pmap.c revision 196707
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 196707 2009-08-31 18:41:13Z jhb $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#define PMAP_INLINE	__gnu89_inline
166#else
167#define PMAP_INLINE
168#endif
169
170#define PV_STATS
171#ifdef PV_STATS
172#define PV_STAT(x)	do { x ; } while (0)
173#else
174#define PV_STAT(x)	do { } while (0)
175#endif
176
177#define	pa_index(pa)	((pa) >> PDRSHIFT)
178#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
179
180/*
181 * Get PDEs and PTEs for user/kernel address space
182 */
183#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
184#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
185
186#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
187#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
188#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
189#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
190#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
191
192#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
193    atomic_clear_int((u_int *)(pte), PG_W))
194#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
195
196struct pmap kernel_pmap_store;
197LIST_HEAD(pmaplist, pmap);
198static struct pmaplist allpmaps;
199static struct mtx allpmaps_lock;
200
201vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
202vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
203int pgeflag = 0;		/* PG_G or-in */
204int pseflag = 0;		/* PG_PS or-in */
205
206static int nkpt;
207vm_offset_t kernel_vm_end;
208extern u_int32_t KERNend;
209
210#ifdef PAE
211pt_entry_t pg_nx;
212static uma_zone_t pdptzone;
213#endif
214
215static int pat_works;			/* Is page attribute table sane? */
216
217SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
218
219static int pg_ps_enabled;
220SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
221    "Are large page mappings enabled?");
222
223/*
224 * Data for the pv entry allocation mechanism
225 */
226static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
227static struct md_page *pv_table;
228static int shpgperproc = PMAP_SHPGPERPROC;
229
230struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
231int pv_maxchunks;			/* How many chunks we have KVA for */
232vm_offset_t pv_vafree;			/* freelist stored in the PTE */
233
234/*
235 * All those kernel PT submaps that BSD is so fond of
236 */
237struct sysmaps {
238	struct	mtx lock;
239	pt_entry_t *CMAP1;
240	pt_entry_t *CMAP2;
241	caddr_t	CADDR1;
242	caddr_t	CADDR2;
243};
244static struct sysmaps sysmaps_pcpu[MAXCPU];
245pt_entry_t *CMAP1 = 0;
246static pt_entry_t *CMAP3;
247caddr_t CADDR1 = 0, ptvmmap = 0;
248static caddr_t CADDR3;
249struct msgbuf *msgbufp = 0;
250
251/*
252 * Crashdump maps.
253 */
254static caddr_t crashdumpmap;
255
256static pt_entry_t *PMAP1 = 0, *PMAP2;
257static pt_entry_t *PADDR1 = 0, *PADDR2;
258#ifdef SMP
259static int PMAP1cpu;
260static int PMAP1changedcpu;
261SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
262	   &PMAP1changedcpu, 0,
263	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
264#endif
265static int PMAP1changed;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
267	   &PMAP1changed, 0,
268	   "Number of times pmap_pte_quick changed PMAP1");
269static int PMAP1unchanged;
270SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
271	   &PMAP1unchanged, 0,
272	   "Number of times pmap_pte_quick didn't change PMAP1");
273static struct mtx PMAP2mutex;
274
275static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
276static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
277static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
278static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
279static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
280static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
281static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
282		    vm_offset_t va);
283static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
284
285static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
286static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
287    vm_prot_t prot);
288static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
289    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
290static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
291static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
292static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
293static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
294static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
295static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
296static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
297static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
298    vm_prot_t prot);
299static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
300static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
301    vm_page_t *free);
302static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
303    vm_page_t *free);
304static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
305static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
306    vm_page_t *free);
307static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
308					vm_offset_t va);
309static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
310static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
311    vm_page_t m);
312
313static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
314
315static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
316static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
317static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
318static void pmap_pte_release(pt_entry_t *pte);
319static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
320static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
321#ifdef PAE
322static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
323#endif
324
325CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
326CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
327
328/*
329 * If you get an error here, then you set KVA_PAGES wrong! See the
330 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
331 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
332 */
333CTASSERT(KERNBASE % (1 << 24) == 0);
334
335/*
336 * Move the kernel virtual free pointer to the next
337 * 4MB.  This is used to help improve performance
338 * by using a large (4MB) page for much of the kernel
339 * (.text, .data, .bss)
340 */
341static vm_offset_t
342pmap_kmem_choose(vm_offset_t addr)
343{
344	vm_offset_t newaddr = addr;
345
346#ifndef DISABLE_PSE
347	if (cpu_feature & CPUID_PSE)
348		newaddr = (addr + PDRMASK) & ~PDRMASK;
349#endif
350	return newaddr;
351}
352
353/*
354 *	Bootstrap the system enough to run with virtual memory.
355 *
356 *	On the i386 this is called after mapping has already been enabled
357 *	and just syncs the pmap module with what has already been done.
358 *	[We can't call it easily with mapping off since the kernel is not
359 *	mapped with PA == VA, hence we would have to relocate every address
360 *	from the linked base (virtual) address "KERNBASE" to the actual
361 *	(physical) address starting relative to 0]
362 */
363void
364pmap_bootstrap(vm_paddr_t firstaddr)
365{
366	vm_offset_t va;
367	pt_entry_t *pte, *unused;
368	struct sysmaps *sysmaps;
369	int i;
370
371	/*
372	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
373	 * large. It should instead be correctly calculated in locore.s and
374	 * not based on 'first' (which is a physical address, not a virtual
375	 * address, for the start of unused physical memory). The kernel
376	 * page tables are NOT double mapped and thus should not be included
377	 * in this calculation.
378	 */
379	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
380	virtual_avail = pmap_kmem_choose(virtual_avail);
381
382	virtual_end = VM_MAX_KERNEL_ADDRESS;
383
384	/*
385	 * Initialize the kernel pmap (which is statically allocated).
386	 */
387	PMAP_LOCK_INIT(kernel_pmap);
388	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
389#ifdef PAE
390	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
391#endif
392	kernel_pmap->pm_root = NULL;
393	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
394	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
395	LIST_INIT(&allpmaps);
396	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
397	mtx_lock_spin(&allpmaps_lock);
398	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
399	mtx_unlock_spin(&allpmaps_lock);
400	nkpt = NKPT;
401
402	/*
403	 * Reserve some special page table entries/VA space for temporary
404	 * mapping of pages.
405	 */
406#define	SYSMAP(c, p, v, n)	\
407	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
408
409	va = virtual_avail;
410	pte = vtopte(va);
411
412	/*
413	 * CMAP1/CMAP2 are used for zeroing and copying pages.
414	 * CMAP3 is used for the idle process page zeroing.
415	 */
416	for (i = 0; i < MAXCPU; i++) {
417		sysmaps = &sysmaps_pcpu[i];
418		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
419		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
420		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
421	}
422	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
423	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
424	*CMAP3 = 0;
425
426	/*
427	 * Crashdump maps.
428	 */
429	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
430
431	/*
432	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
433	 */
434	SYSMAP(caddr_t, unused, ptvmmap, 1)
435
436	/*
437	 * msgbufp is used to map the system message buffer.
438	 */
439	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
440
441	/*
442	 * ptemap is used for pmap_pte_quick
443	 */
444	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
445	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
446
447	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
448
449	virtual_avail = va;
450
451	*CMAP1 = 0;
452
453	/*
454	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
455	 * physical memory region that is used by the ACPI wakeup code.  This
456	 * mapping must not have PG_G set.
457	 */
458#ifdef XBOX
459	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
460	 * an early stadium, we cannot yet neatly map video memory ... :-(
461	 * Better fixes are very welcome! */
462	if (!arch_i386_is_xbox)
463#endif
464	for (i = 1; i < NKPT; i++)
465		PTD[i] = 0;
466
467	/* Initialize the PAT MSR if present. */
468	pmap_init_pat();
469
470	/* Turn on PG_G on kernel page(s) */
471	pmap_set_pg();
472}
473
474/*
475 * Setup the PAT MSR.
476 */
477void
478pmap_init_pat(void)
479{
480	uint64_t pat_msr;
481
482	/* Bail if this CPU doesn't implement PAT. */
483	if (!(cpu_feature & CPUID_PAT))
484		return;
485
486	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
487	    (I386_CPU_FAMILY(cpu_id) == 6 && I386_CPU_MODEL(cpu_id) >= 0xe)) {
488		/*
489		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
490		 * Program 4 and 5 as WP and WC.
491		 * Leave 6 and 7 as UC and UC-.
492		 */
493		pat_msr = rdmsr(MSR_PAT);
494		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
495		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
496		    PAT_VALUE(5, PAT_WRITE_COMBINING);
497		pat_works = 1;
498	} else {
499		/*
500		 * Due to some Intel errata, we can only safely use the lower 4
501		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
502		 * of UC-.
503		 *
504		 *   Intel Pentium III Processor Specification Update
505		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
506		 * or Mode C Paging)
507		 *
508		 *   Intel Pentium IV  Processor Specification Update
509		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
510		 */
511		pat_msr = rdmsr(MSR_PAT);
512		pat_msr &= ~PAT_MASK(2);
513		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
514		pat_works = 0;
515	}
516	wrmsr(MSR_PAT, pat_msr);
517}
518
519/*
520 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
521 */
522void
523pmap_set_pg(void)
524{
525	pd_entry_t pdir;
526	pt_entry_t *pte;
527	vm_offset_t va, endva;
528	int i;
529
530	if (pgeflag == 0)
531		return;
532
533	i = KERNLOAD/NBPDR;
534	endva = KERNBASE + KERNend;
535
536	if (pseflag) {
537		va = KERNBASE + KERNLOAD;
538		while (va  < endva) {
539			pdir = kernel_pmap->pm_pdir[KPTDI+i];
540			pdir |= pgeflag;
541			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
542			invltlb();	/* Play it safe, invltlb() every time */
543			i++;
544			va += NBPDR;
545		}
546	} else {
547		va = (vm_offset_t)btext;
548		while (va < endva) {
549			pte = vtopte(va);
550			if (*pte)
551				*pte |= pgeflag;
552			invltlb();	/* Play it safe, invltlb() every time */
553			va += PAGE_SIZE;
554		}
555	}
556}
557
558/*
559 * Initialize a vm_page's machine-dependent fields.
560 */
561void
562pmap_page_init(vm_page_t m)
563{
564
565	TAILQ_INIT(&m->md.pv_list);
566	m->md.pat_mode = PAT_WRITE_BACK;
567}
568
569#ifdef PAE
570static void *
571pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
572{
573
574	/* Inform UMA that this allocator uses kernel_map/object. */
575	*flags = UMA_SLAB_KERNEL;
576	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
577	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
578}
579#endif
580
581/*
582 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
583 * Requirements:
584 *  - Must deal with pages in order to ensure that none of the PG_* bits
585 *    are ever set, PG_V in particular.
586 *  - Assumes we can write to ptes without pte_store() atomic ops, even
587 *    on PAE systems.  This should be ok.
588 *  - Assumes nothing will ever test these addresses for 0 to indicate
589 *    no mapping instead of correctly checking PG_V.
590 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
591 * Because PG_V is never set, there can be no mappings to invalidate.
592 */
593static vm_offset_t
594pmap_ptelist_alloc(vm_offset_t *head)
595{
596	pt_entry_t *pte;
597	vm_offset_t va;
598
599	va = *head;
600	if (va == 0)
601		return (va);	/* Out of memory */
602	pte = vtopte(va);
603	*head = *pte;
604	if (*head & PG_V)
605		panic("pmap_ptelist_alloc: va with PG_V set!");
606	*pte = 0;
607	return (va);
608}
609
610static void
611pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
612{
613	pt_entry_t *pte;
614
615	if (va & PG_V)
616		panic("pmap_ptelist_free: freeing va with PG_V set!");
617	pte = vtopte(va);
618	*pte = *head;		/* virtual! PG_V is 0 though */
619	*head = va;
620}
621
622static void
623pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
624{
625	int i;
626	vm_offset_t va;
627
628	*head = 0;
629	for (i = npages - 1; i >= 0; i--) {
630		va = (vm_offset_t)base + i * PAGE_SIZE;
631		pmap_ptelist_free(head, va);
632	}
633}
634
635
636/*
637 *	Initialize the pmap module.
638 *	Called by vm_init, to initialize any structures that the pmap
639 *	system needs to map virtual memory.
640 */
641void
642pmap_init(void)
643{
644	vm_page_t mpte;
645	vm_size_t s;
646	int i, pv_npg;
647
648	/*
649	 * Initialize the vm page array entries for the kernel pmap's
650	 * page table pages.
651	 */
652	for (i = 0; i < nkpt; i++) {
653		mpte = PHYS_TO_VM_PAGE(PTD[i + KPTDI] & PG_FRAME);
654		KASSERT(mpte >= vm_page_array &&
655		    mpte < &vm_page_array[vm_page_array_size],
656		    ("pmap_init: page table page is out of range"));
657		mpte->pindex = i + KPTDI;
658		mpte->phys_addr = PTD[i + KPTDI] & PG_FRAME;
659	}
660
661	/*
662	 * Initialize the address space (zone) for the pv entries.  Set a
663	 * high water mark so that the system can recover from excessive
664	 * numbers of pv entries.
665	 */
666	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
667	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
668	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
669	pv_entry_max = roundup(pv_entry_max, _NPCPV);
670	pv_entry_high_water = 9 * (pv_entry_max / 10);
671
672	/*
673	 * Are large page mappings enabled?
674	 */
675	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
676
677	/*
678	 * Calculate the size of the pv head table for superpages.
679	 */
680	for (i = 0; phys_avail[i + 1]; i += 2);
681	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
682
683	/*
684	 * Allocate memory for the pv head table for superpages.
685	 */
686	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
687	s = round_page(s);
688	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
689	for (i = 0; i < pv_npg; i++)
690		TAILQ_INIT(&pv_table[i].pv_list);
691
692	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
693	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
694	    PAGE_SIZE * pv_maxchunks);
695	if (pv_chunkbase == NULL)
696		panic("pmap_init: not enough kvm for pv chunks");
697	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
698#ifdef PAE
699	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
700	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
701	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
702	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
703#endif
704}
705
706
707SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
708	"Max number of PV entries");
709SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
710	"Page share factor per proc");
711
712SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
713    "2/4MB page mapping counters");
714
715static u_long pmap_pde_demotions;
716SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
717    &pmap_pde_demotions, 0, "2/4MB page demotions");
718
719static u_long pmap_pde_mappings;
720SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
721    &pmap_pde_mappings, 0, "2/4MB page mappings");
722
723static u_long pmap_pde_p_failures;
724SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
725    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
726
727static u_long pmap_pde_promotions;
728SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
729    &pmap_pde_promotions, 0, "2/4MB page promotions");
730
731/***************************************************
732 * Low level helper routines.....
733 ***************************************************/
734
735/*
736 * Determine the appropriate bits to set in a PTE or PDE for a specified
737 * caching mode.
738 */
739int
740pmap_cache_bits(int mode, boolean_t is_pde)
741{
742	int pat_flag, pat_index, cache_bits;
743
744	/* The PAT bit is different for PTE's and PDE's. */
745	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
746
747	/* If we don't support PAT, map extended modes to older ones. */
748	if (!(cpu_feature & CPUID_PAT)) {
749		switch (mode) {
750		case PAT_UNCACHEABLE:
751		case PAT_WRITE_THROUGH:
752		case PAT_WRITE_BACK:
753			break;
754		case PAT_UNCACHED:
755		case PAT_WRITE_COMBINING:
756		case PAT_WRITE_PROTECTED:
757			mode = PAT_UNCACHEABLE;
758			break;
759		}
760	}
761
762	/* Map the caching mode to a PAT index. */
763	if (pat_works) {
764		switch (mode) {
765		case PAT_UNCACHEABLE:
766			pat_index = 3;
767			break;
768		case PAT_WRITE_THROUGH:
769			pat_index = 1;
770			break;
771		case PAT_WRITE_BACK:
772			pat_index = 0;
773			break;
774		case PAT_UNCACHED:
775			pat_index = 2;
776			break;
777		case PAT_WRITE_COMBINING:
778			pat_index = 5;
779			break;
780		case PAT_WRITE_PROTECTED:
781			pat_index = 4;
782			break;
783		default:
784			panic("Unknown caching mode %d\n", mode);
785		}
786	} else {
787		switch (mode) {
788		case PAT_UNCACHED:
789		case PAT_UNCACHEABLE:
790		case PAT_WRITE_PROTECTED:
791			pat_index = 3;
792			break;
793		case PAT_WRITE_THROUGH:
794			pat_index = 1;
795			break;
796		case PAT_WRITE_BACK:
797			pat_index = 0;
798			break;
799		case PAT_WRITE_COMBINING:
800			pat_index = 2;
801			break;
802		default:
803			panic("Unknown caching mode %d\n", mode);
804		}
805	}
806
807	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
808	cache_bits = 0;
809	if (pat_index & 0x4)
810		cache_bits |= pat_flag;
811	if (pat_index & 0x2)
812		cache_bits |= PG_NC_PCD;
813	if (pat_index & 0x1)
814		cache_bits |= PG_NC_PWT;
815	return (cache_bits);
816}
817#ifdef SMP
818/*
819 * For SMP, these functions have to use the IPI mechanism for coherence.
