pmap.c revision 204041
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 204041 2010-02-18 14:28:38Z ed $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#ifdef __GNUC_GNU_INLINE__
166#define PMAP_INLINE	inline
167#else
168#define PMAP_INLINE	extern inline
169#endif
170#else
171#define PMAP_INLINE
172#endif
173
174#define PV_STATS
175#ifdef PV_STATS
176#define PV_STAT(x)	do { x ; } while (0)
177#else
178#define PV_STAT(x)	do { } while (0)
179#endif
180
181#define	pa_index(pa)	((pa) >> PDRSHIFT)
182#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183
184/*
185 * Get PDEs and PTEs for user/kernel address space
186 */
187#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189
190#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195
196#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197    atomic_clear_int((u_int *)(pte), PG_W))
198#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199
200struct pmap kernel_pmap_store;
201LIST_HEAD(pmaplist, pmap);
202static struct pmaplist allpmaps;
203static struct mtx allpmaps_lock;
204
205vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
206vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
207int pgeflag = 0;		/* PG_G or-in */
208int pseflag = 0;		/* PG_PS or-in */
209
210static int nkpt;
211vm_offset_t kernel_vm_end;
212extern u_int32_t KERNend;
213extern u_int32_t KPTphys;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217static uma_zone_t pdptzone;
218#endif
219
220static int pat_works = 0;		/* Is page attribute table sane? */
221
222SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pg_ps_enabled = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
226    "Are large page mappings enabled?");
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0, *KPTmap;
251static pt_entry_t *CMAP3;
252static pd_entry_t *KPTD;
253caddr_t CADDR1 = 0, ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
283static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
284static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
285static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
286static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
287static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
288		    vm_offset_t va);
289static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
290
291static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
292static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
293    vm_prot_t prot);
294static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
295    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
296static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
297static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
298static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
299static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
300static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
301static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
302static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
303static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
304    vm_prot_t prot);
305static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
306static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
307    vm_page_t *free);
308static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
309    vm_page_t *free);
310static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
311static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
312    vm_page_t *free);
313static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
314					vm_offset_t va);
315static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
316static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
317    vm_page_t m);
318
319static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
320
321static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
322static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
323static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
324static void pmap_pte_release(pt_entry_t *pte);
325static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
326#ifdef PAE
327static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
328#endif
329static void pmap_set_pg(void);
330
331CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
332CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
333
334/*
335 * If you get an error here, then you set KVA_PAGES wrong! See the
336 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
337 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
338 */
339CTASSERT(KERNBASE % (1 << 24) == 0);
340
341/*
342 *	Bootstrap the system enough to run with virtual memory.
343 *
344 *	On the i386 this is called after mapping has already been enabled
345 *	and just syncs the pmap module with what has already been done.
346 *	[We can't call it easily with mapping off since the kernel is not
347 *	mapped with PA == VA, hence we would have to relocate every address
348 *	from the linked base (virtual) address "KERNBASE" to the actual
349 *	(physical) address starting relative to 0]
350 */
351void
352pmap_bootstrap(vm_paddr_t firstaddr)
353{
354	vm_offset_t va;
355	pt_entry_t *pte, *unused;
356	struct sysmaps *sysmaps;
357	int i;
358
359	/*
360	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
361	 * large. It should instead be correctly calculated in locore.s and
362	 * not based on 'first' (which is a physical address, not a virtual
363	 * address, for the start of unused physical memory). The kernel
364	 * page tables are NOT double mapped and thus should not be included
365	 * in this calculation.
366	 */
367	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
368
369	virtual_end = VM_MAX_KERNEL_ADDRESS;
370
371	/*
372	 * Initialize the kernel pmap (which is statically allocated).
373	 */
374	PMAP_LOCK_INIT(kernel_pmap);
375	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
376#ifdef PAE
377	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
378#endif
379	kernel_pmap->pm_root = NULL;
380	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
381	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
382	LIST_INIT(&allpmaps);
383	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
384	mtx_lock_spin(&allpmaps_lock);
385	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
386	mtx_unlock_spin(&allpmaps_lock);
387	nkpt = NKPT;
388
389	/*
390	 * Reserve some special page table entries/VA space for temporary
391	 * mapping of pages.
392	 */
393#define	SYSMAP(c, p, v, n)	\
394	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
395
396	va = virtual_avail;
397	pte = vtopte(va);
398
399	/*
400	 * CMAP1/CMAP2 are used for zeroing and copying pages.
401	 * CMAP3 is used for the idle process page zeroing.
402	 */
403	for (i = 0; i < MAXCPU; i++) {
404		sysmaps = &sysmaps_pcpu[i];
405		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
406		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
407		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
408	}
409	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
410	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
411
412	/*
413	 * Crashdump maps.
414	 */
415	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
416
417	/*
418	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
419	 */
420	SYSMAP(caddr_t, unused, ptvmmap, 1)
421
422	/*
423	 * msgbufp is used to map the system message buffer.
424	 */
425	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
426
427	/*
428	 * KPTmap is used by pmap_kextract().
429	 */
430	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
431
432	for (i = 0; i < NKPT; i++)
433		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
434
435	/*
436	 * Adjust the start of the KPTD and KPTmap so that the implementation
437	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
438	 */
439	KPTD -= KPTDI;
440	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
441
442	/*
443	 * ptemap is used for pmap_pte_quick
444	 */
445	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
446	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
447
448	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
449
450	virtual_avail = va;
451
452	/*
453	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
454	 * physical memory region that is used by the ACPI wakeup code.  This
455	 * mapping must not have PG_G set.
456	 */
457#ifdef XBOX
458	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
459	 * an early stadium, we cannot yet neatly map video memory ... :-(
460	 * Better fixes are very welcome! */
461	if (!arch_i386_is_xbox)
462#endif
463	for (i = 1; i < NKPT; i++)
464		PTD[i] = 0;
465
466	/* Initialize the PAT MSR if present. */
467	pmap_init_pat();
468
469	/* Turn on PG_G on kernel page(s) */
470	pmap_set_pg();
471}
472
473/*
474 * Setup the PAT MSR.
475 */
476void
477pmap_init_pat(void)
478{
479	uint64_t pat_msr;
480	char *sysenv;
481	static int pat_tested = 0;
482
483	/* Bail if this CPU doesn't implement PAT. */
484	if (!(cpu_feature & CPUID_PAT))
485		return;
486
487	/*
488	 * Due to some Intel errata, we can only safely use the lower 4
489	 * PAT entries.
490	 *
491	 *   Intel Pentium III Processor Specification Update
492	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
493	 * or Mode C Paging)
494	 *
495	 *   Intel Pentium IV  Processor Specification Update
496	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
497	 *
498	 * Some Apple Macs based on nVidia chipsets cannot enter ACPI mode
499	 * via SMI# when we use upper 4 PAT entries for unknown reason.
500	 */
501	if (!pat_tested) {
502		if (cpu_vendor_id != CPU_VENDOR_INTEL ||
503		    (CPUID_TO_FAMILY(cpu_id) == 6 &&
504		    CPUID_TO_MODEL(cpu_id) >= 0xe)) {
505			pat_works = 1;
506			sysenv = getenv("smbios.system.product");
507			if (sysenv != NULL) {
508				if (strncmp(sysenv, "MacBook5,1", 10) == 0 ||
509				    strncmp(sysenv, "MacBookPro5,5", 13) == 0 ||
510				    strncmp(sysenv, "Macmini3,1", 10) == 0)
511					pat_works = 0;
512				freeenv(sysenv);
513			}
514		}
515		pat_tested = 1;
516	}
517
518	/* Initialize default PAT entries. */
519	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
520	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
521	    PAT_VALUE(2, PAT_UNCACHED) |
522	    PAT_VALUE(3, PAT_UNCACHEABLE) |
523	    PAT_VALUE(4, PAT_WRITE_BACK) |
524	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
525	    PAT_VALUE(6, PAT_UNCACHED) |
526	    PAT_VALUE(7, PAT_UNCACHEABLE);
527
528	if (pat_works) {
529		/*
530		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
531		 * Program 4 and 5 as WP and WC.
532		 * Leave 6 and 7 as UC- and UC.
533		 */
534		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
535		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
536		    PAT_VALUE(5, PAT_WRITE_COMBINING);
537	} else {
538		/*
539		 * Just replace PAT Index 2 with WC instead of UC-.
540		 */
541		pat_msr &= ~PAT_MASK(2);
542		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
543	}
544	wrmsr(MSR_PAT, pat_msr);
545}
546
547/*
548 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
549 */
550static void
551pmap_set_pg(void)
552{
553	pt_entry_t *pte;
554	vm_offset_t va, endva;
555
556	if (pgeflag == 0)
557		return;
558
559	endva = KERNBASE + KERNend;
560
561	if (pseflag) {
562		va = KERNBASE + KERNLOAD;
563		while (va  < endva) {
564			pdir_pde(PTD, va) |= pgeflag;
565			invltlb();	/* Play it safe, invltlb() every time */
566			va += NBPDR;
567		}
568	} else {
569		va = (vm_offset_t)btext;
570		while (va < endva) {
571			pte = vtopte(va);
572			if (*pte)
573				*pte |= pgeflag;
574			invltlb();	/* Play it safe, invltlb() every time */
575			va += PAGE_SIZE;
576		}
577	}
578}
579
580/*
581 * Initialize a vm_page's machine-dependent fields.
582 */
583void
584pmap_page_init(vm_page_t m)
585{
586
587	TAILQ_INIT(&m->md.pv_list);
588	m->md.pat_mode = PAT_WRITE_BACK;
589}
590
591#ifdef PAE
592static void *
593pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
594{
595
596	/* Inform UMA that this allocator uses kernel_map/object. */
597	*flags = UMA_SLAB_KERNEL;
598	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
599	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
600}
601#endif
602
603/*
604 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
605 * Requirements:
606 *  - Must deal with pages in order to ensure that none of the PG_* bits
607 *    are ever set, PG_V in particular.
608 *  - Assumes we can write to ptes without pte_store() atomic ops, even
609 *    on PAE systems.  This should be ok.
610 *  - Assumes nothing will ever test these addresses for 0 to indicate
611 *    no mapping instead of correctly checking PG_V.
612 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
613 * Because PG_V is never set, there can be no mappings to invalidate.
614 */
615static vm_offset_t
616pmap_ptelist_alloc(vm_offset_t *head)
617{
618	pt_entry_t *pte;
619	vm_offset_t va;
620
621	va = *head;
622	if (va == 0)
623		return (va);	/* Out of memory */
624	pte = vtopte(va);
625	*head = *pte;
626	if (*head & PG_V)
627		panic("pmap_ptelist_alloc: va with PG_V set!");
628	*pte = 0;
629	return (va);
630}
631
632static void
633pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
634{
635	pt_entry_t *pte;
636
637	if (va & PG_V)
638		panic("pmap_ptelist_free: freeing va with PG_V set!");
639	pte = vtopte(va);
640	*pte = *head;		/* virtual! PG_V is 0 though */
641	*head = va;
642}
643
644static void
645pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
646{
647	int i;
648	vm_offset_t va;
649
650	*head = 0;
651	for (i = npages - 1; i >= 0; i--) {
652		va = (vm_offset_t)base + i * PAGE_SIZE;
653		pmap_ptelist_free(head, va);
654	}
655}
656
657
658/*
659 *	Initialize the pmap module.
660 *	Called by vm_init, to initialize any structures that the pmap
661 *	system needs to map virtual memory.
662 */
663void
664pmap_init(void)
665{
666	vm_page_t mpte;
667	vm_size_t s;
668	int i, pv_npg;
669
670	/*
671	 * Initialize the vm page array entries for the kernel pmap's
672	 * page table pages.
673	 */
674	for (i = 0; i < NKPT; i++) {
675		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
676		KASSERT(mpte >= vm_page_array &&
677		    mpte < &vm_page_array[vm_page_array_size],
678		    ("pmap_init: page table page is out of range"));
679		mpte->pindex = i + KPTDI;
680		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
681	}
682
683	/*
684	 * Initialize the address space (zone) for the pv entries.  Set a
685	 * high water mark so that the system can recover from excessive
686	 * numbers of pv entries.
687	 */
688	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
689	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
690	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
691	pv_entry_max = roundup(pv_entry_max, _NPCPV);
692	pv_entry_high_water = 9 * (pv_entry_max / 10);
693
694	/*
695	 * Are large page mappings enabled?
696	 */
697	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
698	if (pg_ps_enabled) {
699		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
700		    ("pmap_init: can't assign to pagesizes[1]"));
701		pagesizes[1] = NBPDR;
702	}
703
704	/*
705	 * Calculate the size of the pv head table for superpages.
706	 */
707	for (i = 0; phys_avail[i + 1]; i += 2);
708	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
709
710	/*
711	 * Allocate memory for the pv head table for superpages.
712	 */
713	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
714	s = round_page(s);
715	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
716	for (i = 0; i < pv_npg; i++)
717		TAILQ_INIT(&pv_table[i].pv_list);
718
719	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
720	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
721	    PAGE_SIZE * pv_maxchunks);
722	if (pv_chunkbase == NULL)
723		panic("pmap_init: not enough kvm for pv chunks");
724	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
725#ifdef PAE
726	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
727	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
728	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
729	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
730#endif
731}
732
733
734SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
735	"Max number of PV entries");
736SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
737	"Page share factor per proc");
738
739SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
740    "2/4MB page mapping counters");
741
742static u_long pmap_pde_demotions;
743SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
744    &pmap_pde_demotions, 0, "2/4MB page demotions");
745
746static u_long pmap_pde_mappings;
747SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
748    &pmap_pde_mappings, 0, "2/4MB page mappings");
749
750static u_long pmap_pde_p_failures;
751SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
752    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
753
754static u_long pmap_pde_promotions;
755SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
756    &pmap_pde_promotions, 0, "2/4MB page promotions");
757
758/***************************************************
759 * Low level helper routines.....
760 ***************************************************/
761
762/*
763 * Determine the appropriate bits to set in a PTE or PDE for a specified
764 * caching mode.
765 */
766int
767pmap_cache_bits(int mode, boolean_t is_pde)
768{
769	int pat_flag, pat_index, cache_bits;
770
771	/* The PAT bit is different for PTE's and PDE's. */
772	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
773
774	/* If we don't support PAT, map extended modes to older ones. */
775	if (!(cpu_feature & CPUID_PAT)) {
776		switch (mode) {
777		case PAT_UNCACHEABLE:
778		case PAT_WRITE_THROUGH:
779		case PAT_WRITE_BACK:
780			break;
781		case PAT_UNCACHED:
782		case PAT_WRITE_COMBINING:
783		case PAT_WRITE_PROTECTED:
784			mode = PAT_UNCACHEABLE;
785			break;
786		}
787	}
788
789	/* Map the caching mode to a PAT index. */
790	if (pat_works) {
791		switch (mode) {
792		case PAT_UNCACHEABLE:
793			pat_index = 3;
794			break;
795		case PAT_WRITE_THROUGH:
796			pat_index = 1;
797			break;
798		case PAT_WRITE_BACK:
799			pat_index = 0;
800			break;
801		case PAT_UNCACHED:
802			pat_index = 2;
803			break;
804		case PAT_WRITE_COMBINING:
805			pat_index = 5;
806			break;
807		case PAT_WRITE_PROTECTED:
808			pat_index = 4;
809			break;
810		default:
811			panic("Unknown caching mode %d\n", mode);
812		}
813	} else {
814		switch (mode) {
815		case PAT_UNCACHED:
816		case PAT_UNCACHEABLE:
817		case PAT_WRITE_PROTECTED:
818			pat_index = 3;
819			break;
820		case PAT_WRITE_THROUGH:
821			pat_index = 1;
822			break;
823		case PAT_WRITE_BACK:
824			pat_index = 0;
825			break;
826		case PAT_WRITE_COMBINING:
827			pat_index = 2;
828			break;
829		default:
830			panic("Unknown caching mode %d\n", mode);
831		}
832	}
833
834	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
835	cache_bits = 0;
836	if (pat_index & 0x4)
837		cache_bits |= pat_flag;
838	if (pat_index & 0x2)
839		cache_bits |= PG_NC_PCD;
840	if (pat_index & 0x1)
841		cache_bits |= PG_NC_PWT;
842	return (cache_bits);
843}
844#ifdef SMP
845/*
846 * For SMP, these functions have to use the IPI mechanism for coherence.
847 *
848 * N.B.: Before calling any of the following TLB invalidation functions,
849 * the calling processor must ensure that all stores updating a non-
850 * kernel page table are globally performed.  Otherwise, another
851 * processor could cache an old, pre-update entry without being
852 * invalidated.  This can happen one of two ways: (1) The pmap becomes
853 * active on another processor after its pm_active field is checked by
854 * one of the following functions but before a store updating the page
855 * table is globally performed. (2) The pmap becomes active on another
856 * processor before its pm_active field is checked but due to
857 * speculative loads one of the following functions stills reads the
858 * pmap as inactive on the other processor.
859 *
860 * The kernel page table is exempt because its pm_active field is
861 * immutable.  The kernel page table is always active on every
862 * processor.
