pmap.c revision 188608
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 188608 2009-02-14 18:23:52Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/vm_reserv.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
156#define CPU_ENABLE_SSE
157#endif
158
159#ifndef PMAP_SHPGPERPROC
160#define PMAP_SHPGPERPROC 200
161#endif
162
163#if !defined(DIAGNOSTIC)
164#define PMAP_INLINE	__gnu89_inline
165#else
166#define PMAP_INLINE
167#endif
168
169#define PV_STATS
170#ifdef PV_STATS
171#define PV_STAT(x)	do { x ; } while (0)
172#else
173#define PV_STAT(x)	do { } while (0)
174#endif
175
176#define	pa_index(pa)	((pa) >> PDRSHIFT)
177#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
178
179/*
180 * Get PDEs and PTEs for user/kernel address space
181 */
182#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
183#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
184
185#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
186#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
187#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
188#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
189#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
190
191#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
192    atomic_clear_int((u_int *)(pte), PG_W))
193#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
194
195struct pmap kernel_pmap_store;
196LIST_HEAD(pmaplist, pmap);
197static struct pmaplist allpmaps;
198static struct mtx allpmaps_lock;
199
200vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
201vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
202int pgeflag = 0;		/* PG_G or-in */
203int pseflag = 0;		/* PG_PS or-in */
204
205static int nkpt;
206vm_offset_t kernel_vm_end;
207extern u_int32_t KERNend;
208
209#ifdef PAE
210pt_entry_t pg_nx;
211static uma_zone_t pdptzone;
212#endif
213
214SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
215
216static int pg_ps_enabled;
217SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
218    "Are large page mappings enabled?");
219
220/*
221 * Data for the pv entry allocation mechanism
222 */
223static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224static struct md_page *pv_table;
225static int shpgperproc = PMAP_SHPGPERPROC;
226
227struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
228int pv_maxchunks;			/* How many chunks we have KVA for */
229vm_offset_t pv_vafree;			/* freelist stored in the PTE */
230
231/*
232 * All those kernel PT submaps that BSD is so fond of
233 */
234struct sysmaps {
235	struct	mtx lock;
236	pt_entry_t *CMAP1;
237	pt_entry_t *CMAP2;
238	caddr_t	CADDR1;
239	caddr_t	CADDR2;
240};
241static struct sysmaps sysmaps_pcpu[MAXCPU];
242pt_entry_t *CMAP1 = 0;
243static pt_entry_t *CMAP3;
244caddr_t CADDR1 = 0, ptvmmap = 0;
245static caddr_t CADDR3;
246struct msgbuf *msgbufp = 0;
247
248/*
249 * Crashdump maps.
250 */
251static caddr_t crashdumpmap;
252
253static pt_entry_t *PMAP1 = 0, *PMAP2;
254static pt_entry_t *PADDR1 = 0, *PADDR2;
255#ifdef SMP
256static int PMAP1cpu;
257static int PMAP1changedcpu;
258SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
259	   &PMAP1changedcpu, 0,
260	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
261#endif
262static int PMAP1changed;
263SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
264	   &PMAP1changed, 0,
265	   "Number of times pmap_pte_quick changed PMAP1");
266static int PMAP1unchanged;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
268	   &PMAP1unchanged, 0,
269	   "Number of times pmap_pte_quick didn't change PMAP1");
270static struct mtx PMAP2mutex;
271
272static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
273static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
274static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
275static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
276static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
277static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
278static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
279		    vm_offset_t va);
280static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
281
282static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
283static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
284    vm_prot_t prot);
285static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
286    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
287static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
288static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
289static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
290static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
291static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
292static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
293    vm_prot_t prot);
294static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
295    vm_page_t *free);
296static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
297    vm_page_t *free);
298static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
299static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
300    vm_page_t *free);
301static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
302					vm_offset_t va);
303static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
304static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
305    vm_page_t m);
306
307static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
308
309static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
310static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
311static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
312static void pmap_pte_release(pt_entry_t *pte);
313static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
314static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
315#ifdef PAE
316static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
317#endif
318
319CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
320CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
321
322/*
323 * If you get an error here, then you set KVA_PAGES wrong! See the
324 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
325 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
326 */
327CTASSERT(KERNBASE % (1 << 24) == 0);
328
329/*
330 * Move the kernel virtual free pointer to the next
331 * 4MB.  This is used to help improve performance
332 * by using a large (4MB) page for much of the kernel
333 * (.text, .data, .bss)
334 */
335static vm_offset_t
336pmap_kmem_choose(vm_offset_t addr)
337{
338	vm_offset_t newaddr = addr;
339
340#ifndef DISABLE_PSE
341	if (cpu_feature & CPUID_PSE)
342		newaddr = (addr + PDRMASK) & ~PDRMASK;
343#endif
344	return newaddr;
345}
346
347/*
348 *	Bootstrap the system enough to run with virtual memory.
349 *
350 *	On the i386 this is called after mapping has already been enabled
351 *	and just syncs the pmap module with what has already been done.
352 *	[We can't call it easily with mapping off since the kernel is not
353 *	mapped with PA == VA, hence we would have to relocate every address
354 *	from the linked base (virtual) address "KERNBASE" to the actual
355 *	(physical) address starting relative to 0]
356 */
357void
358pmap_bootstrap(vm_paddr_t firstaddr)
359{
360	vm_offset_t va;
361	pt_entry_t *pte, *unused;
362	struct sysmaps *sysmaps;
363	int i;
364
365	/*
366	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
367	 * large. It should instead be correctly calculated in locore.s and
368	 * not based on 'first' (which is a physical address, not a virtual
369	 * address, for the start of unused physical memory). The kernel
370	 * page tables are NOT double mapped and thus should not be included
371	 * in this calculation.
372	 */
373	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
374	virtual_avail = pmap_kmem_choose(virtual_avail);
375
376	virtual_end = VM_MAX_KERNEL_ADDRESS;
377
378	/*
379	 * Initialize the kernel pmap (which is statically allocated).
380	 */
381	PMAP_LOCK_INIT(kernel_pmap);
382	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
383#ifdef PAE
384	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
385#endif
386	kernel_pmap->pm_root = NULL;
387	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
388	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
389	LIST_INIT(&allpmaps);
390	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
391	mtx_lock_spin(&allpmaps_lock);
392	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
393	mtx_unlock_spin(&allpmaps_lock);
394	nkpt = NKPT;
395
396	/*
397	 * Reserve some special page table entries/VA space for temporary
398	 * mapping of pages.
399	 */
400#define	SYSMAP(c, p, v, n)	\
401	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
402
403	va = virtual_avail;
404	pte = vtopte(va);
405
406	/*
407	 * CMAP1/CMAP2 are used for zeroing and copying pages.
408	 * CMAP3 is used for the idle process page zeroing.
409	 */
410	for (i = 0; i < MAXCPU; i++) {
411		sysmaps = &sysmaps_pcpu[i];
412		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
413		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
414		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
415	}
416	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
417	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
418	*CMAP3 = 0;
419
420	/*
421	 * Crashdump maps.
422	 */
423	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
424
425	/*
426	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
427	 */
428	SYSMAP(caddr_t, unused, ptvmmap, 1)
429
430	/*
431	 * msgbufp is used to map the system message buffer.
432	 */
433	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
434
435	/*
436	 * ptemap is used for pmap_pte_quick
437	 */
438	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
439	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
440
441	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
442
443	virtual_avail = va;
444
445	*CMAP1 = 0;
446
447	/*
448	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
449	 * physical memory region that is used by the ACPI wakeup code.  This
450	 * mapping must not have PG_G set.
451	 */
452#ifdef XBOX
453	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
454	 * an early stadium, we cannot yet neatly map video memory ... :-(
455	 * Better fixes are very welcome! */
456	if (!arch_i386_is_xbox)
457#endif
458	for (i = 1; i < NKPT; i++)
459		PTD[i] = 0;
460
461	/* Initialize the PAT MSR if present. */
462	pmap_init_pat();
463
464	/* Turn on PG_G on kernel page(s) */
465	pmap_set_pg();
466}
467
468/*
469 * Setup the PAT MSR.
470 */
471void
472pmap_init_pat(void)
473{
474	uint64_t pat_msr;
475
476	/* Bail if this CPU doesn't implement PAT. */
477	if (!(cpu_feature & CPUID_PAT))
478		return;
479
480#ifdef PAT_WORKS
481	/*
482	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
483	 * Program 4 and 5 as WP and WC.
484	 * Leave 6 and 7 as UC and UC-.
485	 */
486	pat_msr = rdmsr(MSR_PAT);
487	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
488	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
489	    PAT_VALUE(5, PAT_WRITE_COMBINING);
490#else
491	/*
492	 * Due to some Intel errata, we can only safely use the lower 4
493	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
494	 * of UC-.
495	 *
496	 *   Intel Pentium III Processor Specification Update
497	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
498	 * or Mode C Paging)
499	 *
500	 *   Intel Pentium IV  Processor Specification Update
501	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
502	 */
503	pat_msr = rdmsr(MSR_PAT);
504	pat_msr &= ~PAT_MASK(2);
505	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
506#endif
507	wrmsr(MSR_PAT, pat_msr);
508}
509
510/*
511 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
512 */
513void
514pmap_set_pg(void)
515{
516	pd_entry_t pdir;
517	pt_entry_t *pte;
518	vm_offset_t va, endva;
519	int i;
520
521	if (pgeflag == 0)
522		return;
523
524	i = KERNLOAD/NBPDR;
525	endva = KERNBASE + KERNend;
526
527	if (pseflag) {
528		va = KERNBASE + KERNLOAD;
529		while (va  < endva) {
530			pdir = kernel_pmap->pm_pdir[KPTDI+i];
531			pdir |= pgeflag;
532			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
533			invltlb();	/* Play it safe, invltlb() every time */
534			i++;
535			va += NBPDR;
536		}
537	} else {
538		va = (vm_offset_t)btext;
539		while (va < endva) {
540			pte = vtopte(va);
541			if (*pte)
542				*pte |= pgeflag;
543			invltlb();	/* Play it safe, invltlb() every time */
544			va += PAGE_SIZE;
545		}
546	}
547}
548
549/*
550 * Initialize a vm_page's machine-dependent fields.
551 */
552void
553pmap_page_init(vm_page_t m)
554{
555
556	TAILQ_INIT(&m->md.pv_list);
557}
558
559#ifdef PAE
560
561static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
562
563static void *
564pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
565{
566
567	/* Inform UMA that this allocator uses kernel_map/object. */
568	*flags = UMA_SLAB_KERNEL;
569	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
570	    1, 0));
571}
572#endif
573
574/*
575 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
576 * Requirements:
577 *  - Must deal with pages in order to ensure that none of the PG_* bits
578 *    are ever set, PG_V in particular.
579 *  - Assumes we can write to ptes without pte_store() atomic ops, even
580 *    on PAE systems.  This should be ok.
581 *  - Assumes nothing will ever test these addresses for 0 to indicate
582 *    no mapping instead of correctly checking PG_V.
583 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
584 * Because PG_V is never set, there can be no mappings to invalidate.
585 */
586static vm_offset_t
587pmap_ptelist_alloc(vm_offset_t *head)
588{
589	pt_entry_t *pte;
590	vm_offset_t va;
591
592	va = *head;
593	if (va == 0)
594		return (va);	/* Out of memory */
595	pte = vtopte(va);
596	*head = *pte;
597	if (*head & PG_V)
598		panic("pmap_ptelist_alloc: va with PG_V set!");
599	*pte = 0;
600	return (va);
601}
602
603static void
604pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
605{
606	pt_entry_t *pte;
607
608	if (va & PG_V)
609		panic("pmap_ptelist_free: freeing va with PG_V set!");
610	pte = vtopte(va);
611	*pte = *head;		/* virtual! PG_V is 0 though */
612	*head = va;
613}
614
615static void
616pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
617{
618	int i;
619	vm_offset_t va;
620
621	*head = 0;
622	for (i = npages - 1; i >= 0; i--) {
623		va = (vm_offset_t)base + i * PAGE_SIZE;
624		pmap_ptelist_free(head, va);
625	}
626}
627
628
629/*
630 *	Initialize the pmap module.
631 *	Called by vm_init, to initialize any structures that the pmap
632 *	system needs to map virtual memory.
633 */
634void
635pmap_init(void)
636{
637	vm_page_t mpte;
638	vm_size_t s;
639	int i, pv_npg;
640
641	/*
642	 * Initialize the vm page array entries for the kernel pmap's
643	 * page table pages.
644	 */
645	for (i = 0; i < nkpt; i++) {
646		mpte = PHYS_TO_VM_PAGE(PTD[i + KPTDI] & PG_FRAME);
647		KASSERT(mpte >= vm_page_array &&
648		    mpte < &vm_page_array[vm_page_array_size],
649		    ("pmap_init: page table page is out of range"));
650		mpte->pindex = i + KPTDI;
651		mpte->phys_addr = PTD[i + KPTDI] & PG_FRAME;
652	}
653
654	/*
655	 * Initialize the address space (zone) for the pv entries.  Set a
656	 * high water mark so that the system can recover from excessive
657	 * numbers of pv entries.
658	 */
659	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
660	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
661	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
662	pv_entry_max = roundup(pv_entry_max, _NPCPV);
663	pv_entry_high_water = 9 * (pv_entry_max / 10);
664
665	/*
666	 * Are large page mappings enabled?
667	 */
668	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
669
670	/*
671	 * Calculate the size of the pv head table for superpages.
672	 */
673	for (i = 0; phys_avail[i + 1]; i += 2);
674	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
675
676	/*
677	 * Allocate memory for the pv head table for superpages.
678	 */
679	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
680	s = round_page(s);
681	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
682	for (i = 0; i < pv_npg; i++)
683		TAILQ_INIT(&pv_table[i].pv_list);
684
685	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
686	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
687	    PAGE_SIZE * pv_maxchunks);
688	if (pv_chunkbase == NULL)
689		panic("pmap_init: not enough kvm for pv chunks");
690	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
691#ifdef PAE
692	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
693	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
694	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
695	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
696#endif
697}
698
699
700SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
701	"Max number of PV entries");
702SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
703	"Page share factor per proc");
704
705SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
706    "2/4MB page mapping counters");
707
708static u_long pmap_pde_demotions;
709SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
710    &pmap_pde_demotions, 0, "2/4MB page demotions");
711
712static u_long pmap_pde_mappings;
713SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
714    &pmap_pde_mappings, 0, "2/4MB page mappings");
715
716static u_long pmap_pde_p_failures;
717SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
718    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
719
720static u_long pmap_pde_promotions;
721SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
722    &pmap_pde_promotions, 0, "2/4MB page promotions");
723
724/***************************************************
725 * Low level helper routines.....
726 ***************************************************/
727
728/*
729 * Determine the appropriate bits to set in a PTE or PDE for a specified
730 * caching mode.
731 */
732static int
733pmap_cache_bits(int mode, boolean_t is_pde)
734{
735	int pat_flag, pat_index, cache_bits;
736
737	/* The PAT bit is different for PTE's and PDE's. */
738	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
739
740	/* If we don't support PAT, map extended modes to older ones. */
741	if (!(cpu_feature & CPUID_PAT)) {
742		switch (mode) {
743		case PAT_UNCACHEABLE:
744		case PAT_WRITE_THROUGH:
745		case PAT_WRITE_BACK:
746			break;
747		case PAT_UNCACHED:
748		case PAT_WRITE_COMBINING:
749		case PAT_WRITE_PROTECTED:
750			mode = PAT_UNCACHEABLE;
751			break;
752		}
753	}
754
755	/* Map the caching mode to a PAT index. */
756	switch (mode) {
757#ifdef PAT_WORKS
758	case PAT_UNCACHEABLE:
759		pat_index = 3;
760		break;
761	case PAT_WRITE_THROUGH:
762		pat_index = 1;
763		break;
764	case PAT_WRITE_BACK:
765		pat_index = 0;
766		break;
767	case PAT_UNCACHED:
768		pat_index = 2;
769		break;
770	case PAT_WRITE_COMBINING:
771		pat_index = 5;
772		break;
773	case PAT_WRITE_PROTECTED:
774		pat_index = 4;
775		break;
776#else
777	case PAT_UNCACHED:
778	case PAT_UNCACHEABLE:
779	case PAT_WRITE_PROTECTED:
780		pat_index = 3;
781		break;
782	case PAT_WRITE_THROUGH:
783		pat_index = 1;
784		break;
785	case PAT_WRITE_BACK:
786		pat_index = 0;
787		break;
788	case PAT_WRITE_COMBINING:
789		pat_index = 2;
790		break;
791#endif
792	default:
793		panic("Unknown caching mode %d\n", mode);
794	}
795
796	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
797	cache_bits = 0;
798	if (pat_index & 0x4)
799		cache_bits |= pat_flag;
800	if (pat_index & 0x2)
801		cache_bits |= PG_NC_PCD;
802	if (pat_index & 0x1)
803		cache_bits |= PG_NC_PWT;
804	return (cache_bits);
805}
806#ifdef SMP
807/*
808 * For SMP, these functions have to use the IPI mechanism for coherence.
