pmap.c revision 19621
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.130 1996/11/07 14:44:01 joerg Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_cpu.h"
72
73#define PMAP_LOCK 1
74#define PMAP_PVLIST 1
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/proc.h>
79#include <sys/malloc.h>
80#include <sys/msgbuf.h>
81#include <sys/queue.h>
82#include <sys/vmmeter.h>
83#include <sys/mman.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_prot.h>
88#include <vm/lock.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_page.h>
91#include <vm/vm_map.h>
92#include <vm/vm_object.h>
93#include <vm/vm_extern.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pager.h>
96
97#include <machine/pcb.h>
98#include <machine/cputypes.h>
99#include <machine/md_var.h>
100#include <machine/specialreg.h>
101
102#define PMAP_KEEP_PDIRS
103
104#if defined(DIAGNOSTIC)
105#define PMAP_DIAGNOSTIC
106#endif
107
108#if !defined(PMAP_DIAGNOSTIC)
109#define PMAP_INLINE __inline
110#else
111#define PMAP_INLINE
112#endif
113
114#define PTPHINT
115
116static void	init_pv_entries __P((int));
117
118/*
119 * Get PDEs and PTEs for user/kernel address space
120 */
121#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
122#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
123
124#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
125#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
126#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
127#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
128#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
129
130#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
131#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
132
133/*
134 * Given a map and a machine independent protection code,
135 * convert to a vax protection code.
136 */
137#define pte_prot(m, p)	(protection_codes[p])
138static int protection_codes[8];
139
140#define	pa_index(pa)		atop((pa) - vm_first_phys)
141#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
142
143static struct pmap kernel_pmap_store;
144pmap_t kernel_pmap;
145
146vm_offset_t avail_start;	/* PA of first available physical page */
147vm_offset_t avail_end;		/* PA of last available physical page */
148vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
149vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
150static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
151static vm_offset_t vm_first_phys;
152static int pgeflag;		/* PG_G or-in */
153
154static int nkpt;
155static vm_page_t nkpg;
156vm_offset_t kernel_vm_end;
157
158extern vm_offset_t clean_sva, clean_eva;
159extern int cpu_class;
160
161#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
162
163/*
164 * Data for the pv entry allocation mechanism
165 */
166static int pv_freelistcnt;
167TAILQ_HEAD (,pv_entry) pv_freelist = {0};
168static vm_offset_t pvva;
169static int npvvapg;
170
171/*
172 * All those kernel PT submaps that BSD is so fond of
173 */
174pt_entry_t *CMAP1 = 0;
175static pt_entry_t *CMAP2, *ptmmap;
176static pv_table_t *pv_table;
177caddr_t CADDR1 = 0, ptvmmap = 0;
178static caddr_t CADDR2;
179static pt_entry_t *msgbufmap;
180struct msgbuf *msgbufp=0;
181
182pt_entry_t *PMAP1 = 0;
183unsigned *PADDR1 = 0;
184
185static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
186static unsigned * get_ptbase __P((pmap_t pmap));
187static pv_entry_t get_pv_entry __P((void));
188static void	i386_protection_init __P((void));
189static void	pmap_alloc_pv_entry __P((void));
190static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
191
192static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
193static void	pmap_remove_all __P((vm_offset_t pa));
194static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
195				      vm_offset_t pa, vm_page_t mpte));
196static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
197					vm_offset_t sva));
198static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
199static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
200					vm_offset_t va));
201static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
202static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
203		vm_page_t mpte, vm_offset_t pa));
204
205static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
206
207static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
208static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
209static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
210static vm_page_t pmap_page_alloc __P((vm_object_t object, vm_pindex_t pindex));
211static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
212static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
213
214#define PDSTACKMAX 6
215static vm_offset_t pdstack[PDSTACKMAX];
216static int pdstackptr;
217
218/*
219 *	Routine:	pmap_pte
220 *	Function:
221 *		Extract the page table entry associated
222 *		with the given map/virtual_address pair.
223 */
224
225PMAP_INLINE unsigned *
226pmap_pte(pmap, va)
227	register pmap_t pmap;
228	vm_offset_t va;
229{
230	if (pmap && *pmap_pde(pmap, va)) {
231		return get_ptbase(pmap) + i386_btop(va);
232	}
233	return (0);
234}
235
236/*
237 *	Bootstrap the system enough to run with virtual memory.
238 *
239 *	On the i386 this is called after mapping has already been enabled
240 *	and just syncs the pmap module with what has already been done.
241 *	[We can't call it easily with mapping off since the kernel is not
242 *	mapped with PA == VA, hence we would have to relocate every address
243 *	from the linked base (virtual) address "KERNBASE" to the actual
244 *	(physical) address starting relative to 0]
245 */
246void
247pmap_bootstrap(firstaddr, loadaddr)
248	vm_offset_t firstaddr;
249	vm_offset_t loadaddr;
250{
251	vm_offset_t va;
252	pt_entry_t *pte;
253
254	avail_start = firstaddr;
255
256	/*
257	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
258	 * large. It should instead be correctly calculated in locore.s and
259	 * not based on 'first' (which is a physical address, not a virtual
260	 * address, for the start of unused physical memory). The kernel
261	 * page tables are NOT double mapped and thus should not be included
262	 * in this calculation.
263	 */
264	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
265	virtual_end = VM_MAX_KERNEL_ADDRESS;
266
267	/*
268	 * Initialize protection array.
269	 */
270	i386_protection_init();
271
272	/*
273	 * The kernel's pmap is statically allocated so we don't have to use
274	 * pmap_create, which is unlikely to work correctly at this part of
275	 * the boot sequence (XXX and which no longer exists).
276	 */
277	kernel_pmap = &kernel_pmap_store;
278
279	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
280
281	kernel_pmap->pm_count = 1;
282#if PMAP_PVLIST
283	TAILQ_INIT(&kernel_pmap->pm_pvlist);
284#endif
285	nkpt = NKPT;
286
287	/*
288	 * Reserve some special page table entries/VA space for temporary
289	 * mapping of pages.
290	 */
291#define	SYSMAP(c, p, v, n)	\
292	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
293
294	va = virtual_avail;
295	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
296
297	/*
298	 * CMAP1/CMAP2 are used for zeroing and copying pages.
299	 */
300	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
301	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
302
303	/*
304	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
305	 * XXX ptmmap is not used.
306	 */
307	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
308
309	/*
310	 * msgbufp is used to map the system message buffer.
311	 * XXX msgbufmap is not used.
312	 */
313	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
314	       atop(round_page(sizeof(struct msgbuf))))
315
316	/*
317	 * ptemap is used for pmap_pte_quick
318	 */
319	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
320
321	virtual_avail = va;
322
323	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
324	invltlb();
325	if (cpu_feature & CPUID_PGE)
326		pgeflag = PG_G;
327	else
328		pgeflag = 0;
329
330}
331
332/*
333 *	Initialize the pmap module.
334 *	Called by vm_init, to initialize any structures that the pmap
335 *	system needs to map virtual memory.
336 *	pmap_init has been enhanced to support in a fairly consistant
337 *	way, discontiguous physical memory.
338 */
339void
340pmap_init(phys_start, phys_end)
341	vm_offset_t phys_start, phys_end;
342{
343	vm_offset_t addr;
344	vm_size_t s;
345	int i, npg;
346
347	/*
348	 * calculate the number of pv_entries needed
349	 */
350	vm_first_phys = phys_avail[0];
351	for (i = 0; phys_avail[i + 1]; i += 2);
352	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
353
354	/*
355	 * Allocate memory for random pmap data structures.  Includes the
356	 * pv_head_table.
357	 */
358	s = (vm_size_t) (sizeof(pv_table_t) * npg);
359	s = round_page(s);
360
361	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
362	pv_table = (pv_table_t *) addr;
363	for(i = 0; i < npg; i++) {
364		vm_offset_t pa;
365		TAILQ_INIT(&pv_table[i].pv_list);
366		pv_table[i].pv_list_count = 0;
367		pa = vm_first_phys + i * PAGE_SIZE;
368		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
369	}
370	TAILQ_INIT(&pv_freelist);
371
372	/*
373	 * init the pv free list
374	 */
375	init_pv_entries(npg);
376	/*
377	 * Now it is safe to enable pv_table recording.
378	 */
379	pmap_initialized = TRUE;
380}
381
382/*
383 *	Used to map a range of physical addresses into kernel
384 *	virtual address space.
385 *
386 *	For now, VM is already on, we only need to map the
387 *	specified memory.
388 */
389vm_offset_t
390pmap_map(virt, start, end, prot)
391	vm_offset_t virt;
392	vm_offset_t start;
393	vm_offset_t end;
394	int prot;
395{
396	while (start < end) {
397		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
398		virt += PAGE_SIZE;
399		start += PAGE_SIZE;
400	}
401	return (virt);
402}
403
404
405/***************************************************
406 * Low level helper routines.....
407 ***************************************************/
408
409#if defined(PMAP_DIAGNOSTIC)
410
411/*
412 * This code checks for non-writeable/modified pages.
413 * This should be an invalid condition.
414 */
415static int
416pmap_nw_modified(pt_entry_t ptea) {
417	int pte;
418
419	pte = (int) ptea;
420
421	if ((pte & (PG_M|PG_RW)) == PG_M)
422		return 1;
423	else
424		return 0;
425}
426#endif
427
428
429/*
430 * this routine defines the region(s) of memory that should
431 * not be tested for the modified bit.
432 */
433static PMAP_INLINE int
434pmap_track_modified( vm_offset_t va) {
435	if ((va < clean_sva) || (va >= clean_eva))
436		return 1;
437	else
438		return 0;
439}
440
441static PMAP_INLINE void
442invltlb_1pg( vm_offset_t va) {
443#if defined(I386_CPU)
444	if (cpu_class == CPUCLASS_386) {
445		invltlb();
446	} else
447#endif
448	{
449		invlpg(va);
450	}
451}
452
453static PMAP_INLINE void
454invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
455#if defined(I386_CPU)
456	if (cpu_class == CPUCLASS_386) {
457		invltlb();
458	} else
459#endif
460	{
461		invlpg(va1);
462		invlpg(va2);
463	}
464}
465
466static unsigned *
467get_ptbase(pmap)
468	pmap_t pmap;
469{
470	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
471
472	/* are we current address space or kernel? */
473	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
474		return (unsigned *) PTmap;
475	}
476	/* otherwise, we are alternate address space */
477	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
478		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
479		invltlb();
480	}
481	return (unsigned *) APTmap;
482}
483
484/*
485 * Super fast pmap_pte routine best used when scanning
486 * the pv lists.  This eliminates many coarse-grained
487 * invltlb calls.  Note that many of the pv list
488 * scans are across different pmaps.  It is very wasteful
489 * to do an entire invltlb for checking a single mapping.
