pmap.c revision 194209
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 194209 2009-06-14 19:51:43Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/vm_reserv.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
156#define CPU_ENABLE_SSE
157#endif
158
159#ifndef PMAP_SHPGPERPROC
160#define PMAP_SHPGPERPROC 200
161#endif
162
163#if !defined(DIAGNOSTIC)
164#define PMAP_INLINE	__gnu89_inline
165#else
166#define PMAP_INLINE
167#endif
168
169#define PV_STATS
170#ifdef PV_STATS
171#define PV_STAT(x)	do { x ; } while (0)
172#else
173#define PV_STAT(x)	do { } while (0)
174#endif
175
176#define	pa_index(pa)	((pa) >> PDRSHIFT)
177#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
178
179/*
180 * Get PDEs and PTEs for user/kernel address space
181 */
182#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
183#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
184
185#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
186#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
187#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
188#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
189#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
190
191#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
192    atomic_clear_int((u_int *)(pte), PG_W))
193#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
194
195struct pmap kernel_pmap_store;
196LIST_HEAD(pmaplist, pmap);
197static struct pmaplist allpmaps;
198static struct mtx allpmaps_lock;
199
200vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
201vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
202int pgeflag = 0;		/* PG_G or-in */
203int pseflag = 0;		/* PG_PS or-in */
204
205static int nkpt;
206vm_offset_t kernel_vm_end;
207extern u_int32_t KERNend;
208
209#ifdef PAE
210pt_entry_t pg_nx;
211static uma_zone_t pdptzone;
212#endif
213
214static int pat_works;			/* Is page attribute table sane? */
215
216SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
217
218static int pg_ps_enabled;
219SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
220    "Are large page mappings enabled?");
221
222/*
223 * Data for the pv entry allocation mechanism
224 */
225static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
226static struct md_page *pv_table;
227static int shpgperproc = PMAP_SHPGPERPROC;
228
229struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
230int pv_maxchunks;			/* How many chunks we have KVA for */
231vm_offset_t pv_vafree;			/* freelist stored in the PTE */
232
233/*
234 * All those kernel PT submaps that BSD is so fond of
235 */
236struct sysmaps {
237	struct	mtx lock;
238	pt_entry_t *CMAP1;
239	pt_entry_t *CMAP2;
240	caddr_t	CADDR1;
241	caddr_t	CADDR2;
242};
243static struct sysmaps sysmaps_pcpu[MAXCPU];
244pt_entry_t *CMAP1 = 0;
245static pt_entry_t *CMAP3;
246caddr_t CADDR1 = 0, ptvmmap = 0;
247static caddr_t CADDR3;
248struct msgbuf *msgbufp = 0;
249
250/*
251 * Crashdump maps.
252 */
253static caddr_t crashdumpmap;
254
255static pt_entry_t *PMAP1 = 0, *PMAP2;
256static pt_entry_t *PADDR1 = 0, *PADDR2;
257#ifdef SMP
258static int PMAP1cpu;
259static int PMAP1changedcpu;
260SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
261	   &PMAP1changedcpu, 0,
262	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
263#endif
264static int PMAP1changed;
265SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
266	   &PMAP1changed, 0,
267	   "Number of times pmap_pte_quick changed PMAP1");
268static int PMAP1unchanged;
269SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
270	   &PMAP1unchanged, 0,
271	   "Number of times pmap_pte_quick didn't change PMAP1");
272static struct mtx PMAP2mutex;
273
274static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
275static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
276static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
277static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
278static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
279static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
280static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
281		    vm_offset_t va);
282static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
283
284static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
285static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
286    vm_prot_t prot);
287static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
288    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
289static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
290static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
291static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
292static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
293static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
294static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
295    vm_prot_t prot);
296static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
297    vm_page_t *free);
298static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
299    vm_page_t *free);
300static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
301static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
302    vm_page_t *free);
303static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
304					vm_offset_t va);
305static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
306static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
307    vm_page_t m);
308
309static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
310
311static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
312static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
313static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
314static void pmap_pte_release(pt_entry_t *pte);
315static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
316static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
317#ifdef PAE
318static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
319#endif
320
321CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
322CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
323
324/*
325 * If you get an error here, then you set KVA_PAGES wrong! See the
326 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
327 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
328 */
329CTASSERT(KERNBASE % (1 << 24) == 0);
330
331/*
332 * Move the kernel virtual free pointer to the next
333 * 4MB.  This is used to help improve performance
334 * by using a large (4MB) page for much of the kernel
335 * (.text, .data, .bss)
336 */
337static vm_offset_t
338pmap_kmem_choose(vm_offset_t addr)
339{
340	vm_offset_t newaddr = addr;
341
342#ifndef DISABLE_PSE
343	if (cpu_feature & CPUID_PSE)
344		newaddr = (addr + PDRMASK) & ~PDRMASK;
345#endif
346	return newaddr;
347}
348
349/*
350 *	Bootstrap the system enough to run with virtual memory.
351 *
352 *	On the i386 this is called after mapping has already been enabled
353 *	and just syncs the pmap module with what has already been done.
354 *	[We can't call it easily with mapping off since the kernel is not
355 *	mapped with PA == VA, hence we would have to relocate every address
356 *	from the linked base (virtual) address "KERNBASE" to the actual
357 *	(physical) address starting relative to 0]
358 */
359void
360pmap_bootstrap(vm_paddr_t firstaddr)
361{
362	vm_offset_t va;
363	pt_entry_t *pte, *unused;
364	struct sysmaps *sysmaps;
365	int i;
366
367	/*
368	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
369	 * large. It should instead be correctly calculated in locore.s and
370	 * not based on 'first' (which is a physical address, not a virtual
371	 * address, for the start of unused physical memory). The kernel
372	 * page tables are NOT double mapped and thus should not be included
373	 * in this calculation.
374	 */
375	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
376	virtual_avail = pmap_kmem_choose(virtual_avail);
377
378	virtual_end = VM_MAX_KERNEL_ADDRESS;
379
380	/*
381	 * Initialize the kernel pmap (which is statically allocated).
382	 */
383	PMAP_LOCK_INIT(kernel_pmap);
384	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
385#ifdef PAE
386	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
387#endif
388	kernel_pmap->pm_root = NULL;
389	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
390	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
391	LIST_INIT(&allpmaps);
392	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
393	mtx_lock_spin(&allpmaps_lock);
394	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
395	mtx_unlock_spin(&allpmaps_lock);
396	nkpt = NKPT;
397
398	/*
399	 * Reserve some special page table entries/VA space for temporary
400	 * mapping of pages.
401	 */
402#define	SYSMAP(c, p, v, n)	\
403	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
404
405	va = virtual_avail;
406	pte = vtopte(va);
407
408	/*
409	 * CMAP1/CMAP2 are used for zeroing and copying pages.
410	 * CMAP3 is used for the idle process page zeroing.
411	 */
412	for (i = 0; i < MAXCPU; i++) {
413		sysmaps = &sysmaps_pcpu[i];
414		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
415		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
416		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
417	}
418	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
419	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
420	*CMAP3 = 0;
421
422	/*
423	 * Crashdump maps.
424	 */
425	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
426
427	/*
428	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
429	 */
430	SYSMAP(caddr_t, unused, ptvmmap, 1)
431
432	/*
433	 * msgbufp is used to map the system message buffer.
434	 */
435	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
436
437	/*
438	 * ptemap is used for pmap_pte_quick
439	 */
440	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
441	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
442
443	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
444
445	virtual_avail = va;
446
447	*CMAP1 = 0;
448
449	/*
450	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
451	 * physical memory region that is used by the ACPI wakeup code.  This
452	 * mapping must not have PG_G set.
453	 */
454#ifdef XBOX
455	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
456	 * an early stadium, we cannot yet neatly map video memory ... :-(
457	 * Better fixes are very welcome! */
458	if (!arch_i386_is_xbox)
459#endif
460	for (i = 1; i < NKPT; i++)
461		PTD[i] = 0;
462
463	/* Initialize the PAT MSR if present. */
464	pmap_init_pat();
465
466	/* Turn on PG_G on kernel page(s) */
467	pmap_set_pg();
468}
469
470/*
471 * Setup the PAT MSR.
472 */
473void
474pmap_init_pat(void)
475{
476	uint64_t pat_msr;
477
478	/* Bail if this CPU doesn't implement PAT. */
479	if (!(cpu_feature & CPUID_PAT))
480		return;
481
482	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
483	    (I386_CPU_FAMILY(cpu_id) == 6 && I386_CPU_MODEL(cpu_id) >= 0xe)) {
484		/*
485		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
486		 * Program 4 and 5 as WP and WC.
487		 * Leave 6 and 7 as UC and UC-.
488		 */
489		pat_msr = rdmsr(MSR_PAT);
490		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
491		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
492		    PAT_VALUE(5, PAT_WRITE_COMBINING);
493		pat_works = 1;
494	} else {
495		/*
496		 * Due to some Intel errata, we can only safely use the lower 4
497		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
498		 * of UC-.
499		 *
500		 *   Intel Pentium III Processor Specification Update
501		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
502		 * or Mode C Paging)
503		 *
504		 *   Intel Pentium IV  Processor Specification Update
505		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
506		 */
507		pat_msr = rdmsr(MSR_PAT);
508		pat_msr &= ~PAT_MASK(2);
509		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
510		pat_works = 0;
511	}
512	wrmsr(MSR_PAT, pat_msr);
513}
514
515/*
516 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
517 */
518void
519pmap_set_pg(void)
520{
521	pd_entry_t pdir;
522	pt_entry_t *pte;
523	vm_offset_t va, endva;
524	int i;
525
526	if (pgeflag == 0)
527		return;
528
529	i = KERNLOAD/NBPDR;
530	endva = KERNBASE + KERNend;
531
532	if (pseflag) {
533		va = KERNBASE + KERNLOAD;
534		while (va  < endva) {
535			pdir = kernel_pmap->pm_pdir[KPTDI+i];
536			pdir |= pgeflag;
537			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
538			invltlb();	/* Play it safe, invltlb() every time */
539			i++;
540			va += NBPDR;
541		}
542	} else {
543		va = (vm_offset_t)btext;
544		while (va < endva) {
545			pte = vtopte(va);
546			if (*pte)
547				*pte |= pgeflag;
548			invltlb();	/* Play it safe, invltlb() every time */
549			va += PAGE_SIZE;
550		}
551	}
552}
553
554/*
555 * Initialize a vm_page's machine-dependent fields.
556 */
557void
558pmap_page_init(vm_page_t m)
559{
560
561	TAILQ_INIT(&m->md.pv_list);
562}
563
564#ifdef PAE
565
566static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
567
568static void *
569pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
570{
571
572	/* Inform UMA that this allocator uses kernel_map/object. */
573	*flags = UMA_SLAB_KERNEL;
574	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
575	    1, 0));
576}
577#endif
578
579/*
580 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
581 * Requirements:
582 *  - Must deal with pages in order to ensure that none of the PG_* bits
583 *    are ever set, PG_V in particular.
584 *  - Assumes we can write to ptes without pte_store() atomic ops, even
585 *    on PAE systems.  This should be ok.
586 *  - Assumes nothing will ever test these addresses for 0 to indicate
587 *    no mapping instead of correctly checking PG_V.
588 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
589 * Because PG_V is never set, there can be no mappings to invalidate.
590 */
591static vm_offset_t
592pmap_ptelist_alloc(vm_offset_t *head)
593{
594	pt_entry_t *pte;
595	vm_offset_t va;
596
597	va = *head;
598	if (va == 0)
599		return (va);	/* Out of memory */
600	pte = vtopte(va);
601	*head = *pte;
602	if (*head & PG_V)
603		panic("pmap_ptelist_alloc: va with PG_V set!");
604	*pte = 0;
605	return (va);
606}
607
608static void
609pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
610{
611	pt_entry_t *pte;
612
613	if (va & PG_V)
614		panic("pmap_ptelist_free: freeing va with PG_V set!");
615	pte = vtopte(va);
616	*pte = *head;		/* virtual! PG_V is 0 though */
617	*head = va;
618}
619
620static void
621pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
622{
623	int i;
624	vm_offset_t va;
625
626	*head = 0;
627	for (i = npages - 1; i >= 0; i--) {
628		va = (vm_offset_t)base + i * PAGE_SIZE;
629		pmap_ptelist_free(head, va);
630	}
631}
632
633
634/*
635 *	Initialize the pmap module.
636 *	Called by vm_init, to initialize any structures that the pmap
637 *	system needs to map virtual memory.
638 */
639void
640pmap_init(void)
641{
642	vm_page_t mpte;
643	vm_size_t s;
644	int i, pv_npg;
645
646	/*
647	 * Initialize the vm page array entries for the kernel pmap's
648	 * page table pages.
649	 */
650	for (i = 0; i < nkpt; i++) {
651		mpte = PHYS_TO_VM_PAGE(PTD[i + KPTDI] & PG_FRAME);
652		KASSERT(mpte >= vm_page_array &&
653		    mpte < &vm_page_array[vm_page_array_size],
654		    ("pmap_init: page table page is out of range"));
655		mpte->pindex = i + KPTDI;
656		mpte->phys_addr = PTD[i + KPTDI] & PG_FRAME;
657	}
658
659	/*
660	 * Initialize the address space (zone) for the pv entries.  Set a
661	 * high water mark so that the system can recover from excessive
662	 * numbers of pv entries.
663	 */
664	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
665	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
666	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
667	pv_entry_max = roundup(pv_entry_max, _NPCPV);
668	pv_entry_high_water = 9 * (pv_entry_max / 10);
669
670	/*
671	 * Are large page mappings enabled?
672	 */
673	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
674
675	/*
676	 * Calculate the size of the pv head table for superpages.
677	 */
678	for (i = 0; phys_avail[i + 1]; i += 2);
679	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
680
681	/*
682	 * Allocate memory for the pv head table for superpages.
683	 */
684	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
685	s = round_page(s);
686	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
687	for (i = 0; i < pv_npg; i++)
688		TAILQ_INIT(&pv_table[i].pv_list);
689
690	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
691	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
692	    PAGE_SIZE * pv_maxchunks);
693	if (pv_chunkbase == NULL)
694		panic("pmap_init: not enough kvm for pv chunks");
695	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
696#ifdef PAE
697	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
698	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
699	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
700	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
701#endif
702}
703
704
705SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
706	"Max number of PV entries");
707SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
708	"Page share factor per proc");
709
710SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
711    "2/4MB page mapping counters");
712
713static u_long pmap_pde_demotions;
714SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
715    &pmap_pde_demotions, 0, "2/4MB page demotions");
716
717static u_long pmap_pde_mappings;
718SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
719    &pmap_pde_mappings, 0, "2/4MB page mappings");
720
721static u_long pmap_pde_p_failures;
722SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
723    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
724
725static u_long pmap_pde_promotions;
726SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
727    &pmap_pde_promotions, 0, "2/4MB page promotions");
728
729/***************************************************
730 * Low level helper routines.....
731 ***************************************************/
732
733/*
734 * Determine the appropriate bits to set in a PTE or PDE for a specified
735 * caching mode.
736 */
737static int
738pmap_cache_bits(int mode, boolean_t is_pde)
739{
740	int pat_flag, pat_index, cache_bits;
741
742	/* The PAT bit is different for PTE's and PDE's. */
743	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
744
745	/* If we don't support PAT, map extended modes to older ones. */
746	if (!(cpu_feature & CPUID_PAT)) {
747		switch (mode) {
748		case PAT_UNCACHEABLE:
749		case PAT_WRITE_THROUGH:
750		case PAT_WRITE_BACK:
751			break;
752		case PAT_UNCACHED:
753		case PAT_WRITE_COMBINING:
754		case PAT_WRITE_PROTECTED:
755			mode = PAT_UNCACHEABLE;
756			break;
757		}
758	}
759
760	/* Map the caching mode to a PAT index. */
761	if (pat_works) {
762		switch (mode) {
763		case PAT_UNCACHEABLE:
764			pat_index = 3;
765			break;
766		case PAT_WRITE_THROUGH:
767			pat_index = 1;
768			break;
769		case PAT_WRITE_BACK:
770			pat_index = 0;
771			break;
772		case PAT_UNCACHED:
773			pat_index = 2;
774			break;
775		case PAT_WRITE_COMBINING:
776			pat_index = 5;
777			break;
778		case PAT_WRITE_PROTECTED:
779			pat_index = 4;
780			break;
781		default:
782			panic("Unknown caching mode %d\n", mode);
783		}
784	} else {
785		switch (mode) {
786		case PAT_UNCACHED:
787		case PAT_UNCACHEABLE:
788		case PAT_WRITE_PROTECTED:
789			pat_index = 3;
790			break;
791		case PAT_WRITE_THROUGH:
792			pat_index = 1;
793			break;
794		case PAT_WRITE_BACK:
795			pat_index = 0;
796			break;
797		case PAT_WRITE_COMBINING:
798			pat_index = 2;
799			break;
800		default:
801			panic("Unknown caching mode %d\n", mode);
802		}
803	}
804
805	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
806	cache_bits = 0;
807	if (pat_index & 0x4)
808		cache_bits |= pat_flag;
809	if (pat_index & 0x2)
810		cache_bits |= PG_NC_PCD;
811	if (pat_index & 0x1)
812		cache_bits |= PG_NC_PWT;
813	return (cache_bits);
814}
815#ifdef SMP
816/*
817 * For SMP, these functions have to use the IPI mechanism for coherence.