820 *
821 * N.B.: Before calling any of the following TLB invalidation functions,
822 * the calling processor must ensure that all stores updating a non-
823 * kernel page table are globally performed.  Otherwise, another
824 * processor could cache an old, pre-update entry without being
825 * invalidated.  This can happen one of two ways: (1) The pmap becomes
826 * active on another processor after its pm_active field is checked by
827 * one of the following functions but before a store updating the page
828 * table is globally performed. (2) The pmap becomes active on another
829 * processor before its pm_active field is checked but due to
830 * speculative loads one of the following functions stills reads the
831 * pmap as inactive on the other processor.
832 *
833 * The kernel page table is exempt because its pm_active field is
834 * immutable.  The kernel page table is always active on every
835 * processor.
836 */
837void
838pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
839{
840	u_int cpumask;
841	u_int other_cpus;
842
843	sched_pin();
844	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
845		invlpg(va);
846		smp_invlpg(va);
847	} else {
848		cpumask = PCPU_GET(cpumask);
849		other_cpus = PCPU_GET(other_cpus);
850		if (pmap->pm_active & cpumask)
851			invlpg(va);
852		if (pmap->pm_active & other_cpus)
853			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
854	}
855	sched_unpin();
856}
857
858void
859pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
860{
861	u_int cpumask;
862	u_int other_cpus;
863	vm_offset_t addr;
864
865	sched_pin();
866	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
867		for (addr = sva; addr < eva; addr += PAGE_SIZE)
868			invlpg(addr);
869		smp_invlpg_range(sva, eva);
870	} else {
871		cpumask = PCPU_GET(cpumask);
872		other_cpus = PCPU_GET(other_cpus);
873		if (pmap->pm_active & cpumask)
874			for (addr = sva; addr < eva; addr += PAGE_SIZE)
875				invlpg(addr);
876		if (pmap->pm_active & other_cpus)
877			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
878			    sva, eva);
879	}
880	sched_unpin();
881}
882
883void
884pmap_invalidate_all(pmap_t pmap)
885{
886	u_int cpumask;
887	u_int other_cpus;
888
889	sched_pin();
890	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
891		invltlb();
892		smp_invltlb();
893	} else {
894		cpumask = PCPU_GET(cpumask);
895		other_cpus = PCPU_GET(other_cpus);
896		if (pmap->pm_active & cpumask)
897			invltlb();
898		if (pmap->pm_active & other_cpus)
899			smp_masked_invltlb(pmap->pm_active & other_cpus);
900	}
901	sched_unpin();
902}
903
904void
905pmap_invalidate_cache(void)
906{
907
908	sched_pin();
909	wbinvd();
910	smp_cache_flush();
911	sched_unpin();
912}
913#else /* !SMP */
914/*
915 * Normal, non-SMP, 486+ invalidation functions.
916 * We inline these within pmap.c for speed.
917 */
918PMAP_INLINE void
919pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
920{
921
922	if (pmap == kernel_pmap || pmap->pm_active)
923		invlpg(va);
924}
925
926PMAP_INLINE void
927pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
928{
929	vm_offset_t addr;
930
931	if (pmap == kernel_pmap || pmap->pm_active)
932		for (addr = sva; addr < eva; addr += PAGE_SIZE)
933			invlpg(addr);
934}
935
936PMAP_INLINE void
937pmap_invalidate_all(pmap_t pmap)
938{
939
940	if (pmap == kernel_pmap || pmap->pm_active)
941		invltlb();
942}
943
944PMAP_INLINE void
945pmap_invalidate_cache(void)
946{
947
948	wbinvd();
949}
950#endif /* !SMP */
951
952void
953pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
954{
955
956	KASSERT((sva & PAGE_MASK) == 0,
957	    ("pmap_invalidate_cache_range: sva not page-aligned"));
958	KASSERT((eva & PAGE_MASK) == 0,
959	    ("pmap_invalidate_cache_range: eva not page-aligned"));
960
961	if (cpu_feature & CPUID_SS)
962		; /* If "Self Snoop" is supported, do nothing. */
963	else if (cpu_feature & CPUID_CLFSH) {
964
965		/*
966		 * Otherwise, do per-cache line flush.  Use the mfence
967		 * instruction to insure that previous stores are
968		 * included in the write-back.  The processor
969		 * propagates flush to other processors in the cache
970		 * coherence domain.
971		 */
972		mfence();
973		for (; sva < eva; sva += cpu_clflush_line_size)
974			clflush(sva);
975		mfence();
976	} else {
977
978		/*
979		 * No targeted cache flush methods are supported by CPU,
980		 * globally invalidate cache as a last resort.
981		 */
982		pmap_invalidate_cache();
983	}
984}
985
986/*
987 * Are we current address space or kernel?  N.B. We return FALSE when
988 * a pmap's page table is in use because a kernel thread is borrowing
989 * it.  The borrowed page table can change spontaneously, making any
990 * dependence on its continued use subject to a race condition.
991 */
992static __inline int
993pmap_is_current(pmap_t pmap)
994{
995
996	return (pmap == kernel_pmap ||
997		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
998	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
999}
1000
1001/*
1002 * If the given pmap is not the current or kernel pmap, the returned pte must
1003 * be released by passing it to pmap_pte_release().
1004 */
1005pt_entry_t *
1006pmap_pte(pmap_t pmap, vm_offset_t va)
1007{
1008	pd_entry_t newpf;
1009	pd_entry_t *pde;
1010
1011	pde = pmap_pde(pmap, va);
1012	if (*pde & PG_PS)
1013		return (pde);
1014	if (*pde != 0) {
1015		/* are we current address space or kernel? */
1016		if (pmap_is_current(pmap))
1017			return (vtopte(va));
1018		mtx_lock(&PMAP2mutex);
1019		newpf = *pde & PG_FRAME;
1020		if ((*PMAP2 & PG_FRAME) != newpf) {
1021			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1022			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1023		}
1024		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1025	}
1026	return (0);
1027}
1028
1029/*
1030 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1031 * being NULL.
1032 */
1033static __inline void
1034pmap_pte_release(pt_entry_t *pte)
1035{
1036
1037	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1038		mtx_unlock(&PMAP2mutex);
1039}
1040
1041static __inline void
1042invlcaddr(void *caddr)
1043{
1044
1045	invlpg((u_int)caddr);
1046}
1047
1048/*
1049 * Super fast pmap_pte routine best used when scanning
1050 * the pv lists.  This eliminates many coarse-grained
1051 * invltlb calls.  Note that many of the pv list
1052 * scans are across different pmaps.  It is very wasteful
1053 * to do an entire invltlb for checking a single mapping.
1054 *
1055 * If the given pmap is not the current pmap, vm_page_queue_mtx
1056 * must be held and curthread pinned to a CPU.
1057 */
1058static pt_entry_t *
1059pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1060{
1061	pd_entry_t newpf;
1062	pd_entry_t *pde;
1063
1064	pde = pmap_pde(pmap, va);
1065	if (*pde & PG_PS)
1066		return (pde);
1067	if (*pde != 0) {
1068		/* are we current address space or kernel? */
1069		if (pmap_is_current(pmap))
1070			return (vtopte(va));
1071		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1072		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1073		newpf = *pde & PG_FRAME;
1074		if ((*PMAP1 & PG_FRAME) != newpf) {
1075			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1076#ifdef SMP
1077			PMAP1cpu = PCPU_GET(cpuid);
1078#endif
1079			invlcaddr(PADDR1);
1080			PMAP1changed++;
1081		} else
1082#ifdef SMP
1083		if (PMAP1cpu != PCPU_GET(cpuid)) {
1084			PMAP1cpu = PCPU_GET(cpuid);
1085			invlcaddr(PADDR1);
1086			PMAP1changedcpu++;
1087		} else
1088#endif
1089			PMAP1unchanged++;
1090		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1091	}
1092	return (0);
1093}
1094
1095/*
1096 *	Routine:	pmap_extract
1097 *	Function:
1098 *		Extract the physical page address associated
1099 *		with the given map/virtual_address pair.
1100 */
1101vm_paddr_t
1102pmap_extract(pmap_t pmap, vm_offset_t va)
1103{
1104	vm_paddr_t rtval;
1105	pt_entry_t *pte;
1106	pd_entry_t pde;
1107
1108	rtval = 0;
1109	PMAP_LOCK(pmap);
1110	pde = pmap->pm_pdir[va >> PDRSHIFT];
1111	if (pde != 0) {
1112		if ((pde & PG_PS) != 0)
1113			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1114		else {
1115			pte = pmap_pte(pmap, va);
1116			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1117			pmap_pte_release(pte);
1118		}
1119	}
1120	PMAP_UNLOCK(pmap);
1121	return (rtval);
1122}
1123
1124/*
1125 *	Routine:	pmap_extract_and_hold
1126 *	Function:
1127 *		Atomically extract and hold the physical page
1128 *		with the given pmap and virtual address pair
1129 *		if that mapping permits the given protection.
1130 */
1131vm_page_t
1132pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1133{
1134	pd_entry_t pde;
1135	pt_entry_t pte;
1136	vm_page_t m;
1137
1138	m = NULL;
1139	vm_page_lock_queues();
1140	PMAP_LOCK(pmap);
1141	pde = *pmap_pde(pmap, va);
1142	if (pde != 0) {
1143		if (pde & PG_PS) {
1144			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1145				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1146				    (va & PDRMASK));
1147				vm_page_hold(m);
1148			}
1149		} else {
1150			sched_pin();
1151			pte = *pmap_pte_quick(pmap, va);
1152			if (pte != 0 &&
1153			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1154				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1155				vm_page_hold(m);
1156			}
1157			sched_unpin();
1158		}
1159	}
1160	vm_page_unlock_queues();
1161	PMAP_UNLOCK(pmap);
1162	return (m);
1163}
1164
1165/***************************************************
1166 * Low level mapping routines.....
1167 ***************************************************/
1168
1169/*
1170 * Add a wired page to the kva.
1171 * Note: not SMP coherent.
1172 */
1173PMAP_INLINE void
1174pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1175{
1176	pt_entry_t *pte;
1177
1178	pte = vtopte(va);
1179	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1180}
1181
1182static __inline void
1183pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1184{
1185	pt_entry_t *pte;
1186
1187	pte = vtopte(va);
1188	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1189}
1190
1191/*
1192 * Remove a page from the kernel pagetables.
1193 * Note: not SMP coherent.
1194 */
1195PMAP_INLINE void
1196pmap_kremove(vm_offset_t va)
1197{
1198	pt_entry_t *pte;
1199
1200	pte = vtopte(va);
1201	pte_clear(pte);
1202}
1203
1204/*
1205 *	Used to map a range of physical addresses into kernel
1206 *	virtual address space.
1207 *
1208 *	The value passed in '*virt' is a suggested virtual address for
1209 *	the mapping. Architectures which can support a direct-mapped
1210 *	physical to virtual region can return the appropriate address
1211 *	within that region, leaving '*virt' unchanged. Other
1212 *	architectures should map the pages starting at '*virt' and
1213 *	update '*virt' with the first usable address after the mapped
1214 *	region.
1215 */
1216vm_offset_t
1217pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1218{
1219	vm_offset_t va, sva;
1220
1221	va = sva = *virt;
1222	while (start < end) {
1223		pmap_kenter(va, start);
1224		va += PAGE_SIZE;
1225		start += PAGE_SIZE;
1226	}
1227	pmap_invalidate_range(kernel_pmap, sva, va);
1228	*virt = va;
1229	return (sva);
1230}
1231
1232
1233/*
1234 * Add a list of wired pages to the kva
1235 * this routine is only used for temporary
1236 * kernel mappings that do not need to have
1237 * page modification or references recorded.
1238 * Note that old mappings are simply written
1239 * over.  The page *must* be wired.
1240 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1241 */
1242void
1243pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1244{
1245	pt_entry_t *endpte, oldpte, *pte;
1246
1247	oldpte = 0;
1248	pte = vtopte(sva);
1249	endpte = pte + count;
1250	while (pte < endpte) {
1251		oldpte |= *pte;
1252		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1253		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1254		pte++;
1255		ma++;
1256	}
1257	if ((oldpte & PG_V) != 0)
1258		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1259		    PAGE_SIZE);
1260}
1261
1262/*
1263 * This routine tears out page mappings from the
1264 * kernel -- it is meant only for temporary mappings.
1265 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1266 */
1267void
1268pmap_qremove(vm_offset_t sva, int count)
1269{
1270	vm_offset_t va;
1271
1272	va = sva;
1273	while (count-- > 0) {
1274		pmap_kremove(va);
1275		va += PAGE_SIZE;
1276	}
1277	pmap_invalidate_range(kernel_pmap, sva, va);
1278}
1279
1280/***************************************************
1281 * Page table page management routines.....
1282 ***************************************************/
1283static __inline void
1284pmap_free_zero_pages(vm_page_t free)
1285{
1286	vm_page_t m;
1287
1288	while (free != NULL) {
1289		m = free;
1290		free = m->right;
1291		/* Preserve the page's PG_ZERO setting. */
1292		vm_page_free_toq(m);
1293	}
1294}
1295
1296/*
1297 * Schedule the specified unused page table page to be freed.  Specifically,
1298 * add the page to the specified list of pages that will be released to the
1299 * physical memory manager after the TLB has been updated.
1300 */
1301static __inline void
1302pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1303{
1304
1305	if (set_PG_ZERO)
1306		m->flags |= PG_ZERO;
1307	else
1308		m->flags &= ~PG_ZERO;
1309	m->right = *free;
1310	*free = m;
1311}
1312
1313/*
1314 * Inserts the specified page table page into the specified pmap's collection
1315 * of idle page table pages.  Each of a pmap's page table pages is responsible
1316 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1317 * ordered by this virtual address range.
1318 */
1319static void
1320pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1321{
1322	vm_page_t root;
1323
1324	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1325	root = pmap->pm_root;
1326	if (root == NULL) {
1327		mpte->left = NULL;
1328		mpte->right = NULL;
1329	} else {
1330		root = vm_page_splay(mpte->pindex, root);
1331		if (mpte->pindex < root->pindex) {
1332			mpte->left = root->left;
1333			mpte->right = root;
1334			root->left = NULL;
1335		} else if (mpte->pindex == root->pindex)
1336			panic("pmap_insert_pt_page: pindex already inserted");
1337		else {
1338			mpte->right = root->right;
1339			mpte->left = root;
1340			root->right = NULL;
1341		}
1342	}
1343	pmap->pm_root = mpte;
1344}
1345
1346/*
1347 * Looks for a page table page mapping the specified virtual address in the
1348 * specified pmap's collection of idle page table pages.  Returns NULL if there
1349 * is no page table page corresponding to the specified virtual address.
1350 */
1351static vm_page_t
1352pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1353{
1354	vm_page_t mpte;
1355	vm_pindex_t pindex = va >> PDRSHIFT;
1356
1357	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1358	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1359		mpte = vm_page_splay(pindex, mpte);
1360		if ((pmap->pm_root = mpte)->pindex != pindex)
1361			mpte = NULL;
1362	}
1363	return (mpte);
1364}
1365
1366/*
1367 * Removes the specified page table page from the specified pmap's collection
1368 * of idle page table pages.  The specified page table page must be a member of
1369 * the pmap's collection.
1370 */
1371static void
1372pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1373{
1374	vm_page_t root;
1375
1376	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1377	if (mpte != pmap->pm_root)
1378		vm_page_splay(mpte->pindex, pmap->pm_root);
1379	if (mpte->left == NULL)
1380		root = mpte->right;
1381	else {
1382		root = vm_page_splay(mpte->pindex, mpte->left);
1383		root->right = mpte->right;
1384	}
1385	pmap->pm_root = root;
1386}
1387
1388/*
1389 * This routine unholds page table pages, and if the hold count
1390 * drops to zero, then it decrements the wire count.
1391 */
1392static __inline int
1393pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1394{
1395
1396	--m->wire_count;
1397	if (m->wire_count == 0)
1398		return _pmap_unwire_pte_hold(pmap, m, free);
1399	else
1400		return 0;
1401}
1402
1403static int
1404_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1405{
1406	vm_offset_t pteva;
1407
1408	/*
1409	 * unmap the page table page
1410	 */
1411	pmap->pm_pdir[m->pindex] = 0;
1412	--pmap->pm_stats.resident_count;
1413
1414	/*
1415	 * This is a release store so that the ordinary store unmapping
1416	 * the page table page is globally performed before TLB shoot-
1417	 * down is begun.
1418	 */
1419	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1420
1421	/*
1422	 * Do an invltlb to make the invalidated mapping
1423	 * take effect immediately.
1424	 */
1425	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1426	pmap_invalidate_page(pmap, pteva);
1427
1428	/*
1429	 * Put page on a list so that it is released after
1430	 * *ALL* TLB shootdown is done
1431	 */
1432	pmap_add_delayed_free_list(m, free, TRUE);
1433
1434	return 1;
1435}
1436
1437/*
1438 * After removing a page table entry, this routine is used to
1439 * conditionally free the page, and manage the hold/wire counts.
1440 */
1441static int
1442pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1443{
1444	pd_entry_t ptepde;
1445	vm_page_t mpte;
1446
1447	if (va >= VM_MAXUSER_ADDRESS)
1448		return 0;
1449	ptepde = *pmap_pde(pmap, va);
1450	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1451	return pmap_unwire_pte_hold(pmap, mpte, free);
1452}
1453
1454void
1455pmap_pinit0(pmap_t pmap)
1456{
1457
1458	PMAP_LOCK_INIT(pmap);
1459	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1460#ifdef PAE
1461	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1462#endif
1463	pmap->pm_root = NULL;
1464	pmap->pm_active = 0;
1465	PCPU_SET(curpmap, pmap);
1466	TAILQ_INIT(&pmap->pm_pvchunk);
1467	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1468	mtx_lock_spin(&allpmaps_lock);
1469	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1470	mtx_unlock_spin(&allpmaps_lock);
1471}
1472
1473/*
1474 * Initialize a preallocated and zeroed pmap structure,
1475 * such as one in a vmspace structure.