490 */
491
492static unsigned *
493pmap_pte_quick(pmap, va)
494	register pmap_t pmap;
495	vm_offset_t va;
496{
497	unsigned pde, newpf;
498	if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
499		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
500		unsigned index = i386_btop(va);
501		/* are we current address space or kernel? */
502		if ((pmap == kernel_pmap) ||
503			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
504			return (unsigned *) PTmap + index;
505		}
506		newpf = pde & PG_FRAME;
507		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
508			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
509			invltlb_1pg((vm_offset_t) PADDR1);
510		}
511		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
512	}
513	return (0);
514}
515
516/*
517 *	Routine:	pmap_extract
518 *	Function:
519 *		Extract the physical page address associated
520 *		with the given map/virtual_address pair.
521 */
522vm_offset_t
523pmap_extract(pmap, va)
524	register pmap_t pmap;
525	vm_offset_t va;
526{
527	vm_offset_t rtval;
528	if (pmap && *pmap_pde(pmap, va)) {
529		unsigned *pte;
530		pte = get_ptbase(pmap) + i386_btop(va);
531		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
532		return rtval;
533	}
534	return 0;
535
536}
537
538/*
539 * determine if a page is managed (memory vs. device)
540 */
541static PMAP_INLINE int
542pmap_is_managed(pa)
543	vm_offset_t pa;
544{
545	int i;
546
547	if (!pmap_initialized)
548		return 0;
549
550	for (i = 0; phys_avail[i + 1]; i += 2) {
551		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
552			return 1;
553	}
554	return 0;
555}
556
557
558/***************************************************
559 * Low level mapping routines.....
560 ***************************************************/
561
562/*
563 * Add a list of wired pages to the kva
564 * this routine is only used for temporary
565 * kernel mappings that do not need to have
566 * page modification or references recorded.
567 * Note that old mappings are simply written
568 * over.  The page *must* be wired.
569 */
570void
571pmap_qenter(va, m, count)
572	vm_offset_t va;
573	vm_page_t *m;
574	int count;
575{
576	int i;
577	register unsigned *pte;
578
579	for (i = 0; i < count; i++) {
580		vm_offset_t tva = va + i * PAGE_SIZE;
581		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | pgeflag;
582		unsigned opte;
583		pte = (unsigned *)vtopte(tva);
584		opte = *pte;
585		*pte = npte;
586		if (opte)
587			invltlb_1pg(tva);
588	}
589}
590
591/*
592 * this routine jerks page mappings from the
593 * kernel -- it is meant only for temporary mappings.
594 */
595void
596pmap_qremove(va, count)
597	vm_offset_t va;
598	int count;
599{
600	int i;
601	register unsigned *pte;
602
603	for (i = 0; i < count; i++) {
604		pte = (unsigned *)vtopte(va);
605		*pte = 0;
606		invltlb_1pg(va);
607		va += PAGE_SIZE;
608	}
609}
610
611/*
612 * add a wired page to the kva
613 * note that in order for the mapping to take effect -- you
614 * should do a invltlb after doing the pmap_kenter...
615 */
616PMAP_INLINE void
617pmap_kenter(va, pa)
618	vm_offset_t va;
619	register vm_offset_t pa;
620{
621	register unsigned *pte;
622	unsigned npte, opte;
623
624	npte = pa | PG_RW | PG_V | pgeflag;
625	pte = (unsigned *)vtopte(va);
626	opte = *pte;
627	*pte = npte;
628	if (opte)
629		invltlb_1pg(va);
630}
631
632/*
633 * remove a page from the kernel pagetables
634 */
635PMAP_INLINE void
636pmap_kremove(va)
637	vm_offset_t va;
638{
639	register unsigned *pte;
640
641	pte = (unsigned *)vtopte(va);
642	*pte = 0;
643	invltlb_1pg(va);
644}
645
646static vm_page_t
647pmap_page_alloc(object, pindex)
648	vm_object_t object;
649	vm_pindex_t pindex;
650{
651	vm_page_t m;
652	m = vm_page_alloc(object, pindex, VM_ALLOC_ZERO);
653	if (m == NULL) {
654		VM_WAIT;
655	}
656	return m;
657}
658
659static vm_page_t
660pmap_page_lookup(object, pindex)
661	vm_object_t object;
662	vm_pindex_t pindex;
663{
664	vm_page_t m;
665retry:
666	m = vm_page_lookup(object, pindex);
667	if (m) {
668		if (m->flags & PG_BUSY) {
669			m->flags |= PG_WANTED;
670			tsleep(m, PVM, "pplookp", 0);
671			goto retry;
672		}
673	}
674
675	return m;
676}
677
678/*
679 * Create the UPAGES for a new process.
680 * This routine directly affects the fork perf for a process.
681 */
682void
683pmap_new_proc(p)
684	struct proc *p;
685{
686	int i;
687	vm_object_t upobj;
688	pmap_t pmap;
689	vm_page_t m;
690	struct user *up;
691	unsigned *ptep, *ptek;
692
693	pmap = &p->p_vmspace->vm_pmap;
694
695	/*
696	 * allocate object for the upages
697	 */
698	upobj = vm_object_allocate( OBJT_DEFAULT,
699		UPAGES);
700	p->p_vmspace->vm_upages_obj = upobj;
701
702	/* get a kernel virtual address for the UPAGES for this proc */
703	up = (struct user *) kmem_alloc_pageable(u_map, UPAGES * PAGE_SIZE);
704	if (up == NULL)
705		panic("vm_fork: u_map allocation failed");
706
707	/*
708	 * Allocate the ptp and incr the hold count appropriately
709	 */
710	m = pmap_allocpte(pmap, (vm_offset_t) kstack);
711	m->hold_count += (UPAGES - 1);
712
713	ptep = (unsigned *) pmap_pte(pmap, (vm_offset_t) kstack);
714	ptek = (unsigned *) vtopte((vm_offset_t) up);
715
716	for(i=0;i<UPAGES;i++) {
717		/*
718		 * Get a kernel stack page
719		 */
720		while ((m = vm_page_alloc(upobj,
721			i, VM_ALLOC_NORMAL)) == NULL) {
722			VM_WAIT;
723		}
724
725		/*
726		 * Wire the page
727		 */
728		m->wire_count++;
729		++cnt.v_wire_count;
730
731		/*
732		 * Enter the page into both the kernel and the process
733		 * address space.
734		 */
735		*(ptep + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V;
736		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V;
737
738		m->flags &= ~(PG_ZERO|PG_BUSY);
739		m->flags |= PG_MAPPED|PG_WRITEABLE;
740		m->valid = VM_PAGE_BITS_ALL;
741	}
742
743	pmap->pm_stats.resident_count += UPAGES;
744	p->p_addr = up;
745}
746
747/*
748 * Dispose the UPAGES for a process that has exited.
749 * This routine directly impacts the exit perf of a process.
750 */
751void
752pmap_dispose_proc(p)
753	struct proc *p;
754{
755	int i;
756	vm_object_t upobj;
757	pmap_t pmap;
758	vm_page_t m;
759	unsigned *ptep, *ptek;
760
761	pmap = &p->p_vmspace->vm_pmap;
762	ptep = (unsigned *) pmap_pte(pmap, (vm_offset_t) kstack);
763	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
764
765	upobj = p->p_vmspace->vm_upages_obj;
766
767	for(i=0;i<UPAGES;i++) {
768		if ((m = vm_page_lookup(upobj, i)) == NULL)
769			panic("pmap_dispose_proc: upage already missing???");
770		*(ptep + i) = 0;
771		*(ptek + i) = 0;
772		pmap_unuse_pt(pmap, (vm_offset_t) kstack + i * PAGE_SIZE, NULL);
773		vm_page_unwire(m);
774		vm_page_free(m);
775	}
776	pmap->pm_stats.resident_count -= UPAGES;
777
778	kmem_free(u_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
779}
780
781/*
782 * Allow the UPAGES for a process to be prejudicially paged out.
783 */
784void
785pmap_swapout_proc(p)
786	struct proc *p;
787{
788	int i;
789	vm_object_t upobj;
790	pmap_t pmap;
791	vm_page_t m;
792	unsigned *pte;
793
794	pmap = &p->p_vmspace->vm_pmap;
795	pte = (unsigned *) pmap_pte(pmap, (vm_offset_t) kstack);
796
797	upobj = p->p_vmspace->vm_upages_obj;
798	/*
799	 * let the upages be paged
800	 */
801	for(i=0;i<UPAGES;i++) {
802		if ((m = vm_page_lookup(upobj, i)) == NULL)
803			panic("pmap_pageout_proc: upage already missing???");
804		m->dirty = VM_PAGE_BITS_ALL;
805		*(pte + i) = 0;
806		pmap_unuse_pt(pmap, (vm_offset_t) kstack + i * PAGE_SIZE, NULL);
807
808		vm_page_unwire(m);
809		vm_page_deactivate(m);
810		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
811	}
812	pmap->pm_stats.resident_count -= UPAGES;
813}
814
815/*
816 * Bring the UPAGES for a specified process back in.
817 */
818void
819pmap_swapin_proc(p)
820	struct proc *p;
821{
822	int i;
823	vm_object_t upobj;
824	pmap_t pmap;
825	vm_page_t m;
826	unsigned *pte;
827
828	pmap = &p->p_vmspace->vm_pmap;
829	/*
830	 * Allocate the ptp and incr the hold count appropriately
831	 */
832	m = pmap_allocpte(pmap, (vm_offset_t) kstack);
833	m->hold_count += (UPAGES - 1);
834	pte = (unsigned *) pmap_pte(pmap, (vm_offset_t) kstack);
835
836	upobj = p->p_vmspace->vm_upages_obj;
837	for(i=0;i<UPAGES;i++) {
838		int s;
839		s = splvm();
840retry:
841		if ((m = vm_page_lookup(upobj, i)) == NULL) {
842			if ((m = vm_page_alloc(upobj, i, VM_ALLOC_NORMAL)) == NULL) {
843				VM_WAIT;
844				goto retry;
845			}
846		} else {
847			if ((m->flags & PG_BUSY) || m->busy) {
848				m->flags |= PG_WANTED;
849				tsleep(m, PVM, "swinuw",0);
850				goto retry;
851			}
852			m->flags |= PG_BUSY;
853		}
854		vm_page_wire(m);
855		splx(s);
856
857		*(pte+i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V;
858		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
859			VM_PAGE_TO_PHYS(m));
860
861		if (m->valid != VM_PAGE_BITS_ALL) {
862			int rv;
863			rv = vm_pager_get_pages(upobj, &m, 1, 0);
864			if (rv != VM_PAGER_OK)
865				panic("faultin: cannot get upages for proc: %d\n", p->p_pid);
866			m->valid = VM_PAGE_BITS_ALL;
867		}
868		PAGE_WAKEUP(m);
869		m->flags |= PG_MAPPED|PG_WRITEABLE;
870	}
871	pmap->pm_stats.resident_count += UPAGES;
872}
873
874/***************************************************
875 * Page table page management routines.....
