pmap.c revision 199184
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 199184 2009-11-11 14:21:31Z avg $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#define PMAP_INLINE	__gnu89_inline
166#else
167#define PMAP_INLINE
168#endif
169
170#define PV_STATS
171#ifdef PV_STATS
172#define PV_STAT(x)	do { x ; } while (0)
173#else
174#define PV_STAT(x)	do { } while (0)
175#endif
176
177#define	pa_index(pa)	((pa) >> PDRSHIFT)
178#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
179
180/*
181 * Get PDEs and PTEs for user/kernel address space
182 */
183#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
184#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
185
186#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
187#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
188#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
189#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
190#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
191
192#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
193    atomic_clear_int((u_int *)(pte), PG_W))
194#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
195
196struct pmap kernel_pmap_store;
197LIST_HEAD(pmaplist, pmap);
198static struct pmaplist allpmaps;
199static struct mtx allpmaps_lock;
200
201vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
202vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
203int pgeflag = 0;		/* PG_G or-in */
204int pseflag = 0;		/* PG_PS or-in */
205
206static int nkpt;
207vm_offset_t kernel_vm_end;
208extern u_int32_t KERNend;
209
210#ifdef PAE
211pt_entry_t pg_nx;
212static uma_zone_t pdptzone;
213#endif
214
215static int pat_works = 0;		/* Is page attribute table sane? */
216
217SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
218
219static int pg_ps_enabled;
220SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
221    "Are large page mappings enabled?");
222
223/*
224 * Data for the pv entry allocation mechanism
225 */
226static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
227static struct md_page *pv_table;
228static int shpgperproc = PMAP_SHPGPERPROC;
229
230struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
231int pv_maxchunks;			/* How many chunks we have KVA for */
232vm_offset_t pv_vafree;			/* freelist stored in the PTE */
233
234/*
235 * All those kernel PT submaps that BSD is so fond of
236 */
237struct sysmaps {
238	struct	mtx lock;
239	pt_entry_t *CMAP1;
240	pt_entry_t *CMAP2;
241	caddr_t	CADDR1;
242	caddr_t	CADDR2;
243};
244static struct sysmaps sysmaps_pcpu[MAXCPU];
245pt_entry_t *CMAP1 = 0;
246static pt_entry_t *CMAP3;
247caddr_t CADDR1 = 0, ptvmmap = 0;
248static caddr_t CADDR3;
249struct msgbuf *msgbufp = 0;
250
251/*
252 * Crashdump maps.
253 */
254static caddr_t crashdumpmap;
255
256static pt_entry_t *PMAP1 = 0, *PMAP2;
257static pt_entry_t *PADDR1 = 0, *PADDR2;
258#ifdef SMP
259static int PMAP1cpu;
260static int PMAP1changedcpu;
261SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
262	   &PMAP1changedcpu, 0,
263	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
264#endif
265static int PMAP1changed;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
267	   &PMAP1changed, 0,
268	   "Number of times pmap_pte_quick changed PMAP1");
269static int PMAP1unchanged;
270SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
271	   &PMAP1unchanged, 0,
272	   "Number of times pmap_pte_quick didn't change PMAP1");
273static struct mtx PMAP2mutex;
274
275static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
276static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
277static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
278static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
279static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
280static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
281static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
282		    vm_offset_t va);
283static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
284
285static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
286static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
287    vm_prot_t prot);
288static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
289    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
290static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
291static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
292static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
293static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
294static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
295static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
296static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
297static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
298    vm_prot_t prot);
299static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
300static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
301    vm_page_t *free);
302static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
303    vm_page_t *free);
304static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
305static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
306    vm_page_t *free);
307static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
308					vm_offset_t va);
309static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
310static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
311    vm_page_t m);
312
313static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
314
315static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
316static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
317static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
318static void pmap_pte_release(pt_entry_t *pte);
319static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
320static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
321#ifdef PAE
322static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
323#endif
324
325CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
326CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
327
328/*
329 * If you get an error here, then you set KVA_PAGES wrong! See the
330 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
331 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
332 */
333CTASSERT(KERNBASE % (1 << 24) == 0);
334
335/*
336 * Move the kernel virtual free pointer to the next
337 * 4MB.  This is used to help improve performance
338 * by using a large (4MB) page for much of the kernel
339 * (.text, .data, .bss)
340 */
341static vm_offset_t
342pmap_kmem_choose(vm_offset_t addr)
343{
344	vm_offset_t newaddr = addr;
345
346#ifndef DISABLE_PSE
347	if (cpu_feature & CPUID_PSE)
348		newaddr = (addr + PDRMASK) & ~PDRMASK;
349#endif
350	return newaddr;
351}
352
353/*
354 *	Bootstrap the system enough to run with virtual memory.
355 *
356 *	On the i386 this is called after mapping has already been enabled
357 *	and just syncs the pmap module with what has already been done.
358 *	[We can't call it easily with mapping off since the kernel is not
359 *	mapped with PA == VA, hence we would have to relocate every address
360 *	from the linked base (virtual) address "KERNBASE" to the actual
361 *	(physical) address starting relative to 0]
362 */
363void
364pmap_bootstrap(vm_paddr_t firstaddr)
365{
366	vm_offset_t va;
367	pt_entry_t *pte, *unused;
368	struct sysmaps *sysmaps;
369	int i;
370
371	/*
372	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
373	 * large. It should instead be correctly calculated in locore.s and
374	 * not based on 'first' (which is a physical address, not a virtual
375	 * address, for the start of unused physical memory). The kernel
376	 * page tables are NOT double mapped and thus should not be included
377	 * in this calculation.
378	 */
379	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
380	virtual_avail = pmap_kmem_choose(virtual_avail);
381
382	virtual_end = VM_MAX_KERNEL_ADDRESS;
383
384	/*
385	 * Initialize the kernel pmap (which is statically allocated).
386	 */
387	PMAP_LOCK_INIT(kernel_pmap);
388	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
389#ifdef PAE
390	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
391#endif
392	kernel_pmap->pm_root = NULL;
393	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
394	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
395	LIST_INIT(&allpmaps);
396	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
397	mtx_lock_spin(&allpmaps_lock);
398	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
399	mtx_unlock_spin(&allpmaps_lock);
400	nkpt = NKPT;
401
402	/*
403	 * Reserve some special page table entries/VA space for temporary
404	 * mapping of pages.
405	 */
406#define	SYSMAP(c, p, v, n)	\
407	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
408
409	va = virtual_avail;
410	pte = vtopte(va);
411
412	/*
413	 * CMAP1/CMAP2 are used for zeroing and copying pages.
414	 * CMAP3 is used for the idle process page zeroing.
415	 */
416	for (i = 0; i < MAXCPU; i++) {
417		sysmaps = &sysmaps_pcpu[i];
418		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
419		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
420		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
421	}
422	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
423	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
424	*CMAP3 = 0;
425
426	/*
427	 * Crashdump maps.
428	 */
429	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
430
431	/*
432	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
433	 */
434	SYSMAP(caddr_t, unused, ptvmmap, 1)
435
436	/*
437	 * msgbufp is used to map the system message buffer.
438	 */
439	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
440
441	/*
442	 * ptemap is used for pmap_pte_quick
443	 */
444	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
445	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
446
447	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
448
449	virtual_avail = va;
450
451	*CMAP1 = 0;
452
453	/*
454	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
455	 * physical memory region that is used by the ACPI wakeup code.  This
456	 * mapping must not have PG_G set.
457	 */
458#ifdef XBOX
459	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
460	 * an early stadium, we cannot yet neatly map video memory ... :-(
461	 * Better fixes are very welcome! */
462	if (!arch_i386_is_xbox)
463#endif
464	for (i = 1; i < NKPT; i++)
465		PTD[i] = 0;
466
467	/* Initialize the PAT MSR if present. */
468	pmap_init_pat();
469
470	/* Turn on PG_G on kernel page(s) */
471	pmap_set_pg();
472}
473
474/*
475 * Setup the PAT MSR.
476 */
477void
478pmap_init_pat(void)
479{
480	uint64_t pat_msr;
481	char *sysenv;
482	static int pat_tested = 0;
483
484	/* Bail if this CPU doesn't implement PAT. */
485	if (!(cpu_feature & CPUID_PAT))
486		return;
487
488	/*
489	 * Due to some Intel errata, we can only safely use the lower 4
490	 * PAT entries.
491	 *
492	 *   Intel Pentium III Processor Specification Update
493	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
494	 * or Mode C Paging)
495	 *
496	 *   Intel Pentium IV  Processor Specification Update
497	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
498	 *
499	 * Some Apple Macs based on nVidia chipsets cannot enter ACPI mode
500	 * via SMI# when we use upper 4 PAT entries for unknown reason.
501	 */
502	if (!pat_tested) {
503		if (cpu_vendor_id != CPU_VENDOR_INTEL ||
504		    (CPUID_TO_FAMILY(cpu_id) == 6 &&
505		    CPUID_TO_MODEL(cpu_id) >= 0xe)) {
506			pat_works = 1;
507			sysenv = getenv("smbios.system.product");
508			if (sysenv != NULL) {
509				if (strncmp(sysenv, "MacBook5,1", 10) == 0 ||
510				    strncmp(sysenv, "MacBookPro5,5", 13) == 0 ||
511				    strncmp(sysenv, "Macmini3,1", 10) == 0)
512					pat_works = 0;
513				freeenv(sysenv);
514			}
515		}
516		pat_tested = 1;
517	}
518
519	/* Initialize default PAT entries. */
520	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
521	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
522	    PAT_VALUE(2, PAT_UNCACHED) |
523	    PAT_VALUE(3, PAT_UNCACHEABLE) |
524	    PAT_VALUE(4, PAT_WRITE_BACK) |
525	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
526	    PAT_VALUE(6, PAT_UNCACHED) |
527	    PAT_VALUE(7, PAT_UNCACHEABLE);
528
529	if (pat_works) {
530		/*
531		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
532		 * Program 4 and 5 as WP and WC.
533		 * Leave 6 and 7 as UC- and UC.
534		 */
535		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
536		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
537		    PAT_VALUE(5, PAT_WRITE_COMBINING);
538	} else {
539		/*
540		 * Just replace PAT Index 2 with WC instead of UC-.
541		 */
542		pat_msr &= ~PAT_MASK(2);
543		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
544	}
545	wrmsr(MSR_PAT, pat_msr);
546}
547
548/*
549 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
550 */
551void
552pmap_set_pg(void)
553{
554	pd_entry_t pdir;
555	pt_entry_t *pte;
556	vm_offset_t va, endva;
557	int i;
558
559	if (pgeflag == 0)
560		return;
561
562	i = KERNLOAD/NBPDR;
563	endva = KERNBASE + KERNend;
564
565	if (pseflag) {
566		va = KERNBASE + KERNLOAD;
567		while (va  < endva) {
568			pdir = kernel_pmap->pm_pdir[KPTDI+i];
569			pdir |= pgeflag;
570			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
571			invltlb();	/* Play it safe, invltlb() every time */
572			i++;
573			va += NBPDR;
574		}
575	} else {
576		va = (vm_offset_t)btext;
577		while (va < endva) {
578			pte = vtopte(va);
579			if (*pte)
580				*pte |= pgeflag;
581			invltlb();	/* Play it safe, invltlb() every time */
582			va += PAGE_SIZE;
583		}
584	}
585}
586
587/*
588 * Initialize a vm_page's machine-dependent fields.
589 */
590void
591pmap_page_init(vm_page_t m)
592{
593
594	TAILQ_INIT(&m->md.pv_list);
595	m->md.pat_mode = PAT_WRITE_BACK;
596}
597
598#ifdef PAE
599static void *
600pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
601{
602
603	/* Inform UMA that this allocator uses kernel_map/object. */
604	*flags = UMA_SLAB_KERNEL;
605	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
606	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
607}
608#endif
609
610/*
611 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
612 * Requirements:
613 *  - Must deal with pages in order to ensure that none of the PG_* bits
614 *    are ever set, PG_V in particular.
615 *  - Assumes we can write to ptes without pte_store() atomic ops, even
616 *    on PAE systems.  This should be ok.
617 *  - Assumes nothing will ever test these addresses for 0 to indicate
618 *    no mapping instead of correctly checking PG_V.
619 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
620 * Because PG_V is never set, there can be no mappings to invalidate.
621 */
622static vm_offset_t
623pmap_ptelist_alloc(vm_offset_t *head)
624{
625	pt_entry_t *pte;
626	vm_offset_t va;
627
628	va = *head;
629	if (va == 0)
630		return (va);	/* Out of memory */
631	pte = vtopte(va);
632	*head = *pte;
633	if (*head & PG_V)
634		panic("pmap_ptelist_alloc: va with PG_V set!");
635	*pte = 0;
636	return (va);
637}
638
639static void
640pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
641{
642	pt_entry_t *pte;
643
644	if (va & PG_V)
645		panic("pmap_ptelist_free: freeing va with PG_V set!");
646	pte = vtopte(va);
647	*pte = *head;		/* virtual! PG_V is 0 though */
648	*head = va;
649}
650
651static void
652pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
653{
654	int i;
655	vm_offset_t va;
656
657	*head = 0;
658	for (i = npages - 1; i >= 0; i--) {
659		va = (vm_offset_t)base + i * PAGE_SIZE;
660		pmap_ptelist_free(head, va);
661	}
662}
663
664
665/*
666 *	Initialize the pmap module.
667 *	Called by vm_init, to initialize any structures that the pmap
668 *	system needs to map virtual memory.
669 */
670void
671pmap_init(void)
672{
673	vm_page_t mpte;
674	vm_size_t s;
675	int i, pv_npg;
676
677	/*
678	 * Initialize the vm page array entries for the kernel pmap's
679	 * page table pages.
680	 */
681	for (i = 0; i < nkpt; i++) {
682		mpte = PHYS_TO_VM_PAGE(PTD[i + KPTDI] & PG_FRAME);
683		KASSERT(mpte >= vm_page_array &&
684		    mpte < &vm_page_array[vm_page_array_size],
685		    ("pmap_init: page table page is out of range"));
686		mpte->pindex = i + KPTDI;
687		mpte->phys_addr = PTD[i + KPTDI] & PG_FRAME;
688	}
689
690	/*
691	 * Initialize the address space (zone) for the pv entries.  Set a
692	 * high water mark so that the system can recover from excessive
693	 * numbers of pv entries.
694	 */
695	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
696	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
697	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
698	pv_entry_max = roundup(pv_entry_max, _NPCPV);
699	pv_entry_high_water = 9 * (pv_entry_max / 10);
700
701	/*
702	 * Are large page mappings enabled?
703	 */
704	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
705	if (pg_ps_enabled) {
706		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
707		    ("pmap_init: can't assign to pagesizes[1]"));
708		pagesizes[1] = NBPDR;
709	}
710
711	/*
712	 * Calculate the size of the pv head table for superpages.
713	 */
714	for (i = 0; phys_avail[i + 1]; i += 2);
715	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
716
717	/*
718	 * Allocate memory for the pv head table for superpages.
719	 */
720	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
721	s = round_page(s);
722	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
723	for (i = 0; i < pv_npg; i++)
724		TAILQ_INIT(&pv_table[i].pv_list);
725
726	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
727	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
728	    PAGE_SIZE * pv_maxchunks);
729	if (pv_chunkbase == NULL)
730		panic("pmap_init: not enough kvm for pv chunks");
731	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
732#ifdef PAE
733	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
734	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
735	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
736	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
737#endif
738}
739
740
741SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
742	"Max number of PV entries");
743SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
744	"Page share factor per proc");
745
746SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
747    "2/4MB page mapping counters");
748
749static u_long pmap_pde_demotions;
750SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
751    &pmap_pde_demotions, 0, "2/4MB page demotions");
752
753static u_long pmap_pde_mappings;
754SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
755    &pmap_pde_mappings, 0, "2/4MB page mappings");
756
757static u_long pmap_pde_p_failures;
758SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
759    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
760
761static u_long pmap_pde_promotions;
762SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
763    &pmap_pde_promotions, 0, "2/4MB page promotions");
764
765/***************************************************
766 * Low level helper routines.....
767 ***************************************************/
768
769/*
770 * Determine the appropriate bits to set in a PTE or PDE for a specified
771 * caching mode.
772 */
773int
774pmap_cache_bits(int mode, boolean_t is_pde)
775{
776	int pat_flag, pat_index, cache_bits;
777
778	/* The PAT bit is different for PTE's and PDE's. */
779	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
780
781	/* If we don't support PAT, map extended modes to older ones. */
782	if (!(cpu_feature & CPUID_PAT)) {
783		switch (mode) {
784		case PAT_UNCACHEABLE:
785		case PAT_WRITE_THROUGH:
786		case PAT_WRITE_BACK:
787			break;
788		case PAT_UNCACHED:
789		case PAT_WRITE_COMBINING:
790		case PAT_WRITE_PROTECTED:
791			mode = PAT_UNCACHEABLE;
792			break;
793		}
794	}
795
796	/* Map the caching mode to a PAT index. */
797	if (pat_works) {
798		switch (mode) {
799		case PAT_UNCACHEABLE:
800			pat_index = 3;
801			break;
802		case PAT_WRITE_THROUGH:
803			pat_index = 1;
804			break;
805		case PAT_WRITE_BACK:
806			pat_index = 0;
807			break;
808		case PAT_UNCACHED:
809			pat_index = 2;
810			break;
811		case PAT_WRITE_COMBINING:
812			pat_index = 5;
813			break;
814		case PAT_WRITE_PROTECTED:
815			pat_index = 4;
816			break;
817		default:
818			panic("Unknown caching mode %d\n", mode);
819		}
820	} else {
821		switch (mode) {
822		case PAT_UNCACHED:
823		case PAT_UNCACHEABLE:
824		case PAT_WRITE_PROTECTED:
825			pat_index = 3;
826			break;
827		case PAT_WRITE_THROUGH:
828			pat_index = 1;
829			break;
830		case PAT_WRITE_BACK:
831			pat_index = 0;
832			break;
833		case PAT_WRITE_COMBINING:
834			pat_index = 2;
835			break;
836		default:
837			panic("Unknown caching mode %d\n", mode);
838		}
839	}
840
841	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
842	cache_bits = 0;
843	if (pat_index & 0x4)
844		cache_bits |= pat_flag;
845	if (pat_index & 0x2)
846		cache_bits |= PG_NC_PCD;
847	if (pat_index & 0x1)
848		cache_bits |= PG_NC_PWT;
849	return (cache_bits);
850}
851#ifdef SMP
852/*
853 * For SMP, these functions have to use the IPI mechanism for coherence.