1476 */
1477int
1478pmap_pinit(pmap_t pmap)
1479{
1480	vm_page_t m, ptdpg[NPGPTD];
1481	vm_paddr_t pa;
1482	static int color;
1483	int i;
1484
1485	PMAP_LOCK_INIT(pmap);
1486
1487	/*
1488	 * No need to allocate page table space yet but we do need a valid
1489	 * page directory table.
1490	 */
1491	if (pmap->pm_pdir == NULL) {
1492		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1493		    NBPTD);
1494
1495		if (pmap->pm_pdir == NULL) {
1496			PMAP_LOCK_DESTROY(pmap);
1497			return (0);
1498		}
1499#ifdef PAE
1500		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1501		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1502		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1503		    ("pmap_pinit: pdpt misaligned"));
1504		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1505		    ("pmap_pinit: pdpt above 4g"));
1506#endif
1507		pmap->pm_root = NULL;
1508	}
1509	KASSERT(pmap->pm_root == NULL,
1510	    ("pmap_pinit: pmap has reserved page table page(s)"));
1511
1512	/*
1513	 * allocate the page directory page(s)
1514	 */
1515	for (i = 0; i < NPGPTD;) {
1516		m = vm_page_alloc(NULL, color++,
1517		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1518		    VM_ALLOC_ZERO);
1519		if (m == NULL)
1520			VM_WAIT;
1521		else {
1522			ptdpg[i++] = m;
1523		}
1524	}
1525
1526	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1527
1528	for (i = 0; i < NPGPTD; i++) {
1529		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1530			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1531	}
1532
1533	mtx_lock_spin(&allpmaps_lock);
1534	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1535	mtx_unlock_spin(&allpmaps_lock);
1536	/* Wire in kernel global address entries. */
1537	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1538
1539	/* install self-referential address mapping entry(s) */
1540	for (i = 0; i < NPGPTD; i++) {
1541		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1542		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1543#ifdef PAE
1544		pmap->pm_pdpt[i] = pa | PG_V;
1545#endif
1546	}
1547
1548	pmap->pm_active = 0;
1549	TAILQ_INIT(&pmap->pm_pvchunk);
1550	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1551
1552	return (1);
1553}
1554
1555/*
1556 * this routine is called if the page table page is not
1557 * mapped correctly.
1558 */
1559static vm_page_t
1560_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1561{
1562	vm_paddr_t ptepa;
1563	vm_page_t m;
1564
1565	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1566	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1567	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1568
1569	/*
1570	 * Allocate a page table page.
1571	 */
1572	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1573	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1574		if (flags & M_WAITOK) {
1575			PMAP_UNLOCK(pmap);
1576			vm_page_unlock_queues();
1577			VM_WAIT;
1578			vm_page_lock_queues();
1579			PMAP_LOCK(pmap);
1580		}
1581
1582		/*
1583		 * Indicate the need to retry.  While waiting, the page table
1584		 * page may have been allocated.
1585		 */
1586		return (NULL);
1587	}
1588	if ((m->flags & PG_ZERO) == 0)
1589		pmap_zero_page(m);
1590
1591	/*
1592	 * Map the pagetable page into the process address space, if
1593	 * it isn't already there.
1594	 */
1595
1596	pmap->pm_stats.resident_count++;
1597
1598	ptepa = VM_PAGE_TO_PHYS(m);
1599	pmap->pm_pdir[ptepindex] =
1600		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1601
1602	return m;
1603}
1604
1605static vm_page_t
1606pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1607{
1608	unsigned ptepindex;
1609	pd_entry_t ptepa;
1610	vm_page_t m;
1611
1612	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1613	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1614	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1615
1616	/*
1617	 * Calculate pagetable page index
1618	 */
1619	ptepindex = va >> PDRSHIFT;
1620retry:
1621	/*
1622	 * Get the page directory entry
1623	 */
1624	ptepa = pmap->pm_pdir[ptepindex];
1625
1626	/*
1627	 * This supports switching from a 4MB page to a
1628	 * normal 4K page.
1629	 */
1630	if (ptepa & PG_PS) {
1631		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1632		ptepa = pmap->pm_pdir[ptepindex];
1633	}
1634
1635	/*
1636	 * If the page table page is mapped, we just increment the
1637	 * hold count, and activate it.
1638	 */
1639	if (ptepa) {
1640		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1641		m->wire_count++;
1642	} else {
1643		/*
1644		 * Here if the pte page isn't mapped, or if it has
1645		 * been deallocated.
1646		 */
1647		m = _pmap_allocpte(pmap, ptepindex, flags);
1648		if (m == NULL && (flags & M_WAITOK))
1649			goto retry;
1650	}
1651	return (m);
1652}
1653
1654
1655/***************************************************
1656* Pmap allocation/deallocation routines.
1657 ***************************************************/
1658
1659#ifdef SMP
1660/*
1661 * Deal with a SMP shootdown of other users of the pmap that we are
1662 * trying to dispose of.  This can be a bit hairy.
1663 */
1664static cpumask_t *lazymask;
1665static u_int lazyptd;
1666static volatile u_int lazywait;
1667
1668void pmap_lazyfix_action(void);
1669
1670void
1671pmap_lazyfix_action(void)
1672{
1673	cpumask_t mymask = PCPU_GET(cpumask);
1674
1675#ifdef COUNT_IPIS
1676	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1677#endif
1678	if (rcr3() == lazyptd)
1679		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1680	atomic_clear_int(lazymask, mymask);
1681	atomic_store_rel_int(&lazywait, 1);
1682}
1683
1684static void
1685pmap_lazyfix_self(cpumask_t mymask)
1686{
1687
1688	if (rcr3() == lazyptd)
1689		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1690	atomic_clear_int(lazymask, mymask);
1691}
1692
1693
1694static void
1695pmap_lazyfix(pmap_t pmap)
1696{
1697	cpumask_t mymask, mask;
1698	u_int spins;
1699
1700	while ((mask = pmap->pm_active) != 0) {
1701		spins = 50000000;
1702		mask = mask & -mask;	/* Find least significant set bit */
1703		mtx_lock_spin(&smp_ipi_mtx);
1704#ifdef PAE
1705		lazyptd = vtophys(pmap->pm_pdpt);
1706#else
1707		lazyptd = vtophys(pmap->pm_pdir);
1708#endif
1709		mymask = PCPU_GET(cpumask);
1710		if (mask == mymask) {
1711			lazymask = &pmap->pm_active;
1712			pmap_lazyfix_self(mymask);
1713		} else {
1714			atomic_store_rel_int((u_int *)&lazymask,
1715			    (u_int)&pmap->pm_active);
1716			atomic_store_rel_int(&lazywait, 0);
1717			ipi_selected(mask, IPI_LAZYPMAP);
1718			while (lazywait == 0) {
1719				ia32_pause();
1720				if (--spins == 0)
1721					break;
1722			}
1723		}
1724		mtx_unlock_spin(&smp_ipi_mtx);
1725		if (spins == 0)
1726			printf("pmap_lazyfix: spun for 50000000\n");
1727	}
1728}
1729
1730#else	/* SMP */
1731
1732/*
1733 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1734 * unlikely to have to even execute this code, including the fact
1735 * that the cleanup is deferred until the parent does a wait(2), which
1736 * means that another userland process has run.
1737 */
1738static void
1739pmap_lazyfix(pmap_t pmap)
1740{
1741	u_int cr3;
1742
1743	cr3 = vtophys(pmap->pm_pdir);
1744	if (cr3 == rcr3()) {
1745		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1746		pmap->pm_active &= ~(PCPU_GET(cpumask));
1747	}
1748}
1749#endif	/* SMP */
1750
1751/*
1752 * Release any resources held by the given physical map.
1753 * Called when a pmap initialized by pmap_pinit is being released.
1754 * Should only be called if the map contains no valid mappings.
1755 */
1756void
1757pmap_release(pmap_t pmap)
1758{
1759	vm_page_t m, ptdpg[NPGPTD];
1760	int i;
1761
1762	KASSERT(pmap->pm_stats.resident_count == 0,
1763	    ("pmap_release: pmap resident count %ld != 0",
1764	    pmap->pm_stats.resident_count));
1765	KASSERT(pmap->pm_root == NULL,
1766	    ("pmap_release: pmap has reserved page table page(s)"));
1767
1768	pmap_lazyfix(pmap);
1769	mtx_lock_spin(&allpmaps_lock);
1770	LIST_REMOVE(pmap, pm_list);
1771	mtx_unlock_spin(&allpmaps_lock);
1772
1773	for (i = 0; i < NPGPTD; i++)
1774		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1775		    PG_FRAME);
1776
1777	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1778	    sizeof(*pmap->pm_pdir));
1779
1780	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1781
1782	for (i = 0; i < NPGPTD; i++) {
1783		m = ptdpg[i];
1784#ifdef PAE
1785		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1786		    ("pmap_release: got wrong ptd page"));
1787#endif
1788		m->wire_count--;
1789		atomic_subtract_int(&cnt.v_wire_count, 1);
1790		vm_page_free_zero(m);
1791	}
1792	PMAP_LOCK_DESTROY(pmap);
1793}
1794
1795static int
1796kvm_size(SYSCTL_HANDLER_ARGS)
1797{
1798	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1799
1800	return sysctl_handle_long(oidp, &ksize, 0, req);
1801}
1802SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1803    0, 0, kvm_size, "IU", "Size of KVM");
1804
1805static int
1806kvm_free(SYSCTL_HANDLER_ARGS)
1807{
1808	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1809
1810	return sysctl_handle_long(oidp, &kfree, 0, req);
1811}
1812SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1813    0, 0, kvm_free, "IU", "Amount of KVM free");
1814
1815/*
1816 * grow the number of kernel page table entries, if needed
1817 */
1818void
1819pmap_growkernel(vm_offset_t addr)
1820{
1821	struct pmap *pmap;
1822	vm_paddr_t ptppaddr;
1823	vm_page_t nkpg;
1824	pd_entry_t newpdir;
1825	pt_entry_t *pde;
1826
1827	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1828	if (kernel_vm_end == 0) {
1829		kernel_vm_end = KERNBASE;
1830		nkpt = 0;
1831		while (pdir_pde(PTD, kernel_vm_end)) {
1832			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1833			nkpt++;
1834			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1835				kernel_vm_end = kernel_map->max_offset;
1836				break;
1837			}
1838		}
1839	}
1840	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1841	if (addr - 1 >= kernel_map->max_offset)
1842		addr = kernel_map->max_offset;
1843	while (kernel_vm_end < addr) {
1844		if (pdir_pde(PTD, kernel_vm_end)) {
1845			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1846			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1847				kernel_vm_end = kernel_map->max_offset;
1848				break;
1849			}
1850			continue;
1851		}
1852
1853		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1854		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1855		    VM_ALLOC_ZERO);
1856		if (nkpg == NULL)
1857			panic("pmap_growkernel: no memory to grow kernel");
1858
1859		nkpt++;
1860
1861		if ((nkpg->flags & PG_ZERO) == 0)
1862			pmap_zero_page(nkpg);
1863		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1864		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1865		pdir_pde(PTD, kernel_vm_end) = newpdir;
1866
1867		mtx_lock_spin(&allpmaps_lock);
1868		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1869			pde = pmap_pde(pmap, kernel_vm_end);
1870			pde_store(pde, newpdir);
1871		}
1872		mtx_unlock_spin(&allpmaps_lock);
1873		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1874		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1875			kernel_vm_end = kernel_map->max_offset;
1876			break;
1877		}
1878	}
1879}
1880
1881
1882/***************************************************
1883 * page management routines.
1884 ***************************************************/
1885
1886CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1887CTASSERT(_NPCM == 11);
1888
1889static __inline struct pv_chunk *
1890pv_to_chunk(pv_entry_t pv)
1891{
1892
1893	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1894}
1895
1896#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1897
1898#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1899#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1900
1901static uint32_t pc_freemask[11] = {
1902	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1903	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1904	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1905	PC_FREE0_9, PC_FREE10
1906};
1907
1908SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1909	"Current number of pv entries");
1910
1911#ifdef PV_STATS
1912static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1913
1914SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1915	"Current number of pv entry chunks");
1916SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1917	"Current number of pv entry chunks allocated");
1918SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1919	"Current number of pv entry chunks frees");
1920SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1921	"Number of times tried to get a chunk page but failed.");
1922
1923static long pv_entry_frees, pv_entry_allocs;
1924static int pv_entry_spare;
1925
1926SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1927	"Current number of pv entry frees");
1928SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1929	"Current number of pv entry allocs");
1930SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1931	"Current number of spare pv entries");
1932
1933static int pmap_collect_inactive, pmap_collect_active;
1934
1935SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1936	"Current number times pmap_collect called on inactive queue");
1937SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1938	"Current number times pmap_collect called on active queue");
1939#endif
1940
1941/*
1942 * We are in a serious low memory condition.  Resort to
1943 * drastic measures to free some pages so we can allocate
1944 * another pv entry chunk.  This is normally called to
1945 * unmap inactive pages, and if necessary, active pages.
1946 */
1947static void
1948pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1949{
1950	struct md_page *pvh;
1951	pd_entry_t *pde;
1952	pmap_t pmap;
1953	pt_entry_t *pte, tpte;
1954	pv_entry_t next_pv, pv;
1955	vm_offset_t va;
1956	vm_page_t m, free;
1957
1958	sched_pin();
1959	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1960		if (m->hold_count || m->busy)
1961			continue;
1962		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1963			va = pv->pv_va;
1964			pmap = PV_PMAP(pv);
1965			/* Avoid deadlock and lock recursion. */
1966			if (pmap > locked_pmap)
1967				PMAP_LOCK(pmap);
1968			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1969				continue;
1970			pmap->pm_stats.resident_count--;
1971			pde = pmap_pde(pmap, va);
1972			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
1973			    " a 4mpage in page %p's pv list", m));
1974			pte = pmap_pte_quick(pmap, va);
1975			tpte = pte_load_clear(pte);
1976			KASSERT((tpte & PG_W) == 0,
1977			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1978			if (tpte & PG_A)
1979				vm_page_flag_set(m, PG_REFERENCED);
1980			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1981				vm_page_dirty(m);
1982			free = NULL;
1983			pmap_unuse_pt(pmap, va, &free);
1984			pmap_invalidate_page(pmap, va);
1985			pmap_free_zero_pages(free);
1986			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1987			if (TAILQ_EMPTY(&m->md.pv_list)) {
1988				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1989				if (TAILQ_EMPTY(&pvh->pv_list))
1990					vm_page_flag_clear(m, PG_WRITEABLE);
1991			}
1992			free_pv_entry(pmap, pv);
1993			if (pmap != locked_pmap)
1994				PMAP_UNLOCK(pmap);
1995		}
1996	}
1997	sched_unpin();
1998}
1999
2000
2001/*
2002 * free the pv_entry back to the free list
2003 */
2004static void
2005free_pv_entry(pmap_t pmap, pv_entry_t pv)
2006{
2007	vm_page_t m;
2008	struct pv_chunk *pc;
2009	int idx, field, bit;
2010
2011	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2012	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2013	PV_STAT(pv_entry_frees++);
2014	PV_STAT(pv_entry_spare++);
2015	pv_entry_count--;
2016	pc = pv_to_chunk(pv);
2017	idx = pv - &pc->pc_pventry[0];
2018	field = idx / 32;
2019	bit = idx % 32;
2020	pc->pc_map[field] |= 1ul << bit;
2021	/* move to head of list */
2022	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2023	for (idx = 0; idx < _NPCM; idx++)
2024		if (pc->pc_map[idx] != pc_freemask[idx]) {
2025			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2026			return;
2027		}
2028	PV_STAT(pv_entry_spare -= _NPCPV);
2029	PV_STAT(pc_chunk_count--);
2030	PV_STAT(pc_chunk_frees++);
2031	/* entire chunk is free, return it */
2032	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2033	pmap_qremove((vm_offset_t)pc, 1);
2034	vm_page_unwire(m, 0);
2035	vm_page_free(m);
2036	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2037}
2038
2039/*
2040 * get a new pv_entry, allocating a block from the system
2041 * when needed.
2042 */
2043static pv_entry_t
2044get_pv_entry(pmap_t pmap, int try)
2045{
2046	static const struct timeval printinterval = { 60, 0 };
2047	static struct timeval lastprint;
2048	static vm_pindex_t colour;
2049	struct vpgqueues *pq;
2050	int bit, field;
2051	pv_entry_t pv;
2052	struct pv_chunk *pc;
2053	vm_page_t m;
2054
2055	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2056	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2057	PV_STAT(pv_entry_allocs++);
2058	pv_entry_count++;
2059	if (pv_entry_count > pv_entry_high_water)
2060		if (ratecheck(&lastprint, &printinterval))
2061			printf("Approaching the limit on PV entries, consider "
2062			    "increasing either the vm.pmap.shpgperproc or the "
2063			    "vm.pmap.pv_entry_max tunable.\n");
2064	pq = NULL;
2065retry:
2066	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2067	if (pc != NULL) {
2068		for (field = 0; field < _NPCM; field++) {
2069			if (pc->pc_map[field]) {
2070				bit = bsfl(pc->pc_map[field]);
2071				break;
2072			}
2073		}
2074		if (field < _NPCM) {
2075			pv = &pc->pc_pventry[field * 32 + bit];
2076			pc->pc_map[field] &= ~(1ul << bit);
2077			/* If this was the last item, move it to tail */
2078			for (field = 0; field < _NPCM; field++)
2079				if (pc->pc_map[field] != 0) {
2080					PV_STAT(pv_entry_spare--);
2081					return (pv);	/* not full, return */
2082				}
2083			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2084			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2085			PV_STAT(pv_entry_spare--);
2086			return (pv);
2087		}
2088	}
2089	/*
2090	 * Access to the ptelist "pv_vafree" is synchronized by the page
2091	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2092	 * remain non-empty until pmap_ptelist_alloc() completes.