876 ***************************************************/
877
878/*
879 * This routine unholds page table pages, and if the hold count
880 * drops to zero, then it decrements the wire count.
881 */
882static int
883_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
884	int s;
885
886	if (m->flags & PG_BUSY) {
887		s = splvm();
888		while (m->flags & PG_BUSY) {
889			m->flags |= PG_WANTED;
890			tsleep(m, PVM, "pmuwpt", 0);
891		}
892		splx(s);
893	}
894
895	if (m->hold_count == 0) {
896		vm_offset_t pteva;
897		/*
898		 * unmap the page table page
899		 */
900		pmap->pm_pdir[m->pindex] = 0;
901		--pmap->pm_stats.resident_count;
902		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
903			(((unsigned) PTDpde) & PG_FRAME)) {
904			/*
905			 * Do a invltlb to make the invalidated mapping
906			 * take effect immediately.
907			 */
908			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
909			invltlb_1pg(pteva);
910		}
911
912#if defined(PTPHINT)
913		if (pmap->pm_ptphint == m)
914			pmap->pm_ptphint = NULL;
915#endif
916
917		/*
918		 * If the page is finally unwired, simply free it.
919		 */
920		--m->wire_count;
921		if (m->wire_count == 0) {
922
923			if (m->flags & PG_WANTED) {
924				m->flags &= ~PG_WANTED;
925				wakeup(m);
926			}
927
928			vm_page_free_zero(m);
929			--cnt.v_wire_count;
930		}
931		return 1;
932	}
933	return 0;
934}
935
936__inline static int
937pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
938	vm_page_unhold(m);
939	if (m->hold_count == 0)
940		return _pmap_unwire_pte_hold(pmap, m);
941	else
942		return 0;
943}
944
945/*
946 * After removing a page table entry, this routine is used to
947 * conditionally free the page, and manage the hold/wire counts.
948 */
949static int
950pmap_unuse_pt(pmap, va, mpte)
951	pmap_t pmap;
952	vm_offset_t va;
953	vm_page_t mpte;
954{
955	unsigned ptepindex;
956	if (va >= UPT_MIN_ADDRESS)
957		return 0;
958
959	if (mpte == NULL) {
960		ptepindex = (va >> PDRSHIFT);
961#if defined(PTPHINT)
962		if (pmap->pm_ptphint &&
963			(pmap->pm_ptphint->pindex == ptepindex)) {
964			mpte = pmap->pm_ptphint;
965		} else {
966			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
967			pmap->pm_ptphint = mpte;
968		}
969#else
970		mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
971#endif
972	}
973
974	return pmap_unwire_pte_hold(pmap, mpte);
975}
976
977/*
978 * Initialize a preallocated and zeroed pmap structure,
979 * such as one in a vmspace structure.
980 */
981void
982pmap_pinit(pmap)
983	register struct pmap *pmap;
984{
985	vm_page_t ptdpg;
986	/*
987	 * No need to allocate page table space yet but we do need a valid
988	 * page directory table.
989	 */
990
991	if (pdstackptr > 0) {
992		--pdstackptr;
993		pmap->pm_pdir = (pd_entry_t *)pdstack[pdstackptr];
994	} else {
995		pmap->pm_pdir =
996			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
997	}
998
999	/*
1000	 * allocate object for the ptes
1001	 */
1002	pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1003
1004	/*
1005	 * allocate the page directory page
1006	 */
1007retry:
1008	ptdpg = pmap_page_alloc( pmap->pm_pteobj, PTDPTDI);
1009	if (ptdpg == NULL)
1010		goto retry;
1011
1012	ptdpg->wire_count = 1;
1013	++cnt.v_wire_count;
1014
1015	ptdpg->flags &= ~(PG_MAPPED|PG_BUSY);	/* not mapped normally */
1016	ptdpg->valid = VM_PAGE_BITS_ALL;
1017
1018	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1019	if ((ptdpg->flags & PG_ZERO) == 0)
1020		bzero(pmap->pm_pdir, PAGE_SIZE);
1021
1022	/* wire in kernel global address entries */
1023	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1024
1025	/* install self-referential address mapping entry */
1026	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1027		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
1028
1029	pmap->pm_flags = 0;
1030	pmap->pm_count = 1;
1031	pmap->pm_ptphint = NULL;
1032#if PMAP_PVLIST
1033	TAILQ_INIT(&pmap->pm_pvlist);
1034#endif
1035}
1036
1037static int
1038pmap_release_free_page(pmap, p)
1039	struct pmap *pmap;
1040	vm_page_t p;
1041{
1042	int s;
1043	unsigned *pde = (unsigned *) pmap->pm_pdir;
1044	/*
1045	 * This code optimizes the case of freeing non-busy
1046	 * page-table pages.  Those pages are zero now, and
1047	 * might as well be placed directly into the zero queue.
1048	 */
1049	s = splvm();
1050	if (p->flags & PG_BUSY) {
1051		p->flags |= PG_WANTED;
1052		tsleep(p, PVM, "pmaprl", 0);
1053		splx(s);
1054		return 0;
1055	}
1056
1057	if (p->flags & PG_WANTED) {
1058		p->flags &= ~PG_WANTED;
1059		wakeup(p);
1060	}
1061
1062	/*
1063	 * Remove the page table page from the processes address space.
1064	 */
1065	pde[p->pindex] = 0;
1066	--pmap->pm_stats.resident_count;
1067
1068	if (p->hold_count)  {
1069		panic("pmap_release: freeing held page table page");
1070	}
1071	/*
1072	 * Page directory pages need to have the kernel
1073	 * stuff cleared, so they can go into the zero queue also.
1074	 */
1075	if (p->pindex == PTDPTDI) {
1076		bzero(pde + KPTDI, nkpt * PTESIZE);
1077		pde[APTDPTDI] = 0;
1078		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1079	}
1080
1081#if defined(PTPHINT)
1082	if (pmap->pm_ptphint &&
1083		(pmap->pm_ptphint->pindex == p->pindex))
1084		pmap->pm_ptphint = NULL;
1085#endif
1086
1087	vm_page_free_zero(p);
1088	splx(s);
1089	return 1;
1090}
1091
1092/*
1093 * this routine is called if the page table page is not
1094 * mapped correctly.
1095 */
1096static vm_page_t
1097_pmap_allocpte(pmap, ptepindex)
1098	pmap_t	pmap;
1099	unsigned ptepindex;
1100{
1101	vm_offset_t pteva, ptepa;
1102	vm_page_t m;
1103	int needszero = 0;
1104
1105	/*
1106	 * Find or fabricate a new pagetable page
1107	 */
1108retry:
1109	m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
1110	if (m == NULL) {
1111		m = pmap_page_alloc(pmap->pm_pteobj, ptepindex);
1112		if (m == NULL)
1113			goto retry;
1114		if ((m->flags & PG_ZERO) == 0)
1115			needszero = 1;
1116		m->flags &= ~(PG_ZERO|PG_BUSY);
1117		m->valid = VM_PAGE_BITS_ALL;
1118	} else {
1119		if ((m->flags & PG_BUSY) || m->busy) {
1120			m->flags |= PG_WANTED;
1121			tsleep(m, PVM, "ptewai", 0);
1122			goto retry;
1123		}
1124	}
1125
1126	if (m->queue != PQ_NONE) {
1127		int s = splvm();
1128		vm_page_unqueue(m);
1129		splx(s);
1130	}
1131
1132	if (m->wire_count == 0)
1133		++cnt.v_wire_count;
1134	++m->wire_count;
1135
1136	/*
1137	 * Increment the hold count for the page table page
1138	 * (denoting a new mapping.)
1139	 */
1140	++m->hold_count;
1141
1142	/*
1143	 * Map the pagetable page into the process address space, if
1144	 * it isn't already there.
1145	 */
1146
1147	pmap->pm_stats.resident_count++;
1148
1149	ptepa = VM_PAGE_TO_PHYS(m);
1150	pmap->pm_pdir[ptepindex] = (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V);
1151
1152#if defined(PTPHINT)
1153	/*
1154	 * Set the page table hint
1155	 */
1156	pmap->pm_ptphint = m;
1157#endif
1158
1159	/*
1160	 * Try to use the new mapping, but if we cannot, then
1161	 * do it with the routine that maps the page explicitly.
1162	 */
1163	if (needszero) {
1164		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1165			(((unsigned) PTDpde) & PG_FRAME)) {
1166			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1167			bzero((caddr_t) pteva, PAGE_SIZE);
1168		} else {
1169			pmap_zero_page(ptepa);
1170		}
1171	}
1172
1173	m->valid = VM_PAGE_BITS_ALL;
1174	m->flags |= PG_MAPPED;
1175
1176	return m;
1177}
1178
1179static vm_page_t
1180pmap_allocpte(pmap, va)
1181	pmap_t	pmap;
1182	vm_offset_t va;
1183{
1184	unsigned ptepindex;
1185	vm_offset_t ptepa;
1186	vm_page_t m;
1187
1188	/*
1189	 * Calculate pagetable page index
1190	 */
1191	ptepindex = va >> PDRSHIFT;
1192
1193	/*
1194	 * Get the page directory entry
1195	 */
1196	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1197
1198	/*
1199	 * If the page table page is mapped, we just increment the
1200	 * hold count, and activate it.
1201	 */
1202	if (ptepa) {
1203#if defined(PTPHINT)
1204		/*
1205		 * In order to get the page table page, try the
1206		 * hint first.
1207		 */
1208		if (pmap->pm_ptphint &&
1209			(pmap->pm_ptphint->pindex == ptepindex)) {
1210			m = pmap->pm_ptphint;
1211		} else {
1212			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1213			pmap->pm_ptphint = m;
1214		}
1215#else
1216		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1217#endif
1218		++m->hold_count;
1219		return m;
1220	}
1221	/*
1222	 * Here if the pte page isn't mapped, or if it has been deallocated.
1223	 */
1224	return _pmap_allocpte(pmap, ptepindex);
1225}
1226
1227
1228/***************************************************
1229* Pmap allocation/deallocation routines.
1230 ***************************************************/
1231
1232/*
1233 * Release any resources held by the given physical map.
1234 * Called when a pmap initialized by pmap_pinit is being released.
