "Self Snoop" is supported, do nothing. */
999	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1000		 eva - sva < 2 * 1024 * 1024) {
1001
1002		/*
1003		 * Otherwise, do per-cache line flush.  Use the mfence
1004		 * instruction to insure that previous stores are
1005		 * included in the write-back.  The processor
1006		 * propagates flush to other processors in the cache
1007		 * coherence domain.
1008		 */
1009		mfence();
1010		for (; sva < eva; sva += cpu_clflush_line_size)
1011			clflush(sva);
1012		mfence();
1013	} else {
1014
1015		/*
1016		 * No targeted cache flush methods are supported by CPU,
1017		 * or the supplied range is bigger then 2MB.
1018		 * Globally invalidate cache.
1019		 */
1020		pmap_invalidate_cache();
1021	}
1022}
1023
1024/*
1025 * Are we current address space or kernel?  N.B. We return FALSE when
1026 * a pmap's page table is in use because a kernel thread is borrowing
1027 * it.  The borrowed page table can change spontaneously, making any
1028 * dependence on its continued use subject to a race condition.
1029 */
1030static __inline int
1031pmap_is_current(pmap_t pmap)
1032{
1033
1034	return (pmap == kernel_pmap ||
1035		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1036	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1037}
1038
1039/*
1040 * If the given pmap is not the current or kernel pmap, the returned pte must
1041 * be released by passing it to pmap_pte_release().
1042 */
1043pt_entry_t *
1044pmap_pte(pmap_t pmap, vm_offset_t va)
1045{
1046	pd_entry_t newpf;
1047	pd_entry_t *pde;
1048
1049	pde = pmap_pde(pmap, va);
1050	if (*pde & PG_PS)
1051		return (pde);
1052	if (*pde != 0) {
1053		/* are we current address space or kernel? */
1054		if (pmap_is_current(pmap))
1055			return (vtopte(va));
1056		mtx_lock(&PMAP2mutex);
1057		newpf = *pde & PG_FRAME;
1058		if ((*PMAP2 & PG_FRAME) != newpf) {
1059			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1060			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1061		}
1062		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1063	}
1064	return (0);
1065}
1066
1067/*
1068 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1069 * being NULL.
1070 */
1071static __inline void
1072pmap_pte_release(pt_entry_t *pte)
1073{
1074
1075	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1076		mtx_unlock(&PMAP2mutex);
1077}
1078
1079static __inline void
1080invlcaddr(void *caddr)
1081{
1082
1083	invlpg((u_int)caddr);
1084}
1085
1086/*
1087 * Super fast pmap_pte routine best used when scanning
1088 * the pv lists.  This eliminates many coarse-grained
1089 * invltlb calls.  Note that many of the pv list
1090 * scans are across different pmaps.  It is very wasteful
1091 * to do an entire invltlb for checking a single mapping.
1092 *
1093 * If the given pmap is not the current pmap, vm_page_queue_mtx
1094 * must be held and curthread pinned to a CPU.
1095 */
1096static pt_entry_t *
1097pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1098{
1099	pd_entry_t newpf;
1100	pd_entry_t *pde;
1101
1102	pde = pmap_pde(pmap, va);
1103	if (*pde & PG_PS)
1104		return (pde);
1105	if (*pde != 0) {
1106		/* are we current address space or kernel? */
1107		if (pmap_is_current(pmap))
1108			return (vtopte(va));
1109		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1110		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1111		newpf = *pde & PG_FRAME;
1112		if ((*PMAP1 & PG_FRAME) != newpf) {
1113			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1114#ifdef SMP
1115			PMAP1cpu = PCPU_GET(cpuid);
1116#endif
1117			invlcaddr(PADDR1);
1118			PMAP1changed++;
1119		} else
1120#ifdef SMP
1121		if (PMAP1cpu != PCPU_GET(cpuid)) {
1122			PMAP1cpu = PCPU_GET(cpuid);
1123			invlcaddr(PADDR1);
1124			PMAP1changedcpu++;
1125		} else
1126#endif
1127			PMAP1unchanged++;
1128		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1129	}
1130	return (0);
1131}
1132
1133/*
1134 *	Routine:	pmap_extract
1135 *	Function:
1136 *		Extract the physical page address associated
1137 *		with the given map/virtual_address pair.
1138 */
1139vm_paddr_t
1140pmap_extract(pmap_t pmap, vm_offset_t va)
1141{
1142	vm_paddr_t rtval;
1143	pt_entry_t *pte;
1144	pd_entry_t pde;
1145
1146	rtval = 0;
1147	PMAP_LOCK(pmap);
1148	pde = pmap->pm_pdir[va >> PDRSHIFT];
1149	if (pde != 0) {
1150		if ((pde & PG_PS) != 0)
1151			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1152		else {
1153			pte = pmap_pte(pmap, va);
1154			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1155			pmap_pte_release(pte);
1156		}
1157	}
1158	PMAP_UNLOCK(pmap);
1159	return (rtval);
1160}
1161
1162/*
1163 *	Routine:	pmap_extract_and_hold
1164 *	Function:
1165 *		Atomically extract and hold the physical page
1166 *		with the given pmap and virtual address pair
1167 *		if that mapping permits the given protection.
1168 */
1169vm_page_t
1170pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1171{
1172	pd_entry_t pde;
1173	pt_entry_t pte;
1174	vm_page_t m;
1175
1176	m = NULL;
1177	vm_page_lock_queues();
1178	PMAP_LOCK(pmap);
1179	pde = *pmap_pde(pmap, va);
1180	if (pde != 0) {
1181		if (pde & PG_PS) {
1182			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1183				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1184				    (va & PDRMASK));
1185				vm_page_hold(m);
1186			}
1187		} else {
1188			sched_pin();
1189			pte = *pmap_pte_quick(pmap, va);
1190			if (pte != 0 &&
1191			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1192				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1193				vm_page_hold(m);
1194			}
1195			sched_unpin();
1196		}
1197	}
1198	vm_page_unlock_queues();
1199	PMAP_UNLOCK(pmap);
1200	return (m);
1201}
1202
1203/***************************************************
1204 * Low level mapping routines.....
1205 ***************************************************/
1206
1207/*
1208 * Add a wired page to the kva.
1209 * Note: not SMP coherent.
1210 */
1211PMAP_INLINE void
1212pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1213{
1214	pt_entry_t *pte;
1215
1216	pte = vtopte(va);
1217	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1218}
1219
1220static __inline void
1221pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1222{
1223	pt_entry_t *pte;
1224
1225	pte = vtopte(va);
1226	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1227}
1228
1229/*
1230 * Remove a page from the kernel pagetables.
1231 * Note: not SMP coherent.
1232 */
1233PMAP_INLINE void
1234pmap_kremove(vm_offset_t va)
1235{
1236	pt_entry_t *pte;
1237
1238	pte = vtopte(va);
1239	pte_clear(pte);
1240}
1241
1242/*
1243 *	Used to map a range of physical addresses into kernel
1244 *	virtual address space.
1245 *
1246 *	The value passed in '*virt' is a suggested virtual address for
1247 *	the mapping. Architectures which can support a direct-mapped
1248 *	physical to virtual region can return the appropriate address
1249 *	within that region, leaving '*virt' unchanged. Other
1250 *	architectures should map the pages starting at '*virt' and
1251 *	update '*virt' with the first usable address after the mapped
1252 *	region.
1253 */
1254vm_offset_t
1255pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1256{
1257	vm_offset_t va, sva;
1258
1259	va = sva = *virt;
1260	while (start < end) {
1261		pmap_kenter(va, start);
1262		va += PAGE_SIZE;
1263		start += PAGE_SIZE;
1264	}
1265	pmap_invalidate_range(kernel_pmap, sva, va);
1266	*virt = va;
1267	return (sva);
1268}
1269
1270
1271/*
1272 * Add a list of wired pages to the kva
1273 * this routine is only used for temporary
1274 * kernel mappings that do not need to have
1275 * page modification or references recorded.
1276 * Note that old mappings are simply written
1277 * over.  The page *must* be wired.
1278 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1279 */
1280void
1281pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1282{
1283	pt_entry_t *endpte, oldpte, *pte;
1284
1285	oldpte = 0;
1286	pte = vtopte(sva);
1287	endpte = pte + count;
1288	while (pte < endpte) {
1289		oldpte |= *pte;
1290		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1291		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1292		pte++;
1293		ma++;
1294	}
1295	if ((oldpte & PG_V) != 0)
1296		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1297		    PAGE_SIZE);
1298}
1299
1300/*
1301 * This routine tears out page mappings from the
1302 * kernel -- it is meant only for temporary mappings.
1303 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1304 */
1305void
1306pmap_qremove(vm_offset_t sva, int count)
1307{
1308	vm_offset_t va;
1309
1310	va = sva;
1311	while (count-- > 0) {
1312		pmap_kremove(va);
1313		va += PAGE_SIZE;
1314	}
1315	pmap_invalidate_range(kernel_pmap, sva, va);
1316}
1317
1318/***************************************************
1319 * Page table page management routines.....
1320 ***************************************************/
1321static __inline void
1322pmap_free_zero_pages(vm_page_t free)
1323{
1324	vm_page_t m;
1325
1326	while (free != NULL) {
1327		m = free;
1328		free = m->right;
1329		/* Preserve the page's PG_ZERO setting. */
1330		vm_page_free_toq(m);
1331	}
1332}
1333
1334/*
1335 * Schedule the specified unused page table page to be freed.  Specifically,
1336 * add the page to the specified list of pages that will be released to the
1337 * physical memory manager after the TLB has been updated.
1338 */
1339static __inline void
1340pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1341{
1342
1343	if (set_PG_ZERO)
1344		m->flags |= PG_ZERO;
1345	else
1346		m->flags &= ~PG_ZERO;
1347	m->right = *free;
1348	*free = m;
1349}
1350
1351/*
1352 * Inserts the specified page table page into the specified pmap's collection
1353 * of idle page table pages.  Each of a pmap's page table pages is responsible
1354 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1355 * ordered by this virtual address range.
1356 */
1357static void
1358pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1359{
1360	vm_page_t root;
1361
1362	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1363	root = pmap->pm_root;
1364	if (root == NULL) {
1365		mpte->left = NULL;
1366		mpte->right = NULL;
1367	} else {
1368		root = vm_page_splay(mpte->pindex, root);
1369		if (mpte->pindex < root->pindex) {
1370			mpte->left = root->left;
1371			mpte->right = root;
1372			root->left = NULL;
1373		} else if (mpte->pindex == root->pindex)
1374			panic("pmap_insert_pt_page: pindex already inserted");
1375		else {
1376			mpte->right = root->right;
1377			mpte->left = root;
1378			root->right = NULL;
1379		}
1380	}
1381	pmap->pm_root = mpte;
1382}
1383
1384/*
1385 * Looks for a page table page mapping the specified virtual address in the
1386 * specified pmap's collection of idle page table pages.  Returns NULL if there
1387 * is no page table page corresponding to the specified virtual address.
1388 */
1389static vm_page_t
1390pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1391{
1392	vm_page_t mpte;
1393	vm_pindex_t pindex = va >> PDRSHIFT;
1394
1395	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1396	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1397		mpte = vm_page_splay(pindex, mpte);
1398		if ((pmap->pm_root = mpte)->pindex != pindex)
1399			mpte = NULL;
1400	}
1401	return (mpte);
1402}
1403
1404/*
1405 * Removes the specified page table page from the specified pmap's collection
1406 * of idle page table pages.  The specified page table page must be a member of
1407 * the pmap's collection.
1408 */
1409static void
1410pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1411{
1412	vm_page_t root;
1413
1414	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1415	if (mpte != pmap->pm_root)
1416		vm_page_splay(mpte->pindex, pmap->pm_root);
1417	if (mpte->left == NULL)
1418		root = mpte->right;
1419	else {
1420		root = vm_page_splay(mpte->pindex, mpte->left);
1421		root->right = mpte->right;
1422	}
1423	pmap->pm_root = root;
1424}
1425
1426/*
1427 * This routine unholds page table pages, and if the hold count
1428 * drops to zero, then it decrements the wire count.
1429 */
1430static __inline int
1431pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1432{
1433
1434	--m->wire_count;
1435	if (m->wire_count == 0)
1436		return _pmap_unwire_pte_hold(pmap, m, free);
1437	else
1438		return 0;
1439}
1440
1441static int
1442_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1443{
1444	vm_offset_t pteva;
1445
1446	/*
1447	 * unmap the page table page
1448	 */
1449	pmap->pm_pdir[m->pindex] = 0;
1450	--pmap->pm_stats.resident_count;
1451
1452	/*
1453	 * This is a release store so that the ordinary store unmapping
1454	 * the page table page is globally performed before TLB shoot-
1455	 * down is begun.
1456	 */
1457	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1458
1459	/*
1460	 * Do an invltlb to make the invalidated mapping
1461	 * take effect immediately.
1462	 */
1463	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1464	pmap_invalidate_page(pmap, pteva);
1465
1466	/*
1467	 * Put page on a list so that it is released after
1468	 * *ALL* TLB shootdown is done
1469	 */
1470	pmap_add_delayed_free_list(m, free, TRUE);
1471
1472	return 1;
1473}
1474
1475/*
1476 * After removing a page table entry, this routine is used to
1477 * conditionally free the page, and manage the hold/wire counts.
1478 */
1479static int
1480pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1481{
1482	pd_entry_t ptepde;
1483	vm_page_t mpte;
1484
1485	if (va >= VM_MAXUSER_ADDRESS)
1486		return 0;
1487	ptepde = *pmap_pde(pmap, va);
1488	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1489	return pmap_unwire_pte_hold(pmap, mpte, free);
1490}
1491
1492void
1493pmap_pinit0(pmap_t pmap)
1494{
1495
1496	PMAP_LOCK_INIT(pmap);
1497	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1498#ifdef PAE
1499	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1500#endif
1501	pmap->pm_root = NULL;
1502	pmap->pm_active = 0;
1503	PCPU_SET(curpmap, pmap);
1504	TAILQ_INIT(&pmap->pm_pvchunk);
1505	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1506	mtx_lock_spin(&allpmaps_lock);
1507	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1508	mtx_unlock_spin(&allpmaps_lock);
1509}
1510
1511/*
1512 * Initialize a preallocated and zeroed pmap structure,
1513 * such as one in a vmspace structure.
1514 */
1515int
1516pmap_pinit(pmap_t pmap)
1517{
1518	vm_page_t m, ptdpg[NPGPTD];
1519	vm_paddr_t pa;
1520	static int color;
1521	int i;
1522
1523	PMAP_LOCK_INIT(pmap);
1524
1525	/*
1526	 * No need to allocate page table space yet but we do need a valid
1527	 * page directory table.