854 *
855 * N.B.: Before calling any of the following TLB invalidation functions,
856 * the calling processor must ensure that all stores updating a non-
857 * kernel page table are globally performed.  Otherwise, another
858 * processor could cache an old, pre-update entry without being
859 * invalidated.  This can happen one of two ways: (1) The pmap becomes
860 * active on another processor after its pm_active field is checked by
861 * one of the following functions but before a store updating the page
862 * table is globally performed. (2) The pmap becomes active on another
863 * processor before its pm_active field is checked but due to
864 * speculative loads one of the following functions stills reads the
865 * pmap as inactive on the other processor.
866 *
867 * The kernel page table is exempt because its pm_active field is
868 * immutable.  The kernel page table is always active on every
869 * processor.
870 */
871void
872pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
873{
874	u_int cpumask;
875	u_int other_cpus;
876
877	sched_pin();
878	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
879		invlpg(va);
880		smp_invlpg(va);
881	} else {
882		cpumask = PCPU_GET(cpumask);
883		other_cpus = PCPU_GET(other_cpus);
884		if (pmap->pm_active & cpumask)
885			invlpg(va);
886		if (pmap->pm_active & other_cpus)
887			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
888	}
889	sched_unpin();
890}
891
892void
893pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
894{
895	u_int cpumask;
896	u_int other_cpus;
897	vm_offset_t addr;
898
899	sched_pin();
900	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
901		for (addr = sva; addr < eva; addr += PAGE_SIZE)
902			invlpg(addr);
903		smp_invlpg_range(sva, eva);
904	} else {
905		cpumask = PCPU_GET(cpumask);
906		other_cpus = PCPU_GET(other_cpus);
907		if (pmap->pm_active & cpumask)
908			for (addr = sva; addr < eva; addr += PAGE_SIZE)
909				invlpg(addr);
910		if (pmap->pm_active & other_cpus)
911			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
912			    sva, eva);
913	}
914	sched_unpin();
915}
916
917void
918pmap_invalidate_all(pmap_t pmap)
919{
920	u_int cpumask;
921	u_int other_cpus;
922
923	sched_pin();
924	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
925		invltlb();
926		smp_invltlb();
927	} else {
928		cpumask = PCPU_GET(cpumask);
929		other_cpus = PCPU_GET(other_cpus);
930		if (pmap->pm_active & cpumask)
931			invltlb();
932		if (pmap->pm_active & other_cpus)
933			smp_masked_invltlb(pmap->pm_active & other_cpus);
934	}
935	sched_unpin();
936}
937
938void
939pmap_invalidate_cache(void)
940{
941
942	sched_pin();
943	wbinvd();
944	smp_cache_flush();
945	sched_unpin();
946}
947#else /* !SMP */
948/*
949 * Normal, non-SMP, 486+ invalidation functions.
950 * We inline these within pmap.c for speed.
951 */
952PMAP_INLINE void
953pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
954{
955
956	if (pmap == kernel_pmap || pmap->pm_active)
957		invlpg(va);
958}
959
960PMAP_INLINE void
961pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
962{
963	vm_offset_t addr;
964
965	if (pmap == kernel_pmap || pmap->pm_active)
966		for (addr = sva; addr < eva; addr += PAGE_SIZE)
967			invlpg(addr);
968}
969
970PMAP_INLINE void
971pmap_invalidate_all(pmap_t pmap)
972{
973
974	if (pmap == kernel_pmap || pmap->pm_active)
975		invltlb();
976}
977
978PMAP_INLINE void
979pmap_invalidate_cache(void)
980{
981
982	wbinvd();
983}
984#endif /* !SMP */
985
986void
987pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
988{
989
990	KASSERT((sva & PAGE_MASK) == 0,
991	    ("pmap_invalidate_cache_range: sva not page-aligned"));
992	KASSERT((eva & PAGE_MASK) == 0,
993	    ("pmap_invalidate_cache_range: eva not page-aligned"));
994
995	if (cpu_feature & CPUID_SS)
996		; /* If "Self Snoop" is supported, do nothing. */
997	else if (cpu_feature & CPUID_CLFSH) {
998
999		/*
1000		 * Otherwise, do per-cache line flush.  Use the mfence
1001		 * instruction to insure that previous stores are
1002		 * included in the write-back.  The processor
1003		 * propagates flush to other processors in the cache
1004		 * coherence domain.
1005		 */
1006		mfence();
1007		for (; sva < eva; sva += cpu_clflush_line_size)
1008			clflush(sva);
1009		mfence();
1010	} else {
1011
1012		/*
1013		 * No targeted cache flush methods are supported by CPU,
1014		 * globally invalidate cache as a last resort.
1015		 */
1016		pmap_invalidate_cache();
1017	}
1018}
1019
1020/*
1021 * Are we current address space or kernel?  N.B. We return FALSE when
1022 * a pmap's page table is in use because a kernel thread is borrowing
1023 * it.  The borrowed page table can change spontaneously, making any
1024 * dependence on its continued use subject to a race condition.
1025 */
1026static __inline int
1027pmap_is_current(pmap_t pmap)
1028{
1029
1030	return (pmap == kernel_pmap ||
1031		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1032	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1033}
1034
1035/*
1036 * If the given pmap is not the current or kernel pmap, the returned pte must
1037 * be released by passing it to pmap_pte_release().
1038 */
1039pt_entry_t *
1040pmap_pte(pmap_t pmap, vm_offset_t va)
1041{
1042	pd_entry_t newpf;
1043	pd_entry_t *pde;
1044
1045	pde = pmap_pde(pmap, va);
1046	if (*pde & PG_PS)
1047		return (pde);
1048	if (*pde != 0) {
1049		/* are we current address space or kernel? */
1050		if (pmap_is_current(pmap))
1051			return (vtopte(va));
1052		mtx_lock(&PMAP2mutex);
1053		newpf = *pde & PG_FRAME;
1054		if ((*PMAP2 & PG_FRAME) != newpf) {
1055			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1056			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1057		}
1058		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1059	}
1060	return (0);
1061}
1062
1063/*
1064 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1065 * being NULL.
1066 */
1067static __inline void
1068pmap_pte_release(pt_entry_t *pte)
1069{
1070
1071	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1072		mtx_unlock(&PMAP2mutex);
1073}
1074
1075static __inline void
1076invlcaddr(void *caddr)
1077{
1078
1079	invlpg((u_int)caddr);
1080}
1081
1082/*
1083 * Super fast pmap_pte routine best used when scanning
1084 * the pv lists.  This eliminates many coarse-grained
1085 * invltlb calls.  Note that many of the pv list
1086 * scans are across different pmaps.  It is very wasteful
1087 * to do an entire invltlb for checking a single mapping.
1088 *
1089 * If the given pmap is not the current pmap, vm_page_queue_mtx
1090 * must be held and curthread pinned to a CPU.
1091 */
1092static pt_entry_t *
1093pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1094{
1095	pd_entry_t newpf;
1096	pd_entry_t *pde;
1097
1098	pde = pmap_pde(pmap, va);
1099	if (*pde & PG_PS)
1100		return (pde);
1101	if (*pde != 0) {
1102		/* are we current address space or kernel? */
1103		if (pmap_is_current(pmap))
1104			return (vtopte(va));
1105		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1106		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1107		newpf = *pde & PG_FRAME;
1108		if ((*PMAP1 & PG_FRAME) != newpf) {
1109			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1110#ifdef SMP
1111			PMAP1cpu = PCPU_GET(cpuid);
1112#endif
1113			invlcaddr(PADDR1);
1114			PMAP1changed++;
1115		} else
1116#ifdef SMP
1117		if (PMAP1cpu != PCPU_GET(cpuid)) {
1118			PMAP1cpu = PCPU_GET(cpuid);
1119			invlcaddr(PADDR1);
1120			PMAP1changedcpu++;
1121		} else
1122#endif
1123			PMAP1unchanged++;
1124		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1125	}
1126	return (0);
1127}
1128
1129/*
1130 *	Routine:	pmap_extract
1131 *	Function:
1132 *		Extract the physical page address associated
1133 *		with the given map/virtual_address pair.
1134 */
1135vm_paddr_t
1136pmap_extract(pmap_t pmap, vm_offset_t va)
1137{
1138	vm_paddr_t rtval;
1139	pt_entry_t *pte;
1140	pd_entry_t pde;
1141
1142	rtval = 0;
1143	PMAP_LOCK(pmap);
1144	pde = pmap->pm_pdir[va >> PDRSHIFT];
1145	if (pde != 0) {
1146		if ((pde & PG_PS) != 0)
1147			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1148		else {
1149			pte = pmap_pte(pmap, va);
1150			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1151			pmap_pte_release(pte);
1152		}
1153	}
1154	PMAP_UNLOCK(pmap);
1155	return (rtval);
1156}
1157
1158/*
1159 *	Routine:	pmap_extract_and_hold
1160 *	Function:
1161 *		Atomically extract and hold the physical page
1162 *		with the given pmap and virtual address pair
1163 *		if that mapping permits the given protection.
1164 */
1165vm_page_t
1166pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1167{
1168	pd_entry_t pde;
1169	pt_entry_t pte;
1170	vm_page_t m;
1171
1172	m = NULL;
1173	vm_page_lock_queues();
1174	PMAP_LOCK(pmap);
1175	pde = *pmap_pde(pmap, va);
1176	if (pde != 0) {
1177		if (pde & PG_PS) {
1178			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1179				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1180				    (va & PDRMASK));
1181				vm_page_hold(m);
1182			}
1183		} else {
1184			sched_pin();
1185			pte = *pmap_pte_quick(pmap, va);
1186			if (pte != 0 &&
1187			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1188				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1189				vm_page_hold(m);
1190			}
1191			sched_unpin();
1192		}
1193	}
1194	vm_page_unlock_queues();
1195	PMAP_UNLOCK(pmap);
1196	return (m);
1197}
1198
1199/***************************************************
1200 * Low level mapping routines.....
1201 ***************************************************/
1202
1203/*
1204 * Add a wired page to the kva.
1205 * Note: not SMP coherent.
1206 */
1207PMAP_INLINE void
1208pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1209{
1210	pt_entry_t *pte;
1211
1212	pte = vtopte(va);
1213	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1214}
1215
1216static __inline void
1217pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1218{
1219	pt_entry_t *pte;
1220
1221	pte = vtopte(va);
1222	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1223}
1224
1225/*
1226 * Remove a page from the kernel pagetables.
1227 * Note: not SMP coherent.
1228 */
1229PMAP_INLINE void
1230pmap_kremove(vm_offset_t va)
1231{
1232	pt_entry_t *pte;
1233
1234	pte = vtopte(va);
1235	pte_clear(pte);
1236}
1237
1238/*
1239 *	Used to map a range of physical addresses into kernel
1240 *	virtual address space.
1241 *
1242 *	The value passed in '*virt' is a suggested virtual address for
1243 *	the mapping. Architectures which can support a direct-mapped
1244 *	physical to virtual region can return the appropriate address
1245 *	within that region, leaving '*virt' unchanged. Other
1246 *	architectures should map the pages starting at '*virt' and
1247 *	update '*virt' with the first usable address after the mapped
1248 *	region.
1249 */
1250vm_offset_t
1251pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1252{
1253	vm_offset_t va, sva;
1254
1255	va = sva = *virt;
1256	while (start < end) {
1257		pmap_kenter(va, start);
1258		va += PAGE_SIZE;
1259		start += PAGE_SIZE;
1260	}
1261	pmap_invalidate_range(kernel_pmap, sva, va);
1262	*virt = va;
1263	return (sva);
1264}
1265
1266
1267/*
1268 * Add a list of wired pages to the kva
1269 * this routine is only used for temporary
1270 * kernel mappings that do not need to have
1271 * page modification or references recorded.
1272 * Note that old mappings are simply written
1273 * over.  The page *must* be wired.
1274 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1275 */
1276void
1277pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1278{
1279	pt_entry_t *endpte, oldpte, *pte;
1280
1281	oldpte = 0;
1282	pte = vtopte(sva);
1283	endpte = pte + count;
1284	while (pte < endpte) {
1285		oldpte |= *pte;
1286		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1287		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1288		pte++;
1289		ma++;
1290	}
1291	if ((oldpte & PG_V) != 0)
1292		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1293		    PAGE_SIZE);
1294}
1295
1296/*
1297 * This routine tears out page mappings from the
1298 * kernel -- it is meant only for temporary mappings.
1299 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1300 */
1301void
1302pmap_qremove(vm_offset_t sva, int count)
1303{
1304	vm_offset_t va;
1305
1306	va = sva;
1307	while (count-- > 0) {
1308		pmap_kremove(va);
1309		va += PAGE_SIZE;
1310	}
1311	pmap_invalidate_range(kernel_pmap, sva, va);
1312}
1313
1314/***************************************************
1315 * Page table page management routines.....
1316 ***************************************************/
1317static __inline void
1318pmap_free_zero_pages(vm_page_t free)
1319{
1320	vm_page_t m;
1321
1322	while (free != NULL) {
1323		m = free;
1324		free = m->right;
1325		/* Preserve the page's PG_ZERO setting. */
1326		vm_page_free_toq(m);
1327	}
1328}
1329
1330/*
1331 * Schedule the specified unused page table page to be freed.  Specifically,
1332 * add the page to the specified list of pages that will be released to the
1333 * physical memory manager after the TLB has been updated.
1334 */
1335static __inline void
1336pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1337{
1338
1339	if (set_PG_ZERO)
1340		m->flags |= PG_ZERO;
1341	else
1342		m->flags &= ~PG_ZERO;
1343	m->right = *free;
1344	*free = m;
1345}
1346
1347/*
1348 * Inserts the specified page table page into the specified pmap's collection
1349 * of idle page table pages.  Each of a pmap's page table pages is responsible
1350 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1351 * ordered by this virtual address range.
1352 */
1353static void
1354pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1355{
1356	vm_page_t root;
1357
1358	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1359	root = pmap->pm_root;
1360	if (root == NULL) {
1361		mpte->left = NULL;
1362		mpte->right = NULL;
1363	} else {
1364		root = vm_page_splay(mpte->pindex, root);
1365		if (mpte->pindex < root->pindex) {
1366			mpte->left = root->left;
1367			mpte->right = root;
1368			root->left = NULL;
1369		} else if (mpte->pindex == root->pindex)
1370			panic("pmap_insert_pt_page: pindex already inserted");
1371		else {
1372			mpte->right = root->right;
1373			mpte->left = root;
1374			root->right = NULL;
1375		}
1376	}
1377	pmap->pm_root = mpte;
1378}
1379
1380/*
1381 * Looks for a page table page mapping the specified virtual address in the
1382 * specified pmap's collection of idle page table pages.  Returns NULL if there
1383 * is no page table page corresponding to the specified virtual address.
1384 */
1385static vm_page_t
1386pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1387{
1388	vm_page_t mpte;
1389	vm_pindex_t pindex = va >> PDRSHIFT;
1390
1391	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1392	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1393		mpte = vm_page_splay(pindex, mpte);
1394		if ((pmap->pm_root = mpte)->pindex != pindex)
1395			mpte = NULL;
1396	}
1397	return (mpte);
1398}
1399
1400/*
1401 * Removes the specified page table page from the specified pmap's collection
1402 * of idle page table pages.  The specified page table page must be a member of
1403 * the pmap's collection.
1404 */
1405static void
1406pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1407{
1408	vm_page_t root;
1409
1410	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1411	if (mpte != pmap->pm_root)
1412		vm_page_splay(mpte->pindex, pmap->pm_root);
1413	if (mpte->left == NULL)
1414		root = mpte->right;
1415	else {
1416		root = vm_page_splay(mpte->pindex, mpte->left);
1417		root->right = mpte->right;
1418	}
1419	pmap->pm_root = root;
1420}
1421
1422/*
1423 * This routine unholds page table pages, and if the hold count
1424 * drops to zero, then it decrements the wire count.
1425 */
1426static __inline int
1427pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1428{
1429
1430	--m->wire_count;
1431	if (m->wire_count == 0)
1432		return _pmap_unwire_pte_hold(pmap, m, free);
1433	else
1434		return 0;
1435}
1436
1437static int
1438_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1439{
1440	vm_offset_t pteva;
1441
1442	/*
1443	 * unmap the page table page
1444	 */
1445	pmap->pm_pdir[m->pindex] = 0;
1446	--pmap->pm_stats.resident_count;
1447
1448	/*
1449	 * This is a release store so that the ordinary store unmapping
1450	 * the page table page is globally performed before TLB shoot-
1451	 * down is begun.
1452	 */
1453	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1454
1455	/*
1456	 * Do an invltlb to make the invalidated mapping
1457	 * take effect immediately.