818 *
819 * N.B.: Before calling any of the following TLB invalidation functions,
820 * the calling processor must ensure that all stores updating a non-
821 * kernel page table are globally performed.  Otherwise, another
822 * processor could cache an old, pre-update entry without being
823 * invalidated.  This can happen one of two ways: (1) The pmap becomes
824 * active on another processor after its pm_active field is checked by
825 * one of the following functions but before a store updating the page
826 * table is globally performed. (2) The pmap becomes active on another
827 * processor before its pm_active field is checked but due to
828 * speculative loads one of the following functions stills reads the
829 * pmap as inactive on the other processor.
830 *
831 * The kernel page table is exempt because its pm_active field is
832 * immutable.  The kernel page table is always active on every
833 * processor.
834 */
835void
836pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
837{
838	u_int cpumask;
839	u_int other_cpus;
840
841	sched_pin();
842	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
843		invlpg(va);
844		smp_invlpg(va);
845	} else {
846		cpumask = PCPU_GET(cpumask);
847		other_cpus = PCPU_GET(other_cpus);
848		if (pmap->pm_active & cpumask)
849			invlpg(va);
850		if (pmap->pm_active & other_cpus)
851			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
852	}
853	sched_unpin();
854}
855
856void
857pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
858{
859	u_int cpumask;
860	u_int other_cpus;
861	vm_offset_t addr;
862
863	sched_pin();
864	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
865		for (addr = sva; addr < eva; addr += PAGE_SIZE)
866			invlpg(addr);
867		smp_invlpg_range(sva, eva);
868	} else {
869		cpumask = PCPU_GET(cpumask);
870		other_cpus = PCPU_GET(other_cpus);
871		if (pmap->pm_active & cpumask)
872			for (addr = sva; addr < eva; addr += PAGE_SIZE)
873				invlpg(addr);
874		if (pmap->pm_active & other_cpus)
875			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
876			    sva, eva);
877	}
878	sched_unpin();
879}
880
881void
882pmap_invalidate_all(pmap_t pmap)
883{
884	u_int cpumask;
885	u_int other_cpus;
886
887	sched_pin();
888	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
889		invltlb();
890		smp_invltlb();
891	} else {
892		cpumask = PCPU_GET(cpumask);
893		other_cpus = PCPU_GET(other_cpus);
894		if (pmap->pm_active & cpumask)
895			invltlb();
896		if (pmap->pm_active & other_cpus)
897			smp_masked_invltlb(pmap->pm_active & other_cpus);
898	}
899	sched_unpin();
900}
901
902void
903pmap_invalidate_cache(void)
904{
905
906	sched_pin();
907	wbinvd();
908	smp_cache_flush();
909	sched_unpin();
910}
911#else /* !SMP */
912/*
913 * Normal, non-SMP, 486+ invalidation functions.
914 * We inline these within pmap.c for speed.
915 */
916PMAP_INLINE void
917pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
918{
919
920	if (pmap == kernel_pmap || pmap->pm_active)
921		invlpg(va);
922}
923
924PMAP_INLINE void
925pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
926{
927	vm_offset_t addr;
928
929	if (pmap == kernel_pmap || pmap->pm_active)
930		for (addr = sva; addr < eva; addr += PAGE_SIZE)
931			invlpg(addr);
932}
933
934PMAP_INLINE void
935pmap_invalidate_all(pmap_t pmap)
936{
937
938	if (pmap == kernel_pmap || pmap->pm_active)
939		invltlb();
940}
941
942PMAP_INLINE void
943pmap_invalidate_cache(void)
944{
945
946	wbinvd();
947}
948#endif /* !SMP */
949
950/*
951 * Are we current address space or kernel?  N.B. We return FALSE when
952 * a pmap's page table is in use because a kernel thread is borrowing
953 * it.  The borrowed page table can change spontaneously, making any
954 * dependence on its continued use subject to a race condition.
955 */
956static __inline int
957pmap_is_current(pmap_t pmap)
958{
959
960	return (pmap == kernel_pmap ||
961		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
962	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
963}
964
965/*
966 * If the given pmap is not the current or kernel pmap, the returned pte must
967 * be released by passing it to pmap_pte_release().
968 */
969pt_entry_t *
970pmap_pte(pmap_t pmap, vm_offset_t va)
971{
972	pd_entry_t newpf;
973	pd_entry_t *pde;
974
975	pde = pmap_pde(pmap, va);
976	if (*pde & PG_PS)
977		return (pde);
978	if (*pde != 0) {
979		/* are we current address space or kernel? */
980		if (pmap_is_current(pmap))
981			return (vtopte(va));
982		mtx_lock(&PMAP2mutex);
983		newpf = *pde & PG_FRAME;
984		if ((*PMAP2 & PG_FRAME) != newpf) {
985			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
986			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
987		}
988		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
989	}
990	return (0);
991}
992
993/*
994 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
995 * being NULL.
996 */
997static __inline void
998pmap_pte_release(pt_entry_t *pte)
999{
1000
1001	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1002		mtx_unlock(&PMAP2mutex);
1003}
1004
1005static __inline void
1006invlcaddr(void *caddr)
1007{
1008
1009	invlpg((u_int)caddr);
1010}
1011
1012/*
1013 * Super fast pmap_pte routine best used when scanning
1014 * the pv lists.  This eliminates many coarse-grained
1015 * invltlb calls.  Note that many of the pv list
1016 * scans are across different pmaps.  It is very wasteful
1017 * to do an entire invltlb for checking a single mapping.
1018 *
1019 * If the given pmap is not the current pmap, vm_page_queue_mtx
1020 * must be held and curthread pinned to a CPU.
1021 */
1022static pt_entry_t *
1023pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1024{
1025	pd_entry_t newpf;
1026	pd_entry_t *pde;
1027
1028	pde = pmap_pde(pmap, va);
1029	if (*pde & PG_PS)
1030		return (pde);
1031	if (*pde != 0) {
1032		/* are we current address space or kernel? */
1033		if (pmap_is_current(pmap))
1034			return (vtopte(va));
1035		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1036		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1037		newpf = *pde & PG_FRAME;
1038		if ((*PMAP1 & PG_FRAME) != newpf) {
1039			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1040#ifdef SMP
1041			PMAP1cpu = PCPU_GET(cpuid);
1042#endif
1043			invlcaddr(PADDR1);
1044			PMAP1changed++;
1045		} else
1046#ifdef SMP
1047		if (PMAP1cpu != PCPU_GET(cpuid)) {
1048			PMAP1cpu = PCPU_GET(cpuid);
1049			invlcaddr(PADDR1);
1050			PMAP1changedcpu++;
1051		} else
1052#endif
1053			PMAP1unchanged++;
1054		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1055	}
1056	return (0);
1057}
1058
1059/*
1060 *	Routine:	pmap_extract
1061 *	Function:
1062 *		Extract the physical page address associated
1063 *		with the given map/virtual_address pair.
1064 */
1065vm_paddr_t
1066pmap_extract(pmap_t pmap, vm_offset_t va)
1067{
1068	vm_paddr_t rtval;
1069	pt_entry_t *pte;
1070	pd_entry_t pde;
1071
1072	rtval = 0;
1073	PMAP_LOCK(pmap);
1074	pde = pmap->pm_pdir[va >> PDRSHIFT];
1075	if (pde != 0) {
1076		if ((pde & PG_PS) != 0)
1077			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1078		else {
1079			pte = pmap_pte(pmap, va);
1080			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1081			pmap_pte_release(pte);
1082		}
1083	}
1084	PMAP_UNLOCK(pmap);
1085	return (rtval);
1086}
1087
1088/*
1089 *	Routine:	pmap_extract_and_hold
1090 *	Function:
1091 *		Atomically extract and hold the physical page
1092 *		with the given pmap and virtual address pair
1093 *		if that mapping permits the given protection.
1094 */
1095vm_page_t
1096pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1097{
1098	pd_entry_t pde;
1099	pt_entry_t pte;
1100	vm_page_t m;
1101
1102	m = NULL;
1103	vm_page_lock_queues();
1104	PMAP_LOCK(pmap);
1105	pde = *pmap_pde(pmap, va);
1106	if (pde != 0) {
1107		if (pde & PG_PS) {
1108			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1109				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1110				    (va & PDRMASK));
1111				vm_page_hold(m);
1112			}
1113		} else {
1114			sched_pin();
1115			pte = *pmap_pte_quick(pmap, va);
1116			if (pte != 0 &&
1117			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1118				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1119				vm_page_hold(m);
1120			}
1121			sched_unpin();
1122		}
1123	}
1124	vm_page_unlock_queues();
1125	PMAP_UNLOCK(pmap);
1126	return (m);
1127}
1128
1129/***************************************************
1130 * Low level mapping routines.....
1131 ***************************************************/
1132
1133/*
1134 * Add a wired page to the kva.
1135 * Note: not SMP coherent.
1136 */
1137PMAP_INLINE void
1138pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1139{
1140	pt_entry_t *pte;
1141
1142	pte = vtopte(va);
1143	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1144}
1145
1146static __inline void
1147pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1148{
1149	pt_entry_t *pte;
1150
1151	pte = vtopte(va);
1152	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1153}
1154
1155/*
1156 * Remove a page from the kernel pagetables.
1157 * Note: not SMP coherent.
1158 */
1159PMAP_INLINE void
1160pmap_kremove(vm_offset_t va)
1161{
1162	pt_entry_t *pte;
1163
1164	pte = vtopte(va);
1165	pte_clear(pte);
1166}
1167
1168/*
1169 *	Used to map a range of physical addresses into kernel
1170 *	virtual address space.
1171 *
1172 *	The value passed in '*virt' is a suggested virtual address for
1173 *	the mapping. Architectures which can support a direct-mapped
1174 *	physical to virtual region can return the appropriate address
1175 *	within that region, leaving '*virt' unchanged. Other
1176 *	architectures should map the pages starting at '*virt' and
1177 *	update '*virt' with the first usable address after the mapped
1178 *	region.
1179 */
1180vm_offset_t
1181pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1182{
1183	vm_offset_t va, sva;
1184
1185	va = sva = *virt;
1186	while (start < end) {
1187		pmap_kenter(va, start);
1188		va += PAGE_SIZE;
1189		start += PAGE_SIZE;
1190	}
1191	pmap_invalidate_range(kernel_pmap, sva, va);
1192	*virt = va;
1193	return (sva);
1194}
1195
1196
1197/*
1198 * Add a list of wired pages to the kva
1199 * this routine is only used for temporary
1200 * kernel mappings that do not need to have
1201 * page modification or references recorded.
1202 * Note that old mappings are simply written
1203 * over.  The page *must* be wired.
1204 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1205 */
1206void
1207pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1208{
1209	pt_entry_t *endpte, oldpte, *pte;
1210
1211	oldpte = 0;
1212	pte = vtopte(sva);
1213	endpte = pte + count;
1214	while (pte < endpte) {
1215		oldpte |= *pte;
1216		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1217		pte++;
1218		ma++;
1219	}
1220	if ((oldpte & PG_V) != 0)
1221		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1222		    PAGE_SIZE);
1223}
1224
1225/*
1226 * This routine tears out page mappings from the
1227 * kernel -- it is meant only for temporary mappings.
1228 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1229 */
1230void
1231pmap_qremove(vm_offset_t sva, int count)
1232{
1233	vm_offset_t va;
1234
1235	va = sva;
1236	while (count-- > 0) {
1237		pmap_kremove(va);
1238		va += PAGE_SIZE;
1239	}
1240	pmap_invalidate_range(kernel_pmap, sva, va);
1241}
1242
1243/***************************************************
1244 * Page table page management routines.....
1245 ***************************************************/
1246static __inline void
1247pmap_free_zero_pages(vm_page_t free)
1248{
1249	vm_page_t m;
1250
1251	while (free != NULL) {
1252		m = free;
1253		free = m->right;
1254		/* Preserve the page's PG_ZERO setting. */
1255		vm_page_free_toq(m);
1256	}
1257}
1258
1259/*
1260 * Schedule the specified unused page table page to be freed.  Specifically,
1261 * add the page to the specified list of pages that will be released to the
1262 * physical memory manager after the TLB has been updated.
1263 */
1264static __inline void
1265pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1266{
1267
1268	if (set_PG_ZERO)
1269		m->flags |= PG_ZERO;
1270	else
1271		m->flags &= ~PG_ZERO;
1272	m->right = *free;
1273	*free = m;
1274}
1275
1276/*
1277 * Inserts the specified page table page into the specified pmap's collection
1278 * of idle page table pages.  Each of a pmap's page table pages is responsible
1279 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1280 * ordered by this virtual address range.
1281 */
1282static void
1283pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1284{
1285	vm_page_t root;
1286
1287	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1288	root = pmap->pm_root;
1289	if (root == NULL) {
1290		mpte->left = NULL;
1291		mpte->right = NULL;
1292	} else {
1293		root = vm_page_splay(mpte->pindex, root);
1294		if (mpte->pindex < root->pindex) {
1295			mpte->left = root->left;
1296			mpte->right = root;
1297			root->left = NULL;
1298		} else if (mpte->pindex == root->pindex)
1299			panic("pmap_insert_pt_page: pindex already inserted");
1300		else {
1301			mpte->right = root->right;
1302			mpte->left = root;
1303			root->right = NULL;
1304		}
1305	}
1306	pmap->pm_root = mpte;
1307}
1308
1309/*
1310 * Looks for a page table page mapping the specified virtual address in the
1311 * specified pmap's collection of idle page table pages.  Returns NULL if there
1312 * is no page table page corresponding to the specified virtual address.
1313 */
1314static vm_page_t
1315pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1316{
1317	vm_page_t mpte;
1318	vm_pindex_t pindex = va >> PDRSHIFT;
1319
1320	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1321	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1322		mpte = vm_page_splay(pindex, mpte);
1323		if ((pmap->pm_root = mpte)->pindex != pindex)
1324			mpte = NULL;
1325	}
1326	return (mpte);
1327}
1328
1329/*
1330 * Removes the specified page table page from the specified pmap's collection
1331 * of idle page table pages.  The specified page table page must be a member of
1332 * the pmap's collection.
1333 */
1334static void
1335pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1336{
1337	vm_page_t root;
1338
1339	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1340	if (mpte != pmap->pm_root)
1341		vm_page_splay(mpte->pindex, pmap->pm_root);
1342	if (mpte->left == NULL)
1343		root = mpte->right;
1344	else {
1345		root = vm_page_splay(mpte->pindex, mpte->left);
1346		root->right = mpte->right;
1347	}
1348	pmap->pm_root = root;
1349}
1350
1351/*
1352 * This routine unholds page table pages, and if the hold count
1353 * drops to zero, then it decrements the wire count.
1354 */
1355static __inline int
1356pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1357{
1358
1359	--m->wire_count;
1360	if (m->wire_count == 0)
1361		return _pmap_unwire_pte_hold(pmap, m, free);
1362	else
1363		return 0;
1364}
1365
1366static int
1367_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1368{
1369	vm_offset_t pteva;
1370
1371	/*
1372	 * unmap the page table page
1373	 */
1374	pmap->pm_pdir[m->pindex] = 0;
1375	--pmap->pm_stats.resident_count;
1376
1377	/*
1378	 * This is a release store so that the ordinary store unmapping
1379	 * the page table page is globally performed before TLB shoot-
1380	 * down is begun.
1381	 */
1382	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1383
1384	/*
1385	 * Do an invltlb to make the invalidated mapping
1386	 * take effect immediately.
1387	 */
1388	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1389	pmap_invalidate_page(pmap, pteva);
1390
1391	/*
1392	 * Put page on a list so that it is released after
1393	 * *ALL* TLB shootdown is done
1394	 */
1395	pmap_add_delayed_free_list(m, free, TRUE);
1396
1397	return 1;
1398}
1399
1400/*
1401 * After removing a page table entry, this routine is used to
1402 * conditionally free the page, and manage the hold/wire counts.
