pmap.c revision 18842
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.122 1996/09/28 22:37:38 dyson Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_cpu.h"
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/malloc.h>
77#include <sys/msgbuf.h>
78#include <sys/queue.h>
79#include <sys/vmmeter.h>
80#include <sys/mman.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/vm_prot.h>
85#include <vm/lock.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93
94#include <machine/pcb.h>
95#include <machine/cputypes.h>
96#include <machine/md_var.h>
97
98#define PMAP_KEEP_PDIRS
99
100#if defined(DIAGNOSTIC)
101#define PMAP_DIAGNOSTIC
102#endif
103
104#if !defined(PMAP_DIAGNOSTIC)
105#define PMAP_INLINE __inline
106#else
107#define PMAP_INLINE
108#endif
109
110#define PTPHINT
111
112static void	init_pv_entries __P((int));
113
114/*
115 * Get PDEs and PTEs for user/kernel address space
116 */
117#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
118#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
119
120#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
121#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
122#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
123#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
124#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
125
126#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
127#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
128
129/*
130 * Given a map and a machine independent protection code,
131 * convert to a vax protection code.
132 */
133#define pte_prot(m, p)	(protection_codes[p])
134static int protection_codes[8];
135
136static struct pmap kernel_pmap_store;
137pmap_t kernel_pmap;
138
139vm_offset_t avail_start;	/* PA of first available physical page */
140vm_offset_t avail_end;		/* PA of last available physical page */
141vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
142vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
143static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
144static vm_offset_t vm_first_phys;
145
146static int nkpt;
147static vm_page_t nkpg;
148vm_offset_t kernel_vm_end;
149
150extern vm_offset_t clean_sva, clean_eva;
151extern int cpu_class;
152
153#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
154
155/*
156 * Data for the pv entry allocation mechanism
157 */
158static int pv_freelistcnt;
159TAILQ_HEAD (,pv_entry) pv_freelist;
160static vm_offset_t pvva;
161static int npvvapg;
162
163/*
164 * All those kernel PT submaps that BSD is so fond of
165 */
166pt_entry_t *CMAP1;
167static pt_entry_t *CMAP2, *ptmmap;
168caddr_t CADDR1, ptvmmap;
169static caddr_t CADDR2;
170static pt_entry_t *msgbufmap;
171struct msgbuf *msgbufp;
172
173pt_entry_t *PMAP1;
174unsigned *PADDR1;
175
176static void	free_pv_entry __P((pv_entry_t pv));
177static unsigned * get_ptbase __P((pmap_t pmap));
178static pv_entry_t get_pv_entry __P((void));
179static void	i386_protection_init __P((void));
180static void	pmap_alloc_pv_entry __P((void));
181static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
182
183static int	pmap_is_managed __P((vm_offset_t pa));
184static void	pmap_remove_all __P((vm_offset_t pa));
185static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
186				      vm_offset_t pa, vm_page_t mpte));
187static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
188					vm_offset_t sva));
189static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
190static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
191					vm_offset_t va));
192static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
193static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
194		vm_page_t mpte, vm_offset_t pa));
195
196static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
197
198static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
199static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
200static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
201static vm_page_t pmap_page_alloc __P((vm_object_t object, vm_pindex_t pindex));
202static PMAP_INLINE void pmap_lock __P((pmap_t pmap));
203static PMAP_INLINE void pmap_unlock __P((pmap_t pmap));
204static void pmap_lock2 __P((pmap_t pmap1, pmap_t pmap2));
205
206#define PDSTACKMAX 6
207static vm_offset_t pdstack[PDSTACKMAX];
208static int pdstackptr;
209
210/*
211 *	Bootstrap the system enough to run with virtual memory.
212 *
213 *	On the i386 this is called after mapping has already been enabled
214 *	and just syncs the pmap module with what has already been done.