809 *
810 * N.B.: Before calling any of the following TLB invalidation functions,
811 * the calling processor must ensure that all stores updating a non-
812 * kernel page table are globally performed.  Otherwise, another
813 * processor could cache an old, pre-update entry without being
814 * invalidated.  This can happen one of two ways: (1) The pmap becomes
815 * active on another processor after its pm_active field is checked by
816 * one of the following functions but before a store updating the page
817 * table is globally performed. (2) The pmap becomes active on another
818 * processor before its pm_active field is checked but due to
819 * speculative loads one of the following functions stills reads the
820 * pmap as inactive on the other processor.
821 *
822 * The kernel page table is exempt because its pm_active field is
823 * immutable.  The kernel page table is always active on every
824 * processor.
825 */
826void
827pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
828{
829	u_int cpumask;
830	u_int other_cpus;
831
832	sched_pin();
833	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
834		invlpg(va);
835		smp_invlpg(va);
836	} else {
837		cpumask = PCPU_GET(cpumask);
838		other_cpus = PCPU_GET(other_cpus);
839		if (pmap->pm_active & cpumask)
840			invlpg(va);
841		if (pmap->pm_active & other_cpus)
842			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
843	}
844	sched_unpin();
845}
846
847void
848pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
849{
850	u_int cpumask;
851	u_int other_cpus;
852	vm_offset_t addr;
853
854	sched_pin();
855	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
856		for (addr = sva; addr < eva; addr += PAGE_SIZE)
857			invlpg(addr);
858		smp_invlpg_range(sva, eva);
859	} else {
860		cpumask = PCPU_GET(cpumask);
861		other_cpus = PCPU_GET(other_cpus);
862		if (pmap->pm_active & cpumask)
863			for (addr = sva; addr < eva; addr += PAGE_SIZE)
864				invlpg(addr);
865		if (pmap->pm_active & other_cpus)
866			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
867			    sva, eva);
868	}
869	sched_unpin();
870}
871
872void
873pmap_invalidate_all(pmap_t pmap)
874{
875	u_int cpumask;
876	u_int other_cpus;
877
878	sched_pin();
879	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
880		invltlb();
881		smp_invltlb();
882	} else {
883		cpumask = PCPU_GET(cpumask);
884		other_cpus = PCPU_GET(other_cpus);
885		if (pmap->pm_active & cpumask)
886			invltlb();
887		if (pmap->pm_active & other_cpus)
888			smp_masked_invltlb(pmap->pm_active & other_cpus);
889	}
890	sched_unpin();
891}
892
893void
894pmap_invalidate_cache(void)
895{
896
897	sched_pin();
898	wbinvd();
899	smp_cache_flush();
900	sched_unpin();
901}
902#else /* !SMP */
903/*
904 * Normal, non-SMP, 486+ invalidation functions.
905 * We inline these within pmap.c for speed.
906 */
907PMAP_INLINE void
908pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
909{
910
911	if (pmap == kernel_pmap || pmap->pm_active)
912		invlpg(va);
913}
914
915PMAP_INLINE void
916pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
917{
918	vm_offset_t addr;
919
920	if (pmap == kernel_pmap || pmap->pm_active)
921		for (addr = sva; addr < eva; addr += PAGE_SIZE)
922			invlpg(addr);
923}
924
925PMAP_INLINE void
926pmap_invalidate_all(pmap_t pmap)
927{
928
929	if (pmap == kernel_pmap || pmap->pm_active)
930		invltlb();
931}
932
933PMAP_INLINE void
934pmap_invalidate_cache(void)
935{
936
937	wbinvd();
938}
939#endif /* !SMP */
940
941/*
942 * Are we current address space or kernel?  N.B. We return FALSE when
943 * a pmap's page table is in use because a kernel thread is borrowing
944 * it.  The borrowed page table can change spontaneously, making any
945 * dependence on its continued use subject to a race condition.
946 */
947static __inline int
948pmap_is_current(pmap_t pmap)
949{
950
951	return (pmap == kernel_pmap ||
952		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
953	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
954}
955
956/*
957 * If the given pmap is not the current or kernel pmap, the returned pte must
958 * be released by passing it to pmap_pte_release().
959 */
960pt_entry_t *
961pmap_pte(pmap_t pmap, vm_offset_t va)
962{
963	pd_entry_t newpf;
964	pd_entry_t *pde;
965
966	pde = pmap_pde(pmap, va);
967	if (*pde & PG_PS)
968		return (pde);
969	if (*pde != 0) {
970		/* are we current address space or kernel? */
971		if (pmap_is_current(pmap))
972			return (vtopte(va));
973		mtx_lock(&PMAP2mutex);
974		newpf = *pde & PG_FRAME;
975		if ((*PMAP2 & PG_FRAME) != newpf) {
976			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
977			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
978		}
979		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
980	}
981	return (0);
982}
983
984/*
985 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
986 * being NULL.
987 */
988static __inline void
989pmap_pte_release(pt_entry_t *pte)
990{
991
992	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
993		mtx_unlock(&PMAP2mutex);
994}
995
996static __inline void
997invlcaddr(void *caddr)
998{
999
1000	invlpg((u_int)caddr);
1001}
1002
1003/*
1004 * Super fast pmap_pte routine best used when scanning
1005 * the pv lists.  This eliminates many coarse-grained
1006 * invltlb calls.  Note that many of the pv list
1007 * scans are across different pmaps.  It is very wasteful
1008 * to do an entire invltlb for checking a single mapping.
1009 *
1010 * If the given pmap is not the current pmap, vm_page_queue_mtx
1011 * must be held and curthread pinned to a CPU.
1012 */
1013static pt_entry_t *
1014pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1015{
1016	pd_entry_t newpf;
1017	pd_entry_t *pde;
1018
1019	pde = pmap_pde(pmap, va);
1020	if (*pde & PG_PS)
1021		return (pde);
1022	if (*pde != 0) {
1023		/* are we current address space or kernel? */
1024		if (pmap_is_current(pmap))
1025			return (vtopte(va));
1026		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1027		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1028		newpf = *pde & PG_FRAME;
1029		if ((*PMAP1 & PG_FRAME) != newpf) {
1030			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1031#ifdef SMP
1032			PMAP1cpu = PCPU_GET(cpuid);
1033#endif
1034			invlcaddr(PADDR1);
1035			PMAP1changed++;
1036		} else
1037#ifdef SMP
1038		if (PMAP1cpu != PCPU_GET(cpuid)) {
1039			PMAP1cpu = PCPU_GET(cpuid);
1040			invlcaddr(PADDR1);
1041			PMAP1changedcpu++;
1042		} else
1043#endif
1044			PMAP1unchanged++;
1045		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1046	}
1047	return (0);
1048}
1049
1050/*
1051 *	Routine:	pmap_extract
1052 *	Function:
1053 *		Extract the physical page address associated
1054 *		with the given map/virtual_address pair.
1055 */
1056vm_paddr_t
1057pmap_extract(pmap_t pmap, vm_offset_t va)
1058{
1059	vm_paddr_t rtval;
1060	pt_entry_t *pte;
1061	pd_entry_t pde;
1062
1063	rtval = 0;
1064	PMAP_LOCK(pmap);
1065	pde = pmap->pm_pdir[va >> PDRSHIFT];
1066	if (pde != 0) {
1067		if ((pde & PG_PS) != 0)
1068			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1069		else {
1070			pte = pmap_pte(pmap, va);
1071			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1072			pmap_pte_release(pte);
1073		}
1074	}
1075	PMAP_UNLOCK(pmap);
1076	return (rtval);
1077}
1078
1079/*
1080 *	Routine:	pmap_extract_and_hold
1081 *	Function:
1082 *		Atomically extract and hold the physical page
1083 *		with the given pmap and virtual address pair
1084 *		if that mapping permits the given protection.
1085 */
1086vm_page_t
1087pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1088{
1089	pd_entry_t pde;
1090	pt_entry_t pte;
1091	vm_page_t m;
1092
1093	m = NULL;
1094	vm_page_lock_queues();
1095	PMAP_LOCK(pmap);
1096	pde = *pmap_pde(pmap, va);
1097	if (pde != 0) {
1098		if (pde & PG_PS) {
1099			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1100				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1101				    (va & PDRMASK));
1102				vm_page_hold(m);
1103			}
1104		} else {
1105			sched_pin();
1106			pte = *pmap_pte_quick(pmap, va);
1107			if (pte != 0 &&
1108			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1109				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1110				vm_page_hold(m);
1111			}
1112			sched_unpin();
1113		}
1114	}
1115	vm_page_unlock_queues();
1116	PMAP_UNLOCK(pmap);
1117	return (m);
1118}
1119
1120/***************************************************
1121 * Low level mapping routines.....
1122 ***************************************************/
1123
1124/*
1125 * Add a wired page to the kva.
1126 * Note: not SMP coherent.
1127 */
1128PMAP_INLINE void
1129pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1130{
1131	pt_entry_t *pte;
1132
1133	pte = vtopte(va);
1134	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1135}
1136
1137static __inline void
1138pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1139{
1140	pt_entry_t *pte;
1141
1142	pte = vtopte(va);
1143	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1144}
1145
1146/*
1147 * Remove a page from the kernel pagetables.
1148 * Note: not SMP coherent.
1149 */
1150PMAP_INLINE void
1151pmap_kremove(vm_offset_t va)
1152{
1153	pt_entry_t *pte;
1154
1155	pte = vtopte(va);
1156	pte_clear(pte);
1157}
1158
1159/*
1160 *	Used to map a range of physical addresses into kernel
1161 *	virtual address space.
1162 *
1163 *	The value passed in '*virt' is a suggested virtual address for
1164 *	the mapping. Architectures which can support a direct-mapped
1165 *	physical to virtual region can return the appropriate address
1166 *	within that region, leaving '*virt' unchanged. Other
1167 *	architectures should map the pages starting at '*virt' and
1168 *	update '*virt' with the first usable address after the mapped
1169 *	region.
1170 */
1171vm_offset_t
1172pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1173{
1174	vm_offset_t va, sva;
1175
1176	va = sva = *virt;
1177	while (start < end) {
1178		pmap_kenter(va, start);
1179		va += PAGE_SIZE;
1180		start += PAGE_SIZE;
1181	}
1182	pmap_invalidate_range(kernel_pmap, sva, va);
1183	*virt = va;
1184	return (sva);
1185}
1186
1187
1188/*
1189 * Add a list of wired pages to the kva
1190 * this routine is only used for temporary
1191 * kernel mappings that do not need to have
1192 * page modification or references recorded.
1193 * Note that old mappings are simply written
1194 * over.  The page *must* be wired.
1195 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1196 */
1197void
1198pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1199{
1200	pt_entry_t *endpte, oldpte, *pte;
1201
1202	oldpte = 0;
1203	pte = vtopte(sva);
1204	endpte = pte + count;
1205	while (pte < endpte) {
1206		oldpte |= *pte;
1207		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1208		pte++;
1209		ma++;
1210	}
1211	if ((oldpte & PG_V) != 0)
1212		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1213		    PAGE_SIZE);
1214}
1215
1216/*
1217 * This routine tears out page mappings from the
1218 * kernel -- it is meant only for temporary mappings.
1219 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1220 */
1221void
1222pmap_qremove(vm_offset_t sva, int count)
1223{
1224	vm_offset_t va;
1225
1226	va = sva;
1227	while (count-- > 0) {
1228		pmap_kremove(va);
1229		va += PAGE_SIZE;
1230	}
1231	pmap_invalidate_range(kernel_pmap, sva, va);
1232}
1233
1234/***************************************************
1235 * Page table page management routines.....
1236 ***************************************************/
1237static __inline void
1238pmap_free_zero_pages(vm_page_t free)
1239{
1240	vm_page_t m;
1241
1242	while (free != NULL) {
1243		m = free;
1244		free = m->right;
1245		/* Preserve the page's PG_ZERO setting. */
1246		vm_page_free_toq(m);
1247	}
1248}
1249
1250/*
1251 * Schedule the specified unused page table page to be freed.  Specifically,
1252 * add the page to the specified list of pages that will be released to the
1253 * physical memory manager after the TLB has been updated.
1254 */
1255static __inline void
1256pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1257{
1258
1259	if (set_PG_ZERO)
1260		m->flags |= PG_ZERO;
1261	else
1262		m->flags &= ~PG_ZERO;
1263	m->right = *free;
1264	*free = m;
1265}
1266
1267/*
1268 * Inserts the specified page table page into the specified pmap's collection
1269 * of idle page table pages.  Each of a pmap's page table pages is responsible
1270 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1271 * ordered by this virtual address range.
1272 */
1273static void
1274pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1275{
1276	vm_page_t root;
1277
1278	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1279	root = pmap->pm_root;
1280	if (root == NULL) {
1281		mpte->left = NULL;
1282		mpte->right = NULL;
1283	} else {
1284		root = vm_page_splay(mpte->pindex, root);
1285		if (mpte->pindex < root->pindex) {
1286			mpte->left = root->left;
1287			mpte->right = root;
1288			root->left = NULL;
1289		} else if (mpte->pindex == root->pindex)
1290			panic("pmap_insert_pt_page: pindex already inserted");
1291		else {
1292			mpte->right = root->right;
1293			mpte->left = root;
1294			root->right = NULL;
1295		}
1296	}
1297	pmap->pm_root = mpte;
1298}
1299
1300/*
1301 * Looks for a page table page mapping the specified virtual address in the
1302 * specified pmap's collection of idle page table pages.  Returns NULL if there
1303 * is no page table page corresponding to the specified virtual address.
1304 */
1305static vm_page_t
1306pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1307{
1308	vm_page_t mpte;
1309	vm_pindex_t pindex = va >> PDRSHIFT;
1310
1311	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1312	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1313		mpte = vm_page_splay(pindex, mpte);
1314		if ((pmap->pm_root = mpte)->pindex != pindex)
1315			mpte = NULL;
1316	}
1317	return (mpte);
1318}
1319
1320/*
1321 * Removes the specified page table page from the specified pmap's collection
1322 * of idle page table pages.  The specified page table page must be a member of
1323 * the pmap's collection.
1324 */
1325static void
1326pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1327{
1328	vm_page_t root;
1329
1330	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1331	if (mpte != pmap->pm_root)
1332		vm_page_splay(mpte->pindex, pmap->pm_root);
1333	if (mpte->left == NULL)
1334		root = mpte->right;
1335	else {
1336		root = vm_page_splay(mpte->pindex, mpte->left);
1337		root->right = mpte->right;
1338	}
1339	pmap->pm_root = root;
1340}
1341
1342/*
1343 * This routine unholds page table pages, and if the hold count
1344 * drops to zero, then it decrements the wire count.
1345 */
1346static __inline int
1347pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1348{
1349
1350	--m->wire_count;
1351	if (m->wire_count == 0)
1352		return _pmap_unwire_pte_hold(pmap, m, free);
1353	else
1354		return 0;
1355}
1356
1357static int
1358_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1359{
1360	vm_offset_t pteva;
1361
1362	/*
1363	 * unmap the page table page
1364	 */
1365	pmap->pm_pdir[m->pindex] = 0;
1366	--pmap->pm_stats.resident_count;
1367
1368	/*
1369	 * This is a release store so that the ordinary store unmapping
1370	 * the page table page is globally performed before TLB shoot-
1371	 * down is begun.
1372	 */
1373	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1374
1375	/*
1376	 * Do an invltlb to make the invalidated mapping
1377	 * take effect immediately.
1378	 */
1379	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1380	pmap_invalidate_page(pmap, pteva);
1381
1382	/*
1383	 * Put page on a list so that it is released after
1384	 * *ALL* TLB shootdown is done
1385	 */
1386	pmap_add_delayed_free_list(m, free, TRUE);
1387
1388	return 1;
1389}
1390
1391/*
1392 * After removing a page table entry, this routine is used to
1393 * conditionally free the page, and manage the hold/wire counts.