1403 */
1404static int
1405pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1406{
1407	pd_entry_t ptepde;
1408	vm_page_t mpte;
1409
1410	if (va >= VM_MAXUSER_ADDRESS)
1411		return 0;
1412	ptepde = *pmap_pde(pmap, va);
1413	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1414	return pmap_unwire_pte_hold(pmap, mpte, free);
1415}
1416
1417void
1418pmap_pinit0(pmap_t pmap)
1419{
1420
1421	PMAP_LOCK_INIT(pmap);
1422	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1423#ifdef PAE
1424	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1425#endif
1426	pmap->pm_root = NULL;
1427	pmap->pm_active = 0;
1428	PCPU_SET(curpmap, pmap);
1429	TAILQ_INIT(&pmap->pm_pvchunk);
1430	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1431	mtx_lock_spin(&allpmaps_lock);
1432	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1433	mtx_unlock_spin(&allpmaps_lock);
1434}
1435
1436/*
1437 * Initialize a preallocated and zeroed pmap structure,
1438 * such as one in a vmspace structure.
1439 */
1440int
1441pmap_pinit(pmap_t pmap)
1442{
1443	vm_page_t m, ptdpg[NPGPTD];
1444	vm_paddr_t pa;
1445	static int color;
1446	int i;
1447
1448	PMAP_LOCK_INIT(pmap);
1449
1450	/*
1451	 * No need to allocate page table space yet but we do need a valid
1452	 * page directory table.
1453	 */
1454	if (pmap->pm_pdir == NULL) {
1455		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1456		    NBPTD);
1457
1458		if (pmap->pm_pdir == NULL) {
1459			PMAP_LOCK_DESTROY(pmap);
1460			return (0);
1461		}
1462#ifdef PAE
1463		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1464		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1465		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1466		    ("pmap_pinit: pdpt misaligned"));
1467		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1468		    ("pmap_pinit: pdpt above 4g"));
1469#endif
1470		pmap->pm_root = NULL;
1471	}
1472	KASSERT(pmap->pm_root == NULL,
1473	    ("pmap_pinit: pmap has reserved page table page(s)"));
1474
1475	/*
1476	 * allocate the page directory page(s)
1477	 */
1478	for (i = 0; i < NPGPTD;) {
1479		m = vm_page_alloc(NULL, color++,
1480		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1481		    VM_ALLOC_ZERO);
1482		if (m == NULL)
1483			VM_WAIT;
1484		else {
1485			ptdpg[i++] = m;
1486		}
1487	}
1488
1489	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1490
1491	for (i = 0; i < NPGPTD; i++) {
1492		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1493			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1494	}
1495
1496	mtx_lock_spin(&allpmaps_lock);
1497	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1498	mtx_unlock_spin(&allpmaps_lock);
1499	/* Wire in kernel global address entries. */
1500	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1501
1502	/* install self-referential address mapping entry(s) */
1503	for (i = 0; i < NPGPTD; i++) {
1504		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1505		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1506#ifdef PAE
1507		pmap->pm_pdpt[i] = pa | PG_V;
1508#endif
1509	}
1510
1511	pmap->pm_active = 0;
1512	TAILQ_INIT(&pmap->pm_pvchunk);
1513	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1514
1515	return (1);
1516}
1517
1518/*
1519 * this routine is called if the page table page is not
1520 * mapped correctly.
1521 */
1522static vm_page_t
1523_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1524{
1525	vm_paddr_t ptepa;
1526	vm_page_t m;
1527
1528	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1529	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1530	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1531
1532	/*
1533	 * Allocate a page table page.
1534	 */
1535	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1536	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1537		if (flags & M_WAITOK) {
1538			PMAP_UNLOCK(pmap);
1539			vm_page_unlock_queues();
1540			VM_WAIT;
1541			vm_page_lock_queues();
1542			PMAP_LOCK(pmap);
1543		}
1544
1545		/*
1546		 * Indicate the need to retry.  While waiting, the page table
1547		 * page may have been allocated.
1548		 */
1549		return (NULL);
1550	}
1551	if ((m->flags & PG_ZERO) == 0)
1552		pmap_zero_page(m);
1553
1554	/*
1555	 * Map the pagetable page into the process address space, if
1556	 * it isn't already there.
1557	 */
1558
1559	pmap->pm_stats.resident_count++;
1560
1561	ptepa = VM_PAGE_TO_PHYS(m);
1562	pmap->pm_pdir[ptepindex] =
1563		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1564
1565	return m;
1566}
1567
1568static vm_page_t
1569pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1570{
1571	unsigned ptepindex;
1572	pd_entry_t ptepa;
1573	vm_page_t m;
1574
1575	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1576	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1577	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1578
1579	/*
1580	 * Calculate pagetable page index
1581	 */
1582	ptepindex = va >> PDRSHIFT;
1583retry:
1584	/*
1585	 * Get the page directory entry
1586	 */
1587	ptepa = pmap->pm_pdir[ptepindex];
1588
1589	/*
1590	 * This supports switching from a 4MB page to a
1591	 * normal 4K page.
1592	 */
1593	if (ptepa & PG_PS) {
1594		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1595		ptepa = pmap->pm_pdir[ptepindex];
1596	}
1597
1598	/*
1599	 * If the page table page is mapped, we just increment the
1600	 * hold count, and activate it.
1601	 */
1602	if (ptepa) {
1603		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1604		m->wire_count++;
1605	} else {
1606		/*
1607		 * Here if the pte page isn't mapped, or if it has
1608		 * been deallocated.
1609		 */
1610		m = _pmap_allocpte(pmap, ptepindex, flags);
1611		if (m == NULL && (flags & M_WAITOK))
1612			goto retry;
1613	}
1614	return (m);
1615}
1616
1617
1618/***************************************************
1619* Pmap allocation/deallocation routines.
1620 ***************************************************/
1621
1622#ifdef SMP
1623/*
1624 * Deal with a SMP shootdown of other users of the pmap that we are
1625 * trying to dispose of.  This can be a bit hairy.
1626 */
1627static cpumask_t *lazymask;
1628static u_int lazyptd;
1629static volatile u_int lazywait;
1630
1631void pmap_lazyfix_action(void);
1632
1633void
1634pmap_lazyfix_action(void)
1635{
1636	cpumask_t mymask = PCPU_GET(cpumask);
1637
1638#ifdef COUNT_IPIS
1639	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1640#endif
1641	if (rcr3() == lazyptd)
1642		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1643	atomic_clear_int(lazymask, mymask);
1644	atomic_store_rel_int(&lazywait, 1);
1645}
1646
1647static void
1648pmap_lazyfix_self(cpumask_t mymask)
1649{
1650
1651	if (rcr3() == lazyptd)
1652		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1653	atomic_clear_int(lazymask, mymask);
1654}
1655
1656
1657static void
1658pmap_lazyfix(pmap_t pmap)
1659{
1660	cpumask_t mymask, mask;
1661	u_int spins;
1662
1663	while ((mask = pmap->pm_active) != 0) {
1664		spins = 50000000;
1665		mask = mask & -mask;	/* Find least significant set bit */
1666		mtx_lock_spin(&smp_ipi_mtx);
1667#ifdef PAE
1668		lazyptd = vtophys(pmap->pm_pdpt);
1669#else
1670		lazyptd = vtophys(pmap->pm_pdir);
1671#endif
1672		mymask = PCPU_GET(cpumask);
1673		if (mask == mymask) {
1674			lazymask = &pmap->pm_active;
1675			pmap_lazyfix_self(mymask);
1676		} else {
1677			atomic_store_rel_int((u_int *)&lazymask,
1678			    (u_int)&pmap->pm_active);
1679			atomic_store_rel_int(&lazywait, 0);
1680			ipi_selected(mask, IPI_LAZYPMAP);
1681			while (lazywait == 0) {
1682				ia32_pause();
1683				if (--spins == 0)
1684					break;
1685			}
1686		}
1687		mtx_unlock_spin(&smp_ipi_mtx);
1688		if (spins == 0)
1689			printf("pmap_lazyfix: spun for 50000000\n");
1690	}
1691}
1692
1693#else	/* SMP */
1694
1695/*
1696 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1697 * unlikely to have to even execute this code, including the fact
1698 * that the cleanup is deferred until the parent does a wait(2), which
1699 * means that another userland process has run.
1700 */
1701static void
1702pmap_lazyfix(pmap_t pmap)
1703{
1704	u_int cr3;
1705
1706	cr3 = vtophys(pmap->pm_pdir);
1707	if (cr3 == rcr3()) {
1708		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1709		pmap->pm_active &= ~(PCPU_GET(cpumask));
1710	}
1711}
1712#endif	/* SMP */
1713
1714/*
1715 * Release any resources held by the given physical map.
1716 * Called when a pmap initialized by pmap_pinit is being released.
1717 * Should only be called if the map contains no valid mappings.
1718 */
1719void
1720pmap_release(pmap_t pmap)
1721{
1722	vm_page_t m, ptdpg[NPGPTD];
1723	int i;
1724
1725	KASSERT(pmap->pm_stats.resident_count == 0,
1726	    ("pmap_release: pmap resident count %ld != 0",
1727	    pmap->pm_stats.resident_count));
1728	KASSERT(pmap->pm_root == NULL,
1729	    ("pmap_release: pmap has reserved page table page(s)"));
1730
1731	pmap_lazyfix(pmap);
1732	mtx_lock_spin(&allpmaps_lock);
1733	LIST_REMOVE(pmap, pm_list);
1734	mtx_unlock_spin(&allpmaps_lock);
1735
1736	for (i = 0; i < NPGPTD; i++)
1737		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1738		    PG_FRAME);
1739
1740	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1741	    sizeof(*pmap->pm_pdir));
1742
1743	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1744
1745	for (i = 0; i < NPGPTD; i++) {
1746		m = ptdpg[i];
1747#ifdef PAE
1748		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1749		    ("pmap_release: got wrong ptd page"));
1750#endif
1751		m->wire_count--;
1752		atomic_subtract_int(&cnt.v_wire_count, 1);
1753		vm_page_free_zero(m);
1754	}
1755	PMAP_LOCK_DESTROY(pmap);
1756}
1757
1758static int
1759kvm_size(SYSCTL_HANDLER_ARGS)
1760{
1761	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1762
1763	return sysctl_handle_long(oidp, &ksize, 0, req);
1764}
1765SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1766    0, 0, kvm_size, "IU", "Size of KVM");
1767
1768static int
1769kvm_free(SYSCTL_HANDLER_ARGS)
1770{
1771	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1772
1773	return sysctl_handle_long(oidp, &kfree, 0, req);
1774}
1775SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1776    0, 0, kvm_free, "IU", "Amount of KVM free");
1777
1778/*
1779 * grow the number of kernel page table entries, if needed
1780 */
1781void
1782pmap_growkernel(vm_offset_t addr)
1783{
1784	struct pmap *pmap;
1785	vm_paddr_t ptppaddr;
1786	vm_page_t nkpg;
1787	pd_entry_t newpdir;
1788	pt_entry_t *pde;
1789
1790	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1791	if (kernel_vm_end == 0) {
1792		kernel_vm_end = KERNBASE;
1793		nkpt = 0;
1794		while (pdir_pde(PTD, kernel_vm_end)) {
1795			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1796			nkpt++;
1797			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1798				kernel_vm_end = kernel_map->max_offset;
1799				break;
1800			}
1801		}
1802	}
1803	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1804	if (addr - 1 >= kernel_map->max_offset)
1805		addr = kernel_map->max_offset;
1806	while (kernel_vm_end < addr) {
1807		if (pdir_pde(PTD, kernel_vm_end)) {
1808			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1809			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1810				kernel_vm_end = kernel_map->max_offset;
1811				break;
1812			}
1813			continue;
1814		}
1815
1816		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1817		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1818		    VM_ALLOC_ZERO);
1819		if (nkpg == NULL)
1820			panic("pmap_growkernel: no memory to grow kernel");
1821
1822		nkpt++;
1823
1824		if ((nkpg->flags & PG_ZERO) == 0)
1825			pmap_zero_page(nkpg);
1826		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1827		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1828		pdir_pde(PTD, kernel_vm_end) = newpdir;
1829
1830		mtx_lock_spin(&allpmaps_lock);
1831		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1832			pde = pmap_pde(pmap, kernel_vm_end);
1833			pde_store(pde, newpdir);
1834		}
1835		mtx_unlock_spin(&allpmaps_lock);
1836		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1837		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1838			kernel_vm_end = kernel_map->max_offset;
1839			break;
1840		}
1841	}
1842}
1843
1844
1845/***************************************************
1846 * page management routines.
1847 ***************************************************/
1848
1849CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1850CTASSERT(_NPCM == 11);
1851
1852static __inline struct pv_chunk *
1853pv_to_chunk(pv_entry_t pv)
1854{
1855
1856	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1857}
1858
1859#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1860
1861#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1862#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1863
1864static uint32_t pc_freemask[11] = {
1865	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1866	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1867	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1868	PC_FREE0_9, PC_FREE10
1869};
1870
1871SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1872	"Current number of pv entries");
1873
1874#ifdef PV_STATS
1875static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1876
1877SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1878	"Current number of pv entry chunks");
1879SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1880	"Current number of pv entry chunks allocated");
1881SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1882	"Current number of pv entry chunks frees");
1883SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1884	"Number of times tried to get a chunk page but failed.");
1885
1886static long pv_entry_frees, pv_entry_allocs;
1887static int pv_entry_spare;
1888
1889SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1890	"Current number of pv entry frees");
1891SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1892	"Current number of pv entry allocs");
1893SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1894	"Current number of spare pv entries");
1895
1896static int pmap_collect_inactive, pmap_collect_active;
1897
1898SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1899	"Current number times pmap_collect called on inactive queue");
1900SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1901	"Current number times pmap_collect called on active queue");
1902#endif
1903
1904/*
1905 * We are in a serious low memory condition.  Resort to
1906 * drastic measures to free some pages so we can allocate
1907 * another pv entry chunk.  This is normally called to
1908 * unmap inactive pages, and if necessary, active pages.
1909 */
1910static void
1911pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1912{
1913	struct md_page *pvh;
1914	pd_entry_t *pde;
1915	pmap_t pmap;
1916	pt_entry_t *pte, tpte;
1917	pv_entry_t next_pv, pv;
1918	vm_offset_t va;
1919	vm_page_t m, free;
1920
1921	sched_pin();
1922	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1923		if (m->hold_count || m->busy)
1924			continue;
1925		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1926			va = pv->pv_va;
1927			pmap = PV_PMAP(pv);
1928			/* Avoid deadlock and lock recursion. */
1929			if (pmap > locked_pmap)
1930				PMAP_LOCK(pmap);
1931			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1932				continue;
1933			pmap->pm_stats.resident_count--;
1934			pde = pmap_pde(pmap, va);
1935			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
1936			    " a 4mpage in page %p's pv list", m));
1937			pte = pmap_pte_quick(pmap, va);
1938			tpte = pte_load_clear(pte);
1939			KASSERT((tpte & PG_W) == 0,
1940			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1941			if (tpte & PG_A)
1942				vm_page_flag_set(m, PG_REFERENCED);
1943			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1944				vm_page_dirty(m);
1945			free = NULL;
1946			pmap_unuse_pt(pmap, va, &free);
1947			pmap_invalidate_page(pmap, va);
1948			pmap_free_zero_pages(free);
1949			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1950			if (TAILQ_EMPTY(&m->md.pv_list)) {
1951				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1952				if (TAILQ_EMPTY(&pvh->pv_list))
1953					vm_page_flag_clear(m, PG_WRITEABLE);
1954			}
1955			free_pv_entry(pmap, pv);
1956			if (pmap != locked_pmap)
1957				PMAP_UNLOCK(pmap);
1958		}
1959	}
1960	sched_unpin();
1961}
1962
1963
1964/*
1965 * free the pv_entry back to the free list
1966 */
1967static void
1968free_pv_entry(pmap_t pmap, pv_entry_t pv)
1969{
1970	vm_page_t m;
1971	struct pv_chunk *pc;
1972	int idx, field, bit;
1973
1974	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1975	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1976	PV_STAT(pv_entry_frees++);
1977	PV_STAT(pv_entry_spare++);
1978	pv_entry_count--;
1979	pc = pv_to_chunk(pv);
1980	idx = pv - &pc->pc_pventry[0];
1981	field = idx / 32;
1982	bit = idx % 32;
1983	pc->pc_map[field] |= 1ul << bit;
1984	/* move to head of list */
1985	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1986	for (idx = 0; idx < _NPCM; idx++)
1987		if (pc->pc_map[idx] != pc_freemask[idx]) {
1988			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1989			return;
1990		}
1991	PV_STAT(pv_entry_spare -= _NPCPV);
1992	PV_STAT(pc_chunk_count--);
1993	PV_STAT(pc_chunk_frees++);
1994	/* entire chunk is free, return it */
1995	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1996	pmap_qremove((vm_offset_t)pc, 1);
1997	vm_page_unwire(m, 0);
1998	vm_page_free(m);
1999	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2000}
2001
2002/*
2003 * get a new pv_entry, allocating a block from the system
2004 * when needed.