2093	 */
2094	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2095	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2096	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2097		if (try) {
2098			pv_entry_count--;
2099			PV_STAT(pc_chunk_tryfail++);
2100			return (NULL);
2101		}
2102		/*
2103		 * Reclaim pv entries: At first, destroy mappings to
2104		 * inactive pages.  After that, if a pv chunk entry
2105		 * is still needed, destroy mappings to active pages.
2106		 */
2107		if (pq == NULL) {
2108			PV_STAT(pmap_collect_inactive++);
2109			pq = &vm_page_queues[PQ_INACTIVE];
2110		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2111			PV_STAT(pmap_collect_active++);
2112			pq = &vm_page_queues[PQ_ACTIVE];
2113		} else
2114			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2115		pmap_collect(pmap, pq);
2116		goto retry;
2117	}
2118	PV_STAT(pc_chunk_count++);
2119	PV_STAT(pc_chunk_allocs++);
2120	colour++;
2121	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2122	pmap_qenter((vm_offset_t)pc, &m, 1);
2123	pc->pc_pmap = pmap;
2124	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2125	for (field = 1; field < _NPCM; field++)
2126		pc->pc_map[field] = pc_freemask[field];
2127	pv = &pc->pc_pventry[0];
2128	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2129	PV_STAT(pv_entry_spare += _NPCPV - 1);
2130	return (pv);
2131}
2132
2133static __inline pv_entry_t
2134pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2135{
2136	pv_entry_t pv;
2137
2138	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2139	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2140		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2141			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2142			break;
2143		}
2144	}
2145	return (pv);
2146}
2147
2148static void
2149pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2150{
2151	struct md_page *pvh;
2152	pv_entry_t pv;
2153	vm_offset_t va_last;
2154	vm_page_t m;
2155
2156	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2157	KASSERT((pa & PDRMASK) == 0,
2158	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2159
2160	/*
2161	 * Transfer the 4mpage's pv entry for this mapping to the first
2162	 * page's pv list.
2163	 */
2164	pvh = pa_to_pvh(pa);
2165	va = trunc_4mpage(va);
2166	pv = pmap_pvh_remove(pvh, pmap, va);
2167	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2168	m = PHYS_TO_VM_PAGE(pa);
2169	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2170	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2171	va_last = va + NBPDR - PAGE_SIZE;
2172	do {
2173		m++;
2174		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2175		    ("pmap_pv_demote_pde: page %p is not managed", m));
2176		va += PAGE_SIZE;
2177		pmap_insert_entry(pmap, va, m);
2178	} while (va < va_last);
2179}
2180
2181static void
2182pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2183{
2184	struct md_page *pvh;
2185	pv_entry_t pv;
2186	vm_offset_t va_last;
2187	vm_page_t m;
2188
2189	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2190	KASSERT((pa & PDRMASK) == 0,
2191	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2192
2193	/*
2194	 * Transfer the first page's pv entry for this mapping to the
2195	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2196	 * to get_pv_entry(), a transfer avoids the possibility that
2197	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2198	 * removes one of the mappings that is being promoted.
2199	 */
2200	m = PHYS_TO_VM_PAGE(pa);
2201	va = trunc_4mpage(va);
2202	pv = pmap_pvh_remove(&m->md, pmap, va);
2203	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2204	pvh = pa_to_pvh(pa);
2205	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2206	/* Free the remaining NPTEPG - 1 pv entries. */
2207	va_last = va + NBPDR - PAGE_SIZE;
2208	do {
2209		m++;
2210		va += PAGE_SIZE;
2211		pmap_pvh_free(&m->md, pmap, va);
2212	} while (va < va_last);
2213}
2214
2215static void
2216pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2217{
2218	pv_entry_t pv;
2219
2220	pv = pmap_pvh_remove(pvh, pmap, va);
2221	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2222	free_pv_entry(pmap, pv);
2223}
2224
2225static void
2226pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2227{
2228	struct md_page *pvh;
2229
2230	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2231	pmap_pvh_free(&m->md, pmap, va);
2232	if (TAILQ_EMPTY(&m->md.pv_list)) {
2233		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2234		if (TAILQ_EMPTY(&pvh->pv_list))
2235			vm_page_flag_clear(m, PG_WRITEABLE);
2236	}
2237}
2238
2239/*
2240 * Create a pv entry for page at pa for
2241 * (pmap, va).
2242 */
2243static void
2244pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2245{
2246	pv_entry_t pv;
2247
2248	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2249	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2250	pv = get_pv_entry(pmap, FALSE);
2251	pv->pv_va = va;
2252	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2253}
2254
2255/*
2256 * Conditionally create a pv entry.
2257 */
2258static boolean_t
2259pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2260{
2261	pv_entry_t pv;
2262
2263	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2264	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2265	if (pv_entry_count < pv_entry_high_water &&
2266	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2267		pv->pv_va = va;
2268		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2269		return (TRUE);
2270	} else
2271		return (FALSE);
2272}
2273
2274/*
2275 * Create the pv entries for each of the pages within a superpage.
2276 */
2277static boolean_t
2278pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2279{
2280	struct md_page *pvh;
2281	pv_entry_t pv;
2282
2283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2284	if (pv_entry_count < pv_entry_high_water &&
2285	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2286		pv->pv_va = va;
2287		pvh = pa_to_pvh(pa);
2288		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2289		return (TRUE);
2290	} else
2291		return (FALSE);
2292}
2293
2294/*
2295 * Fills a page table page with mappings to consecutive physical pages.
2296 */
2297static void
2298pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2299{
2300	pt_entry_t *pte;
2301
2302	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2303		*pte = newpte;
2304		newpte += PAGE_SIZE;
2305	}
2306}
2307
2308/*
2309 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2310 * 2- or 4MB page mapping is invalidated.
2311 */
2312static boolean_t
2313pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2314{
2315	pd_entry_t newpde, oldpde;
2316	pmap_t allpmaps_entry;
2317	pt_entry_t *firstpte, newpte;
2318	vm_paddr_t mptepa;
2319	vm_page_t free, mpte;
2320
2321	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2322	oldpde = *pde;
2323	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2324	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2325	mpte = pmap_lookup_pt_page(pmap, va);
2326	if (mpte != NULL)
2327		pmap_remove_pt_page(pmap, mpte);
2328	else {
2329		KASSERT((oldpde & PG_W) == 0,
2330		    ("pmap_demote_pde: page table page for a wired mapping"
2331		    " is missing"));
2332
2333		/*
2334		 * Invalidate the 2- or 4MB page mapping and return
2335		 * "failure" if the mapping was never accessed or the
2336		 * allocation of the new page table page fails.
2337		 */
2338		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2339		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2340		    VM_ALLOC_WIRED)) == NULL) {
2341			free = NULL;
2342			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2343			pmap_invalidate_page(pmap, trunc_4mpage(va));
2344			pmap_free_zero_pages(free);
2345			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2346			    " in pmap %p", va, pmap);
2347			return (FALSE);
2348		}
2349		if (va < VM_MAXUSER_ADDRESS)
2350			pmap->pm_stats.resident_count++;
2351	}
2352	mptepa = VM_PAGE_TO_PHYS(mpte);
2353
2354	/*
2355	 * Temporarily map the page table page (mpte) into the kernel's
2356	 * address space at either PADDR1 or PADDR2.
2357	 */
2358	if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2359		if ((*PMAP1 & PG_FRAME) != mptepa) {
2360			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2361#ifdef SMP
2362			PMAP1cpu = PCPU_GET(cpuid);
2363#endif
2364			invlcaddr(PADDR1);
2365			PMAP1changed++;
2366		} else
2367#ifdef SMP
2368		if (PMAP1cpu != PCPU_GET(cpuid)) {
2369			PMAP1cpu = PCPU_GET(cpuid);
2370			invlcaddr(PADDR1);
2371			PMAP1changedcpu++;
2372		} else
2373#endif
2374			PMAP1unchanged++;
2375		firstpte = PADDR1;
2376	} else {
2377		mtx_lock(&PMAP2mutex);
2378		if ((*PMAP2 & PG_FRAME) != mptepa) {
2379			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2380			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2381		}
2382		firstpte = PADDR2;
2383	}
2384	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2385	KASSERT((oldpde & PG_A) != 0,
2386	    ("pmap_demote_pde: oldpde is missing PG_A"));
2387	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2388	    ("pmap_demote_pde: oldpde is missing PG_M"));
2389	newpte = oldpde & ~PG_PS;
2390	if ((newpte & PG_PDE_PAT) != 0)
2391		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2392
2393	/*
2394	 * If the page table page is new, initialize it.
2395	 */
2396	if (mpte->wire_count == 1) {
2397		mpte->wire_count = NPTEPG;
2398		pmap_fill_ptp(firstpte, newpte);
2399	}
2400	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2401	    ("pmap_demote_pde: firstpte and newpte map different physical"
2402	    " addresses"));
2403
2404	/*
2405	 * If the mapping has changed attributes, update the page table
2406	 * entries.
2407	 */
2408	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2409		pmap_fill_ptp(firstpte, newpte);
2410
2411	/*
2412	 * Demote the mapping.  This pmap is locked.  The old PDE has
2413	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2414	 * set.  Thus, there is no danger of a race with another
2415	 * processor changing the setting of PG_A and/or PG_M between
2416	 * the read above and the store below.
2417	 */
2418	if (pmap == kernel_pmap) {
2419		/*
2420		 * A harmless race exists between this loop and the bcopy()
2421		 * in pmap_pinit() that initializes the kernel segment of
2422		 * the new page table.  Specifically, that bcopy() may copy
2423		 * the new PDE from the PTD, which is first in allpmaps, to
2424		 * the new page table before this loop updates that new
2425		 * page table.
2426		 */
2427		mtx_lock_spin(&allpmaps_lock);
2428		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2429			pde = pmap_pde(allpmaps_entry, va);
2430			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2431			    (oldpde & PG_PTE_PROMOTE),
2432			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2433			    (uintmax_t)*pde, (uintmax_t)oldpde));
2434			pde_store(pde, newpde);
2435		}
2436		mtx_unlock_spin(&allpmaps_lock);
2437	} else
2438		pde_store(pde, newpde);
2439	if (firstpte == PADDR2)
2440		mtx_unlock(&PMAP2mutex);
2441
2442	/*
2443	 * Invalidate the recursive mapping of the page table page.
2444	 */
2445	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2446
2447	/*
2448	 * Demote the pv entry.  This depends on the earlier demotion
2449	 * of the mapping.  Specifically, the (re)creation of a per-
2450	 * page pv entry might trigger the execution of pmap_collect(),
2451	 * which might reclaim a newly (re)created per-page pv entry
2452	 * and destroy the associated mapping.  In order to destroy
2453	 * the mapping, the PDE must have already changed from mapping
2454	 * the 2mpage to referencing the page table page.
2455	 */
2456	if ((oldpde & PG_MANAGED) != 0)
2457		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2458
2459	pmap_pde_demotions++;
2460	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2461	    " in pmap %p", va, pmap);
2462	return (TRUE);
2463}
2464
2465/*
2466 * pmap_remove_pde: do the things to unmap a superpage in a process
2467 */
2468static void
2469pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2470    vm_page_t *free)
2471{
2472	struct md_page *pvh;
2473	pd_entry_t oldpde;
2474	vm_offset_t eva, va;
2475	vm_page_t m, mpte;
2476
2477	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2478	KASSERT((sva & PDRMASK) == 0,
2479	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2480	oldpde = pte_load_clear(pdq);
2481	if (oldpde & PG_W)
2482		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2483
2484	/*
2485	 * Machines that don't support invlpg, also don't support
2486	 * PG_G.
2487	 */
2488	if (oldpde & PG_G)
2489		pmap_invalidate_page(kernel_pmap, sva);
2490	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2491	if (oldpde & PG_MANAGED) {
2492		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2493		pmap_pvh_free(pvh, pmap, sva);
2494		eva = sva + NBPDR;
2495		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2496		    va < eva; va += PAGE_SIZE, m++) {
2497			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2498				vm_page_dirty(m);
2499			if (oldpde & PG_A)
2500				vm_page_flag_set(m, PG_REFERENCED);
2501			if (TAILQ_EMPTY(&m->md.pv_list) &&
2502			    TAILQ_EMPTY(&pvh->pv_list))
2503				vm_page_flag_clear(m, PG_WRITEABLE);
2504		}
2505	}
2506	if (pmap == kernel_pmap) {
2507		if (!pmap_demote_pde(pmap, pdq, sva))
2508			panic("pmap_remove_pde: failed demotion");
2509	} else {
2510		mpte = pmap_lookup_pt_page(pmap, sva);
2511		if (mpte != NULL) {
2512			pmap_remove_pt_page(pmap, mpte);
2513			pmap->pm_stats.resident_count--;
2514			KASSERT(mpte->wire_count == NPTEPG,
2515			    ("pmap_remove_pde: pte page wire count error"));
2516			mpte->wire_count = 0;
2517			pmap_add_delayed_free_list(mpte, free, FALSE);
2518			atomic_subtract_int(&cnt.v_wire_count, 1);
2519		}
2520	}
2521}
2522
2523/*
2524 * pmap_remove_pte: do the things to unmap a page in a process
2525 */
2526static int
2527pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2528{
2529	pt_entry_t oldpte;
2530	vm_page_t m;
2531
2532	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2533	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2534	oldpte = pte_load_clear(ptq);
2535	if (oldpte & PG_W)
2536		pmap->pm_stats.wired_count -= 1;
2537	/*
2538	 * Machines that don't support invlpg, also don't support
2539	 * PG_G.
2540	 */
2541	if (oldpte & PG_G)
2542		pmap_invalidate_page(kernel_pmap, va);
2543	pmap->pm_stats.resident_count -= 1;
2544	if (oldpte & PG_MANAGED) {
2545		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2546		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2547			vm_page_dirty(m);
2548		if (oldpte & PG_A)
2549			vm_page_flag_set(m, PG_REFERENCED);
2550		pmap_remove_entry(pmap, m, va);
2551	}
2552	return (pmap_unuse_pt(pmap, va, free));
2553}
2554
2555/*
2556 * Remove a single page from a process address space
2557 */
2558static void
2559pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2560{
2561	pt_entry_t *pte;
2562
2563	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2564	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2565	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2566	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2567		return;
2568	pmap_remove_pte(pmap, pte, va, free);
2569	pmap_invalidate_page(pmap, va);
2570}
2571
2572/*
2573 *	Remove the given range of addresses from the specified map.
2574 *
2575 *	It is assumed that the start and end are properly
2576 *	rounded to the page size.
2577 */
2578void
2579pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2580{
2581	vm_offset_t pdnxt;
2582	pd_entry_t ptpaddr;
2583	pt_entry_t *pte;
2584	vm_page_t free = NULL;
2585	int anyvalid;
2586
2587	/*
2588	 * Perform an unsynchronized read.  This is, however, safe.
2589	 */
2590	if (pmap->pm_stats.resident_count == 0)
2591		return;
2592
2593	anyvalid = 0;
2594
2595	vm_page_lock_queues();
2596	sched_pin();
2597	PMAP_LOCK(pmap);
2598
2599	/*
2600	 * special handling of removing one page.  a very
2601	 * common operation and easy to short circuit some
2602	 * code.
2603	 */
2604	if ((sva + PAGE_SIZE == eva) &&
2605	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2606		pmap_remove_page(pmap, sva, &free);
2607		goto out;
2608	}
2609
2610	for (; sva < eva; sva = pdnxt) {
2611		unsigned pdirindex;
2612
2613		/*
2614		 * Calculate index for next page table.
2615		 */
2616		pdnxt = (sva + NBPDR) & ~PDRMASK;
2617		if (pdnxt < sva)
2618			pdnxt = eva;
2619		if (pmap->pm_stats.resident_count == 0)
2620			break;
2621
2622		pdirindex = sva >> PDRSHIFT;
2623		ptpaddr = pmap->pm_pdir[pdirindex];
2624
2625		/*
2626		 * Weed out invalid mappings. Note: we assume that the page
2627		 * directory table is always allocated, and in kernel virtual.
2628		 */
2629		if (ptpaddr == 0)
2630			continue;
2631
2632		/*
2633		 * Check for large page.
2634		 */
2635		if ((ptpaddr & PG_PS) != 0) {
2636			/*
2637			 * Are we removing the entire large page?  If not,
2638			 * demote the mapping and fall through.
2639			 */
2640			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2641				/*
2642				 * The TLB entry for a PG_G mapping is
2643				 * invalidated by pmap_remove_pde().
2644				 */
2645				if ((ptpaddr & PG_G) == 0)
2646					anyvalid = 1;
2647				pmap_remove_pde(pmap,
2648				    &pmap->pm_pdir[pdirindex], sva, &free);
2649				continue;
2650			} else if (!pmap_demote_pde(pmap,
2651			    &pmap->pm_pdir[pdirindex], sva)) {
2652				/* The large page mapping was destroyed. */
2653				continue;
2654			}
2655		}
2656
2657		/*
2658		 * Limit our scan to either the end of the va represented
2659		 * by the current page table page, or to the end of the
2660		 * range being removed.