1394 */
1395static int
1396pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1397{
1398	pd_entry_t ptepde;
1399	vm_page_t mpte;
1400
1401	if (va >= VM_MAXUSER_ADDRESS)
1402		return 0;
1403	ptepde = *pmap_pde(pmap, va);
1404	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1405	return pmap_unwire_pte_hold(pmap, mpte, free);
1406}
1407
1408void
1409pmap_pinit0(pmap_t pmap)
1410{
1411
1412	PMAP_LOCK_INIT(pmap);
1413	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1414#ifdef PAE
1415	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1416#endif
1417	pmap->pm_root = NULL;
1418	pmap->pm_active = 0;
1419	PCPU_SET(curpmap, pmap);
1420	TAILQ_INIT(&pmap->pm_pvchunk);
1421	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1422	mtx_lock_spin(&allpmaps_lock);
1423	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1424	mtx_unlock_spin(&allpmaps_lock);
1425}
1426
1427/*
1428 * Initialize a preallocated and zeroed pmap structure,
1429 * such as one in a vmspace structure.
1430 */
1431int
1432pmap_pinit(pmap_t pmap)
1433{
1434	vm_page_t m, ptdpg[NPGPTD];
1435	vm_paddr_t pa;
1436	static int color;
1437	int i;
1438
1439	PMAP_LOCK_INIT(pmap);
1440
1441	/*
1442	 * No need to allocate page table space yet but we do need a valid
1443	 * page directory table.
1444	 */
1445	if (pmap->pm_pdir == NULL) {
1446		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1447		    NBPTD);
1448
1449		if (pmap->pm_pdir == NULL) {
1450			PMAP_LOCK_DESTROY(pmap);
1451			return (0);
1452		}
1453#ifdef PAE
1454		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1455		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1456		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1457		    ("pmap_pinit: pdpt misaligned"));
1458		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1459		    ("pmap_pinit: pdpt above 4g"));
1460#endif
1461		pmap->pm_root = NULL;
1462	}
1463	KASSERT(pmap->pm_root == NULL,
1464	    ("pmap_pinit: pmap has reserved page table page(s)"));
1465
1466	/*
1467	 * allocate the page directory page(s)
1468	 */
1469	for (i = 0; i < NPGPTD;) {
1470		m = vm_page_alloc(NULL, color++,
1471		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1472		    VM_ALLOC_ZERO);
1473		if (m == NULL)
1474			VM_WAIT;
1475		else {
1476			ptdpg[i++] = m;
1477		}
1478	}
1479
1480	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1481
1482	for (i = 0; i < NPGPTD; i++) {
1483		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1484			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1485	}
1486
1487	mtx_lock_spin(&allpmaps_lock);
1488	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1489	mtx_unlock_spin(&allpmaps_lock);
1490	/* Wire in kernel global address entries. */
1491	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1492
1493	/* install self-referential address mapping entry(s) */
1494	for (i = 0; i < NPGPTD; i++) {
1495		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1496		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1497#ifdef PAE
1498		pmap->pm_pdpt[i] = pa | PG_V;
1499#endif
1500	}
1501
1502	pmap->pm_active = 0;
1503	TAILQ_INIT(&pmap->pm_pvchunk);
1504	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1505
1506	return (1);
1507}
1508
1509/*
1510 * this routine is called if the page table page is not
1511 * mapped correctly.
1512 */
1513static vm_page_t
1514_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1515{
1516	vm_paddr_t ptepa;
1517	vm_page_t m;
1518
1519	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1520	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1521	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1522
1523	/*
1524	 * Allocate a page table page.
1525	 */
1526	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1527	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1528		if (flags & M_WAITOK) {
1529			PMAP_UNLOCK(pmap);
1530			vm_page_unlock_queues();
1531			VM_WAIT;
1532			vm_page_lock_queues();
1533			PMAP_LOCK(pmap);
1534		}
1535
1536		/*
1537		 * Indicate the need to retry.  While waiting, the page table
1538		 * page may have been allocated.
1539		 */
1540		return (NULL);
1541	}
1542	if ((m->flags & PG_ZERO) == 0)
1543		pmap_zero_page(m);
1544
1545	/*
1546	 * Map the pagetable page into the process address space, if
1547	 * it isn't already there.
1548	 */
1549
1550	pmap->pm_stats.resident_count++;
1551
1552	ptepa = VM_PAGE_TO_PHYS(m);
1553	pmap->pm_pdir[ptepindex] =
1554		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1555
1556	return m;
1557}
1558
1559static vm_page_t
1560pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1561{
1562	unsigned ptepindex;
1563	pd_entry_t ptepa;
1564	vm_page_t m;
1565
1566	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1567	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1568	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1569
1570	/*
1571	 * Calculate pagetable page index
1572	 */
1573	ptepindex = va >> PDRSHIFT;
1574retry:
1575	/*
1576	 * Get the page directory entry
1577	 */
1578	ptepa = pmap->pm_pdir[ptepindex];
1579
1580	/*
1581	 * This supports switching from a 4MB page to a
1582	 * normal 4K page.
1583	 */
1584	if (ptepa & PG_PS) {
1585		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1586		ptepa = pmap->pm_pdir[ptepindex];
1587	}
1588
1589	/*
1590	 * If the page table page is mapped, we just increment the
1591	 * hold count, and activate it.
1592	 */
1593	if (ptepa) {
1594		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1595		m->wire_count++;
1596	} else {
1597		/*
1598		 * Here if the pte page isn't mapped, or if it has
1599		 * been deallocated.
1600		 */
1601		m = _pmap_allocpte(pmap, ptepindex, flags);
1602		if (m == NULL && (flags & M_WAITOK))
1603			goto retry;
1604	}
1605	return (m);
1606}
1607
1608
1609/***************************************************
1610* Pmap allocation/deallocation routines.
1611 ***************************************************/
1612
1613#ifdef SMP
1614/*
1615 * Deal with a SMP shootdown of other users of the pmap that we are
1616 * trying to dispose of.  This can be a bit hairy.
1617 */
1618static u_int *lazymask;
1619static u_int lazyptd;
1620static volatile u_int lazywait;
1621
1622void pmap_lazyfix_action(void);
1623
1624void
1625pmap_lazyfix_action(void)
1626{
1627	u_int mymask = PCPU_GET(cpumask);
1628
1629#ifdef COUNT_IPIS
1630	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1631#endif
1632	if (rcr3() == lazyptd)
1633		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1634	atomic_clear_int(lazymask, mymask);
1635	atomic_store_rel_int(&lazywait, 1);
1636}
1637
1638static void
1639pmap_lazyfix_self(u_int mymask)
1640{
1641
1642	if (rcr3() == lazyptd)
1643		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1644	atomic_clear_int(lazymask, mymask);
1645}
1646
1647
1648static void
1649pmap_lazyfix(pmap_t pmap)
1650{
1651	u_int mymask;
1652	u_int mask;
1653	u_int spins;
1654
1655	while ((mask = pmap->pm_active) != 0) {
1656		spins = 50000000;
1657		mask = mask & -mask;	/* Find least significant set bit */
1658		mtx_lock_spin(&smp_ipi_mtx);
1659#ifdef PAE
1660		lazyptd = vtophys(pmap->pm_pdpt);
1661#else
1662		lazyptd = vtophys(pmap->pm_pdir);
1663#endif
1664		mymask = PCPU_GET(cpumask);
1665		if (mask == mymask) {
1666			lazymask = &pmap->pm_active;
1667			pmap_lazyfix_self(mymask);
1668		} else {
1669			atomic_store_rel_int((u_int *)&lazymask,
1670			    (u_int)&pmap->pm_active);
1671			atomic_store_rel_int(&lazywait, 0);
1672			ipi_selected(mask, IPI_LAZYPMAP);
1673			while (lazywait == 0) {
1674				ia32_pause();
1675				if (--spins == 0)
1676					break;
1677			}
1678		}
1679		mtx_unlock_spin(&smp_ipi_mtx);
1680		if (spins == 0)
1681			printf("pmap_lazyfix: spun for 50000000\n");
1682	}
1683}
1684
1685#else	/* SMP */
1686
1687/*
1688 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1689 * unlikely to have to even execute this code, including the fact
1690 * that the cleanup is deferred until the parent does a wait(2), which
1691 * means that another userland process has run.
1692 */
1693static void
1694pmap_lazyfix(pmap_t pmap)
1695{
1696	u_int cr3;
1697
1698	cr3 = vtophys(pmap->pm_pdir);
1699	if (cr3 == rcr3()) {
1700		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1701		pmap->pm_active &= ~(PCPU_GET(cpumask));
1702	}
1703}
1704#endif	/* SMP */
1705
1706/*
1707 * Release any resources held by the given physical map.
1708 * Called when a pmap initialized by pmap_pinit is being released.
1709 * Should only be called if the map contains no valid mappings.
1710 */
1711void
1712pmap_release(pmap_t pmap)
1713{
1714	vm_page_t m, ptdpg[NPGPTD];
1715	int i;
1716
1717	KASSERT(pmap->pm_stats.resident_count == 0,
1718	    ("pmap_release: pmap resident count %ld != 0",
1719	    pmap->pm_stats.resident_count));
1720	KASSERT(pmap->pm_root == NULL,
1721	    ("pmap_release: pmap has reserved page table page(s)"));
1722
1723	pmap_lazyfix(pmap);
1724	mtx_lock_spin(&allpmaps_lock);
1725	LIST_REMOVE(pmap, pm_list);
1726	mtx_unlock_spin(&allpmaps_lock);
1727
1728	for (i = 0; i < NPGPTD; i++)
1729		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1730		    PG_FRAME);
1731
1732	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1733	    sizeof(*pmap->pm_pdir));
1734
1735	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1736
1737	for (i = 0; i < NPGPTD; i++) {
1738		m = ptdpg[i];
1739#ifdef PAE
1740		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1741		    ("pmap_release: got wrong ptd page"));
1742#endif
1743		m->wire_count--;
1744		atomic_subtract_int(&cnt.v_wire_count, 1);
1745		vm_page_free_zero(m);
1746	}
1747	PMAP_LOCK_DESTROY(pmap);
1748}
1749
1750static int
1751kvm_size(SYSCTL_HANDLER_ARGS)
1752{
1753	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1754
1755	return sysctl_handle_long(oidp, &ksize, 0, req);
1756}
1757SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1758    0, 0, kvm_size, "IU", "Size of KVM");
1759
1760static int
1761kvm_free(SYSCTL_HANDLER_ARGS)
1762{
1763	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1764
1765	return sysctl_handle_long(oidp, &kfree, 0, req);
1766}
1767SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1768    0, 0, kvm_free, "IU", "Amount of KVM free");
1769
1770/*
1771 * grow the number of kernel page table entries, if needed
1772 */
1773void
1774pmap_growkernel(vm_offset_t addr)
1775{
1776	struct pmap *pmap;
1777	vm_paddr_t ptppaddr;
1778	vm_page_t nkpg;
1779	pd_entry_t newpdir;
1780	pt_entry_t *pde;
1781
1782	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1783	if (kernel_vm_end == 0) {
1784		kernel_vm_end = KERNBASE;
1785		nkpt = 0;
1786		while (pdir_pde(PTD, kernel_vm_end)) {
1787			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1788			nkpt++;
1789			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1790				kernel_vm_end = kernel_map->max_offset;
1791				break;
1792			}
1793		}
1794	}
1795	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1796	if (addr - 1 >= kernel_map->max_offset)
1797		addr = kernel_map->max_offset;
1798	while (kernel_vm_end < addr) {
1799		if (pdir_pde(PTD, kernel_vm_end)) {
1800			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1801			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1802				kernel_vm_end = kernel_map->max_offset;
1803				break;
1804			}
1805			continue;
1806		}
1807
1808		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1809		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1810		    VM_ALLOC_ZERO);
1811		if (nkpg == NULL)
1812			panic("pmap_growkernel: no memory to grow kernel");
1813
1814		nkpt++;
1815
1816		if ((nkpg->flags & PG_ZERO) == 0)
1817			pmap_zero_page(nkpg);
1818		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1819		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1820		pdir_pde(PTD, kernel_vm_end) = newpdir;
1821
1822		mtx_lock_spin(&allpmaps_lock);
1823		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1824			pde = pmap_pde(pmap, kernel_vm_end);
1825			pde_store(pde, newpdir);
1826		}
1827		mtx_unlock_spin(&allpmaps_lock);
1828		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1829		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1830			kernel_vm_end = kernel_map->max_offset;
1831			break;
1832		}
1833	}
1834}
1835
1836
1837/***************************************************
1838 * page management routines.
1839 ***************************************************/
1840
1841CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1842CTASSERT(_NPCM == 11);
1843
1844static __inline struct pv_chunk *
1845pv_to_chunk(pv_entry_t pv)
1846{
1847
1848	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1849}
1850
1851#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1852
1853#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1854#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1855
1856static uint32_t pc_freemask[11] = {
1857	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1858	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1859	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1860	PC_FREE0_9, PC_FREE10
1861};
1862
1863SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1864	"Current number of pv entries");
1865
1866#ifdef PV_STATS
1867static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1868
1869SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1870	"Current number of pv entry chunks");
1871SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1872	"Current number of pv entry chunks allocated");
1873SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1874	"Current number of pv entry chunks frees");
1875SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1876	"Number of times tried to get a chunk page but failed.");
1877
1878static long pv_entry_frees, pv_entry_allocs;
1879static int pv_entry_spare;
1880
1881SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1882	"Current number of pv entry frees");
1883SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1884	"Current number of pv entry allocs");
1885SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1886	"Current number of spare pv entries");
1887
1888static int pmap_collect_inactive, pmap_collect_active;
1889
1890SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1891	"Current number times pmap_collect called on inactive queue");
1892SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1893	"Current number times pmap_collect called on active queue");
1894#endif
1895
1896/*
1897 * We are in a serious low memory condition.  Resort to
1898 * drastic measures to free some pages so we can allocate
1899 * another pv entry chunk.  This is normally called to
1900 * unmap inactive pages, and if necessary, active pages.
1901 */
1902static void
1903pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1904{
1905	struct md_page *pvh;
1906	pd_entry_t *pde;
1907	pmap_t pmap;
1908	pt_entry_t *pte, tpte;
1909	pv_entry_t next_pv, pv;
1910	vm_offset_t va;
1911	vm_page_t m, free;
1912
1913	sched_pin();
1914	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1915		if (m->hold_count || m->busy)
1916			continue;
1917		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1918			va = pv->pv_va;
1919			pmap = PV_PMAP(pv);
1920			/* Avoid deadlock and lock recursion. */
1921			if (pmap > locked_pmap)
1922				PMAP_LOCK(pmap);
1923			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1924				continue;
1925			pmap->pm_stats.resident_count--;
1926			pde = pmap_pde(pmap, va);
1927			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
1928			    " a 4mpage in page %p's pv list", m));
1929			pte = pmap_pte_quick(pmap, va);
1930			tpte = pte_load_clear(pte);
1931			KASSERT((tpte & PG_W) == 0,
1932			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1933			if (tpte & PG_A)
1934				vm_page_flag_set(m, PG_REFERENCED);
1935			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1936				vm_page_dirty(m);
1937			free = NULL;
1938			pmap_unuse_pt(pmap, va, &free);
1939			pmap_invalidate_page(pmap, va);
1940			pmap_free_zero_pages(free);
1941			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1942			if (TAILQ_EMPTY(&m->md.pv_list)) {
1943				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1944				if (TAILQ_EMPTY(&pvh->pv_list))
1945					vm_page_flag_clear(m, PG_WRITEABLE);
1946			}
1947			free_pv_entry(pmap, pv);
1948			if (pmap != locked_pmap)
1949				PMAP_UNLOCK(pmap);
1950		}
1951	}
1952	sched_unpin();
1953}
1954
1955
1956/*
1957 * free the pv_entry back to the free list
1958 */
1959static void
1960free_pv_entry(pmap_t pmap, pv_entry_t pv)
1961{
1962	vm_page_t m;
1963	struct pv_chunk *pc;
1964	int idx, field, bit;
1965
1966	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1967	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1968	PV_STAT(pv_entry_frees++);
1969	PV_STAT(pv_entry_spare++);
1970	pv_entry_count--;
1971	pc = pv_to_chunk(pv);
1972	idx = pv - &pc->pc_pventry[0];
1973	field = idx / 32;
1974	bit = idx % 32;
1975	pc->pc_map[field] |= 1ul << bit;
1976	/* move to head of list */
1977	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1978	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1979	for (idx = 0; idx < _NPCM; idx++)
1980		if (pc->pc_map[idx] != pc_freemask[idx])
1981			return;
1982	PV_STAT(pv_entry_spare -= _NPCPV);
1983	PV_STAT(pc_chunk_count--);
1984	PV_STAT(pc_chunk_frees++);
1985	/* entire chunk is free, return it */
1986	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1987	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1988	pmap_qremove((vm_offset_t)pc, 1);
1989	vm_page_unwire(m, 0);
1990	vm_page_free(m);
1991	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1992}
1993
1994/*
1995 * get a new pv_entry, allocating a block from the system
1996 * when needed.
