pmap.c revision 19346
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.128 1996/10/23 05:31:54 dyson Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_cpu.h"
72
73#define PMAP_LOCK 1
74#define PMAP_PVLIST 1
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/proc.h>
79#include <sys/malloc.h>
80#include <sys/msgbuf.h>
81#include <sys/queue.h>
82#include <sys/vmmeter.h>
83#include <sys/mman.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_prot.h>
88#include <vm/lock.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_page.h>
91#include <vm/vm_map.h>
92#include <vm/vm_object.h>
93#include <vm/vm_extern.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pager.h>
96
97#include <machine/pcb.h>
98#include <machine/cputypes.h>
99#include <machine/md_var.h>
100
101#define PMAP_KEEP_PDIRS
102
103#if defined(DIAGNOSTIC)
104#define PMAP_DIAGNOSTIC
105#endif
106
107#if !defined(PMAP_DIAGNOSTIC)
108#define PMAP_INLINE __inline
109#else
110#define PMAP_INLINE
111#endif
112
113#define PTPHINT
114
115static void	init_pv_entries __P((int));
116
117/*
118 * Get PDEs and PTEs for user/kernel address space
119 */
120#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
121#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
122
123#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
124#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
125#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
126#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
127#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
128
129#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
130#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
131
132/*
133 * Given a map and a machine independent protection code,
134 * convert to a vax protection code.
135 */
136#define pte_prot(m, p)	(protection_codes[p])
137static int protection_codes[8];
138
139#define	pa_index(pa)		atop((pa) - vm_first_phys)
140#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
141
142static struct pmap kernel_pmap_store;
143pmap_t kernel_pmap;
144
145vm_offset_t avail_start;	/* PA of first available physical page */
146vm_offset_t avail_end;		/* PA of last available physical page */
147vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
148vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
149static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
150static vm_offset_t vm_first_phys;
151
152static int nkpt;
153static vm_page_t nkpg;
154vm_offset_t kernel_vm_end;
155
156extern vm_offset_t clean_sva, clean_eva;
157extern int cpu_class;
158
159#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
160
161/*
162 * Data for the pv entry allocation mechanism
163 */
164static int pv_freelistcnt;
165TAILQ_HEAD (,pv_entry) pv_freelist;
166static vm_offset_t pvva;
167static int npvvapg;
168
169/*
170 * All those kernel PT submaps that BSD is so fond of
171 */
172pt_entry_t *CMAP1;
173static pt_entry_t *CMAP2, *ptmmap;
174static pv_table_t *pv_table;
175caddr_t CADDR1, ptvmmap;
176static caddr_t CADDR2;
177static pt_entry_t *msgbufmap;
178struct msgbuf *msgbufp;
179
180pt_entry_t *PMAP1;
181unsigned *PADDR1;
182
183static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
184static unsigned * get_ptbase __P((pmap_t pmap));
185static pv_entry_t get_pv_entry __P((void));
186static void	i386_protection_init __P((void));
187static void	pmap_alloc_pv_entry __P((void));
188static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
189
190static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
191static void	pmap_remove_all __P((vm_offset_t pa));
192static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
193				      vm_offset_t pa, vm_page_t mpte));
194static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
195					vm_offset_t sva));
196static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
197static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
198					vm_offset_t va));
199static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
200static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
201		vm_page_t mpte, vm_offset_t pa));
202
203static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
204
205static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
206static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
207static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
208static vm_page_t pmap_page_alloc __P((vm_object_t object, vm_pindex_t pindex));
209static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
210static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
211
212#define PDSTACKMAX 6
213static vm_offset_t pdstack[PDSTACKMAX];
214static int pdstackptr;
215
216/*
217 *	Bootstrap the system enough to run with virtual memory.
218 *
219 *	On the i386 this is called after mapping has already been enabled
220 *	and just syncs the pmap module with what has already been done.
221 *	[We can't call it easily with mapping off since the kernel is not
222 *	mapped with PA == VA, hence we would have to relocate every address
223 *	from the linked base (virtual) address "KERNBASE" to the actual
224 *	(physical) address starting relative to 0]
225 */
226void
227pmap_bootstrap(firstaddr, loadaddr)
228	vm_offset_t firstaddr;
229	vm_offset_t loadaddr;
230{
231	vm_offset_t va;
232	pt_entry_t *pte;
233
234	avail_start = firstaddr;
235
236	/*
237	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
238	 * large. It should instead be correctly calculated in locore.s and
239	 * not based on 'first' (which is a physical address, not a virtual
240	 * address, for the start of unused physical memory). The kernel
241	 * page tables are NOT double mapped and thus should not be included
242	 * in this calculation.
243	 */
244	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
245	virtual_end = VM_MAX_KERNEL_ADDRESS;
246
247	/*
248	 * Initialize protection array.
249	 */
250	i386_protection_init();
251
252	/*
253	 * The kernel's pmap is statically allocated so we don't have to use
254	 * pmap_create, which is unlikely to work correctly at this part of
255	 * the boot sequence (XXX and which no longer exists).
256	 */
257	kernel_pmap = &kernel_pmap_store;
258
259	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
260
261	kernel_pmap->pm_count = 1;
262#if PMAP_PVLIST
263	TAILQ_INIT(&kernel_pmap->pm_pvlist);
264#endif
265	nkpt = NKPT;
266
267	/*
268	 * Reserve some special page table entries/VA space for temporary
269	 * mapping of pages.
270	 */
271#define	SYSMAP(c, p, v, n)	\
272	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
273
274	va = virtual_avail;
275	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
276
277	/*
278	 * CMAP1/CMAP2 are used for zeroing and copying pages.
279	 */
280	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
281	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
282
283	/*
284	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
285	 */
286	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
287
288	/*
289	 * msgbufmap is used to map the system message buffer.
290	 */
291	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
292
293	/*
294	 * ptemap is used for pmap_pte_quick
295	 */
296	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
297
298	virtual_avail = va;
299
300	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
301	invltlb();
302
303}
304
305/*
306 *	Initialize the pmap module.
307 *	Called by vm_init, to initialize any structures that the pmap
308 *	system needs to map virtual memory.
309 *	pmap_init has been enhanced to support in a fairly consistant
310 *	way, discontiguous physical memory.
311 */
312void
313pmap_init(phys_start, phys_end)
314	vm_offset_t phys_start, phys_end;
315{
316	vm_offset_t addr;
317	vm_size_t s;
318	int i, npg;
319
320	/*
321	 * calculate the number of pv_entries needed
322	 */
323	vm_first_phys = phys_avail[0];
324	for (i = 0; phys_avail[i + 1]; i += 2);
325	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
326
327	/*
328	 * Allocate memory for random pmap data structures.  Includes the
329	 * pv_head_table.
330	 */
331	s = (vm_size_t) (sizeof(pv_table_t) * npg);
332	s = round_page(s);
333
334	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
335	pv_table = (pv_table_t *) addr;
336	for(i = 0; i < npg; i++) {
337		vm_offset_t pa;
338		TAILQ_INIT(&pv_table[i].pv_list);
339		pv_table[i].pv_list_count = 0;
340		pa = vm_first_phys + i * PAGE_SIZE;
341		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
342	}
343	TAILQ_INIT(&pv_freelist);
344
345	/*
346	 * init the pv free list
347	 */
348	init_pv_entries(npg);
349	/*
350	 * Now it is safe to enable pv_table recording.
351	 */
352	pmap_initialized = TRUE;
353}
354
355/*
356 *	Used to map a range of physical addresses into kernel
357 *	virtual address space.
358 *
359 *	For now, VM is already on, we only need to map the
360 *	specified memory.
361 */
362vm_offset_t
363pmap_map(virt, start, end, prot)
364	vm_offset_t virt;
365	vm_offset_t start;
366	vm_offset_t end;
367	int prot;
368{
369	while (start < end) {
370		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
371		virt += PAGE_SIZE;
372		start += PAGE_SIZE;
373	}
374	return (virt);
375}
376
377
378/***************************************************
379 * Low level helper routines.....
380 ***************************************************/
381
382#if defined(PMAP_DIAGNOSTIC)
383
384/*
385 * This code checks for non-writeable/modified pages.
386 * This should be an invalid condition.
387 */
388static int
389pmap_nw_modified(pt_entry_t ptea) {
390	int pte;
391
392	pte = (int) ptea;
393
394	if ((pte & (PG_M|PG_RW)) == PG_M)
395		return 1;
396	else
397		return 0;
398}
399#endif
400
401
402/*
403 * this routine defines the region(s) of memory that should
404 * not be tested for the modified bit.
405 */
406static PMAP_INLINE int
407pmap_track_modified( vm_offset_t va) {
408	if ((va < clean_sva) || (va >= clean_eva))
409		return 1;
410	else
411		return 0;
412}
413
414static PMAP_INLINE void
415invltlb_1pg( vm_offset_t va) {
416#if defined(I386_CPU)
417	if (cpu_class == CPUCLASS_386) {
418		invltlb();
419	} else
420#endif
421	{
422		invlpg(va);
423	}
424}
425
426static PMAP_INLINE void
427invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
428#if defined(I386_CPU)
429	if (cpu_class == CPUCLASS_386) {
430		invltlb();
431	} else
432#endif
433	{
434		invlpg(va1);
435		invlpg(va2);
436	}
437}
438
439static unsigned *
440get_ptbase(pmap)
441	pmap_t pmap;
442{
443	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
444
445	/* are we current address space or kernel? */
446	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
447		return (unsigned *) PTmap;
448	}
449	/* otherwise, we are alternate address space */
450	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
451		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
452		invltlb();
453	}
454	return (unsigned *) APTmap;
455}
456
457/*
458 *	Routine:	pmap_pte
459 *	Function:
460 *		Extract the page table entry associated
461 *		with the given map/virtual_address pair.
462 */
463
464PMAP_INLINE unsigned *
465pmap_pte(pmap, va)
466	register pmap_t pmap;
467	vm_offset_t va;
468{
469	if (pmap && *pmap_pde(pmap, va)) {
470		return get_ptbase(pmap) + i386_btop(va);
471	}
472	return (0);
473}
474
475/*
476 * Super fast pmap_pte routine best used when scanning
477 * the pv lists.  This eliminates many coarse-grained
478 * invltlb calls.  Note that many of the pv list
479 * scans are across different pmaps.  It is very wasteful
480 * to do an entire invltlb for checking a single mapping.