1528	 */
1529	if (pmap->pm_pdir == NULL) {
1530		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1531		    NBPTD);
1532
1533		if (pmap->pm_pdir == NULL) {
1534			PMAP_LOCK_DESTROY(pmap);
1535			return (0);
1536		}
1537#ifdef PAE
1538		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1539		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1540		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1541		    ("pmap_pinit: pdpt misaligned"));
1542		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1543		    ("pmap_pinit: pdpt above 4g"));
1544#endif
1545		pmap->pm_root = NULL;
1546	}
1547	KASSERT(pmap->pm_root == NULL,
1548	    ("pmap_pinit: pmap has reserved page table page(s)"));
1549
1550	/*
1551	 * allocate the page directory page(s)
1552	 */
1553	for (i = 0; i < NPGPTD;) {
1554		m = vm_page_alloc(NULL, color++,
1555		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1556		    VM_ALLOC_ZERO);
1557		if (m == NULL)
1558			VM_WAIT;
1559		else {
1560			ptdpg[i++] = m;
1561		}
1562	}
1563
1564	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1565
1566	for (i = 0; i < NPGPTD; i++) {
1567		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1568			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1569	}
1570
1571	mtx_lock_spin(&allpmaps_lock);
1572	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1573	mtx_unlock_spin(&allpmaps_lock);
1574	/* Wire in kernel global address entries. */
1575	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1576
1577	/* install self-referential address mapping entry(s) */
1578	for (i = 0; i < NPGPTD; i++) {
1579		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1580		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1581#ifdef PAE
1582		pmap->pm_pdpt[i] = pa | PG_V;
1583#endif
1584	}
1585
1586	pmap->pm_active = 0;
1587	TAILQ_INIT(&pmap->pm_pvchunk);
1588	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1589
1590	return (1);
1591}
1592
1593/*
1594 * this routine is called if the page table page is not
1595 * mapped correctly.
1596 */
1597static vm_page_t
1598_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1599{
1600	vm_paddr_t ptepa;
1601	vm_page_t m;
1602
1603	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1604	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1605	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1606
1607	/*
1608	 * Allocate a page table page.
1609	 */
1610	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1611	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1612		if (flags & M_WAITOK) {
1613			PMAP_UNLOCK(pmap);
1614			vm_page_unlock_queues();
1615			VM_WAIT;
1616			vm_page_lock_queues();
1617			PMAP_LOCK(pmap);
1618		}
1619
1620		/*
1621		 * Indicate the need to retry.  While waiting, the page table
1622		 * page may have been allocated.
1623		 */
1624		return (NULL);
1625	}
1626	if ((m->flags & PG_ZERO) == 0)
1627		pmap_zero_page(m);
1628
1629	/*
1630	 * Map the pagetable page into the process address space, if
1631	 * it isn't already there.
1632	 */
1633
1634	pmap->pm_stats.resident_count++;
1635
1636	ptepa = VM_PAGE_TO_PHYS(m);
1637	pmap->pm_pdir[ptepindex] =
1638		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1639
1640	return m;
1641}
1642
1643static vm_page_t
1644pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1645{
1646	unsigned ptepindex;
1647	pd_entry_t ptepa;
1648	vm_page_t m;
1649
1650	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1651	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1652	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1653
1654	/*
1655	 * Calculate pagetable page index
1656	 */
1657	ptepindex = va >> PDRSHIFT;
1658retry:
1659	/*
1660	 * Get the page directory entry
1661	 */
1662	ptepa = pmap->pm_pdir[ptepindex];
1663
1664	/*
1665	 * This supports switching from a 4MB page to a
1666	 * normal 4K page.
1667	 */
1668	if (ptepa & PG_PS) {
1669		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1670		ptepa = pmap->pm_pdir[ptepindex];
1671	}
1672
1673	/*
1674	 * If the page table page is mapped, we just increment the
1675	 * hold count, and activate it.
1676	 */
1677	if (ptepa) {
1678		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1679		m->wire_count++;
1680	} else {
1681		/*
1682		 * Here if the pte page isn't mapped, or if it has
1683		 * been deallocated.
1684		 */
1685		m = _pmap_allocpte(pmap, ptepindex, flags);
1686		if (m == NULL && (flags & M_WAITOK))
1687			goto retry;
1688	}
1689	return (m);
1690}
1691
1692
1693/***************************************************
1694* Pmap allocation/deallocation routines.
1695 ***************************************************/
1696
1697#ifdef SMP
1698/*
1699 * Deal with a SMP shootdown of other users of the pmap that we are
1700 * trying to dispose of.  This can be a bit hairy.
1701 */
1702static cpumask_t *lazymask;
1703static u_int lazyptd;
1704static volatile u_int lazywait;
1705
1706void pmap_lazyfix_action(void);
1707
1708void
1709pmap_lazyfix_action(void)
1710{
1711	cpumask_t mymask = PCPU_GET(cpumask);
1712
1713#ifdef COUNT_IPIS
1714	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1715#endif
1716	if (rcr3() == lazyptd)
1717		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1718	atomic_clear_int(lazymask, mymask);
1719	atomic_store_rel_int(&lazywait, 1);
1720}
1721
1722static void
1723pmap_lazyfix_self(cpumask_t mymask)
1724{
1725
1726	if (rcr3() == lazyptd)
1727		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1728	atomic_clear_int(lazymask, mymask);
1729}
1730
1731
1732static void
1733pmap_lazyfix(pmap_t pmap)
1734{
1735	cpumask_t mymask, mask;
1736	u_int spins;
1737
1738	while ((mask = pmap->pm_active) != 0) {
1739		spins = 50000000;
1740		mask = mask & -mask;	/* Find least significant set bit */
1741		mtx_lock_spin(&smp_ipi_mtx);
1742#ifdef PAE
1743		lazyptd = vtophys(pmap->pm_pdpt);
1744#else
1745		lazyptd = vtophys(pmap->pm_pdir);
1746#endif
1747		mymask = PCPU_GET(cpumask);
1748		if (mask == mymask) {
1749			lazymask = &pmap->pm_active;
1750			pmap_lazyfix_self(mymask);
1751		} else {
1752			atomic_store_rel_int((u_int *)&lazymask,
1753			    (u_int)&pmap->pm_active);
1754			atomic_store_rel_int(&lazywait, 0);
1755			ipi_selected(mask, IPI_LAZYPMAP);
1756			while (lazywait == 0) {
1757				ia32_pause();
1758				if (--spins == 0)
1759					break;
1760			}
1761		}
1762		mtx_unlock_spin(&smp_ipi_mtx);
1763		if (spins == 0)
1764			printf("pmap_lazyfix: spun for 50000000\n");
1765	}
1766}
1767
1768#else	/* SMP */
1769
1770/*
1771 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1772 * unlikely to have to even execute this code, including the fact
1773 * that the cleanup is deferred until the parent does a wait(2), which
1774 * means that another userland process has run.
1775 */
1776static void
1777pmap_lazyfix(pmap_t pmap)
1778{
1779	u_int cr3;
1780
1781	cr3 = vtophys(pmap->pm_pdir);
1782	if (cr3 == rcr3()) {
1783		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1784		pmap->pm_active &= ~(PCPU_GET(cpumask));
1785	}
1786}
1787#endif	/* SMP */
1788
1789/*
1790 * Release any resources held by the given physical map.
1791 * Called when a pmap initialized by pmap_pinit is being released.
1792 * Should only be called if the map contains no valid mappings.
1793 */
1794void
1795pmap_release(pmap_t pmap)
1796{
1797	vm_page_t m, ptdpg[NPGPTD];
1798	int i;
1799
1800	KASSERT(pmap->pm_stats.resident_count == 0,
1801	    ("pmap_release: pmap resident count %ld != 0",
1802	    pmap->pm_stats.resident_count));
1803	KASSERT(pmap->pm_root == NULL,
1804	    ("pmap_release: pmap has reserved page table page(s)"));
1805
1806	pmap_lazyfix(pmap);
1807	mtx_lock_spin(&allpmaps_lock);
1808	LIST_REMOVE(pmap, pm_list);
1809	mtx_unlock_spin(&allpmaps_lock);
1810
1811	for (i = 0; i < NPGPTD; i++)
1812		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1813		    PG_FRAME);
1814
1815	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1816	    sizeof(*pmap->pm_pdir));
1817
1818	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1819
1820	for (i = 0; i < NPGPTD; i++) {
1821		m = ptdpg[i];
1822#ifdef PAE
1823		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1824		    ("pmap_release: got wrong ptd page"));
1825#endif
1826		m->wire_count--;
1827		atomic_subtract_int(&cnt.v_wire_count, 1);
1828		vm_page_free_zero(m);
1829	}
1830	PMAP_LOCK_DESTROY(pmap);
1831}
1832
1833static int
1834kvm_size(SYSCTL_HANDLER_ARGS)
1835{
1836	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1837
1838	return sysctl_handle_long(oidp, &ksize, 0, req);
1839}
1840SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1841    0, 0, kvm_size, "IU", "Size of KVM");
1842
1843static int
1844kvm_free(SYSCTL_HANDLER_ARGS)
1845{
1846	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1847
1848	return sysctl_handle_long(oidp, &kfree, 0, req);
1849}
1850SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1851    0, 0, kvm_free, "IU", "Amount of KVM free");
1852
1853/*
1854 * grow the number of kernel page table entries, if needed
1855 */
1856void
1857pmap_growkernel(vm_offset_t addr)
1858{
1859	struct pmap *pmap;
1860	vm_paddr_t ptppaddr;
1861	vm_page_t nkpg;
1862	pd_entry_t newpdir;
1863	pt_entry_t *pde;
1864	boolean_t updated_PTD;
1865
1866	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1867	if (kernel_vm_end == 0) {
1868		kernel_vm_end = KERNBASE;
1869		nkpt = 0;
1870		while (pdir_pde(PTD, kernel_vm_end)) {
1871			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1872			nkpt++;
1873			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1874				kernel_vm_end = kernel_map->max_offset;
1875				break;
1876			}
1877		}
1878	}
1879	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1880	if (addr - 1 >= kernel_map->max_offset)
1881		addr = kernel_map->max_offset;
1882	while (kernel_vm_end < addr) {
1883		if (pdir_pde(PTD, kernel_vm_end)) {
1884			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1885			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1886				kernel_vm_end = kernel_map->max_offset;
1887				break;
1888			}
1889			continue;
1890		}
1891
1892		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1893		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1894		    VM_ALLOC_ZERO);
1895		if (nkpg == NULL)
1896			panic("pmap_growkernel: no memory to grow kernel");
1897
1898		nkpt++;
1899
1900		if ((nkpg->flags & PG_ZERO) == 0)
1901			pmap_zero_page(nkpg);
1902		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1903		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1904		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
1905
1906		updated_PTD = FALSE;
1907		mtx_lock_spin(&allpmaps_lock);
1908		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1909			if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
1910			    PG_FRAME))
1911				updated_PTD = TRUE;
1912			pde = pmap_pde(pmap, kernel_vm_end);
1913			pde_store(pde, newpdir);
1914		}
1915		mtx_unlock_spin(&allpmaps_lock);
1916		KASSERT(updated_PTD,
1917		    ("pmap_growkernel: current page table is not in allpmaps"));
1918		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1919		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1920			kernel_vm_end = kernel_map->max_offset;
1921			break;
1922		}
1923	}
1924}
1925
1926
1927/***************************************************
1928 * page management routines.
1929 ***************************************************/
1930
1931CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1932CTASSERT(_NPCM == 11);
1933
1934static __inline struct pv_chunk *
1935pv_to_chunk(pv_entry_t pv)
1936{
1937
1938	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1939}
1940
1941#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1942
1943#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1944#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1945
1946static uint32_t pc_freemask[11] = {
1947	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1948	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1949	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1950	PC_FREE0_9, PC_FREE10
1951};
1952
1953SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1954	"Current number of pv entries");
1955
1956#ifdef PV_STATS
1957static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1958
1959SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1960	"Current number of pv entry chunks");
1961SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1962	"Current number of pv entry chunks allocated");
1963SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1964	"Current number of pv entry chunks frees");
1965SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1966	"Number of times tried to get a chunk page but failed.");
1967
1968static long pv_entry_frees, pv_entry_allocs;
1969static int pv_entry_spare;
1970
1971SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1972	"Current number of pv entry frees");
1973SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1974	"Current number of pv entry allocs");
1975SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1976	"Current number of spare pv entries");
1977
1978static int pmap_collect_inactive, pmap_collect_active;
1979
1980SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1981	"Current number times pmap_collect called on inactive queue");
1982SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1983	"Current number times pmap_collect called on active queue");
1984#endif
1985
1986/*
1987 * We are in a serious low memory condition.  Resort to
1988 * drastic measures to free some pages so we can allocate
1989 * another pv entry chunk.  This is normally called to
1990 * unmap inactive pages, and if necessary, active pages.
1991 */
1992static void
1993pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1994{
1995	struct md_page *pvh;
1996	pd_entry_t *pde;
1997	pmap_t pmap;
1998	pt_entry_t *pte, tpte;
1999	pv_entry_t next_pv, pv;
2000	vm_offset_t va;
2001	vm_page_t m, free;
2002
2003	sched_pin();
2004	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2005		if (m->hold_count || m->busy)
2006			continue;
2007		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2008			va = pv->pv_va;
2009			pmap = PV_PMAP(pv);
2010			/* Avoid deadlock and lock recursion. */
2011			if (pmap > locked_pmap)
2012				PMAP_LOCK(pmap);
2013			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2014				continue;
2015			pmap->pm_stats.resident_count--;
2016			pde = pmap_pde(pmap, va);
2017			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2018			    " a 4mpage in page %p's pv list", m));
2019			pte = pmap_pte_quick(pmap, va);
2020			tpte = pte_load_clear(pte);
2021			KASSERT((tpte & PG_W) == 0,
2022			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2023			if (tpte & PG_A)
2024				vm_page_flag_set(m, PG_REFERENCED);
2025			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2026				vm_page_dirty(m);
2027			free = NULL;
2028			pmap_unuse_pt(pmap, va, &free);
2029			pmap_invalidate_page(pmap, va);
2030			pmap_free_zero_pages(free);
2031			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2032			if (TAILQ_EMPTY(&m->md.pv_list)) {
2033				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2034				if (TAILQ_EMPTY(&pvh->pv_list))
2035					vm_page_flag_clear(m, PG_WRITEABLE);
2036			}
2037			free_pv_entry(pmap, pv);
2038			if (pmap != locked_pmap)
2039				PMAP_UNLOCK(pmap);
2040		}
2041	}
2042	sched_unpin();
2043}
2044
2045
2046/*
2047 * free the pv_entry back to the free list
2048 */
2049static void
2050free_pv_entry(pmap_t pmap, pv_entry_t pv)
2051{
2052	vm_page_t m;
2053	struct pv_chunk *pc;
2054	int idx, field, bit;
2055
2056	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2057	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2058	PV_STAT(pv_entry_frees++);
2059	PV_STAT(pv_entry_spare++);
2060	pv_entry_count--;
2061	pc = pv_to_chunk(pv);
2062	idx = pv - &pc->pc_pventry[0];
2063	field = idx / 32;
2064	bit = idx % 32;
2065	pc->pc_map[field] |= 1ul << bit;
2066	/* move to head of list */
2067	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2068	for (idx = 0; idx < _NPCM; idx++)
2069		if (pc->pc_map[idx] != pc_freemask[idx]) {
2070			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2071			return;
2072		}
2073	PV_STAT(pv_entry_spare -= _NPCPV);
2074	PV_STAT(pc_chunk_count--);
2075	PV_STAT(pc_chunk_frees++);
2076	/* entire chunk is free, return it */
2077	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2078	pmap_qremove((vm_offset_t)pc, 1);
2079	vm_page_unwire(m, 0);
2080	vm_page_free(m);
2081	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2082}
2083
2084/*
2085 * get a new pv_entry, allocating a block from the system
2086 * when needed.