863 */
864void
865pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
866{
867	u_int cpumask;
868	u_int other_cpus;
869
870	sched_pin();
871	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
872		invlpg(va);
873		smp_invlpg(va);
874	} else {
875		cpumask = PCPU_GET(cpumask);
876		other_cpus = PCPU_GET(other_cpus);
877		if (pmap->pm_active & cpumask)
878			invlpg(va);
879		if (pmap->pm_active & other_cpus)
880			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
881	}
882	sched_unpin();
883}
884
885void
886pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
887{
888	u_int cpumask;
889	u_int other_cpus;
890	vm_offset_t addr;
891
892	sched_pin();
893	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
894		for (addr = sva; addr < eva; addr += PAGE_SIZE)
895			invlpg(addr);
896		smp_invlpg_range(sva, eva);
897	} else {
898		cpumask = PCPU_GET(cpumask);
899		other_cpus = PCPU_GET(other_cpus);
900		if (pmap->pm_active & cpumask)
901			for (addr = sva; addr < eva; addr += PAGE_SIZE)
902				invlpg(addr);
903		if (pmap->pm_active & other_cpus)
904			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
905			    sva, eva);
906	}
907	sched_unpin();
908}
909
910void
911pmap_invalidate_all(pmap_t pmap)
912{
913	u_int cpumask;
914	u_int other_cpus;
915
916	sched_pin();
917	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
918		invltlb();
919		smp_invltlb();
920	} else {
921		cpumask = PCPU_GET(cpumask);
922		other_cpus = PCPU_GET(other_cpus);
923		if (pmap->pm_active & cpumask)
924			invltlb();
925		if (pmap->pm_active & other_cpus)
926			smp_masked_invltlb(pmap->pm_active & other_cpus);
927	}
928	sched_unpin();
929}
930
931void
932pmap_invalidate_cache(void)
933{
934
935	sched_pin();
936	wbinvd();
937	smp_cache_flush();
938	sched_unpin();
939}
940#else /* !SMP */
941/*
942 * Normal, non-SMP, 486+ invalidation functions.
943 * We inline these within pmap.c for speed.
944 */
945PMAP_INLINE void
946pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
947{
948
949	if (pmap == kernel_pmap || pmap->pm_active)
950		invlpg(va);
951}
952
953PMAP_INLINE void
954pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
955{
956	vm_offset_t addr;
957
958	if (pmap == kernel_pmap || pmap->pm_active)
959		for (addr = sva; addr < eva; addr += PAGE_SIZE)
960			invlpg(addr);
961}
962
963PMAP_INLINE void
964pmap_invalidate_all(pmap_t pmap)
965{
966
967	if (pmap == kernel_pmap || pmap->pm_active)
968		invltlb();
969}
970
971PMAP_INLINE void
972pmap_invalidate_cache(void)
973{
974
975	wbinvd();
976}
977#endif /* !SMP */
978
979void
980pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
981{
982
983	KASSERT((sva & PAGE_MASK) == 0,
984	    ("pmap_invalidate_cache_range: sva not page-aligned"));
985	KASSERT((eva & PAGE_MASK) == 0,
986	    ("pmap_invalidate_cache_range: eva not page-aligned"));
987
988	if (cpu_feature & CPUID_SS)
989		; /* If "Self Snoop" is supported, do nothing. */
990	else if (cpu_feature & CPUID_CLFSH) {
991
992		/*
993		 * Otherwise, do per-cache line flush.  Use the mfence
994		 * instruction to insure that previous stores are
995		 * included in the write-back.  The processor
996		 * propagates flush to other processors in the cache
997		 * coherence domain.
998		 */
999		mfence();
1000		for (; sva < eva; sva += cpu_clflush_line_size)
1001			clflush(sva);
1002		mfence();
1003	} else {
1004
1005		/*
1006		 * No targeted cache flush methods are supported by CPU,
1007		 * globally invalidate cache as a last resort.
1008		 */
1009		pmap_invalidate_cache();
1010	}
1011}
1012
1013/*
1014 * Are we current address space or kernel?  N.B. We return FALSE when
1015 * a pmap's page table is in use because a kernel thread is borrowing
1016 * it.  The borrowed page table can change spontaneously, making any
1017 * dependence on its continued use subject to a race condition.
1018 */
1019static __inline int
1020pmap_is_current(pmap_t pmap)
1021{
1022
1023	return (pmap == kernel_pmap ||
1024		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1025	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1026}
1027
1028/*
1029 * If the given pmap is not the current or kernel pmap, the returned pte must
1030 * be released by passing it to pmap_pte_release().
1031 */
1032pt_entry_t *
1033pmap_pte(pmap_t pmap, vm_offset_t va)
1034{
1035	pd_entry_t newpf;
1036	pd_entry_t *pde;
1037
1038	pde = pmap_pde(pmap, va);
1039	if (*pde & PG_PS)
1040		return (pde);
1041	if (*pde != 0) {
1042		/* are we current address space or kernel? */
1043		if (pmap_is_current(pmap))
1044			return (vtopte(va));
1045		mtx_lock(&PMAP2mutex);
1046		newpf = *pde & PG_FRAME;
1047		if ((*PMAP2 & PG_FRAME) != newpf) {
1048			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1049			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1050		}
1051		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1052	}
1053	return (0);
1054}
1055
1056/*
1057 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1058 * being NULL.
1059 */
1060static __inline void
1061pmap_pte_release(pt_entry_t *pte)
1062{
1063
1064	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1065		mtx_unlock(&PMAP2mutex);
1066}
1067
1068static __inline void
1069invlcaddr(void *caddr)
1070{
1071
1072	invlpg((u_int)caddr);
1073}
1074
1075/*
1076 * Super fast pmap_pte routine best used when scanning
1077 * the pv lists.  This eliminates many coarse-grained
1078 * invltlb calls.  Note that many of the pv list
1079 * scans are across different pmaps.  It is very wasteful
1080 * to do an entire invltlb for checking a single mapping.
1081 *
1082 * If the given pmap is not the current pmap, vm_page_queue_mtx
1083 * must be held and curthread pinned to a CPU.
1084 */
1085static pt_entry_t *
1086pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1087{
1088	pd_entry_t newpf;
1089	pd_entry_t *pde;
1090
1091	pde = pmap_pde(pmap, va);
1092	if (*pde & PG_PS)
1093		return (pde);
1094	if (*pde != 0) {
1095		/* are we current address space or kernel? */
1096		if (pmap_is_current(pmap))
1097			return (vtopte(va));
1098		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1099		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1100		newpf = *pde & PG_FRAME;
1101		if ((*PMAP1 & PG_FRAME) != newpf) {
1102			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1103#ifdef SMP
1104			PMAP1cpu = PCPU_GET(cpuid);
1105#endif
1106			invlcaddr(PADDR1);
1107			PMAP1changed++;
1108		} else
1109#ifdef SMP
1110		if (PMAP1cpu != PCPU_GET(cpuid)) {
1111			PMAP1cpu = PCPU_GET(cpuid);
1112			invlcaddr(PADDR1);
1113			PMAP1changedcpu++;
1114		} else
1115#endif
1116			PMAP1unchanged++;
1117		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1118	}
1119	return (0);
1120}
1121
1122/*
1123 *	Routine:	pmap_extract
1124 *	Function:
1125 *		Extract the physical page address associated
1126 *		with the given map/virtual_address pair.
1127 */
1128vm_paddr_t
1129pmap_extract(pmap_t pmap, vm_offset_t va)
1130{
1131	vm_paddr_t rtval;
1132	pt_entry_t *pte;
1133	pd_entry_t pde;
1134
1135	rtval = 0;
1136	PMAP_LOCK(pmap);
1137	pde = pmap->pm_pdir[va >> PDRSHIFT];
1138	if (pde != 0) {
1139		if ((pde & PG_PS) != 0)
1140			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1141		else {
1142			pte = pmap_pte(pmap, va);
1143			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1144			pmap_pte_release(pte);
1145		}
1146	}
1147	PMAP_UNLOCK(pmap);
1148	return (rtval);
1149}
1150
1151/*
1152 *	Routine:	pmap_extract_and_hold
1153 *	Function:
1154 *		Atomically extract and hold the physical page
1155 *		with the given pmap and virtual address pair
1156 *		if that mapping permits the given protection.
1157 */
1158vm_page_t
1159pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1160{
1161	pd_entry_t pde;
1162	pt_entry_t pte;
1163	vm_page_t m;
1164
1165	m = NULL;
1166	vm_page_lock_queues();
1167	PMAP_LOCK(pmap);
1168	pde = *pmap_pde(pmap, va);
1169	if (pde != 0) {
1170		if (pde & PG_PS) {
1171			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1172				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1173				    (va & PDRMASK));
1174				vm_page_hold(m);
1175			}
1176		} else {
1177			sched_pin();
1178			pte = *pmap_pte_quick(pmap, va);
1179			if (pte != 0 &&
1180			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1181				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1182				vm_page_hold(m);
1183			}
1184			sched_unpin();
1185		}
1186	}
1187	vm_page_unlock_queues();
1188	PMAP_UNLOCK(pmap);
1189	return (m);
1190}
1191
1192/***************************************************
1193 * Low level mapping routines.....
1194 ***************************************************/
1195
1196/*
1197 * Add a wired page to the kva.
1198 * Note: not SMP coherent.
1199 */
1200PMAP_INLINE void
1201pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1202{
1203	pt_entry_t *pte;
1204
1205	pte = vtopte(va);
1206	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1207}
1208
1209static __inline void
1210pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1211{
1212	pt_entry_t *pte;
1213
1214	pte = vtopte(va);
1215	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1216}
1217
1218/*
1219 * Remove a page from the kernel pagetables.
1220 * Note: not SMP coherent.
1221 */
1222PMAP_INLINE void
1223pmap_kremove(vm_offset_t va)
1224{
1225	pt_entry_t *pte;
1226
1227	pte = vtopte(va);
1228	pte_clear(pte);
1229}
1230
1231/*
1232 *	Used to map a range of physical addresses into kernel
1233 *	virtual address space.
1234 *
1235 *	The value passed in '*virt' is a suggested virtual address for
1236 *	the mapping. Architectures which can support a direct-mapped
1237 *	physical to virtual region can return the appropriate address
1238 *	within that region, leaving '*virt' unchanged. Other
1239 *	architectures should map the pages starting at '*virt' and
1240 *	update '*virt' with the first usable address after the mapped
1241 *	region.
1242 */
1243vm_offset_t
1244pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1245{
1246	vm_offset_t va, sva;
1247
1248	va = sva = *virt;
1249	while (start < end) {
1250		pmap_kenter(va, start);
1251		va += PAGE_SIZE;
1252		start += PAGE_SIZE;
1253	}
1254	pmap_invalidate_range(kernel_pmap, sva, va);
1255	*virt = va;
1256	return (sva);
1257}
1258
1259
1260/*
1261 * Add a list of wired pages to the kva
1262 * this routine is only used for temporary
1263 * kernel mappings that do not need to have
1264 * page modification or references recorded.
1265 * Note that old mappings are simply written
1266 * over.  The page *must* be wired.
1267 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1268 */
1269void
1270pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1271{
1272	pt_entry_t *endpte, oldpte, *pte;
1273
1274	oldpte = 0;
1275	pte = vtopte(sva);
1276	endpte = pte + count;
1277	while (pte < endpte) {
1278		oldpte |= *pte;
1279		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1280		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1281		pte++;
1282		ma++;
1283	}
1284	if ((oldpte & PG_V) != 0)
1285		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1286		    PAGE_SIZE);
1287}
1288
1289/*
1290 * This routine tears out page mappings from the
1291 * kernel -- it is meant only for temporary mappings.
1292 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1293 */
1294void
1295pmap_qremove(vm_offset_t sva, int count)
1296{
1297	vm_offset_t va;
1298
1299	va = sva;
1300	while (count-- > 0) {
1301		pmap_kremove(va);
1302		va += PAGE_SIZE;
1303	}
1304	pmap_invalidate_range(kernel_pmap, sva, va);
1305}
1306
1307/***************************************************
1308 * Page table page management routines.....
1309 ***************************************************/
1310static __inline void
1311pmap_free_zero_pages(vm_page_t free)
1312{
1313	vm_page_t m;
1314
1315	while (free != NULL) {
1316		m = free;
1317		free = m->right;
1318		/* Preserve the page's PG_ZERO setting. */
1319		vm_page_free_toq(m);
1320	}
1321}
1322
1323/*
1324 * Schedule the specified unused page table page to be freed.  Specifically,
1325 * add the page to the specified list of pages that will be released to the
1326 * physical memory manager after the TLB has been updated.
1327 */
1328static __inline void
1329pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1330{
1331
1332	if (set_PG_ZERO)
1333		m->flags |= PG_ZERO;
1334	else
1335		m->flags &= ~PG_ZERO;
1336	m->right = *free;
1337	*free = m;
1338}
1339
1340/*
1341 * Inserts the specified page table page into the specified pmap's collection
1342 * of idle page table pages.  Each of a pmap's page table pages is responsible
1343 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1344 * ordered by this virtual address range.
1345 */
1346static void
1347pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1348{
1349	vm_page_t root;
1350
1351	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1352	root = pmap->pm_root;
1353	if (root == NULL) {
1354		mpte->left = NULL;
1355		mpte->right = NULL;
1356	} else {
1357		root = vm_page_splay(mpte->pindex, root);
1358		if (mpte->pindex < root->pindex) {
1359			mpte->left = root->left;
1360			mpte->right = root;
1361			root->left = NULL;
1362		} else if (mpte->pindex == root->pindex)
1363			panic("pmap_insert_pt_page: pindex already inserted");
1364		else {
1365			mpte->right = root->right;
1366			mpte->left = root;
1367			root->right = NULL;
1368		}
1369	}
1370	pmap->pm_root = mpte;
1371}
1372
1373/*
1374 * Looks for a page table page mapping the specified virtual address in the
1375 * specified pmap's collection of idle page table pages.  Returns NULL if there
1376 * is no page table page corresponding to the specified virtual address.
1377 */
1378static vm_page_t
1379pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1380{
1381	vm_page_t mpte;
1382	vm_pindex_t pindex = va >> PDRSHIFT;
1383
1384	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1385	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1386		mpte = vm_page_splay(pindex, mpte);
1387		if ((pmap->pm_root = mpte)->pindex != pindex)
1388			mpte = NULL;
1389	}
1390	return (mpte);
1391}
1392
1393/*
1394 * Removes the specified page table page from the specified pmap's collection
1395 * of idle page table pages.  The specified page table page must be a member of
1396 * the pmap's collection.
1397 */
1398static void
1399pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1400{
1401	vm_page_t root;
1402
1403	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1404	if (mpte != pmap->pm_root)
1405		vm_page_splay(mpte->pindex, pmap->pm_root);
1406	if (mpte->left == NULL)
1407		root = mpte->right;
1408	else {
1409		root = vm_page_splay(mpte->pindex, mpte->left);
1410		root->right = mpte->right;
1411	}
1412	pmap->pm_root = root;
1413}
1414
1415/*
1416 * This routine unholds page table pages, and if the hold count
1417 * drops to zero, then it decrements the wire count.
1418 */
1419static __inline int
1420pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1421{
1422
1423	--m->wire_count;
1424	if (m->wire_count == 0)
1425		return _pmap_unwire_pte_hold(pmap, m, free);
1426	else
1427		return 0;
1428}
1429
1430static int
1431_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1432{
1433	vm_offset_t pteva;
1434
1435	/*
1436	 * unmap the page table page
1437	 */
1438	pmap->pm_pdir[m->pindex] = 0;
1439	--pmap->pm_stats.resident_count;
1440
1441	/*
1442	 * This is a release store so that the ordinary store unmapping
1443	 * the page table page is globally performed before TLB shoot-
1444	 * down is begun.
1445	 */
1446	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1447
1448	/*
1449	 * Do an invltlb to make the invalidated mapping
1450	 * take effect immediately.
1451	 */
1452	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1453	pmap_invalidate_page(pmap, pteva);
1454
1455	/*
1456	 * Put page on a list so that it is released after
1457	 * *ALL* TLB shootdown is done
1458	 */
1459	pmap_add_delayed_free_list(m, free, TRUE);
1460
1461	return 1;
1462}
1463
1464/*
1465 * After removing a page table entry, this routine is used to
1466 * conditionally free the page, and manage the hold/wire counts.
1467 */
1468static int
1469pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1470{
1471	pd_entry_t ptepde;
1472	vm_page_t mpte;
1473
1474	if (va >= VM_MAXUSER_ADDRESS)
1475		return 0;
1476	ptepde = *pmap_pde(pmap, va);
1477	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1478	return pmap_unwire_pte_hold(pmap, mpte, free);
1479}
1480
1481void
1482pmap_pinit0(pmap_t pmap)
1483{
1484
1485	PMAP_LOCK_INIT(pmap);
1486	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1487#ifdef PAE
1488	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1489#endif
1490	pmap->pm_root = NULL;
1491	pmap->pm_active = 0;
1492	PCPU_SET(curpmap, pmap);
1493	TAILQ_INIT(&pmap->pm_pvchunk);
1494	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1495	mtx_lock_spin(&allpmaps_lock);
1496	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1497	mtx_unlock_spin(&allpmaps_lock);
1498}
1499
1500/*
1501 * Initialize a preallocated and zeroed pmap structure,
1502 * such as one in a vmspace structure.
1503 */
1504int
1505pmap_pinit(pmap_t pmap)
1506{
1507	vm_page_t m, ptdpg[NPGPTD];
1508	vm_paddr_t pa;
1509	static int color;
1510	int i;
1511
1512	PMAP_LOCK_INIT(pmap);
1513
1514	/*
1515	 * No need to allocate page table space yet but we do need a valid
1516	 * page directory table.