1235 * Should only be called if the map contains no valid mappings.
1236 */
1237void
1238pmap_release(pmap)
1239	register struct pmap *pmap;
1240{
1241	vm_page_t p,n,ptdpg;
1242	vm_object_t object = pmap->pm_pteobj;
1243
1244#if defined(DIAGNOSTIC)
1245	if (object->ref_count != 1)
1246		panic("pmap_release: pteobj reference count != 1");
1247#endif
1248
1249	ptdpg = NULL;
1250retry:
1251	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1252		n = TAILQ_NEXT(p, listq);
1253		if (p->pindex == PTDPTDI) {
1254			ptdpg = p;
1255			continue;
1256		}
1257		if (!pmap_release_free_page(pmap, p))
1258			goto retry;
1259	}
1260
1261	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1262		goto retry;
1263
1264	vm_object_deallocate(object);
1265	if (pdstackptr < PDSTACKMAX) {
1266		pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
1267		++pdstackptr;
1268	} else {
1269		kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
1270	}
1271	pmap->pm_pdir = 0;
1272}
1273
1274/*
1275 * grow the number of kernel page table entries, if needed
1276 */
1277void
1278pmap_growkernel(vm_offset_t addr)
1279{
1280	struct proc *p;
1281	struct pmap *pmap;
1282	int s;
1283
1284	s = splhigh();
1285	if (kernel_vm_end == 0) {
1286		kernel_vm_end = KERNBASE;
1287		nkpt = 0;
1288		while (pdir_pde(PTD, kernel_vm_end)) {
1289			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1290			++nkpt;
1291		}
1292	}
1293	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1294	while (kernel_vm_end < addr) {
1295		if (pdir_pde(PTD, kernel_vm_end)) {
1296			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1297			continue;
1298		}
1299		++nkpt;
1300		if (!nkpg) {
1301			vm_offset_t ptpkva = (vm_offset_t) vtopte(addr);
1302			/*
1303			 * This index is bogus, but out of the way
1304			 */
1305			vm_pindex_t ptpidx = (ptpkva >> PAGE_SHIFT);
1306			nkpg = vm_page_alloc(kernel_object,
1307				ptpidx, VM_ALLOC_SYSTEM);
1308			if (!nkpg)
1309				panic("pmap_growkernel: no memory to grow kernel");
1310			vm_page_wire(nkpg);
1311			vm_page_remove(nkpg);
1312			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
1313		}
1314		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW);
1315		nkpg = NULL;
1316
1317		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1318			if (p->p_vmspace) {
1319				pmap = &p->p_vmspace->vm_pmap;
1320				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1321			}
1322		}
1323		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1324		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1325	}
1326	splx(s);
1327}
1328
1329/*
1330 *	Retire the given physical map from service.
1331 *	Should only be called if the map contains
1332 *	no valid mappings.
1333 */
1334void
1335pmap_destroy(pmap)
1336	register pmap_t pmap;
1337{
1338	int count;
1339
1340	if (pmap == NULL)
1341		return;
1342
1343	count = --pmap->pm_count;
1344	if (count == 0) {
1345		pmap_release(pmap);
1346		free((caddr_t) pmap, M_VMPMAP);
1347	}
1348}
1349
1350/*
1351 *	Add a reference to the specified pmap.
1352 */
1353void
1354pmap_reference(pmap)
1355	pmap_t pmap;
1356{
1357	if (pmap != NULL) {
1358		pmap->pm_count++;
1359	}
1360}
1361
1362/***************************************************
1363* page management routines.
1364 ***************************************************/
1365
1366/*
1367 * free the pv_entry back to the free list
1368 */
1369static PMAP_INLINE void
1370free_pv_entry(pv)
1371	pv_entry_t pv;
1372{
1373	++pv_freelistcnt;
1374	TAILQ_INSERT_HEAD(&pv_freelist, pv, pv_list);
1375}
1376
1377/*
1378 * get a new pv_entry, allocating a block from the system
1379 * when needed.
1380 * the memory allocation is performed bypassing the malloc code
1381 * because of the possibility of allocations at interrupt time.
1382 */
1383static pv_entry_t
1384get_pv_entry()
1385{
1386	pv_entry_t tmp;
1387
1388	/*
1389	 * get more pv_entry pages if needed
1390	 */
1391	if (pv_freelistcnt < PV_FREELIST_MIN || !TAILQ_FIRST(&pv_freelist)) {
1392		pmap_alloc_pv_entry();
1393	}
1394	/*
1395	 * get a pv_entry off of the free list
1396	 */
1397	--pv_freelistcnt;
1398	tmp = TAILQ_FIRST(&pv_freelist);
1399	TAILQ_REMOVE(&pv_freelist, tmp, pv_list);
1400	return tmp;
1401}
1402
1403/*
1404 * This *strange* allocation routine eliminates the possibility of a malloc
1405 * failure (*FATAL*) for a pv_entry_t data structure.
1406 * also -- this code is MUCH MUCH faster than the malloc equiv...
1407 * We really need to do the slab allocator thingie here.
1408 */
1409static void
1410pmap_alloc_pv_entry()
1411{
1412	/*
1413	 * do we have any pre-allocated map-pages left?
1414	 */
1415	if (npvvapg) {
1416		vm_page_t m;
1417
1418		/*
1419		 * allocate a physical page out of the vm system
1420		 */
1421		m = vm_page_alloc(kernel_object,
1422		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
1423		    VM_ALLOC_INTERRUPT);
1424		if (m) {
1425			int newentries;
1426			int i;
1427			pv_entry_t entry;
1428
1429			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
1430			/*
1431			 * wire the page
1432			 */
1433			vm_page_wire(m);
1434			m->flags &= ~PG_BUSY;
1435			/*
1436			 * let the kernel see it
1437			 */
1438			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
1439
1440			entry = (pv_entry_t) pvva;
1441			/*
1442			 * update the allocation pointers
1443			 */
1444			pvva += PAGE_SIZE;
1445			--npvvapg;
1446
1447			/*
1448			 * free the entries into the free list
1449			 */
1450			for (i = 0; i < newentries; i++) {
1451				free_pv_entry(entry);
1452				entry++;
1453			}
1454		}
1455	}
1456	if (!TAILQ_FIRST(&pv_freelist))
1457		panic("get_pv_entry: cannot get a pv_entry_t");
1458}
1459
1460/*
1461 * init the pv_entry allocation system
1462 */
1463#define PVSPERPAGE 64
1464void
1465init_pv_entries(npg)
1466	int npg;
1467{
1468	/*
1469	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
1470	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
1471	 * this is too small.)
1472	 */
1473	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
1474		+ PAGE_SIZE - 1) / PAGE_SIZE;
1475	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
1476	/*
1477	 * get the first batch of entries
1478	 */
1479	pmap_alloc_pv_entry();
1480}
1481
1482/*
1483 * If it is the first entry on the list, it is actually
1484 * in the header and we must copy the following entry up
1485 * to the header.  Otherwise we must search the list for
1486 * the entry.  In either case we free the now unused entry.
1487 */
1488
1489static int
1490pmap_remove_entry(pmap, ppv, va)
1491	struct pmap *pmap;
1492	pv_table_t *ppv;
1493	vm_offset_t va;
1494{
1495	pv_entry_t pv;
1496	int rtval;
1497	int s;
1498
1499	s = splvm();
1500#if PMAP_PVLIST
1501	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1502#endif
1503		for (pv = TAILQ_FIRST(&ppv->pv_list);
1504			pv;
1505			pv = TAILQ_NEXT(pv, pv_list)) {
1506			if (pmap == pv->pv_pmap && va == pv->pv_va)
1507				break;
1508		}
1509#if PMAP_PVLIST
1510	} else {
1511		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1512			pv;
1513			pv = TAILQ_NEXT(pv, pv_plist)) {
1514			if (va == pv->pv_va)
1515				break;
1516		}
1517	}
1518#endif
1519
1520	rtval = 0;
1521	if (pv) {
1522		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1523		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1524		--ppv->pv_list_count;
1525		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
1526			ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
1527		}
1528
1529#if PMAP_PVLIST
1530		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1531#endif
1532		free_pv_entry(pv);
1533	}
1534
1535	splx(s);
1536	return rtval;
1537}
1538
1539/*
1540 * Create a pv entry for page at pa for
1541 * (pmap, va).
1542 */
1543static void
1544pmap_insert_entry(pmap, va, mpte, pa)
1545	pmap_t pmap;
1546	vm_offset_t va;
1547	vm_page_t mpte;
1548	vm_offset_t pa;
1549{
1550
1551	int s;
1552	pv_entry_t pv;
1553	pv_table_t *ppv;
1554
1555	s = splvm();
1556	pv = get_pv_entry();
1557	pv->pv_va = va;
1558	pv->pv_pmap = pmap;
1559	pv->pv_ptem = mpte;
1560
1561#if PMAP_PVLIST
1562	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1563#endif
1564
1565	ppv = pa_to_pvh(pa);
1566	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1567	++ppv->pv_list_count;
1568
1569	splx(s);
1570}
1571
1572/*
1573 * pmap_remove_pte: do the things to unmap a page in a process
1574 */
1575static int
1576pmap_remove_pte(pmap, ptq, va)
1577	struct pmap *pmap;
1578	unsigned *ptq;
1579	vm_offset_t va;
1580{
1581	unsigned oldpte;
1582	pv_table_t *ppv;
1583
1584	oldpte = *ptq;
1585	*ptq = 0;
1586	if (oldpte & PG_W)
1587		pmap->pm_stats.wired_count -= 1;
1588	/*
1589	 * Machines that don't support invlpg, also don't support
1590	 * PG_G.
1591	 */
1592	if (oldpte & PG_G)
1593		invlpg(va);
1594	pmap->pm_stats.resident_count -= 1;
1595	if (oldpte & PG_MANAGED) {
1596		ppv = pa_to_pvh(oldpte);
1597		if (oldpte & PG_M) {
1598#if defined(PMAP_DIAGNOSTIC)
1599			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1600				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1601			}
1602#endif
1603			if (pmap_track_modified(va))
1604				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1605		}
1606		return pmap_remove_entry(pmap, ppv, va);
1607	} else {
1608		return pmap_unuse_pt(pmap, va, NULL);
1609	}
1610
1611	return 0;
1612}
1613
1614/*
1615 * Remove a single page from a process address space
1616 */
1617static void
1618pmap_remove_page(pmap, va)
1619	struct pmap *pmap;
1620	register vm_offset_t va;
1621{
1622	register unsigned *ptq;
1623
1624	/*
1625	 * if there is no pte for this address, just skip it!!!