1458	 */
1459	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1460	pmap_invalidate_page(pmap, pteva);
1461
1462	/*
1463	 * Put page on a list so that it is released after
1464	 * *ALL* TLB shootdown is done
1465	 */
1466	pmap_add_delayed_free_list(m, free, TRUE);
1467
1468	return 1;
1469}
1470
1471/*
1472 * After removing a page table entry, this routine is used to
1473 * conditionally free the page, and manage the hold/wire counts.
1474 */
1475static int
1476pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1477{
1478	pd_entry_t ptepde;
1479	vm_page_t mpte;
1480
1481	if (va >= VM_MAXUSER_ADDRESS)
1482		return 0;
1483	ptepde = *pmap_pde(pmap, va);
1484	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1485	return pmap_unwire_pte_hold(pmap, mpte, free);
1486}
1487
1488void
1489pmap_pinit0(pmap_t pmap)
1490{
1491
1492	PMAP_LOCK_INIT(pmap);
1493	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1494#ifdef PAE
1495	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1496#endif
1497	pmap->pm_root = NULL;
1498	pmap->pm_active = 0;
1499	PCPU_SET(curpmap, pmap);
1500	TAILQ_INIT(&pmap->pm_pvchunk);
1501	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1502	mtx_lock_spin(&allpmaps_lock);
1503	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1504	mtx_unlock_spin(&allpmaps_lock);
1505}
1506
1507/*
1508 * Initialize a preallocated and zeroed pmap structure,
1509 * such as one in a vmspace structure.
1510 */
1511int
1512pmap_pinit(pmap_t pmap)
1513{
1514	vm_page_t m, ptdpg[NPGPTD];
1515	vm_paddr_t pa;
1516	static int color;
1517	int i;
1518
1519	PMAP_LOCK_INIT(pmap);
1520
1521	/*
1522	 * No need to allocate page table space yet but we do need a valid
1523	 * page directory table.
1524	 */
1525	if (pmap->pm_pdir == NULL) {
1526		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1527		    NBPTD);
1528
1529		if (pmap->pm_pdir == NULL) {
1530			PMAP_LOCK_DESTROY(pmap);
1531			return (0);
1532		}
1533#ifdef PAE
1534		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1535		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1536		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1537		    ("pmap_pinit: pdpt misaligned"));
1538		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1539		    ("pmap_pinit: pdpt above 4g"));
1540#endif
1541		pmap->pm_root = NULL;
1542	}
1543	KASSERT(pmap->pm_root == NULL,
1544	    ("pmap_pinit: pmap has reserved page table page(s)"));
1545
1546	/*
1547	 * allocate the page directory page(s)
1548	 */
1549	for (i = 0; i < NPGPTD;) {
1550		m = vm_page_alloc(NULL, color++,
1551		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1552		    VM_ALLOC_ZERO);
1553		if (m == NULL)
1554			VM_WAIT;
1555		else {
1556			ptdpg[i++] = m;
1557		}
1558	}
1559
1560	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1561
1562	for (i = 0; i < NPGPTD; i++) {
1563		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1564			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1565	}
1566
1567	mtx_lock_spin(&allpmaps_lock);
1568	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1569	mtx_unlock_spin(&allpmaps_lock);
1570	/* Wire in kernel global address entries. */
1571	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1572
1573	/* install self-referential address mapping entry(s) */
1574	for (i = 0; i < NPGPTD; i++) {
1575		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1576		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1577#ifdef PAE
1578		pmap->pm_pdpt[i] = pa | PG_V;
1579#endif
1580	}
1581
1582	pmap->pm_active = 0;
1583	TAILQ_INIT(&pmap->pm_pvchunk);
1584	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1585
1586	return (1);
1587}
1588
1589/*
1590 * this routine is called if the page table page is not
1591 * mapped correctly.
1592 */
1593static vm_page_t
1594_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1595{
1596	vm_paddr_t ptepa;
1597	vm_page_t m;
1598
1599	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1600	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1601	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1602
1603	/*
1604	 * Allocate a page table page.
1605	 */
1606	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1607	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1608		if (flags & M_WAITOK) {
1609			PMAP_UNLOCK(pmap);
1610			vm_page_unlock_queues();
1611			VM_WAIT;
1612			vm_page_lock_queues();
1613			PMAP_LOCK(pmap);
1614		}
1615
1616		/*
1617		 * Indicate the need to retry.  While waiting, the page table
1618		 * page may have been allocated.
1619		 */
1620		return (NULL);
1621	}
1622	if ((m->flags & PG_ZERO) == 0)
1623		pmap_zero_page(m);
1624
1625	/*
1626	 * Map the pagetable page into the process address space, if
1627	 * it isn't already there.
1628	 */
1629
1630	pmap->pm_stats.resident_count++;
1631
1632	ptepa = VM_PAGE_TO_PHYS(m);
1633	pmap->pm_pdir[ptepindex] =
1634		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1635
1636	return m;
1637}
1638
1639static vm_page_t
1640pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1641{
1642	unsigned ptepindex;
1643	pd_entry_t ptepa;
1644	vm_page_t m;
1645
1646	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1647	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1648	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1649
1650	/*
1651	 * Calculate pagetable page index
1652	 */
1653	ptepindex = va >> PDRSHIFT;
1654retry:
1655	/*
1656	 * Get the page directory entry
1657	 */
1658	ptepa = pmap->pm_pdir[ptepindex];
1659
1660	/*
1661	 * This supports switching from a 4MB page to a
1662	 * normal 4K page.
1663	 */
1664	if (ptepa & PG_PS) {
1665		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1666		ptepa = pmap->pm_pdir[ptepindex];
1667	}
1668
1669	/*
1670	 * If the page table page is mapped, we just increment the
1671	 * hold count, and activate it.
1672	 */
1673	if (ptepa) {
1674		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1675		m->wire_count++;
1676	} else {
1677		/*
1678		 * Here if the pte page isn't mapped, or if it has
1679		 * been deallocated.
1680		 */
1681		m = _pmap_allocpte(pmap, ptepindex, flags);
1682		if (m == NULL && (flags & M_WAITOK))
1683			goto retry;
1684	}
1685	return (m);
1686}
1687
1688
1689/***************************************************
1690* Pmap allocation/deallocation routines.
1691 ***************************************************/
1692
1693#ifdef SMP
1694/*
1695 * Deal with a SMP shootdown of other users of the pmap that we are
1696 * trying to dispose of.  This can be a bit hairy.
1697 */
1698static cpumask_t *lazymask;
1699static u_int lazyptd;
1700static volatile u_int lazywait;
1701
1702void pmap_lazyfix_action(void);
1703
1704void
1705pmap_lazyfix_action(void)
1706{
1707	cpumask_t mymask = PCPU_GET(cpumask);
1708
1709#ifdef COUNT_IPIS
1710	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1711#endif
1712	if (rcr3() == lazyptd)
1713		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1714	atomic_clear_int(lazymask, mymask);
1715	atomic_store_rel_int(&lazywait, 1);
1716}
1717
1718static void
1719pmap_lazyfix_self(cpumask_t mymask)
1720{
1721
1722	if (rcr3() == lazyptd)
1723		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1724	atomic_clear_int(lazymask, mymask);
1725}
1726
1727
1728static void
1729pmap_lazyfix(pmap_t pmap)
1730{
1731	cpumask_t mymask, mask;
1732	u_int spins;
1733
1734	while ((mask = pmap->pm_active) != 0) {
1735		spins = 50000000;
1736		mask = mask & -mask;	/* Find least significant set bit */
1737		mtx_lock_spin(&smp_ipi_mtx);
1738#ifdef PAE
1739		lazyptd = vtophys(pmap->pm_pdpt);
1740#else
1741		lazyptd = vtophys(pmap->pm_pdir);
1742#endif
1743		mymask = PCPU_GET(cpumask);
1744		if (mask == mymask) {
1745			lazymask = &pmap->pm_active;
1746			pmap_lazyfix_self(mymask);
1747		} else {
1748			atomic_store_rel_int((u_int *)&lazymask,
1749			    (u_int)&pmap->pm_active);
1750			atomic_store_rel_int(&lazywait, 0);
1751			ipi_selected(mask, IPI_LAZYPMAP);
1752			while (lazywait == 0) {
1753				ia32_pause();
1754				if (--spins == 0)
1755					break;
1756			}
1757		}
1758		mtx_unlock_spin(&smp_ipi_mtx);
1759		if (spins == 0)
1760			printf("pmap_lazyfix: spun for 50000000\n");
1761	}
1762}
1763
1764#else	/* SMP */
1765
1766/*
1767 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1768 * unlikely to have to even execute this code, including the fact
1769 * that the cleanup is deferred until the parent does a wait(2), which
1770 * means that another userland process has run.
1771 */
1772static void
1773pmap_lazyfix(pmap_t pmap)
1774{
1775	u_int cr3;
1776
1777	cr3 = vtophys(pmap->pm_pdir);
1778	if (cr3 == rcr3()) {
1779		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1780		pmap->pm_active &= ~(PCPU_GET(cpumask));
1781	}
1782}
1783#endif	/* SMP */
1784
1785/*
1786 * Release any resources held by the given physical map.
1787 * Called when a pmap initialized by pmap_pinit is being released.
1788 * Should only be called if the map contains no valid mappings.
1789 */
1790void
1791pmap_release(pmap_t pmap)
1792{
1793	vm_page_t m, ptdpg[NPGPTD];
1794	int i;
1795
1796	KASSERT(pmap->pm_stats.resident_count == 0,
1797	    ("pmap_release: pmap resident count %ld != 0",
1798	    pmap->pm_stats.resident_count));
1799	KASSERT(pmap->pm_root == NULL,
1800	    ("pmap_release: pmap has reserved page table page(s)"));
1801
1802	pmap_lazyfix(pmap);
1803	mtx_lock_spin(&allpmaps_lock);
1804	LIST_REMOVE(pmap, pm_list);
1805	mtx_unlock_spin(&allpmaps_lock);
1806
1807	for (i = 0; i < NPGPTD; i++)
1808		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1809		    PG_FRAME);
1810
1811	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1812	    sizeof(*pmap->pm_pdir));
1813
1814	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1815
1816	for (i = 0; i < NPGPTD; i++) {
1817		m = ptdpg[i];
1818#ifdef PAE
1819		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1820		    ("pmap_release: got wrong ptd page"));
1821#endif
1822		m->wire_count--;
1823		atomic_subtract_int(&cnt.v_wire_count, 1);
1824		vm_page_free_zero(m);
1825	}
1826	PMAP_LOCK_DESTROY(pmap);
1827}
1828
1829static int
1830kvm_size(SYSCTL_HANDLER_ARGS)
1831{
1832	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1833
1834	return sysctl_handle_long(oidp, &ksize, 0, req);
1835}
1836SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1837    0, 0, kvm_size, "IU", "Size of KVM");
1838
1839static int
1840kvm_free(SYSCTL_HANDLER_ARGS)
1841{
1842	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1843
1844	return sysctl_handle_long(oidp, &kfree, 0, req);
1845}
1846SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1847    0, 0, kvm_free, "IU", "Amount of KVM free");
1848
1849/*
1850 * grow the number of kernel page table entries, if needed
1851 */
1852void
1853pmap_growkernel(vm_offset_t addr)
1854{
1855	struct pmap *pmap;
1856	vm_paddr_t ptppaddr;
1857	vm_page_t nkpg;
1858	pd_entry_t newpdir;
1859	pt_entry_t *pde;
1860
1861	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1862	if (kernel_vm_end == 0) {
1863		kernel_vm_end = KERNBASE;
1864		nkpt = 0;
1865		while (pdir_pde(PTD, kernel_vm_end)) {
1866			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1867			nkpt++;
1868			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1869				kernel_vm_end = kernel_map->max_offset;
1870				break;
1871			}
1872		}
1873	}
1874	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1875	if (addr - 1 >= kernel_map->max_offset)
1876		addr = kernel_map->max_offset;
1877	while (kernel_vm_end < addr) {
1878		if (pdir_pde(PTD, kernel_vm_end)) {
1879			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1880			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1881				kernel_vm_end = kernel_map->max_offset;
1882				break;
1883			}
1884			continue;
1885		}
1886
1887		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1888		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1889		    VM_ALLOC_ZERO);
1890		if (nkpg == NULL)
1891			panic("pmap_growkernel: no memory to grow kernel");
1892
1893		nkpt++;
1894
1895		if ((nkpg->flags & PG_ZERO) == 0)
1896			pmap_zero_page(nkpg);
1897		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1898		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1899		pdir_pde(PTD, kernel_vm_end) = newpdir;
1900
1901		mtx_lock_spin(&allpmaps_lock);
1902		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1903			pde = pmap_pde(pmap, kernel_vm_end);
1904			pde_store(pde, newpdir);
1905		}
1906		mtx_unlock_spin(&allpmaps_lock);
1907		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1908		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1909			kernel_vm_end = kernel_map->max_offset;
1910			break;
1911		}
1912	}
1913}
1914
1915
1916/***************************************************
1917 * page management routines.
1918 ***************************************************/
1919
1920CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1921CTASSERT(_NPCM == 11);
1922
1923static __inline struct pv_chunk *
1924pv_to_chunk(pv_entry_t pv)
1925{
1926
1927	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1928}
1929
1930#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1931
1932#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1933#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1934
1935static uint32_t pc_freemask[11] = {
1936	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1937	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1938	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1939	PC_FREE0_9, PC_FREE10
1940};
1941
1942SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1943	"Current number of pv entries");
1944
1945#ifdef PV_STATS
1946static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1947
1948SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1949	"Current number of pv entry chunks");
1950SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1951	"Current number of pv entry chunks allocated");
1952SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1953	"Current number of pv entry chunks frees");
1954SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1955	"Number of times tried to get a chunk page but failed.");
1956
1957static long pv_entry_frees, pv_entry_allocs;
1958static int pv_entry_spare;
1959
1960SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1961	"Current number of pv entry frees");
1962SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1963	"Current number of pv entry allocs");
1964SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1965	"Current number of spare pv entries");
1966
1967static int pmap_collect_inactive, pmap_collect_active;
1968
1969SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1970	"Current number times pmap_collect called on inactive queue");
1971SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1972	"Current number times pmap_collect called on active queue");
1973#endif
1974
1975/*
1976 * We are in a serious low memory condition.  Resort to
1977 * drastic measures to free some pages so we can allocate
1978 * another pv entry chunk.  This is normally called to
1979 * unmap inactive pages, and if necessary, active pages.
1980 */
1981static void
1982pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1983{
1984	struct md_page *pvh;
1985	pd_entry_t *pde;
1986	pmap_t pmap;
1987	pt_entry_t *pte, tpte;
1988	pv_entry_t next_pv, pv;
1989	vm_offset_t va;
1990	vm_page_t m, free;
1991
1992	sched_pin();
1993	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1994		if (m->hold_count || m->busy)
1995			continue;
1996		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1997			va = pv->pv_va;
1998			pmap = PV_PMAP(pv);
1999			/* Avoid deadlock and lock recursion. */
2000			if (pmap > locked_pmap)
2001				PMAP_LOCK(pmap);
2002			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2003				continue;
2004			pmap->pm_stats.resident_count--;
2005			pde = pmap_pde(pmap, va);
2006			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2007			    " a 4mpage in page %p's pv list", m));
2008			pte = pmap_pte_quick(pmap, va);
2009			tpte = pte_load_clear(pte);
2010			KASSERT((tpte & PG_W) == 0,
2011			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2012			if (tpte & PG_A)
2013				vm_page_flag_set(m, PG_REFERENCED);
2014			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2015				vm_page_dirty(m);
2016			free = NULL;
2017			pmap_unuse_pt(pmap, va, &free);
2018			pmap_invalidate_page(pmap, va);
2019			pmap_free_zero_pages(free);
2020			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2021			if (TAILQ_EMPTY(&m->md.pv_list)) {
2022				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2023				if (TAILQ_EMPTY(&pvh->pv_list))
2024					vm_page_flag_clear(m, PG_WRITEABLE);
2025			}
2026			free_pv_entry(pmap, pv);
2027			if (pmap != locked_pmap)
2028				PMAP_UNLOCK(pmap);
2029		}
2030	}
2031	sched_unpin();
2032}
2033
2034
2035/*
2036 * free the pv_entry back to the free list
2037 */
2038static void
2039free_pv_entry(pmap_t pmap, pv_entry_t pv)
2040{
2041	vm_page_t m;
2042	struct pv_chunk *pc;
2043	int idx, field, bit;
2044
2045	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2046	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2047	PV_STAT(pv_entry_frees++);
2048	PV_STAT(pv_entry_spare++);
2049	pv_entry_count--;
2050	pc = pv_to_chunk(pv);
2051	idx = pv - &pc->pc_pventry[0];
2052	field = idx / 32;
2053	bit = idx % 32;
2054	pc->pc_map[field] |= 1ul << bit;
2055	/* move to head of list */
2056	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2057	for (idx = 0; idx < _NPCM; idx++)
2058		if (pc->pc_map[idx] != pc_freemask[idx]) {
2059			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2060			return;
2061		}
2062	PV_STAT(pv_entry_spare -= _NPCPV);
2063	PV_STAT(pc_chunk_count--);
2064	PV_STAT(pc_chunk_frees++);
2065	/* entire chunk is free, return it */
2066	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2067	pmap_qremove((vm_offset_t)pc, 1);
2068	vm_page_unwire(m, 0);
2069	vm_page_free(m);
2070	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2071}
2072
2073/*
2074 * get a new pv_entry, allocating a block from the system
2075 * when needed.