2005 */
2006static pv_entry_t
2007get_pv_entry(pmap_t pmap, int try)
2008{
2009	static const struct timeval printinterval = { 60, 0 };
2010	static struct timeval lastprint;
2011	static vm_pindex_t colour;
2012	struct vpgqueues *pq;
2013	int bit, field;
2014	pv_entry_t pv;
2015	struct pv_chunk *pc;
2016	vm_page_t m;
2017
2018	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2019	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2020	PV_STAT(pv_entry_allocs++);
2021	pv_entry_count++;
2022	if (pv_entry_count > pv_entry_high_water)
2023		if (ratecheck(&lastprint, &printinterval))
2024			printf("Approaching the limit on PV entries, consider "
2025			    "increasing either the vm.pmap.shpgperproc or the "
2026			    "vm.pmap.pv_entry_max tunable.\n");
2027	pq = NULL;
2028retry:
2029	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2030	if (pc != NULL) {
2031		for (field = 0; field < _NPCM; field++) {
2032			if (pc->pc_map[field]) {
2033				bit = bsfl(pc->pc_map[field]);
2034				break;
2035			}
2036		}
2037		if (field < _NPCM) {
2038			pv = &pc->pc_pventry[field * 32 + bit];
2039			pc->pc_map[field] &= ~(1ul << bit);
2040			/* If this was the last item, move it to tail */
2041			for (field = 0; field < _NPCM; field++)
2042				if (pc->pc_map[field] != 0) {
2043					PV_STAT(pv_entry_spare--);
2044					return (pv);	/* not full, return */
2045				}
2046			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2047			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2048			PV_STAT(pv_entry_spare--);
2049			return (pv);
2050		}
2051	}
2052	/*
2053	 * Access to the ptelist "pv_vafree" is synchronized by the page
2054	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2055	 * remain non-empty until pmap_ptelist_alloc() completes.
2056	 */
2057	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2058	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2059	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2060		if (try) {
2061			pv_entry_count--;
2062			PV_STAT(pc_chunk_tryfail++);
2063			return (NULL);
2064		}
2065		/*
2066		 * Reclaim pv entries: At first, destroy mappings to
2067		 * inactive pages.  After that, if a pv chunk entry
2068		 * is still needed, destroy mappings to active pages.
2069		 */
2070		if (pq == NULL) {
2071			PV_STAT(pmap_collect_inactive++);
2072			pq = &vm_page_queues[PQ_INACTIVE];
2073		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2074			PV_STAT(pmap_collect_active++);
2075			pq = &vm_page_queues[PQ_ACTIVE];
2076		} else
2077			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2078		pmap_collect(pmap, pq);
2079		goto retry;
2080	}
2081	PV_STAT(pc_chunk_count++);
2082	PV_STAT(pc_chunk_allocs++);
2083	colour++;
2084	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2085	pmap_qenter((vm_offset_t)pc, &m, 1);
2086	pc->pc_pmap = pmap;
2087	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2088	for (field = 1; field < _NPCM; field++)
2089		pc->pc_map[field] = pc_freemask[field];
2090	pv = &pc->pc_pventry[0];
2091	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2092	PV_STAT(pv_entry_spare += _NPCPV - 1);
2093	return (pv);
2094}
2095
2096static __inline pv_entry_t
2097pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2098{
2099	pv_entry_t pv;
2100
2101	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2102	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2103		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2104			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2105			break;
2106		}
2107	}
2108	return (pv);
2109}
2110
2111static void
2112pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2113{
2114	struct md_page *pvh;
2115	pv_entry_t pv;
2116	vm_offset_t va_last;
2117	vm_page_t m;
2118
2119	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2120	KASSERT((pa & PDRMASK) == 0,
2121	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2122
2123	/*
2124	 * Transfer the 4mpage's pv entry for this mapping to the first
2125	 * page's pv list.
2126	 */
2127	pvh = pa_to_pvh(pa);
2128	va = trunc_4mpage(va);
2129	pv = pmap_pvh_remove(pvh, pmap, va);
2130	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2131	m = PHYS_TO_VM_PAGE(pa);
2132	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2133	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2134	va_last = va + NBPDR - PAGE_SIZE;
2135	do {
2136		m++;
2137		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2138		    ("pmap_pv_demote_pde: page %p is not managed", m));
2139		va += PAGE_SIZE;
2140		pmap_insert_entry(pmap, va, m);
2141	} while (va < va_last);
2142}
2143
2144static void
2145pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2146{
2147	struct md_page *pvh;
2148	pv_entry_t pv;
2149	vm_offset_t va_last;
2150	vm_page_t m;
2151
2152	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2153	KASSERT((pa & PDRMASK) == 0,
2154	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2155
2156	/*
2157	 * Transfer the first page's pv entry for this mapping to the
2158	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2159	 * to get_pv_entry(), a transfer avoids the possibility that
2160	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2161	 * removes one of the mappings that is being promoted.
2162	 */
2163	m = PHYS_TO_VM_PAGE(pa);
2164	va = trunc_4mpage(va);
2165	pv = pmap_pvh_remove(&m->md, pmap, va);
2166	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2167	pvh = pa_to_pvh(pa);
2168	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2169	/* Free the remaining NPTEPG - 1 pv entries. */
2170	va_last = va + NBPDR - PAGE_SIZE;
2171	do {
2172		m++;
2173		va += PAGE_SIZE;
2174		pmap_pvh_free(&m->md, pmap, va);
2175	} while (va < va_last);
2176}
2177
2178static void
2179pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2180{
2181	pv_entry_t pv;
2182
2183	pv = pmap_pvh_remove(pvh, pmap, va);
2184	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2185	free_pv_entry(pmap, pv);
2186}
2187
2188static void
2189pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2190{
2191	struct md_page *pvh;
2192
2193	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2194	pmap_pvh_free(&m->md, pmap, va);
2195	if (TAILQ_EMPTY(&m->md.pv_list)) {
2196		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2197		if (TAILQ_EMPTY(&pvh->pv_list))
2198			vm_page_flag_clear(m, PG_WRITEABLE);
2199	}
2200}
2201
2202/*
2203 * Create a pv entry for page at pa for
2204 * (pmap, va).
2205 */
2206static void
2207pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2208{
2209	pv_entry_t pv;
2210
2211	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2212	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2213	pv = get_pv_entry(pmap, FALSE);
2214	pv->pv_va = va;
2215	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2216}
2217
2218/*
2219 * Conditionally create a pv entry.
2220 */
2221static boolean_t
2222pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2223{
2224	pv_entry_t pv;
2225
2226	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2227	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2228	if (pv_entry_count < pv_entry_high_water &&
2229	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2230		pv->pv_va = va;
2231		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2232		return (TRUE);
2233	} else
2234		return (FALSE);
2235}
2236
2237/*
2238 * Create the pv entries for each of the pages within a superpage.
2239 */
2240static boolean_t
2241pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2242{
2243	struct md_page *pvh;
2244	pv_entry_t pv;
2245
2246	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2247	if (pv_entry_count < pv_entry_high_water &&
2248	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2249		pv->pv_va = va;
2250		pvh = pa_to_pvh(pa);
2251		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2252		return (TRUE);
2253	} else
2254		return (FALSE);
2255}
2256
2257/*
2258 * Tries to demote a 2- or 4MB page mapping.
2259 */
2260static boolean_t
2261pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2262{
2263	pd_entry_t newpde, oldpde;
2264	pmap_t allpmaps_entry;
2265	pt_entry_t *firstpte, newpte, *pte;
2266	vm_paddr_t mptepa;
2267	vm_page_t free, mpte;
2268
2269	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2270	mpte = pmap_lookup_pt_page(pmap, va);
2271	if (mpte != NULL)
2272		pmap_remove_pt_page(pmap, mpte);
2273	else {
2274		KASSERT((*pde & PG_W) == 0,
2275		    ("pmap_demote_pde: page table page for a wired mapping"
2276		    " is missing"));
2277		free = NULL;
2278		pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2279		pmap_invalidate_page(pmap, trunc_4mpage(va));
2280		pmap_free_zero_pages(free);
2281		CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2282		    " in pmap %p", va, pmap);
2283		return (FALSE);
2284	}
2285	mptepa = VM_PAGE_TO_PHYS(mpte);
2286
2287	/*
2288	 * Temporarily map the page table page (mpte) into the kernel's
2289	 * address space at either PADDR1 or PADDR2.
2290	 */
2291	if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2292		if ((*PMAP1 & PG_FRAME) != mptepa) {
2293			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2294#ifdef SMP
2295			PMAP1cpu = PCPU_GET(cpuid);
2296#endif
2297			invlcaddr(PADDR1);
2298			PMAP1changed++;
2299		} else
2300#ifdef SMP
2301		if (PMAP1cpu != PCPU_GET(cpuid)) {
2302			PMAP1cpu = PCPU_GET(cpuid);
2303			invlcaddr(PADDR1);
2304			PMAP1changedcpu++;
2305		} else
2306#endif
2307			PMAP1unchanged++;
2308		firstpte = PADDR1;
2309	} else {
2310		mtx_lock(&PMAP2mutex);
2311		if ((*PMAP2 & PG_FRAME) != mptepa) {
2312			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2313			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2314		}
2315		firstpte = PADDR2;
2316	}
2317	oldpde = *pde;
2318	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2319	KASSERT((oldpde & (PG_A | PG_V)) == (PG_A | PG_V),
2320	    ("pmap_demote_pde: oldpde is missing PG_A and/or PG_V"));
2321	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2322	    ("pmap_demote_pde: oldpde is missing PG_M"));
2323	KASSERT((oldpde & PG_PS) != 0,
2324	    ("pmap_demote_pde: oldpde is missing PG_PS"));
2325	newpte = oldpde & ~PG_PS;
2326	if ((newpte & PG_PDE_PAT) != 0)
2327		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2328
2329	/*
2330	 * If the mapping has changed attributes, update the page table
2331	 * entries.
2332	 */
2333	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2334	    ("pmap_demote_pde: firstpte and newpte map different physical"
2335	    " addresses"));
2336	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2337		for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2338			*pte = newpte;
2339			newpte += PAGE_SIZE;
2340		}
2341
2342	/*
2343	 * Demote the mapping.  This pmap is locked.  The old PDE has
2344	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2345	 * set.  Thus, there is no danger of a race with another
2346	 * processor changing the setting of PG_A and/or PG_M between
2347	 * the read above and the store below.
2348	 */
2349	if (pmap == kernel_pmap) {
2350		/*
2351		 * A harmless race exists between this loop and the bcopy()
2352		 * in pmap_pinit() that initializes the kernel segment of
2353		 * the new page table.  Specifically, that bcopy() may copy
2354		 * the new PDE from the PTD, which is first in allpmaps, to
2355		 * the new page table before this loop updates that new
2356		 * page table.
2357		 */
2358		mtx_lock_spin(&allpmaps_lock);
2359		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2360			pde = pmap_pde(allpmaps_entry, va);
2361			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2362			    (oldpde & PG_PTE_PROMOTE),
2363			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2364			    (uintmax_t)*pde, (uintmax_t)oldpde));
2365			pde_store(pde, newpde);
2366		}
2367		mtx_unlock_spin(&allpmaps_lock);
2368	} else
2369		pde_store(pde, newpde);
2370	if (firstpte == PADDR2)
2371		mtx_unlock(&PMAP2mutex);
2372
2373	/*
2374	 * Invalidate the recursive mapping of the page table page.
2375	 */
2376	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2377
2378	/*
2379	 * Demote the pv entry.  This depends on the earlier demotion
2380	 * of the mapping.  Specifically, the (re)creation of a per-
2381	 * page pv entry might trigger the execution of pmap_collect(),
2382	 * which might reclaim a newly (re)created per-page pv entry
2383	 * and destroy the associated mapping.  In order to destroy
2384	 * the mapping, the PDE must have already changed from mapping
2385	 * the 2mpage to referencing the page table page.
2386	 */
2387	if ((oldpde & PG_MANAGED) != 0)
2388		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2389
2390	pmap_pde_demotions++;
2391	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2392	    " in pmap %p", va, pmap);
2393	return (TRUE);
2394}
2395
2396/*
2397 * pmap_remove_pde: do the things to unmap a superpage in a process
2398 */
2399static void
2400pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2401    vm_page_t *free)
2402{
2403	struct md_page *pvh;
2404	pd_entry_t oldpde;
2405	vm_offset_t eva, va;
2406	vm_page_t m, mpte;
2407
2408	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2409	KASSERT((sva & PDRMASK) == 0,
2410	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2411	oldpde = pte_load_clear(pdq);
2412	if (oldpde & PG_W)
2413		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2414
2415	/*
2416	 * Machines that don't support invlpg, also don't support
2417	 * PG_G.
2418	 */
2419	if (oldpde & PG_G)
2420		pmap_invalidate_page(kernel_pmap, sva);
2421	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2422	if (oldpde & PG_MANAGED) {
2423		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2424		pmap_pvh_free(pvh, pmap, sva);
2425		eva = sva + NBPDR;
2426		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2427		    va < eva; va += PAGE_SIZE, m++) {
2428			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2429				vm_page_dirty(m);
2430			if (oldpde & PG_A)
2431				vm_page_flag_set(m, PG_REFERENCED);
2432			if (TAILQ_EMPTY(&m->md.pv_list) &&
2433			    TAILQ_EMPTY(&pvh->pv_list))
2434				vm_page_flag_clear(m, PG_WRITEABLE);
2435		}
2436	}
2437	if (pmap == kernel_pmap) {
2438		if (!pmap_demote_pde(pmap, pdq, sva))
2439			panic("pmap_remove_pde: failed demotion");
2440	} else {
2441		mpte = pmap_lookup_pt_page(pmap, sva);
2442		if (mpte != NULL) {
2443			pmap_remove_pt_page(pmap, mpte);
2444			pmap->pm_stats.resident_count--;
2445			KASSERT(mpte->wire_count == NPTEPG,
2446			    ("pmap_remove_pde: pte page wire count error"));
2447			mpte->wire_count = 0;
2448			pmap_add_delayed_free_list(mpte, free, FALSE);
2449			atomic_subtract_int(&cnt.v_wire_count, 1);
2450		}
2451	}
2452}
2453
2454/*
2455 * pmap_remove_pte: do the things to unmap a page in a process
2456 */
2457static int
2458pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2459{
2460	pt_entry_t oldpte;
2461	vm_page_t m;
2462
2463	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2464	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2465	oldpte = pte_load_clear(ptq);
2466	if (oldpte & PG_W)
2467		pmap->pm_stats.wired_count -= 1;
2468	/*
2469	 * Machines that don't support invlpg, also don't support
2470	 * PG_G.
2471	 */
2472	if (oldpte & PG_G)
2473		pmap_invalidate_page(kernel_pmap, va);
2474	pmap->pm_stats.resident_count -= 1;
2475	if (oldpte & PG_MANAGED) {
2476		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2477		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2478			vm_page_dirty(m);
2479		if (oldpte & PG_A)
2480			vm_page_flag_set(m, PG_REFERENCED);
2481		pmap_remove_entry(pmap, m, va);
2482	}
2483	return (pmap_unuse_pt(pmap, va, free));
2484}
2485
2486/*
2487 * Remove a single page from a process address space
2488 */
2489static void
2490pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2491{
2492	pt_entry_t *pte;
2493
2494	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2495	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2496	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2497	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2498		return;
2499	pmap_remove_pte(pmap, pte, va, free);
2500	pmap_invalidate_page(pmap, va);
2501}
2502
2503/*
2504 *	Remove the given range of addresses from the specified map.
2505 *
2506 *	It is assumed that the start and end are properly
2507 *	rounded to the page size.
2508 */
2509void
2510pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2511{
2512	vm_offset_t pdnxt;
2513	pd_entry_t ptpaddr;
2514	pt_entry_t *pte;
2515	vm_page_t free = NULL;
2516	int anyvalid;
2517
2518	/*
2519	 * Perform an unsynchronized read.  This is, however, safe.
2520	 */
2521	if (pmap->pm_stats.resident_count == 0)
2522		return;
2523
2524	anyvalid = 0;
2525
2526	vm_page_lock_queues();
2527	sched_pin();
2528	PMAP_LOCK(pmap);
2529
2530	/*
2531	 * special handling of removing one page.  a very
2532	 * common operation and easy to short circuit some
2533	 * code.
2534	 */
2535	if ((sva + PAGE_SIZE == eva) &&
2536	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2537		pmap_remove_page(pmap, sva, &free);
2538		goto out;
2539	}
2540
2541	for (; sva < eva; sva = pdnxt) {
2542		unsigned pdirindex;
2543
2544		/*
2545		 * Calculate index for next page table.