1626	 */
1627	if (*pmap_pde(pmap, va) == 0) {
1628		return;
1629	}
1630
1631	/*
1632	 * get a local va for mappings for this pmap.
1633	 */
1634	ptq = get_ptbase(pmap) + i386_btop(va);
1635	if (*ptq) {
1636		(void) pmap_remove_pte(pmap, ptq, va);
1637		invltlb_1pg(va);
1638	}
1639	return;
1640}
1641
1642/*
1643 *	Remove the given range of addresses from the specified map.
1644 *
1645 *	It is assumed that the start and end are properly
1646 *	rounded to the page size.
1647 */
1648void
1649pmap_remove(pmap, sva, eva)
1650	struct pmap *pmap;
1651	register vm_offset_t sva;
1652	register vm_offset_t eva;
1653{
1654	register unsigned *ptbase;
1655	vm_offset_t pdnxt;
1656	vm_offset_t ptpaddr;
1657	vm_offset_t sindex, eindex;
1658	int anyvalid;
1659
1660	if (pmap == NULL)
1661		return;
1662
1663	if (pmap->pm_stats.resident_count == 0)
1664		return;
1665
1666	/*
1667	 * special handling of removing one page.  a very
1668	 * common operation and easy to short circuit some
1669	 * code.
1670	 */
1671	if ((sva + PAGE_SIZE) == eva) {
1672		pmap_remove_page(pmap, sva);
1673		return;
1674	}
1675
1676	anyvalid = 0;
1677
1678	/*
1679	 * Get a local virtual address for the mappings that are being
1680	 * worked with.
1681	 */
1682	ptbase = get_ptbase(pmap);
1683
1684	sindex = i386_btop(sva);
1685	eindex = i386_btop(eva);
1686
1687	for (; sindex < eindex; sindex = pdnxt) {
1688
1689		/*
1690		 * Calculate index for next page table.
1691		 */
1692		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1693		if (pmap->pm_stats.resident_count == 0)
1694			break;
1695		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1696
1697		/*
1698		 * Weed out invalid mappings. Note: we assume that the page
1699		 * directory table is always allocated, and in kernel virtual.
1700		 */
1701		if (ptpaddr == 0)
1702			continue;
1703
1704		/*
1705		 * Limit our scan to either the end of the va represented
1706		 * by the current page table page, or to the end of the
1707		 * range being removed.
1708		 */
1709		if (pdnxt > eindex) {
1710			pdnxt = eindex;
1711		}
1712
1713		for ( ;sindex != pdnxt; sindex++) {
1714			vm_offset_t va;
1715			if (ptbase[sindex] == 0) {
1716				continue;
1717			}
1718			va = i386_ptob(sindex);
1719
1720			anyvalid++;
1721			if (pmap_remove_pte(pmap,
1722				ptbase + sindex, va))
1723				break;
1724		}
1725	}
1726
1727	if (anyvalid) {
1728		invltlb();
1729	}
1730}
1731
1732/*
1733 *	Routine:	pmap_remove_all
1734 *	Function:
1735 *		Removes this physical page from
1736 *		all physical maps in which it resides.
1737 *		Reflects back modify bits to the pager.
1738 *
1739 *	Notes:
1740 *		Original versions of this routine were very
1741 *		inefficient because they iteratively called
1742 *		pmap_remove (slow...)
1743 */
1744
1745static void
1746pmap_remove_all(pa)
1747	vm_offset_t pa;
1748{
1749	register pv_entry_t pv;
1750	pv_table_t *ppv;
1751	register unsigned *pte, tpte;
1752	int nmodify;
1753	int update_needed;
1754	int s;
1755
1756	nmodify = 0;
1757	update_needed = 0;
1758#if defined(PMAP_DIAGNOSTIC)
1759	/*
1760	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1761	 * pages!
1762	 */
1763	if (!pmap_is_managed(pa)) {
1764		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1765	}
1766#endif
1767
1768	s = splvm();
1769	ppv = pa_to_pvh(pa);
1770	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1771		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1772
1773		pv->pv_pmap->pm_stats.resident_count--;
1774
1775		tpte = *pte;
1776		*pte = 0;
1777		if (tpte & PG_W)
1778			pv->pv_pmap->pm_stats.wired_count--;
1779		/*
1780		 * Update the vm_page_t clean and reference bits.
1781		 */
1782		if (tpte & PG_M) {
1783#if defined(PMAP_DIAGNOSTIC)
1784			if (pmap_nw_modified((pt_entry_t) tpte)) {
1785				printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", pv->pv_va, tpte);
1786			}
1787#endif
1788			if (pmap_track_modified(pv->pv_va))
1789				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1790		}
1791		if (!update_needed &&
1792			((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
1793			(pv->pv_pmap == kernel_pmap))) {
1794			update_needed = 1;
1795		}
1796
1797#if PMAP_PVLIST
1798		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1799#endif
1800		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1801		--ppv->pv_list_count;
1802		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1803		free_pv_entry(pv);
1804	}
1805	ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
1806
1807
1808	if (update_needed)
1809		invltlb();
1810	splx(s);
1811	return;
1812}
1813
1814/*
1815 *	Set the physical protection on the
1816 *	specified range of this map as requested.
1817 */
1818void
1819pmap_protect(pmap, sva, eva, prot)
1820	register pmap_t pmap;
1821	vm_offset_t sva, eva;
1822	vm_prot_t prot;
1823{
1824	register unsigned *ptbase;
1825	vm_offset_t pdnxt;
1826	vm_offset_t ptpaddr;
1827	vm_offset_t sindex, eindex;
1828	int anychanged;
1829
1830
1831	if (pmap == NULL)
1832		return;
1833
1834	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1835		pmap_remove(pmap, sva, eva);
1836		return;
1837	}
1838	if (prot & VM_PROT_WRITE) {
1839		return;
1840	}
1841
1842	anychanged = 0;
1843
1844	ptbase = get_ptbase(pmap);
1845
1846	sindex = i386_btop(sva);
1847	eindex = i386_btop(eva);
1848
1849	for (; sindex < eindex; sindex = pdnxt) {
1850
1851		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1852		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1853
1854		/*
1855		 * Weed out invalid mappings. Note: we assume that the page
1856		 * directory table is always allocated, and in kernel virtual.
1857		 */
1858		if (ptpaddr == 0)
1859			continue;
1860
1861		if (pdnxt > eindex) {
1862			pdnxt = eindex;
1863		}
1864
1865		for (; sindex != pdnxt; sindex++) {
1866
1867			unsigned pbits = ptbase[sindex];
1868
1869			if (pbits & PG_RW) {
1870				if (pbits & PG_M) {
1871					vm_offset_t sva = i386_ptob(sindex);
1872					if (pmap_track_modified(sva)) {
1873						vm_page_t m = PHYS_TO_VM_PAGE(pbits);
1874						m->dirty = VM_PAGE_BITS_ALL;
1875					}
1876				}
1877				ptbase[sindex] = pbits & ~(PG_M|PG_RW);
1878				anychanged = 1;
1879			}
1880		}
1881	}
1882	if (anychanged)
1883		invltlb();
1884}
1885
1886/*
1887 *	Insert the given physical page (p) at
1888 *	the specified virtual address (v) in the
1889 *	target physical map with the protection requested.
1890 *
1891 *	If specified, the page will be wired down, meaning
1892 *	that the related pte can not be reclaimed.
1893 *
1894 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1895 *	or lose information.  That is, this routine must actually
1896 *	insert this page into the given map NOW.
1897 */
1898void
1899pmap_enter(pmap, va, pa, prot, wired)
1900	register pmap_t pmap;
1901	vm_offset_t va;
1902	register vm_offset_t pa;
1903	vm_prot_t prot;
1904	boolean_t wired;
1905{
1906	register unsigned *pte;
1907	vm_offset_t opa;
1908	vm_offset_t origpte, newpte;
1909	vm_page_t mpte;
1910
1911	if (pmap == NULL)
1912		return;
1913
1914	va &= PG_FRAME;
1915#ifdef PMAP_DIAGNOSTIC
1916	if (va > VM_MAX_KERNEL_ADDRESS)
1917		panic("pmap_enter: toobig");
1918	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1919		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1920#endif
1921
1922	mpte = NULL;
1923	/*
1924	 * In the case that a page table page is not
1925	 * resident, we are creating it here.
1926	 */
1927	if (va < UPT_MIN_ADDRESS)
1928		mpte = pmap_allocpte(pmap, va);
1929
1930	pte = pmap_pte(pmap, va);
1931	/*
1932	 * Page Directory table entry not valid, we need a new PT page
1933	 */
1934	if (pte == NULL) {
1935		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%lx\n",
1936			pmap->pm_pdir[PTDPTDI], va);
1937	}
1938
1939	origpte = *(vm_offset_t *)pte;
1940	pa &= PG_FRAME;
1941	opa = origpte & PG_FRAME;
1942
1943	/*
1944	 * Mapping has not changed, must be protection or wiring change.
1945	 */
1946	if (origpte && (opa == pa)) {
1947		/*
1948		 * Wiring change, just update stats. We don't worry about
1949		 * wiring PT pages as they remain resident as long as there
1950		 * are valid mappings in them. Hence, if a user page is wired,
1951		 * the PT page will be also.
1952		 */
1953		if (wired && ((origpte & PG_W) == 0))
1954			pmap->pm_stats.wired_count++;
1955		else if (!wired && (origpte & PG_W))
1956			pmap->pm_stats.wired_count--;
1957
1958#if defined(PMAP_DIAGNOSTIC)
1959		if (pmap_nw_modified((pt_entry_t) origpte)) {
1960			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1961		}
1962#endif
1963
1964		/*
1965		 * We might be turning off write access to the page,
1966		 * so we go ahead and sense modify status.
1967		 */
1968		if (origpte & PG_MANAGED) {
1969			vm_page_t m;
1970			if (origpte & PG_M) {
1971				if (pmap_track_modified(va)) {
1972					m = PHYS_TO_VM_PAGE(pa);
1973					m->dirty = VM_PAGE_BITS_ALL;
1974				}
1975			}
1976			pa |= PG_MANAGED;
1977		}
1978
1979		if (mpte)
1980			--mpte->hold_count;
1981
1982		goto validate;
1983	}
1984	/*
1985	 * Mapping has changed, invalidate old range and fall through to
1986	 * handle validating new mapping.
1987	 */
1988	if (opa) {
1989		int err;
1990		err = pmap_remove_pte(pmap, pte, va);
1991		if (err)
1992			panic("pmap_enter: pte vanished, va: 0x%x", va);
1993	}
1994
1995	/*
1996	 * Enter on the PV list if part of our managed memory Note that we
1997	 * raise IPL while manipulating pv_table since pmap_enter can be
1998	 * called at interrupt time.