481 */
482
483static unsigned *
484pmap_pte_quick(pmap, va)
485	register pmap_t pmap;
486	vm_offset_t va;
487{
488	unsigned pde, newpf;
489	if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
490		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
491		unsigned index = i386_btop(va);
492		/* are we current address space or kernel? */
493		if ((pmap == kernel_pmap) ||
494			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
495			return (unsigned *) PTmap + index;
496		}
497		newpf = pde & PG_FRAME;
498		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
499			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
500			invltlb_1pg((vm_offset_t) PADDR1);
501		}
502		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
503	}
504	return (0);
505}
506
507/*
508 *	Routine:	pmap_extract
509 *	Function:
510 *		Extract the physical page address associated
511 *		with the given map/virtual_address pair.
512 */
513vm_offset_t
514pmap_extract(pmap, va)
515	register pmap_t pmap;
516	vm_offset_t va;
517{
518	vm_offset_t rtval;
519	if (pmap && *pmap_pde(pmap, va)) {
520		unsigned *pte;
521		pte = get_ptbase(pmap) + i386_btop(va);
522		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
523		return rtval;
524	}
525	return 0;
526
527}
528
529/*
530 * determine if a page is managed (memory vs. device)
531 */
532static PMAP_INLINE int
533pmap_is_managed(pa)
534	vm_offset_t pa;
535{
536	int i;
537
538	if (!pmap_initialized)
539		return 0;
540
541	for (i = 0; phys_avail[i + 1]; i += 2) {
542		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
543			return 1;
544	}
545	return 0;
546}
547
548
549/***************************************************
550 * Low level mapping routines.....
551 ***************************************************/
552
553/*
554 * Add a list of wired pages to the kva
555 * this routine is only used for temporary
556 * kernel mappings that do not need to have
557 * page modification or references recorded.
558 * Note that old mappings are simply written
559 * over.  The page *must* be wired.
560 */
561void
562pmap_qenter(va, m, count)
563	vm_offset_t va;
564	vm_page_t *m;
565	int count;
566{
567	int i;
568	register unsigned *pte;
569
570	for (i = 0; i < count; i++) {
571		vm_offset_t tva = va + i * PAGE_SIZE;
572		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V;
573		unsigned opte;
574		pte = (unsigned *)vtopte(tva);
575		opte = *pte;
576		*pte = npte;
577		if (opte)
578			invltlb_1pg(tva);
579	}
580}
581
582/*
583 * this routine jerks page mappings from the
584 * kernel -- it is meant only for temporary mappings.
585 */
586void
587pmap_qremove(va, count)
588	vm_offset_t va;
589	int count;
590{
591	int i;
592	register unsigned *pte;
593
594	for (i = 0; i < count; i++) {
595		pte = (unsigned *)vtopte(va);
596		*pte = 0;
597		invltlb_1pg(va);
598		va += PAGE_SIZE;
599	}
600}
601
602/*
603 * add a wired page to the kva
604 * note that in order for the mapping to take effect -- you
605 * should do a invltlb after doing the pmap_kenter...
606 */
607PMAP_INLINE void
608pmap_kenter(va, pa)
609	vm_offset_t va;
610	register vm_offset_t pa;
611{
612	register unsigned *pte;
613	unsigned npte, opte;
614
615	npte = pa | PG_RW | PG_V;
616	pte = (unsigned *)vtopte(va);
617	opte = *pte;
618	*pte = npte;
619	if (opte)
620		invltlb_1pg(va);
621}
622
623/*
624 * remove a page from the kernel pagetables
625 */
626PMAP_INLINE void
627pmap_kremove(va)
628	vm_offset_t va;
629{
630	register unsigned *pte;
631
632	pte = (unsigned *)vtopte(va);
633	*pte = 0;
634	invltlb_1pg(va);
635}
636
637static vm_page_t
638pmap_page_alloc(object, pindex)
639	vm_object_t object;
640	vm_pindex_t pindex;
641{
642	vm_page_t m;
643	m = vm_page_alloc(object, pindex, VM_ALLOC_ZERO);
644	if (m == NULL) {
645		VM_WAIT;
646	}
647	return m;
648}
649
650static vm_page_t
651pmap_page_lookup(object, pindex)
652	vm_object_t object;
653	vm_pindex_t pindex;
654{
655	vm_page_t m;
656retry:
657	m = vm_page_lookup(object, pindex);
658	if (m) {
659		if (m->flags & PG_BUSY) {
660			m->flags |= PG_WANTED;
661			tsleep(m, PVM, "pplookp", 0);
662			goto retry;
663		}
664	}
665
666	return m;
667}
668
669/*
670 * Create the UPAGES for a new process.
671 * This routine directly affects the fork perf for a process.
672 */
673void
674pmap_new_proc(p)
675	struct proc *p;
676{
677	int i;
678	vm_object_t upobj;
679	pmap_t pmap;
680	vm_page_t m;
681	struct user *up;
682	unsigned *ptep, *ptek;
683
684	pmap = &p->p_vmspace->vm_pmap;
685
686	/*
687	 * allocate object for the upages
688	 */
689	upobj = vm_object_allocate( OBJT_DEFAULT,
690		UPAGES);
691	p->p_vmspace->vm_upages_obj = upobj;
692
693	/* get a kernel virtual address for the UPAGES for this proc */
694	up = (struct user *) kmem_alloc_pageable(u_map, UPAGES * PAGE_SIZE);
695	if (up == NULL)
696		panic("vm_fork: u_map allocation failed");
697
698	/*
699	 * Allocate the ptp and incr the hold count appropriately
700	 */
701	m = pmap_allocpte(pmap, (vm_offset_t) kstack);
702	m->hold_count += (UPAGES - 1);
703
704	ptep = (unsigned *) pmap_pte(pmap, (vm_offset_t) kstack);
705	ptek = (unsigned *) vtopte((vm_offset_t) up);
706
707	for(i=0;i<UPAGES;i++) {
708		/*
709		 * Get a kernel stack page
710		 */
711		while ((m = vm_page_alloc(upobj,
712			i, VM_ALLOC_NORMAL)) == NULL) {
713			VM_WAIT;
714		}
715
716		/*
717		 * Wire the page
718		 */
719		m->wire_count++;
720		++cnt.v_wire_count;
721
722		/*
723		 * Enter the page into both the kernel and the process
724		 * address space.
725		 */
726		*(ptep + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V;
727		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V;
728
729		m->flags &= ~(PG_ZERO|PG_BUSY);
730		m->flags |= PG_MAPPED|PG_WRITEABLE;
731		m->valid = VM_PAGE_BITS_ALL;
732	}
733
734	pmap->pm_stats.resident_count += UPAGES;
735	p->p_addr = up;
736}
737
738/*
739 * Dispose the UPAGES for a process that has exited.
740 * This routine directly impacts the exit perf of a process.
741 */
742void
743pmap_dispose_proc(p)
744	struct proc *p;
745{
746	int i;
747	vm_object_t upobj;
748	pmap_t pmap;
749	vm_page_t m;
750	unsigned *ptep, *ptek;
751
752	pmap = &p->p_vmspace->vm_pmap;
753	ptep = (unsigned *) pmap_pte(pmap, (vm_offset_t) kstack);
754	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
755
756	upobj = p->p_vmspace->vm_upages_obj;
757
758	for(i=0;i<UPAGES;i++) {
759		if ((m = vm_page_lookup(upobj, i)) == NULL)
760			panic("pmap_dispose_proc: upage already missing???");
761		*(ptep + i) = 0;
762		*(ptek + i) = 0;
763		pmap_unuse_pt(pmap, (vm_offset_t) kstack + i * PAGE_SIZE, NULL);
764		vm_page_unwire(m);
765		vm_page_free(m);
766	}
767	pmap->pm_stats.resident_count -= UPAGES;
768
769	kmem_free(u_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
770}
771
772/*
773 * Allow the UPAGES for a process to be prejudicially paged out.
774 */
775void
776pmap_swapout_proc(p)
777	struct proc *p;
778{
779	int i;
780	vm_object_t upobj;
781	pmap_t pmap;
782	vm_page_t m;
783	unsigned *pte;
784
785	pmap = &p->p_vmspace->vm_pmap;
786	pte = (unsigned *) pmap_pte(pmap, (vm_offset_t) kstack);
787
788	upobj = p->p_vmspace->vm_upages_obj;
789	/*
790	 * let the upages be paged
791	 */
792	for(i=0;i<UPAGES;i++) {
793		if ((m = vm_page_lookup(upobj, i)) == NULL)
794			panic("pmap_pageout_proc: upage already missing???");
795		m->dirty = VM_PAGE_BITS_ALL;
796		*(pte + i) = 0;
797		pmap_unuse_pt(pmap, (vm_offset_t) kstack + i * PAGE_SIZE, NULL);
798
799		vm_page_unwire(m);
800		vm_page_deactivate(m);
801		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
802	}
803	pmap->pm_stats.resident_count -= UPAGES;
804}
805
806/*
807 * Bring the UPAGES for a specified process back in.
808 */
809void
810pmap_swapin_proc(p)
811	struct proc *p;
812{
813	int i;
814	vm_object_t upobj;
815	pmap_t pmap;
816	vm_page_t m;
817	unsigned *pte;
818
819	pmap = &p->p_vmspace->vm_pmap;
820	/*
821	 * Allocate the ptp and incr the hold count appropriately
822	 */
823	m = pmap_allocpte(pmap, (vm_offset_t) kstack);
824	m->hold_count += (UPAGES - 1);
825	pte = (unsigned *) pmap_pte(pmap, (vm_offset_t) kstack);
826
827	upobj = p->p_vmspace->vm_upages_obj;
828	for(i=0;i<UPAGES;i++) {
829		int s;
830		s = splvm();
831retry:
832		if ((m = vm_page_lookup(upobj, i)) == NULL) {
833			if ((m = vm_page_alloc(upobj, i, VM_ALLOC_NORMAL)) == NULL) {
834				VM_WAIT;
835				goto retry;
836			}
837		} else {
838			if ((m->flags & PG_BUSY) || m->busy) {
839				m->flags |= PG_WANTED;
840				tsleep(m, PVM, "swinuw",0);
841				goto retry;
842			}
843			m->flags |= PG_BUSY;
844		}
845		vm_page_wire(m);
846		splx(s);
847
848		*(pte+i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V;
849		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
850			VM_PAGE_TO_PHYS(m));
851
852		if (m->valid != VM_PAGE_BITS_ALL) {
853			int rv;
854			rv = vm_pager_get_pages(upobj, &m, 1, 0);
855			if (rv != VM_PAGER_OK)
856				panic("faultin: cannot get upages for proc: %d\n", p->p_pid);
857			m->valid = VM_PAGE_BITS_ALL;
858		}
859		PAGE_WAKEUP(m);
860		m->flags |= PG_MAPPED|PG_WRITEABLE;
861	}
862	pmap->pm_stats.resident_count += UPAGES;
863}
864
865/***************************************************
866 * Page table page management routines.....