2076 */
2077static pv_entry_t
2078get_pv_entry(pmap_t pmap, int try)
2079{
2080	static const struct timeval printinterval = { 60, 0 };
2081	static struct timeval lastprint;
2082	static vm_pindex_t colour;
2083	struct vpgqueues *pq;
2084	int bit, field;
2085	pv_entry_t pv;
2086	struct pv_chunk *pc;
2087	vm_page_t m;
2088
2089	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2090	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2091	PV_STAT(pv_entry_allocs++);
2092	pv_entry_count++;
2093	if (pv_entry_count > pv_entry_high_water)
2094		if (ratecheck(&lastprint, &printinterval))
2095			printf("Approaching the limit on PV entries, consider "
2096			    "increasing either the vm.pmap.shpgperproc or the "
2097			    "vm.pmap.pv_entry_max tunable.\n");
2098	pq = NULL;
2099retry:
2100	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2101	if (pc != NULL) {
2102		for (field = 0; field < _NPCM; field++) {
2103			if (pc->pc_map[field]) {
2104				bit = bsfl(pc->pc_map[field]);
2105				break;
2106			}
2107		}
2108		if (field < _NPCM) {
2109			pv = &pc->pc_pventry[field * 32 + bit];
2110			pc->pc_map[field] &= ~(1ul << bit);
2111			/* If this was the last item, move it to tail */
2112			for (field = 0; field < _NPCM; field++)
2113				if (pc->pc_map[field] != 0) {
2114					PV_STAT(pv_entry_spare--);
2115					return (pv);	/* not full, return */
2116				}
2117			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2118			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2119			PV_STAT(pv_entry_spare--);
2120			return (pv);
2121		}
2122	}
2123	/*
2124	 * Access to the ptelist "pv_vafree" is synchronized by the page
2125	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2126	 * remain non-empty until pmap_ptelist_alloc() completes.
2127	 */
2128	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2129	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2130	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2131		if (try) {
2132			pv_entry_count--;
2133			PV_STAT(pc_chunk_tryfail++);
2134			return (NULL);
2135		}
2136		/*
2137		 * Reclaim pv entries: At first, destroy mappings to
2138		 * inactive pages.  After that, if a pv chunk entry
2139		 * is still needed, destroy mappings to active pages.
2140		 */
2141		if (pq == NULL) {
2142			PV_STAT(pmap_collect_inactive++);
2143			pq = &vm_page_queues[PQ_INACTIVE];
2144		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2145			PV_STAT(pmap_collect_active++);
2146			pq = &vm_page_queues[PQ_ACTIVE];
2147		} else
2148			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2149		pmap_collect(pmap, pq);
2150		goto retry;
2151	}
2152	PV_STAT(pc_chunk_count++);
2153	PV_STAT(pc_chunk_allocs++);
2154	colour++;
2155	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2156	pmap_qenter((vm_offset_t)pc, &m, 1);
2157	pc->pc_pmap = pmap;
2158	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2159	for (field = 1; field < _NPCM; field++)
2160		pc->pc_map[field] = pc_freemask[field];
2161	pv = &pc->pc_pventry[0];
2162	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2163	PV_STAT(pv_entry_spare += _NPCPV - 1);
2164	return (pv);
2165}
2166
2167static __inline pv_entry_t
2168pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2169{
2170	pv_entry_t pv;
2171
2172	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2173	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2174		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2175			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2176			break;
2177		}
2178	}
2179	return (pv);
2180}
2181
2182static void
2183pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2184{
2185	struct md_page *pvh;
2186	pv_entry_t pv;
2187	vm_offset_t va_last;
2188	vm_page_t m;
2189
2190	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2191	KASSERT((pa & PDRMASK) == 0,
2192	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2193
2194	/*
2195	 * Transfer the 4mpage's pv entry for this mapping to the first
2196	 * page's pv list.
2197	 */
2198	pvh = pa_to_pvh(pa);
2199	va = trunc_4mpage(va);
2200	pv = pmap_pvh_remove(pvh, pmap, va);
2201	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2202	m = PHYS_TO_VM_PAGE(pa);
2203	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2204	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2205	va_last = va + NBPDR - PAGE_SIZE;
2206	do {
2207		m++;
2208		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2209		    ("pmap_pv_demote_pde: page %p is not managed", m));
2210		va += PAGE_SIZE;
2211		pmap_insert_entry(pmap, va, m);
2212	} while (va < va_last);
2213}
2214
2215static void
2216pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2217{
2218	struct md_page *pvh;
2219	pv_entry_t pv;
2220	vm_offset_t va_last;
2221	vm_page_t m;
2222
2223	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2224	KASSERT((pa & PDRMASK) == 0,
2225	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2226
2227	/*
2228	 * Transfer the first page's pv entry for this mapping to the
2229	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2230	 * to get_pv_entry(), a transfer avoids the possibility that
2231	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2232	 * removes one of the mappings that is being promoted.
2233	 */
2234	m = PHYS_TO_VM_PAGE(pa);
2235	va = trunc_4mpage(va);
2236	pv = pmap_pvh_remove(&m->md, pmap, va);
2237	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2238	pvh = pa_to_pvh(pa);
2239	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2240	/* Free the remaining NPTEPG - 1 pv entries. */
2241	va_last = va + NBPDR - PAGE_SIZE;
2242	do {
2243		m++;
2244		va += PAGE_SIZE;
2245		pmap_pvh_free(&m->md, pmap, va);
2246	} while (va < va_last);
2247}
2248
2249static void
2250pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2251{
2252	pv_entry_t pv;
2253
2254	pv = pmap_pvh_remove(pvh, pmap, va);
2255	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2256	free_pv_entry(pmap, pv);
2257}
2258
2259static void
2260pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2261{
2262	struct md_page *pvh;
2263
2264	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2265	pmap_pvh_free(&m->md, pmap, va);
2266	if (TAILQ_EMPTY(&m->md.pv_list)) {
2267		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2268		if (TAILQ_EMPTY(&pvh->pv_list))
2269			vm_page_flag_clear(m, PG_WRITEABLE);
2270	}
2271}
2272
2273/*
2274 * Create a pv entry for page at pa for
2275 * (pmap, va).
2276 */
2277static void
2278pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2279{
2280	pv_entry_t pv;
2281
2282	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2284	pv = get_pv_entry(pmap, FALSE);
2285	pv->pv_va = va;
2286	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2287}
2288
2289/*
2290 * Conditionally create a pv entry.
2291 */
2292static boolean_t
2293pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2294{
2295	pv_entry_t pv;
2296
2297	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2298	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2299	if (pv_entry_count < pv_entry_high_water &&
2300	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2301		pv->pv_va = va;
2302		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2303		return (TRUE);
2304	} else
2305		return (FALSE);
2306}
2307
2308/*
2309 * Create the pv entries for each of the pages within a superpage.
2310 */
2311static boolean_t
2312pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2313{
2314	struct md_page *pvh;
2315	pv_entry_t pv;
2316
2317	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2318	if (pv_entry_count < pv_entry_high_water &&
2319	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2320		pv->pv_va = va;
2321		pvh = pa_to_pvh(pa);
2322		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2323		return (TRUE);
2324	} else
2325		return (FALSE);
2326}
2327
2328/*
2329 * Fills a page table page with mappings to consecutive physical pages.
2330 */
2331static void
2332pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2333{
2334	pt_entry_t *pte;
2335
2336	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2337		*pte = newpte;
2338		newpte += PAGE_SIZE;
2339	}
2340}
2341
2342/*
2343 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2344 * 2- or 4MB page mapping is invalidated.
2345 */
2346static boolean_t
2347pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2348{
2349	pd_entry_t newpde, oldpde;
2350	pmap_t allpmaps_entry;
2351	pt_entry_t *firstpte, newpte;
2352	vm_paddr_t mptepa;
2353	vm_page_t free, mpte;
2354
2355	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2356	oldpde = *pde;
2357	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2358	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2359	mpte = pmap_lookup_pt_page(pmap, va);
2360	if (mpte != NULL)
2361		pmap_remove_pt_page(pmap, mpte);
2362	else {
2363		KASSERT((oldpde & PG_W) == 0,
2364		    ("pmap_demote_pde: page table page for a wired mapping"
2365		    " is missing"));
2366
2367		/*
2368		 * Invalidate the 2- or 4MB page mapping and return
2369		 * "failure" if the mapping was never accessed or the
2370		 * allocation of the new page table page fails.
2371		 */
2372		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2373		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2374		    VM_ALLOC_WIRED)) == NULL) {
2375			free = NULL;
2376			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2377			pmap_invalidate_page(pmap, trunc_4mpage(va));
2378			pmap_free_zero_pages(free);
2379			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2380			    " in pmap %p", va, pmap);
2381			return (FALSE);
2382		}
2383		if (va < VM_MAXUSER_ADDRESS)
2384			pmap->pm_stats.resident_count++;
2385	}
2386	mptepa = VM_PAGE_TO_PHYS(mpte);
2387
2388	/*
2389	 * Temporarily map the page table page (mpte) into the kernel's
2390	 * address space at either PADDR1 or PADDR2.
2391	 */
2392	if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2393		if ((*PMAP1 & PG_FRAME) != mptepa) {
2394			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2395#ifdef SMP
2396			PMAP1cpu = PCPU_GET(cpuid);
2397#endif
2398			invlcaddr(PADDR1);
2399			PMAP1changed++;
2400		} else
2401#ifdef SMP
2402		if (PMAP1cpu != PCPU_GET(cpuid)) {
2403			PMAP1cpu = PCPU_GET(cpuid);
2404			invlcaddr(PADDR1);
2405			PMAP1changedcpu++;
2406		} else
2407#endif
2408			PMAP1unchanged++;
2409		firstpte = PADDR1;
2410	} else {
2411		mtx_lock(&PMAP2mutex);
2412		if ((*PMAP2 & PG_FRAME) != mptepa) {
2413			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2414			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2415		}
2416		firstpte = PADDR2;
2417	}
2418	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2419	KASSERT((oldpde & PG_A) != 0,
2420	    ("pmap_demote_pde: oldpde is missing PG_A"));
2421	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2422	    ("pmap_demote_pde: oldpde is missing PG_M"));
2423	newpte = oldpde & ~PG_PS;
2424	if ((newpte & PG_PDE_PAT) != 0)
2425		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2426
2427	/*
2428	 * If the page table page is new, initialize it.
2429	 */
2430	if (mpte->wire_count == 1) {
2431		mpte->wire_count = NPTEPG;
2432		pmap_fill_ptp(firstpte, newpte);
2433	}
2434	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2435	    ("pmap_demote_pde: firstpte and newpte map different physical"
2436	    " addresses"));
2437
2438	/*
2439	 * If the mapping has changed attributes, update the page table
2440	 * entries.
2441	 */
2442	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2443		pmap_fill_ptp(firstpte, newpte);
2444
2445	/*
2446	 * Demote the mapping.  This pmap is locked.  The old PDE has
2447	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2448	 * set.  Thus, there is no danger of a race with another
2449	 * processor changing the setting of PG_A and/or PG_M between
2450	 * the read above and the store below.
2451	 */
2452	if (pmap == kernel_pmap) {
2453		/*
2454		 * A harmless race exists between this loop and the bcopy()
2455		 * in pmap_pinit() that initializes the kernel segment of
2456		 * the new page table.  Specifically, that bcopy() may copy
2457		 * the new PDE from the PTD, which is first in allpmaps, to
2458		 * the new page table before this loop updates that new
2459		 * page table.
2460		 */
2461		mtx_lock_spin(&allpmaps_lock);
2462		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2463			pde = pmap_pde(allpmaps_entry, va);
2464			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2465			    (oldpde & PG_PTE_PROMOTE),
2466			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2467			    (uintmax_t)*pde, (uintmax_t)oldpde));
2468			pde_store(pde, newpde);
2469		}
2470		mtx_unlock_spin(&allpmaps_lock);
2471	} else
2472		pde_store(pde, newpde);
2473	if (firstpte == PADDR2)
2474		mtx_unlock(&PMAP2mutex);
2475
2476	/*
2477	 * Invalidate the recursive mapping of the page table page.
2478	 */
2479	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2480
2481	/*
2482	 * Demote the pv entry.  This depends on the earlier demotion
2483	 * of the mapping.  Specifically, the (re)creation of a per-
2484	 * page pv entry might trigger the execution of pmap_collect(),
2485	 * which might reclaim a newly (re)created per-page pv entry
2486	 * and destroy the associated mapping.  In order to destroy
2487	 * the mapping, the PDE must have already changed from mapping
2488	 * the 2mpage to referencing the page table page.
2489	 */
2490	if ((oldpde & PG_MANAGED) != 0)
2491		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2492
2493	pmap_pde_demotions++;
2494	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2495	    " in pmap %p", va, pmap);
2496	return (TRUE);
2497}
2498
2499/*
2500 * pmap_remove_pde: do the things to unmap a superpage in a process
2501 */
2502static void
2503pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2504    vm_page_t *free)
2505{
2506	struct md_page *pvh;
2507	pd_entry_t oldpde;
2508	vm_offset_t eva, va;
2509	vm_page_t m, mpte;
2510
2511	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2512	KASSERT((sva & PDRMASK) == 0,
2513	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2514	oldpde = pte_load_clear(pdq);
2515	if (oldpde & PG_W)
2516		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2517
2518	/*
2519	 * Machines that don't support invlpg, also don't support
2520	 * PG_G.
2521	 */
2522	if (oldpde & PG_G)
2523		pmap_invalidate_page(kernel_pmap, sva);
2524	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2525	if (oldpde & PG_MANAGED) {
2526		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2527		pmap_pvh_free(pvh, pmap, sva);
2528		eva = sva + NBPDR;
2529		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2530		    va < eva; va += PAGE_SIZE, m++) {
2531			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2532				vm_page_dirty(m);
2533			if (oldpde & PG_A)
2534				vm_page_flag_set(m, PG_REFERENCED);
2535			if (TAILQ_EMPTY(&m->md.pv_list) &&
2536			    TAILQ_EMPTY(&pvh->pv_list))
2537				vm_page_flag_clear(m, PG_WRITEABLE);
2538		}
2539	}
2540	if (pmap == kernel_pmap) {
2541		if (!pmap_demote_pde(pmap, pdq, sva))
2542			panic("pmap_remove_pde: failed demotion");
2543	} else {
2544		mpte = pmap_lookup_pt_page(pmap, sva);
2545		if (mpte != NULL) {
2546			pmap_remove_pt_page(pmap, mpte);
2547			pmap->pm_stats.resident_count--;
2548			KASSERT(mpte->wire_count == NPTEPG,
2549			    ("pmap_remove_pde: pte page wire count error"));
2550			mpte->wire_count = 0;
2551			pmap_add_delayed_free_list(mpte, free, FALSE);
2552			atomic_subtract_int(&cnt.v_wire_count, 1);
2553		}
2554	}
2555}
2556
2557/*
2558 * pmap_remove_pte: do the things to unmap a page in a process
2559 */
2560static int
2561pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2562{
2563	pt_entry_t oldpte;
2564	vm_page_t m;
2565
2566	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2567	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2568	oldpte = pte_load_clear(ptq);
2569	if (oldpte & PG_W)
2570		pmap->pm_stats.wired_count -= 1;
2571	/*
2572	 * Machines that don't support invlpg, also don't support
2573	 * PG_G.
2574	 */
2575	if (oldpte & PG_G)
2576		pmap_invalidate_page(kernel_pmap, va);
2577	pmap->pm_stats.resident_count -= 1;
2578	if (oldpte & PG_MANAGED) {
2579		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2580		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2581			vm_page_dirty(m);
2582		if (oldpte & PG_A)
2583			vm_page_flag_set(m, PG_REFERENCED);
2584		pmap_remove_entry(pmap, m, va);
2585	}
2586	return (pmap_unuse_pt(pmap, va, free));
2587}
2588
2589/*
2590 * Remove a single page from a process address space
2591 */
2592static void
2593pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2594{
2595	pt_entry_t *pte;
2596
2597	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2598	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2599	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2600	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2601		return;
2602	pmap_remove_pte(pmap, pte, va, free);
2603	pmap_invalidate_page(pmap, va);
2604}
2605
2606/*
2607 *	Remove the given range of addresses from the specified map.
2608 *
2609 *	It is assumed that the start and end are properly
2610 *	rounded to the page size.
2611 */
2612void
2613pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2614{
2615	vm_offset_t pdnxt;
2616	pd_entry_t ptpaddr;
2617	pt_entry_t *pte;
2618	vm_page_t free = NULL;
2619	int anyvalid;
2620
2621	/*
2622	 * Perform an unsynchronized read.  This is, however, safe.
2623	 */
2624	if (pmap->pm_stats.resident_count == 0)
2625		return;
2626
2627	anyvalid = 0;
2628
2629	vm_page_lock_queues();
2630	sched_pin();
2631	PMAP_LOCK(pmap);
2632
2633	/*
2634	 * special handling of removing one page.  a very
2635	 * common operation and easy to short circuit some
2636	 * code.
2637	 */
2638	if ((sva + PAGE_SIZE == eva) &&
2639	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2640		pmap_remove_page(pmap, sva, &free);
2641		goto out;
2642	}
2643
2644	for (; sva < eva; sva = pdnxt) {
2645		unsigned pdirindex;
2646
2647		/*
2648		 * Calculate index for next page table.
2649		 */
2650		pdnxt = (sva + NBPDR) & ~PDRMASK;
2651		if (pdnxt < sva)
2652			pdnxt = eva;
2653		if (pmap->pm_stats.resident_count == 0)
2654			break;
2655
2656		pdirindex = sva >> PDRSHIFT;
2657		ptpaddr = pmap->pm_pdir[pdirindex];
2658
2659		/*
2660		 * Weed out invalid mappings. Note: we assume that the page
2661		 * directory table is always allocated, and in kernel virtual.
2662		 */
2663		if (ptpaddr == 0)
2664			continue;
2665
2666		/*
2667		 * Check for large page.