1999	 */
2000	if (pmap_is_managed(pa)) {
2001		pmap_insert_entry(pmap, va, mpte, pa);
2002		pa |= PG_MANAGED;
2003	}
2004
2005	/*
2006	 * Increment counters
2007	 */
2008	pmap->pm_stats.resident_count++;
2009	if (wired)
2010		pmap->pm_stats.wired_count++;
2011
2012validate:
2013	/*
2014	 * Now validate mapping with desired protection/wiring.
2015	 */
2016	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2017
2018	if (wired)
2019		newpte |= PG_W;
2020	if (va < UPT_MIN_ADDRESS)
2021		newpte |= PG_U;
2022	if (pmap == kernel_pmap)
2023		newpte |= pgeflag;
2024
2025	/*
2026	 * if the mapping or permission bits are different, we need
2027	 * to update the pte.
2028	 */
2029	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2030		*pte = newpte;
2031		if (origpte)
2032			invltlb_1pg(va);
2033	}
2034}
2035
2036/*
2037 * this code makes some *MAJOR* assumptions:
2038 * 1. Current pmap & pmap exists.
2039 * 2. Not wired.
2040 * 3. Read access.
2041 * 4. No page table pages.
2042 * 5. Tlbflush is deferred to calling procedure.
2043 * 6. Page IS managed.
2044 * but is *MUCH* faster than pmap_enter...
2045 */
2046
2047static vm_page_t
2048pmap_enter_quick(pmap, va, pa, mpte)
2049	register pmap_t pmap;
2050	vm_offset_t va;
2051	register vm_offset_t pa;
2052	vm_page_t mpte;
2053{
2054	register unsigned *pte;
2055
2056	/*
2057	 * In the case that a page table page is not
2058	 * resident, we are creating it here.
2059	 */
2060	if (va < UPT_MIN_ADDRESS) {
2061		unsigned ptepindex;
2062		vm_offset_t ptepa;
2063
2064		/*
2065		 * Calculate pagetable page index
2066		 */
2067		ptepindex = va >> PDRSHIFT;
2068		if (mpte && (mpte->pindex == ptepindex)) {
2069			++mpte->hold_count;
2070		} else {
2071retry:
2072			/*
2073			 * Get the page directory entry
2074			 */
2075			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2076
2077			/*
2078			 * If the page table page is mapped, we just increment
2079			 * the hold count, and activate it.
2080			 */
2081			if (ptepa) {
2082#if defined(PTPHINT)
2083				if (pmap->pm_ptphint &&
2084					(pmap->pm_ptphint->pindex == ptepindex)) {
2085					mpte = pmap->pm_ptphint;
2086				} else {
2087					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2088					pmap->pm_ptphint = mpte;
2089				}
2090#else
2091				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2092#endif
2093				if (mpte == NULL)
2094					goto retry;
2095				++mpte->hold_count;
2096			} else {
2097				mpte = _pmap_allocpte(pmap, ptepindex);
2098			}
2099		}
2100	} else {
2101		mpte = NULL;
2102	}
2103
2104	/*
2105	 * This call to vtopte makes the assumption that we are
2106	 * entering the page into the current pmap.  In order to support
2107	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2108	 * But that isn't as quick as vtopte.
2109	 */
2110	pte = (unsigned *)vtopte(va);
2111	if (*pte) {
2112		if (mpte)
2113			pmap_unwire_pte_hold(pmap, mpte);
2114		return 0;
2115	}
2116
2117	/*
2118	 * Enter on the PV list if part of our managed memory Note that we
2119	 * raise IPL while manipulating pv_table since pmap_enter can be
2120	 * called at interrupt time.
2121	 */
2122	pmap_insert_entry(pmap, va, mpte, pa);
2123
2124	/*
2125	 * Increment counters
2126	 */
2127	pmap->pm_stats.resident_count++;
2128
2129	/*
2130	 * Now validate mapping with RO protection
2131	 */
2132	*pte = pa | PG_V | PG_U | PG_MANAGED;
2133
2134	return mpte;
2135}
2136
2137#define MAX_INIT_PT (96)
2138/*
2139 * pmap_object_init_pt preloads the ptes for a given object
2140 * into the specified pmap.  This eliminates the blast of soft
2141 * faults on process startup and immediately after an mmap.
2142 */
2143void
2144pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2145	pmap_t pmap;
2146	vm_offset_t addr;
2147	vm_object_t object;
2148	vm_pindex_t pindex;
2149	vm_size_t size;
2150	int limit;
2151{
2152	vm_offset_t tmpidx;
2153	int psize;
2154	vm_page_t p, mpte;
2155	int objpgs;
2156
2157	psize = i386_btop(size);
2158
2159	if (!pmap || (object->type != OBJT_VNODE) ||
2160		(limit && (psize > MAX_INIT_PT) &&
2161			(object->resident_page_count > MAX_INIT_PT))) {
2162		return;
2163	}
2164
2165	if (psize + pindex > object->size)
2166		psize = object->size - pindex;
2167
2168	mpte = NULL;
2169	/*
2170	 * if we are processing a major portion of the object, then scan the
2171	 * entire thing.
2172	 */
2173	if (psize > (object->size >> 2)) {
2174		objpgs = psize;
2175
2176		for (p = TAILQ_FIRST(&object->memq);
2177		    ((objpgs > 0) && (p != NULL));
2178		    p = TAILQ_NEXT(p, listq)) {
2179
2180			tmpidx = p->pindex;
2181			if (tmpidx < pindex) {
2182				continue;
2183			}
2184			tmpidx -= pindex;
2185			if (tmpidx >= psize) {
2186				continue;
2187			}
2188			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2189			    (p->busy == 0) &&
2190			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2191				if ((p->queue - p->pc) == PQ_CACHE)
2192					vm_page_deactivate(p);
2193				p->flags |= PG_BUSY;
2194				mpte = pmap_enter_quick(pmap,
2195					addr + i386_ptob(tmpidx),
2196					VM_PAGE_TO_PHYS(p), mpte);
2197				p->flags |= PG_MAPPED;
2198				PAGE_WAKEUP(p);
2199			}
2200			objpgs -= 1;
2201		}
2202	} else {
2203		/*
2204		 * else lookup the pages one-by-one.
2205		 */
2206		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2207			p = vm_page_lookup(object, tmpidx + pindex);
2208			if (p &&
2209			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2210			    (p->busy == 0) &&
2211			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2212				if ((p->queue - p->pc) == PQ_CACHE)
2213					vm_page_deactivate(p);
2214				p->flags |= PG_BUSY;
2215				mpte = pmap_enter_quick(pmap,
2216					addr + i386_ptob(tmpidx),
2217					VM_PAGE_TO_PHYS(p), mpte);
2218				p->flags |= PG_MAPPED;
2219				PAGE_WAKEUP(p);
2220			}
2221		}
2222	}
2223	return;
2224}
2225
2226/*
2227 * pmap_prefault provides a quick way of clustering
2228 * pagefaults into a processes address space.  It is a "cousin"
2229 * of pmap_object_init_pt, except it runs at page fault time instead
2230 * of mmap time.
2231 */
2232#define PFBAK 2
2233#define PFFOR 2
2234#define PAGEORDER_SIZE (PFBAK+PFFOR)
2235
2236static int pmap_prefault_pageorder[] = {
2237	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
2238};
2239
2240void
2241pmap_prefault(pmap, addra, entry, object)
2242	pmap_t pmap;
2243	vm_offset_t addra;
2244	vm_map_entry_t entry;
2245	vm_object_t object;
2246{
2247	int i;
2248	vm_offset_t starta;
2249	vm_offset_t addr;
2250	vm_pindex_t pindex;
2251	vm_page_t m, mpte;
2252
2253	if (entry->object.vm_object != object)
2254		return;
2255
2256	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
2257		return;
2258
2259	starta = addra - PFBAK * PAGE_SIZE;
2260	if (starta < entry->start) {
2261		starta = entry->start;
2262	} else if (starta > addra) {
2263		starta = 0;
2264	}
2265
2266	mpte = NULL;
2267	for (i = 0; i < PAGEORDER_SIZE; i++) {
2268		vm_object_t lobject;
2269		unsigned *pte;
2270
2271		addr = addra + pmap_prefault_pageorder[i];
2272		if (addr < starta || addr >= entry->end)
2273			continue;
2274
2275		if ((*pmap_pde(pmap, addr)) == NULL)
2276			continue;
2277
2278		pte = (unsigned *) vtopte(addr);
2279		if (*pte)
2280			continue;
2281
2282		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2283		lobject = object;
2284		for (m = vm_page_lookup(lobject, pindex);
2285		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2286		    lobject = lobject->backing_object) {
2287			if (lobject->backing_object_offset & PAGE_MASK)
2288				break;
2289			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2290			m = vm_page_lookup(lobject->backing_object, pindex);
2291		}
2292
2293		/*
2294		 * give-up when a page is not in memory
2295		 */
2296		if (m == NULL)
2297			break;
2298
2299		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2300		    (m->busy == 0) &&
2301		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2302
2303			if ((m->queue - m->pc) == PQ_CACHE) {
2304				vm_page_deactivate(m);
2305			}
2306			m->flags |= PG_BUSY;
2307			mpte = pmap_enter_quick(pmap, addr,
2308				VM_PAGE_TO_PHYS(m), mpte);
2309			m->flags |= PG_MAPPED;
2310			PAGE_WAKEUP(m);
2311		}
2312	}
2313}
2314
2315/*
2316 *	Routine:	pmap_change_wiring
2317 *	Function:	Change the wiring attribute for a map/virtual-address
2318 *			pair.
2319 *	In/out conditions:
2320 *			The mapping must already exist in the pmap.
2321 */
2322void
2323pmap_change_wiring(pmap, va, wired)
2324	register pmap_t pmap;
2325	vm_offset_t va;
2326	boolean_t wired;
2327{
2328	register unsigned *pte;
2329
2330	if (pmap == NULL)
2331		return;
2332
2333	pte = pmap_pte(pmap, va);
2334
2335	if (wired && !pmap_pte_w(pte))
2336		pmap->pm_stats.wired_count++;
2337	else if (!wired && pmap_pte_w(pte))
2338		pmap->pm_stats.wired_count--;
2339
2340	/*
2341	 * Wiring is not a hardware characteristic so there is no need to
2342	 * invalidate TLB.
2343	 */
2344	pmap_pte_set_w(pte, wired);
2345}
2346
2347
2348
2349/*
2350 *	Copy the range specified by src_addr/len
2351 *	from the source map to the range dst_addr/len
2352 *	in the destination map.
2353 *
2354 *	This routine is only advisory and need not do anything.