1997 */
1998static pv_entry_t
1999get_pv_entry(pmap_t pmap, int try)
2000{
2001	static const struct timeval printinterval = { 60, 0 };
2002	static struct timeval lastprint;
2003	static vm_pindex_t colour;
2004	struct vpgqueues *pq;
2005	int bit, field;
2006	pv_entry_t pv;
2007	struct pv_chunk *pc;
2008	vm_page_t m;
2009
2010	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2011	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2012	PV_STAT(pv_entry_allocs++);
2013	pv_entry_count++;
2014	if (pv_entry_count > pv_entry_high_water)
2015		if (ratecheck(&lastprint, &printinterval))
2016			printf("Approaching the limit on PV entries, consider "
2017			    "increasing either the vm.pmap.shpgperproc or the "
2018			    "vm.pmap.pv_entry_max tunable.\n");
2019	pq = NULL;
2020retry:
2021	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2022	if (pc != NULL) {
2023		for (field = 0; field < _NPCM; field++) {
2024			if (pc->pc_map[field]) {
2025				bit = bsfl(pc->pc_map[field]);
2026				break;
2027			}
2028		}
2029		if (field < _NPCM) {
2030			pv = &pc->pc_pventry[field * 32 + bit];
2031			pc->pc_map[field] &= ~(1ul << bit);
2032			/* If this was the last item, move it to tail */
2033			for (field = 0; field < _NPCM; field++)
2034				if (pc->pc_map[field] != 0) {
2035					PV_STAT(pv_entry_spare--);
2036					return (pv);	/* not full, return */
2037				}
2038			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2039			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2040			PV_STAT(pv_entry_spare--);
2041			return (pv);
2042		}
2043	}
2044	/*
2045	 * Access to the ptelist "pv_vafree" is synchronized by the page
2046	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2047	 * remain non-empty until pmap_ptelist_alloc() completes.
2048	 */
2049	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2050	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2051	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2052		if (try) {
2053			pv_entry_count--;
2054			PV_STAT(pc_chunk_tryfail++);
2055			return (NULL);
2056		}
2057		/*
2058		 * Reclaim pv entries: At first, destroy mappings to
2059		 * inactive pages.  After that, if a pv chunk entry
2060		 * is still needed, destroy mappings to active pages.
2061		 */
2062		if (pq == NULL) {
2063			PV_STAT(pmap_collect_inactive++);
2064			pq = &vm_page_queues[PQ_INACTIVE];
2065		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2066			PV_STAT(pmap_collect_active++);
2067			pq = &vm_page_queues[PQ_ACTIVE];
2068		} else
2069			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2070		pmap_collect(pmap, pq);
2071		goto retry;
2072	}
2073	PV_STAT(pc_chunk_count++);
2074	PV_STAT(pc_chunk_allocs++);
2075	colour++;
2076	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2077	pmap_qenter((vm_offset_t)pc, &m, 1);
2078	pc->pc_pmap = pmap;
2079	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2080	for (field = 1; field < _NPCM; field++)
2081		pc->pc_map[field] = pc_freemask[field];
2082	pv = &pc->pc_pventry[0];
2083	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2084	PV_STAT(pv_entry_spare += _NPCPV - 1);
2085	return (pv);
2086}
2087
2088static __inline pv_entry_t
2089pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2090{
2091	pv_entry_t pv;
2092
2093	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2094	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2095		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2096			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2097			break;
2098		}
2099	}
2100	return (pv);
2101}
2102
2103static void
2104pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2105{
2106	struct md_page *pvh;
2107	pv_entry_t pv;
2108	vm_offset_t va_last;
2109	vm_page_t m;
2110
2111	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2112	KASSERT((pa & PDRMASK) == 0,
2113	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2114
2115	/*
2116	 * Transfer the 4mpage's pv entry for this mapping to the first
2117	 * page's pv list.
2118	 */
2119	pvh = pa_to_pvh(pa);
2120	va = trunc_4mpage(va);
2121	pv = pmap_pvh_remove(pvh, pmap, va);
2122	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2123	m = PHYS_TO_VM_PAGE(pa);
2124	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2125	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2126	va_last = va + NBPDR - PAGE_SIZE;
2127	do {
2128		m++;
2129		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2130		    ("pmap_pv_demote_pde: page %p is not managed", m));
2131		va += PAGE_SIZE;
2132		pmap_insert_entry(pmap, va, m);
2133	} while (va < va_last);
2134}
2135
2136static void
2137pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2138{
2139	struct md_page *pvh;
2140	pv_entry_t pv;
2141	vm_offset_t va_last;
2142	vm_page_t m;
2143
2144	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2145	KASSERT((pa & PDRMASK) == 0,
2146	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2147
2148	/*
2149	 * Transfer the first page's pv entry for this mapping to the
2150	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2151	 * to get_pv_entry(), a transfer avoids the possibility that
2152	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2153	 * removes one of the mappings that is being promoted.
2154	 */
2155	m = PHYS_TO_VM_PAGE(pa);
2156	va = trunc_4mpage(va);
2157	pv = pmap_pvh_remove(&m->md, pmap, va);
2158	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2159	pvh = pa_to_pvh(pa);
2160	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2161	/* Free the remaining NPTEPG - 1 pv entries. */
2162	va_last = va + NBPDR - PAGE_SIZE;
2163	do {
2164		m++;
2165		va += PAGE_SIZE;
2166		pmap_pvh_free(&m->md, pmap, va);
2167	} while (va < va_last);
2168}
2169
2170static void
2171pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2172{
2173	pv_entry_t pv;
2174
2175	pv = pmap_pvh_remove(pvh, pmap, va);
2176	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2177	free_pv_entry(pmap, pv);
2178}
2179
2180static void
2181pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2182{
2183	struct md_page *pvh;
2184
2185	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2186	pmap_pvh_free(&m->md, pmap, va);
2187	if (TAILQ_EMPTY(&m->md.pv_list)) {
2188		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2189		if (TAILQ_EMPTY(&pvh->pv_list))
2190			vm_page_flag_clear(m, PG_WRITEABLE);
2191	}
2192}
2193
2194/*
2195 * Create a pv entry for page at pa for
2196 * (pmap, va).
2197 */
2198static void
2199pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2200{
2201	pv_entry_t pv;
2202
2203	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2204	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2205	pv = get_pv_entry(pmap, FALSE);
2206	pv->pv_va = va;
2207	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2208}
2209
2210/*
2211 * Conditionally create a pv entry.
2212 */
2213static boolean_t
2214pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2215{
2216	pv_entry_t pv;
2217
2218	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2219	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2220	if (pv_entry_count < pv_entry_high_water &&
2221	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2222		pv->pv_va = va;
2223		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2224		return (TRUE);
2225	} else
2226		return (FALSE);
2227}
2228
2229/*
2230 * Create the pv entries for each of the pages within a superpage.
2231 */
2232static boolean_t
2233pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2234{
2235	struct md_page *pvh;
2236	pv_entry_t pv;
2237
2238	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2239	if (pv_entry_count < pv_entry_high_water &&
2240	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2241		pv->pv_va = va;
2242		pvh = pa_to_pvh(pa);
2243		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2244		return (TRUE);
2245	} else
2246		return (FALSE);
2247}
2248
2249/*
2250 * Tries to demote a 2- or 4MB page mapping.
2251 */
2252static boolean_t
2253pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2254{
2255	pd_entry_t newpde, oldpde;
2256	pmap_t allpmaps_entry;
2257	pt_entry_t *firstpte, newpte, *pte;
2258	vm_paddr_t mptepa;
2259	vm_page_t free, mpte;
2260
2261	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2262	mpte = pmap_lookup_pt_page(pmap, va);
2263	if (mpte != NULL)
2264		pmap_remove_pt_page(pmap, mpte);
2265	else {
2266		KASSERT((*pde & PG_W) == 0,
2267		    ("pmap_demote_pde: page table page for a wired mapping"
2268		    " is missing"));
2269		free = NULL;
2270		pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2271		pmap_invalidate_page(pmap, trunc_4mpage(va));
2272		pmap_free_zero_pages(free);
2273		CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2274		    " in pmap %p", va, pmap);
2275		return (FALSE);
2276	}
2277	mptepa = VM_PAGE_TO_PHYS(mpte);
2278
2279	/*
2280	 * Temporarily map the page table page (mpte) into the kernel's
2281	 * address space at either PADDR1 or PADDR2.
2282	 */
2283	if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2284		if ((*PMAP1 & PG_FRAME) != mptepa) {
2285			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2286#ifdef SMP
2287			PMAP1cpu = PCPU_GET(cpuid);
2288#endif
2289			invlcaddr(PADDR1);
2290			PMAP1changed++;
2291		} else
2292#ifdef SMP
2293		if (PMAP1cpu != PCPU_GET(cpuid)) {
2294			PMAP1cpu = PCPU_GET(cpuid);
2295			invlcaddr(PADDR1);
2296			PMAP1changedcpu++;
2297		} else
2298#endif
2299			PMAP1unchanged++;
2300		firstpte = PADDR1;
2301	} else {
2302		mtx_lock(&PMAP2mutex);
2303		if ((*PMAP2 & PG_FRAME) != mptepa) {
2304			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2305			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2306		}
2307		firstpte = PADDR2;
2308	}
2309	oldpde = *pde;
2310	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2311	KASSERT((oldpde & (PG_A | PG_V)) == (PG_A | PG_V),
2312	    ("pmap_demote_pde: oldpde is missing PG_A and/or PG_V"));
2313	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2314	    ("pmap_demote_pde: oldpde is missing PG_M"));
2315	KASSERT((oldpde & PG_PS) != 0,
2316	    ("pmap_demote_pde: oldpde is missing PG_PS"));
2317	newpte = oldpde & ~PG_PS;
2318	if ((newpte & PG_PDE_PAT) != 0)
2319		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2320
2321	/*
2322	 * If the mapping has changed attributes, update the page table
2323	 * entries.
2324	 */
2325	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2326	    ("pmap_demote_pde: firstpte and newpte map different physical"
2327	    " addresses"));
2328	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2329		for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2330			*pte = newpte;
2331			newpte += PAGE_SIZE;
2332		}
2333
2334	/*
2335	 * Demote the mapping.  This pmap is locked.  The old PDE has
2336	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2337	 * set.  Thus, there is no danger of a race with another
2338	 * processor changing the setting of PG_A and/or PG_M between
2339	 * the read above and the store below.
2340	 */
2341	if (pmap == kernel_pmap) {
2342		/*
2343		 * A harmless race exists between this loop and the bcopy()
2344		 * in pmap_pinit() that initializes the kernel segment of
2345		 * the new page table.  Specifically, that bcopy() may copy
2346		 * the new PDE from the PTD, which is first in allpmaps, to
2347		 * the new page table before this loop updates that new
2348		 * page table.
2349		 */
2350		mtx_lock_spin(&allpmaps_lock);
2351		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2352			pde = pmap_pde(allpmaps_entry, va);
2353			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2354			    (oldpde & PG_PTE_PROMOTE),
2355			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2356			    (uintmax_t)*pde, (uintmax_t)oldpde));
2357			pde_store(pde, newpde);
2358		}
2359		mtx_unlock_spin(&allpmaps_lock);
2360	} else
2361		pde_store(pde, newpde);
2362	if (firstpte == PADDR2)
2363		mtx_unlock(&PMAP2mutex);
2364
2365	/*
2366	 * Invalidate the recursive mapping of the page table page.
2367	 */
2368	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2369
2370	/*
2371	 * Demote the pv entry.  This depends on the earlier demotion
2372	 * of the mapping.  Specifically, the (re)creation of a per-
2373	 * page pv entry might trigger the execution of pmap_collect(),
2374	 * which might reclaim a newly (re)created per-page pv entry
2375	 * and destroy the associated mapping.  In order to destroy
2376	 * the mapping, the PDE must have already changed from mapping
2377	 * the 2mpage to referencing the page table page.
2378	 */
2379	if ((oldpde & PG_MANAGED) != 0)
2380		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2381
2382	pmap_pde_demotions++;
2383	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2384	    " in pmap %p", va, pmap);
2385	return (TRUE);
2386}
2387
2388/*
2389 * pmap_remove_pde: do the things to unmap a superpage in a process
2390 */
2391static void
2392pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2393    vm_page_t *free)
2394{
2395	struct md_page *pvh;
2396	pd_entry_t oldpde;
2397	vm_offset_t eva, va;
2398	vm_page_t m, mpte;
2399
2400	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2401	KASSERT((sva & PDRMASK) == 0,
2402	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2403	oldpde = pte_load_clear(pdq);
2404	if (oldpde & PG_W)
2405		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2406
2407	/*
2408	 * Machines that don't support invlpg, also don't support
2409	 * PG_G.
2410	 */
2411	if (oldpde & PG_G)
2412		pmap_invalidate_page(kernel_pmap, sva);
2413	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2414	if (oldpde & PG_MANAGED) {
2415		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2416		pmap_pvh_free(pvh, pmap, sva);
2417		eva = sva + NBPDR;
2418		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2419		    va < eva; va += PAGE_SIZE, m++) {
2420			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2421				vm_page_dirty(m);
2422			if (oldpde & PG_A)
2423				vm_page_flag_set(m, PG_REFERENCED);
2424			if (TAILQ_EMPTY(&m->md.pv_list) &&
2425			    TAILQ_EMPTY(&pvh->pv_list))
2426				vm_page_flag_clear(m, PG_WRITEABLE);
2427		}
2428	}
2429	if (pmap == kernel_pmap) {
2430		if (!pmap_demote_pde(pmap, pdq, sva))
2431			panic("pmap_remove_pde: failed demotion");
2432	} else {
2433		mpte = pmap_lookup_pt_page(pmap, sva);
2434		if (mpte != NULL) {
2435			pmap_remove_pt_page(pmap, mpte);
2436			KASSERT(mpte->wire_count == NPTEPG,
2437			    ("pmap_remove_pde: pte page wire count error"));
2438			mpte->wire_count = 0;
2439			pmap_add_delayed_free_list(mpte, free, FALSE);
2440			atomic_subtract_int(&cnt.v_wire_count, 1);
2441		}
2442	}
2443}
2444
2445/*
2446 * pmap_remove_pte: do the things to unmap a page in a process
2447 */
2448static int
2449pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2450{
2451	pt_entry_t oldpte;
2452	vm_page_t m;
2453
2454	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2455	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2456	oldpte = pte_load_clear(ptq);
2457	if (oldpte & PG_W)
2458		pmap->pm_stats.wired_count -= 1;
2459	/*
2460	 * Machines that don't support invlpg, also don't support
2461	 * PG_G.
2462	 */
2463	if (oldpte & PG_G)
2464		pmap_invalidate_page(kernel_pmap, va);
2465	pmap->pm_stats.resident_count -= 1;
2466	if (oldpte & PG_MANAGED) {
2467		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2468		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2469			vm_page_dirty(m);
2470		if (oldpte & PG_A)
2471			vm_page_flag_set(m, PG_REFERENCED);
2472		pmap_remove_entry(pmap, m, va);
2473	}
2474	return (pmap_unuse_pt(pmap, va, free));
2475}
2476
2477/*
2478 * Remove a single page from a process address space
2479 */
2480static void
2481pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2482{
2483	pt_entry_t *pte;
2484
2485	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2486	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2487	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2488	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2489		return;
2490	pmap_remove_pte(pmap, pte, va, free);
2491	pmap_invalidate_page(pmap, va);
2492}
2493
2494/*
2495 *	Remove the given range of addresses from the specified map.
2496 *
2497 *	It is assumed that the start and end are properly
2498 *	rounded to the page size.
2499 */
2500void
2501pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2502{
2503	vm_offset_t pdnxt;
2504	pd_entry_t ptpaddr;
2505	pt_entry_t *pte;
2506	vm_page_t free = NULL;
2507	int anyvalid;
2508
2509	/*
2510	 * Perform an unsynchronized read.  This is, however, safe.
2511	 */
2512	if (pmap->pm_stats.resident_count == 0)
2513		return;
2514
2515	anyvalid = 0;
2516
2517	vm_page_lock_queues();
2518	sched_pin();
2519	PMAP_LOCK(pmap);
2520
2521	/*
2522	 * special handling of removing one page.  a very
2523	 * common operation and easy to short circuit some
2524	 * code.
2525	 */
2526	if ((sva + PAGE_SIZE == eva) &&
2527	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2528		pmap_remove_page(pmap, sva, &free);
2529		goto out;
2530	}
2531
2532	for (; sva < eva; sva = pdnxt) {
2533		unsigned pdirindex;
2534
2535		/*
2536		 * Calculate index for next page table.