867 ***************************************************/
868
869/*
870 * This routine unholds page table pages, and if the hold count
871 * drops to zero, then it decrements the wire count.
872 */
873static int
874pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
875	int s;
876
877	vm_page_unhold(m);
878
879	s = splvm();
880	while (m->flags & PG_BUSY) {
881		m->flags |= PG_WANTED;
882		tsleep(m, PVM, "pmuwpt", 0);
883	}
884	splx(s);
885
886	if (m->hold_count == 0) {
887		vm_offset_t pteva;
888		/*
889		 * unmap the page table page
890		 */
891		pmap->pm_pdir[m->pindex] = 0;
892		--pmap->pm_stats.resident_count;
893		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
894			(((unsigned) PTDpde) & PG_FRAME)) {
895			/*
896			 * Do a invltlb to make the invalidated mapping
897			 * take effect immediately.
898			 */
899			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
900			invltlb_1pg(pteva);
901		}
902
903#if defined(PTPHINT)
904		if (pmap->pm_ptphint == m)
905			pmap->pm_ptphint = NULL;
906#endif
907
908		/*
909		 * If the page is finally unwired, simply free it.
910		 */
911		--m->wire_count;
912		if (m->wire_count == 0) {
913
914			if (m->flags & PG_WANTED) {
915				m->flags &= ~PG_WANTED;
916				wakeup(m);
917			}
918
919			vm_page_free_zero(m);
920			--cnt.v_wire_count;
921		}
922		return 1;
923	}
924	return 0;
925}
926
927/*
928 * After removing a page table entry, this routine is used to
929 * conditionally free the page, and manage the hold/wire counts.
930 */
931static int
932pmap_unuse_pt(pmap, va, mpte)
933	pmap_t pmap;
934	vm_offset_t va;
935	vm_page_t mpte;
936{
937	unsigned ptepindex;
938	if (va >= UPT_MIN_ADDRESS)
939		return 0;
940
941	if (mpte == NULL) {
942		ptepindex = (va >> PDRSHIFT);
943#if defined(PTPHINT)
944		if (pmap->pm_ptphint &&
945			(pmap->pm_ptphint->pindex == ptepindex)) {
946			mpte = pmap->pm_ptphint;
947		} else {
948			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
949			pmap->pm_ptphint = mpte;
950		}
951#else
952		mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
953#endif
954	}
955
956	return pmap_unwire_pte_hold(pmap, mpte);
957}
958
959/*
960 * Initialize a preallocated and zeroed pmap structure,
961 * such as one in a vmspace structure.
962 */
963void
964pmap_pinit(pmap)
965	register struct pmap *pmap;
966{
967	vm_page_t ptdpg;
968	/*
969	 * No need to allocate page table space yet but we do need a valid
970	 * page directory table.
971	 */
972
973	if (pdstackptr > 0) {
974		--pdstackptr;
975		pmap->pm_pdir = (pd_entry_t *)pdstack[pdstackptr];
976	} else {
977		pmap->pm_pdir =
978			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
979	}
980
981	/*
982	 * allocate object for the ptes
983	 */
984	pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
985
986	/*
987	 * allocate the page directory page
988	 */
989retry:
990	ptdpg = pmap_page_alloc( pmap->pm_pteobj, PTDPTDI);
991	if (ptdpg == NULL)
992		goto retry;
993
994	ptdpg->wire_count = 1;
995	++cnt.v_wire_count;
996
997	ptdpg->flags &= ~(PG_MAPPED|PG_BUSY);	/* not mapped normally */
998	ptdpg->valid = VM_PAGE_BITS_ALL;
999
1000	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1001	if ((ptdpg->flags & PG_ZERO) == 0)
1002		bzero(pmap->pm_pdir, PAGE_SIZE);
1003
1004	/* wire in kernel global address entries */
1005	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1006
1007	/* install self-referential address mapping entry */
1008	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1009		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
1010
1011	pmap->pm_flags = 0;
1012	pmap->pm_count = 1;
1013	pmap->pm_ptphint = NULL;
1014#if PMAP_PVLIST
1015	TAILQ_INIT(&pmap->pm_pvlist);
1016#endif
1017}
1018
1019static int
1020pmap_release_free_page(pmap, p)
1021	struct pmap *pmap;
1022	vm_page_t p;
1023{
1024	int s;
1025	unsigned *pde = (unsigned *) pmap->pm_pdir;
1026	/*
1027	 * This code optimizes the case of freeing non-busy
1028	 * page-table pages.  Those pages are zero now, and
1029	 * might as well be placed directly into the zero queue.
1030	 */
1031	s = splvm();
1032	if (p->flags & PG_BUSY) {
1033		p->flags |= PG_WANTED;
1034		tsleep(p, PVM, "pmaprl", 0);
1035		splx(s);
1036		return 0;
1037	}
1038
1039	if (p->flags & PG_WANTED) {
1040		p->flags &= ~PG_WANTED;
1041		wakeup(p);
1042	}
1043
1044	/*
1045	 * Remove the page table page from the processes address space.
1046	 */
1047	pde[p->pindex] = 0;
1048	--pmap->pm_stats.resident_count;
1049
1050	if (p->hold_count)  {
1051		panic("pmap_release: freeing held page table page");
1052	}
1053	/*
1054	 * Page directory pages need to have the kernel
1055	 * stuff cleared, so they can go into the zero queue also.
1056	 */
1057	if (p->pindex == PTDPTDI) {
1058		bzero(pde + KPTDI, nkpt * PTESIZE);
1059		pde[APTDPTDI] = 0;
1060		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1061	}
1062
1063#if defined(PTPHINT)
1064	if (pmap->pm_ptphint &&
1065		(pmap->pm_ptphint->pindex == p->pindex))
1066		pmap->pm_ptphint = NULL;
1067#endif
1068
1069	vm_page_free_zero(p);
1070	splx(s);
1071	return 1;
1072}
1073
1074/*
1075 * this routine is called if the page table page is not
1076 * mapped correctly.
1077 */
1078static vm_page_t
1079_pmap_allocpte(pmap, ptepindex)
1080	pmap_t	pmap;
1081	unsigned ptepindex;
1082{
1083	vm_offset_t pteva, ptepa;
1084	vm_page_t m;
1085	int needszero = 0;
1086
1087	/*
1088	 * Find or fabricate a new pagetable page
1089	 */
1090retry:
1091	m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
1092	if (m == NULL) {
1093		m = pmap_page_alloc(pmap->pm_pteobj, ptepindex);
1094		if (m == NULL)
1095			goto retry;
1096		if ((m->flags & PG_ZERO) == 0)
1097			needszero = 1;
1098		m->flags &= ~(PG_ZERO|PG_BUSY);
1099		m->valid = VM_PAGE_BITS_ALL;
1100	} else {
1101		if ((m->flags & PG_BUSY) || m->busy) {
1102			m->flags |= PG_WANTED;
1103			tsleep(m, PVM, "ptewai", 0);
1104			goto retry;
1105		}
1106	}
1107
1108	if (m->queue != PQ_NONE) {
1109		int s = splvm();
1110		vm_page_unqueue(m);
1111		splx(s);
1112	}
1113
1114	if (m->wire_count == 0)
1115		++cnt.v_wire_count;
1116	++m->wire_count;
1117
1118	/*
1119	 * Increment the hold count for the page table page
1120	 * (denoting a new mapping.)
1121	 */
1122	++m->hold_count;
1123
1124	/*
1125	 * Map the pagetable page into the process address space, if
1126	 * it isn't already there.
1127	 */
1128
1129	pmap->pm_stats.resident_count++;
1130
1131	ptepa = VM_PAGE_TO_PHYS(m);
1132	pmap->pm_pdir[ptepindex] = (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V);
1133
1134#if defined(PTPHINT)
1135	/*
1136	 * Set the page table hint
1137	 */
1138	pmap->pm_ptphint = m;
1139#endif
1140
1141	/*
1142	 * Try to use the new mapping, but if we cannot, then
1143	 * do it with the routine that maps the page explicitly.
1144	 */
1145	if (needszero) {
1146		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1147			(((unsigned) PTDpde) & PG_FRAME)) {
1148			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1149			bzero((caddr_t) pteva, PAGE_SIZE);
1150		} else {
1151			pmap_zero_page(ptepa);
1152		}
1153	}
1154
1155	m->valid = VM_PAGE_BITS_ALL;
1156	m->flags |= PG_MAPPED;
1157
1158	return m;
1159}
1160
1161static vm_page_t
1162pmap_allocpte(pmap, va)
1163	pmap_t	pmap;
1164	vm_offset_t va;
1165{
1166	unsigned ptepindex;
1167	vm_offset_t ptepa;
1168	vm_page_t m;
1169
1170	/*
1171	 * Calculate pagetable page index
1172	 */
1173	ptepindex = va >> PDRSHIFT;
1174
1175	/*
1176	 * Get the page directory entry
1177	 */
1178	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1179
1180	/*
1181	 * If the page table page is mapped, we just increment the
1182	 * hold count, and activate it.
1183	 */
1184	if (ptepa) {
1185#if defined(PTPHINT)
1186		/*
1187		 * In order to get the page table page, try the
1188		 * hint first.
1189		 */
1190		if (pmap->pm_ptphint &&
1191			(pmap->pm_ptphint->pindex == ptepindex)) {
1192			m = pmap->pm_ptphint;
1193		} else {
1194			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1195			pmap->pm_ptphint = m;
1196		}
1197#else
1198		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1199#endif
1200		++m->hold_count;
1201		return m;
1202	}
1203	/*
1204	 * Here if the pte page isn't mapped, or if it has been deallocated.
1205	 */
1206	return _pmap_allocpte(pmap, ptepindex);
1207}
1208
1209
1210/***************************************************
1211* Pmap allocation/deallocation routines.
1212 ***************************************************/
1213
1214/*
1215 * Release any resources held by the given physical map.
1216 * Called when a pmap initialized by pmap_pinit is being released.
1217 * Should only be called if the map contains no valid mappings.