2087 */
2088static pv_entry_t
2089get_pv_entry(pmap_t pmap, int try)
2090{
2091	static const struct timeval printinterval = { 60, 0 };
2092	static struct timeval lastprint;
2093	static vm_pindex_t colour;
2094	struct vpgqueues *pq;
2095	int bit, field;
2096	pv_entry_t pv;
2097	struct pv_chunk *pc;
2098	vm_page_t m;
2099
2100	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2101	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2102	PV_STAT(pv_entry_allocs++);
2103	pv_entry_count++;
2104	if (pv_entry_count > pv_entry_high_water)
2105		if (ratecheck(&lastprint, &printinterval))
2106			printf("Approaching the limit on PV entries, consider "
2107			    "increasing either the vm.pmap.shpgperproc or the "
2108			    "vm.pmap.pv_entry_max tunable.\n");
2109	pq = NULL;
2110retry:
2111	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2112	if (pc != NULL) {
2113		for (field = 0; field < _NPCM; field++) {
2114			if (pc->pc_map[field]) {
2115				bit = bsfl(pc->pc_map[field]);
2116				break;
2117			}
2118		}
2119		if (field < _NPCM) {
2120			pv = &pc->pc_pventry[field * 32 + bit];
2121			pc->pc_map[field] &= ~(1ul << bit);
2122			/* If this was the last item, move it to tail */
2123			for (field = 0; field < _NPCM; field++)
2124				if (pc->pc_map[field] != 0) {
2125					PV_STAT(pv_entry_spare--);
2126					return (pv);	/* not full, return */
2127				}
2128			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2129			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2130			PV_STAT(pv_entry_spare--);
2131			return (pv);
2132		}
2133	}
2134	/*
2135	 * Access to the ptelist "pv_vafree" is synchronized by the page
2136	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2137	 * remain non-empty until pmap_ptelist_alloc() completes.
2138	 */
2139	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2140	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2141	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2142		if (try) {
2143			pv_entry_count--;
2144			PV_STAT(pc_chunk_tryfail++);
2145			return (NULL);
2146		}
2147		/*
2148		 * Reclaim pv entries: At first, destroy mappings to
2149		 * inactive pages.  After that, if a pv chunk entry
2150		 * is still needed, destroy mappings to active pages.
2151		 */
2152		if (pq == NULL) {
2153			PV_STAT(pmap_collect_inactive++);
2154			pq = &vm_page_queues[PQ_INACTIVE];
2155		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2156			PV_STAT(pmap_collect_active++);
2157			pq = &vm_page_queues[PQ_ACTIVE];
2158		} else
2159			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2160		pmap_collect(pmap, pq);
2161		goto retry;
2162	}
2163	PV_STAT(pc_chunk_count++);
2164	PV_STAT(pc_chunk_allocs++);
2165	colour++;
2166	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2167	pmap_qenter((vm_offset_t)pc, &m, 1);
2168	pc->pc_pmap = pmap;
2169	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2170	for (field = 1; field < _NPCM; field++)
2171		pc->pc_map[field] = pc_freemask[field];
2172	pv = &pc->pc_pventry[0];
2173	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2174	PV_STAT(pv_entry_spare += _NPCPV - 1);
2175	return (pv);
2176}
2177
2178static __inline pv_entry_t
2179pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2180{
2181	pv_entry_t pv;
2182
2183	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2184	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2185		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2186			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2187			break;
2188		}
2189	}
2190	return (pv);
2191}
2192
2193static void
2194pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2195{
2196	struct md_page *pvh;
2197	pv_entry_t pv;
2198	vm_offset_t va_last;
2199	vm_page_t m;
2200
2201	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2202	KASSERT((pa & PDRMASK) == 0,
2203	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2204
2205	/*
2206	 * Transfer the 4mpage's pv entry for this mapping to the first
2207	 * page's pv list.
2208	 */
2209	pvh = pa_to_pvh(pa);
2210	va = trunc_4mpage(va);
2211	pv = pmap_pvh_remove(pvh, pmap, va);
2212	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2213	m = PHYS_TO_VM_PAGE(pa);
2214	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2215	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2216	va_last = va + NBPDR - PAGE_SIZE;
2217	do {
2218		m++;
2219		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2220		    ("pmap_pv_demote_pde: page %p is not managed", m));
2221		va += PAGE_SIZE;
2222		pmap_insert_entry(pmap, va, m);
2223	} while (va < va_last);
2224}
2225
2226static void
2227pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2228{
2229	struct md_page *pvh;
2230	pv_entry_t pv;
2231	vm_offset_t va_last;
2232	vm_page_t m;
2233
2234	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2235	KASSERT((pa & PDRMASK) == 0,
2236	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2237
2238	/*
2239	 * Transfer the first page's pv entry for this mapping to the
2240	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2241	 * to get_pv_entry(), a transfer avoids the possibility that
2242	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2243	 * removes one of the mappings that is being promoted.
2244	 */
2245	m = PHYS_TO_VM_PAGE(pa);
2246	va = trunc_4mpage(va);
2247	pv = pmap_pvh_remove(&m->md, pmap, va);
2248	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2249	pvh = pa_to_pvh(pa);
2250	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2251	/* Free the remaining NPTEPG - 1 pv entries. */
2252	va_last = va + NBPDR - PAGE_SIZE;
2253	do {
2254		m++;
2255		va += PAGE_SIZE;
2256		pmap_pvh_free(&m->md, pmap, va);
2257	} while (va < va_last);
2258}
2259
2260static void
2261pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2262{
2263	pv_entry_t pv;
2264
2265	pv = pmap_pvh_remove(pvh, pmap, va);
2266	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2267	free_pv_entry(pmap, pv);
2268}
2269
2270static void
2271pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2272{
2273	struct md_page *pvh;
2274
2275	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2276	pmap_pvh_free(&m->md, pmap, va);
2277	if (TAILQ_EMPTY(&m->md.pv_list)) {
2278		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2279		if (TAILQ_EMPTY(&pvh->pv_list))
2280			vm_page_flag_clear(m, PG_WRITEABLE);
2281	}
2282}
2283
2284/*
2285 * Create a pv entry for page at pa for
2286 * (pmap, va).
2287 */
2288static void
2289pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2290{
2291	pv_entry_t pv;
2292
2293	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2294	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2295	pv = get_pv_entry(pmap, FALSE);
2296	pv->pv_va = va;
2297	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2298}
2299
2300/*
2301 * Conditionally create a pv entry.
2302 */
2303static boolean_t
2304pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2305{
2306	pv_entry_t pv;
2307
2308	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2309	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2310	if (pv_entry_count < pv_entry_high_water &&
2311	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2312		pv->pv_va = va;
2313		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2314		return (TRUE);
2315	} else
2316		return (FALSE);
2317}
2318
2319/*
2320 * Create the pv entries for each of the pages within a superpage.
2321 */
2322static boolean_t
2323pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2324{
2325	struct md_page *pvh;
2326	pv_entry_t pv;
2327
2328	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2329	if (pv_entry_count < pv_entry_high_water &&
2330	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2331		pv->pv_va = va;
2332		pvh = pa_to_pvh(pa);
2333		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2334		return (TRUE);
2335	} else
2336		return (FALSE);
2337}
2338
2339/*
2340 * Fills a page table page with mappings to consecutive physical pages.
2341 */
2342static void
2343pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2344{
2345	pt_entry_t *pte;
2346
2347	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2348		*pte = newpte;
2349		newpte += PAGE_SIZE;
2350	}
2351}
2352
2353/*
2354 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2355 * 2- or 4MB page mapping is invalidated.
2356 */
2357static boolean_t
2358pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2359{
2360	pd_entry_t newpde, oldpde;
2361	pmap_t allpmaps_entry;
2362	pt_entry_t *firstpte, newpte;
2363	vm_paddr_t mptepa;
2364	vm_page_t free, mpte;
2365
2366	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2367	oldpde = *pde;
2368	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2369	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2370	mpte = pmap_lookup_pt_page(pmap, va);
2371	if (mpte != NULL)
2372		pmap_remove_pt_page(pmap, mpte);
2373	else {
2374		KASSERT((oldpde & PG_W) == 0,
2375		    ("pmap_demote_pde: page table page for a wired mapping"
2376		    " is missing"));
2377
2378		/*
2379		 * Invalidate the 2- or 4MB page mapping and return
2380		 * "failure" if the mapping was never accessed or the
2381		 * allocation of the new page table page fails.
2382		 */
2383		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2384		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2385		    VM_ALLOC_WIRED)) == NULL) {
2386			free = NULL;
2387			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2388			pmap_invalidate_page(pmap, trunc_4mpage(va));
2389			pmap_free_zero_pages(free);
2390			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2391			    " in pmap %p", va, pmap);
2392			return (FALSE);
2393		}
2394		if (va < VM_MAXUSER_ADDRESS)
2395			pmap->pm_stats.resident_count++;
2396	}
2397	mptepa = VM_PAGE_TO_PHYS(mpte);
2398
2399	/*
2400	 * If the page mapping is in the kernel's address space, then the
2401	 * KPTmap can provide access to the page table page.  Otherwise,
2402	 * temporarily map the page table page (mpte) into the kernel's
2403	 * address space at either PADDR1 or PADDR2.
2404	 */
2405	if (va >= KERNBASE)
2406		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2407	else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2408		if ((*PMAP1 & PG_FRAME) != mptepa) {
2409			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2410#ifdef SMP
2411			PMAP1cpu = PCPU_GET(cpuid);
2412#endif
2413			invlcaddr(PADDR1);
2414			PMAP1changed++;
2415		} else
2416#ifdef SMP
2417		if (PMAP1cpu != PCPU_GET(cpuid)) {
2418			PMAP1cpu = PCPU_GET(cpuid);
2419			invlcaddr(PADDR1);
2420			PMAP1changedcpu++;
2421		} else
2422#endif
2423			PMAP1unchanged++;
2424		firstpte = PADDR1;
2425	} else {
2426		mtx_lock(&PMAP2mutex);
2427		if ((*PMAP2 & PG_FRAME) != mptepa) {
2428			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2429			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2430		}
2431		firstpte = PADDR2;
2432	}
2433	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2434	KASSERT((oldpde & PG_A) != 0,
2435	    ("pmap_demote_pde: oldpde is missing PG_A"));
2436	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2437	    ("pmap_demote_pde: oldpde is missing PG_M"));
2438	newpte = oldpde & ~PG_PS;
2439	if ((newpte & PG_PDE_PAT) != 0)
2440		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2441
2442	/*
2443	 * If the page table page is new, initialize it.
2444	 */
2445	if (mpte->wire_count == 1) {
2446		mpte->wire_count = NPTEPG;
2447		pmap_fill_ptp(firstpte, newpte);
2448	}
2449	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2450	    ("pmap_demote_pde: firstpte and newpte map different physical"
2451	    " addresses"));
2452
2453	/*
2454	 * If the mapping has changed attributes, update the page table
2455	 * entries.
2456	 */
2457	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2458		pmap_fill_ptp(firstpte, newpte);
2459
2460	/*
2461	 * Demote the mapping.  This pmap is locked.  The old PDE has
2462	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2463	 * set.  Thus, there is no danger of a race with another
2464	 * processor changing the setting of PG_A and/or PG_M between
2465	 * the read above and the store below.
2466	 */
2467	if (pmap == kernel_pmap) {
2468		/*
2469		 * A harmless race exists between this loop and the bcopy()
2470		 * in pmap_pinit() that initializes the kernel segment of
2471		 * the new page table directory.  Specifically, that bcopy()
2472		 * may copy the new PDE from the PTD to the new page table
2473		 * before this loop updates that new page table.
2474		 */
2475		mtx_lock_spin(&allpmaps_lock);
2476		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2477			pde = pmap_pde(allpmaps_entry, va);
2478			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2479			    (oldpde & PG_PTE_PROMOTE),
2480			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2481			    (uintmax_t)*pde, (uintmax_t)oldpde));
2482			pde_store(pde, newpde);
2483		}
2484		mtx_unlock_spin(&allpmaps_lock);
2485	} else
2486		pde_store(pde, newpde);
2487	if (firstpte == PADDR2)
2488		mtx_unlock(&PMAP2mutex);
2489
2490	/*
2491	 * Invalidate the recursive mapping of the page table page.
2492	 */
2493	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2494
2495	/*
2496	 * Demote the pv entry.  This depends on the earlier demotion
2497	 * of the mapping.  Specifically, the (re)creation of a per-
2498	 * page pv entry might trigger the execution of pmap_collect(),
2499	 * which might reclaim a newly (re)created per-page pv entry
2500	 * and destroy the associated mapping.  In order to destroy
2501	 * the mapping, the PDE must have already changed from mapping
2502	 * the 2mpage to referencing the page table page.
2503	 */
2504	if ((oldpde & PG_MANAGED) != 0)
2505		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2506
2507	pmap_pde_demotions++;
2508	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2509	    " in pmap %p", va, pmap);
2510	return (TRUE);
2511}
2512
2513/*
2514 * pmap_remove_pde: do the things to unmap a superpage in a process
2515 */
2516static void
2517pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2518    vm_page_t *free)
2519{
2520	struct md_page *pvh;
2521	pd_entry_t oldpde;
2522	vm_offset_t eva, va;
2523	vm_page_t m, mpte;
2524
2525	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2526	KASSERT((sva & PDRMASK) == 0,
2527	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2528	oldpde = pte_load_clear(pdq);
2529	if (oldpde & PG_W)
2530		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2531
2532	/*
2533	 * Machines that don't support invlpg, also don't support
2534	 * PG_G.