2661		 */
2662		if (pdnxt > eva)
2663			pdnxt = eva;
2664
2665		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2666		    sva += PAGE_SIZE) {
2667			if (*pte == 0)
2668				continue;
2669
2670			/*
2671			 * The TLB entry for a PG_G mapping is invalidated
2672			 * by pmap_remove_pte().
2673			 */
2674			if ((*pte & PG_G) == 0)
2675				anyvalid = 1;
2676			if (pmap_remove_pte(pmap, pte, sva, &free))
2677				break;
2678		}
2679	}
2680out:
2681	sched_unpin();
2682	if (anyvalid)
2683		pmap_invalidate_all(pmap);
2684	vm_page_unlock_queues();
2685	PMAP_UNLOCK(pmap);
2686	pmap_free_zero_pages(free);
2687}
2688
2689/*
2690 *	Routine:	pmap_remove_all
2691 *	Function:
2692 *		Removes this physical page from
2693 *		all physical maps in which it resides.
2694 *		Reflects back modify bits to the pager.
2695 *
2696 *	Notes:
2697 *		Original versions of this routine were very
2698 *		inefficient because they iteratively called
2699 *		pmap_remove (slow...)
2700 */
2701
2702void
2703pmap_remove_all(vm_page_t m)
2704{
2705	struct md_page *pvh;
2706	pv_entry_t pv;
2707	pmap_t pmap;
2708	pt_entry_t *pte, tpte;
2709	pd_entry_t *pde;
2710	vm_offset_t va;
2711	vm_page_t free;
2712
2713	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2714	    ("pmap_remove_all: page %p is fictitious", m));
2715	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2716	sched_pin();
2717	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2718	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2719		va = pv->pv_va;
2720		pmap = PV_PMAP(pv);
2721		PMAP_LOCK(pmap);
2722		pde = pmap_pde(pmap, va);
2723		(void)pmap_demote_pde(pmap, pde, va);
2724		PMAP_UNLOCK(pmap);
2725	}
2726	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2727		pmap = PV_PMAP(pv);
2728		PMAP_LOCK(pmap);
2729		pmap->pm_stats.resident_count--;
2730		pde = pmap_pde(pmap, pv->pv_va);
2731		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2732		    " a 4mpage in page %p's pv list", m));
2733		pte = pmap_pte_quick(pmap, pv->pv_va);
2734		tpte = pte_load_clear(pte);
2735		if (tpte & PG_W)
2736			pmap->pm_stats.wired_count--;
2737		if (tpte & PG_A)
2738			vm_page_flag_set(m, PG_REFERENCED);
2739
2740		/*
2741		 * Update the vm_page_t clean and reference bits.
2742		 */
2743		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2744			vm_page_dirty(m);
2745		free = NULL;
2746		pmap_unuse_pt(pmap, pv->pv_va, &free);
2747		pmap_invalidate_page(pmap, pv->pv_va);
2748		pmap_free_zero_pages(free);
2749		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2750		free_pv_entry(pmap, pv);
2751		PMAP_UNLOCK(pmap);
2752	}
2753	vm_page_flag_clear(m, PG_WRITEABLE);
2754	sched_unpin();
2755}
2756
2757/*
2758 * pmap_protect_pde: do the things to protect a 4mpage in a process
2759 */
2760static boolean_t
2761pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2762{
2763	pd_entry_t newpde, oldpde;
2764	vm_offset_t eva, va;
2765	vm_page_t m;
2766	boolean_t anychanged;
2767
2768	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2769	KASSERT((sva & PDRMASK) == 0,
2770	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2771	anychanged = FALSE;
2772retry:
2773	oldpde = newpde = *pde;
2774	if (oldpde & PG_MANAGED) {
2775		eva = sva + NBPDR;
2776		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2777		    va < eva; va += PAGE_SIZE, m++) {
2778			/*
2779			 * In contrast to the analogous operation on a 4KB page
2780			 * mapping, the mapping's PG_A flag is not cleared and
2781			 * the page's PG_REFERENCED flag is not set.  The
2782			 * reason is that pmap_demote_pde() expects that a 2/4MB
2783			 * page mapping with a stored page table page has PG_A
2784			 * set.
2785			 */
2786			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2787				vm_page_dirty(m);
2788		}
2789	}
2790	if ((prot & VM_PROT_WRITE) == 0)
2791		newpde &= ~(PG_RW | PG_M);
2792#ifdef PAE
2793	if ((prot & VM_PROT_EXECUTE) == 0)
2794		newpde |= pg_nx;
2795#endif
2796	if (newpde != oldpde) {
2797		if (!pde_cmpset(pde, oldpde, newpde))
2798			goto retry;
2799		if (oldpde & PG_G)
2800			pmap_invalidate_page(pmap, sva);
2801		else
2802			anychanged = TRUE;
2803	}
2804	return (anychanged);
2805}
2806
2807/*
2808 *	Set the physical protection on the
2809 *	specified range of this map as requested.
2810 */
2811void
2812pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2813{
2814	vm_offset_t pdnxt;
2815	pd_entry_t ptpaddr;
2816	pt_entry_t *pte;
2817	int anychanged;
2818
2819	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2820		pmap_remove(pmap, sva, eva);
2821		return;
2822	}
2823
2824#ifdef PAE
2825	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2826	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2827		return;
2828#else
2829	if (prot & VM_PROT_WRITE)
2830		return;
2831#endif
2832
2833	anychanged = 0;
2834
2835	vm_page_lock_queues();
2836	sched_pin();
2837	PMAP_LOCK(pmap);
2838	for (; sva < eva; sva = pdnxt) {
2839		pt_entry_t obits, pbits;
2840		unsigned pdirindex;
2841
2842		pdnxt = (sva + NBPDR) & ~PDRMASK;
2843		if (pdnxt < sva)
2844			pdnxt = eva;
2845
2846		pdirindex = sva >> PDRSHIFT;
2847		ptpaddr = pmap->pm_pdir[pdirindex];
2848
2849		/*
2850		 * Weed out invalid mappings. Note: we assume that the page
2851		 * directory table is always allocated, and in kernel virtual.
2852		 */
2853		if (ptpaddr == 0)
2854			continue;
2855
2856		/*
2857		 * Check for large page.
2858		 */
2859		if ((ptpaddr & PG_PS) != 0) {
2860			/*
2861			 * Are we protecting the entire large page?  If not,
2862			 * demote the mapping and fall through.
2863			 */
2864			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2865				/*
2866				 * The TLB entry for a PG_G mapping is
2867				 * invalidated by pmap_protect_pde().
2868				 */
2869				if (pmap_protect_pde(pmap,
2870				    &pmap->pm_pdir[pdirindex], sva, prot))
2871					anychanged = 1;
2872				continue;
2873			} else if (!pmap_demote_pde(pmap,
2874			    &pmap->pm_pdir[pdirindex], sva)) {
2875				/* The large page mapping was destroyed. */
2876				continue;
2877			}
2878		}
2879
2880		if (pdnxt > eva)
2881			pdnxt = eva;
2882
2883		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2884		    sva += PAGE_SIZE) {
2885			vm_page_t m;
2886
2887retry:
2888			/*
2889			 * Regardless of whether a pte is 32 or 64 bits in
2890			 * size, PG_RW, PG_A, and PG_M are among the least
2891			 * significant 32 bits.
2892			 */
2893			obits = pbits = *pte;
2894			if ((pbits & PG_V) == 0)
2895				continue;
2896			if (pbits & PG_MANAGED) {
2897				m = NULL;
2898				if (pbits & PG_A) {
2899					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2900					vm_page_flag_set(m, PG_REFERENCED);
2901					pbits &= ~PG_A;
2902				}
2903				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2904					if (m == NULL)
2905						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2906					vm_page_dirty(m);
2907				}
2908			}
2909
2910			if ((prot & VM_PROT_WRITE) == 0)
2911				pbits &= ~(PG_RW | PG_M);
2912#ifdef PAE
2913			if ((prot & VM_PROT_EXECUTE) == 0)
2914				pbits |= pg_nx;
2915#endif
2916
2917			if (pbits != obits) {
2918#ifdef PAE
2919				if (!atomic_cmpset_64(pte, obits, pbits))
2920					goto retry;
2921#else
2922				if (!atomic_cmpset_int((u_int *)pte, obits,
2923				    pbits))
2924					goto retry;
2925#endif
2926				if (obits & PG_G)
2927					pmap_invalidate_page(pmap, sva);
2928				else
2929					anychanged = 1;
2930			}
2931		}
2932	}
2933	sched_unpin();
2934	if (anychanged)
2935		pmap_invalidate_all(pmap);
2936	vm_page_unlock_queues();
2937	PMAP_UNLOCK(pmap);
2938}
2939
2940/*
2941 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2942 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
2943 * For promotion to occur, two conditions must be met: (1) the 4KB page
2944 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
2945 * mappings must have identical characteristics.
2946 *
2947 * Managed (PG_MANAGED) mappings within the kernel address space are not
2948 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2949 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2950 * pmap.
2951 */
2952static void
2953pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2954{
2955	pd_entry_t newpde;
2956	pmap_t allpmaps_entry;
2957	pt_entry_t *firstpte, oldpte, pa, *pte;
2958	vm_offset_t oldpteva;
2959	vm_page_t mpte;
2960
2961	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2962
2963	/*
2964	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2965	 * either invalid, unused, or does not map the first 4KB physical page
2966	 * within a 2- or 4MB page.
2967	 */
2968	firstpte = vtopte(trunc_4mpage(va));
2969setpde:
2970	newpde = *firstpte;
2971	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2972		pmap_pde_p_failures++;
2973		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2974		    " in pmap %p", va, pmap);
2975		return;
2976	}
2977	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
2978		pmap_pde_p_failures++;
2979		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2980		    " in pmap %p", va, pmap);
2981		return;
2982	}
2983	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2984		/*
2985		 * When PG_M is already clear, PG_RW can be cleared without
2986		 * a TLB invalidation.
2987		 */
2988		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
2989		    ~PG_RW))
2990			goto setpde;
2991		newpde &= ~PG_RW;
2992	}
2993
2994	/*
2995	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2996	 * PTE maps an unexpected 4KB physical page or does not have identical
2997	 * characteristics to the first PTE.
2998	 */
2999	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3000	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3001setpte:
3002		oldpte = *pte;
3003		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3004			pmap_pde_p_failures++;
3005			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3006			    " in pmap %p", va, pmap);
3007			return;
3008		}
3009		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3010			/*
3011			 * When PG_M is already clear, PG_RW can be cleared
3012			 * without a TLB invalidation.
3013			 */
3014			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3015			    oldpte & ~PG_RW))
3016				goto setpte;
3017			oldpte &= ~PG_RW;
3018			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3019			    (va & ~PDRMASK);
3020			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3021			    " in pmap %p", oldpteva, pmap);
3022		}
3023		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3024			pmap_pde_p_failures++;
3025			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3026			    " in pmap %p", va, pmap);
3027			return;
3028		}
3029		pa -= PAGE_SIZE;
3030	}
3031
3032	/*
3033	 * Save the page table page in its current state until the PDE
3034	 * mapping the superpage is demoted by pmap_demote_pde() or
3035	 * destroyed by pmap_remove_pde().
3036	 */
3037	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3038	KASSERT(mpte >= vm_page_array &&
3039	    mpte < &vm_page_array[vm_page_array_size],
3040	    ("pmap_promote_pde: page table page is out of range"));
3041	KASSERT(mpte->pindex == va >> PDRSHIFT,
3042	    ("pmap_promote_pde: page table page's pindex is wrong"));
3043	pmap_insert_pt_page(pmap, mpte);
3044
3045	/*
3046	 * Promote the pv entries.
3047	 */
3048	if ((newpde & PG_MANAGED) != 0)
3049		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3050
3051	/*
3052	 * Propagate the PAT index to its proper position.
3053	 */
3054	if ((newpde & PG_PTE_PAT) != 0)
3055		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3056
3057	/*
3058	 * Map the superpage.
3059	 */
3060	if (pmap == kernel_pmap) {
3061		mtx_lock_spin(&allpmaps_lock);
3062		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
3063			pde = pmap_pde(allpmaps_entry, va);
3064			pde_store(pde, PG_PS | newpde);
3065		}
3066		mtx_unlock_spin(&allpmaps_lock);
3067	} else
3068		pde_store(pde, PG_PS | newpde);
3069
3070	pmap_pde_promotions++;
3071	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3072	    " in pmap %p", va, pmap);
3073}
3074
3075/*
3076 *	Insert the given physical page (p) at
3077 *	the specified virtual address (v) in the
3078 *	target physical map with the protection requested.
3079 *
3080 *	If specified, the page will be wired down, meaning
3081 *	that the related pte can not be reclaimed.
3082 *
3083 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3084 *	or lose information.  That is, this routine must actually
3085 *	insert this page into the given map NOW.
3086 */
3087void
3088pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3089    vm_prot_t prot, boolean_t wired)
3090{
3091	vm_paddr_t pa;
3092	pd_entry_t *pde;
3093	pt_entry_t *pte;
3094	vm_paddr_t opa;
3095	pt_entry_t origpte, newpte;
3096	vm_page_t mpte, om;
3097	boolean_t invlva;
3098
3099	va = trunc_page(va);
3100	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3101	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3102	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3103
3104	mpte = NULL;
3105
3106	vm_page_lock_queues();
3107	PMAP_LOCK(pmap);
3108	sched_pin();
3109
3110	/*
3111	 * In the case that a page table page is not
3112	 * resident, we are creating it here.
3113	 */
3114	if (va < VM_MAXUSER_ADDRESS) {
3115		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3116	}
3117
3118	pde = pmap_pde(pmap, va);
3119	if ((*pde & PG_PS) != 0)
3120		panic("pmap_enter: attempted pmap_enter on 4MB page");
3121	pte = pmap_pte_quick(pmap, va);
3122
3123	/*
3124	 * Page Directory table entry not valid, we need a new PT page
3125	 */
3126	if (pte == NULL) {
3127		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3128			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3129	}
3130
3131	pa = VM_PAGE_TO_PHYS(m);
3132	om = NULL;
3133	origpte = *pte;
3134	opa = origpte & PG_FRAME;
3135
3136	/*
3137	 * Mapping has not changed, must be protection or wiring change.
3138	 */
3139	if (origpte && (opa == pa)) {
3140		/*
3141		 * Wiring change, just update stats. We don't worry about
3142		 * wiring PT pages as they remain resident as long as there
3143		 * are valid mappings in them. Hence, if a user page is wired,
3144		 * the PT page will be also.
3145		 */
3146		if (wired && ((origpte & PG_W) == 0))
3147			pmap->pm_stats.wired_count++;
3148		else if (!wired && (origpte & PG_W))
3149			pmap->pm_stats.wired_count--;
3150
3151		/*
3152		 * Remove extra pte reference
3153		 */
3154		if (mpte)
3155			mpte->wire_count--;
3156
3157		/*
3158		 * We might be turning off write access to the page,
3159		 * so we go ahead and sense modify status.
3160		 */
3161		if (origpte & PG_MANAGED) {
3162			om = m;
3163			pa |= PG_MANAGED;
3164		}
3165		goto validate;
3166	}
3167	/*
3168	 * Mapping has changed, invalidate old range and fall through to
3169	 * handle validating new mapping.
3170	 */
3171	if (opa) {
3172		if (origpte & PG_W)
3173			pmap->pm_stats.wired_count--;
3174		if (origpte & PG_MANAGED) {
3175			om = PHYS_TO_VM_PAGE(opa);
3176			pmap_remove_entry(pmap, om, va);
3177		}
3178		if (mpte != NULL) {
3179			mpte->wire_count--;
3180			KASSERT(mpte->wire_count > 0,
3181			    ("pmap_enter: missing reference to page table page,"
3182			     " va: 0x%x", va));
3183		}
3184	} else
3185		pmap->pm_stats.resident_count++;
3186
3187	/*
3188	 * Enter on the PV list if part of our managed memory.
3189	 */
3190	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3191		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3192		    ("pmap_enter: managed mapping within the clean submap"));
3193		pmap_insert_entry(pmap, va, m);
3194		pa |= PG_MANAGED;
3195	}
3196
3197	/*
3198	 * Increment counters
3199	 */
3200	if (wired)
3201		pmap->pm_stats.wired_count++;
3202
3203validate:
3204	/*
3205	 * Now validate mapping with desired protection/wiring.
3206	 */
3207	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3208	if ((prot & VM_PROT_WRITE) != 0) {
3209		newpte |= PG_RW;
3210		vm_page_flag_set(m, PG_WRITEABLE);
3211	}
3212#ifdef PAE
3213	if ((prot & VM_PROT_EXECUTE) == 0)
3214		newpte |= pg_nx;
3215#endif
3216	if (wired)
3217		newpte |= PG_W;
3218	if (va < VM_MAXUSER_ADDRESS)
3219		newpte |= PG_U;
3220	if (pmap == kernel_pmap)
3221		newpte |= pgeflag;
3222
3223	/*
3224	 * if the mapping or permission bits are different, we need
3225	 * to update the pte.