2546		 */
2547		pdnxt = (sva + NBPDR) & ~PDRMASK;
2548		if (pdnxt < sva)
2549			pdnxt = eva;
2550		if (pmap->pm_stats.resident_count == 0)
2551			break;
2552
2553		pdirindex = sva >> PDRSHIFT;
2554		ptpaddr = pmap->pm_pdir[pdirindex];
2555
2556		/*
2557		 * Weed out invalid mappings. Note: we assume that the page
2558		 * directory table is always allocated, and in kernel virtual.
2559		 */
2560		if (ptpaddr == 0)
2561			continue;
2562
2563		/*
2564		 * Check for large page.
2565		 */
2566		if ((ptpaddr & PG_PS) != 0) {
2567			/*
2568			 * Are we removing the entire large page?  If not,
2569			 * demote the mapping and fall through.
2570			 */
2571			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2572				/*
2573				 * The TLB entry for a PG_G mapping is
2574				 * invalidated by pmap_remove_pde().
2575				 */
2576				if ((ptpaddr & PG_G) == 0)
2577					anyvalid = 1;
2578				pmap_remove_pde(pmap,
2579				    &pmap->pm_pdir[pdirindex], sva, &free);
2580				continue;
2581			} else if (!pmap_demote_pde(pmap,
2582			    &pmap->pm_pdir[pdirindex], sva)) {
2583				/* The large page mapping was destroyed. */
2584				continue;
2585			}
2586		}
2587
2588		/*
2589		 * Limit our scan to either the end of the va represented
2590		 * by the current page table page, or to the end of the
2591		 * range being removed.
2592		 */
2593		if (pdnxt > eva)
2594			pdnxt = eva;
2595
2596		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2597		    sva += PAGE_SIZE) {
2598			if (*pte == 0)
2599				continue;
2600
2601			/*
2602			 * The TLB entry for a PG_G mapping is invalidated
2603			 * by pmap_remove_pte().
2604			 */
2605			if ((*pte & PG_G) == 0)
2606				anyvalid = 1;
2607			if (pmap_remove_pte(pmap, pte, sva, &free))
2608				break;
2609		}
2610	}
2611out:
2612	sched_unpin();
2613	if (anyvalid)
2614		pmap_invalidate_all(pmap);
2615	vm_page_unlock_queues();
2616	PMAP_UNLOCK(pmap);
2617	pmap_free_zero_pages(free);
2618}
2619
2620/*
2621 *	Routine:	pmap_remove_all
2622 *	Function:
2623 *		Removes this physical page from
2624 *		all physical maps in which it resides.
2625 *		Reflects back modify bits to the pager.
2626 *
2627 *	Notes:
2628 *		Original versions of this routine were very
2629 *		inefficient because they iteratively called
2630 *		pmap_remove (slow...)
2631 */
2632
2633void
2634pmap_remove_all(vm_page_t m)
2635{
2636	struct md_page *pvh;
2637	pv_entry_t pv;
2638	pmap_t pmap;
2639	pt_entry_t *pte, tpte;
2640	pd_entry_t *pde;
2641	vm_offset_t va;
2642	vm_page_t free;
2643
2644	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2645	    ("pmap_remove_all: page %p is fictitious", m));
2646	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2647	sched_pin();
2648	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2649	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2650		va = pv->pv_va;
2651		pmap = PV_PMAP(pv);
2652		PMAP_LOCK(pmap);
2653		pde = pmap_pde(pmap, va);
2654		(void)pmap_demote_pde(pmap, pde, va);
2655		PMAP_UNLOCK(pmap);
2656	}
2657	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2658		pmap = PV_PMAP(pv);
2659		PMAP_LOCK(pmap);
2660		pmap->pm_stats.resident_count--;
2661		pde = pmap_pde(pmap, pv->pv_va);
2662		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2663		    " a 4mpage in page %p's pv list", m));
2664		pte = pmap_pte_quick(pmap, pv->pv_va);
2665		tpte = pte_load_clear(pte);
2666		if (tpte & PG_W)
2667			pmap->pm_stats.wired_count--;
2668		if (tpte & PG_A)
2669			vm_page_flag_set(m, PG_REFERENCED);
2670
2671		/*
2672		 * Update the vm_page_t clean and reference bits.
2673		 */
2674		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2675			vm_page_dirty(m);
2676		free = NULL;
2677		pmap_unuse_pt(pmap, pv->pv_va, &free);
2678		pmap_invalidate_page(pmap, pv->pv_va);
2679		pmap_free_zero_pages(free);
2680		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2681		free_pv_entry(pmap, pv);
2682		PMAP_UNLOCK(pmap);
2683	}
2684	vm_page_flag_clear(m, PG_WRITEABLE);
2685	sched_unpin();
2686}
2687
2688/*
2689 * pmap_protect_pde: do the things to protect a 4mpage in a process
2690 */
2691static boolean_t
2692pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2693{
2694	pd_entry_t newpde, oldpde;
2695	vm_offset_t eva, va;
2696	vm_page_t m;
2697	boolean_t anychanged;
2698
2699	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2700	KASSERT((sva & PDRMASK) == 0,
2701	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2702	anychanged = FALSE;
2703retry:
2704	oldpde = newpde = *pde;
2705	if (oldpde & PG_MANAGED) {
2706		eva = sva + NBPDR;
2707		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2708		    va < eva; va += PAGE_SIZE, m++) {
2709			/*
2710			 * In contrast to the analogous operation on a 4KB page
2711			 * mapping, the mapping's PG_A flag is not cleared and
2712			 * the page's PG_REFERENCED flag is not set.  The
2713			 * reason is that pmap_demote_pde() expects that a 2/4MB
2714			 * page mapping with a stored page table page has PG_A
2715			 * set.
2716			 */
2717			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2718				vm_page_dirty(m);
2719		}
2720	}
2721	if ((prot & VM_PROT_WRITE) == 0)
2722		newpde &= ~(PG_RW | PG_M);
2723#ifdef PAE
2724	if ((prot & VM_PROT_EXECUTE) == 0)
2725		newpde |= pg_nx;
2726#endif
2727	if (newpde != oldpde) {
2728		if (!pde_cmpset(pde, oldpde, newpde))
2729			goto retry;
2730		if (oldpde & PG_G)
2731			pmap_invalidate_page(pmap, sva);
2732		else
2733			anychanged = TRUE;
2734	}
2735	return (anychanged);
2736}
2737
2738/*
2739 *	Set the physical protection on the
2740 *	specified range of this map as requested.
2741 */
2742void
2743pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2744{
2745	vm_offset_t pdnxt;
2746	pd_entry_t ptpaddr;
2747	pt_entry_t *pte;
2748	int anychanged;
2749
2750	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2751		pmap_remove(pmap, sva, eva);
2752		return;
2753	}
2754
2755#ifdef PAE
2756	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2757	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2758		return;
2759#else
2760	if (prot & VM_PROT_WRITE)
2761		return;
2762#endif
2763
2764	anychanged = 0;
2765
2766	vm_page_lock_queues();
2767	sched_pin();
2768	PMAP_LOCK(pmap);
2769	for (; sva < eva; sva = pdnxt) {
2770		pt_entry_t obits, pbits;
2771		unsigned pdirindex;
2772
2773		pdnxt = (sva + NBPDR) & ~PDRMASK;
2774		if (pdnxt < sva)
2775			pdnxt = eva;
2776
2777		pdirindex = sva >> PDRSHIFT;
2778		ptpaddr = pmap->pm_pdir[pdirindex];
2779
2780		/*
2781		 * Weed out invalid mappings. Note: we assume that the page
2782		 * directory table is always allocated, and in kernel virtual.
2783		 */
2784		if (ptpaddr == 0)
2785			continue;
2786
2787		/*
2788		 * Check for large page.
2789		 */
2790		if ((ptpaddr & PG_PS) != 0) {
2791			/*
2792			 * Are we protecting the entire large page?  If not,
2793			 * demote the mapping and fall through.
2794			 */
2795			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2796				/*
2797				 * The TLB entry for a PG_G mapping is
2798				 * invalidated by pmap_protect_pde().
2799				 */
2800				if (pmap_protect_pde(pmap,
2801				    &pmap->pm_pdir[pdirindex], sva, prot))
2802					anychanged = 1;
2803				continue;
2804			} else if (!pmap_demote_pde(pmap,
2805			    &pmap->pm_pdir[pdirindex], sva)) {
2806				/* The large page mapping was destroyed. */
2807				continue;
2808			}
2809		}
2810
2811		if (pdnxt > eva)
2812			pdnxt = eva;
2813
2814		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2815		    sva += PAGE_SIZE) {
2816			vm_page_t m;
2817
2818retry:
2819			/*
2820			 * Regardless of whether a pte is 32 or 64 bits in
2821			 * size, PG_RW, PG_A, and PG_M are among the least
2822			 * significant 32 bits.
2823			 */
2824			obits = pbits = *pte;
2825			if ((pbits & PG_V) == 0)
2826				continue;
2827			if (pbits & PG_MANAGED) {
2828				m = NULL;
2829				if (pbits & PG_A) {
2830					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2831					vm_page_flag_set(m, PG_REFERENCED);
2832					pbits &= ~PG_A;
2833				}
2834				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2835					if (m == NULL)
2836						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2837					vm_page_dirty(m);
2838				}
2839			}
2840
2841			if ((prot & VM_PROT_WRITE) == 0)
2842				pbits &= ~(PG_RW | PG_M);
2843#ifdef PAE
2844			if ((prot & VM_PROT_EXECUTE) == 0)
2845				pbits |= pg_nx;
2846#endif
2847
2848			if (pbits != obits) {
2849#ifdef PAE
2850				if (!atomic_cmpset_64(pte, obits, pbits))
2851					goto retry;
2852#else
2853				if (!atomic_cmpset_int((u_int *)pte, obits,
2854				    pbits))
2855					goto retry;
2856#endif
2857				if (obits & PG_G)
2858					pmap_invalidate_page(pmap, sva);
2859				else
2860					anychanged = 1;
2861			}
2862		}
2863	}
2864	sched_unpin();
2865	if (anychanged)
2866		pmap_invalidate_all(pmap);
2867	vm_page_unlock_queues();
2868	PMAP_UNLOCK(pmap);
2869}
2870
2871/*
2872 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2873 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
2874 * For promotion to occur, two conditions must be met: (1) the 4KB page
2875 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
2876 * mappings must have identical characteristics.
2877 *
2878 * Managed (PG_MANAGED) mappings within the kernel address space are not
2879 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2880 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2881 * pmap.
2882 */
2883static void
2884pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2885{
2886	pd_entry_t newpde;
2887	pmap_t allpmaps_entry;
2888	pt_entry_t *firstpte, oldpte, pa, *pte;
2889	vm_offset_t oldpteva;
2890	vm_page_t mpte;
2891
2892	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2893
2894	/*
2895	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2896	 * either invalid, unused, or does not map the first 4KB physical page
2897	 * within a 2- or 4MB page.
2898	 */
2899	firstpte = vtopte(trunc_4mpage(va));
2900setpde:
2901	newpde = *firstpte;
2902	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2903		pmap_pde_p_failures++;
2904		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2905		    " in pmap %p", va, pmap);
2906		return;
2907	}
2908	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
2909		pmap_pde_p_failures++;
2910		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2911		    " in pmap %p", va, pmap);
2912		return;
2913	}
2914	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2915		/*
2916		 * When PG_M is already clear, PG_RW can be cleared without
2917		 * a TLB invalidation.
2918		 */
2919		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
2920		    ~PG_RW))
2921			goto setpde;
2922		newpde &= ~PG_RW;
2923	}
2924
2925	/*
2926	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2927	 * PTE maps an unexpected 4KB physical page or does not have identical
2928	 * characteristics to the first PTE.
2929	 */
2930	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
2931	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2932setpte:
2933		oldpte = *pte;
2934		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2935			pmap_pde_p_failures++;
2936			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2937			    " in pmap %p", va, pmap);
2938			return;
2939		}
2940		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2941			/*
2942			 * When PG_M is already clear, PG_RW can be cleared
2943			 * without a TLB invalidation.
2944			 */
2945			if (!atomic_cmpset_int((u_int *)pte, oldpte,
2946			    oldpte & ~PG_RW))
2947				goto setpte;
2948			oldpte &= ~PG_RW;
2949			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
2950			    (va & ~PDRMASK);
2951			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
2952			    " in pmap %p", oldpteva, pmap);
2953		}
2954		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2955			pmap_pde_p_failures++;
2956			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2957			    " in pmap %p", va, pmap);
2958			return;
2959		}
2960		pa -= PAGE_SIZE;
2961	}
2962
2963	/*
2964	 * Save the page table page in its current state until the PDE
2965	 * mapping the superpage is demoted by pmap_demote_pde() or
2966	 * destroyed by pmap_remove_pde().
2967	 */
2968	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
2969	KASSERT(mpte >= vm_page_array &&
2970	    mpte < &vm_page_array[vm_page_array_size],
2971	    ("pmap_promote_pde: page table page is out of range"));
2972	KASSERT(mpte->pindex == va >> PDRSHIFT,
2973	    ("pmap_promote_pde: page table page's pindex is wrong"));
2974	pmap_insert_pt_page(pmap, mpte);
2975
2976	/*
2977	 * Promote the pv entries.
2978	 */
2979	if ((newpde & PG_MANAGED) != 0)
2980		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
2981
2982	/*
2983	 * Propagate the PAT index to its proper position.
2984	 */
2985	if ((newpde & PG_PTE_PAT) != 0)
2986		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
2987
2988	/*
2989	 * Map the superpage.
2990	 */
2991	if (pmap == kernel_pmap) {
2992		mtx_lock_spin(&allpmaps_lock);
2993		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2994			pde = pmap_pde(allpmaps_entry, va);
2995			pde_store(pde, PG_PS | newpde);
2996		}
2997		mtx_unlock_spin(&allpmaps_lock);
2998	} else
2999		pde_store(pde, PG_PS | newpde);
3000
3001	pmap_pde_promotions++;
3002	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3003	    " in pmap %p", va, pmap);
3004}
3005
3006/*
3007 *	Insert the given physical page (p) at
3008 *	the specified virtual address (v) in the
3009 *	target physical map with the protection requested.
3010 *
3011 *	If specified, the page will be wired down, meaning
3012 *	that the related pte can not be reclaimed.
3013 *
3014 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3015 *	or lose information.  That is, this routine must actually
3016 *	insert this page into the given map NOW.
3017 */
3018void
3019pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3020    vm_prot_t prot, boolean_t wired)
3021{
3022	vm_paddr_t pa;
3023	pd_entry_t *pde;
3024	pt_entry_t *pte;
3025	vm_paddr_t opa;
3026	pt_entry_t origpte, newpte;
3027	vm_page_t mpte, om;
3028	boolean_t invlva;
3029
3030	va = trunc_page(va);
3031	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3032	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3033	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3034
3035	mpte = NULL;
3036
3037	vm_page_lock_queues();
3038	PMAP_LOCK(pmap);
3039	sched_pin();
3040
3041	/*
3042	 * In the case that a page table page is not
3043	 * resident, we are creating it here.
3044	 */
3045	if (va < VM_MAXUSER_ADDRESS) {
3046		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3047	}
3048
3049	pde = pmap_pde(pmap, va);
3050	if ((*pde & PG_PS) != 0)
3051		panic("pmap_enter: attempted pmap_enter on 4MB page");
3052	pte = pmap_pte_quick(pmap, va);
3053
3054	/*
3055	 * Page Directory table entry not valid, we need a new PT page
3056	 */
3057	if (pte == NULL) {
3058		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3059			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3060	}
3061
3062	pa = VM_PAGE_TO_PHYS(m);
3063	om = NULL;
3064	origpte = *pte;
3065	opa = origpte & PG_FRAME;
3066
3067	/*
3068	 * Mapping has not changed, must be protection or wiring change.
3069	 */
3070	if (origpte && (opa == pa)) {
3071		/*
3072		 * Wiring change, just update stats. We don't worry about
3073		 * wiring PT pages as they remain resident as long as there
3074		 * are valid mappings in them. Hence, if a user page is wired,
3075		 * the PT page will be also.
3076		 */
3077		if (wired && ((origpte & PG_W) == 0))
3078			pmap->pm_stats.wired_count++;
3079		else if (!wired && (origpte & PG_W))
3080			pmap->pm_stats.wired_count--;
3081
3082		/*
3083		 * Remove extra pte reference
3084		 */
3085		if (mpte)
3086			mpte->wire_count--;
3087
3088		/*
3089		 * We might be turning off write access to the page,
3090		 * so we go ahead and sense modify status.