2355 */
2356
2357void
2358pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2359	pmap_t dst_pmap, src_pmap;
2360	vm_offset_t dst_addr;
2361	vm_size_t len;
2362	vm_offset_t src_addr;
2363{
2364	vm_offset_t addr;
2365	vm_offset_t end_addr = src_addr + len;
2366	vm_offset_t pdnxt;
2367	unsigned src_frame, dst_frame;
2368
2369	if (dst_addr != src_addr)
2370		return;
2371
2372	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2373	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2374		return;
2375	}
2376
2377	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2378	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2379		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2380		invltlb();
2381	}
2382
2383	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2384		unsigned *src_pte, *dst_pte;
2385		vm_page_t dstmpte, srcmpte;
2386		vm_offset_t srcptepaddr;
2387		unsigned ptepindex;
2388
2389		if (addr >= UPT_MIN_ADDRESS)
2390			panic("pmap_copy: invalid to pmap_copy page tables\n");
2391
2392		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2393		ptepindex = addr >> PDRSHIFT;
2394
2395		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2396		if (srcptepaddr == 0)
2397			continue;
2398
2399		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2400		if ((srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2401			continue;
2402
2403		if (pdnxt > end_addr)
2404			pdnxt = end_addr;
2405
2406		src_pte = (unsigned *) vtopte(addr);
2407		dst_pte = (unsigned *) avtopte(addr);
2408		while (addr < pdnxt) {
2409			unsigned ptetemp;
2410			ptetemp = *src_pte;
2411			/*
2412			 * we only virtual copy managed pages
2413			 */
2414			if ((ptetemp & PG_MANAGED) != 0) {
2415				/*
2416				 * We have to check after allocpte for the
2417				 * pte still being around...  allocpte can
2418				 * block.
2419				 */
2420				dstmpte = pmap_allocpte(dst_pmap, addr);
2421				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2422					/*
2423					 * Clear the modified and
2424					 * accessed (referenced) bits
2425					 * during the copy.
2426					 */
2427					*dst_pte = ptetemp & ~(PG_M|PG_A);
2428					dst_pmap->pm_stats.resident_count++;
2429					pmap_insert_entry(dst_pmap, addr,
2430						dstmpte,
2431						(ptetemp & PG_FRAME));
2432	 			} else {
2433					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2434				}
2435				if (dstmpte->hold_count >= srcmpte->hold_count)
2436					break;
2437			}
2438			addr += PAGE_SIZE;
2439			++src_pte;
2440			++dst_pte;
2441		}
2442	}
2443}
2444
2445/*
2446 *	Routine:	pmap_kernel
2447 *	Function:
2448 *		Returns the physical map handle for the kernel.
2449 */
2450pmap_t
2451pmap_kernel()
2452{
2453	return (kernel_pmap);
2454}
2455
2456/*
2457 *	pmap_zero_page zeros the specified (machine independent)
2458 *	page by mapping the page into virtual memory and using
2459 *	bzero to clear its contents, one machine dependent page
2460 *	at a time.
2461 */
2462void
2463pmap_zero_page(phys)
2464	vm_offset_t phys;
2465{
2466	if (*(int *) CMAP2)
2467		panic("pmap_zero_page: CMAP busy");
2468
2469	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
2470	bzero(CADDR2, PAGE_SIZE);
2471	*(int *) CMAP2 = 0;
2472	invltlb_1pg((vm_offset_t) CADDR2);
2473}
2474
2475/*
2476 *	pmap_copy_page copies the specified (machine independent)
2477 *	page by mapping the page into virtual memory and using
2478 *	bcopy to copy the page, one machine dependent page at a
2479 *	time.
2480 */
2481void
2482pmap_copy_page(src, dst)
2483	vm_offset_t src;
2484	vm_offset_t dst;
2485{
2486	if (*(int *) CMAP1 || *(int *) CMAP2)
2487		panic("pmap_copy_page: CMAP busy");
2488
2489	*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
2490	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
2491
2492	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2493
2494	*(int *) CMAP1 = 0;
2495	*(int *) CMAP2 = 0;
2496	invltlb_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
2497}
2498
2499
2500/*
2501 *	Routine:	pmap_pageable
2502 *	Function:
2503 *		Make the specified pages (by pmap, offset)
2504 *		pageable (or not) as requested.
2505 *
2506 *		A page which is not pageable may not take
2507 *		a fault; therefore, its page table entry
2508 *		must remain valid for the duration.
2509 *
2510 *		This routine is merely advisory; pmap_enter
2511 *		will specify that these pages are to be wired
2512 *		down (or not) as appropriate.
2513 */
2514void
2515pmap_pageable(pmap, sva, eva, pageable)
2516	pmap_t pmap;
2517	vm_offset_t sva, eva;
2518	boolean_t pageable;
2519{
2520}
2521
2522/*
2523 * this routine returns true if a physical page resides
2524 * in the given pmap.
2525 */
2526boolean_t
2527pmap_page_exists(pmap, pa)
2528	pmap_t pmap;
2529	vm_offset_t pa;
2530{
2531	register pv_entry_t pv;
2532	pv_table_t *ppv;
2533	int s;
2534
2535	if (!pmap_is_managed(pa))
2536		return FALSE;
2537
2538	s = splvm();
2539
2540	ppv = pa_to_pvh(pa);
2541	/*
2542	 * Not found, check current mappings returning immediately if found.
2543	 */
2544	for (pv = TAILQ_FIRST(&ppv->pv_list);
2545		pv;
2546		pv = TAILQ_NEXT(pv, pv_list)) {
2547		if (pv->pv_pmap == pmap) {
2548			splx(s);
2549			return TRUE;
2550		}
2551	}
2552	splx(s);
2553	return (FALSE);
2554}
2555
2556#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2557/*
2558 * Remove all pages from specified address space
2559 * this aids process exit speeds.  Also, this code
2560 * is special cased for current process only, but
2561 * can have the more generic (and slightly slower)
2562 * mode enabled.  This is much faster than pmap_remove
2563 * in the case of running down an entire address space.
2564 */
2565void
2566pmap_remove_pages(pmap, sva, eva)
2567	pmap_t pmap;
2568	vm_offset_t sva, eva;
2569{
2570	unsigned *pte, tpte;
2571	pv_table_t *ppv;
2572	pv_entry_t pv, npv;
2573	int s;
2574
2575#if PMAP_PVLIST
2576
2577#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2578	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
2579		printf("warning: pmap_remove_pages called with non-current pmap\n");
2580		return;
2581	}
2582#endif
2583
2584	s = splvm();
2585	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2586		pv;
2587		pv = npv) {
2588
2589		if (pv->pv_va >= eva || pv->pv_va < sva) {
2590			npv = TAILQ_NEXT(pv, pv_plist);
2591			continue;
2592		}
2593
2594#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2595		pte = (unsigned *)vtopte(pv->pv_va);
2596#else
2597		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2598#endif
2599		tpte = *pte;
2600
2601/*
2602 * We cannot remove wired pages from a process' mapping at this time
2603 */
2604		if (tpte & PG_W) {
2605			npv = TAILQ_NEXT(pv, pv_plist);
2606			continue;
2607		}
2608		*pte = 0;
2609
2610		ppv = pa_to_pvh(tpte);
2611
2612		pv->pv_pmap->pm_stats.resident_count--;
2613
2614		/*
2615		 * Update the vm_page_t clean and reference bits.
2616		 */
2617		if (tpte & PG_M) {
2618			ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2619		}
2620
2621
2622		npv = TAILQ_NEXT(pv, pv_plist);
2623		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2624
2625		--ppv->pv_list_count;
2626		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2627		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2628			ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
2629		}
2630
2631		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2632		free_pv_entry(pv);
2633	}
2634	splx(s);
2635	invltlb();
2636#endif
2637}
2638
2639/*
2640 * pmap_testbit tests bits in pte's
2641 * note that the testbit/changebit routines are inline,
2642 * and a lot of things compile-time evaluate.
2643 */
2644static boolean_t
2645pmap_testbit(pa, bit)
2646	register vm_offset_t pa;
2647	int bit;
2648{
2649	register pv_entry_t pv;
2650	pv_table_t *ppv;
2651	unsigned *pte;
2652	int s;
2653
2654	if (!pmap_is_managed(pa))
2655		return FALSE;
2656
2657	ppv = pa_to_pvh(pa);
2658	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
2659		return FALSE;
2660
2661	s = splvm();
2662
2663	for (pv = TAILQ_FIRST(&ppv->pv_list);
2664		pv;
2665		pv = TAILQ_NEXT(pv, pv_list)) {
2666
2667		/*
2668		 * if the bit being tested is the modified bit, then
2669		 * mark clean_map and ptes as never
2670		 * modified.
2671		 */
2672		if (bit & (PG_A|PG_M)) {
2673			if (!pmap_track_modified(pv->pv_va))
2674				continue;
2675		}
2676
2677#if defined(PMAP_DIAGNOSTIC)
2678		if (!pv->pv_pmap) {
2679			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2680			continue;
2681		}
2682#endif
2683		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2684		if (*pte & bit) {
2685			splx(s);
2686			return TRUE;
2687		}
2688	}
2689	splx(s);
2690	return (FALSE);
2691}
2692
2693/*
2694 * this routine is used to modify bits in ptes
2695 */
2696static void
2697pmap_changebit(pa, bit, setem)
2698	vm_offset_t pa;
2699	int bit;
2700	boolean_t setem;
2701{
2702	register pv_entry_t pv;
2703	pv_table_t *ppv;
2704	register unsigned *pte;
2705	int changed;
2706	int s;
2707
2708	if (!pmap_is_managed(pa))
2709		return;
2710
2711	s = splvm();
2712	changed = 0;
2713	ppv = pa_to_pvh(pa);
2714
2715	/*
2716	 * Loop over all current mappings setting/clearing as appropos If
2717	 * setting RO do we need to clear the VAC?
2718	 */
2719	for (pv = TAILQ_FIRST(&ppv->pv_list);
2720		pv;
2721		pv = TAILQ_NEXT(pv, pv_list)) {
2722
2723		/*
2724		 * don't write protect pager mappings
2725		 */
2726		if (!setem && (bit == PG_RW)) {
2727			if (!pmap_track_modified(pv->pv_va))
2728				continue;
2729		}
2730
2731#if defined(PMAP_DIAGNOSTIC)
2732		if (!pv->pv_pmap) {
2733			printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2734			continue;
2735		}
2736#endif
2737
2738		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2739
2740		if (setem) {
2741			*(int *)pte |= bit;
2742			changed = 1;
2743		} else {
2744			vm_offset_t pbits = *(vm_offset_t *)pte;
2745			if (pbits & bit) {
2746				changed = 1;
2747				if (bit == PG_RW) {
2748					if (pbits & PG_M) {
2749						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2750					}
2751					*(int *)pte = pbits & ~(PG_M|PG_RW);
2752				} else {
2753					*(int *)pte = pbits & ~bit;
2754				}
2755			}
2756		}
2757	}
2758	splx(s);
2759	if (changed)
2760		invltlb();
2761}
2762
2763/*
2764 *      pmap_page_protect:
2765 *
2766 *      Lower the permission for all mappings to a given page.