1218 */
1219void
1220pmap_release(pmap)
1221	register struct pmap *pmap;
1222{
1223	vm_page_t p,n,ptdpg;
1224	vm_object_t object = pmap->pm_pteobj;
1225
1226#if defined(DIAGNOSTIC)
1227	if (object->ref_count != 1)
1228		panic("pmap_release: pteobj reference count != 1");
1229#endif
1230
1231	ptdpg = NULL;
1232retry:
1233	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1234		n = TAILQ_NEXT(p, listq);
1235		if (p->pindex == PTDPTDI) {
1236			ptdpg = p;
1237			continue;
1238		}
1239		if (!pmap_release_free_page(pmap, p))
1240			goto retry;
1241	}
1242
1243	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1244		goto retry;
1245
1246	vm_object_deallocate(object);
1247	if (pdstackptr < PDSTACKMAX) {
1248		pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
1249		++pdstackptr;
1250	} else {
1251		kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
1252	}
1253	pmap->pm_pdir = 0;
1254}
1255
1256/*
1257 * grow the number of kernel page table entries, if needed
1258 */
1259void
1260pmap_growkernel(vm_offset_t addr)
1261{
1262	struct proc *p;
1263	struct pmap *pmap;
1264	int s;
1265
1266	s = splhigh();
1267	if (kernel_vm_end == 0) {
1268		kernel_vm_end = KERNBASE;
1269		nkpt = 0;
1270		while (pdir_pde(PTD, kernel_vm_end)) {
1271			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1272			++nkpt;
1273		}
1274	}
1275	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1276	while (kernel_vm_end < addr) {
1277		if (pdir_pde(PTD, kernel_vm_end)) {
1278			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1279			continue;
1280		}
1281		++nkpt;
1282		if (!nkpg) {
1283			vm_offset_t ptpkva = (vm_offset_t) vtopte(addr);
1284			/*
1285			 * This index is bogus, but out of the way
1286			 */
1287			vm_pindex_t ptpidx = (ptpkva >> PAGE_SHIFT);
1288			nkpg = vm_page_alloc(kernel_object,
1289				ptpidx, VM_ALLOC_SYSTEM);
1290			if (!nkpg)
1291				panic("pmap_growkernel: no memory to grow kernel");
1292			vm_page_wire(nkpg);
1293			vm_page_remove(nkpg);
1294			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
1295		}
1296		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW);
1297		nkpg = NULL;
1298
1299		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1300			if (p->p_vmspace) {
1301				pmap = &p->p_vmspace->vm_pmap;
1302				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1303			}
1304		}
1305		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1306		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1307	}
1308	splx(s);
1309}
1310
1311/*
1312 *	Retire the given physical map from service.
1313 *	Should only be called if the map contains
1314 *	no valid mappings.
1315 */
1316void
1317pmap_destroy(pmap)
1318	register pmap_t pmap;
1319{
1320	int count;
1321
1322	if (pmap == NULL)
1323		return;
1324
1325	count = --pmap->pm_count;
1326	if (count == 0) {
1327		pmap_release(pmap);
1328		free((caddr_t) pmap, M_VMPMAP);
1329	}
1330}
1331
1332/*
1333 *	Add a reference to the specified pmap.
1334 */
1335void
1336pmap_reference(pmap)
1337	pmap_t pmap;
1338{
1339	if (pmap != NULL) {
1340		pmap->pm_count++;
1341	}
1342}
1343
1344/***************************************************
1345* page management routines.
1346 ***************************************************/
1347
1348/*
1349 * free the pv_entry back to the free list
1350 */
1351static PMAP_INLINE void
1352free_pv_entry(pv)
1353	pv_entry_t pv;
1354{
1355	++pv_freelistcnt;
1356	TAILQ_INSERT_HEAD(&pv_freelist, pv, pv_list);
1357}
1358
1359/*
1360 * get a new pv_entry, allocating a block from the system
1361 * when needed.
1362 * the memory allocation is performed bypassing the malloc code
1363 * because of the possibility of allocations at interrupt time.
1364 */
1365static pv_entry_t
1366get_pv_entry()
1367{
1368	pv_entry_t tmp;
1369
1370	/*
1371	 * get more pv_entry pages if needed
1372	 */
1373	if (pv_freelistcnt < PV_FREELIST_MIN || !TAILQ_FIRST(&pv_freelist)) {
1374		pmap_alloc_pv_entry();
1375	}
1376	/*
1377	 * get a pv_entry off of the free list
1378	 */
1379	--pv_freelistcnt;
1380	tmp = TAILQ_FIRST(&pv_freelist);
1381	TAILQ_REMOVE(&pv_freelist, tmp, pv_list);
1382	return tmp;
1383}
1384
1385/*
1386 * This *strange* allocation routine eliminates the possibility of a malloc
1387 * failure (*FATAL*) for a pv_entry_t data structure.
1388 * also -- this code is MUCH MUCH faster than the malloc equiv...
1389 * We really need to do the slab allocator thingie here.
1390 */
1391static void
1392pmap_alloc_pv_entry()
1393{
1394	/*
1395	 * do we have any pre-allocated map-pages left?
1396	 */
1397	if (npvvapg) {
1398		vm_page_t m;
1399
1400		/*
1401		 * allocate a physical page out of the vm system
1402		 */
1403		m = vm_page_alloc(kernel_object,
1404		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
1405		    VM_ALLOC_INTERRUPT);
1406		if (m) {
1407			int newentries;
1408			int i;
1409			pv_entry_t entry;
1410
1411			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
1412			/*
1413			 * wire the page
1414			 */
1415			vm_page_wire(m);
1416			m->flags &= ~PG_BUSY;
1417			/*
1418			 * let the kernel see it
1419			 */
1420			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
1421
1422			entry = (pv_entry_t) pvva;
1423			/*
1424			 * update the allocation pointers
1425			 */
1426			pvva += PAGE_SIZE;
1427			--npvvapg;
1428
1429			/*
1430			 * free the entries into the free list
1431			 */
1432			for (i = 0; i < newentries; i++) {
1433				free_pv_entry(entry);
1434				entry++;
1435			}
1436		}
1437	}
1438	if (!TAILQ_FIRST(&pv_freelist))
1439		panic("get_pv_entry: cannot get a pv_entry_t");
1440}
1441
1442/*
1443 * init the pv_entry allocation system
1444 */
1445#define PVSPERPAGE 64
1446void
1447init_pv_entries(npg)
1448	int npg;
1449{
1450	/*
1451	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
1452	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
1453	 * this is too small.)
1454	 */
1455	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
1456		+ PAGE_SIZE - 1) / PAGE_SIZE;
1457	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
1458	/*
1459	 * get the first batch of entries
1460	 */
1461	pmap_alloc_pv_entry();
1462}
1463
1464/*
1465 * If it is the first entry on the list, it is actually
1466 * in the header and we must copy the following entry up
1467 * to the header.  Otherwise we must search the list for
1468 * the entry.  In either case we free the now unused entry.
1469 */
1470
1471static int
1472pmap_remove_entry(pmap, ppv, va)
1473	struct pmap *pmap;
1474	pv_table_t *ppv;
1475	vm_offset_t va;
1476{
1477	pv_entry_t pv;
1478	int rtval;
1479	int s;
1480
1481	s = splvm();
1482#if PMAP_PVLIST
1483	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1484#endif
1485		for (pv = TAILQ_FIRST(&ppv->pv_list);
1486			pv;
1487			pv = TAILQ_NEXT(pv, pv_list)) {
1488			if (pmap == pv->pv_pmap && va == pv->pv_va)
1489				break;
1490		}
1491#if PMAP_PVLIST
1492	} else {
1493		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1494			pv;
1495			pv = TAILQ_NEXT(pv, pv_plist)) {
1496			if (va == pv->pv_va)
1497				break;
1498		}
1499	}
1500#endif
1501
1502	rtval = 0;
1503	if (pv) {
1504		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1505		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1506		--ppv->pv_list_count;
1507		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
1508			ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
1509		}
1510
1511#if PMAP_PVLIST
1512		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1513#endif
1514		free_pv_entry(pv);
1515	}
1516
1517	splx(s);
1518	return rtval;
1519}
1520
1521/*
1522 * Create a pv entry for page at pa for
1523 * (pmap, va).
1524 */
1525static void
1526pmap_insert_entry(pmap, va, mpte, pa)
1527	pmap_t pmap;
1528	vm_offset_t va;
1529	vm_page_t mpte;
1530	vm_offset_t pa;
1531{
1532
1533	int s;
1534	pv_entry_t pv;
1535	pv_table_t *ppv;
1536
1537	s = splvm();
1538	pv = get_pv_entry();
1539	pv->pv_va = va;
1540	pv->pv_pmap = pmap;
1541	pv->pv_ptem = mpte;
1542
1543#if PMAP_PVLIST
1544	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1545#endif
1546
1547	ppv = pa_to_pvh(pa);
1548	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1549	++ppv->pv_list_count;
1550
1551	splx(s);
1552}
1553
1554/*
1555 * pmap_remove_pte: do the things to unmap a page in a process
1556 */
1557static int
1558pmap_remove_pte(pmap, ptq, va)
1559	struct pmap *pmap;
1560	unsigned *ptq;
1561	vm_offset_t va;
1562{
1563	unsigned oldpte;
1564	pv_table_t *ppv;
1565
1566	oldpte = *ptq;
1567	*ptq = 0;
1568	if (oldpte & PG_W)
1569		pmap->pm_stats.wired_count -= 1;
1570	pmap->pm_stats.resident_count -= 1;
1571	if (oldpte & PG_MANAGED) {
1572		ppv = pa_to_pvh(oldpte);
1573		if (oldpte & PG_M) {
1574#if defined(PMAP_DIAGNOSTIC)
1575			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1576				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1577			}
1578#endif
1579			if (pmap_track_modified(va))
1580				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1581		}
1582		return pmap_remove_entry(pmap, ppv, va);
1583	} else {
1584		return pmap_unuse_pt(pmap, va, NULL);
1585	}
1586
1587	return 0;
1588}
1589
1590/*
1591 * Remove a single page from a process address space
1592 */
1593static void
1594pmap_remove_page(pmap, va)
1595	struct pmap *pmap;
1596	register vm_offset_t va;
1597{
1598	register unsigned *ptq;
1599
1600	/*
1601	 * if there is no pte for this address, just skip it!!!
1602	 */
1603	if (*pmap_pde(pmap, va) == 0) {
1604		return;
1605	}
1606
1607	/*
1608	 * get a local va for mappings for this pmap.
1609	 */
1610	ptq = get_ptbase(pmap) + i386_btop(va);
1611	if (*ptq) {
1612		(void) pmap_remove_pte(pmap, ptq, va);
1613		invltlb_1pg(va);
1614	}
1615	return;
1616}
1617
1618/*
1619 *	Remove the given range of addresses from the specified map.