3091		 */
3092		if (origpte & PG_MANAGED) {
3093			om = m;
3094			pa |= PG_MANAGED;
3095		}
3096		goto validate;
3097	}
3098	/*
3099	 * Mapping has changed, invalidate old range and fall through to
3100	 * handle validating new mapping.
3101	 */
3102	if (opa) {
3103		if (origpte & PG_W)
3104			pmap->pm_stats.wired_count--;
3105		if (origpte & PG_MANAGED) {
3106			om = PHYS_TO_VM_PAGE(opa);
3107			pmap_remove_entry(pmap, om, va);
3108		}
3109		if (mpte != NULL) {
3110			mpte->wire_count--;
3111			KASSERT(mpte->wire_count > 0,
3112			    ("pmap_enter: missing reference to page table page,"
3113			     " va: 0x%x", va));
3114		}
3115	} else
3116		pmap->pm_stats.resident_count++;
3117
3118	/*
3119	 * Enter on the PV list if part of our managed memory.
3120	 */
3121	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3122		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3123		    ("pmap_enter: managed mapping within the clean submap"));
3124		pmap_insert_entry(pmap, va, m);
3125		pa |= PG_MANAGED;
3126	}
3127
3128	/*
3129	 * Increment counters
3130	 */
3131	if (wired)
3132		pmap->pm_stats.wired_count++;
3133
3134validate:
3135	/*
3136	 * Now validate mapping with desired protection/wiring.
3137	 */
3138	newpte = (pt_entry_t)(pa | PG_V);
3139	if ((prot & VM_PROT_WRITE) != 0) {
3140		newpte |= PG_RW;
3141		vm_page_flag_set(m, PG_WRITEABLE);
3142	}
3143#ifdef PAE
3144	if ((prot & VM_PROT_EXECUTE) == 0)
3145		newpte |= pg_nx;
3146#endif
3147	if (wired)
3148		newpte |= PG_W;
3149	if (va < VM_MAXUSER_ADDRESS)
3150		newpte |= PG_U;
3151	if (pmap == kernel_pmap)
3152		newpte |= pgeflag;
3153
3154	/*
3155	 * if the mapping or permission bits are different, we need
3156	 * to update the pte.
3157	 */
3158	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3159		newpte |= PG_A;
3160		if ((access & VM_PROT_WRITE) != 0)
3161			newpte |= PG_M;
3162		if (origpte & PG_V) {
3163			invlva = FALSE;
3164			origpte = pte_load_store(pte, newpte);
3165			if (origpte & PG_A) {
3166				if (origpte & PG_MANAGED)
3167					vm_page_flag_set(om, PG_REFERENCED);
3168				if (opa != VM_PAGE_TO_PHYS(m))
3169					invlva = TRUE;
3170#ifdef PAE
3171				if ((origpte & PG_NX) == 0 &&
3172				    (newpte & PG_NX) != 0)
3173					invlva = TRUE;
3174#endif
3175			}
3176			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3177				if ((origpte & PG_MANAGED) != 0)
3178					vm_page_dirty(om);
3179				if ((prot & VM_PROT_WRITE) == 0)
3180					invlva = TRUE;
3181			}
3182			if (invlva)
3183				pmap_invalidate_page(pmap, va);
3184		} else
3185			pte_store(pte, newpte);
3186	}
3187
3188	/*
3189	 * If both the page table page and the reservation are fully
3190	 * populated, then attempt promotion.
3191	 */
3192	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3193	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3194		pmap_promote_pde(pmap, pde, va);
3195
3196	sched_unpin();
3197	vm_page_unlock_queues();
3198	PMAP_UNLOCK(pmap);
3199}
3200
3201/*
3202 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3203 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3204 * blocking, (2) a mapping already exists at the specified virtual address, or
3205 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3206 */
3207static boolean_t
3208pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3209{
3210	pd_entry_t *pde, newpde;
3211
3212	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3213	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3214	pde = pmap_pde(pmap, va);
3215	if (*pde != 0) {
3216		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3217		    " in pmap %p", va, pmap);
3218		return (FALSE);
3219	}
3220	newpde = VM_PAGE_TO_PHYS(m) | PG_PS | PG_V;
3221	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3222		newpde |= PG_MANAGED;
3223
3224		/*
3225		 * Abort this mapping if its PV entry could not be created.
3226		 */
3227		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3228			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3229			    " in pmap %p", va, pmap);
3230			return (FALSE);
3231		}
3232	}
3233#ifdef PAE
3234	if ((prot & VM_PROT_EXECUTE) == 0)
3235		newpde |= pg_nx;
3236#endif
3237	if (va < VM_MAXUSER_ADDRESS)
3238		newpde |= PG_U;
3239
3240	/*
3241	 * Increment counters.
3242	 */
3243	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3244
3245	/*
3246	 * Map the superpage.
3247	 */
3248	pde_store(pde, newpde);
3249
3250	pmap_pde_mappings++;
3251	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3252	    " in pmap %p", va, pmap);
3253	return (TRUE);
3254}
3255
3256/*
3257 * Maps a sequence of resident pages belonging to the same object.
3258 * The sequence begins with the given page m_start.  This page is
3259 * mapped at the given virtual address start.  Each subsequent page is
3260 * mapped at a virtual address that is offset from start by the same
3261 * amount as the page is offset from m_start within the object.  The
3262 * last page in the sequence is the page with the largest offset from
3263 * m_start that can be mapped at a virtual address less than the given
3264 * virtual address end.  Not every virtual page between start and end
3265 * is mapped; only those for which a resident page exists with the
3266 * corresponding offset from m_start are mapped.
3267 */
3268void
3269pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3270    vm_page_t m_start, vm_prot_t prot)
3271{
3272	vm_offset_t va;
3273	vm_page_t m, mpte;
3274	vm_pindex_t diff, psize;
3275
3276	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3277	psize = atop(end - start);
3278	mpte = NULL;
3279	m = m_start;
3280	PMAP_LOCK(pmap);
3281	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3282		va = start + ptoa(diff);
3283		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3284		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3285		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3286		    pmap_enter_pde(pmap, va, m, prot))
3287			m = &m[NBPDR / PAGE_SIZE - 1];
3288		else
3289			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3290			    mpte);
3291		m = TAILQ_NEXT(m, listq);
3292	}
3293 	PMAP_UNLOCK(pmap);
3294}
3295
3296/*
3297 * this code makes some *MAJOR* assumptions:
3298 * 1. Current pmap & pmap exists.
3299 * 2. Not wired.
3300 * 3. Read access.
3301 * 4. No page table pages.
3302 * but is *MUCH* faster than pmap_enter...
3303 */
3304
3305void
3306pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3307{
3308
3309	PMAP_LOCK(pmap);
3310	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3311	PMAP_UNLOCK(pmap);
3312}
3313
3314static vm_page_t
3315pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3316    vm_prot_t prot, vm_page_t mpte)
3317{
3318	pt_entry_t *pte;
3319	vm_paddr_t pa;
3320	vm_page_t free;
3321
3322	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3323	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3324	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3325	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3326	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3327
3328	/*
3329	 * In the case that a page table page is not
3330	 * resident, we are creating it here.
3331	 */
3332	if (va < VM_MAXUSER_ADDRESS) {
3333		unsigned ptepindex;
3334		pd_entry_t ptepa;
3335
3336		/*
3337		 * Calculate pagetable page index
3338		 */
3339		ptepindex = va >> PDRSHIFT;
3340		if (mpte && (mpte->pindex == ptepindex)) {
3341			mpte->wire_count++;
3342		} else {
3343			/*
3344			 * Get the page directory entry
3345			 */
3346			ptepa = pmap->pm_pdir[ptepindex];
3347
3348			/*
3349			 * If the page table page is mapped, we just increment
3350			 * the hold count, and activate it.
3351			 */
3352			if (ptepa) {
3353				if (ptepa & PG_PS)
3354					return (NULL);
3355				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3356				mpte->wire_count++;
3357			} else {
3358				mpte = _pmap_allocpte(pmap, ptepindex,
3359				    M_NOWAIT);
3360				if (mpte == NULL)
3361					return (mpte);
3362			}
3363		}
3364	} else {
3365		mpte = NULL;
3366	}
3367
3368	/*
3369	 * This call to vtopte makes the assumption that we are
3370	 * entering the page into the current pmap.  In order to support
3371	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3372	 * But that isn't as quick as vtopte.
3373	 */
3374	pte = vtopte(va);
3375	if (*pte) {
3376		if (mpte != NULL) {
3377			mpte->wire_count--;
3378			mpte = NULL;
3379		}
3380		return (mpte);
3381	}
3382
3383	/*
3384	 * Enter on the PV list if part of our managed memory.
3385	 */
3386	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3387	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3388		if (mpte != NULL) {
3389			free = NULL;
3390			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3391				pmap_invalidate_page(pmap, va);
3392				pmap_free_zero_pages(free);
3393			}
3394
3395			mpte = NULL;
3396		}
3397		return (mpte);
3398	}
3399
3400	/*
3401	 * Increment counters
3402	 */
3403	pmap->pm_stats.resident_count++;
3404
3405	pa = VM_PAGE_TO_PHYS(m);
3406#ifdef PAE
3407	if ((prot & VM_PROT_EXECUTE) == 0)
3408		pa |= pg_nx;
3409#endif
3410
3411	/*
3412	 * Now validate mapping with RO protection
3413	 */
3414	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3415		pte_store(pte, pa | PG_V | PG_U);
3416	else
3417		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3418	return mpte;
3419}
3420
3421/*
3422 * Make a temporary mapping for a physical address.  This is only intended
3423 * to be used for panic dumps.
3424 */
3425void *
3426pmap_kenter_temporary(vm_paddr_t pa, int i)
3427{
3428	vm_offset_t va;
3429
3430	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3431	pmap_kenter(va, pa);
3432	invlpg(va);
3433	return ((void *)crashdumpmap);
3434}
3435
3436/*
3437 * This code maps large physical mmap regions into the
3438 * processor address space.  Note that some shortcuts
3439 * are taken, but the code works.
3440 */
3441void
3442pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3443    vm_pindex_t pindex, vm_size_t size)
3444{
3445	pd_entry_t *pde;
3446	vm_paddr_t pa, ptepa;
3447	vm_page_t p;
3448
3449	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3450	KASSERT(object->type == OBJT_DEVICE,
3451	    ("pmap_object_init_pt: non-device object"));
3452	if (pseflag &&
3453	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3454		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3455			return;
3456		p = vm_page_lookup(object, pindex);
3457		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3458		    ("pmap_object_init_pt: invalid page %p", p));
3459
3460		/*
3461		 * Abort the mapping if the first page is not physically
3462		 * aligned to a 2/4MB page boundary.
3463		 */
3464		ptepa = VM_PAGE_TO_PHYS(p);
3465		if (ptepa & (NBPDR - 1))
3466			return;
3467
3468		/*
3469		 * Skip the first page.  Abort the mapping if the rest of
3470		 * the pages are not physically contiguous.
3471		 */
3472		p = TAILQ_NEXT(p, listq);
3473		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3474		    pa += PAGE_SIZE) {
3475			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3476			    ("pmap_object_init_pt: invalid page %p", p));
3477			if (pa != VM_PAGE_TO_PHYS(p))
3478				return;
3479			p = TAILQ_NEXT(p, listq);
3480		}
3481
3482		/* Map using 2/4MB pages. */
3483		PMAP_LOCK(pmap);
3484		for (pa = ptepa; pa < ptepa + size; pa += NBPDR) {
3485			pde = pmap_pde(pmap, addr);
3486			if (*pde == 0) {
3487				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3488				    PG_U | PG_RW | PG_V);
3489				pmap->pm_stats.resident_count += NBPDR /
3490				    PAGE_SIZE;
3491				pmap_pde_mappings++;
3492			}
3493			/* Else continue on if the PDE is already valid. */
3494			addr += NBPDR;
3495		}
3496		PMAP_UNLOCK(pmap);
3497	}
3498}
3499
3500/*
3501 *	Routine:	pmap_change_wiring
3502 *	Function:	Change the wiring attribute for a map/virtual-address
3503 *			pair.
3504 *	In/out conditions:
3505 *			The mapping must already exist in the pmap.
3506 */
3507void
3508pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3509{
3510	pd_entry_t *pde;
3511	pt_entry_t *pte;
3512	boolean_t are_queues_locked;
3513
3514	are_queues_locked = FALSE;
3515retry:
3516	PMAP_LOCK(pmap);
3517	pde = pmap_pde(pmap, va);
3518	if ((*pde & PG_PS) != 0) {
3519		if (!wired != ((*pde & PG_W) == 0)) {
3520			if (!are_queues_locked) {
3521				are_queues_locked = TRUE;
3522				if (!mtx_trylock(&vm_page_queue_mtx)) {
3523					PMAP_UNLOCK(pmap);
3524					vm_page_lock_queues();
3525					goto retry;
3526				}
3527			}
3528			if (!pmap_demote_pde(pmap, pde, va))
3529				panic("pmap_change_wiring: demotion failed");
3530		} else
3531			goto out;
3532	}
3533	pte = pmap_pte(pmap, va);
3534
3535	if (wired && !pmap_pte_w(pte))
3536		pmap->pm_stats.wired_count++;
3537	else if (!wired && pmap_pte_w(pte))
3538		pmap->pm_stats.wired_count--;
3539
3540	/*
3541	 * Wiring is not a hardware characteristic so there is no need to
3542	 * invalidate TLB.
3543	 */
3544	pmap_pte_set_w(pte, wired);
3545	pmap_pte_release(pte);
3546out:
3547	if (are_queues_locked)
3548		vm_page_unlock_queues();
3549	PMAP_UNLOCK(pmap);
3550}
3551
3552
3553
3554/*
3555 *	Copy the range specified by src_addr/len
3556 *	from the source map to the range dst_addr/len
3557 *	in the destination map.
3558 *
3559 *	This routine is only advisory and need not do anything.
3560 */
3561
3562void
3563pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3564    vm_offset_t src_addr)
3565{
3566	vm_page_t   free;
3567	vm_offset_t addr;
3568	vm_offset_t end_addr = src_addr + len;
3569	vm_offset_t pdnxt;
3570
3571	if (dst_addr != src_addr)
3572		return;
3573
3574	if (!pmap_is_current(src_pmap))
3575		return;
3576
3577	vm_page_lock_queues();
3578	if (dst_pmap < src_pmap) {
3579		PMAP_LOCK(dst_pmap);
3580		PMAP_LOCK(src_pmap);
3581	} else {
3582		PMAP_LOCK(src_pmap);
3583		PMAP_LOCK(dst_pmap);
3584	}
3585	sched_pin();
3586	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3587		pt_entry_t *src_pte, *dst_pte;
3588		vm_page_t dstmpte, srcmpte;
3589		pd_entry_t srcptepaddr;
3590		unsigned ptepindex;
3591
3592		KASSERT(addr < UPT_MIN_ADDRESS,
3593		    ("pmap_copy: invalid to pmap_copy page tables"));
3594
3595		pdnxt = (addr + NBPDR) & ~PDRMASK;
3596		if (pdnxt < addr)
3597			pdnxt = end_addr;
3598		ptepindex = addr >> PDRSHIFT;
3599
3600		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3601		if (srcptepaddr == 0)
3602			continue;
3603
3604		if (srcptepaddr & PG_PS) {
3605			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3606			    ((srcptepaddr & PG_MANAGED) == 0 ||
3607			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3608			    PG_PS_FRAME))) {
3609				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3610				    ~PG_W;
3611				dst_pmap->pm_stats.resident_count +=
3612				    NBPDR / PAGE_SIZE;
3613			}
3614			continue;
3615		}
3616
3617		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3618		KASSERT(srcmpte->wire_count > 0,
3619		    ("pmap_copy: source page table page is unused"));
3620
3621		if (pdnxt > end_addr)
3622			pdnxt = end_addr;
3623
3624		src_pte = vtopte(addr);
3625		while (addr < pdnxt) {
3626			pt_entry_t ptetemp;
3627			ptetemp = *src_pte;
3628			/*
3629			 * we only virtual copy managed pages
3630			 */
3631			if ((ptetemp & PG_MANAGED) != 0) {
3632				dstmpte = pmap_allocpte(dst_pmap, addr,
3633				    M_NOWAIT);
3634				if (dstmpte == NULL)
3635					goto out;
3636				dst_pte = pmap_pte_quick(dst_pmap, addr);
3637				if (*dst_pte == 0 &&
3638				    pmap_try_insert_pv_entry(dst_pmap, addr,
3639				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3640					/*
3641					 * Clear the wired, modified, and
3642					 * accessed (referenced) bits
3643					 * during the copy.