3226	 */
3227	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3228		newpte |= PG_A;
3229		if ((access & VM_PROT_WRITE) != 0)
3230			newpte |= PG_M;
3231		if (origpte & PG_V) {
3232			invlva = FALSE;
3233			origpte = pte_load_store(pte, newpte);
3234			if (origpte & PG_A) {
3235				if (origpte & PG_MANAGED)
3236					vm_page_flag_set(om, PG_REFERENCED);
3237				if (opa != VM_PAGE_TO_PHYS(m))
3238					invlva = TRUE;
3239#ifdef PAE
3240				if ((origpte & PG_NX) == 0 &&
3241				    (newpte & PG_NX) != 0)
3242					invlva = TRUE;
3243#endif
3244			}
3245			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3246				if ((origpte & PG_MANAGED) != 0)
3247					vm_page_dirty(om);
3248				if ((prot & VM_PROT_WRITE) == 0)
3249					invlva = TRUE;
3250			}
3251			if (invlva)
3252				pmap_invalidate_page(pmap, va);
3253		} else
3254			pte_store(pte, newpte);
3255	}
3256
3257	/*
3258	 * If both the page table page and the reservation are fully
3259	 * populated, then attempt promotion.
3260	 */
3261	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3262	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3263		pmap_promote_pde(pmap, pde, va);
3264
3265	sched_unpin();
3266	vm_page_unlock_queues();
3267	PMAP_UNLOCK(pmap);
3268}
3269
3270/*
3271 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3272 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3273 * blocking, (2) a mapping already exists at the specified virtual address, or
3274 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3275 */
3276static boolean_t
3277pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3278{
3279	pd_entry_t *pde, newpde;
3280
3281	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3282	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3283	pde = pmap_pde(pmap, va);
3284	if (*pde != 0) {
3285		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3286		    " in pmap %p", va, pmap);
3287		return (FALSE);
3288	}
3289	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3290	    PG_PS | PG_V;
3291	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3292		newpde |= PG_MANAGED;
3293
3294		/*
3295		 * Abort this mapping if its PV entry could not be created.
3296		 */
3297		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3298			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3299			    " in pmap %p", va, pmap);
3300			return (FALSE);
3301		}
3302	}
3303#ifdef PAE
3304	if ((prot & VM_PROT_EXECUTE) == 0)
3305		newpde |= pg_nx;
3306#endif
3307	if (va < VM_MAXUSER_ADDRESS)
3308		newpde |= PG_U;
3309
3310	/*
3311	 * Increment counters.
3312	 */
3313	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3314
3315	/*
3316	 * Map the superpage.
3317	 */
3318	pde_store(pde, newpde);
3319
3320	pmap_pde_mappings++;
3321	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3322	    " in pmap %p", va, pmap);
3323	return (TRUE);
3324}
3325
3326/*
3327 * Maps a sequence of resident pages belonging to the same object.
3328 * The sequence begins with the given page m_start.  This page is
3329 * mapped at the given virtual address start.  Each subsequent page is
3330 * mapped at a virtual address that is offset from start by the same
3331 * amount as the page is offset from m_start within the object.  The
3332 * last page in the sequence is the page with the largest offset from
3333 * m_start that can be mapped at a virtual address less than the given
3334 * virtual address end.  Not every virtual page between start and end
3335 * is mapped; only those for which a resident page exists with the
3336 * corresponding offset from m_start are mapped.
3337 */
3338void
3339pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3340    vm_page_t m_start, vm_prot_t prot)
3341{
3342	vm_offset_t va;
3343	vm_page_t m, mpte;
3344	vm_pindex_t diff, psize;
3345
3346	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3347	psize = atop(end - start);
3348	mpte = NULL;
3349	m = m_start;
3350	PMAP_LOCK(pmap);
3351	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3352		va = start + ptoa(diff);
3353		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3354		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3355		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3356		    pmap_enter_pde(pmap, va, m, prot))
3357			m = &m[NBPDR / PAGE_SIZE - 1];
3358		else
3359			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3360			    mpte);
3361		m = TAILQ_NEXT(m, listq);
3362	}
3363 	PMAP_UNLOCK(pmap);
3364}
3365
3366/*
3367 * this code makes some *MAJOR* assumptions:
3368 * 1. Current pmap & pmap exists.
3369 * 2. Not wired.
3370 * 3. Read access.
3371 * 4. No page table pages.
3372 * but is *MUCH* faster than pmap_enter...
3373 */
3374
3375void
3376pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3377{
3378
3379	PMAP_LOCK(pmap);
3380	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3381	PMAP_UNLOCK(pmap);
3382}
3383
3384static vm_page_t
3385pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3386    vm_prot_t prot, vm_page_t mpte)
3387{
3388	pt_entry_t *pte;
3389	vm_paddr_t pa;
3390	vm_page_t free;
3391
3392	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3393	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3394	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3395	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3396	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3397
3398	/*
3399	 * In the case that a page table page is not
3400	 * resident, we are creating it here.
3401	 */
3402	if (va < VM_MAXUSER_ADDRESS) {
3403		unsigned ptepindex;
3404		pd_entry_t ptepa;
3405
3406		/*
3407		 * Calculate pagetable page index
3408		 */
3409		ptepindex = va >> PDRSHIFT;
3410		if (mpte && (mpte->pindex == ptepindex)) {
3411			mpte->wire_count++;
3412		} else {
3413			/*
3414			 * Get the page directory entry
3415			 */
3416			ptepa = pmap->pm_pdir[ptepindex];
3417
3418			/*
3419			 * If the page table page is mapped, we just increment
3420			 * the hold count, and activate it.
3421			 */
3422			if (ptepa) {
3423				if (ptepa & PG_PS)
3424					return (NULL);
3425				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3426				mpte->wire_count++;
3427			} else {
3428				mpte = _pmap_allocpte(pmap, ptepindex,
3429				    M_NOWAIT);
3430				if (mpte == NULL)
3431					return (mpte);
3432			}
3433		}
3434	} else {
3435		mpte = NULL;
3436	}
3437
3438	/*
3439	 * This call to vtopte makes the assumption that we are
3440	 * entering the page into the current pmap.  In order to support
3441	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3442	 * But that isn't as quick as vtopte.
3443	 */
3444	pte = vtopte(va);
3445	if (*pte) {
3446		if (mpte != NULL) {
3447			mpte->wire_count--;
3448			mpte = NULL;
3449		}
3450		return (mpte);
3451	}
3452
3453	/*
3454	 * Enter on the PV list if part of our managed memory.
3455	 */
3456	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3457	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3458		if (mpte != NULL) {
3459			free = NULL;
3460			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3461				pmap_invalidate_page(pmap, va);
3462				pmap_free_zero_pages(free);
3463			}
3464
3465			mpte = NULL;
3466		}
3467		return (mpte);
3468	}
3469
3470	/*
3471	 * Increment counters
3472	 */
3473	pmap->pm_stats.resident_count++;
3474
3475	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3476#ifdef PAE
3477	if ((prot & VM_PROT_EXECUTE) == 0)
3478		pa |= pg_nx;
3479#endif
3480
3481	/*
3482	 * Now validate mapping with RO protection
3483	 */
3484	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3485		pte_store(pte, pa | PG_V | PG_U);
3486	else
3487		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3488	return mpte;
3489}
3490
3491/*
3492 * Make a temporary mapping for a physical address.  This is only intended
3493 * to be used for panic dumps.
3494 */
3495void *
3496pmap_kenter_temporary(vm_paddr_t pa, int i)
3497{
3498	vm_offset_t va;
3499
3500	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3501	pmap_kenter(va, pa);
3502	invlpg(va);
3503	return ((void *)crashdumpmap);
3504}
3505
3506/*
3507 * This code maps large physical mmap regions into the
3508 * processor address space.  Note that some shortcuts
3509 * are taken, but the code works.
3510 */
3511void
3512pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3513    vm_pindex_t pindex, vm_size_t size)
3514{
3515	pd_entry_t *pde;
3516	vm_paddr_t pa, ptepa;
3517	vm_page_t p;
3518	int pat_mode;
3519
3520	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3521	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3522	    ("pmap_object_init_pt: non-device object"));
3523	if (pseflag &&
3524	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3525		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3526			return;
3527		p = vm_page_lookup(object, pindex);
3528		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3529		    ("pmap_object_init_pt: invalid page %p", p));
3530		pat_mode = p->md.pat_mode;
3531
3532		/*
3533		 * Abort the mapping if the first page is not physically
3534		 * aligned to a 2/4MB page boundary.
3535		 */
3536		ptepa = VM_PAGE_TO_PHYS(p);
3537		if (ptepa & (NBPDR - 1))
3538			return;
3539
3540		/*
3541		 * Skip the first page.  Abort the mapping if the rest of
3542		 * the pages are not physically contiguous or have differing
3543		 * memory attributes.
3544		 */
3545		p = TAILQ_NEXT(p, listq);
3546		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3547		    pa += PAGE_SIZE) {
3548			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3549			    ("pmap_object_init_pt: invalid page %p", p));
3550			if (pa != VM_PAGE_TO_PHYS(p) ||
3551			    pat_mode != p->md.pat_mode)
3552				return;
3553			p = TAILQ_NEXT(p, listq);
3554		}
3555
3556		/*
3557		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3558		 * "size" is a multiple of 2/4M, adding the PAT setting to
3559		 * "pa" will not affect the termination of this loop.
3560		 */
3561		PMAP_LOCK(pmap);
3562		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3563		    size; pa += NBPDR) {
3564			pde = pmap_pde(pmap, addr);
3565			if (*pde == 0) {
3566				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3567				    PG_U | PG_RW | PG_V);
3568				pmap->pm_stats.resident_count += NBPDR /
3569				    PAGE_SIZE;
3570				pmap_pde_mappings++;
3571			}
3572			/* Else continue on if the PDE is already valid. */
3573			addr += NBPDR;
3574		}
3575		PMAP_UNLOCK(pmap);
3576	}
3577}
3578
3579/*
3580 *	Routine:	pmap_change_wiring
3581 *	Function:	Change the wiring attribute for a map/virtual-address
3582 *			pair.
3583 *	In/out conditions:
3584 *			The mapping must already exist in the pmap.
3585 */
3586void
3587pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3588{
3589	pd_entry_t *pde;
3590	pt_entry_t *pte;
3591	boolean_t are_queues_locked;
3592
3593	are_queues_locked = FALSE;
3594retry:
3595	PMAP_LOCK(pmap);
3596	pde = pmap_pde(pmap, va);
3597	if ((*pde & PG_PS) != 0) {
3598		if (!wired != ((*pde & PG_W) == 0)) {
3599			if (!are_queues_locked) {
3600				are_queues_locked = TRUE;
3601				if (!mtx_trylock(&vm_page_queue_mtx)) {
3602					PMAP_UNLOCK(pmap);
3603					vm_page_lock_queues();
3604					goto retry;
3605				}
3606			}
3607			if (!pmap_demote_pde(pmap, pde, va))
3608				panic("pmap_change_wiring: demotion failed");
3609		} else
3610			goto out;
3611	}
3612	pte = pmap_pte(pmap, va);
3613
3614	if (wired && !pmap_pte_w(pte))
3615		pmap->pm_stats.wired_count++;
3616	else if (!wired && pmap_pte_w(pte))
3617		pmap->pm_stats.wired_count--;
3618
3619	/*
3620	 * Wiring is not a hardware characteristic so there is no need to
3621	 * invalidate TLB.
3622	 */
3623	pmap_pte_set_w(pte, wired);
3624	pmap_pte_release(pte);
3625out:
3626	if (are_queues_locked)
3627		vm_page_unlock_queues();
3628	PMAP_UNLOCK(pmap);
3629}
3630
3631
3632
3633/*
3634 *	Copy the range specified by src_addr/len
3635 *	from the source map to the range dst_addr/len
3636 *	in the destination map.
3637 *
3638 *	This routine is only advisory and need not do anything.
3639 */
3640
3641void
3642pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3643    vm_offset_t src_addr)
3644{
3645	vm_page_t   free;
3646	vm_offset_t addr;
3647	vm_offset_t end_addr = src_addr + len;
3648	vm_offset_t pdnxt;
3649
3650	if (dst_addr != src_addr)
3651		return;
3652
3653	if (!pmap_is_current(src_pmap))
3654		return;
3655
3656	vm_page_lock_queues();
3657	if (dst_pmap < src_pmap) {
3658		PMAP_LOCK(dst_pmap);
3659		PMAP_LOCK(src_pmap);
3660	} else {
3661		PMAP_LOCK(src_pmap);
3662		PMAP_LOCK(dst_pmap);
3663	}
3664	sched_pin();
3665	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3666		pt_entry_t *src_pte, *dst_pte;
3667		vm_page_t dstmpte, srcmpte;
3668		pd_entry_t srcptepaddr;
3669		unsigned ptepindex;
3670
3671		KASSERT(addr < UPT_MIN_ADDRESS,
3672		    ("pmap_copy: invalid to pmap_copy page tables"));
3673
3674		pdnxt = (addr + NBPDR) & ~PDRMASK;
3675		if (pdnxt < addr)
3676			pdnxt = end_addr;
3677		ptepindex = addr >> PDRSHIFT;
3678
3679		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3680		if (srcptepaddr == 0)
3681			continue;
3682
3683		if (srcptepaddr & PG_PS) {
3684			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3685			    ((srcptepaddr & PG_MANAGED) == 0 ||
3686			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3687			    PG_PS_FRAME))) {
3688				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3689				    ~PG_W;
3690				dst_pmap->pm_stats.resident_count +=
3691				    NBPDR / PAGE_SIZE;
3692			}
3693			continue;
3694		}
3695
3696		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3697		KASSERT(srcmpte->wire_count > 0,
3698		    ("pmap_copy: source page table page is unused"));
3699
3700		if (pdnxt > end_addr)
3701			pdnxt = end_addr;
3702
3703		src_pte = vtopte(addr);
3704		while (addr < pdnxt) {
3705			pt_entry_t ptetemp;
3706			ptetemp = *src_pte;
3707			/*
3708			 * we only virtual copy managed pages
3709			 */
3710			if ((ptetemp & PG_MANAGED) != 0) {
3711				dstmpte = pmap_allocpte(dst_pmap, addr,
3712				    M_NOWAIT);
3713				if (dstmpte == NULL)
3714					goto out;
3715				dst_pte = pmap_pte_quick(dst_pmap, addr);
3716				if (*dst_pte == 0 &&
3717				    pmap_try_insert_pv_entry(dst_pmap, addr,
3718				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3719					/*
3720					 * Clear the wired, modified, and
3721					 * accessed (referenced) bits
3722					 * during the copy.
3723					 */
3724					*dst_pte = ptetemp & ~(PG_W | PG_M |
3725					    PG_A);
3726					dst_pmap->pm_stats.resident_count++;
3727	 			} else {
3728					free = NULL;
3729					if (pmap_unwire_pte_hold(dst_pmap,
3730					    dstmpte, &free)) {
3731						pmap_invalidate_page(dst_pmap,
3732						    addr);
3733						pmap_free_zero_pages(free);
3734					}
3735					goto out;
3736				}
3737				if (dstmpte->wire_count >= srcmpte->wire_count)
3738					break;
3739			}
3740			addr += PAGE_SIZE;
3741			src_pte++;
3742		}
3743	}
3744out:
3745	sched_unpin();
3746	vm_page_unlock_queues();
3747	PMAP_UNLOCK(src_pmap);
3748	PMAP_UNLOCK(dst_pmap);
3749}
3750
3751static __inline void
3752pagezero(void *page)
3753{
3754#if defined(I686_CPU)
3755	if (cpu_class == CPUCLASS_686) {
3756#if defined(CPU_ENABLE_SSE)
3757		if (cpu_feature & CPUID_SSE2)
3758			sse2_pagezero(page);
3759		else
3760#endif
3761			i686_pagezero(page);
3762	} else
3763#endif
3764		bzero(page, PAGE_SIZE);
3765}
3766
3767/*
3768 *	pmap_zero_page zeros the specified hardware page by mapping
3769 *	the page into KVM and using bzero to clear its contents.
3770 */
3771void
3772pmap_zero_page(vm_page_t m)
3773{
3774	struct sysmaps *sysmaps;
3775
3776	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3777	mtx_lock(&sysmaps->lock);
3778	if (*sysmaps->CMAP2)
3779		panic("pmap_zero_page: CMAP2 busy");
3780	sched_pin();
3781	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3782	    pmap_cache_bits(m->md.pat_mode, 0);
3783	invlcaddr(sysmaps->CADDR2);
3784	pagezero(sysmaps->CADDR2);
3785	*sysmaps->CMAP2 = 0;
3786	sched_unpin();
3787	mtx_unlock(&sysmaps->lock);
3788}
3789
3790/*
3791 *	pmap_zero_page_area zeros the specified hardware page by mapping
3792 *	the page into KVM and using bzero to clear its contents.
3793 *
3794 *	off and size may not cover an area beyond a single hardware page.
3795 */
3796void
3797pmap_zero_page_area(vm_page_t m, int off, int size)
3798{
3799	struct sysmaps *sysmaps;
3800
3801	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3802	mtx_lock(&sysmaps->lock);
3803	if (*sysmaps->CMAP2)
3804		panic("pmap_zero_page_area: CMAP2 busy");
3805	sched_pin();
3806	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3807	    pmap_cache_bits(m->md.pat_mode, 0);
3808	invlcaddr(sysmaps->CADDR2);
3809	if (off == 0 && size == PAGE_SIZE)
3810		pagezero(sysmaps->CADDR2);
3811	else
3812		bzero((char *)sysmaps->CADDR2 + off, size);
3813	*sysmaps->CMAP2 = 0;
3814	sched_unpin();
3815	mtx_unlock(&sysmaps->lock);
3816}
3817
3818/*
3819 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3820 *	the page into KVM and using bzero to clear its contents.  This
3821 *	is intended to be called from the vm_pagezero process only and
3822 *	outside of Giant.