1620 *
1621 *	It is assumed that the start and end are properly
1622 *	rounded to the page size.
1623 */
1624void
1625pmap_remove(pmap, sva, eva)
1626	struct pmap *pmap;
1627	register vm_offset_t sva;
1628	register vm_offset_t eva;
1629{
1630	register unsigned *ptbase;
1631	vm_offset_t pdnxt;
1632	vm_offset_t ptpaddr;
1633	vm_offset_t sindex, eindex;
1634	int anyvalid;
1635
1636	if (pmap == NULL)
1637		return;
1638
1639	if (pmap->pm_stats.resident_count == 0)
1640		return;
1641
1642	/*
1643	 * special handling of removing one page.  a very
1644	 * common operation and easy to short circuit some
1645	 * code.
1646	 */
1647	if ((sva + PAGE_SIZE) == eva) {
1648		pmap_remove_page(pmap, sva);
1649		return;
1650	}
1651
1652	anyvalid = 0;
1653
1654	/*
1655	 * Get a local virtual address for the mappings that are being
1656	 * worked with.
1657	 */
1658	ptbase = get_ptbase(pmap);
1659
1660	sindex = i386_btop(sva);
1661	eindex = i386_btop(eva);
1662
1663	for (; sindex < eindex; sindex = pdnxt) {
1664
1665		/*
1666		 * Calculate index for next page table.
1667		 */
1668		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1669		if (pmap->pm_stats.resident_count == 0)
1670			break;
1671		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1672
1673		/*
1674		 * Weed out invalid mappings. Note: we assume that the page
1675		 * directory table is always allocated, and in kernel virtual.
1676		 */
1677		if (ptpaddr == 0)
1678			continue;
1679
1680		/*
1681		 * Limit our scan to either the end of the va represented
1682		 * by the current page table page, or to the end of the
1683		 * range being removed.
1684		 */
1685		if (pdnxt > eindex) {
1686			pdnxt = eindex;
1687		}
1688
1689		for ( ;sindex != pdnxt; sindex++) {
1690			vm_offset_t va;
1691			if (ptbase[sindex] == 0) {
1692				continue;
1693			}
1694			va = i386_ptob(sindex);
1695
1696			anyvalid++;
1697			if (pmap_remove_pte(pmap,
1698				ptbase + sindex, va))
1699				break;
1700		}
1701	}
1702
1703	if (anyvalid) {
1704		invltlb();
1705	}
1706}
1707
1708/*
1709 *	Routine:	pmap_remove_all
1710 *	Function:
1711 *		Removes this physical page from
1712 *		all physical maps in which it resides.
1713 *		Reflects back modify bits to the pager.
1714 *
1715 *	Notes:
1716 *		Original versions of this routine were very
1717 *		inefficient because they iteratively called
1718 *		pmap_remove (slow...)
1719 */
1720
1721static void
1722pmap_remove_all(pa)
1723	vm_offset_t pa;
1724{
1725	register pv_entry_t pv;
1726	pv_table_t *ppv;
1727	register unsigned *pte, tpte;
1728	int nmodify;
1729	int update_needed;
1730	int s;
1731
1732	nmodify = 0;
1733	update_needed = 0;
1734#if defined(PMAP_DIAGNOSTIC)
1735	/*
1736	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1737	 * pages!
1738	 */
1739	if (!pmap_is_managed(pa)) {
1740		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1741	}
1742#endif
1743
1744	s = splvm();
1745	ppv = pa_to_pvh(pa);
1746	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1747		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1748
1749		pv->pv_pmap->pm_stats.resident_count--;
1750
1751		tpte = *pte;
1752		*pte = 0;
1753		if (tpte & PG_W)
1754			pv->pv_pmap->pm_stats.wired_count--;
1755		/*
1756		 * Update the vm_page_t clean and reference bits.
1757		 */
1758		if (tpte & PG_M) {
1759#if defined(PMAP_DIAGNOSTIC)
1760			if (pmap_nw_modified((pt_entry_t) tpte)) {
1761				printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", pv->pv_va, tpte);
1762			}
1763#endif
1764			if (pmap_track_modified(pv->pv_va))
1765				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1766		}
1767		if (!update_needed &&
1768			((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
1769			(pv->pv_pmap == kernel_pmap))) {
1770			update_needed = 1;
1771		}
1772
1773#if PMAP_PVLIST
1774		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1775#endif
1776		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1777		--ppv->pv_list_count;
1778		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1779		free_pv_entry(pv);
1780	}
1781	ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
1782
1783
1784	if (update_needed)
1785		invltlb();
1786	splx(s);
1787	return;
1788}
1789
1790/*
1791 *	Set the physical protection on the
1792 *	specified range of this map as requested.
1793 */
1794void
1795pmap_protect(pmap, sva, eva, prot)
1796	register pmap_t pmap;
1797	vm_offset_t sva, eva;
1798	vm_prot_t prot;
1799{
1800	register unsigned *ptbase;
1801	vm_offset_t pdnxt;
1802	vm_offset_t ptpaddr;
1803	vm_offset_t sindex, eindex;
1804	int anychanged;
1805
1806
1807	if (pmap == NULL)
1808		return;
1809
1810	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1811		pmap_remove(pmap, sva, eva);
1812		return;
1813	}
1814	if (prot & VM_PROT_WRITE) {
1815		return;
1816	}
1817
1818	anychanged = 0;
1819
1820	ptbase = get_ptbase(pmap);
1821
1822	sindex = i386_btop(sva);
1823	eindex = i386_btop(eva);
1824
1825	for (; sindex < eindex; sindex = pdnxt) {
1826
1827		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1828		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1829
1830		/*
1831		 * Weed out invalid mappings. Note: we assume that the page
1832		 * directory table is always allocated, and in kernel virtual.
1833		 */
1834		if (ptpaddr == 0)
1835			continue;
1836
1837		if (pdnxt > eindex) {
1838			pdnxt = eindex;
1839		}
1840
1841		for (; sindex != pdnxt; sindex++) {
1842
1843			unsigned pbits = ptbase[sindex];
1844
1845			if (pbits & PG_RW) {
1846				if (pbits & PG_M) {
1847					vm_offset_t sva = i386_ptob(sindex);
1848					if (pmap_track_modified(sva)) {
1849						vm_page_t m = PHYS_TO_VM_PAGE(pbits);
1850						m->dirty = VM_PAGE_BITS_ALL;
1851					}
1852				}
1853				ptbase[sindex] = pbits & ~(PG_M|PG_RW);
1854				anychanged = 1;
1855			}
1856		}
1857	}
1858	if (anychanged)
1859		invltlb();
1860}
1861
1862/*
1863 *	Insert the given physical page (p) at
1864 *	the specified virtual address (v) in the
1865 *	target physical map with the protection requested.
1866 *
1867 *	If specified, the page will be wired down, meaning
1868 *	that the related pte can not be reclaimed.
1869 *
1870 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1871 *	or lose information.  That is, this routine must actually
1872 *	insert this page into the given map NOW.
1873 */
1874void
1875pmap_enter(pmap, va, pa, prot, wired)
1876	register pmap_t pmap;
1877	vm_offset_t va;
1878	register vm_offset_t pa;
1879	vm_prot_t prot;
1880	boolean_t wired;
1881{
1882	register unsigned *pte;
1883	vm_offset_t opa;
1884	vm_offset_t origpte, newpte;
1885	vm_page_t mpte;
1886
1887	if (pmap == NULL)
1888		return;
1889
1890	va &= PG_FRAME;
1891#ifdef PMAP_DIAGNOSTIC
1892	if (va > VM_MAX_KERNEL_ADDRESS)
1893		panic("pmap_enter: toobig");
1894	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1895		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1896#endif
1897
1898	mpte = NULL;
1899	/*
1900	 * In the case that a page table page is not
1901	 * resident, we are creating it here.
1902	 */
1903	if (va < UPT_MIN_ADDRESS)
1904		mpte = pmap_allocpte(pmap, va);
1905
1906	pte = pmap_pte(pmap, va);
1907	/*
1908	 * Page Directory table entry not valid, we need a new PT page
1909	 */
1910	if (pte == NULL) {
1911		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%lx\n",
1912			pmap->pm_pdir[PTDPTDI], va);
1913	}
1914
1915	origpte = *(vm_offset_t *)pte;
1916	pa &= PG_FRAME;
1917	opa = origpte & PG_FRAME;
1918
1919	/*
1920	 * Mapping has not changed, must be protection or wiring change.
1921	 */
1922	if (origpte && (opa == pa)) {
1923		/*
1924		 * Wiring change, just update stats. We don't worry about
1925		 * wiring PT pages as they remain resident as long as there
1926		 * are valid mappings in them. Hence, if a user page is wired,
1927		 * the PT page will be also.
1928		 */
1929		if (wired && ((origpte & PG_W) == 0))
1930			pmap->pm_stats.wired_count++;
1931		else if (!wired && (origpte & PG_W))
1932			pmap->pm_stats.wired_count--;
1933
1934#if defined(PMAP_DIAGNOSTIC)
1935		if (pmap_nw_modified((pt_entry_t) origpte)) {
1936			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1937		}
1938#endif
1939
1940		/*
1941		 * We might be turning off write access to the page,
1942		 * so we go ahead and sense modify status.
1943		 */
1944		if (origpte & PG_MANAGED) {
1945			vm_page_t m;
1946			if (origpte & PG_M) {
1947				if (pmap_track_modified(va)) {
1948					m = PHYS_TO_VM_PAGE(pa);
1949					m->dirty = VM_PAGE_BITS_ALL;
1950				}
1951			}
1952			pa |= PG_MANAGED;
1953		}
1954
1955		if (mpte)
1956			--mpte->hold_count;
1957
1958		goto validate;
1959	}
1960	/*
1961	 * Mapping has changed, invalidate old range and fall through to
1962	 * handle validating new mapping.
1963	 */
1964	if (opa) {
1965		int err;
1966		err = pmap_remove_pte(pmap, pte, va);
1967		if (err)
1968			panic("pmap_enter: pte vanished, va: 0x%x", va);
1969	}
1970
1971	/*
1972	 * Enter on the PV list if part of our managed memory Note that we
1973	 * raise IPL while manipulating pv_table since pmap_enter can be
1974	 * called at interrupt time.
1975	 */
1976	if (pmap_is_managed(pa)) {
1977		pmap_insert_entry(pmap, va, mpte, pa);
1978		pa |= PG_MANAGED;
1979	}
1980
1981	/*
1982	 * Increment counters
1983	 */
1984	pmap->pm_stats.resident_count++;
1985	if (wired)
1986		pmap->pm_stats.wired_count++;
1987
1988validate:
1989	/*
1990	 * Now validate mapping with desired protection/wiring.