2767 */
2768void
2769pmap_page_protect(phys, prot)
2770	vm_offset_t phys;
2771	vm_prot_t prot;
2772{
2773	if ((prot & VM_PROT_WRITE) == 0) {
2774		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2775			pmap_changebit(phys, PG_RW, FALSE);
2776		} else {
2777			pmap_remove_all(phys);
2778		}
2779	}
2780}
2781
2782vm_offset_t
2783pmap_phys_address(ppn)
2784	int ppn;
2785{
2786	return (i386_ptob(ppn));
2787}
2788
2789/*
2790 *	pmap_is_referenced:
2791 *
2792 *	Return whether or not the specified physical page was referenced
2793 *	by any physical maps.
2794 */
2795boolean_t
2796pmap_is_referenced(vm_offset_t pa)
2797{
2798	register pv_entry_t pv;
2799	pv_table_t *ppv;
2800	unsigned *pte;
2801	int s;
2802
2803	if (!pmap_is_managed(pa))
2804		return FALSE;
2805
2806	ppv = pa_to_pvh(pa);
2807
2808	s = splvm();
2809	/*
2810	 * Not found, check current mappings returning immediately if found.
2811	 */
2812	for (pv = TAILQ_FIRST(&ppv->pv_list);
2813		pv;
2814		pv = TAILQ_NEXT(pv, pv_list)) {
2815
2816		/*
2817		 * if the bit being tested is the modified bit, then
2818		 * mark clean_map and ptes as never
2819		 * modified.
2820		 */
2821		if (!pmap_track_modified(pv->pv_va))
2822			continue;
2823
2824		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2825		if ((int) *pte & PG_A) {
2826			splx(s);
2827			return TRUE;
2828		}
2829	}
2830	splx(s);
2831	return (FALSE);
2832}
2833
2834/*
2835 *	pmap_ts_referenced:
2836 *
2837 *	Return the count of reference bits for a page, clearing all of them.
2838 *
2839 */
2840int
2841pmap_ts_referenced(vm_offset_t pa)
2842{
2843	register pv_entry_t pv;
2844	pv_table_t *ppv;
2845	unsigned *pte;
2846	int s;
2847	int rtval = 0;
2848
2849	if (!pmap_is_managed(pa))
2850		return FALSE;
2851
2852	s = splvm();
2853
2854	ppv = pa_to_pvh(pa);
2855
2856	if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2857		splx(s);
2858		return 0;
2859	}
2860
2861	/*
2862	 * Not found, check current mappings returning immediately if found.
2863	 */
2864	for (pv = TAILQ_FIRST(&ppv->pv_list);
2865		pv;
2866		pv = TAILQ_NEXT(pv, pv_list)) {
2867		/*
2868		 * if the bit being tested is the modified bit, then
2869		 * mark clean_map and ptes as never
2870		 * modified.
2871		 */
2872		if (!pmap_track_modified(pv->pv_va))
2873			continue;
2874
2875		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2876		if (pte == NULL) {
2877			continue;
2878		}
2879		if (*pte & PG_A) {
2880			rtval++;
2881			*pte &= ~PG_A;
2882		}
2883	}
2884	splx(s);
2885	if (rtval) {
2886		invltlb();
2887	}
2888	return (rtval);
2889}
2890
2891/*
2892 *	pmap_is_modified:
2893 *
2894 *	Return whether or not the specified physical page was modified
2895 *	in any physical maps.
2896 */
2897boolean_t
2898pmap_is_modified(vm_offset_t pa)
2899{
2900	return pmap_testbit((pa), PG_M);
2901}
2902
2903/*
2904 *	Clear the modify bits on the specified physical page.
2905 */
2906void
2907pmap_clear_modify(vm_offset_t pa)
2908{
2909	pmap_changebit((pa), PG_M, FALSE);
2910}
2911
2912/*
2913 *	pmap_clear_reference:
2914 *
2915 *	Clear the reference bit on the specified physical page.
2916 */
2917void
2918pmap_clear_reference(vm_offset_t pa)
2919{
2920	pmap_changebit((pa), PG_A, FALSE);
2921}
2922
2923/*
2924 * Miscellaneous support routines follow
2925 */
2926
2927static void
2928i386_protection_init()
2929{
2930	register int *kp, prot;
2931
2932	kp = protection_codes;
2933	for (prot = 0; prot < 8; prot++) {
2934		switch (prot) {
2935		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2936			/*
2937			 * Read access is also 0. There isn't any execute bit,
2938			 * so just make it readable.
2939			 */
2940		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2941		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2942		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2943			*kp++ = 0;
2944			break;
2945		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2946		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2947		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2948		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2949			*kp++ = PG_RW;
2950			break;
2951		}
2952	}
2953}
2954
2955/*
2956 * Map a set of physical memory pages into the kernel virtual
2957 * address space. Return a pointer to where it is mapped. This
2958 * routine is intended to be used for mapping device memory,
2959 * NOT real memory. The non-cacheable bits are set on each
2960 * mapped page.
2961 */
2962void *
2963pmap_mapdev(pa, size)
2964	vm_offset_t pa;
2965	vm_size_t size;
2966{
2967	vm_offset_t va, tmpva;
2968	unsigned *pte;
2969
2970	size = roundup(size, PAGE_SIZE);
2971
2972	va = kmem_alloc_pageable(kernel_map, size);
2973	if (!va)
2974		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2975
2976	pa = pa & PG_FRAME;
2977	for (tmpva = va; size > 0;) {
2978		pte = (unsigned *)vtopte(tmpva);
2979		*pte = pa | PG_RW | PG_V | PG_N;
2980		size -= PAGE_SIZE;
2981		tmpva += PAGE_SIZE;
2982		pa += PAGE_SIZE;
2983	}
2984	invltlb();
2985
2986	return ((void *) va);
2987}
2988
2989/*
2990 * perform the pmap work for mincore
2991 */
2992int
2993pmap_mincore(pmap, addr)
2994	pmap_t pmap;
2995	vm_offset_t addr;
2996{
2997
2998	unsigned *ptep, pte;
2999	int val = 0;
3000
3001	ptep = pmap_pte(pmap, addr);
3002	if (ptep == 0) {
3003		return 0;
3004	}
3005
3006	if (pte = *ptep) {
3007		vm_offset_t pa;
3008		val = MINCORE_INCORE;
3009		pa = pte & PG_FRAME;
3010
3011		/*
3012		 * Modified by us
3013		 */
3014		if (pte & PG_M)
3015			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3016		/*
3017		 * Modified by someone
3018		 */
3019		else if (PHYS_TO_VM_PAGE(pa)->dirty ||
3020			pmap_is_modified(pa))
3021			val |= MINCORE_MODIFIED_OTHER;
3022		/*
3023		 * Referenced by us
3024		 */
3025		if (pte & PG_U)
3026			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3027
3028		/*
3029		 * Referenced by someone
3030		 */
3031		else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
3032			pmap_is_referenced(pa))
3033			val |= MINCORE_REFERENCED_OTHER;
3034	}
3035	return val;
3036}
3037
3038#if defined(PMAP_DEBUG)
3039pmap_pid_dump(int pid) {
3040	pmap_t pmap;
3041	struct proc *p;
3042	int npte = 0;
3043	int index;
3044	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
3045		if (p->p_pid != pid)
3046			continue;
3047
3048		if (p->p_vmspace) {
3049			int i,j;
3050			index = 0;
3051			pmap = &p->p_vmspace->vm_pmap;
3052			for(i=0;i<1024;i++) {
3053				pd_entry_t *pde;
3054				unsigned *pte;
3055				unsigned base = i << PDRSHIFT;
3056
3057				pde = &pmap->pm_pdir[i];
3058				if (pde && pmap_pde_v(pde)) {
3059					for(j=0;j<1024;j++) {
3060						unsigned va = base + (j << PAGE_SHIFT);
3061						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3062							if (index) {
3063								index = 0;
3064								printf("\n");
3065							}
3066							return npte;
3067						}
3068						pte = pmap_pte_quick( pmap, va);
3069						if (pte && pmap_pte_v(pte)) {
3070							vm_offset_t pa;
3071							vm_page_t m;
3072							pa = *(int *)pte;
3073							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3074							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3075								va, pa, m->hold_count, m->wire_count, m->flags);
3076							npte++;
3077							index++;
3078							if (index >= 2) {
3079								index = 0;
3080								printf("\n");
3081							} else {
3082								printf(" ");
3083							}
3084						}
3085					}
3086				}
3087			}
3088		}
3089	}
3090	return npte;
3091}
3092#endif
3093
3094#if defined(DEBUG)
3095
3096static void	pads __P((pmap_t pm));
3097static void	pmap_pvdump __P((vm_offset_t pa));
3098
3099/* print address space of pmap*/
3100static void
3101pads(pm)
3102	pmap_t pm;
3103{
3104	unsigned va, i, j;
3105	unsigned *ptep;
3106
3107	if (pm == kernel_pmap)
3108		return;
3109	for (i = 0; i < 1024; i++)
3110		if (pm->pm_pdir[i])
3111			for (j = 0; j < 1024; j++) {
3112				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3113				if (pm == kernel_pmap && va < KERNBASE)
3114					continue;
3115				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3116					continue;
3117				ptep = pmap_pte_quick(pm, va);
3118				if (pmap_pte_v(ptep))
3119					printf("%x:%x ", va, *(int *) ptep);
3120			};
3121
3122}
3123
3124static void
3125pmap_pvdump(pa)
3126	vm_offset_t pa;
3127{
3128	pv_table_t *ppv;
3129	register pv_entry_t pv;
3130
3131	printf("pa %x", pa);
3132	ppv = pa_to_pvh(pa);
3133	for (pv = TAILQ_FIRST(&ppv->pv_list);
3134		pv;
3135		pv = TAILQ_NEXT(pv, pv_list)) {
3136#ifdef used_to_be
3137		printf(" -> pmap %x, va %x, flags %x",
3138		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
3139#endif
3140		printf(" -> pmap %x, va %x",
3141		    pv->pv_pmap, pv->pv_va);
3142		pads(pv->pv_pmap);
3143	}
3144	printf(" ");
3145}
3146#endif
3147