1517	 */
1518	if (pmap->pm_pdir == NULL) {
1519		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1520		    NBPTD);
1521
1522		if (pmap->pm_pdir == NULL) {
1523			PMAP_LOCK_DESTROY(pmap);
1524			return (0);
1525		}
1526#ifdef PAE
1527		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1528		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1529		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1530		    ("pmap_pinit: pdpt misaligned"));
1531		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1532		    ("pmap_pinit: pdpt above 4g"));
1533#endif
1534		pmap->pm_root = NULL;
1535	}
1536	KASSERT(pmap->pm_root == NULL,
1537	    ("pmap_pinit: pmap has reserved page table page(s)"));
1538
1539	/*
1540	 * allocate the page directory page(s)
1541	 */
1542	for (i = 0; i < NPGPTD;) {
1543		m = vm_page_alloc(NULL, color++,
1544		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1545		    VM_ALLOC_ZERO);
1546		if (m == NULL)
1547			VM_WAIT;
1548		else {
1549			ptdpg[i++] = m;
1550		}
1551	}
1552
1553	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1554
1555	for (i = 0; i < NPGPTD; i++) {
1556		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1557			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1558	}
1559
1560	mtx_lock_spin(&allpmaps_lock);
1561	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1562	mtx_unlock_spin(&allpmaps_lock);
1563	/* Wire in kernel global address entries. */
1564	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1565
1566	/* install self-referential address mapping entry(s) */
1567	for (i = 0; i < NPGPTD; i++) {
1568		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1569		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1570#ifdef PAE
1571		pmap->pm_pdpt[i] = pa | PG_V;
1572#endif
1573	}
1574
1575	pmap->pm_active = 0;
1576	TAILQ_INIT(&pmap->pm_pvchunk);
1577	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1578
1579	return (1);
1580}
1581
1582/*
1583 * this routine is called if the page table page is not
1584 * mapped correctly.
1585 */
1586static vm_page_t
1587_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1588{
1589	vm_paddr_t ptepa;
1590	vm_page_t m;
1591
1592	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1593	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1594	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1595
1596	/*
1597	 * Allocate a page table page.
1598	 */
1599	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1600	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1601		if (flags & M_WAITOK) {
1602			PMAP_UNLOCK(pmap);
1603			vm_page_unlock_queues();
1604			VM_WAIT;
1605			vm_page_lock_queues();
1606			PMAP_LOCK(pmap);
1607		}
1608
1609		/*
1610		 * Indicate the need to retry.  While waiting, the page table
1611		 * page may have been allocated.
1612		 */
1613		return (NULL);
1614	}
1615	if ((m->flags & PG_ZERO) == 0)
1616		pmap_zero_page(m);
1617
1618	/*
1619	 * Map the pagetable page into the process address space, if
1620	 * it isn't already there.
1621	 */
1622
1623	pmap->pm_stats.resident_count++;
1624
1625	ptepa = VM_PAGE_TO_PHYS(m);
1626	pmap->pm_pdir[ptepindex] =
1627		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1628
1629	return m;
1630}
1631
1632static vm_page_t
1633pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1634{
1635	unsigned ptepindex;
1636	pd_entry_t ptepa;
1637	vm_page_t m;
1638
1639	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1640	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1641	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1642
1643	/*
1644	 * Calculate pagetable page index
1645	 */
1646	ptepindex = va >> PDRSHIFT;
1647retry:
1648	/*
1649	 * Get the page directory entry
1650	 */
1651	ptepa = pmap->pm_pdir[ptepindex];
1652
1653	/*
1654	 * This supports switching from a 4MB page to a
1655	 * normal 4K page.
1656	 */
1657	if (ptepa & PG_PS) {
1658		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1659		ptepa = pmap->pm_pdir[ptepindex];
1660	}
1661
1662	/*
1663	 * If the page table page is mapped, we just increment the
1664	 * hold count, and activate it.
1665	 */
1666	if (ptepa) {
1667		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1668		m->wire_count++;
1669	} else {
1670		/*
1671		 * Here if the pte page isn't mapped, or if it has
1672		 * been deallocated.
1673		 */
1674		m = _pmap_allocpte(pmap, ptepindex, flags);
1675		if (m == NULL && (flags & M_WAITOK))
1676			goto retry;
1677	}
1678	return (m);
1679}
1680
1681
1682/***************************************************
1683* Pmap allocation/deallocation routines.
1684 ***************************************************/
1685
1686#ifdef SMP
1687/*
1688 * Deal with a SMP shootdown of other users of the pmap that we are
1689 * trying to dispose of.  This can be a bit hairy.
1690 */
1691static cpumask_t *lazymask;
1692static u_int lazyptd;
1693static volatile u_int lazywait;
1694
1695void pmap_lazyfix_action(void);
1696
1697void
1698pmap_lazyfix_action(void)
1699{
1700	cpumask_t mymask = PCPU_GET(cpumask);
1701
1702#ifdef COUNT_IPIS
1703	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1704#endif
1705	if (rcr3() == lazyptd)
1706		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1707	atomic_clear_int(lazymask, mymask);
1708	atomic_store_rel_int(&lazywait, 1);
1709}
1710
1711static void
1712pmap_lazyfix_self(cpumask_t mymask)
1713{
1714
1715	if (rcr3() == lazyptd)
1716		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1717	atomic_clear_int(lazymask, mymask);
1718}
1719
1720
1721static void
1722pmap_lazyfix(pmap_t pmap)
1723{
1724	cpumask_t mymask, mask;
1725	u_int spins;
1726
1727	while ((mask = pmap->pm_active) != 0) {
1728		spins = 50000000;
1729		mask = mask & -mask;	/* Find least significant set bit */
1730		mtx_lock_spin(&smp_ipi_mtx);
1731#ifdef PAE
1732		lazyptd = vtophys(pmap->pm_pdpt);
1733#else
1734		lazyptd = vtophys(pmap->pm_pdir);
1735#endif
1736		mymask = PCPU_GET(cpumask);
1737		if (mask == mymask) {
1738			lazymask = &pmap->pm_active;
1739			pmap_lazyfix_self(mymask);
1740		} else {
1741			atomic_store_rel_int((u_int *)&lazymask,
1742			    (u_int)&pmap->pm_active);
1743			atomic_store_rel_int(&lazywait, 0);
1744			ipi_selected(mask, IPI_LAZYPMAP);
1745			while (lazywait == 0) {
1746				ia32_pause();
1747				if (--spins == 0)
1748					break;
1749			}
1750		}
1751		mtx_unlock_spin(&smp_ipi_mtx);
1752		if (spins == 0)
1753			printf("pmap_lazyfix: spun for 50000000\n");
1754	}
1755}
1756
1757#else	/* SMP */
1758
1759/*
1760 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1761 * unlikely to have to even execute this code, including the fact
1762 * that the cleanup is deferred until the parent does a wait(2), which
1763 * means that another userland process has run.
1764 */
1765static void
1766pmap_lazyfix(pmap_t pmap)
1767{
1768	u_int cr3;
1769
1770	cr3 = vtophys(pmap->pm_pdir);
1771	if (cr3 == rcr3()) {
1772		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1773		pmap->pm_active &= ~(PCPU_GET(cpumask));
1774	}
1775}
1776#endif	/* SMP */
1777
1778/*
1779 * Release any resources held by the given physical map.
1780 * Called when a pmap initialized by pmap_pinit is being released.
1781 * Should only be called if the map contains no valid mappings.
1782 */
1783void
1784pmap_release(pmap_t pmap)
1785{
1786	vm_page_t m, ptdpg[NPGPTD];
1787	int i;
1788
1789	KASSERT(pmap->pm_stats.resident_count == 0,
1790	    ("pmap_release: pmap resident count %ld != 0",
1791	    pmap->pm_stats.resident_count));
1792	KASSERT(pmap->pm_root == NULL,
1793	    ("pmap_release: pmap has reserved page table page(s)"));
1794
1795	pmap_lazyfix(pmap);
1796	mtx_lock_spin(&allpmaps_lock);
1797	LIST_REMOVE(pmap, pm_list);
1798	mtx_unlock_spin(&allpmaps_lock);
1799
1800	for (i = 0; i < NPGPTD; i++)
1801		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1802		    PG_FRAME);
1803
1804	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1805	    sizeof(*pmap->pm_pdir));
1806
1807	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1808
1809	for (i = 0; i < NPGPTD; i++) {
1810		m = ptdpg[i];
1811#ifdef PAE
1812		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1813		    ("pmap_release: got wrong ptd page"));
1814#endif
1815		m->wire_count--;
1816		atomic_subtract_int(&cnt.v_wire_count, 1);
1817		vm_page_free_zero(m);
1818	}
1819	PMAP_LOCK_DESTROY(pmap);
1820}
1821
1822static int
1823kvm_size(SYSCTL_HANDLER_ARGS)
1824{
1825	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1826
1827	return sysctl_handle_long(oidp, &ksize, 0, req);
1828}
1829SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1830    0, 0, kvm_size, "IU", "Size of KVM");
1831
1832static int
1833kvm_free(SYSCTL_HANDLER_ARGS)
1834{
1835	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1836
1837	return sysctl_handle_long(oidp, &kfree, 0, req);
1838}
1839SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1840    0, 0, kvm_free, "IU", "Amount of KVM free");
1841
1842/*
1843 * grow the number of kernel page table entries, if needed
1844 */
1845void
1846pmap_growkernel(vm_offset_t addr)
1847{
1848	struct pmap *pmap;
1849	vm_paddr_t ptppaddr;
1850	vm_page_t nkpg;
1851	pd_entry_t newpdir;
1852	pt_entry_t *pde;
1853	boolean_t updated_PTD;
1854
1855	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1856	if (kernel_vm_end == 0) {
1857		kernel_vm_end = KERNBASE;
1858		nkpt = 0;
1859		while (pdir_pde(PTD, kernel_vm_end)) {
1860			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1861			nkpt++;
1862			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1863				kernel_vm_end = kernel_map->max_offset;
1864				break;
1865			}
1866		}
1867	}
1868	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1869	if (addr - 1 >= kernel_map->max_offset)
1870		addr = kernel_map->max_offset;
1871	while (kernel_vm_end < addr) {
1872		if (pdir_pde(PTD, kernel_vm_end)) {
1873			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1874			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1875				kernel_vm_end = kernel_map->max_offset;
1876				break;
1877			}
1878			continue;
1879		}
1880
1881		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1882		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1883		    VM_ALLOC_ZERO);
1884		if (nkpg == NULL)
1885			panic("pmap_growkernel: no memory to grow kernel");
1886
1887		nkpt++;
1888
1889		if ((nkpg->flags & PG_ZERO) == 0)
1890			pmap_zero_page(nkpg);
1891		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1892		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1893		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
1894
1895		updated_PTD = FALSE;
1896		mtx_lock_spin(&allpmaps_lock);
1897		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1898			if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
1899			    PG_FRAME))
1900				updated_PTD = TRUE;
1901			pde = pmap_pde(pmap, kernel_vm_end);
1902			pde_store(pde, newpdir);
1903		}
1904		mtx_unlock_spin(&allpmaps_lock);
1905		KASSERT(updated_PTD,
1906		    ("pmap_growkernel: current page table is not in allpmaps"));
1907		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1908		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1909			kernel_vm_end = kernel_map->max_offset;
1910			break;
1911		}
1912	}
1913}
1914
1915
1916/***************************************************
1917 * page management routines.
1918 ***************************************************/
1919
1920CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1921CTASSERT(_NPCM == 11);
1922
1923static __inline struct pv_chunk *
1924pv_to_chunk(pv_entry_t pv)
1925{
1926
1927	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1928}
1929
1930#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1931
1932#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1933#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1934
1935static uint32_t pc_freemask[11] = {
1936	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1937	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1938	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1939	PC_FREE0_9, PC_FREE10
1940};
1941
1942SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1943	"Current number of pv entries");
1944
1945#ifdef PV_STATS
1946static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1947
1948SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1949	"Current number of pv entry chunks");
1950SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1951	"Current number of pv entry chunks allocated");
1952SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1953	"Current number of pv entry chunks frees");
1954SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1955	"Number of times tried to get a chunk page but failed.");
1956
1957static long pv_entry_frees, pv_entry_allocs;
1958static int pv_entry_spare;
1959
1960SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1961	"Current number of pv entry frees");
1962SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1963	"Current number of pv entry allocs");
1964SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1965	"Current number of spare pv entries");
1966
1967static int pmap_collect_inactive, pmap_collect_active;
1968
1969SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1970	"Current number times pmap_collect called on inactive queue");
1971SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1972	"Current number times pmap_collect called on active queue");
1973#endif
1974
1975/*
1976 * We are in a serious low memory condition.  Resort to
1977 * drastic measures to free some pages so we can allocate
1978 * another pv entry chunk.  This is normally called to
1979 * unmap inactive pages, and if necessary, active pages.
1980 */
1981static void
1982pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1983{
1984	struct md_page *pvh;
1985	pd_entry_t *pde;
1986	pmap_t pmap;
1987	pt_entry_t *pte, tpte;
1988	pv_entry_t next_pv, pv;
1989	vm_offset_t va;
1990	vm_page_t m, free;
1991
1992	sched_pin();
1993	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1994		if (m->hold_count || m->busy)
1995			continue;
1996		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1997			va = pv->pv_va;
1998			pmap = PV_PMAP(pv);
1999			/* Avoid deadlock and lock recursion. */
2000			if (pmap > locked_pmap)
2001				PMAP_LOCK(pmap);
2002			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2003				continue;
2004			pmap->pm_stats.resident_count--;
2005			pde = pmap_pde(pmap, va);
2006			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2007			    " a 4mpage in page %p's pv list", m));
2008			pte = pmap_pte_quick(pmap, va);
2009			tpte = pte_load_clear(pte);
2010			KASSERT((tpte & PG_W) == 0,
2011			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2012			if (tpte & PG_A)
2013				vm_page_flag_set(m, PG_REFERENCED);
2014			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2015				vm_page_dirty(m);
2016			free = NULL;
2017			pmap_unuse_pt(pmap, va, &free);
2018			pmap_invalidate_page(pmap, va);
2019			pmap_free_zero_pages(free);
2020			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2021			if (TAILQ_EMPTY(&m->md.pv_list)) {
2022				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2023				if (TAILQ_EMPTY(&pvh->pv_list))
2024					vm_page_flag_clear(m, PG_WRITEABLE);
2025			}
2026			free_pv_entry(pmap, pv);
2027			if (pmap != locked_pmap)
2028				PMAP_UNLOCK(pmap);
2029		}
2030	}
2031	sched_unpin();
2032}
2033
2034
2035/*
2036 * free the pv_entry back to the free list
2037 */
2038static void
2039free_pv_entry(pmap_t pmap, pv_entry_t pv)
2040{
2041	vm_page_t m;
2042	struct pv_chunk *pc;
2043	int idx, field, bit;
2044
2045	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2046	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2047	PV_STAT(pv_entry_frees++);
2048	PV_STAT(pv_entry_spare++);
2049	pv_entry_count--;
2050	pc = pv_to_chunk(pv);
2051	idx = pv - &pc->pc_pventry[0];
2052	field = idx / 32;
2053	bit = idx % 32;
2054	pc->pc_map[field] |= 1ul << bit;
2055	/* move to head of list */
2056	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2057	for (idx = 0; idx < _NPCM; idx++)
2058		if (pc->pc_map[idx] != pc_freemask[idx]) {
2059			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2060			return;
2061		}
2062	PV_STAT(pv_entry_spare -= _NPCPV);
2063	PV_STAT(pc_chunk_count--);
2064	PV_STAT(pc_chunk_frees++);
2065	/* entire chunk is free, return it */
2066	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2067	pmap_qremove((vm_offset_t)pc, 1);
2068	vm_page_unwire(m, 0);
2069	vm_page_free(m);
2070	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2071}
2072
2073/*
2074 * get a new pv_entry, allocating a block from the system
2075 * when needed.
2076 */
2077static pv_entry_t
2078get_pv_entry(pmap_t pmap, int try)
2079{
2080	static const struct timeval printinterval = { 60, 0 };
2081	static struct timeval lastprint;
2082	static vm_pindex_t colour;
2083	struct vpgqueues *pq;
2084	int bit, field;
2085	pv_entry_t pv;
2086	struct pv_chunk *pc;
2087	vm_page_t m;
2088
2089	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2090	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2091	PV_STAT(pv_entry_allocs++);
2092	pv_entry_count++;
2093	if (pv_entry_count > pv_entry_high_water)
2094		if (ratecheck(&lastprint, &printinterval))
2095			printf("Approaching the limit on PV entries, consider "
2096			    "increasing either the vm.pmap.shpgperproc or the "
2097			    "vm.pmap.pv_entry_max tunable.\n");
2098	pq = NULL;
2099retry:
2100	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2101	if (pc != NULL) {
2102		for (field = 0; field < _NPCM; field++) {
2103			if (pc->pc_map[field]) {
2104				bit = bsfl(pc->pc_map[field]);
2105				break;
2106			}
2107		}
2108		if (field < _NPCM) {
2109			pv = &pc->pc_pventry[field * 32 + bit];
2110			pc->pc_map[field] &= ~(1ul << bit);
2111			/* If this was the last item, move it to tail */
2112			for (field = 0; field < _NPCM; field++)
2113				if (pc->pc_map[field] != 0) {
2114					PV_STAT(pv_entry_spare--);
2115					return (pv);	/* not full, return */
2116				}
2117			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2118			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2119			PV_STAT(pv_entry_spare--);
2120			return (pv);
2121		}
2122	}
2123	/*
2124	 * Access to the ptelist "pv_vafree" is synchronized by the page
2125	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2126	 * remain non-empty until pmap_ptelist_alloc() completes.