2668		 */
2669		if ((ptpaddr & PG_PS) != 0) {
2670			/*
2671			 * Are we removing the entire large page?  If not,
2672			 * demote the mapping and fall through.
2673			 */
2674			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2675				/*
2676				 * The TLB entry for a PG_G mapping is
2677				 * invalidated by pmap_remove_pde().
2678				 */
2679				if ((ptpaddr & PG_G) == 0)
2680					anyvalid = 1;
2681				pmap_remove_pde(pmap,
2682				    &pmap->pm_pdir[pdirindex], sva, &free);
2683				continue;
2684			} else if (!pmap_demote_pde(pmap,
2685			    &pmap->pm_pdir[pdirindex], sva)) {
2686				/* The large page mapping was destroyed. */
2687				continue;
2688			}
2689		}
2690
2691		/*
2692		 * Limit our scan to either the end of the va represented
2693		 * by the current page table page, or to the end of the
2694		 * range being removed.
2695		 */
2696		if (pdnxt > eva)
2697			pdnxt = eva;
2698
2699		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2700		    sva += PAGE_SIZE) {
2701			if (*pte == 0)
2702				continue;
2703
2704			/*
2705			 * The TLB entry for a PG_G mapping is invalidated
2706			 * by pmap_remove_pte().
2707			 */
2708			if ((*pte & PG_G) == 0)
2709				anyvalid = 1;
2710			if (pmap_remove_pte(pmap, pte, sva, &free))
2711				break;
2712		}
2713	}
2714out:
2715	sched_unpin();
2716	if (anyvalid)
2717		pmap_invalidate_all(pmap);
2718	vm_page_unlock_queues();
2719	PMAP_UNLOCK(pmap);
2720	pmap_free_zero_pages(free);
2721}
2722
2723/*
2724 *	Routine:	pmap_remove_all
2725 *	Function:
2726 *		Removes this physical page from
2727 *		all physical maps in which it resides.
2728 *		Reflects back modify bits to the pager.
2729 *
2730 *	Notes:
2731 *		Original versions of this routine were very
2732 *		inefficient because they iteratively called
2733 *		pmap_remove (slow...)
2734 */
2735
2736void
2737pmap_remove_all(vm_page_t m)
2738{
2739	struct md_page *pvh;
2740	pv_entry_t pv;
2741	pmap_t pmap;
2742	pt_entry_t *pte, tpte;
2743	pd_entry_t *pde;
2744	vm_offset_t va;
2745	vm_page_t free;
2746
2747	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2748	    ("pmap_remove_all: page %p is fictitious", m));
2749	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2750	sched_pin();
2751	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2752	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2753		va = pv->pv_va;
2754		pmap = PV_PMAP(pv);
2755		PMAP_LOCK(pmap);
2756		pde = pmap_pde(pmap, va);
2757		(void)pmap_demote_pde(pmap, pde, va);
2758		PMAP_UNLOCK(pmap);
2759	}
2760	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2761		pmap = PV_PMAP(pv);
2762		PMAP_LOCK(pmap);
2763		pmap->pm_stats.resident_count--;
2764		pde = pmap_pde(pmap, pv->pv_va);
2765		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2766		    " a 4mpage in page %p's pv list", m));
2767		pte = pmap_pte_quick(pmap, pv->pv_va);
2768		tpte = pte_load_clear(pte);
2769		if (tpte & PG_W)
2770			pmap->pm_stats.wired_count--;
2771		if (tpte & PG_A)
2772			vm_page_flag_set(m, PG_REFERENCED);
2773
2774		/*
2775		 * Update the vm_page_t clean and reference bits.
2776		 */
2777		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2778			vm_page_dirty(m);
2779		free = NULL;
2780		pmap_unuse_pt(pmap, pv->pv_va, &free);
2781		pmap_invalidate_page(pmap, pv->pv_va);
2782		pmap_free_zero_pages(free);
2783		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2784		free_pv_entry(pmap, pv);
2785		PMAP_UNLOCK(pmap);
2786	}
2787	vm_page_flag_clear(m, PG_WRITEABLE);
2788	sched_unpin();
2789}
2790
2791/*
2792 * pmap_protect_pde: do the things to protect a 4mpage in a process
2793 */
2794static boolean_t
2795pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2796{
2797	pd_entry_t newpde, oldpde;
2798	vm_offset_t eva, va;
2799	vm_page_t m;
2800	boolean_t anychanged;
2801
2802	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2803	KASSERT((sva & PDRMASK) == 0,
2804	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2805	anychanged = FALSE;
2806retry:
2807	oldpde = newpde = *pde;
2808	if (oldpde & PG_MANAGED) {
2809		eva = sva + NBPDR;
2810		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2811		    va < eva; va += PAGE_SIZE, m++) {
2812			/*
2813			 * In contrast to the analogous operation on a 4KB page
2814			 * mapping, the mapping's PG_A flag is not cleared and
2815			 * the page's PG_REFERENCED flag is not set.  The
2816			 * reason is that pmap_demote_pde() expects that a 2/4MB
2817			 * page mapping with a stored page table page has PG_A
2818			 * set.
2819			 */
2820			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2821				vm_page_dirty(m);
2822		}
2823	}
2824	if ((prot & VM_PROT_WRITE) == 0)
2825		newpde &= ~(PG_RW | PG_M);
2826#ifdef PAE
2827	if ((prot & VM_PROT_EXECUTE) == 0)
2828		newpde |= pg_nx;
2829#endif
2830	if (newpde != oldpde) {
2831		if (!pde_cmpset(pde, oldpde, newpde))
2832			goto retry;
2833		if (oldpde & PG_G)
2834			pmap_invalidate_page(pmap, sva);
2835		else
2836			anychanged = TRUE;
2837	}
2838	return (anychanged);
2839}
2840
2841/*
2842 *	Set the physical protection on the
2843 *	specified range of this map as requested.
2844 */
2845void
2846pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2847{
2848	vm_offset_t pdnxt;
2849	pd_entry_t ptpaddr;
2850	pt_entry_t *pte;
2851	int anychanged;
2852
2853	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2854		pmap_remove(pmap, sva, eva);
2855		return;
2856	}
2857
2858#ifdef PAE
2859	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2860	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2861		return;
2862#else
2863	if (prot & VM_PROT_WRITE)
2864		return;
2865#endif
2866
2867	anychanged = 0;
2868
2869	vm_page_lock_queues();
2870	sched_pin();
2871	PMAP_LOCK(pmap);
2872	for (; sva < eva; sva = pdnxt) {
2873		pt_entry_t obits, pbits;
2874		unsigned pdirindex;
2875
2876		pdnxt = (sva + NBPDR) & ~PDRMASK;
2877		if (pdnxt < sva)
2878			pdnxt = eva;
2879
2880		pdirindex = sva >> PDRSHIFT;
2881		ptpaddr = pmap->pm_pdir[pdirindex];
2882
2883		/*
2884		 * Weed out invalid mappings. Note: we assume that the page
2885		 * directory table is always allocated, and in kernel virtual.
2886		 */
2887		if (ptpaddr == 0)
2888			continue;
2889
2890		/*
2891		 * Check for large page.
2892		 */
2893		if ((ptpaddr & PG_PS) != 0) {
2894			/*
2895			 * Are we protecting the entire large page?  If not,
2896			 * demote the mapping and fall through.
2897			 */
2898			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2899				/*
2900				 * The TLB entry for a PG_G mapping is
2901				 * invalidated by pmap_protect_pde().
2902				 */
2903				if (pmap_protect_pde(pmap,
2904				    &pmap->pm_pdir[pdirindex], sva, prot))
2905					anychanged = 1;
2906				continue;
2907			} else if (!pmap_demote_pde(pmap,
2908			    &pmap->pm_pdir[pdirindex], sva)) {
2909				/* The large page mapping was destroyed. */
2910				continue;
2911			}
2912		}
2913
2914		if (pdnxt > eva)
2915			pdnxt = eva;
2916
2917		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2918		    sva += PAGE_SIZE) {
2919			vm_page_t m;
2920
2921retry:
2922			/*
2923			 * Regardless of whether a pte is 32 or 64 bits in
2924			 * size, PG_RW, PG_A, and PG_M are among the least
2925			 * significant 32 bits.
2926			 */
2927			obits = pbits = *pte;
2928			if ((pbits & PG_V) == 0)
2929				continue;
2930			if (pbits & PG_MANAGED) {
2931				m = NULL;
2932				if (pbits & PG_A) {
2933					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2934					vm_page_flag_set(m, PG_REFERENCED);
2935					pbits &= ~PG_A;
2936				}
2937				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2938					if (m == NULL)
2939						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2940					vm_page_dirty(m);
2941				}
2942			}
2943
2944			if ((prot & VM_PROT_WRITE) == 0)
2945				pbits &= ~(PG_RW | PG_M);
2946#ifdef PAE
2947			if ((prot & VM_PROT_EXECUTE) == 0)
2948				pbits |= pg_nx;
2949#endif
2950
2951			if (pbits != obits) {
2952#ifdef PAE
2953				if (!atomic_cmpset_64(pte, obits, pbits))
2954					goto retry;
2955#else
2956				if (!atomic_cmpset_int((u_int *)pte, obits,
2957				    pbits))
2958					goto retry;
2959#endif
2960				if (obits & PG_G)
2961					pmap_invalidate_page(pmap, sva);
2962				else
2963					anychanged = 1;
2964			}
2965		}
2966	}
2967	sched_unpin();
2968	if (anychanged)
2969		pmap_invalidate_all(pmap);
2970	vm_page_unlock_queues();
2971	PMAP_UNLOCK(pmap);
2972}
2973
2974/*
2975 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2976 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
2977 * For promotion to occur, two conditions must be met: (1) the 4KB page
2978 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
2979 * mappings must have identical characteristics.
2980 *
2981 * Managed (PG_MANAGED) mappings within the kernel address space are not
2982 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2983 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2984 * pmap.
2985 */
2986static void
2987pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2988{
2989	pd_entry_t newpde;
2990	pmap_t allpmaps_entry;
2991	pt_entry_t *firstpte, oldpte, pa, *pte;
2992	vm_offset_t oldpteva;
2993	vm_page_t mpte;
2994
2995	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2996
2997	/*
2998	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2999	 * either invalid, unused, or does not map the first 4KB physical page
3000	 * within a 2- or 4MB page.
3001	 */
3002	firstpte = vtopte(trunc_4mpage(va));
3003setpde:
3004	newpde = *firstpte;
3005	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3006		pmap_pde_p_failures++;
3007		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3008		    " in pmap %p", va, pmap);
3009		return;
3010	}
3011	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3012		pmap_pde_p_failures++;
3013		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3014		    " in pmap %p", va, pmap);
3015		return;
3016	}
3017	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3018		/*
3019		 * When PG_M is already clear, PG_RW can be cleared without
3020		 * a TLB invalidation.
3021		 */
3022		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3023		    ~PG_RW))
3024			goto setpde;
3025		newpde &= ~PG_RW;
3026	}
3027
3028	/*
3029	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3030	 * PTE maps an unexpected 4KB physical page or does not have identical
3031	 * characteristics to the first PTE.
3032	 */
3033	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3034	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3035setpte:
3036		oldpte = *pte;
3037		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3038			pmap_pde_p_failures++;
3039			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3040			    " in pmap %p", va, pmap);
3041			return;
3042		}
3043		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3044			/*
3045			 * When PG_M is already clear, PG_RW can be cleared
3046			 * without a TLB invalidation.
3047			 */
3048			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3049			    oldpte & ~PG_RW))
3050				goto setpte;
3051			oldpte &= ~PG_RW;
3052			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3053			    (va & ~PDRMASK);
3054			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3055			    " in pmap %p", oldpteva, pmap);
3056		}
3057		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3058			pmap_pde_p_failures++;
3059			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3060			    " in pmap %p", va, pmap);
3061			return;
3062		}
3063		pa -= PAGE_SIZE;
3064	}
3065
3066	/*
3067	 * Save the page table page in its current state until the PDE
3068	 * mapping the superpage is demoted by pmap_demote_pde() or
3069	 * destroyed by pmap_remove_pde().
3070	 */
3071	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3072	KASSERT(mpte >= vm_page_array &&
3073	    mpte < &vm_page_array[vm_page_array_size],
3074	    ("pmap_promote_pde: page table page is out of range"));
3075	KASSERT(mpte->pindex == va >> PDRSHIFT,
3076	    ("pmap_promote_pde: page table page's pindex is wrong"));
3077	pmap_insert_pt_page(pmap, mpte);
3078
3079	/*
3080	 * Promote the pv entries.
3081	 */
3082	if ((newpde & PG_MANAGED) != 0)
3083		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3084
3085	/*
3086	 * Propagate the PAT index to its proper position.
3087	 */
3088	if ((newpde & PG_PTE_PAT) != 0)
3089		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3090
3091	/*
3092	 * Map the superpage.
3093	 */
3094	if (pmap == kernel_pmap) {
3095		mtx_lock_spin(&allpmaps_lock);
3096		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
3097			pde = pmap_pde(allpmaps_entry, va);
3098			pde_store(pde, PG_PS | newpde);
3099		}
3100		mtx_unlock_spin(&allpmaps_lock);
3101	} else
3102		pde_store(pde, PG_PS | newpde);
3103
3104	pmap_pde_promotions++;
3105	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3106	    " in pmap %p", va, pmap);
3107}
3108
3109/*
3110 *	Insert the given physical page (p) at
3111 *	the specified virtual address (v) in the
3112 *	target physical map with the protection requested.
3113 *
3114 *	If specified, the page will be wired down, meaning
3115 *	that the related pte can not be reclaimed.
3116 *
3117 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3118 *	or lose information.  That is, this routine must actually
3119 *	insert this page into the given map NOW.
3120 */
3121void
3122pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3123    vm_prot_t prot, boolean_t wired)
3124{
3125	vm_paddr_t pa;
3126	pd_entry_t *pde;
3127	pt_entry_t *pte;
3128	vm_paddr_t opa;
3129	pt_entry_t origpte, newpte;
3130	vm_page_t mpte, om;
3131	boolean_t invlva;
3132
3133	va = trunc_page(va);
3134	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3135	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3136	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3137
3138	mpte = NULL;
3139
3140	vm_page_lock_queues();
3141	PMAP_LOCK(pmap);
3142	sched_pin();
3143
3144	/*
3145	 * In the case that a page table page is not
3146	 * resident, we are creating it here.
3147	 */
3148	if (va < VM_MAXUSER_ADDRESS) {
3149		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3150	}
3151
3152	pde = pmap_pde(pmap, va);
3153	if ((*pde & PG_PS) != 0)
3154		panic("pmap_enter: attempted pmap_enter on 4MB page");
3155	pte = pmap_pte_quick(pmap, va);
3156
3157	/*
3158	 * Page Directory table entry not valid, we need a new PT page
3159	 */
3160	if (pte == NULL) {
3161		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3162			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3163	}
3164
3165	pa = VM_PAGE_TO_PHYS(m);
3166	om = NULL;
3167	origpte = *pte;
3168	opa = origpte & PG_FRAME;
3169
3170	/*
3171	 * Mapping has not changed, must be protection or wiring change.
3172	 */
3173	if (origpte && (opa == pa)) {
3174		/*
3175		 * Wiring change, just update stats. We don't worry about
3176		 * wiring PT pages as they remain resident as long as there
3177		 * are valid mappings in them. Hence, if a user page is wired,
3178		 * the PT page will be also.
3179		 */
3180		if (wired && ((origpte & PG_W) == 0))
3181			pmap->pm_stats.wired_count++;
3182		else if (!wired && (origpte & PG_W))
3183			pmap->pm_stats.wired_count--;
3184
3185		/*
3186		 * Remove extra pte reference
3187		 */
3188		if (mpte)
3189			mpte->wire_count--;
3190
3191		/*
3192		 * We might be turning off write access to the page,
3193		 * so we go ahead and sense modify status.
3194		 */
3195		if (origpte & PG_MANAGED) {
3196			om = m;
3197			pa |= PG_MANAGED;
3198		}
3199		goto validate;
3200	}
3201	/*
3202	 * Mapping has changed, invalidate old range and fall through to
3203	 * handle validating new mapping.
3204	 */
3205	if (opa) {
3206		if (origpte & PG_W)
3207			pmap->pm_stats.wired_count--;
3208		if (origpte & PG_MANAGED) {
3209			om = PHYS_TO_VM_PAGE(opa);
3210			pmap_remove_entry(pmap, om, va);
3211		}
3212		if (mpte != NULL) {
3213			mpte->wire_count--;
3214			KASSERT(mpte->wire_count > 0,
3215			    ("pmap_enter: missing reference to page table page,"
3216			     " va: 0x%x", va));
3217		}
3218	} else
3219		pmap->pm_stats.resident_count++;
3220
3221	/*
3222	 * Enter on the PV list if part of our managed memory.
3223	 */
3224	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3225		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3226		    ("pmap_enter: managed mapping within the clean submap"));
3227		pmap_insert_entry(pmap, va, m);
3228		pa |= PG_MANAGED;
3229	}
3230
3231	/*
3232	 * Increment counters
3233	 */
3234	if (wired)
3235		pmap->pm_stats.wired_count++;
3236
3237validate:
3238	/*
3239	 * Now validate mapping with desired protection/wiring.
3240	 */
3241	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3242	if ((prot & VM_PROT_WRITE) != 0) {
3243		newpte |= PG_RW;
3244		vm_page_flag_set(m, PG_WRITEABLE);
3245	}
3246#ifdef PAE
3247	if ((prot & VM_PROT_EXECUTE) == 0)
3248		newpte |= pg_nx;
3249#endif
3250	if (wired)
3251		newpte |= PG_W;
3252	if (va < VM_MAXUSER_ADDRESS)
3253		newpte |= PG_U;
3254	if (pmap == kernel_pmap)
3255		newpte |= pgeflag;
3256
3257	/*
3258	 * if the mapping or permission bits are different, we need
3259	 * to update the pte.