2537		 */
2538		pdnxt = (sva + NBPDR) & ~PDRMASK;
2539		if (pdnxt < sva)
2540			pdnxt = eva;
2541		if (pmap->pm_stats.resident_count == 0)
2542			break;
2543
2544		pdirindex = sva >> PDRSHIFT;
2545		ptpaddr = pmap->pm_pdir[pdirindex];
2546
2547		/*
2548		 * Weed out invalid mappings. Note: we assume that the page
2549		 * directory table is always allocated, and in kernel virtual.
2550		 */
2551		if (ptpaddr == 0)
2552			continue;
2553
2554		/*
2555		 * Check for large page.
2556		 */
2557		if ((ptpaddr & PG_PS) != 0) {
2558			/*
2559			 * Are we removing the entire large page?  If not,
2560			 * demote the mapping and fall through.
2561			 */
2562			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2563				/*
2564				 * The TLB entry for a PG_G mapping is
2565				 * invalidated by pmap_remove_pde().
2566				 */
2567				if ((ptpaddr & PG_G) == 0)
2568					anyvalid = 1;
2569				pmap_remove_pde(pmap,
2570				    &pmap->pm_pdir[pdirindex], sva, &free);
2571				continue;
2572			} else if (!pmap_demote_pde(pmap,
2573			    &pmap->pm_pdir[pdirindex], sva)) {
2574				/* The large page mapping was destroyed. */
2575				continue;
2576			}
2577		}
2578
2579		/*
2580		 * Limit our scan to either the end of the va represented
2581		 * by the current page table page, or to the end of the
2582		 * range being removed.
2583		 */
2584		if (pdnxt > eva)
2585			pdnxt = eva;
2586
2587		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2588		    sva += PAGE_SIZE) {
2589			if (*pte == 0)
2590				continue;
2591
2592			/*
2593			 * The TLB entry for a PG_G mapping is invalidated
2594			 * by pmap_remove_pte().
2595			 */
2596			if ((*pte & PG_G) == 0)
2597				anyvalid = 1;
2598			if (pmap_remove_pte(pmap, pte, sva, &free))
2599				break;
2600		}
2601	}
2602out:
2603	sched_unpin();
2604	if (anyvalid)
2605		pmap_invalidate_all(pmap);
2606	vm_page_unlock_queues();
2607	PMAP_UNLOCK(pmap);
2608	pmap_free_zero_pages(free);
2609}
2610
2611/*
2612 *	Routine:	pmap_remove_all
2613 *	Function:
2614 *		Removes this physical page from
2615 *		all physical maps in which it resides.
2616 *		Reflects back modify bits to the pager.
2617 *
2618 *	Notes:
2619 *		Original versions of this routine were very
2620 *		inefficient because they iteratively called
2621 *		pmap_remove (slow...)
2622 */
2623
2624void
2625pmap_remove_all(vm_page_t m)
2626{
2627	struct md_page *pvh;
2628	pv_entry_t pv;
2629	pmap_t pmap;
2630	pt_entry_t *pte, tpte;
2631	pd_entry_t *pde;
2632	vm_offset_t va;
2633	vm_page_t free;
2634
2635	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2636	    ("pmap_remove_all: page %p is fictitious", m));
2637	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2638	sched_pin();
2639	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2640	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2641		va = pv->pv_va;
2642		pmap = PV_PMAP(pv);
2643		PMAP_LOCK(pmap);
2644		pde = pmap_pde(pmap, va);
2645		(void)pmap_demote_pde(pmap, pde, va);
2646		PMAP_UNLOCK(pmap);
2647	}
2648	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2649		pmap = PV_PMAP(pv);
2650		PMAP_LOCK(pmap);
2651		pmap->pm_stats.resident_count--;
2652		pde = pmap_pde(pmap, pv->pv_va);
2653		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2654		    " a 4mpage in page %p's pv list", m));
2655		pte = pmap_pte_quick(pmap, pv->pv_va);
2656		tpte = pte_load_clear(pte);
2657		if (tpte & PG_W)
2658			pmap->pm_stats.wired_count--;
2659		if (tpte & PG_A)
2660			vm_page_flag_set(m, PG_REFERENCED);
2661
2662		/*
2663		 * Update the vm_page_t clean and reference bits.
2664		 */
2665		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2666			vm_page_dirty(m);
2667		free = NULL;
2668		pmap_unuse_pt(pmap, pv->pv_va, &free);
2669		pmap_invalidate_page(pmap, pv->pv_va);
2670		pmap_free_zero_pages(free);
2671		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2672		free_pv_entry(pmap, pv);
2673		PMAP_UNLOCK(pmap);
2674	}
2675	vm_page_flag_clear(m, PG_WRITEABLE);
2676	sched_unpin();
2677}
2678
2679/*
2680 * pmap_protect_pde: do the things to protect a 4mpage in a process
2681 */
2682static boolean_t
2683pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2684{
2685	pd_entry_t newpde, oldpde;
2686	vm_offset_t eva, va;
2687	vm_page_t m;
2688	boolean_t anychanged;
2689
2690	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2691	KASSERT((sva & PDRMASK) == 0,
2692	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2693	anychanged = FALSE;
2694retry:
2695	oldpde = newpde = *pde;
2696	if (oldpde & PG_MANAGED) {
2697		eva = sva + NBPDR;
2698		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2699		    va < eva; va += PAGE_SIZE, m++) {
2700			/*
2701			 * In contrast to the analogous operation on a 4KB page
2702			 * mapping, the mapping's PG_A flag is not cleared and
2703			 * the page's PG_REFERENCED flag is not set.  The
2704			 * reason is that pmap_demote_pde() expects that a 2/4MB
2705			 * page mapping with a stored page table page has PG_A
2706			 * set.
2707			 */
2708			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2709				vm_page_dirty(m);
2710		}
2711	}
2712	if ((prot & VM_PROT_WRITE) == 0)
2713		newpde &= ~(PG_RW | PG_M);
2714#ifdef PAE
2715	if ((prot & VM_PROT_EXECUTE) == 0)
2716		newpde |= pg_nx;
2717#endif
2718	if (newpde != oldpde) {
2719		if (!pde_cmpset(pde, oldpde, newpde))
2720			goto retry;
2721		if (oldpde & PG_G)
2722			pmap_invalidate_page(pmap, sva);
2723		else
2724			anychanged = TRUE;
2725	}
2726	return (anychanged);
2727}
2728
2729/*
2730 *	Set the physical protection on the
2731 *	specified range of this map as requested.
2732 */
2733void
2734pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2735{
2736	vm_offset_t pdnxt;
2737	pd_entry_t ptpaddr;
2738	pt_entry_t *pte;
2739	int anychanged;
2740
2741	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2742		pmap_remove(pmap, sva, eva);
2743		return;
2744	}
2745
2746#ifdef PAE
2747	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2748	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2749		return;
2750#else
2751	if (prot & VM_PROT_WRITE)
2752		return;
2753#endif
2754
2755	anychanged = 0;
2756
2757	vm_page_lock_queues();
2758	sched_pin();
2759	PMAP_LOCK(pmap);
2760	for (; sva < eva; sva = pdnxt) {
2761		pt_entry_t obits, pbits;
2762		unsigned pdirindex;
2763
2764		pdnxt = (sva + NBPDR) & ~PDRMASK;
2765		if (pdnxt < sva)
2766			pdnxt = eva;
2767
2768		pdirindex = sva >> PDRSHIFT;
2769		ptpaddr = pmap->pm_pdir[pdirindex];
2770
2771		/*
2772		 * Weed out invalid mappings. Note: we assume that the page
2773		 * directory table is always allocated, and in kernel virtual.
2774		 */
2775		if (ptpaddr == 0)
2776			continue;
2777
2778		/*
2779		 * Check for large page.
2780		 */
2781		if ((ptpaddr & PG_PS) != 0) {
2782			/*
2783			 * Are we protecting the entire large page?  If not,
2784			 * demote the mapping and fall through.
2785			 */
2786			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2787				/*
2788				 * The TLB entry for a PG_G mapping is
2789				 * invalidated by pmap_protect_pde().
2790				 */
2791				if (pmap_protect_pde(pmap,
2792				    &pmap->pm_pdir[pdirindex], sva, prot))
2793					anychanged = 1;
2794				continue;
2795			} else if (!pmap_demote_pde(pmap,
2796			    &pmap->pm_pdir[pdirindex], sva)) {
2797				/* The large page mapping was destroyed. */
2798				continue;
2799			}
2800		}
2801
2802		if (pdnxt > eva)
2803			pdnxt = eva;
2804
2805		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2806		    sva += PAGE_SIZE) {
2807			vm_page_t m;
2808
2809retry:
2810			/*
2811			 * Regardless of whether a pte is 32 or 64 bits in
2812			 * size, PG_RW, PG_A, and PG_M are among the least
2813			 * significant 32 bits.
2814			 */
2815			obits = pbits = *pte;
2816			if ((pbits & PG_V) == 0)
2817				continue;
2818			if (pbits & PG_MANAGED) {
2819				m = NULL;
2820				if (pbits & PG_A) {
2821					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2822					vm_page_flag_set(m, PG_REFERENCED);
2823					pbits &= ~PG_A;
2824				}
2825				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2826					if (m == NULL)
2827						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2828					vm_page_dirty(m);
2829				}
2830			}
2831
2832			if ((prot & VM_PROT_WRITE) == 0)
2833				pbits &= ~(PG_RW | PG_M);
2834#ifdef PAE
2835			if ((prot & VM_PROT_EXECUTE) == 0)
2836				pbits |= pg_nx;
2837#endif
2838
2839			if (pbits != obits) {
2840#ifdef PAE
2841				if (!atomic_cmpset_64(pte, obits, pbits))
2842					goto retry;
2843#else
2844				if (!atomic_cmpset_int((u_int *)pte, obits,
2845				    pbits))
2846					goto retry;
2847#endif
2848				if (obits & PG_G)
2849					pmap_invalidate_page(pmap, sva);
2850				else
2851					anychanged = 1;
2852			}
2853		}
2854	}
2855	sched_unpin();
2856	if (anychanged)
2857		pmap_invalidate_all(pmap);
2858	vm_page_unlock_queues();
2859	PMAP_UNLOCK(pmap);
2860}
2861
2862/*
2863 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2864 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
2865 * For promotion to occur, two conditions must be met: (1) the 4KB page
2866 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
2867 * mappings must have identical characteristics.
2868 *
2869 * Managed (PG_MANAGED) mappings within the kernel address space are not
2870 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2871 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2872 * pmap.
2873 */
2874static void
2875pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2876{
2877	pd_entry_t newpde;
2878	pmap_t allpmaps_entry;
2879	pt_entry_t *firstpte, oldpte, pa, *pte;
2880	vm_offset_t oldpteva;
2881	vm_page_t mpte;
2882
2883	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2884
2885	/*
2886	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2887	 * either invalid, unused, or does not map the first 4KB physical page
2888	 * within a 2- or 4MB page.
2889	 */
2890	firstpte = vtopte(trunc_4mpage(va));
2891setpde:
2892	newpde = *firstpte;
2893	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2894		pmap_pde_p_failures++;
2895		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2896		    " in pmap %p", va, pmap);
2897		return;
2898	}
2899	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
2900		pmap_pde_p_failures++;
2901		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2902		    " in pmap %p", va, pmap);
2903		return;
2904	}
2905	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2906		/*
2907		 * When PG_M is already clear, PG_RW can be cleared without
2908		 * a TLB invalidation.
2909		 */
2910		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
2911		    ~PG_RW))
2912			goto setpde;
2913		newpde &= ~PG_RW;
2914	}
2915
2916	/*
2917	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2918	 * PTE maps an unexpected 4KB physical page or does not have identical
2919	 * characteristics to the first PTE.
2920	 */
2921	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
2922	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2923setpte:
2924		oldpte = *pte;
2925		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2926			pmap_pde_p_failures++;
2927			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2928			    " in pmap %p", va, pmap);
2929			return;
2930		}
2931		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2932			/*
2933			 * When PG_M is already clear, PG_RW can be cleared
2934			 * without a TLB invalidation.
2935			 */
2936			if (!atomic_cmpset_int((u_int *)pte, oldpte,
2937			    oldpte & ~PG_RW))
2938				goto setpte;
2939			oldpte &= ~PG_RW;
2940			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
2941			    (va & ~PDRMASK);
2942			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
2943			    " in pmap %p", oldpteva, pmap);
2944		}
2945		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2946			pmap_pde_p_failures++;
2947			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2948			    " in pmap %p", va, pmap);
2949			return;
2950		}
2951		pa -= PAGE_SIZE;
2952	}
2953
2954	/*
2955	 * Save the page table page in its current state until the PDE
2956	 * mapping the superpage is demoted by pmap_demote_pde() or
2957	 * destroyed by pmap_remove_pde().
2958	 */
2959	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
2960	KASSERT(mpte >= vm_page_array &&
2961	    mpte < &vm_page_array[vm_page_array_size],
2962	    ("pmap_promote_pde: page table page is out of range"));
2963	KASSERT(mpte->pindex == va >> PDRSHIFT,
2964	    ("pmap_promote_pde: page table page's pindex is wrong"));
2965	pmap_insert_pt_page(pmap, mpte);
2966
2967	/*
2968	 * Promote the pv entries.
2969	 */
2970	if ((newpde & PG_MANAGED) != 0)
2971		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
2972
2973	/*
2974	 * Propagate the PAT index to its proper position.
2975	 */
2976	if ((newpde & PG_PTE_PAT) != 0)
2977		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
2978
2979	/*
2980	 * Map the superpage.
2981	 */
2982	if (pmap == kernel_pmap) {
2983		mtx_lock_spin(&allpmaps_lock);
2984		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2985			pde = pmap_pde(allpmaps_entry, va);
2986			pde_store(pde, PG_PS | newpde);
2987		}
2988		mtx_unlock_spin(&allpmaps_lock);
2989	} else
2990		pde_store(pde, PG_PS | newpde);
2991
2992	pmap_pde_promotions++;
2993	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
2994	    " in pmap %p", va, pmap);
2995}
2996
2997/*
2998 *	Insert the given physical page (p) at
2999 *	the specified virtual address (v) in the
3000 *	target physical map with the protection requested.
3001 *
3002 *	If specified, the page will be wired down, meaning
3003 *	that the related pte can not be reclaimed.
3004 *
3005 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3006 *	or lose information.  That is, this routine must actually
3007 *	insert this page into the given map NOW.
3008 */
3009void
3010pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3011    vm_prot_t prot, boolean_t wired)
3012{
3013	vm_paddr_t pa;
3014	pd_entry_t *pde;
3015	pt_entry_t *pte;
3016	vm_paddr_t opa;
3017	pt_entry_t origpte, newpte;
3018	vm_page_t mpte, om;
3019	boolean_t invlva;
3020
3021	va = trunc_page(va);
3022	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3023	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3024	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3025
3026	mpte = NULL;
3027
3028	vm_page_lock_queues();
3029	PMAP_LOCK(pmap);
3030	sched_pin();
3031
3032	/*
3033	 * In the case that a page table page is not
3034	 * resident, we are creating it here.
3035	 */
3036	if (va < VM_MAXUSER_ADDRESS) {
3037		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3038	}
3039
3040	pde = pmap_pde(pmap, va);
3041	if ((*pde & PG_PS) != 0)
3042		panic("pmap_enter: attempted pmap_enter on 4MB page");
3043	pte = pmap_pte_quick(pmap, va);
3044
3045	/*
3046	 * Page Directory table entry not valid, we need a new PT page
3047	 */
3048	if (pte == NULL) {
3049		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3050			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3051	}
3052
3053	pa = VM_PAGE_TO_PHYS(m);
3054	om = NULL;
3055	origpte = *pte;
3056	opa = origpte & PG_FRAME;
3057
3058	/*
3059	 * Mapping has not changed, must be protection or wiring change.
3060	 */
3061	if (origpte && (opa == pa)) {
3062		/*
3063		 * Wiring change, just update stats. We don't worry about
3064		 * wiring PT pages as they remain resident as long as there
3065		 * are valid mappings in them. Hence, if a user page is wired,
3066		 * the PT page will be also.
3067		 */
3068		if (wired && ((origpte & PG_W) == 0))
3069			pmap->pm_stats.wired_count++;
3070		else if (!wired && (origpte & PG_W))
3071			pmap->pm_stats.wired_count--;
3072
3073		/*
3074		 * Remove extra pte reference
3075		 */
3076		if (mpte)
3077			mpte->wire_count--;
3078
3079		/*
3080		 * We might be turning off write access to the page,
3081		 * so we go ahead and sense modify status.