2127	 */
2128	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2129	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2130	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2131		if (try) {
2132			pv_entry_count--;
2133			PV_STAT(pc_chunk_tryfail++);
2134			return (NULL);
2135		}
2136		/*
2137		 * Reclaim pv entries: At first, destroy mappings to
2138		 * inactive pages.  After that, if a pv chunk entry
2139		 * is still needed, destroy mappings to active pages.
2140		 */
2141		if (pq == NULL) {
2142			PV_STAT(pmap_collect_inactive++);
2143			pq = &vm_page_queues[PQ_INACTIVE];
2144		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2145			PV_STAT(pmap_collect_active++);
2146			pq = &vm_page_queues[PQ_ACTIVE];
2147		} else
2148			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2149		pmap_collect(pmap, pq);
2150		goto retry;
2151	}
2152	PV_STAT(pc_chunk_count++);
2153	PV_STAT(pc_chunk_allocs++);
2154	colour++;
2155	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2156	pmap_qenter((vm_offset_t)pc, &m, 1);
2157	pc->pc_pmap = pmap;
2158	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2159	for (field = 1; field < _NPCM; field++)
2160		pc->pc_map[field] = pc_freemask[field];
2161	pv = &pc->pc_pventry[0];
2162	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2163	PV_STAT(pv_entry_spare += _NPCPV - 1);
2164	return (pv);
2165}
2166
2167static __inline pv_entry_t
2168pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2169{
2170	pv_entry_t pv;
2171
2172	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2173	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2174		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2175			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2176			break;
2177		}
2178	}
2179	return (pv);
2180}
2181
2182static void
2183pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2184{
2185	struct md_page *pvh;
2186	pv_entry_t pv;
2187	vm_offset_t va_last;
2188	vm_page_t m;
2189
2190	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2191	KASSERT((pa & PDRMASK) == 0,
2192	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2193
2194	/*
2195	 * Transfer the 4mpage's pv entry for this mapping to the first
2196	 * page's pv list.
2197	 */
2198	pvh = pa_to_pvh(pa);
2199	va = trunc_4mpage(va);
2200	pv = pmap_pvh_remove(pvh, pmap, va);
2201	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2202	m = PHYS_TO_VM_PAGE(pa);
2203	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2204	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2205	va_last = va + NBPDR - PAGE_SIZE;
2206	do {
2207		m++;
2208		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2209		    ("pmap_pv_demote_pde: page %p is not managed", m));
2210		va += PAGE_SIZE;
2211		pmap_insert_entry(pmap, va, m);
2212	} while (va < va_last);
2213}
2214
2215static void
2216pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2217{
2218	struct md_page *pvh;
2219	pv_entry_t pv;
2220	vm_offset_t va_last;
2221	vm_page_t m;
2222
2223	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2224	KASSERT((pa & PDRMASK) == 0,
2225	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2226
2227	/*
2228	 * Transfer the first page's pv entry for this mapping to the
2229	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2230	 * to get_pv_entry(), a transfer avoids the possibility that
2231	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2232	 * removes one of the mappings that is being promoted.
2233	 */
2234	m = PHYS_TO_VM_PAGE(pa);
2235	va = trunc_4mpage(va);
2236	pv = pmap_pvh_remove(&m->md, pmap, va);
2237	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2238	pvh = pa_to_pvh(pa);
2239	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2240	/* Free the remaining NPTEPG - 1 pv entries. */
2241	va_last = va + NBPDR - PAGE_SIZE;
2242	do {
2243		m++;
2244		va += PAGE_SIZE;
2245		pmap_pvh_free(&m->md, pmap, va);
2246	} while (va < va_last);
2247}
2248
2249static void
2250pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2251{
2252	pv_entry_t pv;
2253
2254	pv = pmap_pvh_remove(pvh, pmap, va);
2255	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2256	free_pv_entry(pmap, pv);
2257}
2258
2259static void
2260pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2261{
2262	struct md_page *pvh;
2263
2264	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2265	pmap_pvh_free(&m->md, pmap, va);
2266	if (TAILQ_EMPTY(&m->md.pv_list)) {
2267		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2268		if (TAILQ_EMPTY(&pvh->pv_list))
2269			vm_page_flag_clear(m, PG_WRITEABLE);
2270	}
2271}
2272
2273/*
2274 * Create a pv entry for page at pa for
2275 * (pmap, va).
2276 */
2277static void
2278pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2279{
2280	pv_entry_t pv;
2281
2282	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2284	pv = get_pv_entry(pmap, FALSE);
2285	pv->pv_va = va;
2286	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2287}
2288
2289/*
2290 * Conditionally create a pv entry.
2291 */
2292static boolean_t
2293pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2294{
2295	pv_entry_t pv;
2296
2297	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2298	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2299	if (pv_entry_count < pv_entry_high_water &&
2300	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2301		pv->pv_va = va;
2302		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2303		return (TRUE);
2304	} else
2305		return (FALSE);
2306}
2307
2308/*
2309 * Create the pv entries for each of the pages within a superpage.
2310 */
2311static boolean_t
2312pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2313{
2314	struct md_page *pvh;
2315	pv_entry_t pv;
2316
2317	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2318	if (pv_entry_count < pv_entry_high_water &&
2319	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2320		pv->pv_va = va;
2321		pvh = pa_to_pvh(pa);
2322		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2323		return (TRUE);
2324	} else
2325		return (FALSE);
2326}
2327
2328/*
2329 * Fills a page table page with mappings to consecutive physical pages.
2330 */
2331static void
2332pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2333{
2334	pt_entry_t *pte;
2335
2336	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2337		*pte = newpte;
2338		newpte += PAGE_SIZE;
2339	}
2340}
2341
2342/*
2343 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2344 * 2- or 4MB page mapping is invalidated.
2345 */
2346static boolean_t
2347pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2348{
2349	pd_entry_t newpde, oldpde;
2350	pmap_t allpmaps_entry;
2351	pt_entry_t *firstpte, newpte;
2352	vm_paddr_t mptepa;
2353	vm_page_t free, mpte;
2354
2355	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2356	oldpde = *pde;
2357	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2358	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2359	mpte = pmap_lookup_pt_page(pmap, va);
2360	if (mpte != NULL)
2361		pmap_remove_pt_page(pmap, mpte);
2362	else {
2363		KASSERT((oldpde & PG_W) == 0,
2364		    ("pmap_demote_pde: page table page for a wired mapping"
2365		    " is missing"));
2366
2367		/*
2368		 * Invalidate the 2- or 4MB page mapping and return
2369		 * "failure" if the mapping was never accessed or the
2370		 * allocation of the new page table page fails.
2371		 */
2372		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2373		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2374		    VM_ALLOC_WIRED)) == NULL) {
2375			free = NULL;
2376			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2377			pmap_invalidate_page(pmap, trunc_4mpage(va));
2378			pmap_free_zero_pages(free);
2379			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2380			    " in pmap %p", va, pmap);
2381			return (FALSE);
2382		}
2383		if (va < VM_MAXUSER_ADDRESS)
2384			pmap->pm_stats.resident_count++;
2385	}
2386	mptepa = VM_PAGE_TO_PHYS(mpte);
2387
2388	/*
2389	 * If the page mapping is in the kernel's address space, then the
2390	 * KPTmap can provide access to the page table page.  Otherwise,
2391	 * temporarily map the page table page (mpte) into the kernel's
2392	 * address space at either PADDR1 or PADDR2.
2393	 */
2394	if (va >= KERNBASE)
2395		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2396	else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2397		if ((*PMAP1 & PG_FRAME) != mptepa) {
2398			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2399#ifdef SMP
2400			PMAP1cpu = PCPU_GET(cpuid);
2401#endif
2402			invlcaddr(PADDR1);
2403			PMAP1changed++;
2404		} else
2405#ifdef SMP
2406		if (PMAP1cpu != PCPU_GET(cpuid)) {
2407			PMAP1cpu = PCPU_GET(cpuid);
2408			invlcaddr(PADDR1);
2409			PMAP1changedcpu++;
2410		} else
2411#endif
2412			PMAP1unchanged++;
2413		firstpte = PADDR1;
2414	} else {
2415		mtx_lock(&PMAP2mutex);
2416		if ((*PMAP2 & PG_FRAME) != mptepa) {
2417			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2418			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2419		}
2420		firstpte = PADDR2;
2421	}
2422	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2423	KASSERT((oldpde & PG_A) != 0,
2424	    ("pmap_demote_pde: oldpde is missing PG_A"));
2425	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2426	    ("pmap_demote_pde: oldpde is missing PG_M"));
2427	newpte = oldpde & ~PG_PS;
2428	if ((newpte & PG_PDE_PAT) != 0)
2429		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2430
2431	/*
2432	 * If the page table page is new, initialize it.
2433	 */
2434	if (mpte->wire_count == 1) {
2435		mpte->wire_count = NPTEPG;
2436		pmap_fill_ptp(firstpte, newpte);
2437	}
2438	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2439	    ("pmap_demote_pde: firstpte and newpte map different physical"
2440	    " addresses"));
2441
2442	/*
2443	 * If the mapping has changed attributes, update the page table
2444	 * entries.
2445	 */
2446	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2447		pmap_fill_ptp(firstpte, newpte);
2448
2449	/*
2450	 * Demote the mapping.  This pmap is locked.  The old PDE has
2451	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2452	 * set.  Thus, there is no danger of a race with another
2453	 * processor changing the setting of PG_A and/or PG_M between
2454	 * the read above and the store below.
2455	 */
2456	if (pmap == kernel_pmap) {
2457		/*
2458		 * A harmless race exists between this loop and the bcopy()
2459		 * in pmap_pinit() that initializes the kernel segment of
2460		 * the new page table directory.  Specifically, that bcopy()
2461		 * may copy the new PDE from the PTD to the new page table
2462		 * before this loop updates that new page table.
2463		 */
2464		mtx_lock_spin(&allpmaps_lock);
2465		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2466			pde = pmap_pde(allpmaps_entry, va);
2467			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2468			    (oldpde & PG_PTE_PROMOTE),
2469			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2470			    (uintmax_t)*pde, (uintmax_t)oldpde));
2471			pde_store(pde, newpde);
2472		}
2473		mtx_unlock_spin(&allpmaps_lock);
2474	} else
2475		pde_store(pde, newpde);
2476	if (firstpte == PADDR2)
2477		mtx_unlock(&PMAP2mutex);
2478
2479	/*
2480	 * Invalidate the recursive mapping of the page table page.
2481	 */
2482	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2483
2484	/*
2485	 * Demote the pv entry.  This depends on the earlier demotion
2486	 * of the mapping.  Specifically, the (re)creation of a per-
2487	 * page pv entry might trigger the execution of pmap_collect(),
2488	 * which might reclaim a newly (re)created per-page pv entry
2489	 * and destroy the associated mapping.  In order to destroy
2490	 * the mapping, the PDE must have already changed from mapping
2491	 * the 2mpage to referencing the page table page.
2492	 */
2493	if ((oldpde & PG_MANAGED) != 0)
2494		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2495
2496	pmap_pde_demotions++;
2497	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2498	    " in pmap %p", va, pmap);
2499	return (TRUE);
2500}
2501
2502/*
2503 * pmap_remove_pde: do the things to unmap a superpage in a process
2504 */
2505static void
2506pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2507    vm_page_t *free)
2508{
2509	struct md_page *pvh;
2510	pd_entry_t oldpde;
2511	vm_offset_t eva, va;
2512	vm_page_t m, mpte;
2513
2514	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2515	KASSERT((sva & PDRMASK) == 0,
2516	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2517	oldpde = pte_load_clear(pdq);
2518	if (oldpde & PG_W)
2519		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2520
2521	/*
2522	 * Machines that don't support invlpg, also don't support
2523	 * PG_G.
2524	 */
2525	if (oldpde & PG_G)
2526		pmap_invalidate_page(kernel_pmap, sva);
2527	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2528	if (oldpde & PG_MANAGED) {
2529		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2530		pmap_pvh_free(pvh, pmap, sva);
2531		eva = sva + NBPDR;
2532		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2533		    va < eva; va += PAGE_SIZE, m++) {
2534			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2535				vm_page_dirty(m);
2536			if (oldpde & PG_A)
2537				vm_page_flag_set(m, PG_REFERENCED);
2538			if (TAILQ_EMPTY(&m->md.pv_list) &&
2539			    TAILQ_EMPTY(&pvh->pv_list))
2540				vm_page_flag_clear(m, PG_WRITEABLE);
2541		}
2542	}
2543	if (pmap == kernel_pmap) {
2544		if (!pmap_demote_pde(pmap, pdq, sva))
2545			panic("pmap_remove_pde: failed demotion");
2546	} else {
2547		mpte = pmap_lookup_pt_page(pmap, sva);
2548		if (mpte != NULL) {
2549			pmap_remove_pt_page(pmap, mpte);
2550			pmap->pm_stats.resident_count--;
2551			KASSERT(mpte->wire_count == NPTEPG,
2552			    ("pmap_remove_pde: pte page wire count error"));
2553			mpte->wire_count = 0;
2554			pmap_add_delayed_free_list(mpte, free, FALSE);
2555			atomic_subtract_int(&cnt.v_wire_count, 1);
2556		}
2557	}
2558}
2559
2560/*
2561 * pmap_remove_pte: do the things to unmap a page in a process
2562 */
2563static int
2564pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2565{
2566	pt_entry_t oldpte;
2567	vm_page_t m;
2568
2569	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2570	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2571	oldpte = pte_load_clear(ptq);
2572	if (oldpte & PG_W)
2573		pmap->pm_stats.wired_count -= 1;
2574	/*
2575	 * Machines that don't support invlpg, also don't support
2576	 * PG_G.
2577	 */
2578	if (oldpte & PG_G)
2579		pmap_invalidate_page(kernel_pmap, va);
2580	pmap->pm_stats.resident_count -= 1;
2581	if (oldpte & PG_MANAGED) {
2582		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2583		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2584			vm_page_dirty(m);
2585		if (oldpte & PG_A)
2586			vm_page_flag_set(m, PG_REFERENCED);
2587		pmap_remove_entry(pmap, m, va);
2588	}
2589	return (pmap_unuse_pt(pmap, va, free));
2590}
2591
2592/*
2593 * Remove a single page from a process address space
2594 */
2595static void
2596pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2597{
2598	pt_entry_t *pte;
2599
2600	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2601	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2602	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2603	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2604		return;
2605	pmap_remove_pte(pmap, pte, va, free);
2606	pmap_invalidate_page(pmap, va);
2607}
2608
2609/*
2610 *	Remove the given range of addresses from the specified map.
2611 *
2612 *	It is assumed that the start and end are properly
2613 *	rounded to the page size.
2614 */
2615void
2616pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2617{
2618	vm_offset_t pdnxt;
2619	pd_entry_t ptpaddr;
2620	pt_entry_t *pte;
2621	vm_page_t free = NULL;
2622	int anyvalid;
2623
2624	/*
2625	 * Perform an unsynchronized read.  This is, however, safe.
2626	 */
2627	if (pmap->pm_stats.resident_count == 0)
2628		return;
2629
2630	anyvalid = 0;
2631
2632	vm_page_lock_queues();
2633	sched_pin();
2634	PMAP_LOCK(pmap);
2635
2636	/*
2637	 * special handling of removing one page.  a very
2638	 * common operation and easy to short circuit some
2639	 * code.
2640	 */
2641	if ((sva + PAGE_SIZE == eva) &&
2642	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2643		pmap_remove_page(pmap, sva, &free);
2644		goto out;
2645	}
2646
2647	for (; sva < eva; sva = pdnxt) {
2648		unsigned pdirindex;
2649
2650		/*
2651		 * Calculate index for next page table.
2652		 */
2653		pdnxt = (sva + NBPDR) & ~PDRMASK;
2654		if (pdnxt < sva)
2655			pdnxt = eva;
2656		if (pmap->pm_stats.resident_count == 0)
2657			break;
2658
2659		pdirindex = sva >> PDRSHIFT;
2660		ptpaddr = pmap->pm_pdir[pdirindex];
2661
2662		/*
2663		 * Weed out invalid mappings. Note: we assume that the page
2664		 * directory table is always allocated, and in kernel virtual.
2665		 */
2666		if (ptpaddr == 0)
2667			continue;
2668
2669		/*
2670		 * Check for large page.
2671		 */
2672		if ((ptpaddr & PG_PS) != 0) {
2673			/*
2674			 * Are we removing the entire large page?  If not,
2675			 * demote the mapping and fall through.
2676			 */
2677			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2678				/*
2679				 * The TLB entry for a PG_G mapping is
2680				 * invalidated by pmap_remove_pde().
2681				 */
2682				if ((ptpaddr & PG_G) == 0)
2683					anyvalid = 1;
2684				pmap_remove_pde(pmap,
2685				    &pmap->pm_pdir[pdirindex], sva, &free);
2686				continue;
2687			} else if (!pmap_demote_pde(pmap,
2688			    &pmap->pm_pdir[pdirindex], sva)) {
2689				/* The large page mapping was destroyed. */
2690				continue;
2691			}
2692		}
2693
2694		/*
2695		 * Limit our scan to either the end of the va represented
2696		 * by the current page table page, or to the end of the
2697		 * range being removed.