3260	 */
3261	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3262		newpte |= PG_A;
3263		if ((access & VM_PROT_WRITE) != 0)
3264			newpte |= PG_M;
3265		if (origpte & PG_V) {
3266			invlva = FALSE;
3267			origpte = pte_load_store(pte, newpte);
3268			if (origpte & PG_A) {
3269				if (origpte & PG_MANAGED)
3270					vm_page_flag_set(om, PG_REFERENCED);
3271				if (opa != VM_PAGE_TO_PHYS(m))
3272					invlva = TRUE;
3273#ifdef PAE
3274				if ((origpte & PG_NX) == 0 &&
3275				    (newpte & PG_NX) != 0)
3276					invlva = TRUE;
3277#endif
3278			}
3279			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3280				if ((origpte & PG_MANAGED) != 0)
3281					vm_page_dirty(om);
3282				if ((prot & VM_PROT_WRITE) == 0)
3283					invlva = TRUE;
3284			}
3285			if (invlva)
3286				pmap_invalidate_page(pmap, va);
3287		} else
3288			pte_store(pte, newpte);
3289	}
3290
3291	/*
3292	 * If both the page table page and the reservation are fully
3293	 * populated, then attempt promotion.
3294	 */
3295	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3296	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3297		pmap_promote_pde(pmap, pde, va);
3298
3299	sched_unpin();
3300	vm_page_unlock_queues();
3301	PMAP_UNLOCK(pmap);
3302}
3303
3304/*
3305 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3306 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3307 * blocking, (2) a mapping already exists at the specified virtual address, or
3308 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3309 */
3310static boolean_t
3311pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3312{
3313	pd_entry_t *pde, newpde;
3314
3315	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3316	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3317	pde = pmap_pde(pmap, va);
3318	if (*pde != 0) {
3319		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3320		    " in pmap %p", va, pmap);
3321		return (FALSE);
3322	}
3323	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3324	    PG_PS | PG_V;
3325	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3326		newpde |= PG_MANAGED;
3327
3328		/*
3329		 * Abort this mapping if its PV entry could not be created.
3330		 */
3331		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3332			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3333			    " in pmap %p", va, pmap);
3334			return (FALSE);
3335		}
3336	}
3337#ifdef PAE
3338	if ((prot & VM_PROT_EXECUTE) == 0)
3339		newpde |= pg_nx;
3340#endif
3341	if (va < VM_MAXUSER_ADDRESS)
3342		newpde |= PG_U;
3343
3344	/*
3345	 * Increment counters.
3346	 */
3347	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3348
3349	/*
3350	 * Map the superpage.
3351	 */
3352	pde_store(pde, newpde);
3353
3354	pmap_pde_mappings++;
3355	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3356	    " in pmap %p", va, pmap);
3357	return (TRUE);
3358}
3359
3360/*
3361 * Maps a sequence of resident pages belonging to the same object.
3362 * The sequence begins with the given page m_start.  This page is
3363 * mapped at the given virtual address start.  Each subsequent page is
3364 * mapped at a virtual address that is offset from start by the same
3365 * amount as the page is offset from m_start within the object.  The
3366 * last page in the sequence is the page with the largest offset from
3367 * m_start that can be mapped at a virtual address less than the given
3368 * virtual address end.  Not every virtual page between start and end
3369 * is mapped; only those for which a resident page exists with the
3370 * corresponding offset from m_start are mapped.
3371 */
3372void
3373pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3374    vm_page_t m_start, vm_prot_t prot)
3375{
3376	vm_offset_t va;
3377	vm_page_t m, mpte;
3378	vm_pindex_t diff, psize;
3379
3380	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3381	psize = atop(end - start);
3382	mpte = NULL;
3383	m = m_start;
3384	PMAP_LOCK(pmap);
3385	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3386		va = start + ptoa(diff);
3387		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3388		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3389		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3390		    pmap_enter_pde(pmap, va, m, prot))
3391			m = &m[NBPDR / PAGE_SIZE - 1];
3392		else
3393			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3394			    mpte);
3395		m = TAILQ_NEXT(m, listq);
3396	}
3397 	PMAP_UNLOCK(pmap);
3398}
3399
3400/*
3401 * this code makes some *MAJOR* assumptions:
3402 * 1. Current pmap & pmap exists.
3403 * 2. Not wired.
3404 * 3. Read access.
3405 * 4. No page table pages.
3406 * but is *MUCH* faster than pmap_enter...
3407 */
3408
3409void
3410pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3411{
3412
3413	PMAP_LOCK(pmap);
3414	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3415	PMAP_UNLOCK(pmap);
3416}
3417
3418static vm_page_t
3419pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3420    vm_prot_t prot, vm_page_t mpte)
3421{
3422	pt_entry_t *pte;
3423	vm_paddr_t pa;
3424	vm_page_t free;
3425
3426	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3427	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3428	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3429	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3430	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3431
3432	/*
3433	 * In the case that a page table page is not
3434	 * resident, we are creating it here.
3435	 */
3436	if (va < VM_MAXUSER_ADDRESS) {
3437		unsigned ptepindex;
3438		pd_entry_t ptepa;
3439
3440		/*
3441		 * Calculate pagetable page index
3442		 */
3443		ptepindex = va >> PDRSHIFT;
3444		if (mpte && (mpte->pindex == ptepindex)) {
3445			mpte->wire_count++;
3446		} else {
3447			/*
3448			 * Get the page directory entry
3449			 */
3450			ptepa = pmap->pm_pdir[ptepindex];
3451
3452			/*
3453			 * If the page table page is mapped, we just increment
3454			 * the hold count, and activate it.
3455			 */
3456			if (ptepa) {
3457				if (ptepa & PG_PS)
3458					return (NULL);
3459				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3460				mpte->wire_count++;
3461			} else {
3462				mpte = _pmap_allocpte(pmap, ptepindex,
3463				    M_NOWAIT);
3464				if (mpte == NULL)
3465					return (mpte);
3466			}
3467		}
3468	} else {
3469		mpte = NULL;
3470	}
3471
3472	/*
3473	 * This call to vtopte makes the assumption that we are
3474	 * entering the page into the current pmap.  In order to support
3475	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3476	 * But that isn't as quick as vtopte.
3477	 */
3478	pte = vtopte(va);
3479	if (*pte) {
3480		if (mpte != NULL) {
3481			mpte->wire_count--;
3482			mpte = NULL;
3483		}
3484		return (mpte);
3485	}
3486
3487	/*
3488	 * Enter on the PV list if part of our managed memory.
3489	 */
3490	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3491	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3492		if (mpte != NULL) {
3493			free = NULL;
3494			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3495				pmap_invalidate_page(pmap, va);
3496				pmap_free_zero_pages(free);
3497			}
3498
3499			mpte = NULL;
3500		}
3501		return (mpte);
3502	}
3503
3504	/*
3505	 * Increment counters
3506	 */
3507	pmap->pm_stats.resident_count++;
3508
3509	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3510#ifdef PAE
3511	if ((prot & VM_PROT_EXECUTE) == 0)
3512		pa |= pg_nx;
3513#endif
3514
3515	/*
3516	 * Now validate mapping with RO protection
3517	 */
3518	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3519		pte_store(pte, pa | PG_V | PG_U);
3520	else
3521		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3522	return mpte;
3523}
3524
3525/*
3526 * Make a temporary mapping for a physical address.  This is only intended
3527 * to be used for panic dumps.
3528 */
3529void *
3530pmap_kenter_temporary(vm_paddr_t pa, int i)
3531{
3532	vm_offset_t va;
3533
3534	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3535	pmap_kenter(va, pa);
3536	invlpg(va);
3537	return ((void *)crashdumpmap);
3538}
3539
3540/*
3541 * This code maps large physical mmap regions into the
3542 * processor address space.  Note that some shortcuts
3543 * are taken, but the code works.
3544 */
3545void
3546pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3547    vm_pindex_t pindex, vm_size_t size)
3548{
3549	pd_entry_t *pde;
3550	vm_paddr_t pa, ptepa;
3551	vm_page_t p;
3552	int pat_mode;
3553
3554	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3555	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3556	    ("pmap_object_init_pt: non-device object"));
3557	if (pseflag &&
3558	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3559		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3560			return;
3561		p = vm_page_lookup(object, pindex);
3562		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3563		    ("pmap_object_init_pt: invalid page %p", p));
3564		pat_mode = p->md.pat_mode;
3565
3566		/*
3567		 * Abort the mapping if the first page is not physically
3568		 * aligned to a 2/4MB page boundary.
3569		 */
3570		ptepa = VM_PAGE_TO_PHYS(p);
3571		if (ptepa & (NBPDR - 1))
3572			return;
3573
3574		/*
3575		 * Skip the first page.  Abort the mapping if the rest of
3576		 * the pages are not physically contiguous or have differing
3577		 * memory attributes.
3578		 */
3579		p = TAILQ_NEXT(p, listq);
3580		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3581		    pa += PAGE_SIZE) {
3582			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3583			    ("pmap_object_init_pt: invalid page %p", p));
3584			if (pa != VM_PAGE_TO_PHYS(p) ||
3585			    pat_mode != p->md.pat_mode)
3586				return;
3587			p = TAILQ_NEXT(p, listq);
3588		}
3589
3590		/*
3591		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3592		 * "size" is a multiple of 2/4M, adding the PAT setting to
3593		 * "pa" will not affect the termination of this loop.
3594		 */
3595		PMAP_LOCK(pmap);
3596		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3597		    size; pa += NBPDR) {
3598			pde = pmap_pde(pmap, addr);
3599			if (*pde == 0) {
3600				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3601				    PG_U | PG_RW | PG_V);
3602				pmap->pm_stats.resident_count += NBPDR /
3603				    PAGE_SIZE;
3604				pmap_pde_mappings++;
3605			}
3606			/* Else continue on if the PDE is already valid. */
3607			addr += NBPDR;
3608		}
3609		PMAP_UNLOCK(pmap);
3610	}
3611}
3612
3613/*
3614 *	Routine:	pmap_change_wiring
3615 *	Function:	Change the wiring attribute for a map/virtual-address
3616 *			pair.
3617 *	In/out conditions:
3618 *			The mapping must already exist in the pmap.
3619 */
3620void
3621pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3622{
3623	pd_entry_t *pde;
3624	pt_entry_t *pte;
3625	boolean_t are_queues_locked;
3626
3627	are_queues_locked = FALSE;
3628retry:
3629	PMAP_LOCK(pmap);
3630	pde = pmap_pde(pmap, va);
3631	if ((*pde & PG_PS) != 0) {
3632		if (!wired != ((*pde & PG_W) == 0)) {
3633			if (!are_queues_locked) {
3634				are_queues_locked = TRUE;
3635				if (!mtx_trylock(&vm_page_queue_mtx)) {
3636					PMAP_UNLOCK(pmap);
3637					vm_page_lock_queues();
3638					goto retry;
3639				}
3640			}
3641			if (!pmap_demote_pde(pmap, pde, va))
3642				panic("pmap_change_wiring: demotion failed");
3643		} else
3644			goto out;
3645	}
3646	pte = pmap_pte(pmap, va);
3647
3648	if (wired && !pmap_pte_w(pte))
3649		pmap->pm_stats.wired_count++;
3650	else if (!wired && pmap_pte_w(pte))
3651		pmap->pm_stats.wired_count--;
3652
3653	/*
3654	 * Wiring is not a hardware characteristic so there is no need to
3655	 * invalidate TLB.
3656	 */
3657	pmap_pte_set_w(pte, wired);
3658	pmap_pte_release(pte);
3659out:
3660	if (are_queues_locked)
3661		vm_page_unlock_queues();
3662	PMAP_UNLOCK(pmap);
3663}
3664
3665
3666
3667/*
3668 *	Copy the range specified by src_addr/len
3669 *	from the source map to the range dst_addr/len
3670 *	in the destination map.
3671 *
3672 *	This routine is only advisory and need not do anything.
3673 */
3674
3675void
3676pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3677    vm_offset_t src_addr)
3678{
3679	vm_page_t   free;
3680	vm_offset_t addr;
3681	vm_offset_t end_addr = src_addr + len;
3682	vm_offset_t pdnxt;
3683
3684	if (dst_addr != src_addr)
3685		return;
3686
3687	if (!pmap_is_current(src_pmap))
3688		return;
3689
3690	vm_page_lock_queues();
3691	if (dst_pmap < src_pmap) {
3692		PMAP_LOCK(dst_pmap);
3693		PMAP_LOCK(src_pmap);
3694	} else {
3695		PMAP_LOCK(src_pmap);
3696		PMAP_LOCK(dst_pmap);
3697	}
3698	sched_pin();
3699	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3700		pt_entry_t *src_pte, *dst_pte;
3701		vm_page_t dstmpte, srcmpte;
3702		pd_entry_t srcptepaddr;
3703		unsigned ptepindex;
3704
3705		KASSERT(addr < UPT_MIN_ADDRESS,
3706		    ("pmap_copy: invalid to pmap_copy page tables"));
3707
3708		pdnxt = (addr + NBPDR) & ~PDRMASK;
3709		if (pdnxt < addr)
3710			pdnxt = end_addr;
3711		ptepindex = addr >> PDRSHIFT;
3712
3713		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3714		if (srcptepaddr == 0)
3715			continue;
3716
3717		if (srcptepaddr & PG_PS) {
3718			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3719			    ((srcptepaddr & PG_MANAGED) == 0 ||
3720			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3721			    PG_PS_FRAME))) {
3722				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3723				    ~PG_W;
3724				dst_pmap->pm_stats.resident_count +=
3725				    NBPDR / PAGE_SIZE;
3726			}
3727			continue;
3728		}
3729
3730		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3731		KASSERT(srcmpte->wire_count > 0,
3732		    ("pmap_copy: source page table page is unused"));
3733
3734		if (pdnxt > end_addr)
3735			pdnxt = end_addr;
3736
3737		src_pte = vtopte(addr);
3738		while (addr < pdnxt) {
3739			pt_entry_t ptetemp;
3740			ptetemp = *src_pte;
3741			/*
3742			 * we only virtual copy managed pages
3743			 */
3744			if ((ptetemp & PG_MANAGED) != 0) {
3745				dstmpte = pmap_allocpte(dst_pmap, addr,
3746				    M_NOWAIT);
3747				if (dstmpte == NULL)
3748					goto out;
3749				dst_pte = pmap_pte_quick(dst_pmap, addr);
3750				if (*dst_pte == 0 &&
3751				    pmap_try_insert_pv_entry(dst_pmap, addr,
3752				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3753					/*
3754					 * Clear the wired, modified, and
3755					 * accessed (referenced) bits
3756					 * during the copy.
3757					 */
3758					*dst_pte = ptetemp & ~(PG_W | PG_M |
3759					    PG_A);
3760					dst_pmap->pm_stats.resident_count++;
3761	 			} else {
3762					free = NULL;
3763					if (pmap_unwire_pte_hold(dst_pmap,
3764					    dstmpte, &free)) {
3765						pmap_invalidate_page(dst_pmap,
3766						    addr);
3767						pmap_free_zero_pages(free);
3768					}
3769					goto out;
3770				}
3771				if (dstmpte->wire_count >= srcmpte->wire_count)
3772					break;
3773			}
3774			addr += PAGE_SIZE;
3775			src_pte++;
3776		}
3777	}
3778out:
3779	sched_unpin();
3780	vm_page_unlock_queues();
3781	PMAP_UNLOCK(src_pmap);
3782	PMAP_UNLOCK(dst_pmap);
3783}
3784
3785static __inline void
3786pagezero(void *page)
3787{
3788#if defined(I686_CPU)
3789	if (cpu_class == CPUCLASS_686) {
3790#if defined(CPU_ENABLE_SSE)
3791		if (cpu_feature & CPUID_SSE2)
3792			sse2_pagezero(page);
3793		else
3794#endif
3795			i686_pagezero(page);
3796	} else
3797#endif
3798		bzero(page, PAGE_SIZE);
3799}
3800
3801/*
3802 *	pmap_zero_page zeros the specified hardware page by mapping
3803 *	the page into KVM and using bzero to clear its contents.
3804 */
3805void
3806pmap_zero_page(vm_page_t m)
3807{
3808	struct sysmaps *sysmaps;
3809
3810	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3811	mtx_lock(&sysmaps->lock);
3812	if (*sysmaps->CMAP2)
3813		panic("pmap_zero_page: CMAP2 busy");
3814	sched_pin();
3815	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3816	    pmap_cache_bits(m->md.pat_mode, 0);
3817	invlcaddr(sysmaps->CADDR2);
3818	pagezero(sysmaps->CADDR2);
3819	*sysmaps->CMAP2 = 0;
3820	sched_unpin();
3821	mtx_unlock(&sysmaps->lock);
3822}
3823
3824/*
3825 *	pmap_zero_page_area zeros the specified hardware page by mapping
3826 *	the page into KVM and using bzero to clear its contents.
3827 *
3828 *	off and size may not cover an area beyond a single hardware page.
3829 */
3830void
3831pmap_zero_page_area(vm_page_t m, int off, int size)
3832{
3833	struct sysmaps *sysmaps;
3834
3835	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3836	mtx_lock(&sysmaps->lock);
3837	if (*sysmaps->CMAP2)
3838		panic("pmap_zero_page_area: CMAP2 busy");
3839	sched_pin();
3840	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3841	    pmap_cache_bits(m->md.pat_mode, 0);
3842	invlcaddr(sysmaps->CADDR2);
3843	if (off == 0 && size == PAGE_SIZE)
3844		pagezero(sysmaps->CADDR2);
3845	else
3846		bzero((char *)sysmaps->CADDR2 + off, size);
3847	*sysmaps->CMAP2 = 0;
3848	sched_unpin();
3849	mtx_unlock(&sysmaps->lock);
3850}
3851
3852/*
3853 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3854 *	the page into KVM and using bzero to clear its contents.  This
3855 *	is intended to be called from the vm_pagezero process only and
3856 *	outside of Giant.