3082		 */
3083		if (origpte & PG_MANAGED) {
3084			om = m;
3085			pa |= PG_MANAGED;
3086		}
3087		goto validate;
3088	}
3089	/*
3090	 * Mapping has changed, invalidate old range and fall through to
3091	 * handle validating new mapping.
3092	 */
3093	if (opa) {
3094		if (origpte & PG_W)
3095			pmap->pm_stats.wired_count--;
3096		if (origpte & PG_MANAGED) {
3097			om = PHYS_TO_VM_PAGE(opa);
3098			pmap_remove_entry(pmap, om, va);
3099		}
3100		if (mpte != NULL) {
3101			mpte->wire_count--;
3102			KASSERT(mpte->wire_count > 0,
3103			    ("pmap_enter: missing reference to page table page,"
3104			     " va: 0x%x", va));
3105		}
3106	} else
3107		pmap->pm_stats.resident_count++;
3108
3109	/*
3110	 * Enter on the PV list if part of our managed memory.
3111	 */
3112	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3113		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3114		    ("pmap_enter: managed mapping within the clean submap"));
3115		pmap_insert_entry(pmap, va, m);
3116		pa |= PG_MANAGED;
3117	}
3118
3119	/*
3120	 * Increment counters
3121	 */
3122	if (wired)
3123		pmap->pm_stats.wired_count++;
3124
3125validate:
3126	/*
3127	 * Now validate mapping with desired protection/wiring.
3128	 */
3129	newpte = (pt_entry_t)(pa | PG_V);
3130	if ((prot & VM_PROT_WRITE) != 0) {
3131		newpte |= PG_RW;
3132		vm_page_flag_set(m, PG_WRITEABLE);
3133	}
3134#ifdef PAE
3135	if ((prot & VM_PROT_EXECUTE) == 0)
3136		newpte |= pg_nx;
3137#endif
3138	if (wired)
3139		newpte |= PG_W;
3140	if (va < VM_MAXUSER_ADDRESS)
3141		newpte |= PG_U;
3142	if (pmap == kernel_pmap)
3143		newpte |= pgeflag;
3144
3145	/*
3146	 * if the mapping or permission bits are different, we need
3147	 * to update the pte.
3148	 */
3149	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3150		newpte |= PG_A;
3151		if ((access & VM_PROT_WRITE) != 0)
3152			newpte |= PG_M;
3153		if (origpte & PG_V) {
3154			invlva = FALSE;
3155			origpte = pte_load_store(pte, newpte);
3156			if (origpte & PG_A) {
3157				if (origpte & PG_MANAGED)
3158					vm_page_flag_set(om, PG_REFERENCED);
3159				if (opa != VM_PAGE_TO_PHYS(m))
3160					invlva = TRUE;
3161#ifdef PAE
3162				if ((origpte & PG_NX) == 0 &&
3163				    (newpte & PG_NX) != 0)
3164					invlva = TRUE;
3165#endif
3166			}
3167			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3168				if ((origpte & PG_MANAGED) != 0)
3169					vm_page_dirty(om);
3170				if ((prot & VM_PROT_WRITE) == 0)
3171					invlva = TRUE;
3172			}
3173			if (invlva)
3174				pmap_invalidate_page(pmap, va);
3175		} else
3176			pte_store(pte, newpte);
3177	}
3178
3179	/*
3180	 * If both the page table page and the reservation are fully
3181	 * populated, then attempt promotion.
3182	 */
3183	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3184	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3185		pmap_promote_pde(pmap, pde, va);
3186
3187	sched_unpin();
3188	vm_page_unlock_queues();
3189	PMAP_UNLOCK(pmap);
3190}
3191
3192/*
3193 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3194 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3195 * blocking, (2) a mapping already exists at the specified virtual address, or
3196 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3197 */
3198static boolean_t
3199pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3200{
3201	pd_entry_t *pde, newpde;
3202
3203	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3204	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3205	pde = pmap_pde(pmap, va);
3206	if (*pde != 0) {
3207		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3208		    " in pmap %p", va, pmap);
3209		return (FALSE);
3210	}
3211	newpde = VM_PAGE_TO_PHYS(m) | PG_PS | PG_V;
3212	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3213		newpde |= PG_MANAGED;
3214
3215		/*
3216		 * Abort this mapping if its PV entry could not be created.
3217		 */
3218		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3219			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3220			    " in pmap %p", va, pmap);
3221			return (FALSE);
3222		}
3223	}
3224#ifdef PAE
3225	if ((prot & VM_PROT_EXECUTE) == 0)
3226		newpde |= pg_nx;
3227#endif
3228	if (va < VM_MAXUSER_ADDRESS)
3229		newpde |= PG_U;
3230
3231	/*
3232	 * Increment counters.
3233	 */
3234	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3235
3236	/*
3237	 * Map the superpage.
3238	 */
3239	pde_store(pde, newpde);
3240
3241	pmap_pde_mappings++;
3242	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3243	    " in pmap %p", va, pmap);
3244	return (TRUE);
3245}
3246
3247/*
3248 * Maps a sequence of resident pages belonging to the same object.
3249 * The sequence begins with the given page m_start.  This page is
3250 * mapped at the given virtual address start.  Each subsequent page is
3251 * mapped at a virtual address that is offset from start by the same
3252 * amount as the page is offset from m_start within the object.  The
3253 * last page in the sequence is the page with the largest offset from
3254 * m_start that can be mapped at a virtual address less than the given
3255 * virtual address end.  Not every virtual page between start and end
3256 * is mapped; only those for which a resident page exists with the
3257 * corresponding offset from m_start are mapped.
3258 */
3259void
3260pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3261    vm_page_t m_start, vm_prot_t prot)
3262{
3263	vm_offset_t va;
3264	vm_page_t m, mpte;
3265	vm_pindex_t diff, psize;
3266
3267	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3268	psize = atop(end - start);
3269	mpte = NULL;
3270	m = m_start;
3271	PMAP_LOCK(pmap);
3272	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3273		va = start + ptoa(diff);
3274		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3275		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3276		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3277		    pmap_enter_pde(pmap, va, m, prot))
3278			m = &m[NBPDR / PAGE_SIZE - 1];
3279		else
3280			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3281			    mpte);
3282		m = TAILQ_NEXT(m, listq);
3283	}
3284 	PMAP_UNLOCK(pmap);
3285}
3286
3287/*
3288 * this code makes some *MAJOR* assumptions:
3289 * 1. Current pmap & pmap exists.
3290 * 2. Not wired.
3291 * 3. Read access.
3292 * 4. No page table pages.
3293 * but is *MUCH* faster than pmap_enter...
3294 */
3295
3296void
3297pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3298{
3299
3300	PMAP_LOCK(pmap);
3301	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3302	PMAP_UNLOCK(pmap);
3303}
3304
3305static vm_page_t
3306pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3307    vm_prot_t prot, vm_page_t mpte)
3308{
3309	pt_entry_t *pte;
3310	vm_paddr_t pa;
3311	vm_page_t free;
3312
3313	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3314	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3315	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3316	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3317	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3318
3319	/*
3320	 * In the case that a page table page is not
3321	 * resident, we are creating it here.
3322	 */
3323	if (va < VM_MAXUSER_ADDRESS) {
3324		unsigned ptepindex;
3325		pd_entry_t ptepa;
3326
3327		/*
3328		 * Calculate pagetable page index
3329		 */
3330		ptepindex = va >> PDRSHIFT;
3331		if (mpte && (mpte->pindex == ptepindex)) {
3332			mpte->wire_count++;
3333		} else {
3334			/*
3335			 * Get the page directory entry
3336			 */
3337			ptepa = pmap->pm_pdir[ptepindex];
3338
3339			/*
3340			 * If the page table page is mapped, we just increment
3341			 * the hold count, and activate it.
3342			 */
3343			if (ptepa) {
3344				if (ptepa & PG_PS)
3345					return (NULL);
3346				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3347				mpte->wire_count++;
3348			} else {
3349				mpte = _pmap_allocpte(pmap, ptepindex,
3350				    M_NOWAIT);
3351				if (mpte == NULL)
3352					return (mpte);
3353			}
3354		}
3355	} else {
3356		mpte = NULL;
3357	}
3358
3359	/*
3360	 * This call to vtopte makes the assumption that we are
3361	 * entering the page into the current pmap.  In order to support
3362	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3363	 * But that isn't as quick as vtopte.
3364	 */
3365	pte = vtopte(va);
3366	if (*pte) {
3367		if (mpte != NULL) {
3368			mpte->wire_count--;
3369			mpte = NULL;
3370		}
3371		return (mpte);
3372	}
3373
3374	/*
3375	 * Enter on the PV list if part of our managed memory.
3376	 */
3377	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3378	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3379		if (mpte != NULL) {
3380			free = NULL;
3381			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3382				pmap_invalidate_page(pmap, va);
3383				pmap_free_zero_pages(free);
3384			}
3385
3386			mpte = NULL;
3387		}
3388		return (mpte);
3389	}
3390
3391	/*
3392	 * Increment counters
3393	 */
3394	pmap->pm_stats.resident_count++;
3395
3396	pa = VM_PAGE_TO_PHYS(m);
3397#ifdef PAE
3398	if ((prot & VM_PROT_EXECUTE) == 0)
3399		pa |= pg_nx;
3400#endif
3401
3402	/*
3403	 * Now validate mapping with RO protection
3404	 */
3405	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3406		pte_store(pte, pa | PG_V | PG_U);
3407	else
3408		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3409	return mpte;
3410}
3411
3412/*
3413 * Make a temporary mapping for a physical address.  This is only intended
3414 * to be used for panic dumps.
3415 */
3416void *
3417pmap_kenter_temporary(vm_paddr_t pa, int i)
3418{
3419	vm_offset_t va;
3420
3421	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3422	pmap_kenter(va, pa);
3423	invlpg(va);
3424	return ((void *)crashdumpmap);
3425}
3426
3427/*
3428 * This code maps large physical mmap regions into the
3429 * processor address space.  Note that some shortcuts
3430 * are taken, but the code works.
3431 */
3432void
3433pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3434    vm_pindex_t pindex, vm_size_t size)
3435{
3436	vm_page_t p;
3437
3438	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3439	KASSERT(object->type == OBJT_DEVICE,
3440	    ("pmap_object_init_pt: non-device object"));
3441	if (pseflag &&
3442	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3443		int i;
3444		vm_page_t m[1];
3445		unsigned int ptepindex;
3446		int npdes;
3447		pd_entry_t ptepa;
3448
3449		PMAP_LOCK(pmap);
3450		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3451			goto out;
3452		PMAP_UNLOCK(pmap);
3453retry:
3454		p = vm_page_lookup(object, pindex);
3455		if (p != NULL) {
3456			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3457				goto retry;
3458		} else {
3459			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3460			if (p == NULL)
3461				return;
3462			m[0] = p;
3463
3464			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3465				vm_page_lock_queues();
3466				vm_page_free(p);
3467				vm_page_unlock_queues();
3468				return;
3469			}
3470
3471			p = vm_page_lookup(object, pindex);
3472			vm_page_wakeup(p);
3473		}
3474
3475		ptepa = VM_PAGE_TO_PHYS(p);
3476		if (ptepa & (NBPDR - 1))
3477			return;
3478
3479		p->valid = VM_PAGE_BITS_ALL;
3480
3481		PMAP_LOCK(pmap);
3482		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3483		npdes = size >> PDRSHIFT;
3484		for(i = 0; i < npdes; i++) {
3485			pde_store(&pmap->pm_pdir[ptepindex],
3486			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
3487			ptepa += NBPDR;
3488			ptepindex += 1;
3489		}
3490		pmap_invalidate_all(pmap);
3491out:
3492		PMAP_UNLOCK(pmap);
3493	}
3494}
3495
3496/*
3497 *	Routine:	pmap_change_wiring
3498 *	Function:	Change the wiring attribute for a map/virtual-address
3499 *			pair.
3500 *	In/out conditions:
3501 *			The mapping must already exist in the pmap.
3502 */
3503void
3504pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3505{
3506	pd_entry_t *pde;
3507	pt_entry_t *pte;
3508	boolean_t are_queues_locked;
3509
3510	are_queues_locked = FALSE;
3511retry:
3512	PMAP_LOCK(pmap);
3513	pde = pmap_pde(pmap, va);
3514	if ((*pde & PG_PS) != 0) {
3515		if (!wired != ((*pde & PG_W) == 0)) {
3516			if (!are_queues_locked) {
3517				are_queues_locked = TRUE;
3518				if (!mtx_trylock(&vm_page_queue_mtx)) {
3519					PMAP_UNLOCK(pmap);
3520					vm_page_lock_queues();
3521					goto retry;
3522				}
3523			}
3524			if (!pmap_demote_pde(pmap, pde, va))
3525				panic("pmap_change_wiring: demotion failed");
3526		} else
3527			goto out;
3528	}
3529	pte = pmap_pte(pmap, va);
3530
3531	if (wired && !pmap_pte_w(pte))
3532		pmap->pm_stats.wired_count++;
3533	else if (!wired && pmap_pte_w(pte))
3534		pmap->pm_stats.wired_count--;
3535
3536	/*
3537	 * Wiring is not a hardware characteristic so there is no need to
3538	 * invalidate TLB.
3539	 */
3540	pmap_pte_set_w(pte, wired);
3541	pmap_pte_release(pte);
3542out:
3543	if (are_queues_locked)
3544		vm_page_unlock_queues();
3545	PMAP_UNLOCK(pmap);
3546}
3547
3548
3549
3550/*
3551 *	Copy the range specified by src_addr/len
3552 *	from the source map to the range dst_addr/len
3553 *	in the destination map.
3554 *
3555 *	This routine is only advisory and need not do anything.
3556 */
3557
3558void
3559pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3560    vm_offset_t src_addr)
3561{
3562	vm_page_t   free;
3563	vm_offset_t addr;
3564	vm_offset_t end_addr = src_addr + len;
3565	vm_offset_t pdnxt;
3566
3567	if (dst_addr != src_addr)
3568		return;
3569
3570	if (!pmap_is_current(src_pmap))
3571		return;
3572
3573	vm_page_lock_queues();
3574	if (dst_pmap < src_pmap) {
3575		PMAP_LOCK(dst_pmap);
3576		PMAP_LOCK(src_pmap);
3577	} else {
3578		PMAP_LOCK(src_pmap);
3579		PMAP_LOCK(dst_pmap);
3580	}
3581	sched_pin();
3582	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3583		pt_entry_t *src_pte, *dst_pte;
3584		vm_page_t dstmpte, srcmpte;
3585		pd_entry_t srcptepaddr;
3586		unsigned ptepindex;
3587
3588		KASSERT(addr < UPT_MIN_ADDRESS,
3589		    ("pmap_copy: invalid to pmap_copy page tables"));
3590
3591		pdnxt = (addr + NBPDR) & ~PDRMASK;
3592		if (pdnxt < addr)
3593			pdnxt = end_addr;
3594		ptepindex = addr >> PDRSHIFT;
3595
3596		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3597		if (srcptepaddr == 0)
3598			continue;
3599
3600		if (srcptepaddr & PG_PS) {
3601			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3602			    ((srcptepaddr & PG_MANAGED) == 0 ||
3603			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3604			    PG_PS_FRAME))) {
3605				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3606				    ~PG_W;
3607				dst_pmap->pm_stats.resident_count +=
3608				    NBPDR / PAGE_SIZE;
3609			}
3610			continue;
3611		}
3612
3613		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3614		KASSERT(srcmpte->wire_count > 0,
3615		    ("pmap_copy: source page table page is unused"));
3616
3617		if (pdnxt > end_addr)
3618			pdnxt = end_addr;
3619
3620		src_pte = vtopte(addr);
3621		while (addr < pdnxt) {
3622			pt_entry_t ptetemp;
3623			ptetemp = *src_pte;
3624			/*
3625			 * we only virtual copy managed pages
3626			 */
3627			if ((ptetemp & PG_MANAGED) != 0) {
3628				dstmpte = pmap_allocpte(dst_pmap, addr,
3629				    M_NOWAIT);
3630				if (dstmpte == NULL)
3631					break;
3632				dst_pte = pmap_pte_quick(dst_pmap, addr);
3633				if (*dst_pte == 0 &&
3634				    pmap_try_insert_pv_entry(dst_pmap, addr,
3635				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3636					/*
3637					 * Clear the wired, modified, and
3638					 * accessed (referenced) bits
3639					 * during the copy.