2698		 */
2699		if (pdnxt > eva)
2700			pdnxt = eva;
2701
2702		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2703		    sva += PAGE_SIZE) {
2704			if (*pte == 0)
2705				continue;
2706
2707			/*
2708			 * The TLB entry for a PG_G mapping is invalidated
2709			 * by pmap_remove_pte().
2710			 */
2711			if ((*pte & PG_G) == 0)
2712				anyvalid = 1;
2713			if (pmap_remove_pte(pmap, pte, sva, &free))
2714				break;
2715		}
2716	}
2717out:
2718	sched_unpin();
2719	if (anyvalid)
2720		pmap_invalidate_all(pmap);
2721	vm_page_unlock_queues();
2722	PMAP_UNLOCK(pmap);
2723	pmap_free_zero_pages(free);
2724}
2725
2726/*
2727 *	Routine:	pmap_remove_all
2728 *	Function:
2729 *		Removes this physical page from
2730 *		all physical maps in which it resides.
2731 *		Reflects back modify bits to the pager.
2732 *
2733 *	Notes:
2734 *		Original versions of this routine were very
2735 *		inefficient because they iteratively called
2736 *		pmap_remove (slow...)
2737 */
2738
2739void
2740pmap_remove_all(vm_page_t m)
2741{
2742	struct md_page *pvh;
2743	pv_entry_t pv;
2744	pmap_t pmap;
2745	pt_entry_t *pte, tpte;
2746	pd_entry_t *pde;
2747	vm_offset_t va;
2748	vm_page_t free;
2749
2750	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2751	    ("pmap_remove_all: page %p is fictitious", m));
2752	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2753	sched_pin();
2754	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2755	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2756		va = pv->pv_va;
2757		pmap = PV_PMAP(pv);
2758		PMAP_LOCK(pmap);
2759		pde = pmap_pde(pmap, va);
2760		(void)pmap_demote_pde(pmap, pde, va);
2761		PMAP_UNLOCK(pmap);
2762	}
2763	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2764		pmap = PV_PMAP(pv);
2765		PMAP_LOCK(pmap);
2766		pmap->pm_stats.resident_count--;
2767		pde = pmap_pde(pmap, pv->pv_va);
2768		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2769		    " a 4mpage in page %p's pv list", m));
2770		pte = pmap_pte_quick(pmap, pv->pv_va);
2771		tpte = pte_load_clear(pte);
2772		if (tpte & PG_W)
2773			pmap->pm_stats.wired_count--;
2774		if (tpte & PG_A)
2775			vm_page_flag_set(m, PG_REFERENCED);
2776
2777		/*
2778		 * Update the vm_page_t clean and reference bits.
2779		 */
2780		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2781			vm_page_dirty(m);
2782		free = NULL;
2783		pmap_unuse_pt(pmap, pv->pv_va, &free);
2784		pmap_invalidate_page(pmap, pv->pv_va);
2785		pmap_free_zero_pages(free);
2786		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2787		free_pv_entry(pmap, pv);
2788		PMAP_UNLOCK(pmap);
2789	}
2790	vm_page_flag_clear(m, PG_WRITEABLE);
2791	sched_unpin();
2792}
2793
2794/*
2795 * pmap_protect_pde: do the things to protect a 4mpage in a process
2796 */
2797static boolean_t
2798pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2799{
2800	pd_entry_t newpde, oldpde;
2801	vm_offset_t eva, va;
2802	vm_page_t m;
2803	boolean_t anychanged;
2804
2805	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2806	KASSERT((sva & PDRMASK) == 0,
2807	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2808	anychanged = FALSE;
2809retry:
2810	oldpde = newpde = *pde;
2811	if (oldpde & PG_MANAGED) {
2812		eva = sva + NBPDR;
2813		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2814		    va < eva; va += PAGE_SIZE, m++) {
2815			/*
2816			 * In contrast to the analogous operation on a 4KB page
2817			 * mapping, the mapping's PG_A flag is not cleared and
2818			 * the page's PG_REFERENCED flag is not set.  The
2819			 * reason is that pmap_demote_pde() expects that a 2/4MB
2820			 * page mapping with a stored page table page has PG_A
2821			 * set.
2822			 */
2823			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2824				vm_page_dirty(m);
2825		}
2826	}
2827	if ((prot & VM_PROT_WRITE) == 0)
2828		newpde &= ~(PG_RW | PG_M);
2829#ifdef PAE
2830	if ((prot & VM_PROT_EXECUTE) == 0)
2831		newpde |= pg_nx;
2832#endif
2833	if (newpde != oldpde) {
2834		if (!pde_cmpset(pde, oldpde, newpde))
2835			goto retry;
2836		if (oldpde & PG_G)
2837			pmap_invalidate_page(pmap, sva);
2838		else
2839			anychanged = TRUE;
2840	}
2841	return (anychanged);
2842}
2843
2844/*
2845 *	Set the physical protection on the
2846 *	specified range of this map as requested.
2847 */
2848void
2849pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2850{
2851	vm_offset_t pdnxt;
2852	pd_entry_t ptpaddr;
2853	pt_entry_t *pte;
2854	int anychanged;
2855
2856	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2857		pmap_remove(pmap, sva, eva);
2858		return;
2859	}
2860
2861#ifdef PAE
2862	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2863	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2864		return;
2865#else
2866	if (prot & VM_PROT_WRITE)
2867		return;
2868#endif
2869
2870	anychanged = 0;
2871
2872	vm_page_lock_queues();
2873	sched_pin();
2874	PMAP_LOCK(pmap);
2875	for (; sva < eva; sva = pdnxt) {
2876		pt_entry_t obits, pbits;
2877		unsigned pdirindex;
2878
2879		pdnxt = (sva + NBPDR) & ~PDRMASK;
2880		if (pdnxt < sva)
2881			pdnxt = eva;
2882
2883		pdirindex = sva >> PDRSHIFT;
2884		ptpaddr = pmap->pm_pdir[pdirindex];
2885
2886		/*
2887		 * Weed out invalid mappings. Note: we assume that the page
2888		 * directory table is always allocated, and in kernel virtual.
2889		 */
2890		if (ptpaddr == 0)
2891			continue;
2892
2893		/*
2894		 * Check for large page.
2895		 */
2896		if ((ptpaddr & PG_PS) != 0) {
2897			/*
2898			 * Are we protecting the entire large page?  If not,
2899			 * demote the mapping and fall through.
2900			 */
2901			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2902				/*
2903				 * The TLB entry for a PG_G mapping is
2904				 * invalidated by pmap_protect_pde().
2905				 */
2906				if (pmap_protect_pde(pmap,
2907				    &pmap->pm_pdir[pdirindex], sva, prot))
2908					anychanged = 1;
2909				continue;
2910			} else if (!pmap_demote_pde(pmap,
2911			    &pmap->pm_pdir[pdirindex], sva)) {
2912				/* The large page mapping was destroyed. */
2913				continue;
2914			}
2915		}
2916
2917		if (pdnxt > eva)
2918			pdnxt = eva;
2919
2920		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2921		    sva += PAGE_SIZE) {
2922			vm_page_t m;
2923
2924retry:
2925			/*
2926			 * Regardless of whether a pte is 32 or 64 bits in
2927			 * size, PG_RW, PG_A, and PG_M are among the least
2928			 * significant 32 bits.
2929			 */
2930			obits = pbits = *pte;
2931			if ((pbits & PG_V) == 0)
2932				continue;
2933			if (pbits & PG_MANAGED) {
2934				m = NULL;
2935				if (pbits & PG_A) {
2936					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2937					vm_page_flag_set(m, PG_REFERENCED);
2938					pbits &= ~PG_A;
2939				}
2940				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2941					if (m == NULL)
2942						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2943					vm_page_dirty(m);
2944				}
2945			}
2946
2947			if ((prot & VM_PROT_WRITE) == 0)
2948				pbits &= ~(PG_RW | PG_M);
2949#ifdef PAE
2950			if ((prot & VM_PROT_EXECUTE) == 0)
2951				pbits |= pg_nx;
2952#endif
2953
2954			if (pbits != obits) {
2955#ifdef PAE
2956				if (!atomic_cmpset_64(pte, obits, pbits))
2957					goto retry;
2958#else
2959				if (!atomic_cmpset_int((u_int *)pte, obits,
2960				    pbits))
2961					goto retry;
2962#endif
2963				if (obits & PG_G)
2964					pmap_invalidate_page(pmap, sva);
2965				else
2966					anychanged = 1;
2967			}
2968		}
2969	}
2970	sched_unpin();
2971	if (anychanged)
2972		pmap_invalidate_all(pmap);
2973	vm_page_unlock_queues();
2974	PMAP_UNLOCK(pmap);
2975}
2976
2977/*
2978 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2979 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
2980 * For promotion to occur, two conditions must be met: (1) the 4KB page
2981 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
2982 * mappings must have identical characteristics.
2983 *
2984 * Managed (PG_MANAGED) mappings within the kernel address space are not
2985 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2986 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2987 * pmap.
2988 */
2989static void
2990pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2991{
2992	pd_entry_t newpde;
2993	pmap_t allpmaps_entry;
2994	pt_entry_t *firstpte, oldpte, pa, *pte;
2995	vm_offset_t oldpteva;
2996	vm_page_t mpte;
2997
2998	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2999
3000	/*
3001	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3002	 * either invalid, unused, or does not map the first 4KB physical page
3003	 * within a 2- or 4MB page.
3004	 */
3005	firstpte = vtopte(trunc_4mpage(va));
3006setpde:
3007	newpde = *firstpte;
3008	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3009		pmap_pde_p_failures++;
3010		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3011		    " in pmap %p", va, pmap);
3012		return;
3013	}
3014	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3015		pmap_pde_p_failures++;
3016		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3017		    " in pmap %p", va, pmap);
3018		return;
3019	}
3020	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3021		/*
3022		 * When PG_M is already clear, PG_RW can be cleared without
3023		 * a TLB invalidation.
3024		 */
3025		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3026		    ~PG_RW))
3027			goto setpde;
3028		newpde &= ~PG_RW;
3029	}
3030
3031	/*
3032	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3033	 * PTE maps an unexpected 4KB physical page or does not have identical
3034	 * characteristics to the first PTE.
3035	 */
3036	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3037	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3038setpte:
3039		oldpte = *pte;
3040		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3041			pmap_pde_p_failures++;
3042			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3043			    " in pmap %p", va, pmap);
3044			return;
3045		}
3046		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3047			/*
3048			 * When PG_M is already clear, PG_RW can be cleared
3049			 * without a TLB invalidation.
3050			 */
3051			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3052			    oldpte & ~PG_RW))
3053				goto setpte;
3054			oldpte &= ~PG_RW;
3055			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3056			    (va & ~PDRMASK);
3057			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3058			    " in pmap %p", oldpteva, pmap);
3059		}
3060		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3061			pmap_pde_p_failures++;
3062			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3063			    " in pmap %p", va, pmap);
3064			return;
3065		}
3066		pa -= PAGE_SIZE;
3067	}
3068
3069	/*
3070	 * Save the page table page in its current state until the PDE
3071	 * mapping the superpage is demoted by pmap_demote_pde() or
3072	 * destroyed by pmap_remove_pde().
3073	 */
3074	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3075	KASSERT(mpte >= vm_page_array &&
3076	    mpte < &vm_page_array[vm_page_array_size],
3077	    ("pmap_promote_pde: page table page is out of range"));
3078	KASSERT(mpte->pindex == va >> PDRSHIFT,
3079	    ("pmap_promote_pde: page table page's pindex is wrong"));
3080	pmap_insert_pt_page(pmap, mpte);
3081
3082	/*
3083	 * Promote the pv entries.
3084	 */
3085	if ((newpde & PG_MANAGED) != 0)
3086		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3087
3088	/*
3089	 * Propagate the PAT index to its proper position.
3090	 */
3091	if ((newpde & PG_PTE_PAT) != 0)
3092		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3093
3094	/*
3095	 * Map the superpage.
3096	 */
3097	if (pmap == kernel_pmap) {
3098		mtx_lock_spin(&allpmaps_lock);
3099		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
3100			pde = pmap_pde(allpmaps_entry, va);
3101			pde_store(pde, PG_PS | newpde);
3102		}
3103		mtx_unlock_spin(&allpmaps_lock);
3104	} else
3105		pde_store(pde, PG_PS | newpde);
3106
3107	pmap_pde_promotions++;
3108	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3109	    " in pmap %p", va, pmap);
3110}
3111
3112/*
3113 *	Insert the given physical page (p) at
3114 *	the specified virtual address (v) in the
3115 *	target physical map with the protection requested.
3116 *
3117 *	If specified, the page will be wired down, meaning
3118 *	that the related pte can not be reclaimed.
3119 *
3120 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3121 *	or lose information.  That is, this routine must actually
3122 *	insert this page into the given map NOW.
3123 */
3124void
3125pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3126    vm_prot_t prot, boolean_t wired)
3127{
3128	vm_paddr_t pa;
3129	pd_entry_t *pde;
3130	pt_entry_t *pte;
3131	vm_paddr_t opa;
3132	pt_entry_t origpte, newpte;
3133	vm_page_t mpte, om;
3134	boolean_t invlva;
3135
3136	va = trunc_page(va);
3137	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3138	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3139	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3140
3141	mpte = NULL;
3142
3143	vm_page_lock_queues();
3144	PMAP_LOCK(pmap);
3145	sched_pin();
3146
3147	/*
3148	 * In the case that a page table page is not
3149	 * resident, we are creating it here.
3150	 */
3151	if (va < VM_MAXUSER_ADDRESS) {
3152		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3153	}
3154
3155	pde = pmap_pde(pmap, va);
3156	if ((*pde & PG_PS) != 0)
3157		panic("pmap_enter: attempted pmap_enter on 4MB page");
3158	pte = pmap_pte_quick(pmap, va);
3159
3160	/*
3161	 * Page Directory table entry not valid, we need a new PT page
3162	 */
3163	if (pte == NULL) {
3164		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3165			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3166	}
3167
3168	pa = VM_PAGE_TO_PHYS(m);
3169	om = NULL;
3170	origpte = *pte;
3171	opa = origpte & PG_FRAME;
3172
3173	/*
3174	 * Mapping has not changed, must be protection or wiring change.
3175	 */
3176	if (origpte && (opa == pa)) {
3177		/*
3178		 * Wiring change, just update stats. We don't worry about
3179		 * wiring PT pages as they remain resident as long as there
3180		 * are valid mappings in them. Hence, if a user page is wired,
3181		 * the PT page will be also.
3182		 */
3183		if (wired && ((origpte & PG_W) == 0))
3184			pmap->pm_stats.wired_count++;
3185		else if (!wired && (origpte & PG_W))
3186			pmap->pm_stats.wired_count--;
3187
3188		/*
3189		 * Remove extra pte reference
3190		 */
3191		if (mpte)
3192			mpte->wire_count--;
3193
3194		/*
3195		 * We might be turning off write access to the page,
3196		 * so we go ahead and sense modify status.
3197		 */
3198		if (origpte & PG_MANAGED) {
3199			om = m;
3200			pa |= PG_MANAGED;
3201		}
3202		goto validate;
3203	}
3204	/*
3205	 * Mapping has changed, invalidate old range and fall through to
3206	 * handle validating new mapping.
3207	 */
3208	if (opa) {
3209		if (origpte & PG_W)
3210			pmap->pm_stats.wired_count--;
3211		if (origpte & PG_MANAGED) {
3212			om = PHYS_TO_VM_PAGE(opa);
3213			pmap_remove_entry(pmap, om, va);
3214		}
3215		if (mpte != NULL) {
3216			mpte->wire_count--;
3217			KASSERT(mpte->wire_count > 0,
3218			    ("pmap_enter: missing reference to page table page,"
3219			     " va: 0x%x", va));
3220		}
3221	} else
3222		pmap->pm_stats.resident_count++;
3223
3224	/*
3225	 * Enter on the PV list if part of our managed memory.
3226	 */
3227	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3228		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3229		    ("pmap_enter: managed mapping within the clean submap"));
3230		pmap_insert_entry(pmap, va, m);
3231		pa |= PG_MANAGED;
3232	}
3233
3234	/*
3235	 * Increment counters
3236	 */
3237	if (wired)
3238		pmap->pm_stats.wired_count++;
3239
3240validate:
3241	/*
3242	 * Now validate mapping with desired protection/wiring.
3243	 */
3244	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3245	if ((prot & VM_PROT_WRITE) != 0) {
3246		newpte |= PG_RW;
3247		vm_page_flag_set(m, PG_WRITEABLE);
3248	}
3249#ifdef PAE
3250	if ((prot & VM_PROT_EXECUTE) == 0)
3251		newpte |= pg_nx;
3252#endif
3253	if (wired)
3254		newpte |= PG_W;
3255	if (va < VM_MAXUSER_ADDRESS)
3256		newpte |= PG_U;
3257	if (pmap == kernel_pmap)
3258		newpte |= pgeflag;
3259
3260	/*
3261	 * if the mapping or permission bits are different, we need
3262	 * to update the pte.