2535	 */
2536	if (oldpde & PG_G)
2537		pmap_invalidate_page(kernel_pmap, sva);
2538	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2539	if (oldpde & PG_MANAGED) {
2540		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2541		pmap_pvh_free(pvh, pmap, sva);
2542		eva = sva + NBPDR;
2543		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2544		    va < eva; va += PAGE_SIZE, m++) {
2545			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2546				vm_page_dirty(m);
2547			if (oldpde & PG_A)
2548				vm_page_flag_set(m, PG_REFERENCED);
2549			if (TAILQ_EMPTY(&m->md.pv_list) &&
2550			    TAILQ_EMPTY(&pvh->pv_list))
2551				vm_page_flag_clear(m, PG_WRITEABLE);
2552		}
2553	}
2554	if (pmap == kernel_pmap) {
2555		if (!pmap_demote_pde(pmap, pdq, sva))
2556			panic("pmap_remove_pde: failed demotion");
2557	} else {
2558		mpte = pmap_lookup_pt_page(pmap, sva);
2559		if (mpte != NULL) {
2560			pmap_remove_pt_page(pmap, mpte);
2561			pmap->pm_stats.resident_count--;
2562			KASSERT(mpte->wire_count == NPTEPG,
2563			    ("pmap_remove_pde: pte page wire count error"));
2564			mpte->wire_count = 0;
2565			pmap_add_delayed_free_list(mpte, free, FALSE);
2566			atomic_subtract_int(&cnt.v_wire_count, 1);
2567		}
2568	}
2569}
2570
2571/*
2572 * pmap_remove_pte: do the things to unmap a page in a process
2573 */
2574static int
2575pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2576{
2577	pt_entry_t oldpte;
2578	vm_page_t m;
2579
2580	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2581	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2582	oldpte = pte_load_clear(ptq);
2583	if (oldpte & PG_W)
2584		pmap->pm_stats.wired_count -= 1;
2585	/*
2586	 * Machines that don't support invlpg, also don't support
2587	 * PG_G.
2588	 */
2589	if (oldpte & PG_G)
2590		pmap_invalidate_page(kernel_pmap, va);
2591	pmap->pm_stats.resident_count -= 1;
2592	if (oldpte & PG_MANAGED) {
2593		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2594		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2595			vm_page_dirty(m);
2596		if (oldpte & PG_A)
2597			vm_page_flag_set(m, PG_REFERENCED);
2598		pmap_remove_entry(pmap, m, va);
2599	}
2600	return (pmap_unuse_pt(pmap, va, free));
2601}
2602
2603/*
2604 * Remove a single page from a process address space
2605 */
2606static void
2607pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2608{
2609	pt_entry_t *pte;
2610
2611	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2612	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2613	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2614	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2615		return;
2616	pmap_remove_pte(pmap, pte, va, free);
2617	pmap_invalidate_page(pmap, va);
2618}
2619
2620/*
2621 *	Remove the given range of addresses from the specified map.
2622 *
2623 *	It is assumed that the start and end are properly
2624 *	rounded to the page size.
2625 */
2626void
2627pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2628{
2629	vm_offset_t pdnxt;
2630	pd_entry_t ptpaddr;
2631	pt_entry_t *pte;
2632	vm_page_t free = NULL;
2633	int anyvalid;
2634
2635	/*
2636	 * Perform an unsynchronized read.  This is, however, safe.
2637	 */
2638	if (pmap->pm_stats.resident_count == 0)
2639		return;
2640
2641	anyvalid = 0;
2642
2643	vm_page_lock_queues();
2644	sched_pin();
2645	PMAP_LOCK(pmap);
2646
2647	/*
2648	 * special handling of removing one page.  a very
2649	 * common operation and easy to short circuit some
2650	 * code.
2651	 */
2652	if ((sva + PAGE_SIZE == eva) &&
2653	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2654		pmap_remove_page(pmap, sva, &free);
2655		goto out;
2656	}
2657
2658	for (; sva < eva; sva = pdnxt) {
2659		unsigned pdirindex;
2660
2661		/*
2662		 * Calculate index for next page table.
2663		 */
2664		pdnxt = (sva + NBPDR) & ~PDRMASK;
2665		if (pdnxt < sva)
2666			pdnxt = eva;
2667		if (pmap->pm_stats.resident_count == 0)
2668			break;
2669
2670		pdirindex = sva >> PDRSHIFT;
2671		ptpaddr = pmap->pm_pdir[pdirindex];
2672
2673		/*
2674		 * Weed out invalid mappings. Note: we assume that the page
2675		 * directory table is always allocated, and in kernel virtual.
2676		 */
2677		if (ptpaddr == 0)
2678			continue;
2679
2680		/*
2681		 * Check for large page.
2682		 */
2683		if ((ptpaddr & PG_PS) != 0) {
2684			/*
2685			 * Are we removing the entire large page?  If not,
2686			 * demote the mapping and fall through.
2687			 */
2688			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2689				/*
2690				 * The TLB entry for a PG_G mapping is
2691				 * invalidated by pmap_remove_pde().
2692				 */
2693				if ((ptpaddr & PG_G) == 0)
2694					anyvalid = 1;
2695				pmap_remove_pde(pmap,
2696				    &pmap->pm_pdir[pdirindex], sva, &free);
2697				continue;
2698			} else if (!pmap_demote_pde(pmap,
2699			    &pmap->pm_pdir[pdirindex], sva)) {
2700				/* The large page mapping was destroyed. */
2701				continue;
2702			}
2703		}
2704
2705		/*
2706		 * Limit our scan to either the end of the va represented
2707		 * by the current page table page, or to the end of the
2708		 * range being removed.
2709		 */
2710		if (pdnxt > eva)
2711			pdnxt = eva;
2712
2713		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2714		    sva += PAGE_SIZE) {
2715			if (*pte == 0)
2716				continue;
2717
2718			/*
2719			 * The TLB entry for a PG_G mapping is invalidated
2720			 * by pmap_remove_pte().
2721			 */
2722			if ((*pte & PG_G) == 0)
2723				anyvalid = 1;
2724			if (pmap_remove_pte(pmap, pte, sva, &free))
2725				break;
2726		}
2727	}
2728out:
2729	sched_unpin();
2730	if (anyvalid)
2731		pmap_invalidate_all(pmap);
2732	vm_page_unlock_queues();
2733	PMAP_UNLOCK(pmap);
2734	pmap_free_zero_pages(free);
2735}
2736
2737/*
2738 *	Routine:	pmap_remove_all
2739 *	Function:
2740 *		Removes this physical page from
2741 *		all physical maps in which it resides.
2742 *		Reflects back modify bits to the pager.
2743 *
2744 *	Notes:
2745 *		Original versions of this routine were very
2746 *		inefficient because they iteratively called
2747 *		pmap_remove (slow...)
2748 */
2749
2750void
2751pmap_remove_all(vm_page_t m)
2752{
2753	struct md_page *pvh;
2754	pv_entry_t pv;
2755	pmap_t pmap;
2756	pt_entry_t *pte, tpte;
2757	pd_entry_t *pde;
2758	vm_offset_t va;
2759	vm_page_t free;
2760
2761	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2762	    ("pmap_remove_all: page %p is fictitious", m));
2763	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2764	sched_pin();
2765	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2766	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2767		va = pv->pv_va;
2768		pmap = PV_PMAP(pv);
2769		PMAP_LOCK(pmap);
2770		pde = pmap_pde(pmap, va);
2771		(void)pmap_demote_pde(pmap, pde, va);
2772		PMAP_UNLOCK(pmap);
2773	}
2774	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2775		pmap = PV_PMAP(pv);
2776		PMAP_LOCK(pmap);
2777		pmap->pm_stats.resident_count--;
2778		pde = pmap_pde(pmap, pv->pv_va);
2779		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2780		    " a 4mpage in page %p's pv list", m));
2781		pte = pmap_pte_quick(pmap, pv->pv_va);
2782		tpte = pte_load_clear(pte);
2783		if (tpte & PG_W)
2784			pmap->pm_stats.wired_count--;
2785		if (tpte & PG_A)
2786			vm_page_flag_set(m, PG_REFERENCED);
2787
2788		/*
2789		 * Update the vm_page_t clean and reference bits.
2790		 */
2791		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2792			vm_page_dirty(m);
2793		free = NULL;
2794		pmap_unuse_pt(pmap, pv->pv_va, &free);
2795		pmap_invalidate_page(pmap, pv->pv_va);
2796		pmap_free_zero_pages(free);
2797		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2798		free_pv_entry(pmap, pv);
2799		PMAP_UNLOCK(pmap);
2800	}
2801	vm_page_flag_clear(m, PG_WRITEABLE);
2802	sched_unpin();
2803}
2804
2805/*
2806 * pmap_protect_pde: do the things to protect a 4mpage in a process
2807 */
2808static boolean_t
2809pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2810{
2811	pd_entry_t newpde, oldpde;
2812	vm_offset_t eva, va;
2813	vm_page_t m;
2814	boolean_t anychanged;
2815
2816	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2817	KASSERT((sva & PDRMASK) == 0,
2818	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2819	anychanged = FALSE;
2820retry:
2821	oldpde = newpde = *pde;
2822	if (oldpde & PG_MANAGED) {
2823		eva = sva + NBPDR;
2824		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2825		    va < eva; va += PAGE_SIZE, m++) {
2826			/*
2827			 * In contrast to the analogous operation on a 4KB page
2828			 * mapping, the mapping's PG_A flag is not cleared and
2829			 * the page's PG_REFERENCED flag is not set.  The
2830			 * reason is that pmap_demote_pde() expects that a 2/4MB
2831			 * page mapping with a stored page table page has PG_A
2832			 * set.
2833			 */
2834			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2835				vm_page_dirty(m);
2836		}
2837	}
2838	if ((prot & VM_PROT_WRITE) == 0)
2839		newpde &= ~(PG_RW | PG_M);
2840#ifdef PAE
2841	if ((prot & VM_PROT_EXECUTE) == 0)
2842		newpde |= pg_nx;
2843#endif
2844	if (newpde != oldpde) {
2845		if (!pde_cmpset(pde, oldpde, newpde))
2846			goto retry;
2847		if (oldpde & PG_G)
2848			pmap_invalidate_page(pmap, sva);
2849		else
2850			anychanged = TRUE;
2851	}
2852	return (anychanged);
2853}
2854
2855/*
2856 *	Set the physical protection on the
2857 *	specified range of this map as requested.
2858 */
2859void
2860pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2861{
2862	vm_offset_t pdnxt;
2863	pd_entry_t ptpaddr;
2864	pt_entry_t *pte;
2865	int anychanged;
2866
2867	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2868		pmap_remove(pmap, sva, eva);
2869		return;
2870	}
2871
2872#ifdef PAE
2873	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2874	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2875		return;
2876#else
2877	if (prot & VM_PROT_WRITE)
2878		return;
2879#endif
2880
2881	anychanged = 0;
2882
2883	vm_page_lock_queues();
2884	sched_pin();
2885	PMAP_LOCK(pmap);
2886	for (; sva < eva; sva = pdnxt) {
2887		pt_entry_t obits, pbits;
2888		unsigned pdirindex;
2889
2890		pdnxt = (sva + NBPDR) & ~PDRMASK;
2891		if (pdnxt < sva)
2892			pdnxt = eva;
2893
2894		pdirindex = sva >> PDRSHIFT;
2895		ptpaddr = pmap->pm_pdir[pdirindex];
2896
2897		/*
2898		 * Weed out invalid mappings. Note: we assume that the page
2899		 * directory table is always allocated, and in kernel virtual.
2900		 */
2901		if (ptpaddr == 0)
2902			continue;
2903
2904		/*
2905		 * Check for large page.
2906		 */
2907		if ((ptpaddr & PG_PS) != 0) {
2908			/*
2909			 * Are we protecting the entire large page?  If not,
2910			 * demote the mapping and fall through.
2911			 */
2912			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2913				/*
2914				 * The TLB entry for a PG_G mapping is
2915				 * invalidated by pmap_protect_pde().
2916				 */
2917				if (pmap_protect_pde(pmap,
2918				    &pmap->pm_pdir[pdirindex], sva, prot))
2919					anychanged = 1;
2920				continue;
2921			} else if (!pmap_demote_pde(pmap,
2922			    &pmap->pm_pdir[pdirindex], sva)) {
2923				/* The large page mapping was destroyed. */
2924				continue;
2925			}
2926		}
2927
2928		if (pdnxt > eva)
2929			pdnxt = eva;
2930
2931		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2932		    sva += PAGE_SIZE) {
2933			vm_page_t m;
2934
2935retry:
2936			/*
2937			 * Regardless of whether a pte is 32 or 64 bits in
2938			 * size, PG_RW, PG_A, and PG_M are among the least
2939			 * significant 32 bits.
2940			 */
2941			obits = pbits = *pte;
2942			if ((pbits & PG_V) == 0)
2943				continue;
2944			if (pbits & PG_MANAGED) {
2945				m = NULL;
2946				if (pbits & PG_A) {
2947					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2948					vm_page_flag_set(m, PG_REFERENCED);
2949					pbits &= ~PG_A;
2950				}
2951				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2952					if (m == NULL)
2953						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2954					vm_page_dirty(m);
2955				}
2956			}
2957
2958			if ((prot & VM_PROT_WRITE) == 0)
2959				pbits &= ~(PG_RW | PG_M);
2960#ifdef PAE
2961			if ((prot & VM_PROT_EXECUTE) == 0)
2962				pbits |= pg_nx;
2963#endif
2964
2965			if (pbits != obits) {
2966#ifdef PAE
2967				if (!atomic_cmpset_64(pte, obits, pbits))
2968					goto retry;
2969#else
2970				if (!atomic_cmpset_int((u_int *)pte, obits,
2971				    pbits))
2972					goto retry;
2973#endif
2974				if (obits & PG_G)
2975					pmap_invalidate_page(pmap, sva);
2976				else
2977					anychanged = 1;
2978			}
2979		}
2980	}
2981	sched_unpin();
2982	if (anychanged)
2983		pmap_invalidate_all(pmap);
2984	vm_page_unlock_queues();
2985	PMAP_UNLOCK(pmap);
2986}
2987
2988/*
2989 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2990 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
2991 * For promotion to occur, two conditions must be met: (1) the 4KB page
2992 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
2993 * mappings must have identical characteristics.
2994 *
2995 * Managed (PG_MANAGED) mappings within the kernel address space are not
2996 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2997 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2998 * pmap.
2999 */
3000static void
3001pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3002{
3003	pd_entry_t newpde;
3004	pmap_t allpmaps_entry;
3005	pt_entry_t *firstpte, oldpte, pa, *pte;
3006	vm_offset_t oldpteva;
3007	vm_page_t mpte;
3008
3009	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3010
3011	/*
3012	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3013	 * either invalid, unused, or does not map the first 4KB physical page
3014	 * within a 2- or 4MB page.
3015	 */
3016	firstpte = vtopte(trunc_4mpage(va));
3017setpde:
3018	newpde = *firstpte;
3019	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3020		pmap_pde_p_failures++;
3021		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3022		    " in pmap %p", va, pmap);
3023		return;
3024	}
3025	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3026		pmap_pde_p_failures++;
3027		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3028		    " in pmap %p", va, pmap);
3029		return;
3030	}
3031	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3032		/*
3033		 * When PG_M is already clear, PG_RW can be cleared without
3034		 * a TLB invalidation.
3035		 */
3036		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3037		    ~PG_RW))
3038			goto setpde;
3039		newpde &= ~PG_RW;
3040	}
3041
3042	/*
3043	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3044	 * PTE maps an unexpected 4KB physical page or does not have identical
3045	 * characteristics to the first PTE.