3640					 */
3641					*dst_pte = ptetemp & ~(PG_W | PG_M |
3642					    PG_A);
3643					dst_pmap->pm_stats.resident_count++;
3644	 			} else {
3645					free = NULL;
3646					if (pmap_unwire_pte_hold( dst_pmap,
3647					    dstmpte, &free)) {
3648						pmap_invalidate_page(dst_pmap,
3649						    addr);
3650						pmap_free_zero_pages(free);
3651					}
3652				}
3653				if (dstmpte->wire_count >= srcmpte->wire_count)
3654					break;
3655			}
3656			addr += PAGE_SIZE;
3657			src_pte++;
3658		}
3659	}
3660	sched_unpin();
3661	vm_page_unlock_queues();
3662	PMAP_UNLOCK(src_pmap);
3663	PMAP_UNLOCK(dst_pmap);
3664}
3665
3666static __inline void
3667pagezero(void *page)
3668{
3669#if defined(I686_CPU)
3670	if (cpu_class == CPUCLASS_686) {
3671#if defined(CPU_ENABLE_SSE)
3672		if (cpu_feature & CPUID_SSE2)
3673			sse2_pagezero(page);
3674		else
3675#endif
3676			i686_pagezero(page);
3677	} else
3678#endif
3679		bzero(page, PAGE_SIZE);
3680}
3681
3682/*
3683 *	pmap_zero_page zeros the specified hardware page by mapping
3684 *	the page into KVM and using bzero to clear its contents.
3685 */
3686void
3687pmap_zero_page(vm_page_t m)
3688{
3689	struct sysmaps *sysmaps;
3690
3691	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3692	mtx_lock(&sysmaps->lock);
3693	if (*sysmaps->CMAP2)
3694		panic("pmap_zero_page: CMAP2 busy");
3695	sched_pin();
3696	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3697	invlcaddr(sysmaps->CADDR2);
3698	pagezero(sysmaps->CADDR2);
3699	*sysmaps->CMAP2 = 0;
3700	sched_unpin();
3701	mtx_unlock(&sysmaps->lock);
3702}
3703
3704/*
3705 *	pmap_zero_page_area zeros the specified hardware page by mapping
3706 *	the page into KVM and using bzero to clear its contents.
3707 *
3708 *	off and size may not cover an area beyond a single hardware page.
3709 */
3710void
3711pmap_zero_page_area(vm_page_t m, int off, int size)
3712{
3713	struct sysmaps *sysmaps;
3714
3715	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3716	mtx_lock(&sysmaps->lock);
3717	if (*sysmaps->CMAP2)
3718		panic("pmap_zero_page: CMAP2 busy");
3719	sched_pin();
3720	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3721	invlcaddr(sysmaps->CADDR2);
3722	if (off == 0 && size == PAGE_SIZE)
3723		pagezero(sysmaps->CADDR2);
3724	else
3725		bzero((char *)sysmaps->CADDR2 + off, size);
3726	*sysmaps->CMAP2 = 0;
3727	sched_unpin();
3728	mtx_unlock(&sysmaps->lock);
3729}
3730
3731/*
3732 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3733 *	the page into KVM and using bzero to clear its contents.  This
3734 *	is intended to be called from the vm_pagezero process only and
3735 *	outside of Giant.
3736 */
3737void
3738pmap_zero_page_idle(vm_page_t m)
3739{
3740
3741	if (*CMAP3)
3742		panic("pmap_zero_page: CMAP3 busy");
3743	sched_pin();
3744	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3745	invlcaddr(CADDR3);
3746	pagezero(CADDR3);
3747	*CMAP3 = 0;
3748	sched_unpin();
3749}
3750
3751/*
3752 *	pmap_copy_page copies the specified (machine independent)
3753 *	page by mapping the page into virtual memory and using
3754 *	bcopy to copy the page, one machine dependent page at a
3755 *	time.
3756 */
3757void
3758pmap_copy_page(vm_page_t src, vm_page_t dst)
3759{
3760	struct sysmaps *sysmaps;
3761
3762	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3763	mtx_lock(&sysmaps->lock);
3764	if (*sysmaps->CMAP1)
3765		panic("pmap_copy_page: CMAP1 busy");
3766	if (*sysmaps->CMAP2)
3767		panic("pmap_copy_page: CMAP2 busy");
3768	sched_pin();
3769	invlpg((u_int)sysmaps->CADDR1);
3770	invlpg((u_int)sysmaps->CADDR2);
3771	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
3772	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
3773	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3774	*sysmaps->CMAP1 = 0;
3775	*sysmaps->CMAP2 = 0;
3776	sched_unpin();
3777	mtx_unlock(&sysmaps->lock);
3778}
3779
3780/*
3781 * Returns true if the pmap's pv is one of the first
3782 * 16 pvs linked to from this page.  This count may
3783 * be changed upwards or downwards in the future; it
3784 * is only necessary that true be returned for a small
3785 * subset of pmaps for proper page aging.
3786 */
3787boolean_t
3788pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3789{
3790	struct md_page *pvh;
3791	pv_entry_t pv;
3792	int loops = 0;
3793
3794	if (m->flags & PG_FICTITIOUS)
3795		return FALSE;
3796
3797	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3798	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3799		if (PV_PMAP(pv) == pmap) {
3800			return TRUE;
3801		}
3802		loops++;
3803		if (loops >= 16)
3804			break;
3805	}
3806	if (loops < 16) {
3807		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3808		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3809			if (PV_PMAP(pv) == pmap)
3810				return (TRUE);
3811			loops++;
3812			if (loops >= 16)
3813				break;
3814		}
3815	}
3816	return (FALSE);
3817}
3818
3819/*
3820 *	pmap_page_wired_mappings:
3821 *
3822 *	Return the number of managed mappings to the given physical page
3823 *	that are wired.
3824 */
3825int
3826pmap_page_wired_mappings(vm_page_t m)
3827{
3828	int count;
3829
3830	count = 0;
3831	if ((m->flags & PG_FICTITIOUS) != 0)
3832		return (count);
3833	count = pmap_pvh_wired_mappings(&m->md, count);
3834	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3835}
3836
3837/*
3838 *	pmap_pvh_wired_mappings:
3839 *
3840 *	Return the updated number "count" of managed mappings that are wired.
3841 */
3842static int
3843pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3844{
3845	pmap_t pmap;
3846	pt_entry_t *pte;
3847	pv_entry_t pv;
3848
3849	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3850	sched_pin();
3851	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3852		pmap = PV_PMAP(pv);
3853		PMAP_LOCK(pmap);
3854		pte = pmap_pte_quick(pmap, pv->pv_va);
3855		if ((*pte & PG_W) != 0)
3856			count++;
3857		PMAP_UNLOCK(pmap);
3858	}
3859	sched_unpin();
3860	return (count);
3861}
3862
3863/*
3864 * Returns TRUE if the given page is mapped individually or as part of
3865 * a 4mpage.  Otherwise, returns FALSE.
3866 */
3867boolean_t
3868pmap_page_is_mapped(vm_page_t m)
3869{
3870	struct md_page *pvh;
3871
3872	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3873		return (FALSE);
3874	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3875	if (TAILQ_EMPTY(&m->md.pv_list)) {
3876		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3877		return (!TAILQ_EMPTY(&pvh->pv_list));
3878	} else
3879		return (TRUE);
3880}
3881
3882/*
3883 * Remove all pages from specified address space
3884 * this aids process exit speeds.  Also, this code
3885 * is special cased for current process only, but
3886 * can have the more generic (and slightly slower)
3887 * mode enabled.  This is much faster than pmap_remove
3888 * in the case of running down an entire address space.
3889 */
3890void
3891pmap_remove_pages(pmap_t pmap)
3892{
3893	pt_entry_t *pte, tpte;
3894	vm_page_t free = NULL;
3895	vm_page_t m, mpte, mt;
3896	pv_entry_t pv;
3897	struct md_page *pvh;
3898	struct pv_chunk *pc, *npc;
3899	int field, idx;
3900	int32_t bit;
3901	uint32_t inuse, bitmask;
3902	int allfree;
3903
3904	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3905		printf("warning: pmap_remove_pages called with non-current pmap\n");
3906		return;
3907	}
3908	vm_page_lock_queues();
3909	PMAP_LOCK(pmap);
3910	sched_pin();
3911	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3912		allfree = 1;
3913		for (field = 0; field < _NPCM; field++) {
3914			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3915			while (inuse != 0) {
3916				bit = bsfl(inuse);
3917				bitmask = 1UL << bit;
3918				idx = field * 32 + bit;
3919				pv = &pc->pc_pventry[idx];
3920				inuse &= ~bitmask;
3921
3922				pte = pmap_pde(pmap, pv->pv_va);
3923				tpte = *pte;
3924				if ((tpte & PG_PS) == 0) {
3925					pte = vtopte(pv->pv_va);
3926					tpte = *pte & ~PG_PTE_PAT;
3927				}
3928
3929				if (tpte == 0) {
3930					printf(
3931					    "TPTE at %p  IS ZERO @ VA %08x\n",
3932					    pte, pv->pv_va);
3933					panic("bad pte");
3934				}
3935
3936/*
3937 * We cannot remove wired pages from a process' mapping at this time
3938 */
3939				if (tpte & PG_W) {
3940					allfree = 0;
3941					continue;
3942				}
3943
3944				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3945				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3946				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3947				    m, (uintmax_t)m->phys_addr,
3948				    (uintmax_t)tpte));
3949
3950				KASSERT(m < &vm_page_array[vm_page_array_size],
3951					("pmap_remove_pages: bad tpte %#jx",
3952					(uintmax_t)tpte));
3953
3954				pte_clear(pte);
3955
3956				/*
3957				 * Update the vm_page_t clean/reference bits.
3958				 */
3959				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3960					if ((tpte & PG_PS) != 0) {
3961						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3962							vm_page_dirty(mt);
3963					} else
3964						vm_page_dirty(m);
3965				}
3966
3967				/* Mark free */
3968				PV_STAT(pv_entry_frees++);
3969				PV_STAT(pv_entry_spare++);
3970				pv_entry_count--;
3971				pc->pc_map[field] |= bitmask;
3972				if ((tpte & PG_PS) != 0) {
3973					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3974					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
3975					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
3976					if (TAILQ_EMPTY(&pvh->pv_list)) {
3977						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3978							if (TAILQ_EMPTY(&mt->md.pv_list))
3979								vm_page_flag_clear(mt, PG_WRITEABLE);
3980					}
3981					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
3982					if (mpte != NULL) {
3983						pmap_remove_pt_page(pmap, mpte);
3984						KASSERT(mpte->wire_count == NPTEPG,
3985						    ("pmap_remove_pages: pte page wire count error"));
3986						mpte->wire_count = 0;
3987						pmap_add_delayed_free_list(mpte, &free, FALSE);
3988						atomic_subtract_int(&cnt.v_wire_count, 1);
3989					}
3990				} else {
3991					pmap->pm_stats.resident_count--;
3992					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3993					if (TAILQ_EMPTY(&m->md.pv_list)) {
3994						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3995						if (TAILQ_EMPTY(&pvh->pv_list))
3996							vm_page_flag_clear(m, PG_WRITEABLE);
3997					}
3998					pmap_unuse_pt(pmap, pv->pv_va, &free);
3999				}
4000			}
4001		}
4002		if (allfree) {
4003			PV_STAT(pv_entry_spare -= _NPCPV);
4004			PV_STAT(pc_chunk_count--);
4005			PV_STAT(pc_chunk_frees++);
4006			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4007			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4008			pmap_qremove((vm_offset_t)pc, 1);
4009			vm_page_unwire(m, 0);
4010			vm_page_free(m);
4011			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4012		}
4013	}
4014	sched_unpin();
4015	pmap_invalidate_all(pmap);
4016	vm_page_unlock_queues();
4017	PMAP_UNLOCK(pmap);
4018	pmap_free_zero_pages(free);
4019}
4020
4021/*
4022 *	pmap_is_modified:
4023 *
4024 *	Return whether or not the specified physical page was modified
4025 *	in any physical maps.
4026 */
4027boolean_t
4028pmap_is_modified(vm_page_t m)
4029{
4030
4031	if (m->flags & PG_FICTITIOUS)
4032		return (FALSE);
4033	if (pmap_is_modified_pvh(&m->md))
4034		return (TRUE);
4035	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4036}
4037
4038/*
4039 * Returns TRUE if any of the given mappings were used to modify
4040 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4041 * mappings are supported.
4042 */
4043static boolean_t
4044pmap_is_modified_pvh(struct md_page *pvh)
4045{
4046	pv_entry_t pv;
4047	pt_entry_t *pte;
4048	pmap_t pmap;
4049	boolean_t rv;
4050
4051	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4052	rv = FALSE;
4053	sched_pin();
4054	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4055		pmap = PV_PMAP(pv);
4056		PMAP_LOCK(pmap);
4057		pte = pmap_pte_quick(pmap, pv->pv_va);
4058		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4059		PMAP_UNLOCK(pmap);
4060		if (rv)
4061			break;
4062	}
4063	sched_unpin();
4064	return (rv);
4065}
4066
4067/*
4068 *	pmap_is_prefaultable:
4069 *
4070 *	Return whether or not the specified virtual address is elgible
4071 *	for prefault.
4072 */
4073boolean_t
4074pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4075{
4076	pd_entry_t *pde;
4077	pt_entry_t *pte;
4078	boolean_t rv;
4079
4080	rv = FALSE;
4081	PMAP_LOCK(pmap);
4082	pde = pmap_pde(pmap, addr);
4083	if (*pde != 0 && (*pde & PG_PS) == 0) {
4084		pte = vtopte(addr);
4085		rv = *pte == 0;
4086	}
4087	PMAP_UNLOCK(pmap);
4088	return (rv);
4089}
4090
4091/*
4092 * Clear the write and modified bits in each of the given page's mappings.
4093 */
4094void
4095pmap_remove_write(vm_page_t m)
4096{
4097	struct md_page *pvh;
4098	pv_entry_t next_pv, pv;
4099	pmap_t pmap;
4100	pd_entry_t *pde;
4101	pt_entry_t oldpte, *pte;
4102	vm_offset_t va;
4103
4104	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4105	if ((m->flags & PG_FICTITIOUS) != 0 ||
4106	    (m->flags & PG_WRITEABLE) == 0)
4107		return;
4108	sched_pin();
4109	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4110	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4111		va = pv->pv_va;
4112		pmap = PV_PMAP(pv);
4113		PMAP_LOCK(pmap);
4114		pde = pmap_pde(pmap, va);
4115		if ((*pde & PG_RW) != 0)
4116			(void)pmap_demote_pde(pmap, pde, va);
4117		PMAP_UNLOCK(pmap);
4118	}
4119	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4120		pmap = PV_PMAP(pv);
4121		PMAP_LOCK(pmap);
4122		pde = pmap_pde(pmap, pv->pv_va);
4123		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4124		    " a 4mpage in page %p's pv list", m));
4125		pte = pmap_pte_quick(pmap, pv->pv_va);
4126retry:
4127		oldpte = *pte;
4128		if ((oldpte & PG_RW) != 0) {
4129			/*
4130			 * Regardless of whether a pte is 32 or 64 bits
4131			 * in size, PG_RW and PG_M are among the least
4132			 * significant 32 bits.
4133			 */
4134			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4135			    oldpte & ~(PG_RW | PG_M)))
4136				goto retry;
4137			if ((oldpte & PG_M) != 0)
4138				vm_page_dirty(m);
4139			pmap_invalidate_page(pmap, pv->pv_va);
4140		}
4141		PMAP_UNLOCK(pmap);
4142	}
4143	vm_page_flag_clear(m, PG_WRITEABLE);
4144	sched_unpin();
4145}
4146
4147/*
4148 *	pmap_ts_referenced:
4149 *
4150 *	Return a count of reference bits for a page, clearing those bits.
4151 *	It is not necessary for every reference bit to be cleared, but it
4152 *	is necessary that 0 only be returned when there are truly no
4153 *	reference bits set.
4154 *
4155 *	XXX: The exact number of bits to check and clear is a matter that
4156 *	should be tested and standardized at some point in the future for
4157 *	optimal aging of shared pages.
4158 */
4159int
4160pmap_ts_referenced(vm_page_t m)
4161{
4162	struct md_page *pvh;
4163	pv_entry_t pv, pvf, pvn;
4164	pmap_t pmap;
4165	pd_entry_t oldpde, *pde;
4166	pt_entry_t *pte;
4167	vm_offset_t va;
4168	int rtval = 0;
4169
4170	if (m->flags & PG_FICTITIOUS)
4171		return (rtval);
4172	sched_pin();
4173	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4174	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4175	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4176		va = pv->pv_va;
4177		pmap = PV_PMAP(pv);
4178		PMAP_LOCK(pmap);
4179		pde = pmap_pde(pmap, va);
4180		oldpde = *pde;
4181		if ((oldpde & PG_A) != 0) {
4182			if (pmap_demote_pde(pmap, pde, va)) {
4183				if ((oldpde & PG_W) == 0) {
4184					/*
4185					 * Remove the mapping to a single page
4186					 * so that a subsequent access may
4187					 * repromote.  Since the underlying
4188					 * page table page is fully populated,
4189					 * this removal never frees a page
4190					 * table page.