3644					 */
3645					*dst_pte = ptetemp & ~(PG_W | PG_M |
3646					    PG_A);
3647					dst_pmap->pm_stats.resident_count++;
3648	 			} else {
3649					free = NULL;
3650					if (pmap_unwire_pte_hold(dst_pmap,
3651					    dstmpte, &free)) {
3652						pmap_invalidate_page(dst_pmap,
3653						    addr);
3654						pmap_free_zero_pages(free);
3655					}
3656					goto out;
3657				}
3658				if (dstmpte->wire_count >= srcmpte->wire_count)
3659					break;
3660			}
3661			addr += PAGE_SIZE;
3662			src_pte++;
3663		}
3664	}
3665out:
3666	sched_unpin();
3667	vm_page_unlock_queues();
3668	PMAP_UNLOCK(src_pmap);
3669	PMAP_UNLOCK(dst_pmap);
3670}
3671
3672static __inline void
3673pagezero(void *page)
3674{
3675#if defined(I686_CPU)
3676	if (cpu_class == CPUCLASS_686) {
3677#if defined(CPU_ENABLE_SSE)
3678		if (cpu_feature & CPUID_SSE2)
3679			sse2_pagezero(page);
3680		else
3681#endif
3682			i686_pagezero(page);
3683	} else
3684#endif
3685		bzero(page, PAGE_SIZE);
3686}
3687
3688/*
3689 *	pmap_zero_page zeros the specified hardware page by mapping
3690 *	the page into KVM and using bzero to clear its contents.
3691 */
3692void
3693pmap_zero_page(vm_page_t m)
3694{
3695	struct sysmaps *sysmaps;
3696
3697	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3698	mtx_lock(&sysmaps->lock);
3699	if (*sysmaps->CMAP2)
3700		panic("pmap_zero_page: CMAP2 busy");
3701	sched_pin();
3702	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3703	invlcaddr(sysmaps->CADDR2);
3704	pagezero(sysmaps->CADDR2);
3705	*sysmaps->CMAP2 = 0;
3706	sched_unpin();
3707	mtx_unlock(&sysmaps->lock);
3708}
3709
3710/*
3711 *	pmap_zero_page_area zeros the specified hardware page by mapping
3712 *	the page into KVM and using bzero to clear its contents.
3713 *
3714 *	off and size may not cover an area beyond a single hardware page.
3715 */
3716void
3717pmap_zero_page_area(vm_page_t m, int off, int size)
3718{
3719	struct sysmaps *sysmaps;
3720
3721	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3722	mtx_lock(&sysmaps->lock);
3723	if (*sysmaps->CMAP2)
3724		panic("pmap_zero_page: CMAP2 busy");
3725	sched_pin();
3726	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3727	invlcaddr(sysmaps->CADDR2);
3728	if (off == 0 && size == PAGE_SIZE)
3729		pagezero(sysmaps->CADDR2);
3730	else
3731		bzero((char *)sysmaps->CADDR2 + off, size);
3732	*sysmaps->CMAP2 = 0;
3733	sched_unpin();
3734	mtx_unlock(&sysmaps->lock);
3735}
3736
3737/*
3738 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3739 *	the page into KVM and using bzero to clear its contents.  This
3740 *	is intended to be called from the vm_pagezero process only and
3741 *	outside of Giant.
3742 */
3743void
3744pmap_zero_page_idle(vm_page_t m)
3745{
3746
3747	if (*CMAP3)
3748		panic("pmap_zero_page: CMAP3 busy");
3749	sched_pin();
3750	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3751	invlcaddr(CADDR3);
3752	pagezero(CADDR3);
3753	*CMAP3 = 0;
3754	sched_unpin();
3755}
3756
3757/*
3758 *	pmap_copy_page copies the specified (machine independent)
3759 *	page by mapping the page into virtual memory and using
3760 *	bcopy to copy the page, one machine dependent page at a
3761 *	time.
3762 */
3763void
3764pmap_copy_page(vm_page_t src, vm_page_t dst)
3765{
3766	struct sysmaps *sysmaps;
3767
3768	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3769	mtx_lock(&sysmaps->lock);
3770	if (*sysmaps->CMAP1)
3771		panic("pmap_copy_page: CMAP1 busy");
3772	if (*sysmaps->CMAP2)
3773		panic("pmap_copy_page: CMAP2 busy");
3774	sched_pin();
3775	invlpg((u_int)sysmaps->CADDR1);
3776	invlpg((u_int)sysmaps->CADDR2);
3777	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
3778	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
3779	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3780	*sysmaps->CMAP1 = 0;
3781	*sysmaps->CMAP2 = 0;
3782	sched_unpin();
3783	mtx_unlock(&sysmaps->lock);
3784}
3785
3786/*
3787 * Returns true if the pmap's pv is one of the first
3788 * 16 pvs linked to from this page.  This count may
3789 * be changed upwards or downwards in the future; it
3790 * is only necessary that true be returned for a small
3791 * subset of pmaps for proper page aging.
3792 */
3793boolean_t
3794pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3795{
3796	struct md_page *pvh;
3797	pv_entry_t pv;
3798	int loops = 0;
3799
3800	if (m->flags & PG_FICTITIOUS)
3801		return FALSE;
3802
3803	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3804	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3805		if (PV_PMAP(pv) == pmap) {
3806			return TRUE;
3807		}
3808		loops++;
3809		if (loops >= 16)
3810			break;
3811	}
3812	if (loops < 16) {
3813		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3814		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3815			if (PV_PMAP(pv) == pmap)
3816				return (TRUE);
3817			loops++;
3818			if (loops >= 16)
3819				break;
3820		}
3821	}
3822	return (FALSE);
3823}
3824
3825/*
3826 *	pmap_page_wired_mappings:
3827 *
3828 *	Return the number of managed mappings to the given physical page
3829 *	that are wired.
3830 */
3831int
3832pmap_page_wired_mappings(vm_page_t m)
3833{
3834	int count;
3835
3836	count = 0;
3837	if ((m->flags & PG_FICTITIOUS) != 0)
3838		return (count);
3839	count = pmap_pvh_wired_mappings(&m->md, count);
3840	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3841}
3842
3843/*
3844 *	pmap_pvh_wired_mappings:
3845 *
3846 *	Return the updated number "count" of managed mappings that are wired.
3847 */
3848static int
3849pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3850{
3851	pmap_t pmap;
3852	pt_entry_t *pte;
3853	pv_entry_t pv;
3854
3855	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3856	sched_pin();
3857	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3858		pmap = PV_PMAP(pv);
3859		PMAP_LOCK(pmap);
3860		pte = pmap_pte_quick(pmap, pv->pv_va);
3861		if ((*pte & PG_W) != 0)
3862			count++;
3863		PMAP_UNLOCK(pmap);
3864	}
3865	sched_unpin();
3866	return (count);
3867}
3868
3869/*
3870 * Returns TRUE if the given page is mapped individually or as part of
3871 * a 4mpage.  Otherwise, returns FALSE.
3872 */
3873boolean_t
3874pmap_page_is_mapped(vm_page_t m)
3875{
3876	struct md_page *pvh;
3877
3878	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3879		return (FALSE);
3880	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3881	if (TAILQ_EMPTY(&m->md.pv_list)) {
3882		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3883		return (!TAILQ_EMPTY(&pvh->pv_list));
3884	} else
3885		return (TRUE);
3886}
3887
3888/*
3889 * Remove all pages from specified address space
3890 * this aids process exit speeds.  Also, this code
3891 * is special cased for current process only, but
3892 * can have the more generic (and slightly slower)
3893 * mode enabled.  This is much faster than pmap_remove
3894 * in the case of running down an entire address space.
3895 */
3896void
3897pmap_remove_pages(pmap_t pmap)
3898{
3899	pt_entry_t *pte, tpte;
3900	vm_page_t free = NULL;
3901	vm_page_t m, mpte, mt;
3902	pv_entry_t pv;
3903	struct md_page *pvh;
3904	struct pv_chunk *pc, *npc;
3905	int field, idx;
3906	int32_t bit;
3907	uint32_t inuse, bitmask;
3908	int allfree;
3909
3910	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3911		printf("warning: pmap_remove_pages called with non-current pmap\n");
3912		return;
3913	}
3914	vm_page_lock_queues();
3915	PMAP_LOCK(pmap);
3916	sched_pin();
3917	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3918		allfree = 1;
3919		for (field = 0; field < _NPCM; field++) {
3920			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3921			while (inuse != 0) {
3922				bit = bsfl(inuse);
3923				bitmask = 1UL << bit;
3924				idx = field * 32 + bit;
3925				pv = &pc->pc_pventry[idx];
3926				inuse &= ~bitmask;
3927
3928				pte = pmap_pde(pmap, pv->pv_va);
3929				tpte = *pte;
3930				if ((tpte & PG_PS) == 0) {
3931					pte = vtopte(pv->pv_va);
3932					tpte = *pte & ~PG_PTE_PAT;
3933				}
3934
3935				if (tpte == 0) {
3936					printf(
3937					    "TPTE at %p  IS ZERO @ VA %08x\n",
3938					    pte, pv->pv_va);
3939					panic("bad pte");
3940				}
3941
3942/*
3943 * We cannot remove wired pages from a process' mapping at this time
3944 */
3945				if (tpte & PG_W) {
3946					allfree = 0;
3947					continue;
3948				}
3949
3950				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3951				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3952				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3953				    m, (uintmax_t)m->phys_addr,
3954				    (uintmax_t)tpte));
3955
3956				KASSERT(m < &vm_page_array[vm_page_array_size],
3957					("pmap_remove_pages: bad tpte %#jx",
3958					(uintmax_t)tpte));
3959
3960				pte_clear(pte);
3961
3962				/*
3963				 * Update the vm_page_t clean/reference bits.
3964				 */
3965				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3966					if ((tpte & PG_PS) != 0) {
3967						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3968							vm_page_dirty(mt);
3969					} else
3970						vm_page_dirty(m);
3971				}
3972
3973				/* Mark free */
3974				PV_STAT(pv_entry_frees++);
3975				PV_STAT(pv_entry_spare++);
3976				pv_entry_count--;
3977				pc->pc_map[field] |= bitmask;
3978				if ((tpte & PG_PS) != 0) {
3979					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3980					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
3981					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
3982					if (TAILQ_EMPTY(&pvh->pv_list)) {
3983						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3984							if (TAILQ_EMPTY(&mt->md.pv_list))
3985								vm_page_flag_clear(mt, PG_WRITEABLE);
3986					}
3987					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
3988					if (mpte != NULL) {
3989						pmap_remove_pt_page(pmap, mpte);
3990						pmap->pm_stats.resident_count--;
3991						KASSERT(mpte->wire_count == NPTEPG,
3992						    ("pmap_remove_pages: pte page wire count error"));
3993						mpte->wire_count = 0;
3994						pmap_add_delayed_free_list(mpte, &free, FALSE);
3995						atomic_subtract_int(&cnt.v_wire_count, 1);
3996					}
3997				} else {
3998					pmap->pm_stats.resident_count--;
3999					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4000					if (TAILQ_EMPTY(&m->md.pv_list)) {
4001						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4002						if (TAILQ_EMPTY(&pvh->pv_list))
4003							vm_page_flag_clear(m, PG_WRITEABLE);
4004					}
4005					pmap_unuse_pt(pmap, pv->pv_va, &free);
4006				}
4007			}
4008		}
4009		if (allfree) {
4010			PV_STAT(pv_entry_spare -= _NPCPV);
4011			PV_STAT(pc_chunk_count--);
4012			PV_STAT(pc_chunk_frees++);
4013			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4014			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4015			pmap_qremove((vm_offset_t)pc, 1);
4016			vm_page_unwire(m, 0);
4017			vm_page_free(m);
4018			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4019		}
4020	}
4021	sched_unpin();
4022	pmap_invalidate_all(pmap);
4023	vm_page_unlock_queues();
4024	PMAP_UNLOCK(pmap);
4025	pmap_free_zero_pages(free);
4026}
4027
4028/*
4029 *	pmap_is_modified:
4030 *
4031 *	Return whether or not the specified physical page was modified
4032 *	in any physical maps.
4033 */
4034boolean_t
4035pmap_is_modified(vm_page_t m)
4036{
4037
4038	if (m->flags & PG_FICTITIOUS)
4039		return (FALSE);
4040	if (pmap_is_modified_pvh(&m->md))
4041		return (TRUE);
4042	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4043}
4044
4045/*
4046 * Returns TRUE if any of the given mappings were used to modify
4047 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4048 * mappings are supported.
4049 */
4050static boolean_t
4051pmap_is_modified_pvh(struct md_page *pvh)
4052{
4053	pv_entry_t pv;
4054	pt_entry_t *pte;
4055	pmap_t pmap;
4056	boolean_t rv;
4057
4058	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4059	rv = FALSE;
4060	sched_pin();
4061	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4062		pmap = PV_PMAP(pv);
4063		PMAP_LOCK(pmap);
4064		pte = pmap_pte_quick(pmap, pv->pv_va);
4065		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4066		PMAP_UNLOCK(pmap);
4067		if (rv)
4068			break;
4069	}
4070	sched_unpin();
4071	return (rv);
4072}
4073
4074/*
4075 *	pmap_is_prefaultable:
4076 *
4077 *	Return whether or not the specified virtual address is elgible
4078 *	for prefault.
4079 */
4080boolean_t
4081pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4082{
4083	pd_entry_t *pde;
4084	pt_entry_t *pte;
4085	boolean_t rv;
4086
4087	rv = FALSE;
4088	PMAP_LOCK(pmap);
4089	pde = pmap_pde(pmap, addr);
4090	if (*pde != 0 && (*pde & PG_PS) == 0) {
4091		pte = vtopte(addr);
4092		rv = *pte == 0;
4093	}
4094	PMAP_UNLOCK(pmap);
4095	return (rv);
4096}
4097
4098/*
4099 * Clear the write and modified bits in each of the given page's mappings.
4100 */
4101void
4102pmap_remove_write(vm_page_t m)
4103{
4104	struct md_page *pvh;
4105	pv_entry_t next_pv, pv;
4106	pmap_t pmap;
4107	pd_entry_t *pde;
4108	pt_entry_t oldpte, *pte;
4109	vm_offset_t va;
4110
4111	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4112	if ((m->flags & PG_FICTITIOUS) != 0 ||
4113	    (m->flags & PG_WRITEABLE) == 0)
4114		return;
4115	sched_pin();
4116	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4117	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4118		va = pv->pv_va;
4119		pmap = PV_PMAP(pv);
4120		PMAP_LOCK(pmap);
4121		pde = pmap_pde(pmap, va);
4122		if ((*pde & PG_RW) != 0)
4123			(void)pmap_demote_pde(pmap, pde, va);
4124		PMAP_UNLOCK(pmap);
4125	}
4126	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4127		pmap = PV_PMAP(pv);
4128		PMAP_LOCK(pmap);
4129		pde = pmap_pde(pmap, pv->pv_va);
4130		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4131		    " a 4mpage in page %p's pv list", m));
4132		pte = pmap_pte_quick(pmap, pv->pv_va);
4133retry:
4134		oldpte = *pte;
4135		if ((oldpte & PG_RW) != 0) {
4136			/*
4137			 * Regardless of whether a pte is 32 or 64 bits
4138			 * in size, PG_RW and PG_M are among the least
4139			 * significant 32 bits.
4140			 */
4141			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4142			    oldpte & ~(PG_RW | PG_M)))
4143				goto retry;
4144			if ((oldpte & PG_M) != 0)
4145				vm_page_dirty(m);
4146			pmap_invalidate_page(pmap, pv->pv_va);
4147		}
4148		PMAP_UNLOCK(pmap);
4149	}
4150	vm_page_flag_clear(m, PG_WRITEABLE);
4151	sched_unpin();
4152}
4153
4154/*
4155 *	pmap_ts_referenced:
4156 *
4157 *	Return a count of reference bits for a page, clearing those bits.
4158 *	It is not necessary for every reference bit to be cleared, but it
4159 *	is necessary that 0 only be returned when there are truly no
4160 *	reference bits set.
4161 *
4162 *	XXX: The exact number of bits to check and clear is a matter that
4163 *	should be tested and standardized at some point in the future for
4164 *	optimal aging of shared pages.
4165 */
4166int
4167pmap_ts_referenced(vm_page_t m)
4168{
4169	struct md_page *pvh;
4170	pv_entry_t pv, pvf, pvn;
4171	pmap_t pmap;
4172	pd_entry_t oldpde, *pde;
4173	pt_entry_t *pte;
4174	vm_offset_t va;
4175	int rtval = 0;
4176
4177	if (m->flags & PG_FICTITIOUS)
4178		return (rtval);
4179	sched_pin();
4180	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4181	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4182	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4183		va = pv->pv_va;
4184		pmap = PV_PMAP(pv);
4185		PMAP_LOCK(pmap);
4186		pde = pmap_pde(pmap, va);
4187		oldpde = *pde;
4188		if ((oldpde & PG_A) != 0) {
4189			if (pmap_demote_pde(pmap, pde, va)) {
4190				if ((oldpde & PG_W) == 0) {
4191					/*
4192					 * Remove the mapping to a single page
4193					 * so that a subsequent access may
4194					 * repromote.  Since the underlying
4195					 * page table page is fully populated,
4196					 * this removal never frees a page
4197					 * table page.