3046	 */
3047	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3048	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3049setpte:
3050		oldpte = *pte;
3051		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3052			pmap_pde_p_failures++;
3053			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3054			    " in pmap %p", va, pmap);
3055			return;
3056		}
3057		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3058			/*
3059			 * When PG_M is already clear, PG_RW can be cleared
3060			 * without a TLB invalidation.
3061			 */
3062			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3063			    oldpte & ~PG_RW))
3064				goto setpte;
3065			oldpte &= ~PG_RW;
3066			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3067			    (va & ~PDRMASK);
3068			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3069			    " in pmap %p", oldpteva, pmap);
3070		}
3071		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3072			pmap_pde_p_failures++;
3073			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3074			    " in pmap %p", va, pmap);
3075			return;
3076		}
3077		pa -= PAGE_SIZE;
3078	}
3079
3080	/*
3081	 * Save the page table page in its current state until the PDE
3082	 * mapping the superpage is demoted by pmap_demote_pde() or
3083	 * destroyed by pmap_remove_pde().
3084	 */
3085	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3086	KASSERT(mpte >= vm_page_array &&
3087	    mpte < &vm_page_array[vm_page_array_size],
3088	    ("pmap_promote_pde: page table page is out of range"));
3089	KASSERT(mpte->pindex == va >> PDRSHIFT,
3090	    ("pmap_promote_pde: page table page's pindex is wrong"));
3091	pmap_insert_pt_page(pmap, mpte);
3092
3093	/*
3094	 * Promote the pv entries.
3095	 */
3096	if ((newpde & PG_MANAGED) != 0)
3097		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3098
3099	/*
3100	 * Propagate the PAT index to its proper position.
3101	 */
3102	if ((newpde & PG_PTE_PAT) != 0)
3103		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3104
3105	/*
3106	 * Map the superpage.
3107	 */
3108	if (pmap == kernel_pmap) {
3109		mtx_lock_spin(&allpmaps_lock);
3110		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
3111			pde = pmap_pde(allpmaps_entry, va);
3112			pde_store(pde, PG_PS | newpde);
3113		}
3114		mtx_unlock_spin(&allpmaps_lock);
3115	} else
3116		pde_store(pde, PG_PS | newpde);
3117
3118	pmap_pde_promotions++;
3119	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3120	    " in pmap %p", va, pmap);
3121}
3122
3123/*
3124 *	Insert the given physical page (p) at
3125 *	the specified virtual address (v) in the
3126 *	target physical map with the protection requested.
3127 *
3128 *	If specified, the page will be wired down, meaning
3129 *	that the related pte can not be reclaimed.
3130 *
3131 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3132 *	or lose information.  That is, this routine must actually
3133 *	insert this page into the given map NOW.
3134 */
3135void
3136pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3137    vm_prot_t prot, boolean_t wired)
3138{
3139	vm_paddr_t pa;
3140	pd_entry_t *pde;
3141	pt_entry_t *pte;
3142	vm_paddr_t opa;
3143	pt_entry_t origpte, newpte;
3144	vm_page_t mpte, om;
3145	boolean_t invlva;
3146
3147	va = trunc_page(va);
3148	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3149	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3150	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3151
3152	mpte = NULL;
3153
3154	vm_page_lock_queues();
3155	PMAP_LOCK(pmap);
3156	sched_pin();
3157
3158	/*
3159	 * In the case that a page table page is not
3160	 * resident, we are creating it here.
3161	 */
3162	if (va < VM_MAXUSER_ADDRESS) {
3163		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3164	}
3165
3166	pde = pmap_pde(pmap, va);
3167	if ((*pde & PG_PS) != 0)
3168		panic("pmap_enter: attempted pmap_enter on 4MB page");
3169	pte = pmap_pte_quick(pmap, va);
3170
3171	/*
3172	 * Page Directory table entry not valid, we need a new PT page
3173	 */
3174	if (pte == NULL) {
3175		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3176			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3177	}
3178
3179	pa = VM_PAGE_TO_PHYS(m);
3180	om = NULL;
3181	origpte = *pte;
3182	opa = origpte & PG_FRAME;
3183
3184	/*
3185	 * Mapping has not changed, must be protection or wiring change.
3186	 */
3187	if (origpte && (opa == pa)) {
3188		/*
3189		 * Wiring change, just update stats. We don't worry about
3190		 * wiring PT pages as they remain resident as long as there
3191		 * are valid mappings in them. Hence, if a user page is wired,
3192		 * the PT page will be also.
3193		 */
3194		if (wired && ((origpte & PG_W) == 0))
3195			pmap->pm_stats.wired_count++;
3196		else if (!wired && (origpte & PG_W))
3197			pmap->pm_stats.wired_count--;
3198
3199		/*
3200		 * Remove extra pte reference
3201		 */
3202		if (mpte)
3203			mpte->wire_count--;
3204
3205		/*
3206		 * We might be turning off write access to the page,
3207		 * so we go ahead and sense modify status.
3208		 */
3209		if (origpte & PG_MANAGED) {
3210			om = m;
3211			pa |= PG_MANAGED;
3212		}
3213		goto validate;
3214	}
3215	/*
3216	 * Mapping has changed, invalidate old range and fall through to
3217	 * handle validating new mapping.
3218	 */
3219	if (opa) {
3220		if (origpte & PG_W)
3221			pmap->pm_stats.wired_count--;
3222		if (origpte & PG_MANAGED) {
3223			om = PHYS_TO_VM_PAGE(opa);
3224			pmap_remove_entry(pmap, om, va);
3225		}
3226		if (mpte != NULL) {
3227			mpte->wire_count--;
3228			KASSERT(mpte->wire_count > 0,
3229			    ("pmap_enter: missing reference to page table page,"
3230			     " va: 0x%x", va));
3231		}
3232	} else
3233		pmap->pm_stats.resident_count++;
3234
3235	/*
3236	 * Enter on the PV list if part of our managed memory.
3237	 */
3238	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3239		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3240		    ("pmap_enter: managed mapping within the clean submap"));
3241		pmap_insert_entry(pmap, va, m);
3242		pa |= PG_MANAGED;
3243	}
3244
3245	/*
3246	 * Increment counters
3247	 */
3248	if (wired)
3249		pmap->pm_stats.wired_count++;
3250
3251validate:
3252	/*
3253	 * Now validate mapping with desired protection/wiring.
3254	 */
3255	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3256	if ((prot & VM_PROT_WRITE) != 0) {
3257		newpte |= PG_RW;
3258		vm_page_flag_set(m, PG_WRITEABLE);
3259	}
3260#ifdef PAE
3261	if ((prot & VM_PROT_EXECUTE) == 0)
3262		newpte |= pg_nx;
3263#endif
3264	if (wired)
3265		newpte |= PG_W;
3266	if (va < VM_MAXUSER_ADDRESS)
3267		newpte |= PG_U;
3268	if (pmap == kernel_pmap)
3269		newpte |= pgeflag;
3270
3271	/*
3272	 * if the mapping or permission bits are different, we need
3273	 * to update the pte.
3274	 */
3275	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3276		newpte |= PG_A;
3277		if ((access & VM_PROT_WRITE) != 0)
3278			newpte |= PG_M;
3279		if (origpte & PG_V) {
3280			invlva = FALSE;
3281			origpte = pte_load_store(pte, newpte);
3282			if (origpte & PG_A) {
3283				if (origpte & PG_MANAGED)
3284					vm_page_flag_set(om, PG_REFERENCED);
3285				if (opa != VM_PAGE_TO_PHYS(m))
3286					invlva = TRUE;
3287#ifdef PAE
3288				if ((origpte & PG_NX) == 0 &&
3289				    (newpte & PG_NX) != 0)
3290					invlva = TRUE;
3291#endif
3292			}
3293			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3294				if ((origpte & PG_MANAGED) != 0)
3295					vm_page_dirty(om);
3296				if ((prot & VM_PROT_WRITE) == 0)
3297					invlva = TRUE;
3298			}
3299			if (invlva)
3300				pmap_invalidate_page(pmap, va);
3301		} else
3302			pte_store(pte, newpte);
3303	}
3304
3305	/*
3306	 * If both the page table page and the reservation are fully
3307	 * populated, then attempt promotion.
3308	 */
3309	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3310	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3311		pmap_promote_pde(pmap, pde, va);
3312
3313	sched_unpin();
3314	vm_page_unlock_queues();
3315	PMAP_UNLOCK(pmap);
3316}
3317
3318/*
3319 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3320 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3321 * blocking, (2) a mapping already exists at the specified virtual address, or
3322 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3323 */
3324static boolean_t
3325pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3326{
3327	pd_entry_t *pde, newpde;
3328
3329	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3330	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3331	pde = pmap_pde(pmap, va);
3332	if (*pde != 0) {
3333		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3334		    " in pmap %p", va, pmap);
3335		return (FALSE);
3336	}
3337	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3338	    PG_PS | PG_V;
3339	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3340		newpde |= PG_MANAGED;
3341
3342		/*
3343		 * Abort this mapping if its PV entry could not be created.
3344		 */
3345		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3346			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3347			    " in pmap %p", va, pmap);
3348			return (FALSE);
3349		}
3350	}
3351#ifdef PAE
3352	if ((prot & VM_PROT_EXECUTE) == 0)
3353		newpde |= pg_nx;
3354#endif
3355	if (va < VM_MAXUSER_ADDRESS)
3356		newpde |= PG_U;
3357
3358	/*
3359	 * Increment counters.
3360	 */
3361	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3362
3363	/*
3364	 * Map the superpage.
3365	 */
3366	pde_store(pde, newpde);
3367
3368	pmap_pde_mappings++;
3369	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3370	    " in pmap %p", va, pmap);
3371	return (TRUE);
3372}
3373
3374/*
3375 * Maps a sequence of resident pages belonging to the same object.
3376 * The sequence begins with the given page m_start.  This page is
3377 * mapped at the given virtual address start.  Each subsequent page is
3378 * mapped at a virtual address that is offset from start by the same
3379 * amount as the page is offset from m_start within the object.  The
3380 * last page in the sequence is the page with the largest offset from
3381 * m_start that can be mapped at a virtual address less than the given
3382 * virtual address end.  Not every virtual page between start and end
3383 * is mapped; only those for which a resident page exists with the
3384 * corresponding offset from m_start are mapped.
3385 */
3386void
3387pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3388    vm_page_t m_start, vm_prot_t prot)
3389{
3390	vm_offset_t va;
3391	vm_page_t m, mpte;
3392	vm_pindex_t diff, psize;
3393
3394	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3395	psize = atop(end - start);
3396	mpte = NULL;
3397	m = m_start;
3398	PMAP_LOCK(pmap);
3399	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3400		va = start + ptoa(diff);
3401		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3402		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3403		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3404		    pmap_enter_pde(pmap, va, m, prot))
3405			m = &m[NBPDR / PAGE_SIZE - 1];
3406		else
3407			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3408			    mpte);
3409		m = TAILQ_NEXT(m, listq);
3410	}
3411 	PMAP_UNLOCK(pmap);
3412}
3413
3414/*
3415 * this code makes some *MAJOR* assumptions:
3416 * 1. Current pmap & pmap exists.
3417 * 2. Not wired.
3418 * 3. Read access.
3419 * 4. No page table pages.
3420 * but is *MUCH* faster than pmap_enter...
3421 */
3422
3423void
3424pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3425{
3426
3427	PMAP_LOCK(pmap);
3428	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3429	PMAP_UNLOCK(pmap);
3430}
3431
3432static vm_page_t
3433pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3434    vm_prot_t prot, vm_page_t mpte)
3435{
3436	pt_entry_t *pte;
3437	vm_paddr_t pa;
3438	vm_page_t free;
3439
3440	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3441	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3442	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3443	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3444	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3445
3446	/*
3447	 * In the case that a page table page is not
3448	 * resident, we are creating it here.
3449	 */
3450	if (va < VM_MAXUSER_ADDRESS) {
3451		unsigned ptepindex;
3452		pd_entry_t ptepa;
3453
3454		/*
3455		 * Calculate pagetable page index
3456		 */
3457		ptepindex = va >> PDRSHIFT;
3458		if (mpte && (mpte->pindex == ptepindex)) {
3459			mpte->wire_count++;
3460		} else {
3461			/*
3462			 * Get the page directory entry
3463			 */
3464			ptepa = pmap->pm_pdir[ptepindex];
3465
3466			/*
3467			 * If the page table page is mapped, we just increment
3468			 * the hold count, and activate it.
3469			 */
3470			if (ptepa) {
3471				if (ptepa & PG_PS)
3472					return (NULL);
3473				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3474				mpte->wire_count++;
3475			} else {
3476				mpte = _pmap_allocpte(pmap, ptepindex,
3477				    M_NOWAIT);
3478				if (mpte == NULL)
3479					return (mpte);
3480			}
3481		}
3482	} else {
3483		mpte = NULL;
3484	}
3485
3486	/*
3487	 * This call to vtopte makes the assumption that we are
3488	 * entering the page into the current pmap.  In order to support
3489	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3490	 * But that isn't as quick as vtopte.
3491	 */
3492	pte = vtopte(va);
3493	if (*pte) {
3494		if (mpte != NULL) {
3495			mpte->wire_count--;
3496			mpte = NULL;
3497		}
3498		return (mpte);
3499	}
3500
3501	/*
3502	 * Enter on the PV list if part of our managed memory.
3503	 */
3504	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3505	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3506		if (mpte != NULL) {
3507			free = NULL;
3508			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3509				pmap_invalidate_page(pmap, va);
3510				pmap_free_zero_pages(free);
3511			}
3512
3513			mpte = NULL;
3514		}
3515		return (mpte);
3516	}
3517
3518	/*
3519	 * Increment counters
3520	 */
3521	pmap->pm_stats.resident_count++;
3522
3523	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3524#ifdef PAE
3525	if ((prot & VM_PROT_EXECUTE) == 0)
3526		pa |= pg_nx;
3527#endif
3528
3529	/*
3530	 * Now validate mapping with RO protection
3531	 */
3532	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3533		pte_store(pte, pa | PG_V | PG_U);
3534	else
3535		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3536	return mpte;
3537}
3538
3539/*
3540 * Make a temporary mapping for a physical address.  This is only intended
3541 * to be used for panic dumps.
3542 */
3543void *
3544pmap_kenter_temporary(vm_paddr_t pa, int i)
3545{
3546	vm_offset_t va;
3547
3548	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3549	pmap_kenter(va, pa);
3550	invlpg(va);
3551	return ((void *)crashdumpmap);
3552}
3553
3554/*
3555 * This code maps large physical mmap regions into the
3556 * processor address space.  Note that some shortcuts
3557 * are taken, but the code works.