3823 */
3824void
3825pmap_zero_page_idle(vm_page_t m)
3826{
3827
3828	if (*CMAP3)
3829		panic("pmap_zero_page_idle: CMAP3 busy");
3830	sched_pin();
3831	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3832	    pmap_cache_bits(m->md.pat_mode, 0);
3833	invlcaddr(CADDR3);
3834	pagezero(CADDR3);
3835	*CMAP3 = 0;
3836	sched_unpin();
3837}
3838
3839/*
3840 *	pmap_copy_page copies the specified (machine independent)
3841 *	page by mapping the page into virtual memory and using
3842 *	bcopy to copy the page, one machine dependent page at a
3843 *	time.
3844 */
3845void
3846pmap_copy_page(vm_page_t src, vm_page_t dst)
3847{
3848	struct sysmaps *sysmaps;
3849
3850	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3851	mtx_lock(&sysmaps->lock);
3852	if (*sysmaps->CMAP1)
3853		panic("pmap_copy_page: CMAP1 busy");
3854	if (*sysmaps->CMAP2)
3855		panic("pmap_copy_page: CMAP2 busy");
3856	sched_pin();
3857	invlpg((u_int)sysmaps->CADDR1);
3858	invlpg((u_int)sysmaps->CADDR2);
3859	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
3860	    pmap_cache_bits(src->md.pat_mode, 0);
3861	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
3862	    pmap_cache_bits(dst->md.pat_mode, 0);
3863	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3864	*sysmaps->CMAP1 = 0;
3865	*sysmaps->CMAP2 = 0;
3866	sched_unpin();
3867	mtx_unlock(&sysmaps->lock);
3868}
3869
3870/*
3871 * Returns true if the pmap's pv is one of the first
3872 * 16 pvs linked to from this page.  This count may
3873 * be changed upwards or downwards in the future; it
3874 * is only necessary that true be returned for a small
3875 * subset of pmaps for proper page aging.
3876 */
3877boolean_t
3878pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3879{
3880	struct md_page *pvh;
3881	pv_entry_t pv;
3882	int loops = 0;
3883
3884	if (m->flags & PG_FICTITIOUS)
3885		return FALSE;
3886
3887	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3888	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3889		if (PV_PMAP(pv) == pmap) {
3890			return TRUE;
3891		}
3892		loops++;
3893		if (loops >= 16)
3894			break;
3895	}
3896	if (loops < 16) {
3897		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3898		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3899			if (PV_PMAP(pv) == pmap)
3900				return (TRUE);
3901			loops++;
3902			if (loops >= 16)
3903				break;
3904		}
3905	}
3906	return (FALSE);
3907}
3908
3909/*
3910 *	pmap_page_wired_mappings:
3911 *
3912 *	Return the number of managed mappings to the given physical page
3913 *	that are wired.
3914 */
3915int
3916pmap_page_wired_mappings(vm_page_t m)
3917{
3918	int count;
3919
3920	count = 0;
3921	if ((m->flags & PG_FICTITIOUS) != 0)
3922		return (count);
3923	count = pmap_pvh_wired_mappings(&m->md, count);
3924	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3925}
3926
3927/*
3928 *	pmap_pvh_wired_mappings:
3929 *
3930 *	Return the updated number "count" of managed mappings that are wired.
3931 */
3932static int
3933pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3934{
3935	pmap_t pmap;
3936	pt_entry_t *pte;
3937	pv_entry_t pv;
3938
3939	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3940	sched_pin();
3941	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3942		pmap = PV_PMAP(pv);
3943		PMAP_LOCK(pmap);
3944		pte = pmap_pte_quick(pmap, pv->pv_va);
3945		if ((*pte & PG_W) != 0)
3946			count++;
3947		PMAP_UNLOCK(pmap);
3948	}
3949	sched_unpin();
3950	return (count);
3951}
3952
3953/*
3954 * Returns TRUE if the given page is mapped individually or as part of
3955 * a 4mpage.  Otherwise, returns FALSE.
3956 */
3957boolean_t
3958pmap_page_is_mapped(vm_page_t m)
3959{
3960	struct md_page *pvh;
3961
3962	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3963		return (FALSE);
3964	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3965	if (TAILQ_EMPTY(&m->md.pv_list)) {
3966		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3967		return (!TAILQ_EMPTY(&pvh->pv_list));
3968	} else
3969		return (TRUE);
3970}
3971
3972/*
3973 * Remove all pages from specified address space
3974 * this aids process exit speeds.  Also, this code
3975 * is special cased for current process only, but
3976 * can have the more generic (and slightly slower)
3977 * mode enabled.  This is much faster than pmap_remove
3978 * in the case of running down an entire address space.
3979 */
3980void
3981pmap_remove_pages(pmap_t pmap)
3982{
3983	pt_entry_t *pte, tpte;
3984	vm_page_t free = NULL;
3985	vm_page_t m, mpte, mt;
3986	pv_entry_t pv;
3987	struct md_page *pvh;
3988	struct pv_chunk *pc, *npc;
3989	int field, idx;
3990	int32_t bit;
3991	uint32_t inuse, bitmask;
3992	int allfree;
3993
3994	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3995		printf("warning: pmap_remove_pages called with non-current pmap\n");
3996		return;
3997	}
3998	vm_page_lock_queues();
3999	PMAP_LOCK(pmap);
4000	sched_pin();
4001	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4002		allfree = 1;
4003		for (field = 0; field < _NPCM; field++) {
4004			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4005			while (inuse != 0) {
4006				bit = bsfl(inuse);
4007				bitmask = 1UL << bit;
4008				idx = field * 32 + bit;
4009				pv = &pc->pc_pventry[idx];
4010				inuse &= ~bitmask;
4011
4012				pte = pmap_pde(pmap, pv->pv_va);
4013				tpte = *pte;
4014				if ((tpte & PG_PS) == 0) {
4015					pte = vtopte(pv->pv_va);
4016					tpte = *pte & ~PG_PTE_PAT;
4017				}
4018
4019				if (tpte == 0) {
4020					printf(
4021					    "TPTE at %p  IS ZERO @ VA %08x\n",
4022					    pte, pv->pv_va);
4023					panic("bad pte");
4024				}
4025
4026/*
4027 * We cannot remove wired pages from a process' mapping at this time
4028 */
4029				if (tpte & PG_W) {
4030					allfree = 0;
4031					continue;
4032				}
4033
4034				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4035				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4036				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4037				    m, (uintmax_t)m->phys_addr,
4038				    (uintmax_t)tpte));
4039
4040				KASSERT(m < &vm_page_array[vm_page_array_size],
4041					("pmap_remove_pages: bad tpte %#jx",
4042					(uintmax_t)tpte));
4043
4044				pte_clear(pte);
4045
4046				/*
4047				 * Update the vm_page_t clean/reference bits.
4048				 */
4049				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4050					if ((tpte & PG_PS) != 0) {
4051						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4052							vm_page_dirty(mt);
4053					} else
4054						vm_page_dirty(m);
4055				}
4056
4057				/* Mark free */
4058				PV_STAT(pv_entry_frees++);
4059				PV_STAT(pv_entry_spare++);
4060				pv_entry_count--;
4061				pc->pc_map[field] |= bitmask;
4062				if ((tpte & PG_PS) != 0) {
4063					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4064					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4065					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4066					if (TAILQ_EMPTY(&pvh->pv_list)) {
4067						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4068							if (TAILQ_EMPTY(&mt->md.pv_list))
4069								vm_page_flag_clear(mt, PG_WRITEABLE);
4070					}
4071					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4072					if (mpte != NULL) {
4073						pmap_remove_pt_page(pmap, mpte);
4074						pmap->pm_stats.resident_count--;
4075						KASSERT(mpte->wire_count == NPTEPG,
4076						    ("pmap_remove_pages: pte page wire count error"));
4077						mpte->wire_count = 0;
4078						pmap_add_delayed_free_list(mpte, &free, FALSE);
4079						atomic_subtract_int(&cnt.v_wire_count, 1);
4080					}
4081				} else {
4082					pmap->pm_stats.resident_count--;
4083					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4084					if (TAILQ_EMPTY(&m->md.pv_list)) {
4085						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4086						if (TAILQ_EMPTY(&pvh->pv_list))
4087							vm_page_flag_clear(m, PG_WRITEABLE);
4088					}
4089					pmap_unuse_pt(pmap, pv->pv_va, &free);
4090				}
4091			}
4092		}
4093		if (allfree) {
4094			PV_STAT(pv_entry_spare -= _NPCPV);
4095			PV_STAT(pc_chunk_count--);
4096			PV_STAT(pc_chunk_frees++);
4097			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4098			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4099			pmap_qremove((vm_offset_t)pc, 1);
4100			vm_page_unwire(m, 0);
4101			vm_page_free(m);
4102			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4103		}
4104	}
4105	sched_unpin();
4106	pmap_invalidate_all(pmap);
4107	vm_page_unlock_queues();
4108	PMAP_UNLOCK(pmap);
4109	pmap_free_zero_pages(free);
4110}
4111
4112/*
4113 *	pmap_is_modified:
4114 *
4115 *	Return whether or not the specified physical page was modified
4116 *	in any physical maps.
4117 */
4118boolean_t
4119pmap_is_modified(vm_page_t m)
4120{
4121
4122	if (m->flags & PG_FICTITIOUS)
4123		return (FALSE);
4124	if (pmap_is_modified_pvh(&m->md))
4125		return (TRUE);
4126	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4127}
4128
4129/*
4130 * Returns TRUE if any of the given mappings were used to modify
4131 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4132 * mappings are supported.
4133 */
4134static boolean_t
4135pmap_is_modified_pvh(struct md_page *pvh)
4136{
4137	pv_entry_t pv;
4138	pt_entry_t *pte;
4139	pmap_t pmap;
4140	boolean_t rv;
4141
4142	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4143	rv = FALSE;
4144	sched_pin();
4145	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4146		pmap = PV_PMAP(pv);
4147		PMAP_LOCK(pmap);
4148		pte = pmap_pte_quick(pmap, pv->pv_va);
4149		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4150		PMAP_UNLOCK(pmap);
4151		if (rv)
4152			break;
4153	}
4154	sched_unpin();
4155	return (rv);
4156}
4157
4158/*
4159 *	pmap_is_prefaultable:
4160 *
4161 *	Return whether or not the specified virtual address is elgible
4162 *	for prefault.
4163 */
4164boolean_t
4165pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4166{
4167	pd_entry_t *pde;
4168	pt_entry_t *pte;
4169	boolean_t rv;
4170
4171	rv = FALSE;
4172	PMAP_LOCK(pmap);
4173	pde = pmap_pde(pmap, addr);
4174	if (*pde != 0 && (*pde & PG_PS) == 0) {
4175		pte = vtopte(addr);
4176		rv = *pte == 0;
4177	}
4178	PMAP_UNLOCK(pmap);
4179	return (rv);
4180}
4181
4182/*
4183 * Clear the write and modified bits in each of the given page's mappings.
4184 */
4185void
4186pmap_remove_write(vm_page_t m)
4187{
4188	struct md_page *pvh;
4189	pv_entry_t next_pv, pv;
4190	pmap_t pmap;
4191	pd_entry_t *pde;
4192	pt_entry_t oldpte, *pte;
4193	vm_offset_t va;
4194
4195	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4196	if ((m->flags & PG_FICTITIOUS) != 0 ||
4197	    (m->flags & PG_WRITEABLE) == 0)
4198		return;
4199	sched_pin();
4200	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4201	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4202		va = pv->pv_va;
4203		pmap = PV_PMAP(pv);
4204		PMAP_LOCK(pmap);
4205		pde = pmap_pde(pmap, va);
4206		if ((*pde & PG_RW) != 0)
4207			(void)pmap_demote_pde(pmap, pde, va);
4208		PMAP_UNLOCK(pmap);
4209	}
4210	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4211		pmap = PV_PMAP(pv);
4212		PMAP_LOCK(pmap);
4213		pde = pmap_pde(pmap, pv->pv_va);
4214		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4215		    " a 4mpage in page %p's pv list", m));
4216		pte = pmap_pte_quick(pmap, pv->pv_va);
4217retry:
4218		oldpte = *pte;
4219		if ((oldpte & PG_RW) != 0) {
4220			/*
4221			 * Regardless of whether a pte is 32 or 64 bits
4222			 * in size, PG_RW and PG_M are among the least
4223			 * significant 32 bits.
4224			 */
4225			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4226			    oldpte & ~(PG_RW | PG_M)))
4227				goto retry;
4228			if ((oldpte & PG_M) != 0)
4229				vm_page_dirty(m);
4230			pmap_invalidate_page(pmap, pv->pv_va);
4231		}
4232		PMAP_UNLOCK(pmap);
4233	}
4234	vm_page_flag_clear(m, PG_WRITEABLE);
4235	sched_unpin();
4236}
4237
4238/*
4239 *	pmap_ts_referenced:
4240 *
4241 *	Return a count of reference bits for a page, clearing those bits.
4242 *	It is not necessary for every reference bit to be cleared, but it
4243 *	is necessary that 0 only be returned when there are truly no
4244 *	reference bits set.
4245 *
4246 *	XXX: The exact number of bits to check and clear is a matter that
4247 *	should be tested and standardized at some point in the future for
4248 *	optimal aging of shared pages.
4249 */
4250int
4251pmap_ts_referenced(vm_page_t m)
4252{
4253	struct md_page *pvh;
4254	pv_entry_t pv, pvf, pvn;
4255	pmap_t pmap;
4256	pd_entry_t oldpde, *pde;
4257	pt_entry_t *pte;
4258	vm_offset_t va;
4259	int rtval = 0;
4260
4261	if (m->flags & PG_FICTITIOUS)
4262		return (rtval);
4263	sched_pin();
4264	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4265	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4266	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4267		va = pv->pv_va;
4268		pmap = PV_PMAP(pv);
4269		PMAP_LOCK(pmap);
4270		pde = pmap_pde(pmap, va);
4271		oldpde = *pde;
4272		if ((oldpde & PG_A) != 0) {
4273			if (pmap_demote_pde(pmap, pde, va)) {
4274				if ((oldpde & PG_W) == 0) {
4275					/*
4276					 * Remove the mapping to a single page
4277					 * so that a subsequent access may
4278					 * repromote.  Since the underlying
4279					 * page table page is fully populated,
4280					 * this removal never frees a page
4281					 * table page.
4282					 */
4283					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4284					    PG_PS_FRAME);
4285					pmap_remove_page(pmap, va, NULL);
4286					rtval++;
4287					if (rtval > 4) {
4288						PMAP_UNLOCK(pmap);
4289						return (rtval);
4290					}
4291				}
4292			}
4293		}
4294		PMAP_UNLOCK(pmap);
4295	}
4296	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4297		pvf = pv;
4298		do {
4299			pvn = TAILQ_NEXT(pv, pv_list);
4300			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4301			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4302			pmap = PV_PMAP(pv);
4303			PMAP_LOCK(pmap);
4304			pde = pmap_pde(pmap, pv->pv_va);
4305			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4306			    " found a 4mpage in page %p's pv list", m));
4307			pte = pmap_pte_quick(pmap, pv->pv_va);
4308			if ((*pte & PG_A) != 0) {
4309				atomic_clear_int((u_int *)pte, PG_A);
4310				pmap_invalidate_page(pmap, pv->pv_va);
4311				rtval++;
4312				if (rtval > 4)
4313					pvn = NULL;
4314			}
4315			PMAP_UNLOCK(pmap);
4316		} while ((pv = pvn) != NULL && pv != pvf);
4317	}
4318	sched_unpin();
4319	return (rtval);
4320}
4321
4322/*
4323 *	Clear the modify bits on the specified physical page.
4324 */
4325void
4326pmap_clear_modify(vm_page_t m)
4327{
4328	struct md_page *pvh;
4329	pv_entry_t next_pv, pv;
4330	pmap_t pmap;
4331	pd_entry_t oldpde, *pde;
4332	pt_entry_t oldpte, *pte;
4333	vm_offset_t va;
4334
4335	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4336	if ((m->flags & PG_FICTITIOUS) != 0)
4337		return;
4338	sched_pin();
4339	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4340	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4341		va = pv->pv_va;
4342		pmap = PV_PMAP(pv);
4343		PMAP_LOCK(pmap);
4344		pde = pmap_pde(pmap, va);
4345		oldpde = *pde;
4346		if ((oldpde & PG_RW) != 0) {
4347			if (pmap_demote_pde(pmap, pde, va)) {
4348				if ((oldpde & PG_W) == 0) {
4349					/*
4350					 * Write protect the mapping to a
4351					 * single page so that a subsequent
4352					 * write access may repromote.
4353					 */
4354					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4355					    PG_PS_FRAME);
4356					pte = pmap_pte_quick(pmap, va);
4357					oldpte = *pte;
4358					if ((oldpte & PG_V) != 0) {
4359						/*
4360						 * Regardless of whether a pte is 32 or 64 bits
4361						 * in size, PG_RW and PG_M are among the least
4362						 * significant 32 bits.