3263	 */
3264	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3265		newpte |= PG_A;
3266		if ((access & VM_PROT_WRITE) != 0)
3267			newpte |= PG_M;
3268		if (origpte & PG_V) {
3269			invlva = FALSE;
3270			origpte = pte_load_store(pte, newpte);
3271			if (origpte & PG_A) {
3272				if (origpte & PG_MANAGED)
3273					vm_page_flag_set(om, PG_REFERENCED);
3274				if (opa != VM_PAGE_TO_PHYS(m))
3275					invlva = TRUE;
3276#ifdef PAE
3277				if ((origpte & PG_NX) == 0 &&
3278				    (newpte & PG_NX) != 0)
3279					invlva = TRUE;
3280#endif
3281			}
3282			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3283				if ((origpte & PG_MANAGED) != 0)
3284					vm_page_dirty(om);
3285				if ((prot & VM_PROT_WRITE) == 0)
3286					invlva = TRUE;
3287			}
3288			if (invlva)
3289				pmap_invalidate_page(pmap, va);
3290		} else
3291			pte_store(pte, newpte);
3292	}
3293
3294	/*
3295	 * If both the page table page and the reservation are fully
3296	 * populated, then attempt promotion.
3297	 */
3298	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3299	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3300		pmap_promote_pde(pmap, pde, va);
3301
3302	sched_unpin();
3303	vm_page_unlock_queues();
3304	PMAP_UNLOCK(pmap);
3305}
3306
3307/*
3308 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3309 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3310 * blocking, (2) a mapping already exists at the specified virtual address, or
3311 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3312 */
3313static boolean_t
3314pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3315{
3316	pd_entry_t *pde, newpde;
3317
3318	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3319	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3320	pde = pmap_pde(pmap, va);
3321	if (*pde != 0) {
3322		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3323		    " in pmap %p", va, pmap);
3324		return (FALSE);
3325	}
3326	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3327	    PG_PS | PG_V;
3328	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3329		newpde |= PG_MANAGED;
3330
3331		/*
3332		 * Abort this mapping if its PV entry could not be created.
3333		 */
3334		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3335			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3336			    " in pmap %p", va, pmap);
3337			return (FALSE);
3338		}
3339	}
3340#ifdef PAE
3341	if ((prot & VM_PROT_EXECUTE) == 0)
3342		newpde |= pg_nx;
3343#endif
3344	if (va < VM_MAXUSER_ADDRESS)
3345		newpde |= PG_U;
3346
3347	/*
3348	 * Increment counters.
3349	 */
3350	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3351
3352	/*
3353	 * Map the superpage.
3354	 */
3355	pde_store(pde, newpde);
3356
3357	pmap_pde_mappings++;
3358	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3359	    " in pmap %p", va, pmap);
3360	return (TRUE);
3361}
3362
3363/*
3364 * Maps a sequence of resident pages belonging to the same object.
3365 * The sequence begins with the given page m_start.  This page is
3366 * mapped at the given virtual address start.  Each subsequent page is
3367 * mapped at a virtual address that is offset from start by the same
3368 * amount as the page is offset from m_start within the object.  The
3369 * last page in the sequence is the page with the largest offset from
3370 * m_start that can be mapped at a virtual address less than the given
3371 * virtual address end.  Not every virtual page between start and end
3372 * is mapped; only those for which a resident page exists with the
3373 * corresponding offset from m_start are mapped.
3374 */
3375void
3376pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3377    vm_page_t m_start, vm_prot_t prot)
3378{
3379	vm_offset_t va;
3380	vm_page_t m, mpte;
3381	vm_pindex_t diff, psize;
3382
3383	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3384	psize = atop(end - start);
3385	mpte = NULL;
3386	m = m_start;
3387	PMAP_LOCK(pmap);
3388	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3389		va = start + ptoa(diff);
3390		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3391		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3392		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3393		    pmap_enter_pde(pmap, va, m, prot))
3394			m = &m[NBPDR / PAGE_SIZE - 1];
3395		else
3396			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3397			    mpte);
3398		m = TAILQ_NEXT(m, listq);
3399	}
3400 	PMAP_UNLOCK(pmap);
3401}
3402
3403/*
3404 * this code makes some *MAJOR* assumptions:
3405 * 1. Current pmap & pmap exists.
3406 * 2. Not wired.
3407 * 3. Read access.
3408 * 4. No page table pages.
3409 * but is *MUCH* faster than pmap_enter...
3410 */
3411
3412void
3413pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3414{
3415
3416	PMAP_LOCK(pmap);
3417	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3418	PMAP_UNLOCK(pmap);
3419}
3420
3421static vm_page_t
3422pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3423    vm_prot_t prot, vm_page_t mpte)
3424{
3425	pt_entry_t *pte;
3426	vm_paddr_t pa;
3427	vm_page_t free;
3428
3429	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3430	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3431	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3432	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3433	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3434
3435	/*
3436	 * In the case that a page table page is not
3437	 * resident, we are creating it here.
3438	 */
3439	if (va < VM_MAXUSER_ADDRESS) {
3440		unsigned ptepindex;
3441		pd_entry_t ptepa;
3442
3443		/*
3444		 * Calculate pagetable page index
3445		 */
3446		ptepindex = va >> PDRSHIFT;
3447		if (mpte && (mpte->pindex == ptepindex)) {
3448			mpte->wire_count++;
3449		} else {
3450			/*
3451			 * Get the page directory entry
3452			 */
3453			ptepa = pmap->pm_pdir[ptepindex];
3454
3455			/*
3456			 * If the page table page is mapped, we just increment
3457			 * the hold count, and activate it.
3458			 */
3459			if (ptepa) {
3460				if (ptepa & PG_PS)
3461					return (NULL);
3462				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3463				mpte->wire_count++;
3464			} else {
3465				mpte = _pmap_allocpte(pmap, ptepindex,
3466				    M_NOWAIT);
3467				if (mpte == NULL)
3468					return (mpte);
3469			}
3470		}
3471	} else {
3472		mpte = NULL;
3473	}
3474
3475	/*
3476	 * This call to vtopte makes the assumption that we are
3477	 * entering the page into the current pmap.  In order to support
3478	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3479	 * But that isn't as quick as vtopte.
3480	 */
3481	pte = vtopte(va);
3482	if (*pte) {
3483		if (mpte != NULL) {
3484			mpte->wire_count--;
3485			mpte = NULL;
3486		}
3487		return (mpte);
3488	}
3489
3490	/*
3491	 * Enter on the PV list if part of our managed memory.
3492	 */
3493	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3494	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3495		if (mpte != NULL) {
3496			free = NULL;
3497			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3498				pmap_invalidate_page(pmap, va);
3499				pmap_free_zero_pages(free);
3500			}
3501
3502			mpte = NULL;
3503		}
3504		return (mpte);
3505	}
3506
3507	/*
3508	 * Increment counters
3509	 */
3510	pmap->pm_stats.resident_count++;
3511
3512	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3513#ifdef PAE
3514	if ((prot & VM_PROT_EXECUTE) == 0)
3515		pa |= pg_nx;
3516#endif
3517
3518	/*
3519	 * Now validate mapping with RO protection
3520	 */
3521	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3522		pte_store(pte, pa | PG_V | PG_U);
3523	else
3524		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3525	return mpte;
3526}
3527
3528/*
3529 * Make a temporary mapping for a physical address.  This is only intended
3530 * to be used for panic dumps.
3531 */
3532void *
3533pmap_kenter_temporary(vm_paddr_t pa, int i)
3534{
3535	vm_offset_t va;
3536
3537	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3538	pmap_kenter(va, pa);
3539	invlpg(va);
3540	return ((void *)crashdumpmap);
3541}
3542
3543/*
3544 * This code maps large physical mmap regions into the
3545 * processor address space.  Note that some shortcuts
3546 * are taken, but the code works.
3547 */
3548void
3549pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3550    vm_pindex_t pindex, vm_size_t size)
3551{
3552	pd_entry_t *pde;
3553	vm_paddr_t pa, ptepa;
3554	vm_page_t p;
3555	int pat_mode;
3556
3557	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3558	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3559	    ("pmap_object_init_pt: non-device object"));
3560	if (pseflag &&
3561	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3562		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3563			return;
3564		p = vm_page_lookup(object, pindex);
3565		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3566		    ("pmap_object_init_pt: invalid page %p", p));
3567		pat_mode = p->md.pat_mode;
3568
3569		/*
3570		 * Abort the mapping if the first page is not physically
3571		 * aligned to a 2/4MB page boundary.
3572		 */
3573		ptepa = VM_PAGE_TO_PHYS(p);
3574		if (ptepa & (NBPDR - 1))
3575			return;
3576
3577		/*
3578		 * Skip the first page.  Abort the mapping if the rest of
3579		 * the pages are not physically contiguous or have differing
3580		 * memory attributes.
3581		 */
3582		p = TAILQ_NEXT(p, listq);
3583		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3584		    pa += PAGE_SIZE) {
3585			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3586			    ("pmap_object_init_pt: invalid page %p", p));
3587			if (pa != VM_PAGE_TO_PHYS(p) ||
3588			    pat_mode != p->md.pat_mode)
3589				return;
3590			p = TAILQ_NEXT(p, listq);
3591		}
3592
3593		/*
3594		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3595		 * "size" is a multiple of 2/4M, adding the PAT setting to
3596		 * "pa" will not affect the termination of this loop.
3597		 */
3598		PMAP_LOCK(pmap);
3599		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3600		    size; pa += NBPDR) {
3601			pde = pmap_pde(pmap, addr);
3602			if (*pde == 0) {
3603				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3604				    PG_U | PG_RW | PG_V);
3605				pmap->pm_stats.resident_count += NBPDR /
3606				    PAGE_SIZE;
3607				pmap_pde_mappings++;
3608			}
3609			/* Else continue on if the PDE is already valid. */
3610			addr += NBPDR;
3611		}
3612		PMAP_UNLOCK(pmap);
3613	}
3614}
3615
3616/*
3617 *	Routine:	pmap_change_wiring
3618 *	Function:	Change the wiring attribute for a map/virtual-address
3619 *			pair.
3620 *	In/out conditions:
3621 *			The mapping must already exist in the pmap.
3622 */
3623void
3624pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3625{
3626	pd_entry_t *pde;
3627	pt_entry_t *pte;
3628	boolean_t are_queues_locked;
3629
3630	are_queues_locked = FALSE;
3631retry:
3632	PMAP_LOCK(pmap);
3633	pde = pmap_pde(pmap, va);
3634	if ((*pde & PG_PS) != 0) {
3635		if (!wired != ((*pde & PG_W) == 0)) {
3636			if (!are_queues_locked) {
3637				are_queues_locked = TRUE;
3638				if (!mtx_trylock(&vm_page_queue_mtx)) {
3639					PMAP_UNLOCK(pmap);
3640					vm_page_lock_queues();
3641					goto retry;
3642				}
3643			}
3644			if (!pmap_demote_pde(pmap, pde, va))
3645				panic("pmap_change_wiring: demotion failed");
3646		} else
3647			goto out;
3648	}
3649	pte = pmap_pte(pmap, va);
3650
3651	if (wired && !pmap_pte_w(pte))
3652		pmap->pm_stats.wired_count++;
3653	else if (!wired && pmap_pte_w(pte))
3654		pmap->pm_stats.wired_count--;
3655
3656	/*
3657	 * Wiring is not a hardware characteristic so there is no need to
3658	 * invalidate TLB.
3659	 */
3660	pmap_pte_set_w(pte, wired);
3661	pmap_pte_release(pte);
3662out:
3663	if (are_queues_locked)
3664		vm_page_unlock_queues();
3665	PMAP_UNLOCK(pmap);
3666}
3667
3668
3669
3670/*
3671 *	Copy the range specified by src_addr/len
3672 *	from the source map to the range dst_addr/len
3673 *	in the destination map.
3674 *
3675 *	This routine is only advisory and need not do anything.
3676 */
3677
3678void
3679pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3680    vm_offset_t src_addr)
3681{
3682	vm_page_t   free;
3683	vm_offset_t addr;
3684	vm_offset_t end_addr = src_addr + len;
3685	vm_offset_t pdnxt;
3686
3687	if (dst_addr != src_addr)
3688		return;
3689
3690	if (!pmap_is_current(src_pmap))
3691		return;
3692
3693	vm_page_lock_queues();
3694	if (dst_pmap < src_pmap) {
3695		PMAP_LOCK(dst_pmap);
3696		PMAP_LOCK(src_pmap);
3697	} else {
3698		PMAP_LOCK(src_pmap);
3699		PMAP_LOCK(dst_pmap);
3700	}
3701	sched_pin();
3702	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3703		pt_entry_t *src_pte, *dst_pte;
3704		vm_page_t dstmpte, srcmpte;
3705		pd_entry_t srcptepaddr;
3706		unsigned ptepindex;
3707
3708		KASSERT(addr < UPT_MIN_ADDRESS,
3709		    ("pmap_copy: invalid to pmap_copy page tables"));
3710
3711		pdnxt = (addr + NBPDR) & ~PDRMASK;
3712		if (pdnxt < addr)
3713			pdnxt = end_addr;
3714		ptepindex = addr >> PDRSHIFT;
3715
3716		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3717		if (srcptepaddr == 0)
3718			continue;
3719
3720		if (srcptepaddr & PG_PS) {
3721			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3722			    ((srcptepaddr & PG_MANAGED) == 0 ||
3723			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3724			    PG_PS_FRAME))) {
3725				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3726				    ~PG_W;
3727				dst_pmap->pm_stats.resident_count +=
3728				    NBPDR / PAGE_SIZE;
3729			}
3730			continue;
3731		}
3732
3733		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3734		KASSERT(srcmpte->wire_count > 0,
3735		    ("pmap_copy: source page table page is unused"));
3736
3737		if (pdnxt > end_addr)
3738			pdnxt = end_addr;
3739
3740		src_pte = vtopte(addr);
3741		while (addr < pdnxt) {
3742			pt_entry_t ptetemp;
3743			ptetemp = *src_pte;
3744			/*
3745			 * we only virtual copy managed pages
3746			 */
3747			if ((ptetemp & PG_MANAGED) != 0) {
3748				dstmpte = pmap_allocpte(dst_pmap, addr,
3749				    M_NOWAIT);
3750				if (dstmpte == NULL)
3751					goto out;
3752				dst_pte = pmap_pte_quick(dst_pmap, addr);
3753				if (*dst_pte == 0 &&
3754				    pmap_try_insert_pv_entry(dst_pmap, addr,
3755				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3756					/*
3757					 * Clear the wired, modified, and
3758					 * accessed (referenced) bits
3759					 * during the copy.
3760					 */
3761					*dst_pte = ptetemp & ~(PG_W | PG_M |
3762					    PG_A);
3763					dst_pmap->pm_stats.resident_count++;
3764	 			} else {
3765					free = NULL;
3766					if (pmap_unwire_pte_hold(dst_pmap,
3767					    dstmpte, &free)) {
3768						pmap_invalidate_page(dst_pmap,
3769						    addr);
3770						pmap_free_zero_pages(free);
3771					}
3772					goto out;
3773				}
3774				if (dstmpte->wire_count >= srcmpte->wire_count)
3775					break;
3776			}
3777			addr += PAGE_SIZE;
3778			src_pte++;
3779		}
3780	}
3781out:
3782	sched_unpin();
3783	vm_page_unlock_queues();
3784	PMAP_UNLOCK(src_pmap);
3785	PMAP_UNLOCK(dst_pmap);
3786}
3787
3788static __inline void
3789pagezero(void *page)
3790{
3791#if defined(I686_CPU)
3792	if (cpu_class == CPUCLASS_686) {
3793#if defined(CPU_ENABLE_SSE)
3794		if (cpu_feature & CPUID_SSE2)
3795			sse2_pagezero(page);
3796		else
3797#endif
3798			i686_pagezero(page);
3799	} else
3800#endif
3801		bzero(page, PAGE_SIZE);
3802}
3803
3804/*
3805 *	pmap_zero_page zeros the specified hardware page by mapping
3806 *	the page into KVM and using bzero to clear its contents.
3807 */
3808void
3809pmap_zero_page(vm_page_t m)
3810{
3811	struct sysmaps *sysmaps;
3812
3813	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3814	mtx_lock(&sysmaps->lock);
3815	if (*sysmaps->CMAP2)
3816		panic("pmap_zero_page: CMAP2 busy");
3817	sched_pin();
3818	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3819	    pmap_cache_bits(m->md.pat_mode, 0);
3820	invlcaddr(sysmaps->CADDR2);
3821	pagezero(sysmaps->CADDR2);
3822	*sysmaps->CMAP2 = 0;
3823	sched_unpin();
3824	mtx_unlock(&sysmaps->lock);
3825}
3826
3827/*
3828 *	pmap_zero_page_area zeros the specified hardware page by mapping
3829 *	the page into KVM and using bzero to clear its contents.
3830 *
3831 *	off and size may not cover an area beyond a single hardware page.
3832 */
3833void
3834pmap_zero_page_area(vm_page_t m, int off, int size)
3835{
3836	struct sysmaps *sysmaps;
3837
3838	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3839	mtx_lock(&sysmaps->lock);
3840	if (*sysmaps->CMAP2)
3841		panic("pmap_zero_page_area: CMAP2 busy");
3842	sched_pin();
3843	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3844	    pmap_cache_bits(m->md.pat_mode, 0);
3845	invlcaddr(sysmaps->CADDR2);
3846	if (off == 0 && size == PAGE_SIZE)
3847		pagezero(sysmaps->CADDR2);
3848	else
3849		bzero((char *)sysmaps->CADDR2 + off, size);
3850	*sysmaps->CMAP2 = 0;
3851	sched_unpin();
3852	mtx_unlock(&sysmaps->lock);
3853}
3854
3855/*
3856 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3857 *	the page into KVM and using bzero to clear its contents.  This
3858 *	is intended to be called from the vm_pagezero process only and
3859 *	outside of Giant.