4191					 */
4192					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4193					    PG_PS_FRAME);
4194					pmap_remove_page(pmap, va, NULL);
4195					rtval++;
4196					if (rtval > 4) {
4197						PMAP_UNLOCK(pmap);
4198						return (rtval);
4199					}
4200				}
4201			}
4202		}
4203		PMAP_UNLOCK(pmap);
4204	}
4205	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4206		pvf = pv;
4207		do {
4208			pvn = TAILQ_NEXT(pv, pv_list);
4209			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4210			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4211			pmap = PV_PMAP(pv);
4212			PMAP_LOCK(pmap);
4213			pde = pmap_pde(pmap, pv->pv_va);
4214			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4215			    " found a 4mpage in page %p's pv list", m));
4216			pte = pmap_pte_quick(pmap, pv->pv_va);
4217			if ((*pte & PG_A) != 0) {
4218				atomic_clear_int((u_int *)pte, PG_A);
4219				pmap_invalidate_page(pmap, pv->pv_va);
4220				rtval++;
4221				if (rtval > 4)
4222					pvn = NULL;
4223			}
4224			PMAP_UNLOCK(pmap);
4225		} while ((pv = pvn) != NULL && pv != pvf);
4226	}
4227	sched_unpin();
4228	return (rtval);
4229}
4230
4231/*
4232 *	Clear the modify bits on the specified physical page.
4233 */
4234void
4235pmap_clear_modify(vm_page_t m)
4236{
4237	struct md_page *pvh;
4238	pv_entry_t next_pv, pv;
4239	pmap_t pmap;
4240	pd_entry_t oldpde, *pde;
4241	pt_entry_t oldpte, *pte;
4242	vm_offset_t va;
4243
4244	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4245	if ((m->flags & PG_FICTITIOUS) != 0)
4246		return;
4247	sched_pin();
4248	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4249	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4250		va = pv->pv_va;
4251		pmap = PV_PMAP(pv);
4252		PMAP_LOCK(pmap);
4253		pde = pmap_pde(pmap, va);
4254		oldpde = *pde;
4255		if ((oldpde & PG_RW) != 0) {
4256			if (pmap_demote_pde(pmap, pde, va)) {
4257				if ((oldpde & PG_W) == 0) {
4258					/*
4259					 * Write protect the mapping to a
4260					 * single page so that a subsequent
4261					 * write access may repromote.
4262					 */
4263					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4264					    PG_PS_FRAME);
4265					pte = pmap_pte_quick(pmap, va);
4266					oldpte = *pte;
4267					if ((oldpte & PG_V) != 0) {
4268						/*
4269						 * Regardless of whether a pte is 32 or 64 bits
4270						 * in size, PG_RW and PG_M are among the least
4271						 * significant 32 bits.
4272						 */
4273						while (!atomic_cmpset_int((u_int *)pte,
4274						    oldpte,
4275						    oldpte & ~(PG_M | PG_RW)))
4276							oldpte = *pte;
4277						vm_page_dirty(m);
4278						pmap_invalidate_page(pmap, va);
4279					}
4280				}
4281			}
4282		}
4283		PMAP_UNLOCK(pmap);
4284	}
4285	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4286		pmap = PV_PMAP(pv);
4287		PMAP_LOCK(pmap);
4288		pde = pmap_pde(pmap, pv->pv_va);
4289		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4290		    " a 4mpage in page %p's pv list", m));
4291		pte = pmap_pte_quick(pmap, pv->pv_va);
4292		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4293			/*
4294			 * Regardless of whether a pte is 32 or 64 bits
4295			 * in size, PG_M is among the least significant
4296			 * 32 bits.
4297			 */
4298			atomic_clear_int((u_int *)pte, PG_M);
4299			pmap_invalidate_page(pmap, pv->pv_va);
4300		}
4301		PMAP_UNLOCK(pmap);
4302	}
4303	sched_unpin();
4304}
4305
4306/*
4307 *	pmap_clear_reference:
4308 *
4309 *	Clear the reference bit on the specified physical page.
4310 */
4311void
4312pmap_clear_reference(vm_page_t m)
4313{
4314	struct md_page *pvh;
4315	pv_entry_t next_pv, pv;
4316	pmap_t pmap;
4317	pd_entry_t oldpde, *pde;
4318	pt_entry_t *pte;
4319	vm_offset_t va;
4320
4321	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4322	if ((m->flags & PG_FICTITIOUS) != 0)
4323		return;
4324	sched_pin();
4325	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4326	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4327		va = pv->pv_va;
4328		pmap = PV_PMAP(pv);
4329		PMAP_LOCK(pmap);
4330		pde = pmap_pde(pmap, va);
4331		oldpde = *pde;
4332		if ((oldpde & PG_A) != 0) {
4333			if (pmap_demote_pde(pmap, pde, va)) {
4334				/*
4335				 * Remove the mapping to a single page so
4336				 * that a subsequent access may repromote.
4337				 * Since the underlying page table page is
4338				 * fully populated, this removal never frees
4339				 * a page table page.
4340				 */
4341				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4342				    PG_PS_FRAME);
4343				pmap_remove_page(pmap, va, NULL);
4344			}
4345		}
4346		PMAP_UNLOCK(pmap);
4347	}
4348	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4349		pmap = PV_PMAP(pv);
4350		PMAP_LOCK(pmap);
4351		pde = pmap_pde(pmap, pv->pv_va);
4352		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4353		    " a 4mpage in page %p's pv list", m));
4354		pte = pmap_pte_quick(pmap, pv->pv_va);
4355		if ((*pte & PG_A) != 0) {
4356			/*
4357			 * Regardless of whether a pte is 32 or 64 bits
4358			 * in size, PG_A is among the least significant
4359			 * 32 bits.
4360			 */
4361			atomic_clear_int((u_int *)pte, PG_A);
4362			pmap_invalidate_page(pmap, pv->pv_va);
4363		}
4364		PMAP_UNLOCK(pmap);
4365	}
4366	sched_unpin();
4367}
4368
4369/*
4370 * Miscellaneous support routines follow
4371 */
4372
4373/*
4374 * Map a set of physical memory pages into the kernel virtual
4375 * address space. Return a pointer to where it is mapped. This
4376 * routine is intended to be used for mapping device memory,
4377 * NOT real memory.
4378 */
4379void *
4380pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4381{
4382	vm_offset_t va, tmpva, offset;
4383
4384	offset = pa & PAGE_MASK;
4385	size = roundup(offset + size, PAGE_SIZE);
4386	pa = pa & PG_FRAME;
4387
4388	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4389		va = KERNBASE + pa;
4390	else
4391		va = kmem_alloc_nofault(kernel_map, size);
4392	if (!va)
4393		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4394
4395	for (tmpva = va; size > 0; ) {
4396		pmap_kenter_attr(tmpva, pa, mode);
4397		size -= PAGE_SIZE;
4398		tmpva += PAGE_SIZE;
4399		pa += PAGE_SIZE;
4400	}
4401	pmap_invalidate_range(kernel_pmap, va, tmpva);
4402	pmap_invalidate_cache();
4403	return ((void *)(va + offset));
4404}
4405
4406void *
4407pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4408{
4409
4410	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4411}
4412
4413void *
4414pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4415{
4416
4417	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4418}
4419
4420void
4421pmap_unmapdev(vm_offset_t va, vm_size_t size)
4422{
4423	vm_offset_t base, offset, tmpva;
4424
4425	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4426		return;
4427	base = trunc_page(va);
4428	offset = va & PAGE_MASK;
4429	size = roundup(offset + size, PAGE_SIZE);
4430	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4431		pmap_kremove(tmpva);
4432	pmap_invalidate_range(kernel_pmap, va, tmpva);
4433	kmem_free(kernel_map, base, size);
4434}
4435
4436int
4437pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4438{
4439	vm_offset_t base, offset, tmpva;
4440	pt_entry_t *pte;
4441	u_int opte, npte;
4442	pd_entry_t *pde;
4443
4444	base = trunc_page(va);
4445	offset = va & PAGE_MASK;
4446	size = roundup(offset + size, PAGE_SIZE);
4447
4448	/*
4449	 * Only supported on kernel virtual addresses above the recursive map.
4450	 */
4451	if (base < VM_MIN_KERNEL_ADDRESS)
4452		return (EINVAL);
4453
4454	/* 4MB pages and pages that aren't mapped aren't supported. */
4455	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4456		pde = pmap_pde(kernel_pmap, tmpva);
4457		if (*pde & PG_PS)
4458			return (EINVAL);
4459		if (*pde == 0)
4460			return (EINVAL);
4461		pte = vtopte(tmpva);
4462		if (*pte == 0)
4463			return (EINVAL);
4464	}
4465
4466	/*
4467	 * Ok, all the pages exist and are 4k, so run through them updating
4468	 * their cache mode.
4469	 */
4470	for (tmpva = base; size > 0; ) {
4471		pte = vtopte(tmpva);
4472
4473		/*
4474		 * The cache mode bits are all in the low 32-bits of the
4475		 * PTE, so we can just spin on updating the low 32-bits.
4476		 */
4477		do {
4478			opte = *(u_int *)pte;
4479			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4480			npte |= pmap_cache_bits(mode, 0);
4481		} while (npte != opte &&
4482		    !atomic_cmpset_int((u_int *)pte, opte, npte));
4483		tmpva += PAGE_SIZE;
4484		size -= PAGE_SIZE;
4485	}
4486
4487	/*
4488	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4489	 * be, etc.
4490	 */
4491	pmap_invalidate_range(kernel_pmap, base, tmpva);
4492	pmap_invalidate_cache();
4493	return (0);
4494}
4495
4496/*
4497 * perform the pmap work for mincore
4498 */
4499int
4500pmap_mincore(pmap_t pmap, vm_offset_t addr)
4501{
4502	pd_entry_t *pdep;
4503	pt_entry_t *ptep, pte;
4504	vm_paddr_t pa;
4505	vm_page_t m;
4506	int val = 0;
4507
4508	PMAP_LOCK(pmap);
4509	pdep = pmap_pde(pmap, addr);
4510	if (*pdep != 0) {
4511		if (*pdep & PG_PS) {
4512			pte = *pdep;
4513			val = MINCORE_SUPER;
4514			/* Compute the physical address of the 4KB page. */
4515			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4516			    PG_FRAME;
4517		} else {
4518			ptep = pmap_pte(pmap, addr);
4519			pte = *ptep;
4520			pmap_pte_release(ptep);
4521			pa = pte & PG_FRAME;
4522		}
4523	} else {
4524		pte = 0;
4525		pa = 0;
4526	}
4527	PMAP_UNLOCK(pmap);
4528
4529	if (pte != 0) {
4530		val |= MINCORE_INCORE;
4531		if ((pte & PG_MANAGED) == 0)
4532			return val;
4533
4534		m = PHYS_TO_VM_PAGE(pa);
4535
4536		/*
4537		 * Modified by us
4538		 */
4539		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4540			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4541		else {
4542			/*
4543			 * Modified by someone else
4544			 */
4545			vm_page_lock_queues();
4546			if (m->dirty || pmap_is_modified(m))
4547				val |= MINCORE_MODIFIED_OTHER;
4548			vm_page_unlock_queues();
4549		}
4550		/*
4551		 * Referenced by us
4552		 */
4553		if (pte & PG_A)
4554			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4555		else {
4556			/*
4557			 * Referenced by someone else
4558			 */
4559			vm_page_lock_queues();
4560			if ((m->flags & PG_REFERENCED) ||
4561			    pmap_ts_referenced(m)) {
4562				val |= MINCORE_REFERENCED_OTHER;
4563				vm_page_flag_set(m, PG_REFERENCED);
4564			}
4565			vm_page_unlock_queues();
4566		}
4567	}
4568	return val;
4569}
4570
4571void
4572pmap_activate(struct thread *td)
4573{
4574	pmap_t	pmap, oldpmap;
4575	u_int32_t  cr3;
4576
4577	critical_enter();
4578	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4579	oldpmap = PCPU_GET(curpmap);
4580#if defined(SMP)
4581	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4582	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4583#else
4584	oldpmap->pm_active &= ~1;
4585	pmap->pm_active |= 1;
4586#endif
4587#ifdef PAE
4588	cr3 = vtophys(pmap->pm_pdpt);
4589#else
4590	cr3 = vtophys(pmap->pm_pdir);
4591#endif
4592	/*
4593	 * pmap_activate is for the current thread on the current cpu
4594	 */
4595	td->td_pcb->pcb_cr3 = cr3;
4596	load_cr3(cr3);
4597	PCPU_SET(curpmap, pmap);
4598	critical_exit();
4599}
4600
4601/*
4602 *	Increase the starting virtual address of the given mapping if a
4603 *	different alignment might result in more superpage mappings.
4604 */
4605void
4606pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4607    vm_offset_t *addr, vm_size_t size)
4608{
4609	vm_offset_t superpage_offset;
4610
4611	if (size < NBPDR)
4612		return;
4613	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4614		offset += ptoa(object->pg_color);
4615	superpage_offset = offset & PDRMASK;
4616	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4617	    (*addr & PDRMASK) == superpage_offset)
4618		return;
4619	if ((*addr & PDRMASK) < superpage_offset)
4620		*addr = (*addr & ~PDRMASK) + superpage_offset;
4621	else
4622		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4623}
4624
4625
4626#if defined(PMAP_DEBUG)
4627pmap_pid_dump(int pid)
4628{
4629	pmap_t pmap;
4630	struct proc *p;
4631	int npte = 0;
4632	int index;
4633
4634	sx_slock(&allproc_lock);
4635	FOREACH_PROC_IN_SYSTEM(p) {
4636		if (p->p_pid != pid)
4637			continue;
4638
4639		if (p->p_vmspace) {
4640			int i,j;
4641			index = 0;
4642			pmap = vmspace_pmap(p->p_vmspace);
4643			for (i = 0; i < NPDEPTD; i++) {
4644				pd_entry_t *pde;
4645				pt_entry_t *pte;
4646				vm_offset_t base = i << PDRSHIFT;
4647
4648				pde = &pmap->pm_pdir[i];
4649				if (pde && pmap_pde_v(pde)) {
4650					for (j = 0; j < NPTEPG; j++) {
4651						vm_offset_t va = base + (j << PAGE_SHIFT);
4652						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4653							if (index) {
4654								index = 0;
4655								printf("\n");
4656							}
4657							sx_sunlock(&allproc_lock);
4658							return npte;
4659						}
4660						pte = pmap_pte(pmap, va);
4661						if (pte && pmap_pte_v(pte)) {
4662							pt_entry_t pa;
4663							vm_page_t m;
4664							pa = *pte;
4665							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4666							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4667								va, pa, m->hold_count, m->wire_count, m->flags);
4668							npte++;
4669							index++;
4670							if (index >= 2) {
4671								index = 0;
4672								printf("\n");
4673							} else {
4674								printf(" ");
4675							}
4676						}
4677					}
4678				}
4679			}
4680		}
4681	}
4682	sx_sunlock(&allproc_lock);
4683	return npte;
4684}
4685#endif
4686
4687#if defined(DEBUG)
4688
4689static void	pads(pmap_t pm);
4690void		pmap_pvdump(vm_offset_t pa);
4691
4692/* print address space of pmap*/
4693static void
4694pads(pmap_t pm)
4695{
4696	int i, j;
4697	vm_paddr_t va;
4698	pt_entry_t *ptep;
4699
4700	if (pm == kernel_pmap)
4701		return;
4702	for (i = 0; i < NPDEPTD; i++)
4703		if (pm->pm_pdir[i])
4704			for (j = 0; j < NPTEPG; j++) {
4705				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4706				if (pm == kernel_pmap && va < KERNBASE)
4707					continue;
4708				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4709					continue;
4710				ptep = pmap_pte(pm, va);
4711				if (pmap_pte_v(ptep))
4712					printf("%x:%x ", va, *ptep);
4713			};
4714
4715}
4716
4717void
4718pmap_pvdump(vm_paddr_t pa)
4719{
4720	pv_entry_t pv;
4721	pmap_t pmap;
4722	vm_page_t m;
4723
4724	printf("pa %x", pa);
4725	m = PHYS_TO_VM_PAGE(pa);
4726	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4727		pmap = PV_PMAP(pv);
4728		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4729		pads(pmap);
4730	}
4731	printf(" ");
4732}
4733#endif
4734