1991	 */
1992	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1993
1994	if (wired)
1995		newpte |= PG_W;
1996	if (va < UPT_MIN_ADDRESS)
1997		newpte |= PG_U;
1998
1999	/*
2000	 * if the mapping or permission bits are different, we need
2001	 * to update the pte.
2002	 */
2003	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2004		*pte = newpte;
2005		if (origpte)
2006			invltlb_1pg(va);
2007	}
2008}
2009
2010/*
2011 * this code makes some *MAJOR* assumptions:
2012 * 1. Current pmap & pmap exists.
2013 * 2. Not wired.
2014 * 3. Read access.
2015 * 4. No page table pages.
2016 * 5. Tlbflush is deferred to calling procedure.
2017 * 6. Page IS managed.
2018 * but is *MUCH* faster than pmap_enter...
2019 */
2020
2021static vm_page_t
2022pmap_enter_quick(pmap, va, pa, mpte)
2023	register pmap_t pmap;
2024	vm_offset_t va;
2025	register vm_offset_t pa;
2026	vm_page_t mpte;
2027{
2028	register unsigned *pte;
2029
2030	/*
2031	 * In the case that a page table page is not
2032	 * resident, we are creating it here.
2033	 */
2034	if (va < UPT_MIN_ADDRESS) {
2035		unsigned ptepindex;
2036		vm_offset_t ptepa;
2037
2038		/*
2039		 * Calculate pagetable page index
2040		 */
2041		ptepindex = va >> PDRSHIFT;
2042		if (mpte && (mpte->pindex == ptepindex)) {
2043			++mpte->hold_count;
2044		} else {
2045retry:
2046			/*
2047			 * Get the page directory entry
2048			 */
2049			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2050
2051			/*
2052			 * If the page table page is mapped, we just increment
2053			 * the hold count, and activate it.
2054			 */
2055			if (ptepa) {
2056#if defined(PTPHINT)
2057				if (pmap->pm_ptphint &&
2058					(pmap->pm_ptphint->pindex == ptepindex)) {
2059					mpte = pmap->pm_ptphint;
2060				} else {
2061					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2062					pmap->pm_ptphint = mpte;
2063				}
2064#else
2065				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2066#endif
2067				if (mpte == NULL)
2068					goto retry;
2069				++mpte->hold_count;
2070			} else {
2071				mpte = _pmap_allocpte(pmap, ptepindex);
2072			}
2073		}
2074	} else {
2075		mpte = NULL;
2076	}
2077
2078	/*
2079	 * This call to vtopte makes the assumption that we are
2080	 * entering the page into the current pmap.  In order to support
2081	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2082	 * But that isn't as quick as vtopte.
2083	 */
2084	pte = (unsigned *)vtopte(va);
2085	if (*pte) {
2086		if (mpte)
2087			pmap_unwire_pte_hold(pmap, mpte);
2088		return 0;
2089	}
2090
2091	/*
2092	 * Enter on the PV list if part of our managed memory Note that we
2093	 * raise IPL while manipulating pv_table since pmap_enter can be
2094	 * called at interrupt time.
2095	 */
2096	pmap_insert_entry(pmap, va, mpte, pa);
2097
2098	/*
2099	 * Increment counters
2100	 */
2101	pmap->pm_stats.resident_count++;
2102
2103	/*
2104	 * Now validate mapping with RO protection
2105	 */
2106	*pte = pa | PG_V | PG_U | PG_MANAGED;
2107
2108	return mpte;
2109}
2110
2111#define MAX_INIT_PT (96)
2112/*
2113 * pmap_object_init_pt preloads the ptes for a given object
2114 * into the specified pmap.  This eliminates the blast of soft
2115 * faults on process startup and immediately after an mmap.
2116 */
2117void
2118pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2119	pmap_t pmap;
2120	vm_offset_t addr;
2121	vm_object_t object;
2122	vm_pindex_t pindex;
2123	vm_size_t size;
2124	int limit;
2125{
2126	vm_offset_t tmpidx;
2127	int psize;
2128	vm_page_t p, mpte;
2129	int objpgs;
2130
2131	psize = i386_btop(size);
2132
2133	if (!pmap || (object->type != OBJT_VNODE) ||
2134		(limit && (psize > MAX_INIT_PT) &&
2135			(object->resident_page_count > MAX_INIT_PT))) {
2136		return;
2137	}
2138
2139	if (psize + pindex > object->size)
2140		psize = object->size - pindex;
2141
2142	mpte = NULL;
2143	/*
2144	 * if we are processing a major portion of the object, then scan the
2145	 * entire thing.
2146	 */
2147	if (psize > (object->size >> 2)) {
2148		objpgs = psize;
2149
2150		for (p = TAILQ_FIRST(&object->memq);
2151		    ((objpgs > 0) && (p != NULL));
2152		    p = TAILQ_NEXT(p, listq)) {
2153
2154			tmpidx = p->pindex;
2155			if (tmpidx < pindex) {
2156				continue;
2157			}
2158			tmpidx -= pindex;
2159			if (tmpidx >= psize) {
2160				continue;
2161			}
2162			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2163			    (p->busy == 0) &&
2164			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2165				if ((p->queue - p->pc) == PQ_CACHE)
2166					vm_page_deactivate(p);
2167				p->flags |= PG_BUSY;
2168				mpte = pmap_enter_quick(pmap,
2169					addr + i386_ptob(tmpidx),
2170					VM_PAGE_TO_PHYS(p), mpte);
2171				p->flags |= PG_MAPPED;
2172				PAGE_WAKEUP(p);
2173			}
2174			objpgs -= 1;
2175		}
2176	} else {
2177		/*
2178		 * else lookup the pages one-by-one.
2179		 */
2180		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2181			p = vm_page_lookup(object, tmpidx + pindex);
2182			if (p &&
2183			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2184			    (p->busy == 0) &&
2185			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2186				if ((p->queue - p->pc) == PQ_CACHE)
2187					vm_page_deactivate(p);
2188				p->flags |= PG_BUSY;
2189				mpte = pmap_enter_quick(pmap,
2190					addr + i386_ptob(tmpidx),
2191					VM_PAGE_TO_PHYS(p), mpte);
2192				p->flags |= PG_MAPPED;
2193				PAGE_WAKEUP(p);
2194			}
2195		}
2196	}
2197	return;
2198}
2199
2200/*
2201 * pmap_prefault provides a quick way of clustering
2202 * pagefaults into a processes address space.  It is a "cousin"
2203 * of pmap_object_init_pt, except it runs at page fault time instead
2204 * of mmap time.
2205 */
2206#define PFBAK 2
2207#define PFFOR 2
2208#define PAGEORDER_SIZE (PFBAK+PFFOR)
2209
2210static int pmap_prefault_pageorder[] = {
2211	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
2212};
2213
2214void
2215pmap_prefault(pmap, addra, entry, object)
2216	pmap_t pmap;
2217	vm_offset_t addra;
2218	vm_map_entry_t entry;
2219	vm_object_t object;
2220{
2221	int i;
2222	vm_offset_t starta;
2223	vm_offset_t addr;
2224	vm_pindex_t pindex;
2225	vm_page_t m, mpte;
2226
2227	if (entry->object.vm_object != object)
2228		return;
2229
2230	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
2231		return;
2232
2233	starta = addra - PFBAK * PAGE_SIZE;
2234	if (starta < entry->start) {
2235		starta = entry->start;
2236	} else if (starta > addra) {
2237		starta = 0;
2238	}
2239
2240	mpte = NULL;
2241	for (i = 0; i < PAGEORDER_SIZE; i++) {
2242		vm_object_t lobject;
2243		unsigned *pte;
2244
2245		addr = addra + pmap_prefault_pageorder[i];
2246		if (addr < starta || addr >= entry->end)
2247			continue;
2248
2249		if ((*pmap_pde(pmap, addr)) == NULL)
2250			continue;
2251
2252		pte = (unsigned *) vtopte(addr);
2253		if (*pte)
2254			continue;
2255
2256		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2257		lobject = object;
2258		for (m = vm_page_lookup(lobject, pindex);
2259		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2260		    lobject = lobject->backing_object) {
2261			if (lobject->backing_object_offset & PAGE_MASK)
2262				break;
2263			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2264			m = vm_page_lookup(lobject->backing_object, pindex);
2265		}
2266
2267		/*
2268		 * give-up when a page is not in memory
2269		 */
2270		if (m == NULL)
2271			break;
2272
2273		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2274		    (m->busy == 0) &&
2275		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2276
2277			if ((m->queue - m->pc) == PQ_CACHE) {
2278				vm_page_deactivate(m);
2279			}
2280			m->flags |= PG_BUSY;
2281			mpte = pmap_enter_quick(pmap, addr,
2282				VM_PAGE_TO_PHYS(m), mpte);
2283			m->flags |= PG_MAPPED;
2284			PAGE_WAKEUP(m);
2285		}
2286	}
2287}
2288
2289/*
2290 *	Routine:	pmap_change_wiring
2291 *	Function:	Change the wiring attribute for a map/virtual-address
2292 *			pair.
2293 *	In/out conditions:
2294 *			The mapping must already exist in the pmap.
2295 */
2296void
2297pmap_change_wiring(pmap, va, wired)
2298	register pmap_t pmap;
2299	vm_offset_t va;
2300	boolean_t wired;
2301{
2302	register unsigned *pte;
2303
2304	if (pmap == NULL)
2305		return;
2306
2307	pte = pmap_pte(pmap, va);
2308
2309	if (wired && !pmap_pte_w(pte))
2310		pmap->pm_stats.wired_count++;
2311	else if (!wired && pmap_pte_w(pte))
2312		pmap->pm_stats.wired_count--;
2313
2314	/*
2315	 * Wiring is not a hardware characteristic so there is no need to
2316	 * invalidate TLB.
2317	 */
2318	pmap_pte_set_w(pte, wired);
2319}
2320
2321
2322
2323/*
2324 *	Copy the range specified by src_addr/len
2325 *	from the source map to the range dst_addr/len
2326 *	in the destination map.
2327 *
2328 *	This routine is only advisory and need not do anything.