3857 */
3858void
3859pmap_zero_page_idle(vm_page_t m)
3860{
3861
3862	if (*CMAP3)
3863		panic("pmap_zero_page_idle: CMAP3 busy");
3864	sched_pin();
3865	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3866	    pmap_cache_bits(m->md.pat_mode, 0);
3867	invlcaddr(CADDR3);
3868	pagezero(CADDR3);
3869	*CMAP3 = 0;
3870	sched_unpin();
3871}
3872
3873/*
3874 *	pmap_copy_page copies the specified (machine independent)
3875 *	page by mapping the page into virtual memory and using
3876 *	bcopy to copy the page, one machine dependent page at a
3877 *	time.
3878 */
3879void
3880pmap_copy_page(vm_page_t src, vm_page_t dst)
3881{
3882	struct sysmaps *sysmaps;
3883
3884	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3885	mtx_lock(&sysmaps->lock);
3886	if (*sysmaps->CMAP1)
3887		panic("pmap_copy_page: CMAP1 busy");
3888	if (*sysmaps->CMAP2)
3889		panic("pmap_copy_page: CMAP2 busy");
3890	sched_pin();
3891	invlpg((u_int)sysmaps->CADDR1);
3892	invlpg((u_int)sysmaps->CADDR2);
3893	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
3894	    pmap_cache_bits(src->md.pat_mode, 0);
3895	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
3896	    pmap_cache_bits(dst->md.pat_mode, 0);
3897	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3898	*sysmaps->CMAP1 = 0;
3899	*sysmaps->CMAP2 = 0;
3900	sched_unpin();
3901	mtx_unlock(&sysmaps->lock);
3902}
3903
3904/*
3905 * Returns true if the pmap's pv is one of the first
3906 * 16 pvs linked to from this page.  This count may
3907 * be changed upwards or downwards in the future; it
3908 * is only necessary that true be returned for a small
3909 * subset of pmaps for proper page aging.
3910 */
3911boolean_t
3912pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3913{
3914	struct md_page *pvh;
3915	pv_entry_t pv;
3916	int loops = 0;
3917
3918	if (m->flags & PG_FICTITIOUS)
3919		return FALSE;
3920
3921	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3922	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3923		if (PV_PMAP(pv) == pmap) {
3924			return TRUE;
3925		}
3926		loops++;
3927		if (loops >= 16)
3928			break;
3929	}
3930	if (loops < 16) {
3931		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3932		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3933			if (PV_PMAP(pv) == pmap)
3934				return (TRUE);
3935			loops++;
3936			if (loops >= 16)
3937				break;
3938		}
3939	}
3940	return (FALSE);
3941}
3942
3943/*
3944 *	pmap_page_wired_mappings:
3945 *
3946 *	Return the number of managed mappings to the given physical page
3947 *	that are wired.
3948 */
3949int
3950pmap_page_wired_mappings(vm_page_t m)
3951{
3952	int count;
3953
3954	count = 0;
3955	if ((m->flags & PG_FICTITIOUS) != 0)
3956		return (count);
3957	count = pmap_pvh_wired_mappings(&m->md, count);
3958	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3959}
3960
3961/*
3962 *	pmap_pvh_wired_mappings:
3963 *
3964 *	Return the updated number "count" of managed mappings that are wired.
3965 */
3966static int
3967pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3968{
3969	pmap_t pmap;
3970	pt_entry_t *pte;
3971	pv_entry_t pv;
3972
3973	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3974	sched_pin();
3975	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3976		pmap = PV_PMAP(pv);
3977		PMAP_LOCK(pmap);
3978		pte = pmap_pte_quick(pmap, pv->pv_va);
3979		if ((*pte & PG_W) != 0)
3980			count++;
3981		PMAP_UNLOCK(pmap);
3982	}
3983	sched_unpin();
3984	return (count);
3985}
3986
3987/*
3988 * Returns TRUE if the given page is mapped individually or as part of
3989 * a 4mpage.  Otherwise, returns FALSE.
3990 */
3991boolean_t
3992pmap_page_is_mapped(vm_page_t m)
3993{
3994	struct md_page *pvh;
3995
3996	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3997		return (FALSE);
3998	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3999	if (TAILQ_EMPTY(&m->md.pv_list)) {
4000		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4001		return (!TAILQ_EMPTY(&pvh->pv_list));
4002	} else
4003		return (TRUE);
4004}
4005
4006/*
4007 * Remove all pages from specified address space
4008 * this aids process exit speeds.  Also, this code
4009 * is special cased for current process only, but
4010 * can have the more generic (and slightly slower)
4011 * mode enabled.  This is much faster than pmap_remove
4012 * in the case of running down an entire address space.
4013 */
4014void
4015pmap_remove_pages(pmap_t pmap)
4016{
4017	pt_entry_t *pte, tpte;
4018	vm_page_t free = NULL;
4019	vm_page_t m, mpte, mt;
4020	pv_entry_t pv;
4021	struct md_page *pvh;
4022	struct pv_chunk *pc, *npc;
4023	int field, idx;
4024	int32_t bit;
4025	uint32_t inuse, bitmask;
4026	int allfree;
4027
4028	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
4029		printf("warning: pmap_remove_pages called with non-current pmap\n");
4030		return;
4031	}
4032	vm_page_lock_queues();
4033	PMAP_LOCK(pmap);
4034	sched_pin();
4035	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4036		allfree = 1;
4037		for (field = 0; field < _NPCM; field++) {
4038			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4039			while (inuse != 0) {
4040				bit = bsfl(inuse);
4041				bitmask = 1UL << bit;
4042				idx = field * 32 + bit;
4043				pv = &pc->pc_pventry[idx];
4044				inuse &= ~bitmask;
4045
4046				pte = pmap_pde(pmap, pv->pv_va);
4047				tpte = *pte;
4048				if ((tpte & PG_PS) == 0) {
4049					pte = vtopte(pv->pv_va);
4050					tpte = *pte & ~PG_PTE_PAT;
4051				}
4052
4053				if (tpte == 0) {
4054					printf(
4055					    "TPTE at %p  IS ZERO @ VA %08x\n",
4056					    pte, pv->pv_va);
4057					panic("bad pte");
4058				}
4059
4060/*
4061 * We cannot remove wired pages from a process' mapping at this time
4062 */
4063				if (tpte & PG_W) {
4064					allfree = 0;
4065					continue;
4066				}
4067
4068				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4069				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4070				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4071				    m, (uintmax_t)m->phys_addr,
4072				    (uintmax_t)tpte));
4073
4074				KASSERT(m < &vm_page_array[vm_page_array_size],
4075					("pmap_remove_pages: bad tpte %#jx",
4076					(uintmax_t)tpte));
4077
4078				pte_clear(pte);
4079
4080				/*
4081				 * Update the vm_page_t clean/reference bits.
4082				 */
4083				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4084					if ((tpte & PG_PS) != 0) {
4085						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4086							vm_page_dirty(mt);
4087					} else
4088						vm_page_dirty(m);
4089				}
4090
4091				/* Mark free */
4092				PV_STAT(pv_entry_frees++);
4093				PV_STAT(pv_entry_spare++);
4094				pv_entry_count--;
4095				pc->pc_map[field] |= bitmask;
4096				if ((tpte & PG_PS) != 0) {
4097					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4098					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4099					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4100					if (TAILQ_EMPTY(&pvh->pv_list)) {
4101						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4102							if (TAILQ_EMPTY(&mt->md.pv_list))
4103								vm_page_flag_clear(mt, PG_WRITEABLE);
4104					}
4105					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4106					if (mpte != NULL) {
4107						pmap_remove_pt_page(pmap, mpte);
4108						pmap->pm_stats.resident_count--;
4109						KASSERT(mpte->wire_count == NPTEPG,
4110						    ("pmap_remove_pages: pte page wire count error"));
4111						mpte->wire_count = 0;
4112						pmap_add_delayed_free_list(mpte, &free, FALSE);
4113						atomic_subtract_int(&cnt.v_wire_count, 1);
4114					}
4115				} else {
4116					pmap->pm_stats.resident_count--;
4117					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4118					if (TAILQ_EMPTY(&m->md.pv_list)) {
4119						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4120						if (TAILQ_EMPTY(&pvh->pv_list))
4121							vm_page_flag_clear(m, PG_WRITEABLE);
4122					}
4123					pmap_unuse_pt(pmap, pv->pv_va, &free);
4124				}
4125			}
4126		}
4127		if (allfree) {
4128			PV_STAT(pv_entry_spare -= _NPCPV);
4129			PV_STAT(pc_chunk_count--);
4130			PV_STAT(pc_chunk_frees++);
4131			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4132			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4133			pmap_qremove((vm_offset_t)pc, 1);
4134			vm_page_unwire(m, 0);
4135			vm_page_free(m);
4136			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4137		}
4138	}
4139	sched_unpin();
4140	pmap_invalidate_all(pmap);
4141	vm_page_unlock_queues();
4142	PMAP_UNLOCK(pmap);
4143	pmap_free_zero_pages(free);
4144}
4145
4146/*
4147 *	pmap_is_modified:
4148 *
4149 *	Return whether or not the specified physical page was modified
4150 *	in any physical maps.
4151 */
4152boolean_t
4153pmap_is_modified(vm_page_t m)
4154{
4155
4156	if (m->flags & PG_FICTITIOUS)
4157		return (FALSE);
4158	if (pmap_is_modified_pvh(&m->md))
4159		return (TRUE);
4160	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4161}
4162
4163/*
4164 * Returns TRUE if any of the given mappings were used to modify
4165 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4166 * mappings are supported.
4167 */
4168static boolean_t
4169pmap_is_modified_pvh(struct md_page *pvh)
4170{
4171	pv_entry_t pv;
4172	pt_entry_t *pte;
4173	pmap_t pmap;
4174	boolean_t rv;
4175
4176	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4177	rv = FALSE;
4178	sched_pin();
4179	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4180		pmap = PV_PMAP(pv);
4181		PMAP_LOCK(pmap);
4182		pte = pmap_pte_quick(pmap, pv->pv_va);
4183		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4184		PMAP_UNLOCK(pmap);
4185		if (rv)
4186			break;
4187	}
4188	sched_unpin();
4189	return (rv);
4190}
4191
4192/*
4193 *	pmap_is_prefaultable:
4194 *
4195 *	Return whether or not the specified virtual address is elgible
4196 *	for prefault.
4197 */
4198boolean_t
4199pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4200{
4201	pd_entry_t *pde;
4202	pt_entry_t *pte;
4203	boolean_t rv;
4204
4205	rv = FALSE;
4206	PMAP_LOCK(pmap);
4207	pde = pmap_pde(pmap, addr);
4208	if (*pde != 0 && (*pde & PG_PS) == 0) {
4209		pte = vtopte(addr);
4210		rv = *pte == 0;
4211	}
4212	PMAP_UNLOCK(pmap);
4213	return (rv);
4214}
4215
4216/*
4217 * Clear the write and modified bits in each of the given page's mappings.
4218 */
4219void
4220pmap_remove_write(vm_page_t m)
4221{
4222	struct md_page *pvh;
4223	pv_entry_t next_pv, pv;
4224	pmap_t pmap;
4225	pd_entry_t *pde;
4226	pt_entry_t oldpte, *pte;
4227	vm_offset_t va;
4228
4229	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4230	if ((m->flags & PG_FICTITIOUS) != 0 ||
4231	    (m->flags & PG_WRITEABLE) == 0)
4232		return;
4233	sched_pin();
4234	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4235	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4236		va = pv->pv_va;
4237		pmap = PV_PMAP(pv);
4238		PMAP_LOCK(pmap);
4239		pde = pmap_pde(pmap, va);
4240		if ((*pde & PG_RW) != 0)
4241			(void)pmap_demote_pde(pmap, pde, va);
4242		PMAP_UNLOCK(pmap);
4243	}
4244	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4245		pmap = PV_PMAP(pv);
4246		PMAP_LOCK(pmap);
4247		pde = pmap_pde(pmap, pv->pv_va);
4248		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4249		    " a 4mpage in page %p's pv list", m));
4250		pte = pmap_pte_quick(pmap, pv->pv_va);
4251retry:
4252		oldpte = *pte;
4253		if ((oldpte & PG_RW) != 0) {
4254			/*
4255			 * Regardless of whether a pte is 32 or 64 bits
4256			 * in size, PG_RW and PG_M are among the least
4257			 * significant 32 bits.
4258			 */
4259			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4260			    oldpte & ~(PG_RW | PG_M)))
4261				goto retry;
4262			if ((oldpte & PG_M) != 0)
4263				vm_page_dirty(m);
4264			pmap_invalidate_page(pmap, pv->pv_va);
4265		}
4266		PMAP_UNLOCK(pmap);
4267	}
4268	vm_page_flag_clear(m, PG_WRITEABLE);
4269	sched_unpin();
4270}
4271
4272/*
4273 *	pmap_ts_referenced:
4274 *
4275 *	Return a count of reference bits for a page, clearing those bits.
4276 *	It is not necessary for every reference bit to be cleared, but it
4277 *	is necessary that 0 only be returned when there are truly no
4278 *	reference bits set.
4279 *
4280 *	XXX: The exact number of bits to check and clear is a matter that
4281 *	should be tested and standardized at some point in the future for
4282 *	optimal aging of shared pages.
4283 */
4284int
4285pmap_ts_referenced(vm_page_t m)
4286{
4287	struct md_page *pvh;
4288	pv_entry_t pv, pvf, pvn;
4289	pmap_t pmap;
4290	pd_entry_t oldpde, *pde;
4291	pt_entry_t *pte;
4292	vm_offset_t va;
4293	int rtval = 0;
4294
4295	if (m->flags & PG_FICTITIOUS)
4296		return (rtval);
4297	sched_pin();
4298	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4299	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4300	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4301		va = pv->pv_va;
4302		pmap = PV_PMAP(pv);
4303		PMAP_LOCK(pmap);
4304		pde = pmap_pde(pmap, va);
4305		oldpde = *pde;
4306		if ((oldpde & PG_A) != 0) {
4307			if (pmap_demote_pde(pmap, pde, va)) {
4308				if ((oldpde & PG_W) == 0) {
4309					/*
4310					 * Remove the mapping to a single page
4311					 * so that a subsequent access may
4312					 * repromote.  Since the underlying
4313					 * page table page is fully populated,
4314					 * this removal never frees a page
4315					 * table page.
4316					 */
4317					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4318					    PG_PS_FRAME);
4319					pmap_remove_page(pmap, va, NULL);
4320					rtval++;
4321					if (rtval > 4) {
4322						PMAP_UNLOCK(pmap);
4323						return (rtval);
4324					}
4325				}
4326			}
4327		}
4328		PMAP_UNLOCK(pmap);
4329	}
4330	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4331		pvf = pv;
4332		do {
4333			pvn = TAILQ_NEXT(pv, pv_list);
4334			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4335			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4336			pmap = PV_PMAP(pv);
4337			PMAP_LOCK(pmap);
4338			pde = pmap_pde(pmap, pv->pv_va);
4339			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4340			    " found a 4mpage in page %p's pv list", m));
4341			pte = pmap_pte_quick(pmap, pv->pv_va);
4342			if ((*pte & PG_A) != 0) {
4343				atomic_clear_int((u_int *)pte, PG_A);
4344				pmap_invalidate_page(pmap, pv->pv_va);
4345				rtval++;
4346				if (rtval > 4)
4347					pvn = NULL;
4348			}
4349			PMAP_UNLOCK(pmap);
4350		} while ((pv = pvn) != NULL && pv != pvf);
4351	}
4352	sched_unpin();
4353	return (rtval);
4354}
4355
4356/*
4357 *	Clear the modify bits on the specified physical page.
4358 */
4359void
4360pmap_clear_modify(vm_page_t m)
4361{
4362	struct md_page *pvh;
4363	pv_entry_t next_pv, pv;
4364	pmap_t pmap;
4365	pd_entry_t oldpde, *pde;
4366	pt_entry_t oldpte, *pte;
4367	vm_offset_t va;
4368
4369	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4370	if ((m->flags & PG_FICTITIOUS) != 0)
4371		return;
4372	sched_pin();
4373	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4374	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4375		va = pv->pv_va;
4376		pmap = PV_PMAP(pv);
4377		PMAP_LOCK(pmap);
4378		pde = pmap_pde(pmap, va);
4379		oldpde = *pde;
4380		if ((oldpde & PG_RW) != 0) {
4381			if (pmap_demote_pde(pmap, pde, va)) {
4382				if ((oldpde & PG_W) == 0) {
4383					/*
4384					 * Write protect the mapping to a
4385					 * single page so that a subsequent
4386					 * write access may repromote.
4387					 */
4388					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4389					    PG_PS_FRAME);
4390					pte = pmap_pte_quick(pmap, va);
4391					oldpte = *pte;
4392					if ((oldpte & PG_V) != 0) {
4393						/*
4394						 * Regardless of whether a pte is 32 or 64 bits
4395						 * in size, PG_RW and PG_M are among the least
4396						 * significant 32 bits.