4363						 */
4364						while (!atomic_cmpset_int((u_int *)pte,
4365						    oldpte,
4366						    oldpte & ~(PG_M | PG_RW)))
4367							oldpte = *pte;
4368						vm_page_dirty(m);
4369						pmap_invalidate_page(pmap, va);
4370					}
4371				}
4372			}
4373		}
4374		PMAP_UNLOCK(pmap);
4375	}
4376	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4377		pmap = PV_PMAP(pv);
4378		PMAP_LOCK(pmap);
4379		pde = pmap_pde(pmap, pv->pv_va);
4380		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4381		    " a 4mpage in page %p's pv list", m));
4382		pte = pmap_pte_quick(pmap, pv->pv_va);
4383		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4384			/*
4385			 * Regardless of whether a pte is 32 or 64 bits
4386			 * in size, PG_M is among the least significant
4387			 * 32 bits.
4388			 */
4389			atomic_clear_int((u_int *)pte, PG_M);
4390			pmap_invalidate_page(pmap, pv->pv_va);
4391		}
4392		PMAP_UNLOCK(pmap);
4393	}
4394	sched_unpin();
4395}
4396
4397/*
4398 *	pmap_clear_reference:
4399 *
4400 *	Clear the reference bit on the specified physical page.
4401 */
4402void
4403pmap_clear_reference(vm_page_t m)
4404{
4405	struct md_page *pvh;
4406	pv_entry_t next_pv, pv;
4407	pmap_t pmap;
4408	pd_entry_t oldpde, *pde;
4409	pt_entry_t *pte;
4410	vm_offset_t va;
4411
4412	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4413	if ((m->flags & PG_FICTITIOUS) != 0)
4414		return;
4415	sched_pin();
4416	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4417	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4418		va = pv->pv_va;
4419		pmap = PV_PMAP(pv);
4420		PMAP_LOCK(pmap);
4421		pde = pmap_pde(pmap, va);
4422		oldpde = *pde;
4423		if ((oldpde & PG_A) != 0) {
4424			if (pmap_demote_pde(pmap, pde, va)) {
4425				/*
4426				 * Remove the mapping to a single page so
4427				 * that a subsequent access may repromote.
4428				 * Since the underlying page table page is
4429				 * fully populated, this removal never frees
4430				 * a page table page.
4431				 */
4432				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4433				    PG_PS_FRAME);
4434				pmap_remove_page(pmap, va, NULL);
4435			}
4436		}
4437		PMAP_UNLOCK(pmap);
4438	}
4439	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4440		pmap = PV_PMAP(pv);
4441		PMAP_LOCK(pmap);
4442		pde = pmap_pde(pmap, pv->pv_va);
4443		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4444		    " a 4mpage in page %p's pv list", m));
4445		pte = pmap_pte_quick(pmap, pv->pv_va);
4446		if ((*pte & PG_A) != 0) {
4447			/*
4448			 * Regardless of whether a pte is 32 or 64 bits
4449			 * in size, PG_A is among the least significant
4450			 * 32 bits.
4451			 */
4452			atomic_clear_int((u_int *)pte, PG_A);
4453			pmap_invalidate_page(pmap, pv->pv_va);
4454		}
4455		PMAP_UNLOCK(pmap);
4456	}
4457	sched_unpin();
4458}
4459
4460/*
4461 * Miscellaneous support routines follow
4462 */
4463
4464/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4465static __inline void
4466pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4467{
4468	u_int opte, npte;
4469
4470	/*
4471	 * The cache mode bits are all in the low 32-bits of the
4472	 * PTE, so we can just spin on updating the low 32-bits.
4473	 */
4474	do {
4475		opte = *(u_int *)pte;
4476		npte = opte & ~PG_PTE_CACHE;
4477		npte |= cache_bits;
4478	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4479}
4480
4481/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4482static __inline void
4483pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4484{
4485	u_int opde, npde;
4486
4487	/*
4488	 * The cache mode bits are all in the low 32-bits of the
4489	 * PDE, so we can just spin on updating the low 32-bits.
4490	 */
4491	do {
4492		opde = *(u_int *)pde;
4493		npde = opde & ~PG_PDE_CACHE;
4494		npde |= cache_bits;
4495	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4496}
4497
4498/*
4499 * Map a set of physical memory pages into the kernel virtual
4500 * address space. Return a pointer to where it is mapped. This
4501 * routine is intended to be used for mapping device memory,
4502 * NOT real memory.
4503 */
4504void *
4505pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4506{
4507	vm_offset_t va, offset;
4508	vm_size_t tmpsize;
4509
4510	offset = pa & PAGE_MASK;
4511	size = roundup(offset + size, PAGE_SIZE);
4512	pa = pa & PG_FRAME;
4513
4514	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4515		va = KERNBASE + pa;
4516	else
4517		va = kmem_alloc_nofault(kernel_map, size);
4518	if (!va)
4519		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4520
4521	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4522		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4523	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4524	pmap_invalidate_cache_range(va, va + size);
4525	return ((void *)(va + offset));
4526}
4527
4528void *
4529pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4530{
4531
4532	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4533}
4534
4535void *
4536pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4537{
4538
4539	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4540}
4541
4542void
4543pmap_unmapdev(vm_offset_t va, vm_size_t size)
4544{
4545	vm_offset_t base, offset, tmpva;
4546
4547	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4548		return;
4549	base = trunc_page(va);
4550	offset = va & PAGE_MASK;
4551	size = roundup(offset + size, PAGE_SIZE);
4552	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4553		pmap_kremove(tmpva);
4554	pmap_invalidate_range(kernel_pmap, va, tmpva);
4555	kmem_free(kernel_map, base, size);
4556}
4557
4558/*
4559 * Sets the memory attribute for the specified page.
4560 */
4561void
4562pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4563{
4564	struct sysmaps *sysmaps;
4565	vm_offset_t sva, eva;
4566
4567	m->md.pat_mode = ma;
4568	if ((m->flags & PG_FICTITIOUS) != 0)
4569		return;
4570
4571	/*
4572	 * If "m" is a normal page, flush it from the cache.
4573	 * See pmap_invalidate_cache_range().
4574	 *
4575	 * First, try to find an existing mapping of the page by sf
4576	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4577	 * flushes the cache.
4578	 */
4579	if (sf_buf_invalidate_cache(m))
4580		return;
4581
4582	/*
4583	 * If page is not mapped by sf buffer, but CPU does not
4584	 * support self snoop, map the page transient and do
4585	 * invalidation. In the worst case, whole cache is flushed by
4586	 * pmap_invalidate_cache_range().
4587	 */
4588	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4589		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4590		mtx_lock(&sysmaps->lock);
4591		if (*sysmaps->CMAP2)
4592			panic("pmap_page_set_memattr: CMAP2 busy");
4593		sched_pin();
4594		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4595		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4596		invlcaddr(sysmaps->CADDR2);
4597		sva = (vm_offset_t)sysmaps->CADDR2;
4598		eva = sva + PAGE_SIZE;
4599	} else
4600		sva = eva = 0; /* gcc */
4601	pmap_invalidate_cache_range(sva, eva);
4602	if (sva != 0) {
4603		*sysmaps->CMAP2 = 0;
4604		sched_unpin();
4605		mtx_unlock(&sysmaps->lock);
4606	}
4607}
4608
4609/*
4610 * Changes the specified virtual address range's memory type to that given by
4611 * the parameter "mode".  The specified virtual address range must be
4612 * completely contained within either the kernel map.
4613 *
4614 * Returns zero if the change completed successfully, and either EINVAL or
4615 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4616 * of the virtual address range was not mapped, and ENOMEM is returned if
4617 * there was insufficient memory available to complete the change.
4618 */
4619int
4620pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4621{
4622	vm_offset_t base, offset, tmpva;
4623	pd_entry_t *pde;
4624	pt_entry_t *pte;
4625	int cache_bits_pte, cache_bits_pde;
4626	boolean_t changed;
4627
4628	base = trunc_page(va);
4629	offset = va & PAGE_MASK;
4630	size = roundup(offset + size, PAGE_SIZE);
4631
4632	/*
4633	 * Only supported on kernel virtual addresses above the recursive map.
4634	 */
4635	if (base < VM_MIN_KERNEL_ADDRESS)
4636		return (EINVAL);
4637
4638	cache_bits_pde = pmap_cache_bits(mode, 1);
4639	cache_bits_pte = pmap_cache_bits(mode, 0);
4640	changed = FALSE;
4641
4642	/*
4643	 * Pages that aren't mapped aren't supported.  Also break down
4644	 * 2/4MB pages into 4KB pages if required.
4645	 */
4646	PMAP_LOCK(kernel_pmap);
4647	for (tmpva = base; tmpva < base + size; ) {
4648		pde = pmap_pde(kernel_pmap, tmpva);
4649		if (*pde == 0) {
4650			PMAP_UNLOCK(kernel_pmap);
4651			return (EINVAL);
4652		}
4653		if (*pde & PG_PS) {
4654			/*
4655			 * If the current 2/4MB page already has
4656			 * the required memory type, then we need not
4657			 * demote this page.  Just increment tmpva to
4658			 * the next 2/4MB page frame.
4659			 */
4660			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4661				tmpva = trunc_4mpage(tmpva) + NBPDR;
4662				continue;
4663			}
4664
4665			/*
4666			 * If the current offset aligns with a 2/4MB
4667			 * page frame and there is at least 2/4MB left
4668			 * within the range, then we need not break
4669			 * down this page into 4KB pages.
4670			 */
4671			if ((tmpva & PDRMASK) == 0 &&
4672			    tmpva + PDRMASK < base + size) {
4673				tmpva += NBPDR;
4674				continue;
4675			}
4676			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4677				PMAP_UNLOCK(kernel_pmap);
4678				return (ENOMEM);
4679			}
4680		}
4681		pte = vtopte(tmpva);
4682		if (*pte == 0) {
4683			PMAP_UNLOCK(kernel_pmap);
4684			return (EINVAL);
4685		}
4686		tmpva += PAGE_SIZE;
4687	}
4688	PMAP_UNLOCK(kernel_pmap);
4689
4690	/*
4691	 * Ok, all the pages exist, so run through them updating their
4692	 * cache mode if required.
4693	 */
4694	for (tmpva = base; tmpva < base + size; ) {
4695		pde = pmap_pde(kernel_pmap, tmpva);
4696		if (*pde & PG_PS) {
4697			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4698				pmap_pde_attr(pde, cache_bits_pde);
4699				changed = TRUE;
4700			}
4701			tmpva = trunc_4mpage(tmpva) + NBPDR;
4702		} else {
4703			pte = vtopte(tmpva);
4704			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4705				pmap_pte_attr(pte, cache_bits_pte);
4706				changed = TRUE;
4707			}
4708			tmpva += PAGE_SIZE;
4709		}
4710	}
4711
4712	/*
4713	 * Flush CPU caches to make sure any data isn't cached that
4714	 * shouldn't be, etc.
4715	 */
4716	if (changed) {
4717		pmap_invalidate_range(kernel_pmap, base, tmpva);
4718		pmap_invalidate_cache_range(base, tmpva);
4719	}
4720	return (0);
4721}
4722
4723/*
4724 * perform the pmap work for mincore
4725 */
4726int
4727pmap_mincore(pmap_t pmap, vm_offset_t addr)
4728{
4729	pd_entry_t *pdep;
4730	pt_entry_t *ptep, pte;
4731	vm_paddr_t pa;
4732	vm_page_t m;
4733	int val = 0;
4734
4735	PMAP_LOCK(pmap);
4736	pdep = pmap_pde(pmap, addr);
4737	if (*pdep != 0) {
4738		if (*pdep & PG_PS) {
4739			pte = *pdep;
4740			val = MINCORE_SUPER;
4741			/* Compute the physical address of the 4KB page. */
4742			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4743			    PG_FRAME;
4744		} else {
4745			ptep = pmap_pte(pmap, addr);
4746			pte = *ptep;
4747			pmap_pte_release(ptep);
4748			pa = pte & PG_FRAME;
4749		}
4750	} else {
4751		pte = 0;
4752		pa = 0;
4753	}
4754	PMAP_UNLOCK(pmap);
4755
4756	if (pte != 0) {
4757		val |= MINCORE_INCORE;
4758		if ((pte & PG_MANAGED) == 0)
4759			return val;
4760
4761		m = PHYS_TO_VM_PAGE(pa);
4762
4763		/*
4764		 * Modified by us
4765		 */
4766		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4767			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4768		else {
4769			/*
4770			 * Modified by someone else
4771			 */
4772			vm_page_lock_queues();
4773			if (m->dirty || pmap_is_modified(m))
4774				val |= MINCORE_MODIFIED_OTHER;
4775			vm_page_unlock_queues();
4776		}
4777		/*
4778		 * Referenced by us
4779		 */
4780		if (pte & PG_A)
4781			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4782		else {
4783			/*
4784			 * Referenced by someone else
4785			 */
4786			vm_page_lock_queues();
4787			if ((m->flags & PG_REFERENCED) ||
4788			    pmap_ts_referenced(m)) {
4789				val |= MINCORE_REFERENCED_OTHER;
4790				vm_page_flag_set(m, PG_REFERENCED);
4791			}
4792			vm_page_unlock_queues();
4793		}
4794	}
4795	return val;
4796}
4797
4798void
4799pmap_activate(struct thread *td)
4800{
4801	pmap_t	pmap, oldpmap;
4802	u_int32_t  cr3;
4803
4804	critical_enter();
4805	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4806	oldpmap = PCPU_GET(curpmap);
4807#if defined(SMP)
4808	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4809	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4810#else
4811	oldpmap->pm_active &= ~1;
4812	pmap->pm_active |= 1;
4813#endif
4814#ifdef PAE
4815	cr3 = vtophys(pmap->pm_pdpt);
4816#else
4817	cr3 = vtophys(pmap->pm_pdir);
4818#endif
4819	/*
4820	 * pmap_activate is for the current thread on the current cpu
4821	 */
4822	td->td_pcb->pcb_cr3 = cr3;
4823	load_cr3(cr3);
4824	PCPU_SET(curpmap, pmap);
4825	critical_exit();
4826}
4827
4828/*
4829 *	Increase the starting virtual address of the given mapping if a
4830 *	different alignment might result in more superpage mappings.
4831 */
4832void
4833pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4834    vm_offset_t *addr, vm_size_t size)
4835{
4836	vm_offset_t superpage_offset;
4837
4838	if (size < NBPDR)
4839		return;
4840	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4841		offset += ptoa(object->pg_color);
4842	superpage_offset = offset & PDRMASK;
4843	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4844	    (*addr & PDRMASK) == superpage_offset)
4845		return;
4846	if ((*addr & PDRMASK) < superpage_offset)
4847		*addr = (*addr & ~PDRMASK) + superpage_offset;
4848	else
4849		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4850}
4851
4852
4853#if defined(PMAP_DEBUG)
4854pmap_pid_dump(int pid)
4855{
4856	pmap_t pmap;
4857	struct proc *p;
4858	int npte = 0;
4859	int index;
4860
4861	sx_slock(&allproc_lock);
4862	FOREACH_PROC_IN_SYSTEM(p) {
4863		if (p->p_pid != pid)
4864			continue;
4865
4866		if (p->p_vmspace) {
4867			int i,j;
4868			index = 0;
4869			pmap = vmspace_pmap(p->p_vmspace);
4870			for (i = 0; i < NPDEPTD; i++) {
4871				pd_entry_t *pde;
4872				pt_entry_t *pte;
4873				vm_offset_t base = i << PDRSHIFT;
4874
4875				pde = &pmap->pm_pdir[i];
4876				if (pde && pmap_pde_v(pde)) {
4877					for (j = 0; j < NPTEPG; j++) {
4878						vm_offset_t va = base + (j << PAGE_SHIFT);
4879						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4880							if (index) {
4881								index = 0;
4882								printf("\n");
4883							}
4884							sx_sunlock(&allproc_lock);
4885							return npte;
4886						}
4887						pte = pmap_pte(pmap, va);
4888						if (pte && pmap_pte_v(pte)) {
4889							pt_entry_t pa;
4890							vm_page_t m;
4891							pa = *pte;
4892							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4893							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4894								va, pa, m->hold_count, m->wire_count, m->flags);
4895							npte++;
4896							index++;
4897							if (index >= 2) {
4898								index = 0;
4899								printf("\n");
4900							} else {
4901								printf(" ");
4902							}
4903						}
4904					}
4905				}
4906			}
4907		}
4908	}
4909	sx_sunlock(&allproc_lock);
4910	return npte;
4911}
4912#endif
4913
4914#if defined(DEBUG)
4915
4916static void	pads(pmap_t pm);
4917void		pmap_pvdump(vm_offset_t pa);
4918
4919/* print address space of pmap*/
4920static void
4921pads(pmap_t pm)
4922{
4923	int i, j;
4924	vm_paddr_t va;
4925	pt_entry_t *ptep;
4926
4927	if (pm == kernel_pmap)
4928		return;
4929	for (i = 0; i < NPDEPTD; i++)
4930		if (pm->pm_pdir[i])
4931			for (j = 0; j < NPTEPG; j++) {
4932				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4933				if (pm == kernel_pmap && va < KERNBASE)
4934					continue;
4935				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4936					continue;
4937				ptep = pmap_pte(pm, va);
4938				if (pmap_pte_v(ptep))
4939					printf("%x:%x ", va, *ptep);
4940			};
4941
4942}
4943
4944void
4945pmap_pvdump(vm_paddr_t pa)
4946{
4947	pv_entry_t pv;
4948	pmap_t pmap;
4949	vm_page_t m;
4950
4951	printf("pa %x", pa);
4952	m = PHYS_TO_VM_PAGE(pa);
4953	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4954		pmap = PV_PMAP(pv);
4955		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4956		pads(pmap);
4957	}
4958	printf(" ");
4959}
4960#endif
4961