2329 */
2330
2331void
2332pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2333	pmap_t dst_pmap, src_pmap;
2334	vm_offset_t dst_addr;
2335	vm_size_t len;
2336	vm_offset_t src_addr;
2337{
2338	vm_offset_t addr;
2339	vm_offset_t end_addr = src_addr + len;
2340	vm_offset_t pdnxt;
2341	unsigned src_frame, dst_frame;
2342
2343	if (dst_addr != src_addr)
2344		return;
2345
2346	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2347	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2348		return;
2349	}
2350
2351	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2352	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2353		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2354		invltlb();
2355	}
2356
2357	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2358		unsigned *src_pte, *dst_pte;
2359		vm_page_t dstmpte, srcmpte;
2360		vm_offset_t srcptepaddr;
2361		unsigned ptepindex;
2362
2363		if (addr >= UPT_MIN_ADDRESS)
2364			panic("pmap_copy: invalid to pmap_copy page tables\n");
2365
2366		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2367		ptepindex = addr >> PDRSHIFT;
2368
2369		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2370		if (srcptepaddr == 0)
2371			continue;
2372
2373		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2374		if ((srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2375			continue;
2376
2377		if (pdnxt > end_addr)
2378			pdnxt = end_addr;
2379
2380		src_pte = (unsigned *) vtopte(addr);
2381		dst_pte = (unsigned *) avtopte(addr);
2382		while (addr < pdnxt) {
2383			unsigned ptetemp;
2384			ptetemp = *src_pte;
2385			/*
2386			 * we only virtual copy managed pages
2387			 */
2388			if ((ptetemp & PG_MANAGED) != 0) {
2389				/*
2390				 * We have to check after allocpte for the
2391				 * pte still being around...  allocpte can
2392				 * block.
2393				 */
2394				dstmpte = pmap_allocpte(dst_pmap, addr);
2395				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2396					/*
2397					 * Clear the modified and
2398					 * accessed (referenced) bits
2399					 * during the copy.
2400					 */
2401					*dst_pte = ptetemp & ~(PG_M|PG_A);
2402					dst_pmap->pm_stats.resident_count++;
2403					pmap_insert_entry(dst_pmap, addr,
2404						dstmpte,
2405						(ptetemp & PG_FRAME));
2406	 			} else {
2407					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2408				}
2409				if (dstmpte->hold_count >= srcmpte->hold_count)
2410					break;
2411			}
2412			addr += PAGE_SIZE;
2413			++src_pte;
2414			++dst_pte;
2415		}
2416	}
2417}
2418
2419/*
2420 *	Routine:	pmap_kernel
2421 *	Function:
2422 *		Returns the physical map handle for the kernel.
2423 */
2424pmap_t
2425pmap_kernel()
2426{
2427	return (kernel_pmap);
2428}
2429
2430/*
2431 *	pmap_zero_page zeros the specified (machine independent)
2432 *	page by mapping the page into virtual memory and using
2433 *	bzero to clear its contents, one machine dependent page
2434 *	at a time.
2435 */
2436void
2437pmap_zero_page(phys)
2438	vm_offset_t phys;
2439{
2440	if (*(int *) CMAP2)
2441		panic("pmap_zero_page: CMAP busy");
2442
2443	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
2444	bzero(CADDR2, PAGE_SIZE);
2445	*(int *) CMAP2 = 0;
2446	invltlb_1pg((vm_offset_t) CADDR2);
2447}
2448
2449/*
2450 *	pmap_copy_page copies the specified (machine independent)
2451 *	page by mapping the page into virtual memory and using
2452 *	bcopy to copy the page, one machine dependent page at a
2453 *	time.
2454 */
2455void
2456pmap_copy_page(src, dst)
2457	vm_offset_t src;
2458	vm_offset_t dst;
2459{
2460	if (*(int *) CMAP1 || *(int *) CMAP2)
2461		panic("pmap_copy_page: CMAP busy");
2462
2463	*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
2464	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
2465
2466	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2467
2468	*(int *) CMAP1 = 0;
2469	*(int *) CMAP2 = 0;
2470	invltlb_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
2471}
2472
2473
2474/*
2475 *	Routine:	pmap_pageable
2476 *	Function:
2477 *		Make the specified pages (by pmap, offset)
2478 *		pageable (or not) as requested.
2479 *
2480 *		A page which is not pageable may not take
2481 *		a fault; therefore, its page table entry
2482 *		must remain valid for the duration.
2483 *
2484 *		This routine is merely advisory; pmap_enter
2485 *		will specify that these pages are to be wired
2486 *		down (or not) as appropriate.
2487 */
2488void
2489pmap_pageable(pmap, sva, eva, pageable)
2490	pmap_t pmap;
2491	vm_offset_t sva, eva;
2492	boolean_t pageable;
2493{
2494}
2495
2496/*
2497 * this routine returns true if a physical page resides
2498 * in the given pmap.
2499 */
2500boolean_t
2501pmap_page_exists(pmap, pa)
2502	pmap_t pmap;
2503	vm_offset_t pa;
2504{
2505	register pv_entry_t pv;
2506	pv_table_t *ppv;
2507	int s;
2508
2509	if (!pmap_is_managed(pa))
2510		return FALSE;
2511
2512	s = splvm();
2513
2514	ppv = pa_to_pvh(pa);
2515	/*
2516	 * Not found, check current mappings returning immediately if found.
2517	 */
2518	for (pv = TAILQ_FIRST(&ppv->pv_list);
2519		pv;
2520		pv = TAILQ_NEXT(pv, pv_list)) {
2521		if (pv->pv_pmap == pmap) {
2522			splx(s);
2523			return TRUE;
2524		}
2525	}
2526	splx(s);
2527	return (FALSE);
2528}
2529
2530#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2531/*
2532 * Remove all pages from specified address space
2533 * this aids process exit speeds.  Also, this code
2534 * is special cased for current process only, but
2535 * can have the more generic (and slightly slower)
2536 * mode enabled.  This is much faster than pmap_remove
2537 * in the case of running down an entire address space.
2538 */
2539void
2540pmap_remove_pages(pmap, sva, eva)
2541	pmap_t pmap;
2542	vm_offset_t sva, eva;
2543{
2544	unsigned *pte, tpte;
2545	pv_table_t *ppv;
2546	pv_entry_t pv, npv;
2547	int s;
2548
2549#if PMAP_PVLIST
2550
2551#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2552	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
2553		printf("warning: pmap_remove_pages called with non-current pmap\n");
2554		return;
2555	}
2556#endif
2557
2558	s = splvm();
2559	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2560		pv;
2561		pv = npv) {
2562
2563		if (pv->pv_va >= eva || pv->pv_va < sva) {
2564			npv = TAILQ_NEXT(pv, pv_plist);
2565			continue;
2566		}
2567
2568#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2569		pte = (unsigned *)vtopte(pv->pv_va);
2570#else
2571		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2572#endif
2573		tpte = *pte;
2574
2575/*
2576 * We cannot remove wired pages from a process' mapping at this time
2577 */
2578		if (tpte & PG_W) {
2579			npv = TAILQ_NEXT(pv, pv_plist);
2580			continue;
2581		}
2582		*pte = 0;
2583
2584		ppv = pa_to_pvh(tpte);
2585
2586		pv->pv_pmap->pm_stats.resident_count--;
2587
2588		/*
2589		 * Update the vm_page_t clean and reference bits.
2590		 */
2591		if (tpte & PG_M) {
2592			ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2593		}
2594
2595
2596		npv = TAILQ_NEXT(pv, pv_plist);
2597		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2598
2599		--ppv->pv_list_count;
2600		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2601		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2602			ppv->pv_vm_page->flags &= ~(PG_MAPPED|PG_WRITEABLE);
2603		}
2604
2605		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2606		free_pv_entry(pv);
2607	}
2608	splx(s);
2609	invltlb();
2610#endif
2611}
2612
2613/*
2614 * pmap_testbit tests bits in pte's
2615 * note that the testbit/changebit routines are inline,
2616 * and a lot of things compile-time evaluate.
2617 */
2618static boolean_t
2619pmap_testbit(pa, bit)
2620	register vm_offset_t pa;
2621	int bit;
2622{
2623	register pv_entry_t pv;
2624	pv_table_t *ppv;
2625	unsigned *pte;
2626	int s;
2627
2628	if (!pmap_is_managed(pa))
2629		return FALSE;
2630
2631	ppv = pa_to_pvh(pa);
2632	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
2633		return FALSE;
2634
2635	s = splvm();
2636
2637	for (pv = TAILQ_FIRST(&ppv->pv_list);
2638		pv;
2639		pv = TAILQ_NEXT(pv, pv_list)) {
2640
2641		/*
2642		 * if the bit being tested is the modified bit, then
2643		 * mark clean_map and ptes as never
2644		 * modified.
2645		 */
2646		if (bit & (PG_A|PG_M)) {
2647			if (!pmap_track_modified(pv->pv_va))
2648				continue;
2649		}
2650
2651#if defined(PMAP_DIAGNOSTIC)
2652		if (!pv->pv_pmap) {
2653			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2654			continue;
2655		}
2656#endif
2657		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2658		if (*pte & bit) {
2659			splx(s);
2660			return TRUE;
2661		}
2662	}
2663	splx(s);
2664	return (FALSE);
2665}
2666
2667/*
2668 * this routine is used to modify bits in ptes
2669 */
2670static void
2671pmap_changebit(pa, bit, setem)
2672	vm_offset_t pa;
2673	int bit;
2674	boolean_t setem;
2675{
2676	register pv_entry_t pv;
2677	pv_table_t *ppv;
2678	register unsigned *pte;
2679	int changed;
2680	int s;
2681
2682	if (!pmap_is_managed(pa))
2683		return;
2684
2685	s = splvm();
2686	changed = 0;
2687	ppv = pa_to_pvh(pa);
2688
2689	/*
2690	 * Loop over all current mappings setting/clearing as appropos If
2691	 * setting RO do we need to clear the VAC?
2692	 */
2693	for (pv = TAILQ_FIRST(&ppv->pv_list);
2694		pv;
2695		pv = TAILQ_NEXT(pv, pv_list)) {
2696
2697		/*
2698		 * don't write protect pager mappings
2699		 */
2700		if (!setem && (bit == PG_RW)) {
2701			if (!pmap_track_modified(pv->pv_va))
2702				continue;
2703		}
2704
2705#if defined(PMAP_DIAGNOSTIC)
2706		if (!pv->pv_pmap) {
2707			printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2708			continue;
2709		}
2710#endif
2711
2712		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2713
2714		if (setem) {
2715			*(int *)pte |= bit;
2716			changed = 1;
2717		} else {
2718			vm_offset_t pbits = *(vm_offset_t *)pte;
2719			if (pbits & bit) {
2720				changed = 1;
2721				if (bit == PG_RW) {
2722					if (pbits & PG_M) {
2723						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2724					}
2725					*(int *)pte = pbits & ~(PG_M|PG_RW);
2726				} else {
2727					*(int *)pte = pbits & ~bit;
2728				}
2729			}
2730		}
2731	}
2732	splx(s);
2733	if (changed)
2734		invltlb();
2735}
2736
2737/*
2738 *      pmap_page_protect:
2739 *
2740 *      Lower the permission for all mappings to a given page.