3558 */
3559void
3560pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3561    vm_pindex_t pindex, vm_size_t size)
3562{
3563	pd_entry_t *pde;
3564	vm_paddr_t pa, ptepa;
3565	vm_page_t p;
3566	int pat_mode;
3567
3568	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3569	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3570	    ("pmap_object_init_pt: non-device object"));
3571	if (pseflag &&
3572	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3573		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3574			return;
3575		p = vm_page_lookup(object, pindex);
3576		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3577		    ("pmap_object_init_pt: invalid page %p", p));
3578		pat_mode = p->md.pat_mode;
3579
3580		/*
3581		 * Abort the mapping if the first page is not physically
3582		 * aligned to a 2/4MB page boundary.
3583		 */
3584		ptepa = VM_PAGE_TO_PHYS(p);
3585		if (ptepa & (NBPDR - 1))
3586			return;
3587
3588		/*
3589		 * Skip the first page.  Abort the mapping if the rest of
3590		 * the pages are not physically contiguous or have differing
3591		 * memory attributes.
3592		 */
3593		p = TAILQ_NEXT(p, listq);
3594		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3595		    pa += PAGE_SIZE) {
3596			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3597			    ("pmap_object_init_pt: invalid page %p", p));
3598			if (pa != VM_PAGE_TO_PHYS(p) ||
3599			    pat_mode != p->md.pat_mode)
3600				return;
3601			p = TAILQ_NEXT(p, listq);
3602		}
3603
3604		/*
3605		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3606		 * "size" is a multiple of 2/4M, adding the PAT setting to
3607		 * "pa" will not affect the termination of this loop.
3608		 */
3609		PMAP_LOCK(pmap);
3610		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3611		    size; pa += NBPDR) {
3612			pde = pmap_pde(pmap, addr);
3613			if (*pde == 0) {
3614				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3615				    PG_U | PG_RW | PG_V);
3616				pmap->pm_stats.resident_count += NBPDR /
3617				    PAGE_SIZE;
3618				pmap_pde_mappings++;
3619			}
3620			/* Else continue on if the PDE is already valid. */
3621			addr += NBPDR;
3622		}
3623		PMAP_UNLOCK(pmap);
3624	}
3625}
3626
3627/*
3628 *	Routine:	pmap_change_wiring
3629 *	Function:	Change the wiring attribute for a map/virtual-address
3630 *			pair.
3631 *	In/out conditions:
3632 *			The mapping must already exist in the pmap.
3633 */
3634void
3635pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3636{
3637	pd_entry_t *pde;
3638	pt_entry_t *pte;
3639	boolean_t are_queues_locked;
3640
3641	are_queues_locked = FALSE;
3642retry:
3643	PMAP_LOCK(pmap);
3644	pde = pmap_pde(pmap, va);
3645	if ((*pde & PG_PS) != 0) {
3646		if (!wired != ((*pde & PG_W) == 0)) {
3647			if (!are_queues_locked) {
3648				are_queues_locked = TRUE;
3649				if (!mtx_trylock(&vm_page_queue_mtx)) {
3650					PMAP_UNLOCK(pmap);
3651					vm_page_lock_queues();
3652					goto retry;
3653				}
3654			}
3655			if (!pmap_demote_pde(pmap, pde, va))
3656				panic("pmap_change_wiring: demotion failed");
3657		} else
3658			goto out;
3659	}
3660	pte = pmap_pte(pmap, va);
3661
3662	if (wired && !pmap_pte_w(pte))
3663		pmap->pm_stats.wired_count++;
3664	else if (!wired && pmap_pte_w(pte))
3665		pmap->pm_stats.wired_count--;
3666
3667	/*
3668	 * Wiring is not a hardware characteristic so there is no need to
3669	 * invalidate TLB.
3670	 */
3671	pmap_pte_set_w(pte, wired);
3672	pmap_pte_release(pte);
3673out:
3674	if (are_queues_locked)
3675		vm_page_unlock_queues();
3676	PMAP_UNLOCK(pmap);
3677}
3678
3679
3680
3681/*
3682 *	Copy the range specified by src_addr/len
3683 *	from the source map to the range dst_addr/len
3684 *	in the destination map.
3685 *
3686 *	This routine is only advisory and need not do anything.
3687 */
3688
3689void
3690pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3691    vm_offset_t src_addr)
3692{
3693	vm_page_t   free;
3694	vm_offset_t addr;
3695	vm_offset_t end_addr = src_addr + len;
3696	vm_offset_t pdnxt;
3697
3698	if (dst_addr != src_addr)
3699		return;
3700
3701	if (!pmap_is_current(src_pmap))
3702		return;
3703
3704	vm_page_lock_queues();
3705	if (dst_pmap < src_pmap) {
3706		PMAP_LOCK(dst_pmap);
3707		PMAP_LOCK(src_pmap);
3708	} else {
3709		PMAP_LOCK(src_pmap);
3710		PMAP_LOCK(dst_pmap);
3711	}
3712	sched_pin();
3713	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3714		pt_entry_t *src_pte, *dst_pte;
3715		vm_page_t dstmpte, srcmpte;
3716		pd_entry_t srcptepaddr;
3717		unsigned ptepindex;
3718
3719		KASSERT(addr < UPT_MIN_ADDRESS,
3720		    ("pmap_copy: invalid to pmap_copy page tables"));
3721
3722		pdnxt = (addr + NBPDR) & ~PDRMASK;
3723		if (pdnxt < addr)
3724			pdnxt = end_addr;
3725		ptepindex = addr >> PDRSHIFT;
3726
3727		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3728		if (srcptepaddr == 0)
3729			continue;
3730
3731		if (srcptepaddr & PG_PS) {
3732			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3733			    ((srcptepaddr & PG_MANAGED) == 0 ||
3734			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3735			    PG_PS_FRAME))) {
3736				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3737				    ~PG_W;
3738				dst_pmap->pm_stats.resident_count +=
3739				    NBPDR / PAGE_SIZE;
3740			}
3741			continue;
3742		}
3743
3744		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3745		KASSERT(srcmpte->wire_count > 0,
3746		    ("pmap_copy: source page table page is unused"));
3747
3748		if (pdnxt > end_addr)
3749			pdnxt = end_addr;
3750
3751		src_pte = vtopte(addr);
3752		while (addr < pdnxt) {
3753			pt_entry_t ptetemp;
3754			ptetemp = *src_pte;
3755			/*
3756			 * we only virtual copy managed pages
3757			 */
3758			if ((ptetemp & PG_MANAGED) != 0) {
3759				dstmpte = pmap_allocpte(dst_pmap, addr,
3760				    M_NOWAIT);
3761				if (dstmpte == NULL)
3762					goto out;
3763				dst_pte = pmap_pte_quick(dst_pmap, addr);
3764				if (*dst_pte == 0 &&
3765				    pmap_try_insert_pv_entry(dst_pmap, addr,
3766				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3767					/*
3768					 * Clear the wired, modified, and
3769					 * accessed (referenced) bits
3770					 * during the copy.
3771					 */
3772					*dst_pte = ptetemp & ~(PG_W | PG_M |
3773					    PG_A);
3774					dst_pmap->pm_stats.resident_count++;
3775	 			} else {
3776					free = NULL;
3777					if (pmap_unwire_pte_hold(dst_pmap,
3778					    dstmpte, &free)) {
3779						pmap_invalidate_page(dst_pmap,
3780						    addr);
3781						pmap_free_zero_pages(free);
3782					}
3783					goto out;
3784				}
3785				if (dstmpte->wire_count >= srcmpte->wire_count)
3786					break;
3787			}
3788			addr += PAGE_SIZE;
3789			src_pte++;
3790		}
3791	}
3792out:
3793	sched_unpin();
3794	vm_page_unlock_queues();
3795	PMAP_UNLOCK(src_pmap);
3796	PMAP_UNLOCK(dst_pmap);
3797}
3798
3799static __inline void
3800pagezero(void *page)
3801{
3802#if defined(I686_CPU)
3803	if (cpu_class == CPUCLASS_686) {
3804#if defined(CPU_ENABLE_SSE)
3805		if (cpu_feature & CPUID_SSE2)
3806			sse2_pagezero(page);
3807		else
3808#endif
3809			i686_pagezero(page);
3810	} else
3811#endif
3812		bzero(page, PAGE_SIZE);
3813}
3814
3815/*
3816 *	pmap_zero_page zeros the specified hardware page by mapping
3817 *	the page into KVM and using bzero to clear its contents.
3818 */
3819void
3820pmap_zero_page(vm_page_t m)
3821{
3822	struct sysmaps *sysmaps;
3823
3824	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3825	mtx_lock(&sysmaps->lock);
3826	if (*sysmaps->CMAP2)
3827		panic("pmap_zero_page: CMAP2 busy");
3828	sched_pin();
3829	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3830	    pmap_cache_bits(m->md.pat_mode, 0);
3831	invlcaddr(sysmaps->CADDR2);
3832	pagezero(sysmaps->CADDR2);
3833	*sysmaps->CMAP2 = 0;
3834	sched_unpin();
3835	mtx_unlock(&sysmaps->lock);
3836}
3837
3838/*
3839 *	pmap_zero_page_area zeros the specified hardware page by mapping
3840 *	the page into KVM and using bzero to clear its contents.
3841 *
3842 *	off and size may not cover an area beyond a single hardware page.
3843 */
3844void
3845pmap_zero_page_area(vm_page_t m, int off, int size)
3846{
3847	struct sysmaps *sysmaps;
3848
3849	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3850	mtx_lock(&sysmaps->lock);
3851	if (*sysmaps->CMAP2)
3852		panic("pmap_zero_page_area: CMAP2 busy");
3853	sched_pin();
3854	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3855	    pmap_cache_bits(m->md.pat_mode, 0);
3856	invlcaddr(sysmaps->CADDR2);
3857	if (off == 0 && size == PAGE_SIZE)
3858		pagezero(sysmaps->CADDR2);
3859	else
3860		bzero((char *)sysmaps->CADDR2 + off, size);
3861	*sysmaps->CMAP2 = 0;
3862	sched_unpin();
3863	mtx_unlock(&sysmaps->lock);
3864}
3865
3866/*
3867 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3868 *	the page into KVM and using bzero to clear its contents.  This
3869 *	is intended to be called from the vm_pagezero process only and
3870 *	outside of Giant.
3871 */
3872void
3873pmap_zero_page_idle(vm_page_t m)
3874{
3875
3876	if (*CMAP3)
3877		panic("pmap_zero_page_idle: CMAP3 busy");
3878	sched_pin();
3879	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3880	    pmap_cache_bits(m->md.pat_mode, 0);
3881	invlcaddr(CADDR3);
3882	pagezero(CADDR3);
3883	*CMAP3 = 0;
3884	sched_unpin();
3885}
3886
3887/*
3888 *	pmap_copy_page copies the specified (machine independent)
3889 *	page by mapping the page into virtual memory and using
3890 *	bcopy to copy the page, one machine dependent page at a
3891 *	time.
3892 */
3893void
3894pmap_copy_page(vm_page_t src, vm_page_t dst)
3895{
3896	struct sysmaps *sysmaps;
3897
3898	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3899	mtx_lock(&sysmaps->lock);
3900	if (*sysmaps->CMAP1)
3901		panic("pmap_copy_page: CMAP1 busy");
3902	if (*sysmaps->CMAP2)
3903		panic("pmap_copy_page: CMAP2 busy");
3904	sched_pin();
3905	invlpg((u_int)sysmaps->CADDR1);
3906	invlpg((u_int)sysmaps->CADDR2);
3907	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
3908	    pmap_cache_bits(src->md.pat_mode, 0);
3909	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
3910	    pmap_cache_bits(dst->md.pat_mode, 0);
3911	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3912	*sysmaps->CMAP1 = 0;
3913	*sysmaps->CMAP2 = 0;
3914	sched_unpin();
3915	mtx_unlock(&sysmaps->lock);
3916}
3917
3918/*
3919 * Returns true if the pmap's pv is one of the first
3920 * 16 pvs linked to from this page.  This count may
3921 * be changed upwards or downwards in the future; it
3922 * is only necessary that true be returned for a small
3923 * subset of pmaps for proper page aging.
3924 */
3925boolean_t
3926pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3927{
3928	struct md_page *pvh;
3929	pv_entry_t pv;
3930	int loops = 0;
3931
3932	if (m->flags & PG_FICTITIOUS)
3933		return FALSE;
3934
3935	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3936	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3937		if (PV_PMAP(pv) == pmap) {
3938			return TRUE;
3939		}
3940		loops++;
3941		if (loops >= 16)
3942			break;
3943	}
3944	if (loops < 16) {
3945		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3946		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3947			if (PV_PMAP(pv) == pmap)
3948				return (TRUE);
3949			loops++;
3950			if (loops >= 16)
3951				break;
3952		}
3953	}
3954	return (FALSE);
3955}
3956
3957/*
3958 *	pmap_page_wired_mappings:
3959 *
3960 *	Return the number of managed mappings to the given physical page
3961 *	that are wired.
3962 */
3963int
3964pmap_page_wired_mappings(vm_page_t m)
3965{
3966	int count;
3967
3968	count = 0;
3969	if ((m->flags & PG_FICTITIOUS) != 0)
3970		return (count);
3971	count = pmap_pvh_wired_mappings(&m->md, count);
3972	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3973}
3974
3975/*
3976 *	pmap_pvh_wired_mappings:
3977 *
3978 *	Return the updated number "count" of managed mappings that are wired.
3979 */
3980static int
3981pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3982{
3983	pmap_t pmap;
3984	pt_entry_t *pte;
3985	pv_entry_t pv;
3986
3987	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3988	sched_pin();
3989	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3990		pmap = PV_PMAP(pv);
3991		PMAP_LOCK(pmap);
3992		pte = pmap_pte_quick(pmap, pv->pv_va);
3993		if ((*pte & PG_W) != 0)
3994			count++;
3995		PMAP_UNLOCK(pmap);
3996	}
3997	sched_unpin();
3998	return (count);
3999}
4000
4001/*
4002 * Returns TRUE if the given page is mapped individually or as part of
4003 * a 4mpage.  Otherwise, returns FALSE.
4004 */
4005boolean_t
4006pmap_page_is_mapped(vm_page_t m)
4007{
4008	struct md_page *pvh;
4009
4010	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
4011		return (FALSE);
4012	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4013	if (TAILQ_EMPTY(&m->md.pv_list)) {
4014		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4015		return (!TAILQ_EMPTY(&pvh->pv_list));
4016	} else
4017		return (TRUE);
4018}
4019
4020/*
4021 * Remove all pages from specified address space
4022 * this aids process exit speeds.  Also, this code
4023 * is special cased for current process only, but
4024 * can have the more generic (and slightly slower)
4025 * mode enabled.  This is much faster than pmap_remove
4026 * in the case of running down an entire address space.