3860 */
3861void
3862pmap_zero_page_idle(vm_page_t m)
3863{
3864
3865	if (*CMAP3)
3866		panic("pmap_zero_page_idle: CMAP3 busy");
3867	sched_pin();
3868	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3869	    pmap_cache_bits(m->md.pat_mode, 0);
3870	invlcaddr(CADDR3);
3871	pagezero(CADDR3);
3872	*CMAP3 = 0;
3873	sched_unpin();
3874}
3875
3876/*
3877 *	pmap_copy_page copies the specified (machine independent)
3878 *	page by mapping the page into virtual memory and using
3879 *	bcopy to copy the page, one machine dependent page at a
3880 *	time.
3881 */
3882void
3883pmap_copy_page(vm_page_t src, vm_page_t dst)
3884{
3885	struct sysmaps *sysmaps;
3886
3887	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3888	mtx_lock(&sysmaps->lock);
3889	if (*sysmaps->CMAP1)
3890		panic("pmap_copy_page: CMAP1 busy");
3891	if (*sysmaps->CMAP2)
3892		panic("pmap_copy_page: CMAP2 busy");
3893	sched_pin();
3894	invlpg((u_int)sysmaps->CADDR1);
3895	invlpg((u_int)sysmaps->CADDR2);
3896	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
3897	    pmap_cache_bits(src->md.pat_mode, 0);
3898	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
3899	    pmap_cache_bits(dst->md.pat_mode, 0);
3900	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3901	*sysmaps->CMAP1 = 0;
3902	*sysmaps->CMAP2 = 0;
3903	sched_unpin();
3904	mtx_unlock(&sysmaps->lock);
3905}
3906
3907/*
3908 * Returns true if the pmap's pv is one of the first
3909 * 16 pvs linked to from this page.  This count may
3910 * be changed upwards or downwards in the future; it
3911 * is only necessary that true be returned for a small
3912 * subset of pmaps for proper page aging.
3913 */
3914boolean_t
3915pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3916{
3917	struct md_page *pvh;
3918	pv_entry_t pv;
3919	int loops = 0;
3920
3921	if (m->flags & PG_FICTITIOUS)
3922		return FALSE;
3923
3924	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3925	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3926		if (PV_PMAP(pv) == pmap) {
3927			return TRUE;
3928		}
3929		loops++;
3930		if (loops >= 16)
3931			break;
3932	}
3933	if (loops < 16) {
3934		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3935		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3936			if (PV_PMAP(pv) == pmap)
3937				return (TRUE);
3938			loops++;
3939			if (loops >= 16)
3940				break;
3941		}
3942	}
3943	return (FALSE);
3944}
3945
3946/*
3947 *	pmap_page_wired_mappings:
3948 *
3949 *	Return the number of managed mappings to the given physical page
3950 *	that are wired.
3951 */
3952int
3953pmap_page_wired_mappings(vm_page_t m)
3954{
3955	int count;
3956
3957	count = 0;
3958	if ((m->flags & PG_FICTITIOUS) != 0)
3959		return (count);
3960	count = pmap_pvh_wired_mappings(&m->md, count);
3961	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3962}
3963
3964/*
3965 *	pmap_pvh_wired_mappings:
3966 *
3967 *	Return the updated number "count" of managed mappings that are wired.
3968 */
3969static int
3970pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3971{
3972	pmap_t pmap;
3973	pt_entry_t *pte;
3974	pv_entry_t pv;
3975
3976	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3977	sched_pin();
3978	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3979		pmap = PV_PMAP(pv);
3980		PMAP_LOCK(pmap);
3981		pte = pmap_pte_quick(pmap, pv->pv_va);
3982		if ((*pte & PG_W) != 0)
3983			count++;
3984		PMAP_UNLOCK(pmap);
3985	}
3986	sched_unpin();
3987	return (count);
3988}
3989
3990/*
3991 * Returns TRUE if the given page is mapped individually or as part of
3992 * a 4mpage.  Otherwise, returns FALSE.
3993 */
3994boolean_t
3995pmap_page_is_mapped(vm_page_t m)
3996{
3997	struct md_page *pvh;
3998
3999	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
4000		return (FALSE);
4001	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4002	if (TAILQ_EMPTY(&m->md.pv_list)) {
4003		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4004		return (!TAILQ_EMPTY(&pvh->pv_list));
4005	} else
4006		return (TRUE);
4007}
4008
4009/*
4010 * Remove all pages from specified address space
4011 * this aids process exit speeds.  Also, this code
4012 * is special cased for current process only, but
4013 * can have the more generic (and slightly slower)
4014 * mode enabled.  This is much faster than pmap_remove
4015 * in the case of running down an entire address space.
4016 */
4017void
4018pmap_remove_pages(pmap_t pmap)
4019{
4020	pt_entry_t *pte, tpte;
4021	vm_page_t free = NULL;
4022	vm_page_t m, mpte, mt;
4023	pv_entry_t pv;
4024	struct md_page *pvh;
4025	struct pv_chunk *pc, *npc;
4026	int field, idx;
4027	int32_t bit;
4028	uint32_t inuse, bitmask;
4029	int allfree;
4030
4031	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
4032		printf("warning: pmap_remove_pages called with non-current pmap\n");
4033		return;
4034	}
4035	vm_page_lock_queues();
4036	PMAP_LOCK(pmap);
4037	sched_pin();
4038	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4039		allfree = 1;
4040		for (field = 0; field < _NPCM; field++) {
4041			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4042			while (inuse != 0) {
4043				bit = bsfl(inuse);
4044				bitmask = 1UL << bit;
4045				idx = field * 32 + bit;
4046				pv = &pc->pc_pventry[idx];
4047				inuse &= ~bitmask;
4048
4049				pte = pmap_pde(pmap, pv->pv_va);
4050				tpte = *pte;
4051				if ((tpte & PG_PS) == 0) {
4052					pte = vtopte(pv->pv_va);
4053					tpte = *pte & ~PG_PTE_PAT;
4054				}
4055
4056				if (tpte == 0) {
4057					printf(
4058					    "TPTE at %p  IS ZERO @ VA %08x\n",
4059					    pte, pv->pv_va);
4060					panic("bad pte");
4061				}
4062
4063/*
4064 * We cannot remove wired pages from a process' mapping at this time
4065 */
4066				if (tpte & PG_W) {
4067					allfree = 0;
4068					continue;
4069				}
4070
4071				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4072				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4073				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4074				    m, (uintmax_t)m->phys_addr,
4075				    (uintmax_t)tpte));
4076
4077				KASSERT(m < &vm_page_array[vm_page_array_size],
4078					("pmap_remove_pages: bad tpte %#jx",
4079					(uintmax_t)tpte));
4080
4081				pte_clear(pte);
4082
4083				/*
4084				 * Update the vm_page_t clean/reference bits.
4085				 */
4086				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4087					if ((tpte & PG_PS) != 0) {
4088						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4089							vm_page_dirty(mt);
4090					} else
4091						vm_page_dirty(m);
4092				}
4093
4094				/* Mark free */
4095				PV_STAT(pv_entry_frees++);
4096				PV_STAT(pv_entry_spare++);
4097				pv_entry_count--;
4098				pc->pc_map[field] |= bitmask;
4099				if ((tpte & PG_PS) != 0) {
4100					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4101					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4102					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4103					if (TAILQ_EMPTY(&pvh->pv_list)) {
4104						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4105							if (TAILQ_EMPTY(&mt->md.pv_list))
4106								vm_page_flag_clear(mt, PG_WRITEABLE);
4107					}
4108					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4109					if (mpte != NULL) {
4110						pmap_remove_pt_page(pmap, mpte);
4111						pmap->pm_stats.resident_count--;
4112						KASSERT(mpte->wire_count == NPTEPG,
4113						    ("pmap_remove_pages: pte page wire count error"));
4114						mpte->wire_count = 0;
4115						pmap_add_delayed_free_list(mpte, &free, FALSE);
4116						atomic_subtract_int(&cnt.v_wire_count, 1);
4117					}
4118				} else {
4119					pmap->pm_stats.resident_count--;
4120					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4121					if (TAILQ_EMPTY(&m->md.pv_list)) {
4122						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4123						if (TAILQ_EMPTY(&pvh->pv_list))
4124							vm_page_flag_clear(m, PG_WRITEABLE);
4125					}
4126					pmap_unuse_pt(pmap, pv->pv_va, &free);
4127				}
4128			}
4129		}
4130		if (allfree) {
4131			PV_STAT(pv_entry_spare -= _NPCPV);
4132			PV_STAT(pc_chunk_count--);
4133			PV_STAT(pc_chunk_frees++);
4134			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4135			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4136			pmap_qremove((vm_offset_t)pc, 1);
4137			vm_page_unwire(m, 0);
4138			vm_page_free(m);
4139			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4140		}
4141	}
4142	sched_unpin();
4143	pmap_invalidate_all(pmap);
4144	vm_page_unlock_queues();
4145	PMAP_UNLOCK(pmap);
4146	pmap_free_zero_pages(free);
4147}
4148
4149/*
4150 *	pmap_is_modified:
4151 *
4152 *	Return whether or not the specified physical page was modified
4153 *	in any physical maps.
4154 */
4155boolean_t
4156pmap_is_modified(vm_page_t m)
4157{
4158
4159	if (m->flags & PG_FICTITIOUS)
4160		return (FALSE);
4161	if (pmap_is_modified_pvh(&m->md))
4162		return (TRUE);
4163	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4164}
4165
4166/*
4167 * Returns TRUE if any of the given mappings were used to modify
4168 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4169 * mappings are supported.
4170 */
4171static boolean_t
4172pmap_is_modified_pvh(struct md_page *pvh)
4173{
4174	pv_entry_t pv;
4175	pt_entry_t *pte;
4176	pmap_t pmap;
4177	boolean_t rv;
4178
4179	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4180	rv = FALSE;
4181	sched_pin();
4182	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4183		pmap = PV_PMAP(pv);
4184		PMAP_LOCK(pmap);
4185		pte = pmap_pte_quick(pmap, pv->pv_va);
4186		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4187		PMAP_UNLOCK(pmap);
4188		if (rv)
4189			break;
4190	}
4191	sched_unpin();
4192	return (rv);
4193}
4194
4195/*
4196 *	pmap_is_prefaultable:
4197 *
4198 *	Return whether or not the specified virtual address is elgible
4199 *	for prefault.
4200 */
4201boolean_t
4202pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4203{
4204	pd_entry_t *pde;
4205	pt_entry_t *pte;
4206	boolean_t rv;
4207
4208	rv = FALSE;
4209	PMAP_LOCK(pmap);
4210	pde = pmap_pde(pmap, addr);
4211	if (*pde != 0 && (*pde & PG_PS) == 0) {
4212		pte = vtopte(addr);
4213		rv = *pte == 0;
4214	}
4215	PMAP_UNLOCK(pmap);
4216	return (rv);
4217}
4218
4219/*
4220 * Clear the write and modified bits in each of the given page's mappings.
4221 */
4222void
4223pmap_remove_write(vm_page_t m)
4224{
4225	struct md_page *pvh;
4226	pv_entry_t next_pv, pv;
4227	pmap_t pmap;
4228	pd_entry_t *pde;
4229	pt_entry_t oldpte, *pte;
4230	vm_offset_t va;
4231
4232	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4233	if ((m->flags & PG_FICTITIOUS) != 0 ||
4234	    (m->flags & PG_WRITEABLE) == 0)
4235		return;
4236	sched_pin();
4237	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4238	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4239		va = pv->pv_va;
4240		pmap = PV_PMAP(pv);
4241		PMAP_LOCK(pmap);
4242		pde = pmap_pde(pmap, va);
4243		if ((*pde & PG_RW) != 0)
4244			(void)pmap_demote_pde(pmap, pde, va);
4245		PMAP_UNLOCK(pmap);
4246	}
4247	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4248		pmap = PV_PMAP(pv);
4249		PMAP_LOCK(pmap);
4250		pde = pmap_pde(pmap, pv->pv_va);
4251		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4252		    " a 4mpage in page %p's pv list", m));
4253		pte = pmap_pte_quick(pmap, pv->pv_va);
4254retry:
4255		oldpte = *pte;
4256		if ((oldpte & PG_RW) != 0) {
4257			/*
4258			 * Regardless of whether a pte is 32 or 64 bits
4259			 * in size, PG_RW and PG_M are among the least
4260			 * significant 32 bits.
4261			 */
4262			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4263			    oldpte & ~(PG_RW | PG_M)))
4264				goto retry;
4265			if ((oldpte & PG_M) != 0)
4266				vm_page_dirty(m);
4267			pmap_invalidate_page(pmap, pv->pv_va);
4268		}
4269		PMAP_UNLOCK(pmap);
4270	}
4271	vm_page_flag_clear(m, PG_WRITEABLE);
4272	sched_unpin();
4273}
4274
4275/*
4276 *	pmap_ts_referenced:
4277 *
4278 *	Return a count of reference bits for a page, clearing those bits.
4279 *	It is not necessary for every reference bit to be cleared, but it
4280 *	is necessary that 0 only be returned when there are truly no
4281 *	reference bits set.
4282 *
4283 *	XXX: The exact number of bits to check and clear is a matter that
4284 *	should be tested and standardized at some point in the future for
4285 *	optimal aging of shared pages.
4286 */
4287int
4288pmap_ts_referenced(vm_page_t m)
4289{
4290	struct md_page *pvh;
4291	pv_entry_t pv, pvf, pvn;
4292	pmap_t pmap;
4293	pd_entry_t oldpde, *pde;
4294	pt_entry_t *pte;
4295	vm_offset_t va;
4296	int rtval = 0;
4297
4298	if (m->flags & PG_FICTITIOUS)
4299		return (rtval);
4300	sched_pin();
4301	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4302	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4303	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4304		va = pv->pv_va;
4305		pmap = PV_PMAP(pv);
4306		PMAP_LOCK(pmap);
4307		pde = pmap_pde(pmap, va);
4308		oldpde = *pde;
4309		if ((oldpde & PG_A) != 0) {
4310			if (pmap_demote_pde(pmap, pde, va)) {
4311				if ((oldpde & PG_W) == 0) {
4312					/*
4313					 * Remove the mapping to a single page
4314					 * so that a subsequent access may
4315					 * repromote.  Since the underlying
4316					 * page table page is fully populated,
4317					 * this removal never frees a page
4318					 * table page.
4319					 */
4320					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4321					    PG_PS_FRAME);
4322					pmap_remove_page(pmap, va, NULL);
4323					rtval++;
4324					if (rtval > 4) {
4325						PMAP_UNLOCK(pmap);
4326						return (rtval);
4327					}
4328				}
4329			}
4330		}
4331		PMAP_UNLOCK(pmap);
4332	}
4333	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4334		pvf = pv;
4335		do {
4336			pvn = TAILQ_NEXT(pv, pv_list);
4337			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4338			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4339			pmap = PV_PMAP(pv);
4340			PMAP_LOCK(pmap);
4341			pde = pmap_pde(pmap, pv->pv_va);
4342			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4343			    " found a 4mpage in page %p's pv list", m));
4344			pte = pmap_pte_quick(pmap, pv->pv_va);
4345			if ((*pte & PG_A) != 0) {
4346				atomic_clear_int((u_int *)pte, PG_A);
4347				pmap_invalidate_page(pmap, pv->pv_va);
4348				rtval++;
4349				if (rtval > 4)
4350					pvn = NULL;
4351			}
4352			PMAP_UNLOCK(pmap);
4353		} while ((pv = pvn) != NULL && pv != pvf);
4354	}
4355	sched_unpin();
4356	return (rtval);
4357}
4358
4359/*
4360 *	Clear the modify bits on the specified physical page.
4361 */
4362void
4363pmap_clear_modify(vm_page_t m)
4364{
4365	struct md_page *pvh;
4366	pv_entry_t next_pv, pv;
4367	pmap_t pmap;
4368	pd_entry_t oldpde, *pde;
4369	pt_entry_t oldpte, *pte;
4370	vm_offset_t va;
4371
4372	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4373	if ((m->flags & PG_FICTITIOUS) != 0)
4374		return;
4375	sched_pin();
4376	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4377	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4378		va = pv->pv_va;
4379		pmap = PV_PMAP(pv);
4380		PMAP_LOCK(pmap);
4381		pde = pmap_pde(pmap, va);
4382		oldpde = *pde;
4383		if ((oldpde & PG_RW) != 0) {
4384			if (pmap_demote_pde(pmap, pde, va)) {
4385				if ((oldpde & PG_W) == 0) {
4386					/*
4387					 * Write protect the mapping to a
4388					 * single page so that a subsequent
4389					 * write access may repromote.
4390					 */
4391					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4392					    PG_PS_FRAME);
4393					pte = pmap_pte_quick(pmap, va);
4394					oldpte = *pte;
4395					if ((oldpte & PG_V) != 0) {
4396						/*
4397						 * Regardless of whether a pte is 32 or 64 bits
4398						 * in size, PG_RW and PG_M are among the least
4399						 * significant 32 bits.
4400						 */
4401						while (!atomic_cmpset_int((u_int *)pte,
4402						    oldpte,
4403						    oldpte & ~(PG_M | PG_RW)))
4404							oldpte = *pte;
4405						vm_page_dirty(m);
4406						pmap_invalidate_page(pmap, va);
4407					}
4408				}
4409			}
4410		}
4411		PMAP_UNLOCK(pmap);
4412	}
4413	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4414		pmap = PV_PMAP(pv);
4415		PMAP_LOCK(pmap);
4416		pde = pmap_pde(pmap, pv->pv_va);
4417		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4418		    " a 4mpage in page %p's pv list", m));
4419		pte = pmap_pte_quick(pmap, pv->pv_va);
4420		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4421			/*
4422			 * Regardless of whether a pte is 32 or 64 bits
4423			 * in size, PG_M is among the least significant
4424			 * 32 bits.