4198					 */
4199					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4200					    PG_PS_FRAME);
4201					pmap_remove_page(pmap, va, NULL);
4202					rtval++;
4203					if (rtval > 4) {
4204						PMAP_UNLOCK(pmap);
4205						return (rtval);
4206					}
4207				}
4208			}
4209		}
4210		PMAP_UNLOCK(pmap);
4211	}
4212	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4213		pvf = pv;
4214		do {
4215			pvn = TAILQ_NEXT(pv, pv_list);
4216			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4217			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4218			pmap = PV_PMAP(pv);
4219			PMAP_LOCK(pmap);
4220			pde = pmap_pde(pmap, pv->pv_va);
4221			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4222			    " found a 4mpage in page %p's pv list", m));
4223			pte = pmap_pte_quick(pmap, pv->pv_va);
4224			if ((*pte & PG_A) != 0) {
4225				atomic_clear_int((u_int *)pte, PG_A);
4226				pmap_invalidate_page(pmap, pv->pv_va);
4227				rtval++;
4228				if (rtval > 4)
4229					pvn = NULL;
4230			}
4231			PMAP_UNLOCK(pmap);
4232		} while ((pv = pvn) != NULL && pv != pvf);
4233	}
4234	sched_unpin();
4235	return (rtval);
4236}
4237
4238/*
4239 *	Clear the modify bits on the specified physical page.
4240 */
4241void
4242pmap_clear_modify(vm_page_t m)
4243{
4244	struct md_page *pvh;
4245	pv_entry_t next_pv, pv;
4246	pmap_t pmap;
4247	pd_entry_t oldpde, *pde;
4248	pt_entry_t oldpte, *pte;
4249	vm_offset_t va;
4250
4251	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4252	if ((m->flags & PG_FICTITIOUS) != 0)
4253		return;
4254	sched_pin();
4255	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4256	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4257		va = pv->pv_va;
4258		pmap = PV_PMAP(pv);
4259		PMAP_LOCK(pmap);
4260		pde = pmap_pde(pmap, va);
4261		oldpde = *pde;
4262		if ((oldpde & PG_RW) != 0) {
4263			if (pmap_demote_pde(pmap, pde, va)) {
4264				if ((oldpde & PG_W) == 0) {
4265					/*
4266					 * Write protect the mapping to a
4267					 * single page so that a subsequent
4268					 * write access may repromote.
4269					 */
4270					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4271					    PG_PS_FRAME);
4272					pte = pmap_pte_quick(pmap, va);
4273					oldpte = *pte;
4274					if ((oldpte & PG_V) != 0) {
4275						/*
4276						 * Regardless of whether a pte is 32 or 64 bits
4277						 * in size, PG_RW and PG_M are among the least
4278						 * significant 32 bits.
4279						 */
4280						while (!atomic_cmpset_int((u_int *)pte,
4281						    oldpte,
4282						    oldpte & ~(PG_M | PG_RW)))
4283							oldpte = *pte;
4284						vm_page_dirty(m);
4285						pmap_invalidate_page(pmap, va);
4286					}
4287				}
4288			}
4289		}
4290		PMAP_UNLOCK(pmap);
4291	}
4292	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4293		pmap = PV_PMAP(pv);
4294		PMAP_LOCK(pmap);
4295		pde = pmap_pde(pmap, pv->pv_va);
4296		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4297		    " a 4mpage in page %p's pv list", m));
4298		pte = pmap_pte_quick(pmap, pv->pv_va);
4299		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4300			/*
4301			 * Regardless of whether a pte is 32 or 64 bits
4302			 * in size, PG_M is among the least significant
4303			 * 32 bits.
4304			 */
4305			atomic_clear_int((u_int *)pte, PG_M);
4306			pmap_invalidate_page(pmap, pv->pv_va);
4307		}
4308		PMAP_UNLOCK(pmap);
4309	}
4310	sched_unpin();
4311}
4312
4313/*
4314 *	pmap_clear_reference:
4315 *
4316 *	Clear the reference bit on the specified physical page.
4317 */
4318void
4319pmap_clear_reference(vm_page_t m)
4320{
4321	struct md_page *pvh;
4322	pv_entry_t next_pv, pv;
4323	pmap_t pmap;
4324	pd_entry_t oldpde, *pde;
4325	pt_entry_t *pte;
4326	vm_offset_t va;
4327
4328	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4329	if ((m->flags & PG_FICTITIOUS) != 0)
4330		return;
4331	sched_pin();
4332	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4333	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4334		va = pv->pv_va;
4335		pmap = PV_PMAP(pv);
4336		PMAP_LOCK(pmap);
4337		pde = pmap_pde(pmap, va);
4338		oldpde = *pde;
4339		if ((oldpde & PG_A) != 0) {
4340			if (pmap_demote_pde(pmap, pde, va)) {
4341				/*
4342				 * Remove the mapping to a single page so
4343				 * that a subsequent access may repromote.
4344				 * Since the underlying page table page is
4345				 * fully populated, this removal never frees
4346				 * a page table page.
4347				 */
4348				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4349				    PG_PS_FRAME);
4350				pmap_remove_page(pmap, va, NULL);
4351			}
4352		}
4353		PMAP_UNLOCK(pmap);
4354	}
4355	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4356		pmap = PV_PMAP(pv);
4357		PMAP_LOCK(pmap);
4358		pde = pmap_pde(pmap, pv->pv_va);
4359		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4360		    " a 4mpage in page %p's pv list", m));
4361		pte = pmap_pte_quick(pmap, pv->pv_va);
4362		if ((*pte & PG_A) != 0) {
4363			/*
4364			 * Regardless of whether a pte is 32 or 64 bits
4365			 * in size, PG_A is among the least significant
4366			 * 32 bits.
4367			 */
4368			atomic_clear_int((u_int *)pte, PG_A);
4369			pmap_invalidate_page(pmap, pv->pv_va);
4370		}
4371		PMAP_UNLOCK(pmap);
4372	}
4373	sched_unpin();
4374}
4375
4376/*
4377 * Miscellaneous support routines follow
4378 */
4379
4380/*
4381 * Map a set of physical memory pages into the kernel virtual
4382 * address space. Return a pointer to where it is mapped. This
4383 * routine is intended to be used for mapping device memory,
4384 * NOT real memory.
4385 */
4386void *
4387pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4388{
4389	vm_offset_t va, tmpva, offset;
4390
4391	offset = pa & PAGE_MASK;
4392	size = roundup(offset + size, PAGE_SIZE);
4393	pa = pa & PG_FRAME;
4394
4395	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4396		va = KERNBASE + pa;
4397	else
4398		va = kmem_alloc_nofault(kernel_map, size);
4399	if (!va)
4400		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4401
4402	for (tmpva = va; size > 0; ) {
4403		pmap_kenter_attr(tmpva, pa, mode);
4404		size -= PAGE_SIZE;
4405		tmpva += PAGE_SIZE;
4406		pa += PAGE_SIZE;
4407	}
4408	pmap_invalidate_range(kernel_pmap, va, tmpva);
4409	pmap_invalidate_cache();
4410	return ((void *)(va + offset));
4411}
4412
4413void *
4414pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4415{
4416
4417	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4418}
4419
4420void *
4421pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4422{
4423
4424	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4425}
4426
4427void
4428pmap_unmapdev(vm_offset_t va, vm_size_t size)
4429{
4430	vm_offset_t base, offset, tmpva;
4431
4432	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4433		return;
4434	base = trunc_page(va);
4435	offset = va & PAGE_MASK;
4436	size = roundup(offset + size, PAGE_SIZE);
4437	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4438		pmap_kremove(tmpva);
4439	pmap_invalidate_range(kernel_pmap, va, tmpva);
4440	kmem_free(kernel_map, base, size);
4441}
4442
4443int
4444pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4445{
4446	vm_offset_t base, offset, tmpva;
4447	pt_entry_t *pte;
4448	u_int opte, npte;
4449	pd_entry_t *pde;
4450
4451	base = trunc_page(va);
4452	offset = va & PAGE_MASK;
4453	size = roundup(offset + size, PAGE_SIZE);
4454
4455	/*
4456	 * Only supported on kernel virtual addresses above the recursive map.
4457	 */
4458	if (base < VM_MIN_KERNEL_ADDRESS)
4459		return (EINVAL);
4460
4461	/* 4MB pages and pages that aren't mapped aren't supported. */
4462	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4463		pde = pmap_pde(kernel_pmap, tmpva);
4464		if (*pde & PG_PS)
4465			return (EINVAL);
4466		if (*pde == 0)
4467			return (EINVAL);
4468		pte = vtopte(tmpva);
4469		if (*pte == 0)
4470			return (EINVAL);
4471	}
4472
4473	/*
4474	 * Ok, all the pages exist and are 4k, so run through them updating
4475	 * their cache mode.
4476	 */
4477	for (tmpva = base; size > 0; ) {
4478		pte = vtopte(tmpva);
4479
4480		/*
4481		 * The cache mode bits are all in the low 32-bits of the
4482		 * PTE, so we can just spin on updating the low 32-bits.
4483		 */
4484		do {
4485			opte = *(u_int *)pte;
4486			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4487			npte |= pmap_cache_bits(mode, 0);
4488		} while (npte != opte &&
4489		    !atomic_cmpset_int((u_int *)pte, opte, npte));
4490		tmpva += PAGE_SIZE;
4491		size -= PAGE_SIZE;
4492	}
4493
4494	/*
4495	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4496	 * be, etc.
4497	 */
4498	pmap_invalidate_range(kernel_pmap, base, tmpva);
4499	pmap_invalidate_cache();
4500	return (0);
4501}
4502
4503/*
4504 * perform the pmap work for mincore
4505 */
4506int
4507pmap_mincore(pmap_t pmap, vm_offset_t addr)
4508{
4509	pd_entry_t *pdep;
4510	pt_entry_t *ptep, pte;
4511	vm_paddr_t pa;
4512	vm_page_t m;
4513	int val = 0;
4514
4515	PMAP_LOCK(pmap);
4516	pdep = pmap_pde(pmap, addr);
4517	if (*pdep != 0) {
4518		if (*pdep & PG_PS) {
4519			pte = *pdep;
4520			val = MINCORE_SUPER;
4521			/* Compute the physical address of the 4KB page. */
4522			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4523			    PG_FRAME;
4524		} else {
4525			ptep = pmap_pte(pmap, addr);
4526			pte = *ptep;
4527			pmap_pte_release(ptep);
4528			pa = pte & PG_FRAME;
4529		}
4530	} else {
4531		pte = 0;
4532		pa = 0;
4533	}
4534	PMAP_UNLOCK(pmap);
4535
4536	if (pte != 0) {
4537		val |= MINCORE_INCORE;
4538		if ((pte & PG_MANAGED) == 0)
4539			return val;
4540
4541		m = PHYS_TO_VM_PAGE(pa);
4542
4543		/*
4544		 * Modified by us
4545		 */
4546		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4547			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4548		else {
4549			/*
4550			 * Modified by someone else
4551			 */
4552			vm_page_lock_queues();
4553			if (m->dirty || pmap_is_modified(m))
4554				val |= MINCORE_MODIFIED_OTHER;
4555			vm_page_unlock_queues();
4556		}
4557		/*
4558		 * Referenced by us
4559		 */
4560		if (pte & PG_A)
4561			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4562		else {
4563			/*
4564			 * Referenced by someone else
4565			 */
4566			vm_page_lock_queues();
4567			if ((m->flags & PG_REFERENCED) ||
4568			    pmap_ts_referenced(m)) {
4569				val |= MINCORE_REFERENCED_OTHER;
4570				vm_page_flag_set(m, PG_REFERENCED);
4571			}
4572			vm_page_unlock_queues();
4573		}
4574	}
4575	return val;
4576}
4577
4578void
4579pmap_activate(struct thread *td)
4580{
4581	pmap_t	pmap, oldpmap;
4582	u_int32_t  cr3;
4583
4584	critical_enter();
4585	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4586	oldpmap = PCPU_GET(curpmap);
4587#if defined(SMP)
4588	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4589	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4590#else
4591	oldpmap->pm_active &= ~1;
4592	pmap->pm_active |= 1;
4593#endif
4594#ifdef PAE
4595	cr3 = vtophys(pmap->pm_pdpt);
4596#else
4597	cr3 = vtophys(pmap->pm_pdir);
4598#endif
4599	/*
4600	 * pmap_activate is for the current thread on the current cpu
4601	 */
4602	td->td_pcb->pcb_cr3 = cr3;
4603	load_cr3(cr3);
4604	PCPU_SET(curpmap, pmap);
4605	critical_exit();
4606}
4607
4608/*
4609 *	Increase the starting virtual address of the given mapping if a
4610 *	different alignment might result in more superpage mappings.
4611 */
4612void
4613pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4614    vm_offset_t *addr, vm_size_t size)
4615{
4616	vm_offset_t superpage_offset;
4617
4618	if (size < NBPDR)
4619		return;
4620	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4621		offset += ptoa(object->pg_color);
4622	superpage_offset = offset & PDRMASK;
4623	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4624	    (*addr & PDRMASK) == superpage_offset)
4625		return;
4626	if ((*addr & PDRMASK) < superpage_offset)
4627		*addr = (*addr & ~PDRMASK) + superpage_offset;
4628	else
4629		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4630}
4631
4632
4633#if defined(PMAP_DEBUG)
4634pmap_pid_dump(int pid)
4635{
4636	pmap_t pmap;
4637	struct proc *p;
4638	int npte = 0;
4639	int index;
4640
4641	sx_slock(&allproc_lock);
4642	FOREACH_PROC_IN_SYSTEM(p) {
4643		if (p->p_pid != pid)
4644			continue;
4645
4646		if (p->p_vmspace) {
4647			int i,j;
4648			index = 0;
4649			pmap = vmspace_pmap(p->p_vmspace);
4650			for (i = 0; i < NPDEPTD; i++) {
4651				pd_entry_t *pde;
4652				pt_entry_t *pte;
4653				vm_offset_t base = i << PDRSHIFT;
4654
4655				pde = &pmap->pm_pdir[i];
4656				if (pde && pmap_pde_v(pde)) {
4657					for (j = 0; j < NPTEPG; j++) {
4658						vm_offset_t va = base + (j << PAGE_SHIFT);
4659						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4660							if (index) {
4661								index = 0;
4662								printf("\n");
4663							}
4664							sx_sunlock(&allproc_lock);
4665							return npte;
4666						}
4667						pte = pmap_pte(pmap, va);
4668						if (pte && pmap_pte_v(pte)) {
4669							pt_entry_t pa;
4670							vm_page_t m;
4671							pa = *pte;
4672							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4673							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4674								va, pa, m->hold_count, m->wire_count, m->flags);
4675							npte++;
4676							index++;
4677							if (index >= 2) {
4678								index = 0;
4679								printf("\n");
4680							} else {
4681								printf(" ");
4682							}
4683						}
4684					}
4685				}
4686			}
4687		}
4688	}
4689	sx_sunlock(&allproc_lock);
4690	return npte;
4691}
4692#endif
4693
4694#if defined(DEBUG)
4695
4696static void	pads(pmap_t pm);
4697void		pmap_pvdump(vm_offset_t pa);
4698
4699/* print address space of pmap*/
4700static void
4701pads(pmap_t pm)
4702{
4703	int i, j;
4704	vm_paddr_t va;
4705	pt_entry_t *ptep;
4706
4707	if (pm == kernel_pmap)
4708		return;
4709	for (i = 0; i < NPDEPTD; i++)
4710		if (pm->pm_pdir[i])
4711			for (j = 0; j < NPTEPG; j++) {
4712				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4713				if (pm == kernel_pmap && va < KERNBASE)
4714					continue;
4715				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4716					continue;
4717				ptep = pmap_pte(pm, va);
4718				if (pmap_pte_v(ptep))
4719					printf("%x:%x ", va, *ptep);
4720			};
4721
4722}
4723
4724void
4725pmap_pvdump(vm_paddr_t pa)
4726{
4727	pv_entry_t pv;
4728	pmap_t pmap;
4729	vm_page_t m;
4730
4731	printf("pa %x", pa);
4732	m = PHYS_TO_VM_PAGE(pa);
4733	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4734		pmap = PV_PMAP(pv);
4735		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4736		pads(pmap);
4737	}
4738	printf(" ");
4739}
4740#endif
4741