4027 */
4028void
4029pmap_remove_pages(pmap_t pmap)
4030{
4031	pt_entry_t *pte, tpte;
4032	vm_page_t free = NULL;
4033	vm_page_t m, mpte, mt;
4034	pv_entry_t pv;
4035	struct md_page *pvh;
4036	struct pv_chunk *pc, *npc;
4037	int field, idx;
4038	int32_t bit;
4039	uint32_t inuse, bitmask;
4040	int allfree;
4041
4042	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
4043		printf("warning: pmap_remove_pages called with non-current pmap\n");
4044		return;
4045	}
4046	vm_page_lock_queues();
4047	PMAP_LOCK(pmap);
4048	sched_pin();
4049	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4050		allfree = 1;
4051		for (field = 0; field < _NPCM; field++) {
4052			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4053			while (inuse != 0) {
4054				bit = bsfl(inuse);
4055				bitmask = 1UL << bit;
4056				idx = field * 32 + bit;
4057				pv = &pc->pc_pventry[idx];
4058				inuse &= ~bitmask;
4059
4060				pte = pmap_pde(pmap, pv->pv_va);
4061				tpte = *pte;
4062				if ((tpte & PG_PS) == 0) {
4063					pte = vtopte(pv->pv_va);
4064					tpte = *pte & ~PG_PTE_PAT;
4065				}
4066
4067				if (tpte == 0) {
4068					printf(
4069					    "TPTE at %p  IS ZERO @ VA %08x\n",
4070					    pte, pv->pv_va);
4071					panic("bad pte");
4072				}
4073
4074/*
4075 * We cannot remove wired pages from a process' mapping at this time
4076 */
4077				if (tpte & PG_W) {
4078					allfree = 0;
4079					continue;
4080				}
4081
4082				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4083				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4084				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4085				    m, (uintmax_t)m->phys_addr,
4086				    (uintmax_t)tpte));
4087
4088				KASSERT(m < &vm_page_array[vm_page_array_size],
4089					("pmap_remove_pages: bad tpte %#jx",
4090					(uintmax_t)tpte));
4091
4092				pte_clear(pte);
4093
4094				/*
4095				 * Update the vm_page_t clean/reference bits.
4096				 */
4097				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4098					if ((tpte & PG_PS) != 0) {
4099						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4100							vm_page_dirty(mt);
4101					} else
4102						vm_page_dirty(m);
4103				}
4104
4105				/* Mark free */
4106				PV_STAT(pv_entry_frees++);
4107				PV_STAT(pv_entry_spare++);
4108				pv_entry_count--;
4109				pc->pc_map[field] |= bitmask;
4110				if ((tpte & PG_PS) != 0) {
4111					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4112					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4113					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4114					if (TAILQ_EMPTY(&pvh->pv_list)) {
4115						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4116							if (TAILQ_EMPTY(&mt->md.pv_list))
4117								vm_page_flag_clear(mt, PG_WRITEABLE);
4118					}
4119					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4120					if (mpte != NULL) {
4121						pmap_remove_pt_page(pmap, mpte);
4122						pmap->pm_stats.resident_count--;
4123						KASSERT(mpte->wire_count == NPTEPG,
4124						    ("pmap_remove_pages: pte page wire count error"));
4125						mpte->wire_count = 0;
4126						pmap_add_delayed_free_list(mpte, &free, FALSE);
4127						atomic_subtract_int(&cnt.v_wire_count, 1);
4128					}
4129				} else {
4130					pmap->pm_stats.resident_count--;
4131					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4132					if (TAILQ_EMPTY(&m->md.pv_list)) {
4133						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4134						if (TAILQ_EMPTY(&pvh->pv_list))
4135							vm_page_flag_clear(m, PG_WRITEABLE);
4136					}
4137					pmap_unuse_pt(pmap, pv->pv_va, &free);
4138				}
4139			}
4140		}
4141		if (allfree) {
4142			PV_STAT(pv_entry_spare -= _NPCPV);
4143			PV_STAT(pc_chunk_count--);
4144			PV_STAT(pc_chunk_frees++);
4145			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4146			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4147			pmap_qremove((vm_offset_t)pc, 1);
4148			vm_page_unwire(m, 0);
4149			vm_page_free(m);
4150			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4151		}
4152	}
4153	sched_unpin();
4154	pmap_invalidate_all(pmap);
4155	vm_page_unlock_queues();
4156	PMAP_UNLOCK(pmap);
4157	pmap_free_zero_pages(free);
4158}
4159
4160/*
4161 *	pmap_is_modified:
4162 *
4163 *	Return whether or not the specified physical page was modified
4164 *	in any physical maps.
4165 */
4166boolean_t
4167pmap_is_modified(vm_page_t m)
4168{
4169
4170	if (m->flags & PG_FICTITIOUS)
4171		return (FALSE);
4172	if (pmap_is_modified_pvh(&m->md))
4173		return (TRUE);
4174	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4175}
4176
4177/*
4178 * Returns TRUE if any of the given mappings were used to modify
4179 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4180 * mappings are supported.
4181 */
4182static boolean_t
4183pmap_is_modified_pvh(struct md_page *pvh)
4184{
4185	pv_entry_t pv;
4186	pt_entry_t *pte;
4187	pmap_t pmap;
4188	boolean_t rv;
4189
4190	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4191	rv = FALSE;
4192	sched_pin();
4193	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4194		pmap = PV_PMAP(pv);
4195		PMAP_LOCK(pmap);
4196		pte = pmap_pte_quick(pmap, pv->pv_va);
4197		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4198		PMAP_UNLOCK(pmap);
4199		if (rv)
4200			break;
4201	}
4202	sched_unpin();
4203	return (rv);
4204}
4205
4206/*
4207 *	pmap_is_prefaultable:
4208 *
4209 *	Return whether or not the specified virtual address is elgible
4210 *	for prefault.
4211 */
4212boolean_t
4213pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4214{
4215	pd_entry_t *pde;
4216	pt_entry_t *pte;
4217	boolean_t rv;
4218
4219	rv = FALSE;
4220	PMAP_LOCK(pmap);
4221	pde = pmap_pde(pmap, addr);
4222	if (*pde != 0 && (*pde & PG_PS) == 0) {
4223		pte = vtopte(addr);
4224		rv = *pte == 0;
4225	}
4226	PMAP_UNLOCK(pmap);
4227	return (rv);
4228}
4229
4230/*
4231 * Clear the write and modified bits in each of the given page's mappings.
4232 */
4233void
4234pmap_remove_write(vm_page_t m)
4235{
4236	struct md_page *pvh;
4237	pv_entry_t next_pv, pv;
4238	pmap_t pmap;
4239	pd_entry_t *pde;
4240	pt_entry_t oldpte, *pte;
4241	vm_offset_t va;
4242
4243	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4244	if ((m->flags & PG_FICTITIOUS) != 0 ||
4245	    (m->flags & PG_WRITEABLE) == 0)
4246		return;
4247	sched_pin();
4248	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4249	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4250		va = pv->pv_va;
4251		pmap = PV_PMAP(pv);
4252		PMAP_LOCK(pmap);
4253		pde = pmap_pde(pmap, va);
4254		if ((*pde & PG_RW) != 0)
4255			(void)pmap_demote_pde(pmap, pde, va);
4256		PMAP_UNLOCK(pmap);
4257	}
4258	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4259		pmap = PV_PMAP(pv);
4260		PMAP_LOCK(pmap);
4261		pde = pmap_pde(pmap, pv->pv_va);
4262		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4263		    " a 4mpage in page %p's pv list", m));
4264		pte = pmap_pte_quick(pmap, pv->pv_va);
4265retry:
4266		oldpte = *pte;
4267		if ((oldpte & PG_RW) != 0) {
4268			/*
4269			 * Regardless of whether a pte is 32 or 64 bits
4270			 * in size, PG_RW and PG_M are among the least
4271			 * significant 32 bits.
4272			 */
4273			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4274			    oldpte & ~(PG_RW | PG_M)))
4275				goto retry;
4276			if ((oldpte & PG_M) != 0)
4277				vm_page_dirty(m);
4278			pmap_invalidate_page(pmap, pv->pv_va);
4279		}
4280		PMAP_UNLOCK(pmap);
4281	}
4282	vm_page_flag_clear(m, PG_WRITEABLE);
4283	sched_unpin();
4284}
4285
4286/*
4287 *	pmap_ts_referenced:
4288 *
4289 *	Return a count of reference bits for a page, clearing those bits.
4290 *	It is not necessary for every reference bit to be cleared, but it
4291 *	is necessary that 0 only be returned when there are truly no
4292 *	reference bits set.
4293 *
4294 *	XXX: The exact number of bits to check and clear is a matter that
4295 *	should be tested and standardized at some point in the future for
4296 *	optimal aging of shared pages.
4297 */
4298int
4299pmap_ts_referenced(vm_page_t m)
4300{
4301	struct md_page *pvh;
4302	pv_entry_t pv, pvf, pvn;
4303	pmap_t pmap;
4304	pd_entry_t oldpde, *pde;
4305	pt_entry_t *pte;
4306	vm_offset_t va;
4307	int rtval = 0;
4308
4309	if (m->flags & PG_FICTITIOUS)
4310		return (rtval);
4311	sched_pin();
4312	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4313	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4314	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4315		va = pv->pv_va;
4316		pmap = PV_PMAP(pv);
4317		PMAP_LOCK(pmap);
4318		pde = pmap_pde(pmap, va);
4319		oldpde = *pde;
4320		if ((oldpde & PG_A) != 0) {
4321			if (pmap_demote_pde(pmap, pde, va)) {
4322				if ((oldpde & PG_W) == 0) {
4323					/*
4324					 * Remove the mapping to a single page
4325					 * so that a subsequent access may
4326					 * repromote.  Since the underlying
4327					 * page table page is fully populated,
4328					 * this removal never frees a page
4329					 * table page.
4330					 */
4331					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4332					    PG_PS_FRAME);
4333					pmap_remove_page(pmap, va, NULL);
4334					rtval++;
4335					if (rtval > 4) {
4336						PMAP_UNLOCK(pmap);
4337						return (rtval);
4338					}
4339				}
4340			}
4341		}
4342		PMAP_UNLOCK(pmap);
4343	}
4344	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4345		pvf = pv;
4346		do {
4347			pvn = TAILQ_NEXT(pv, pv_list);
4348			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4349			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4350			pmap = PV_PMAP(pv);
4351			PMAP_LOCK(pmap);
4352			pde = pmap_pde(pmap, pv->pv_va);
4353			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4354			    " found a 4mpage in page %p's pv list", m));
4355			pte = pmap_pte_quick(pmap, pv->pv_va);
4356			if ((*pte & PG_A) != 0) {
4357				atomic_clear_int((u_int *)pte, PG_A);
4358				pmap_invalidate_page(pmap, pv->pv_va);
4359				rtval++;
4360				if (rtval > 4)
4361					pvn = NULL;
4362			}
4363			PMAP_UNLOCK(pmap);
4364		} while ((pv = pvn) != NULL && pv != pvf);
4365	}
4366	sched_unpin();
4367	return (rtval);
4368}
4369
4370/*
4371 *	Clear the modify bits on the specified physical page.
4372 */
4373void
4374pmap_clear_modify(vm_page_t m)
4375{
4376	struct md_page *pvh;
4377	pv_entry_t next_pv, pv;
4378	pmap_t pmap;
4379	pd_entry_t oldpde, *pde;
4380	pt_entry_t oldpte, *pte;
4381	vm_offset_t va;
4382
4383	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4384	if ((m->flags & PG_FICTITIOUS) != 0)
4385		return;
4386	sched_pin();
4387	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4388	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4389		va = pv->pv_va;
4390		pmap = PV_PMAP(pv);
4391		PMAP_LOCK(pmap);
4392		pde = pmap_pde(pmap, va);
4393		oldpde = *pde;
4394		if ((oldpde & PG_RW) != 0) {
4395			if (pmap_demote_pde(pmap, pde, va)) {
4396				if ((oldpde & PG_W) == 0) {
4397					/*
4398					 * Write protect the mapping to a
4399					 * single page so that a subsequent
4400					 * write access may repromote.
4401					 */
4402					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4403					    PG_PS_FRAME);
4404					pte = pmap_pte_quick(pmap, va);
4405					oldpte = *pte;
4406					if ((oldpte & PG_V) != 0) {
4407						/*
4408						 * Regardless of whether a pte is 32 or 64 bits
4409						 * in size, PG_RW and PG_M are among the least
4410						 * significant 32 bits.
4411						 */
4412						while (!atomic_cmpset_int((u_int *)pte,
4413						    oldpte,
4414						    oldpte & ~(PG_M | PG_RW)))
4415							oldpte = *pte;
4416						vm_page_dirty(m);
4417						pmap_invalidate_page(pmap, va);
4418					}
4419				}
4420			}
4421		}
4422		PMAP_UNLOCK(pmap);
4423	}
4424	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4425		pmap = PV_PMAP(pv);
4426		PMAP_LOCK(pmap);
4427		pde = pmap_pde(pmap, pv->pv_va);
4428		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4429		    " a 4mpage in page %p's pv list", m));
4430		pte = pmap_pte_quick(pmap, pv->pv_va);
4431		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4432			/*
4433			 * Regardless of whether a pte is 32 or 64 bits
4434			 * in size, PG_M is among the least significant
4435			 * 32 bits.
4436			 */
4437			atomic_clear_int((u_int *)pte, PG_M);
4438			pmap_invalidate_page(pmap, pv->pv_va);
4439		}
4440		PMAP_UNLOCK(pmap);
4441	}
4442	sched_unpin();
4443}
4444
4445/*
4446 *	pmap_clear_reference:
4447 *
4448 *	Clear the reference bit on the specified physical page.
4449 */
4450void
4451pmap_clear_reference(vm_page_t m)
4452{
4453	struct md_page *pvh;
4454	pv_entry_t next_pv, pv;
4455	pmap_t pmap;
4456	pd_entry_t oldpde, *pde;
4457	pt_entry_t *pte;
4458	vm_offset_t va;
4459
4460	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4461	if ((m->flags & PG_FICTITIOUS) != 0)
4462		return;
4463	sched_pin();
4464	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4465	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4466		va = pv->pv_va;
4467		pmap = PV_PMAP(pv);
4468		PMAP_LOCK(pmap);
4469		pde = pmap_pde(pmap, va);
4470		oldpde = *pde;
4471		if ((oldpde & PG_A) != 0) {
4472			if (pmap_demote_pde(pmap, pde, va)) {
4473				/*
4474				 * Remove the mapping to a single page so
4475				 * that a subsequent access may repromote.
4476				 * Since the underlying page table page is
4477				 * fully populated, this removal never frees
4478				 * a page table page.
4479				 */
4480				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4481				    PG_PS_FRAME);
4482				pmap_remove_page(pmap, va, NULL);
4483			}
4484		}
4485		PMAP_UNLOCK(pmap);
4486	}
4487	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4488		pmap = PV_PMAP(pv);
4489		PMAP_LOCK(pmap);
4490		pde = pmap_pde(pmap, pv->pv_va);
4491		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4492		    " a 4mpage in page %p's pv list", m));
4493		pte = pmap_pte_quick(pmap, pv->pv_va);
4494		if ((*pte & PG_A) != 0) {
4495			/*
4496			 * Regardless of whether a pte is 32 or 64 bits
4497			 * in size, PG_A is among the least significant
4498			 * 32 bits.