2741 */
2742void
2743pmap_page_protect(phys, prot)
2744	vm_offset_t phys;
2745	vm_prot_t prot;
2746{
2747	if ((prot & VM_PROT_WRITE) == 0) {
2748		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2749			pmap_changebit(phys, PG_RW, FALSE);
2750		} else {
2751			pmap_remove_all(phys);
2752		}
2753	}
2754}
2755
2756vm_offset_t
2757pmap_phys_address(ppn)
2758	int ppn;
2759{
2760	return (i386_ptob(ppn));
2761}
2762
2763/*
2764 *	pmap_is_referenced:
2765 *
2766 *	Return whether or not the specified physical page was referenced
2767 *	by any physical maps.
2768 */
2769boolean_t
2770pmap_is_referenced(vm_offset_t pa)
2771{
2772	register pv_entry_t pv;
2773	pv_table_t *ppv;
2774	unsigned *pte;
2775	int s;
2776
2777	if (!pmap_is_managed(pa))
2778		return FALSE;
2779
2780	ppv = pa_to_pvh(pa);
2781
2782	s = splvm();
2783	/*
2784	 * Not found, check current mappings returning immediately if found.
2785	 */
2786	for (pv = TAILQ_FIRST(&ppv->pv_list);
2787		pv;
2788		pv = TAILQ_NEXT(pv, pv_list)) {
2789
2790		/*
2791		 * if the bit being tested is the modified bit, then
2792		 * mark clean_map and ptes as never
2793		 * modified.
2794		 */
2795		if (!pmap_track_modified(pv->pv_va))
2796			continue;
2797
2798		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2799		if ((int) *pte & PG_A) {
2800			splx(s);
2801			return TRUE;
2802		}
2803	}
2804	splx(s);
2805	return (FALSE);
2806}
2807
2808/*
2809 *	pmap_ts_referenced:
2810 *
2811 *	Return the count of reference bits for a page, clearing all of them.
2812 *
2813 */
2814int
2815pmap_ts_referenced(vm_offset_t pa)
2816{
2817	register pv_entry_t pv;
2818	pv_table_t *ppv;
2819	unsigned *pte;
2820	int s;
2821	int rtval = 0;
2822
2823	if (!pmap_is_managed(pa))
2824		return FALSE;
2825
2826	s = splvm();
2827
2828	ppv = pa_to_pvh(pa);
2829
2830	if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2831		splx(s);
2832		return 0;
2833	}
2834
2835	/*
2836	 * Not found, check current mappings returning immediately if found.
2837	 */
2838	for (pv = TAILQ_FIRST(&ppv->pv_list);
2839		pv;
2840		pv = TAILQ_NEXT(pv, pv_list)) {
2841		/*
2842		 * if the bit being tested is the modified bit, then
2843		 * mark clean_map and ptes as never
2844		 * modified.
2845		 */
2846		if (!pmap_track_modified(pv->pv_va))
2847			continue;
2848
2849		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2850		if (pte == NULL) {
2851			continue;
2852		}
2853		if (*pte & PG_A) {
2854			rtval++;
2855			*pte &= ~PG_A;
2856		}
2857	}
2858	splx(s);
2859	if (rtval) {
2860		invltlb();
2861	}
2862	return (rtval);
2863}
2864
2865/*
2866 *	pmap_is_modified:
2867 *
2868 *	Return whether or not the specified physical page was modified
2869 *	in any physical maps.
2870 */
2871boolean_t
2872pmap_is_modified(vm_offset_t pa)
2873{
2874	return pmap_testbit((pa), PG_M);
2875}
2876
2877/*
2878 *	Clear the modify bits on the specified physical page.
2879 */
2880void
2881pmap_clear_modify(vm_offset_t pa)
2882{
2883	pmap_changebit((pa), PG_M, FALSE);
2884}
2885
2886/*
2887 *	pmap_clear_reference:
2888 *
2889 *	Clear the reference bit on the specified physical page.
2890 */
2891void
2892pmap_clear_reference(vm_offset_t pa)
2893{
2894	pmap_changebit((pa), PG_A, FALSE);
2895}
2896
2897/*
2898 * Miscellaneous support routines follow
2899 */
2900
2901static void
2902i386_protection_init()
2903{
2904	register int *kp, prot;
2905
2906	kp = protection_codes;
2907	for (prot = 0; prot < 8; prot++) {
2908		switch (prot) {
2909		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2910			/*
2911			 * Read access is also 0. There isn't any execute bit,
2912			 * so just make it readable.
2913			 */
2914		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2915		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2916		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2917			*kp++ = 0;
2918			break;
2919		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2920		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2921		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2922		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2923			*kp++ = PG_RW;
2924			break;
2925		}
2926	}
2927}
2928
2929/*
2930 * Map a set of physical memory pages into the kernel virtual
2931 * address space. Return a pointer to where it is mapped. This
2932 * routine is intended to be used for mapping device memory,
2933 * NOT real memory. The non-cacheable bits are set on each
2934 * mapped page.
2935 */
2936void *
2937pmap_mapdev(pa, size)
2938	vm_offset_t pa;
2939	vm_size_t size;
2940{
2941	vm_offset_t va, tmpva;
2942	unsigned *pte;
2943
2944	size = roundup(size, PAGE_SIZE);
2945
2946	va = kmem_alloc_pageable(kernel_map, size);
2947	if (!va)
2948		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2949
2950	pa = pa & PG_FRAME;
2951	for (tmpva = va; size > 0;) {
2952		pte = (unsigned *)vtopte(tmpva);
2953		*pte = pa | PG_RW | PG_V | PG_N;
2954		size -= PAGE_SIZE;
2955		tmpva += PAGE_SIZE;
2956		pa += PAGE_SIZE;
2957	}
2958	invltlb();
2959
2960	return ((void *) va);
2961}
2962
2963/*
2964 * perform the pmap work for mincore
2965 */
2966int
2967pmap_mincore(pmap, addr)
2968	pmap_t pmap;
2969	vm_offset_t addr;
2970{
2971
2972	unsigned *ptep, pte;
2973	int val = 0;
2974
2975	ptep = pmap_pte(pmap, addr);
2976	if (ptep == 0) {
2977		return 0;
2978	}
2979
2980	if (pte = *ptep) {
2981		vm_offset_t pa;
2982		val = MINCORE_INCORE;
2983		pa = pte & PG_FRAME;
2984
2985		/*
2986		 * Modified by us
2987		 */
2988		if (pte & PG_M)
2989			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2990		/*
2991		 * Modified by someone
2992		 */
2993		else if (PHYS_TO_VM_PAGE(pa)->dirty ||
2994			pmap_is_modified(pa))
2995			val |= MINCORE_MODIFIED_OTHER;
2996		/*
2997		 * Referenced by us
2998		 */
2999		if (pte & PG_U)
3000			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3001
3002		/*
3003		 * Referenced by someone
3004		 */
3005		else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
3006			pmap_is_referenced(pa))
3007			val |= MINCORE_REFERENCED_OTHER;
3008	}
3009	return val;
3010}
3011
3012#if defined(PMAP_DEBUG)
3013pmap_pid_dump(int pid) {
3014	pmap_t pmap;
3015	struct proc *p;
3016	int npte = 0;
3017	int index;
3018	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
3019		if (p->p_pid != pid)
3020			continue;
3021
3022		if (p->p_vmspace) {
3023			int i,j;
3024			index = 0;
3025			pmap = &p->p_vmspace->vm_pmap;
3026			for(i=0;i<1024;i++) {
3027				pd_entry_t *pde;
3028				unsigned *pte;
3029				unsigned base = i << PDRSHIFT;
3030
3031				pde = &pmap->pm_pdir[i];
3032				if (pde && pmap_pde_v(pde)) {
3033					for(j=0;j<1024;j++) {
3034						unsigned va = base + (j << PAGE_SHIFT);
3035						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3036							if (index) {
3037								index = 0;
3038								printf("\n");
3039							}
3040							return npte;
3041						}
3042						pte = pmap_pte_quick( pmap, va);
3043						if (pte && pmap_pte_v(pte)) {
3044							vm_offset_t pa;
3045							vm_page_t m;
3046							pa = *(int *)pte;
3047							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3048							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3049								va, pa, m->hold_count, m->wire_count, m->flags);
3050							npte++;
3051							index++;
3052							if (index >= 2) {
3053								index = 0;
3054								printf("\n");
3055							} else {
3056								printf(" ");
3057							}
3058						}
3059					}
3060				}
3061			}
3062		}
3063	}
3064	return npte;
3065}
3066#endif
3067
3068#if defined(DEBUG)
3069
3070static void	pads __P((pmap_t pm));
3071static void	pmap_pvdump __P((vm_offset_t pa));
3072
3073/* print address space of pmap*/
3074static void
3075pads(pm)
3076	pmap_t pm;
3077{
3078	unsigned va, i, j;
3079	unsigned *ptep;
3080
3081	if (pm == kernel_pmap)
3082		return;
3083	for (i = 0; i < 1024; i++)
3084		if (pm->pm_pdir[i])
3085			for (j = 0; j < 1024; j++) {
3086				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3087				if (pm == kernel_pmap && va < KERNBASE)
3088					continue;
3089				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3090					continue;
3091				ptep = pmap_pte_quick(pm, va);
3092				if (pmap_pte_v(ptep))
3093					printf("%x:%x ", va, *(int *) ptep);
3094			};
3095
3096}
3097
3098static void
3099pmap_pvdump(pa)
3100	vm_offset_t pa;
3101{
3102	pv_table_t *ppv;
3103	register pv_entry_t pv;
3104
3105	printf("pa %x", pa);
3106	ppv = pa_to_pvh(pa);
3107	for (pv = TAILQ_FIRST(&ppv->pv_list);
3108		pv;
3109		pv = TAILQ_NEXT(pv, pv_list)) {
3110#ifdef used_to_be
3111		printf(" -> pmap %x, va %x, flags %x",
3112		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
3113#endif
3114		printf(" -> pmap %x, va %x",
3115		    pv->pv_pmap, pv->pv_va);
3116		pads(pv->pv_pmap);
3117	}
3118	printf(" ");
3119}
3120#endif
3121