4397						 */
4398						while (!atomic_cmpset_int((u_int *)pte,
4399						    oldpte,
4400						    oldpte & ~(PG_M | PG_RW)))
4401							oldpte = *pte;
4402						vm_page_dirty(m);
4403						pmap_invalidate_page(pmap, va);
4404					}
4405				}
4406			}
4407		}
4408		PMAP_UNLOCK(pmap);
4409	}
4410	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4411		pmap = PV_PMAP(pv);
4412		PMAP_LOCK(pmap);
4413		pde = pmap_pde(pmap, pv->pv_va);
4414		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4415		    " a 4mpage in page %p's pv list", m));
4416		pte = pmap_pte_quick(pmap, pv->pv_va);
4417		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4418			/*
4419			 * Regardless of whether a pte is 32 or 64 bits
4420			 * in size, PG_M is among the least significant
4421			 * 32 bits.
4422			 */
4423			atomic_clear_int((u_int *)pte, PG_M);
4424			pmap_invalidate_page(pmap, pv->pv_va);
4425		}
4426		PMAP_UNLOCK(pmap);
4427	}
4428	sched_unpin();
4429}
4430
4431/*
4432 *	pmap_clear_reference:
4433 *
4434 *	Clear the reference bit on the specified physical page.
4435 */
4436void
4437pmap_clear_reference(vm_page_t m)
4438{
4439	struct md_page *pvh;
4440	pv_entry_t next_pv, pv;
4441	pmap_t pmap;
4442	pd_entry_t oldpde, *pde;
4443	pt_entry_t *pte;
4444	vm_offset_t va;
4445
4446	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4447	if ((m->flags & PG_FICTITIOUS) != 0)
4448		return;
4449	sched_pin();
4450	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4451	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4452		va = pv->pv_va;
4453		pmap = PV_PMAP(pv);
4454		PMAP_LOCK(pmap);
4455		pde = pmap_pde(pmap, va);
4456		oldpde = *pde;
4457		if ((oldpde & PG_A) != 0) {
4458			if (pmap_demote_pde(pmap, pde, va)) {
4459				/*
4460				 * Remove the mapping to a single page so
4461				 * that a subsequent access may repromote.
4462				 * Since the underlying page table page is
4463				 * fully populated, this removal never frees
4464				 * a page table page.
4465				 */
4466				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4467				    PG_PS_FRAME);
4468				pmap_remove_page(pmap, va, NULL);
4469			}
4470		}
4471		PMAP_UNLOCK(pmap);
4472	}
4473	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4474		pmap = PV_PMAP(pv);
4475		PMAP_LOCK(pmap);
4476		pde = pmap_pde(pmap, pv->pv_va);
4477		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4478		    " a 4mpage in page %p's pv list", m));
4479		pte = pmap_pte_quick(pmap, pv->pv_va);
4480		if ((*pte & PG_A) != 0) {
4481			/*
4482			 * Regardless of whether a pte is 32 or 64 bits
4483			 * in size, PG_A is among the least significant
4484			 * 32 bits.
4485			 */
4486			atomic_clear_int((u_int *)pte, PG_A);
4487			pmap_invalidate_page(pmap, pv->pv_va);
4488		}
4489		PMAP_UNLOCK(pmap);
4490	}
4491	sched_unpin();
4492}
4493
4494/*
4495 * Miscellaneous support routines follow
4496 */
4497
4498/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4499static __inline void
4500pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4501{
4502	u_int opte, npte;
4503
4504	/*
4505	 * The cache mode bits are all in the low 32-bits of the
4506	 * PTE, so we can just spin on updating the low 32-bits.
4507	 */
4508	do {
4509		opte = *(u_int *)pte;
4510		npte = opte & ~PG_PTE_CACHE;
4511		npte |= cache_bits;
4512	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4513}
4514
4515/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4516static __inline void
4517pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4518{
4519	u_int opde, npde;
4520
4521	/*
4522	 * The cache mode bits are all in the low 32-bits of the
4523	 * PDE, so we can just spin on updating the low 32-bits.
4524	 */
4525	do {
4526		opde = *(u_int *)pde;
4527		npde = opde & ~PG_PDE_CACHE;
4528		npde |= cache_bits;
4529	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4530}
4531
4532/*
4533 * Map a set of physical memory pages into the kernel virtual
4534 * address space. Return a pointer to where it is mapped. This
4535 * routine is intended to be used for mapping device memory,
4536 * NOT real memory.
4537 */
4538void *
4539pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4540{
4541	vm_offset_t va, offset;
4542	vm_size_t tmpsize;
4543
4544	offset = pa & PAGE_MASK;
4545	size = roundup(offset + size, PAGE_SIZE);
4546	pa = pa & PG_FRAME;
4547
4548	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4549		va = KERNBASE + pa;
4550	else
4551		va = kmem_alloc_nofault(kernel_map, size);
4552	if (!va)
4553		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4554
4555	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4556		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4557	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4558	pmap_invalidate_cache_range(va, va + size);
4559	return ((void *)(va + offset));
4560}
4561
4562void *
4563pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4564{
4565
4566	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4567}
4568
4569void *
4570pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4571{
4572
4573	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4574}
4575
4576void
4577pmap_unmapdev(vm_offset_t va, vm_size_t size)
4578{
4579	vm_offset_t base, offset, tmpva;
4580
4581	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4582		return;
4583	base = trunc_page(va);
4584	offset = va & PAGE_MASK;
4585	size = roundup(offset + size, PAGE_SIZE);
4586	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4587		pmap_kremove(tmpva);
4588	pmap_invalidate_range(kernel_pmap, va, tmpva);
4589	kmem_free(kernel_map, base, size);
4590}
4591
4592/*
4593 * Sets the memory attribute for the specified page.
4594 */
4595void
4596pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4597{
4598	struct sysmaps *sysmaps;
4599	vm_offset_t sva, eva;
4600
4601	m->md.pat_mode = ma;
4602	if ((m->flags & PG_FICTITIOUS) != 0)
4603		return;
4604
4605	/*
4606	 * If "m" is a normal page, flush it from the cache.
4607	 * See pmap_invalidate_cache_range().
4608	 *
4609	 * First, try to find an existing mapping of the page by sf
4610	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4611	 * flushes the cache.
4612	 */
4613	if (sf_buf_invalidate_cache(m))
4614		return;
4615
4616	/*
4617	 * If page is not mapped by sf buffer, but CPU does not
4618	 * support self snoop, map the page transient and do
4619	 * invalidation. In the worst case, whole cache is flushed by
4620	 * pmap_invalidate_cache_range().
4621	 */
4622	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4623		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4624		mtx_lock(&sysmaps->lock);
4625		if (*sysmaps->CMAP2)
4626			panic("pmap_page_set_memattr: CMAP2 busy");
4627		sched_pin();
4628		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4629		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4630		invlcaddr(sysmaps->CADDR2);
4631		sva = (vm_offset_t)sysmaps->CADDR2;
4632		eva = sva + PAGE_SIZE;
4633	} else
4634		sva = eva = 0; /* gcc */
4635	pmap_invalidate_cache_range(sva, eva);
4636	if (sva != 0) {
4637		*sysmaps->CMAP2 = 0;
4638		sched_unpin();
4639		mtx_unlock(&sysmaps->lock);
4640	}
4641}
4642
4643/*
4644 * Changes the specified virtual address range's memory type to that given by
4645 * the parameter "mode".  The specified virtual address range must be
4646 * completely contained within either the kernel map.
4647 *
4648 * Returns zero if the change completed successfully, and either EINVAL or
4649 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4650 * of the virtual address range was not mapped, and ENOMEM is returned if
4651 * there was insufficient memory available to complete the change.
4652 */
4653int
4654pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4655{
4656	vm_offset_t base, offset, tmpva;
4657	pd_entry_t *pde;
4658	pt_entry_t *pte;
4659	int cache_bits_pte, cache_bits_pde;
4660	boolean_t changed;
4661
4662	base = trunc_page(va);
4663	offset = va & PAGE_MASK;
4664	size = roundup(offset + size, PAGE_SIZE);
4665
4666	/*
4667	 * Only supported on kernel virtual addresses above the recursive map.
4668	 */
4669	if (base < VM_MIN_KERNEL_ADDRESS)
4670		return (EINVAL);
4671
4672	cache_bits_pde = pmap_cache_bits(mode, 1);
4673	cache_bits_pte = pmap_cache_bits(mode, 0);
4674	changed = FALSE;
4675
4676	/*
4677	 * Pages that aren't mapped aren't supported.  Also break down
4678	 * 2/4MB pages into 4KB pages if required.
4679	 */
4680	PMAP_LOCK(kernel_pmap);
4681	for (tmpva = base; tmpva < base + size; ) {
4682		pde = pmap_pde(kernel_pmap, tmpva);
4683		if (*pde == 0) {
4684			PMAP_UNLOCK(kernel_pmap);
4685			return (EINVAL);
4686		}
4687		if (*pde & PG_PS) {
4688			/*
4689			 * If the current 2/4MB page already has
4690			 * the required memory type, then we need not
4691			 * demote this page.  Just increment tmpva to
4692			 * the next 2/4MB page frame.
4693			 */
4694			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4695				tmpva = trunc_4mpage(tmpva) + NBPDR;
4696				continue;
4697			}
4698
4699			/*
4700			 * If the current offset aligns with a 2/4MB
4701			 * page frame and there is at least 2/4MB left
4702			 * within the range, then we need not break
4703			 * down this page into 4KB pages.
4704			 */
4705			if ((tmpva & PDRMASK) == 0 &&
4706			    tmpva + PDRMASK < base + size) {
4707				tmpva += NBPDR;
4708				continue;
4709			}
4710			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4711				PMAP_UNLOCK(kernel_pmap);
4712				return (ENOMEM);
4713			}
4714		}
4715		pte = vtopte(tmpva);
4716		if (*pte == 0) {
4717			PMAP_UNLOCK(kernel_pmap);
4718			return (EINVAL);
4719		}
4720		tmpva += PAGE_SIZE;
4721	}
4722	PMAP_UNLOCK(kernel_pmap);
4723
4724	/*
4725	 * Ok, all the pages exist, so run through them updating their
4726	 * cache mode if required.
4727	 */
4728	for (tmpva = base; tmpva < base + size; ) {
4729		pde = pmap_pde(kernel_pmap, tmpva);
4730		if (*pde & PG_PS) {
4731			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4732				pmap_pde_attr(pde, cache_bits_pde);
4733				changed = TRUE;
4734			}
4735			tmpva = trunc_4mpage(tmpva) + NBPDR;
4736		} else {
4737			pte = vtopte(tmpva);
4738			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4739				pmap_pte_attr(pte, cache_bits_pte);
4740				changed = TRUE;
4741			}
4742			tmpva += PAGE_SIZE;
4743		}
4744	}
4745
4746	/*
4747	 * Flush CPU caches to make sure any data isn't cached that
4748	 * shouldn't be, etc.
4749	 */
4750	if (changed) {
4751		pmap_invalidate_range(kernel_pmap, base, tmpva);
4752		pmap_invalidate_cache_range(base, tmpva);
4753	}
4754	return (0);
4755}
4756
4757/*
4758 * perform the pmap work for mincore
4759 */
4760int
4761pmap_mincore(pmap_t pmap, vm_offset_t addr)
4762{
4763	pd_entry_t *pdep;
4764	pt_entry_t *ptep, pte;
4765	vm_paddr_t pa;
4766	vm_page_t m;
4767	int val = 0;
4768
4769	PMAP_LOCK(pmap);
4770	pdep = pmap_pde(pmap, addr);
4771	if (*pdep != 0) {
4772		if (*pdep & PG_PS) {
4773			pte = *pdep;
4774			val = MINCORE_SUPER;
4775			/* Compute the physical address of the 4KB page. */
4776			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4777			    PG_FRAME;
4778		} else {
4779			ptep = pmap_pte(pmap, addr);
4780			pte = *ptep;
4781			pmap_pte_release(ptep);
4782			pa = pte & PG_FRAME;
4783		}
4784	} else {
4785		pte = 0;
4786		pa = 0;
4787	}
4788	PMAP_UNLOCK(pmap);
4789
4790	if (pte != 0) {
4791		val |= MINCORE_INCORE;
4792		if ((pte & PG_MANAGED) == 0)
4793			return val;
4794
4795		m = PHYS_TO_VM_PAGE(pa);
4796
4797		/*
4798		 * Modified by us
4799		 */
4800		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4801			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4802		else {
4803			/*
4804			 * Modified by someone else
4805			 */
4806			vm_page_lock_queues();
4807			if (m->dirty || pmap_is_modified(m))
4808				val |= MINCORE_MODIFIED_OTHER;
4809			vm_page_unlock_queues();
4810		}
4811		/*
4812		 * Referenced by us
4813		 */
4814		if (pte & PG_A)
4815			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4816		else {
4817			/*
4818			 * Referenced by someone else
4819			 */
4820			vm_page_lock_queues();
4821			if ((m->flags & PG_REFERENCED) ||
4822			    pmap_ts_referenced(m)) {
4823				val |= MINCORE_REFERENCED_OTHER;
4824				vm_page_flag_set(m, PG_REFERENCED);
4825			}
4826			vm_page_unlock_queues();
4827		}
4828	}
4829	return val;
4830}
4831
4832void
4833pmap_activate(struct thread *td)
4834{
4835	pmap_t	pmap, oldpmap;
4836	u_int32_t  cr3;
4837
4838	critical_enter();
4839	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4840	oldpmap = PCPU_GET(curpmap);
4841#if defined(SMP)
4842	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4843	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4844#else
4845	oldpmap->pm_active &= ~1;
4846	pmap->pm_active |= 1;
4847#endif
4848#ifdef PAE
4849	cr3 = vtophys(pmap->pm_pdpt);
4850#else
4851	cr3 = vtophys(pmap->pm_pdir);
4852#endif
4853	/*
4854	 * pmap_activate is for the current thread on the current cpu
4855	 */
4856	td->td_pcb->pcb_cr3 = cr3;
4857	load_cr3(cr3);
4858	PCPU_SET(curpmap, pmap);
4859	critical_exit();
4860}
4861
4862void
4863pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4864{
4865}
4866
4867/*
4868 *	Increase the starting virtual address of the given mapping if a
4869 *	different alignment might result in more superpage mappings.
4870 */
4871void
4872pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4873    vm_offset_t *addr, vm_size_t size)
4874{
4875	vm_offset_t superpage_offset;
4876
4877	if (size < NBPDR)
4878		return;
4879	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4880		offset += ptoa(object->pg_color);
4881	superpage_offset = offset & PDRMASK;
4882	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4883	    (*addr & PDRMASK) == superpage_offset)
4884		return;
4885	if ((*addr & PDRMASK) < superpage_offset)
4886		*addr = (*addr & ~PDRMASK) + superpage_offset;
4887	else
4888		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4889}
4890
4891
4892#if defined(PMAP_DEBUG)
4893pmap_pid_dump(int pid)
4894{
4895	pmap_t pmap;
4896	struct proc *p;
4897	int npte = 0;
4898	int index;
4899
4900	sx_slock(&allproc_lock);
4901	FOREACH_PROC_IN_SYSTEM(p) {
4902		if (p->p_pid != pid)
4903			continue;
4904
4905		if (p->p_vmspace) {
4906			int i,j;
4907			index = 0;
4908			pmap = vmspace_pmap(p->p_vmspace);
4909			for (i = 0; i < NPDEPTD; i++) {
4910				pd_entry_t *pde;
4911				pt_entry_t *pte;
4912				vm_offset_t base = i << PDRSHIFT;
4913
4914				pde = &pmap->pm_pdir[i];
4915				if (pde && pmap_pde_v(pde)) {
4916					for (j = 0; j < NPTEPG; j++) {
4917						vm_offset_t va = base + (j << PAGE_SHIFT);
4918						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4919							if (index) {
4920								index = 0;
4921								printf("\n");
4922							}
4923							sx_sunlock(&allproc_lock);
4924							return npte;
4925						}
4926						pte = pmap_pte(pmap, va);
4927						if (pte && pmap_pte_v(pte)) {
4928							pt_entry_t pa;
4929							vm_page_t m;
4930							pa = *pte;
4931							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4932							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4933								va, pa, m->hold_count, m->wire_count, m->flags);
4934							npte++;
4935							index++;
4936							if (index >= 2) {
4937								index = 0;
4938								printf("\n");
4939							} else {
4940								printf(" ");
4941							}
4942						}
4943					}
4944				}
4945			}
4946		}
4947	}
4948	sx_sunlock(&allproc_lock);
4949	return npte;
4950}
4951#endif
4952
4953#if defined(DEBUG)
4954
4955static void	pads(pmap_t pm);
4956void		pmap_pvdump(vm_offset_t pa);
4957
4958/* print address space of pmap*/
4959static void
4960pads(pmap_t pm)
4961{
4962	int i, j;
4963	vm_paddr_t va;
4964	pt_entry_t *ptep;
4965
4966	if (pm == kernel_pmap)
4967		return;
4968	for (i = 0; i < NPDEPTD; i++)
4969		if (pm->pm_pdir[i])
4970			for (j = 0; j < NPTEPG; j++) {
4971				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4972				if (pm == kernel_pmap && va < KERNBASE)
4973					continue;
4974				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4975					continue;
4976				ptep = pmap_pte(pm, va);
4977				if (pmap_pte_v(ptep))
4978					printf("%x:%x ", va, *ptep);
4979			};
4980
4981}
4982
4983void
4984pmap_pvdump(vm_paddr_t pa)
4985{
4986	pv_entry_t pv;
4987	pmap_t pmap;
4988	vm_page_t m;
4989
4990	printf("pa %x", pa);
4991	m = PHYS_TO_VM_PAGE(pa);
4992	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4993		pmap = PV_PMAP(pv);
4994		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4995		pads(pmap);
4996	}
4997	printf(" ");
4998}
4999#endif
5000