4499			 */
4500			atomic_clear_int((u_int *)pte, PG_A);
4501			pmap_invalidate_page(pmap, pv->pv_va);
4502		}
4503		PMAP_UNLOCK(pmap);
4504	}
4505	sched_unpin();
4506}
4507
4508/*
4509 * Miscellaneous support routines follow
4510 */
4511
4512/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4513static __inline void
4514pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4515{
4516	u_int opte, npte;
4517
4518	/*
4519	 * The cache mode bits are all in the low 32-bits of the
4520	 * PTE, so we can just spin on updating the low 32-bits.
4521	 */
4522	do {
4523		opte = *(u_int *)pte;
4524		npte = opte & ~PG_PTE_CACHE;
4525		npte |= cache_bits;
4526	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4527}
4528
4529/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4530static __inline void
4531pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4532{
4533	u_int opde, npde;
4534
4535	/*
4536	 * The cache mode bits are all in the low 32-bits of the
4537	 * PDE, so we can just spin on updating the low 32-bits.
4538	 */
4539	do {
4540		opde = *(u_int *)pde;
4541		npde = opde & ~PG_PDE_CACHE;
4542		npde |= cache_bits;
4543	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4544}
4545
4546/*
4547 * Map a set of physical memory pages into the kernel virtual
4548 * address space. Return a pointer to where it is mapped. This
4549 * routine is intended to be used for mapping device memory,
4550 * NOT real memory.
4551 */
4552void *
4553pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4554{
4555	vm_offset_t va, offset;
4556	vm_size_t tmpsize;
4557
4558	offset = pa & PAGE_MASK;
4559	size = roundup(offset + size, PAGE_SIZE);
4560	pa = pa & PG_FRAME;
4561
4562	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4563		va = KERNBASE + pa;
4564	else
4565		va = kmem_alloc_nofault(kernel_map, size);
4566	if (!va)
4567		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4568
4569	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4570		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4571	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4572	pmap_invalidate_cache_range(va, va + size);
4573	return ((void *)(va + offset));
4574}
4575
4576void *
4577pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4578{
4579
4580	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4581}
4582
4583void *
4584pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4585{
4586
4587	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4588}
4589
4590void
4591pmap_unmapdev(vm_offset_t va, vm_size_t size)
4592{
4593	vm_offset_t base, offset, tmpva;
4594
4595	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4596		return;
4597	base = trunc_page(va);
4598	offset = va & PAGE_MASK;
4599	size = roundup(offset + size, PAGE_SIZE);
4600	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4601		pmap_kremove(tmpva);
4602	pmap_invalidate_range(kernel_pmap, va, tmpva);
4603	kmem_free(kernel_map, base, size);
4604}
4605
4606/*
4607 * Sets the memory attribute for the specified page.
4608 */
4609void
4610pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4611{
4612	struct sysmaps *sysmaps;
4613	vm_offset_t sva, eva;
4614
4615	m->md.pat_mode = ma;
4616	if ((m->flags & PG_FICTITIOUS) != 0)
4617		return;
4618
4619	/*
4620	 * If "m" is a normal page, flush it from the cache.
4621	 * See pmap_invalidate_cache_range().
4622	 *
4623	 * First, try to find an existing mapping of the page by sf
4624	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4625	 * flushes the cache.
4626	 */
4627	if (sf_buf_invalidate_cache(m))
4628		return;
4629
4630	/*
4631	 * If page is not mapped by sf buffer, but CPU does not
4632	 * support self snoop, map the page transient and do
4633	 * invalidation. In the worst case, whole cache is flushed by
4634	 * pmap_invalidate_cache_range().
4635	 */
4636	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4637		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4638		mtx_lock(&sysmaps->lock);
4639		if (*sysmaps->CMAP2)
4640			panic("pmap_page_set_memattr: CMAP2 busy");
4641		sched_pin();
4642		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4643		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4644		invlcaddr(sysmaps->CADDR2);
4645		sva = (vm_offset_t)sysmaps->CADDR2;
4646		eva = sva + PAGE_SIZE;
4647	} else
4648		sva = eva = 0; /* gcc */
4649	pmap_invalidate_cache_range(sva, eva);
4650	if (sva != 0) {
4651		*sysmaps->CMAP2 = 0;
4652		sched_unpin();
4653		mtx_unlock(&sysmaps->lock);
4654	}
4655}
4656
4657/*
4658 * Changes the specified virtual address range's memory type to that given by
4659 * the parameter "mode".  The specified virtual address range must be
4660 * completely contained within either the kernel map.
4661 *
4662 * Returns zero if the change completed successfully, and either EINVAL or
4663 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4664 * of the virtual address range was not mapped, and ENOMEM is returned if
4665 * there was insufficient memory available to complete the change.
4666 */
4667int
4668pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4669{
4670	vm_offset_t base, offset, tmpva;
4671	pd_entry_t *pde;
4672	pt_entry_t *pte;
4673	int cache_bits_pte, cache_bits_pde;
4674	boolean_t changed;
4675
4676	base = trunc_page(va);
4677	offset = va & PAGE_MASK;
4678	size = roundup(offset + size, PAGE_SIZE);
4679
4680	/*
4681	 * Only supported on kernel virtual addresses above the recursive map.
4682	 */
4683	if (base < VM_MIN_KERNEL_ADDRESS)
4684		return (EINVAL);
4685
4686	cache_bits_pde = pmap_cache_bits(mode, 1);
4687	cache_bits_pte = pmap_cache_bits(mode, 0);
4688	changed = FALSE;
4689
4690	/*
4691	 * Pages that aren't mapped aren't supported.  Also break down
4692	 * 2/4MB pages into 4KB pages if required.
4693	 */
4694	PMAP_LOCK(kernel_pmap);
4695	for (tmpva = base; tmpva < base + size; ) {
4696		pde = pmap_pde(kernel_pmap, tmpva);
4697		if (*pde == 0) {
4698			PMAP_UNLOCK(kernel_pmap);
4699			return (EINVAL);
4700		}
4701		if (*pde & PG_PS) {
4702			/*
4703			 * If the current 2/4MB page already has
4704			 * the required memory type, then we need not
4705			 * demote this page.  Just increment tmpva to
4706			 * the next 2/4MB page frame.
4707			 */
4708			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4709				tmpva = trunc_4mpage(tmpva) + NBPDR;
4710				continue;
4711			}
4712
4713			/*
4714			 * If the current offset aligns with a 2/4MB
4715			 * page frame and there is at least 2/4MB left
4716			 * within the range, then we need not break
4717			 * down this page into 4KB pages.
4718			 */
4719			if ((tmpva & PDRMASK) == 0 &&
4720			    tmpva + PDRMASK < base + size) {
4721				tmpva += NBPDR;
4722				continue;
4723			}
4724			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4725				PMAP_UNLOCK(kernel_pmap);
4726				return (ENOMEM);
4727			}
4728		}
4729		pte = vtopte(tmpva);
4730		if (*pte == 0) {
4731			PMAP_UNLOCK(kernel_pmap);
4732			return (EINVAL);
4733		}
4734		tmpva += PAGE_SIZE;
4735	}
4736	PMAP_UNLOCK(kernel_pmap);
4737
4738	/*
4739	 * Ok, all the pages exist, so run through them updating their
4740	 * cache mode if required.
4741	 */
4742	for (tmpva = base; tmpva < base + size; ) {
4743		pde = pmap_pde(kernel_pmap, tmpva);
4744		if (*pde & PG_PS) {
4745			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4746				pmap_pde_attr(pde, cache_bits_pde);
4747				changed = TRUE;
4748			}
4749			tmpva = trunc_4mpage(tmpva) + NBPDR;
4750		} else {
4751			pte = vtopte(tmpva);
4752			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4753				pmap_pte_attr(pte, cache_bits_pte);
4754				changed = TRUE;
4755			}
4756			tmpva += PAGE_SIZE;
4757		}
4758	}
4759
4760	/*
4761	 * Flush CPU caches to make sure any data isn't cached that
4762	 * shouldn't be, etc.
4763	 */
4764	if (changed) {
4765		pmap_invalidate_range(kernel_pmap, base, tmpva);
4766		pmap_invalidate_cache_range(base, tmpva);
4767	}
4768	return (0);
4769}
4770
4771/*
4772 * perform the pmap work for mincore
4773 */
4774int
4775pmap_mincore(pmap_t pmap, vm_offset_t addr)
4776{
4777	pd_entry_t *pdep;
4778	pt_entry_t *ptep, pte;
4779	vm_paddr_t pa;
4780	vm_page_t m;
4781	int val = 0;
4782
4783	PMAP_LOCK(pmap);
4784	pdep = pmap_pde(pmap, addr);
4785	if (*pdep != 0) {
4786		if (*pdep & PG_PS) {
4787			pte = *pdep;
4788			val = MINCORE_SUPER;
4789			/* Compute the physical address of the 4KB page. */
4790			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4791			    PG_FRAME;
4792		} else {
4793			ptep = pmap_pte(pmap, addr);
4794			pte = *ptep;
4795			pmap_pte_release(ptep);
4796			pa = pte & PG_FRAME;
4797		}
4798	} else {
4799		pte = 0;
4800		pa = 0;
4801	}
4802	PMAP_UNLOCK(pmap);
4803
4804	if (pte != 0) {
4805		val |= MINCORE_INCORE;
4806		if ((pte & PG_MANAGED) == 0)
4807			return val;
4808
4809		m = PHYS_TO_VM_PAGE(pa);
4810
4811		/*
4812		 * Modified by us
4813		 */
4814		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4815			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4816		else {
4817			/*
4818			 * Modified by someone else
4819			 */
4820			vm_page_lock_queues();
4821			if (m->dirty || pmap_is_modified(m))
4822				val |= MINCORE_MODIFIED_OTHER;
4823			vm_page_unlock_queues();
4824		}
4825		/*
4826		 * Referenced by us
4827		 */
4828		if (pte & PG_A)
4829			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4830		else {
4831			/*
4832			 * Referenced by someone else
4833			 */
4834			vm_page_lock_queues();
4835			if ((m->flags & PG_REFERENCED) ||
4836			    pmap_ts_referenced(m)) {
4837				val |= MINCORE_REFERENCED_OTHER;
4838				vm_page_flag_set(m, PG_REFERENCED);
4839			}
4840			vm_page_unlock_queues();
4841		}
4842	}
4843	return val;
4844}
4845
4846void
4847pmap_activate(struct thread *td)
4848{
4849	pmap_t	pmap, oldpmap;
4850	u_int32_t  cr3;
4851
4852	critical_enter();
4853	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4854	oldpmap = PCPU_GET(curpmap);
4855#if defined(SMP)
4856	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4857	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4858#else
4859	oldpmap->pm_active &= ~1;
4860	pmap->pm_active |= 1;
4861#endif
4862#ifdef PAE
4863	cr3 = vtophys(pmap->pm_pdpt);
4864#else
4865	cr3 = vtophys(pmap->pm_pdir);
4866#endif
4867	/*
4868	 * pmap_activate is for the current thread on the current cpu
4869	 */
4870	td->td_pcb->pcb_cr3 = cr3;
4871	load_cr3(cr3);
4872	PCPU_SET(curpmap, pmap);
4873	critical_exit();
4874}
4875
4876void
4877pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4878{
4879}
4880
4881/*
4882 *	Increase the starting virtual address of the given mapping if a
4883 *	different alignment might result in more superpage mappings.
4884 */
4885void
4886pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4887    vm_offset_t *addr, vm_size_t size)
4888{
4889	vm_offset_t superpage_offset;
4890
4891	if (size < NBPDR)
4892		return;
4893	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4894		offset += ptoa(object->pg_color);
4895	superpage_offset = offset & PDRMASK;
4896	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4897	    (*addr & PDRMASK) == superpage_offset)
4898		return;
4899	if ((*addr & PDRMASK) < superpage_offset)
4900		*addr = (*addr & ~PDRMASK) + superpage_offset;
4901	else
4902		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4903}
4904
4905
4906#if defined(PMAP_DEBUG)
4907pmap_pid_dump(int pid)
4908{
4909	pmap_t pmap;
4910	struct proc *p;
4911	int npte = 0;
4912	int index;
4913
4914	sx_slock(&allproc_lock);
4915	FOREACH_PROC_IN_SYSTEM(p) {
4916		if (p->p_pid != pid)
4917			continue;
4918
4919		if (p->p_vmspace) {
4920			int i,j;
4921			index = 0;
4922			pmap = vmspace_pmap(p->p_vmspace);
4923			for (i = 0; i < NPDEPTD; i++) {
4924				pd_entry_t *pde;
4925				pt_entry_t *pte;
4926				vm_offset_t base = i << PDRSHIFT;
4927
4928				pde = &pmap->pm_pdir[i];
4929				if (pde && pmap_pde_v(pde)) {
4930					for (j = 0; j < NPTEPG; j++) {
4931						vm_offset_t va = base + (j << PAGE_SHIFT);
4932						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4933							if (index) {
4934								index = 0;
4935								printf("\n");
4936							}
4937							sx_sunlock(&allproc_lock);
4938							return npte;
4939						}
4940						pte = pmap_pte(pmap, va);
4941						if (pte && pmap_pte_v(pte)) {
4942							pt_entry_t pa;
4943							vm_page_t m;
4944							pa = *pte;
4945							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4946							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4947								va, pa, m->hold_count, m->wire_count, m->flags);
4948							npte++;
4949							index++;
4950							if (index >= 2) {
4951								index = 0;
4952								printf("\n");
4953							} else {
4954								printf(" ");
4955							}
4956						}
4957					}
4958				}
4959			}
4960		}
4961	}
4962	sx_sunlock(&allproc_lock);
4963	return npte;
4964}
4965#endif
4966
4967#if defined(DEBUG)
4968
4969static void	pads(pmap_t pm);
4970void		pmap_pvdump(vm_offset_t pa);
4971
4972/* print address space of pmap*/
4973static void
4974pads(pmap_t pm)
4975{
4976	int i, j;
4977	vm_paddr_t va;
4978	pt_entry_t *ptep;
4979
4980	if (pm == kernel_pmap)
4981		return;
4982	for (i = 0; i < NPDEPTD; i++)
4983		if (pm->pm_pdir[i])
4984			for (j = 0; j < NPTEPG; j++) {
4985				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4986				if (pm == kernel_pmap && va < KERNBASE)
4987					continue;
4988				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4989					continue;
4990				ptep = pmap_pte(pm, va);
4991				if (pmap_pte_v(ptep))
4992					printf("%x:%x ", va, *ptep);
4993			};
4994
4995}
4996
4997void
4998pmap_pvdump(vm_paddr_t pa)
4999{
5000	pv_entry_t pv;
5001	pmap_t pmap;
5002	vm_page_t m;
5003
5004	printf("pa %x", pa);
5005	m = PHYS_TO_VM_PAGE(pa);
5006	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5007		pmap = PV_PMAP(pv);
5008		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5009		pads(pmap);
5010	}
5011	printf(" ");
5012}
5013#endif
5014