4425			 */
4426			atomic_clear_int((u_int *)pte, PG_M);
4427			pmap_invalidate_page(pmap, pv->pv_va);
4428		}
4429		PMAP_UNLOCK(pmap);
4430	}
4431	sched_unpin();
4432}
4433
4434/*
4435 *	pmap_clear_reference:
4436 *
4437 *	Clear the reference bit on the specified physical page.
4438 */
4439void
4440pmap_clear_reference(vm_page_t m)
4441{
4442	struct md_page *pvh;
4443	pv_entry_t next_pv, pv;
4444	pmap_t pmap;
4445	pd_entry_t oldpde, *pde;
4446	pt_entry_t *pte;
4447	vm_offset_t va;
4448
4449	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4450	if ((m->flags & PG_FICTITIOUS) != 0)
4451		return;
4452	sched_pin();
4453	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4454	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4455		va = pv->pv_va;
4456		pmap = PV_PMAP(pv);
4457		PMAP_LOCK(pmap);
4458		pde = pmap_pde(pmap, va);
4459		oldpde = *pde;
4460		if ((oldpde & PG_A) != 0) {
4461			if (pmap_demote_pde(pmap, pde, va)) {
4462				/*
4463				 * Remove the mapping to a single page so
4464				 * that a subsequent access may repromote.
4465				 * Since the underlying page table page is
4466				 * fully populated, this removal never frees
4467				 * a page table page.
4468				 */
4469				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4470				    PG_PS_FRAME);
4471				pmap_remove_page(pmap, va, NULL);
4472			}
4473		}
4474		PMAP_UNLOCK(pmap);
4475	}
4476	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4477		pmap = PV_PMAP(pv);
4478		PMAP_LOCK(pmap);
4479		pde = pmap_pde(pmap, pv->pv_va);
4480		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4481		    " a 4mpage in page %p's pv list", m));
4482		pte = pmap_pte_quick(pmap, pv->pv_va);
4483		if ((*pte & PG_A) != 0) {
4484			/*
4485			 * Regardless of whether a pte is 32 or 64 bits
4486			 * in size, PG_A is among the least significant
4487			 * 32 bits.
4488			 */
4489			atomic_clear_int((u_int *)pte, PG_A);
4490			pmap_invalidate_page(pmap, pv->pv_va);
4491		}
4492		PMAP_UNLOCK(pmap);
4493	}
4494	sched_unpin();
4495}
4496
4497/*
4498 * Miscellaneous support routines follow
4499 */
4500
4501/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4502static __inline void
4503pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4504{
4505	u_int opte, npte;
4506
4507	/*
4508	 * The cache mode bits are all in the low 32-bits of the
4509	 * PTE, so we can just spin on updating the low 32-bits.
4510	 */
4511	do {
4512		opte = *(u_int *)pte;
4513		npte = opte & ~PG_PTE_CACHE;
4514		npte |= cache_bits;
4515	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4516}
4517
4518/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4519static __inline void
4520pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4521{
4522	u_int opde, npde;
4523
4524	/*
4525	 * The cache mode bits are all in the low 32-bits of the
4526	 * PDE, so we can just spin on updating the low 32-bits.
4527	 */
4528	do {
4529		opde = *(u_int *)pde;
4530		npde = opde & ~PG_PDE_CACHE;
4531		npde |= cache_bits;
4532	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4533}
4534
4535/*
4536 * Map a set of physical memory pages into the kernel virtual
4537 * address space. Return a pointer to where it is mapped. This
4538 * routine is intended to be used for mapping device memory,
4539 * NOT real memory.
4540 */
4541void *
4542pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4543{
4544	vm_offset_t va, offset;
4545	vm_size_t tmpsize;
4546
4547	offset = pa & PAGE_MASK;
4548	size = roundup(offset + size, PAGE_SIZE);
4549	pa = pa & PG_FRAME;
4550
4551	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4552		va = KERNBASE + pa;
4553	else
4554		va = kmem_alloc_nofault(kernel_map, size);
4555	if (!va)
4556		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4557
4558	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4559		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4560	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4561	pmap_invalidate_cache_range(va, va + size);
4562	return ((void *)(va + offset));
4563}
4564
4565void *
4566pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4567{
4568
4569	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4570}
4571
4572void *
4573pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4574{
4575
4576	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4577}
4578
4579void
4580pmap_unmapdev(vm_offset_t va, vm_size_t size)
4581{
4582	vm_offset_t base, offset, tmpva;
4583
4584	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4585		return;
4586	base = trunc_page(va);
4587	offset = va & PAGE_MASK;
4588	size = roundup(offset + size, PAGE_SIZE);
4589	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4590		pmap_kremove(tmpva);
4591	pmap_invalidate_range(kernel_pmap, va, tmpva);
4592	kmem_free(kernel_map, base, size);
4593}
4594
4595/*
4596 * Sets the memory attribute for the specified page.
4597 */
4598void
4599pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4600{
4601	struct sysmaps *sysmaps;
4602	vm_offset_t sva, eva;
4603
4604	m->md.pat_mode = ma;
4605	if ((m->flags & PG_FICTITIOUS) != 0)
4606		return;
4607
4608	/*
4609	 * If "m" is a normal page, flush it from the cache.
4610	 * See pmap_invalidate_cache_range().
4611	 *
4612	 * First, try to find an existing mapping of the page by sf
4613	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4614	 * flushes the cache.
4615	 */
4616	if (sf_buf_invalidate_cache(m))
4617		return;
4618
4619	/*
4620	 * If page is not mapped by sf buffer, but CPU does not
4621	 * support self snoop, map the page transient and do
4622	 * invalidation. In the worst case, whole cache is flushed by
4623	 * pmap_invalidate_cache_range().
4624	 */
4625	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4626		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4627		mtx_lock(&sysmaps->lock);
4628		if (*sysmaps->CMAP2)
4629			panic("pmap_page_set_memattr: CMAP2 busy");
4630		sched_pin();
4631		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4632		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4633		invlcaddr(sysmaps->CADDR2);
4634		sva = (vm_offset_t)sysmaps->CADDR2;
4635		eva = sva + PAGE_SIZE;
4636	} else
4637		sva = eva = 0; /* gcc */
4638	pmap_invalidate_cache_range(sva, eva);
4639	if (sva != 0) {
4640		*sysmaps->CMAP2 = 0;
4641		sched_unpin();
4642		mtx_unlock(&sysmaps->lock);
4643	}
4644}
4645
4646/*
4647 * Changes the specified virtual address range's memory type to that given by
4648 * the parameter "mode".  The specified virtual address range must be
4649 * completely contained within either the kernel map.
4650 *
4651 * Returns zero if the change completed successfully, and either EINVAL or
4652 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4653 * of the virtual address range was not mapped, and ENOMEM is returned if
4654 * there was insufficient memory available to complete the change.
4655 */
4656int
4657pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4658{
4659	vm_offset_t base, offset, tmpva;
4660	pd_entry_t *pde;
4661	pt_entry_t *pte;
4662	int cache_bits_pte, cache_bits_pde;
4663	boolean_t changed;
4664
4665	base = trunc_page(va);
4666	offset = va & PAGE_MASK;
4667	size = roundup(offset + size, PAGE_SIZE);
4668
4669	/*
4670	 * Only supported on kernel virtual addresses above the recursive map.
4671	 */
4672	if (base < VM_MIN_KERNEL_ADDRESS)
4673		return (EINVAL);
4674
4675	cache_bits_pde = pmap_cache_bits(mode, 1);
4676	cache_bits_pte = pmap_cache_bits(mode, 0);
4677	changed = FALSE;
4678
4679	/*
4680	 * Pages that aren't mapped aren't supported.  Also break down
4681	 * 2/4MB pages into 4KB pages if required.
4682	 */
4683	PMAP_LOCK(kernel_pmap);
4684	for (tmpva = base; tmpva < base + size; ) {
4685		pde = pmap_pde(kernel_pmap, tmpva);
4686		if (*pde == 0) {
4687			PMAP_UNLOCK(kernel_pmap);
4688			return (EINVAL);
4689		}
4690		if (*pde & PG_PS) {
4691			/*
4692			 * If the current 2/4MB page already has
4693			 * the required memory type, then we need not
4694			 * demote this page.  Just increment tmpva to
4695			 * the next 2/4MB page frame.
4696			 */
4697			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4698				tmpva = trunc_4mpage(tmpva) + NBPDR;
4699				continue;
4700			}
4701
4702			/*
4703			 * If the current offset aligns with a 2/4MB
4704			 * page frame and there is at least 2/4MB left
4705			 * within the range, then we need not break
4706			 * down this page into 4KB pages.
4707			 */
4708			if ((tmpva & PDRMASK) == 0 &&
4709			    tmpva + PDRMASK < base + size) {
4710				tmpva += NBPDR;
4711				continue;
4712			}
4713			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4714				PMAP_UNLOCK(kernel_pmap);
4715				return (ENOMEM);
4716			}
4717		}
4718		pte = vtopte(tmpva);
4719		if (*pte == 0) {
4720			PMAP_UNLOCK(kernel_pmap);
4721			return (EINVAL);
4722		}
4723		tmpva += PAGE_SIZE;
4724	}
4725	PMAP_UNLOCK(kernel_pmap);
4726
4727	/*
4728	 * Ok, all the pages exist, so run through them updating their
4729	 * cache mode if required.
4730	 */
4731	for (tmpva = base; tmpva < base + size; ) {
4732		pde = pmap_pde(kernel_pmap, tmpva);
4733		if (*pde & PG_PS) {
4734			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4735				pmap_pde_attr(pde, cache_bits_pde);
4736				changed = TRUE;
4737			}
4738			tmpva = trunc_4mpage(tmpva) + NBPDR;
4739		} else {
4740			pte = vtopte(tmpva);
4741			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4742				pmap_pte_attr(pte, cache_bits_pte);
4743				changed = TRUE;
4744			}
4745			tmpva += PAGE_SIZE;
4746		}
4747	}
4748
4749	/*
4750	 * Flush CPU caches to make sure any data isn't cached that
4751	 * shouldn't be, etc.
4752	 */
4753	if (changed) {
4754		pmap_invalidate_range(kernel_pmap, base, tmpva);
4755		pmap_invalidate_cache_range(base, tmpva);
4756	}
4757	return (0);
4758}
4759
4760/*
4761 * perform the pmap work for mincore
4762 */
4763int
4764pmap_mincore(pmap_t pmap, vm_offset_t addr)
4765{
4766	pd_entry_t *pdep;
4767	pt_entry_t *ptep, pte;
4768	vm_paddr_t pa;
4769	vm_page_t m;
4770	int val = 0;
4771
4772	PMAP_LOCK(pmap);
4773	pdep = pmap_pde(pmap, addr);
4774	if (*pdep != 0) {
4775		if (*pdep & PG_PS) {
4776			pte = *pdep;
4777			val = MINCORE_SUPER;
4778			/* Compute the physical address of the 4KB page. */
4779			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4780			    PG_FRAME;
4781		} else {
4782			ptep = pmap_pte(pmap, addr);
4783			pte = *ptep;
4784			pmap_pte_release(ptep);
4785			pa = pte & PG_FRAME;
4786		}
4787	} else {
4788		pte = 0;
4789		pa = 0;
4790	}
4791	PMAP_UNLOCK(pmap);
4792
4793	if (pte != 0) {
4794		val |= MINCORE_INCORE;
4795		if ((pte & PG_MANAGED) == 0)
4796			return val;
4797
4798		m = PHYS_TO_VM_PAGE(pa);
4799
4800		/*
4801		 * Modified by us
4802		 */
4803		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4804			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4805		else {
4806			/*
4807			 * Modified by someone else
4808			 */
4809			vm_page_lock_queues();
4810			if (m->dirty || pmap_is_modified(m))
4811				val |= MINCORE_MODIFIED_OTHER;
4812			vm_page_unlock_queues();
4813		}
4814		/*
4815		 * Referenced by us
4816		 */
4817		if (pte & PG_A)
4818			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4819		else {
4820			/*
4821			 * Referenced by someone else
4822			 */
4823			vm_page_lock_queues();
4824			if ((m->flags & PG_REFERENCED) ||
4825			    pmap_ts_referenced(m)) {
4826				val |= MINCORE_REFERENCED_OTHER;
4827				vm_page_flag_set(m, PG_REFERENCED);
4828			}
4829			vm_page_unlock_queues();
4830		}
4831	}
4832	return val;
4833}
4834
4835void
4836pmap_activate(struct thread *td)
4837{
4838	pmap_t	pmap, oldpmap;
4839	u_int32_t  cr3;
4840
4841	critical_enter();
4842	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4843	oldpmap = PCPU_GET(curpmap);
4844#if defined(SMP)
4845	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4846	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4847#else
4848	oldpmap->pm_active &= ~1;
4849	pmap->pm_active |= 1;
4850#endif
4851#ifdef PAE
4852	cr3 = vtophys(pmap->pm_pdpt);
4853#else
4854	cr3 = vtophys(pmap->pm_pdir);
4855#endif
4856	/*
4857	 * pmap_activate is for the current thread on the current cpu
4858	 */
4859	td->td_pcb->pcb_cr3 = cr3;
4860	load_cr3(cr3);
4861	PCPU_SET(curpmap, pmap);
4862	critical_exit();
4863}
4864
4865void
4866pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4867{
4868}
4869
4870/*
4871 *	Increase the starting virtual address of the given mapping if a
4872 *	different alignment might result in more superpage mappings.
4873 */
4874void
4875pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4876    vm_offset_t *addr, vm_size_t size)
4877{
4878	vm_offset_t superpage_offset;
4879
4880	if (size < NBPDR)
4881		return;
4882	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4883		offset += ptoa(object->pg_color);
4884	superpage_offset = offset & PDRMASK;
4885	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4886	    (*addr & PDRMASK) == superpage_offset)
4887		return;
4888	if ((*addr & PDRMASK) < superpage_offset)
4889		*addr = (*addr & ~PDRMASK) + superpage_offset;
4890	else
4891		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4892}
4893
4894
4895#if defined(PMAP_DEBUG)
4896pmap_pid_dump(int pid)
4897{
4898	pmap_t pmap;
4899	struct proc *p;
4900	int npte = 0;
4901	int index;
4902
4903	sx_slock(&allproc_lock);
4904	FOREACH_PROC_IN_SYSTEM(p) {
4905		if (p->p_pid != pid)
4906			continue;
4907
4908		if (p->p_vmspace) {
4909			int i,j;
4910			index = 0;
4911			pmap = vmspace_pmap(p->p_vmspace);
4912			for (i = 0; i < NPDEPTD; i++) {
4913				pd_entry_t *pde;
4914				pt_entry_t *pte;
4915				vm_offset_t base = i << PDRSHIFT;
4916
4917				pde = &pmap->pm_pdir[i];
4918				if (pde && pmap_pde_v(pde)) {
4919					for (j = 0; j < NPTEPG; j++) {
4920						vm_offset_t va = base + (j << PAGE_SHIFT);
4921						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4922							if (index) {
4923								index = 0;
4924								printf("\n");
4925							}
4926							sx_sunlock(&allproc_lock);
4927							return npte;
4928						}
4929						pte = pmap_pte(pmap, va);
4930						if (pte && pmap_pte_v(pte)) {
4931							pt_entry_t pa;
4932							vm_page_t m;
4933							pa = *pte;
4934							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4935							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4936								va, pa, m->hold_count, m->wire_count, m->flags);
4937							npte++;
4938							index++;
4939							if (index >= 2) {
4940								index = 0;
4941								printf("\n");
4942							} else {
4943								printf(" ");
4944							}
4945						}
4946					}
4947				}
4948			}
4949		}
4950	}
4951	sx_sunlock(&allproc_lock);
4952	return npte;
4953}
4954#endif
4955
4956#if defined(DEBUG)
4957
4958static void	pads(pmap_t pm);
4959void		pmap_pvdump(vm_offset_t pa);
4960
4961/* print address space of pmap*/
4962static void
4963pads(pmap_t pm)
4964{
4965	int i, j;
4966	vm_paddr_t va;
4967	pt_entry_t *ptep;
4968
4969	if (pm == kernel_pmap)
4970		return;
4971	for (i = 0; i < NPDEPTD; i++)
4972		if (pm->pm_pdir[i])
4973			for (j = 0; j < NPTEPG; j++) {
4974				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4975				if (pm == kernel_pmap && va < KERNBASE)
4976					continue;
4977				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4978					continue;
4979				ptep = pmap_pte(pm, va);
4980				if (pmap_pte_v(ptep))
4981					printf("%x:%x ", va, *ptep);
4982			};
4983
4984}
4985
4986void
4987pmap_pvdump(vm_paddr_t pa)
4988{
4989	pv_entry_t pv;
4990	pmap_t pmap;
4991	vm_page_t m;
4992
4993	printf("pa %x", pa);
4994	m = PHYS_TO_VM_PAGE(pa);
4995	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4996		pmap = PV_PMAP(pv);
4997		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4998		pads(pmap);
4999	}
5000	printf(" ");
5001}
5002#endif
5003