215 *	[We can't call it easily with mapping off since the kernel is not
216 *	mapped with PA == VA, hence we would have to relocate every address
217 *	from the linked base (virtual) address "KERNBASE" to the actual
218 *	(physical) address starting relative to 0]
219 */
220void
221pmap_bootstrap(firstaddr, loadaddr)
222	vm_offset_t firstaddr;
223	vm_offset_t loadaddr;
224{
225	vm_offset_t va;
226	pt_entry_t *pte;
227
228	avail_start = firstaddr;
229
230	/*
231	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
232	 * large. It should instead be correctly calculated in locore.s and
233	 * not based on 'first' (which is a physical address, not a virtual
234	 * address, for the start of unused physical memory). The kernel
235	 * page tables are NOT double mapped and thus should not be included
236	 * in this calculation.
237	 */
238	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
239	virtual_end = VM_MAX_KERNEL_ADDRESS;
240
241	/*
242	 * Initialize protection array.
243	 */
244	i386_protection_init();
245
246	/*
247	 * The kernel's pmap is statically allocated so we don't have to use
248	 * pmap_create, which is unlikely to work correctly at this part of
249	 * the boot sequence (XXX and which no longer exists).
250	 */
251	kernel_pmap = &kernel_pmap_store;
252
253	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
254
255	kernel_pmap->pm_count = 1;
256	TAILQ_INIT(&kernel_pmap->pm_pvlist);
257	nkpt = NKPT;
258
259	/*
260	 * Reserve some special page table entries/VA space for temporary
261	 * mapping of pages.
262	 */
263#define	SYSMAP(c, p, v, n)	\
264	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
265
266	va = virtual_avail;
267	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
268
269	/*
270	 * CMAP1/CMAP2 are used for zeroing and copying pages.
271	 */
272	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
273	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
274
275	/*
276	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
277	 */
278	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
279
280	/*
281	 * msgbufmap is used to map the system message buffer.
282	 */
283	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
284
285	/*
286	 * ptemap is used for pmap_pte_quick
287	 */
288	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
289
290	virtual_avail = va;
291
292	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
293	invltlb();
294
295}
296
297/*
298 *	Initialize the pmap module.
299 *	Called by vm_init, to initialize any structures that the pmap
300 *	system needs to map virtual memory.
301 *	pmap_init has been enhanced to support in a fairly consistant
302 *	way, discontiguous physical memory.
303 */
304void
305pmap_init(phys_start, phys_end)
306	vm_offset_t phys_start, phys_end;
307{
308	vm_offset_t addr;
309	vm_size_t npg, s;
310	int i;
311
312	/*
313	 * calculate the number of pv_entries needed
314	 */
315	vm_first_phys = phys_avail[0];
316	for (i = 0; phys_avail[i + 1]; i += 2);
317	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
318
319	/*
320	 * Allocate memory for random pmap data structures.  Includes the
321	 * pv_head_table.
322	 */
323	s = (vm_size_t) (sizeof(pv_table_t) * npg);
324	s = round_page(s);
325
326	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
327	pv_table = (pv_table_t *) addr;
328	for(i=0;i<npg;i++) {
329		vm_offset_t pa;
330		TAILQ_INIT(&pv_table[i].pv_list);
331		pv_table[i].pv_list_count = 0;
332		pa = vm_first_phys + i * PAGE_SIZE;
333		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
334	}
335	TAILQ_INIT(&pv_freelist);
336
337	/*
338	 * init the pv free list
339	 */
340	init_pv_entries(npg);
341	/*
342	 * Now it is safe to enable pv_table recording.
343	 */
344	pmap_initialized = TRUE;
345}
346
347/*
348 *	Used to map a range of physical addresses into kernel
349 *	virtual address space.
350 *
351 *	For now, VM is already on, we only need to map the
352 *	specified memory.
353 */
354vm_offset_t
355pmap_map(virt, start, end, prot)
356	vm_offset_t virt;
357	vm_offset_t start;
358	vm_offset_t end;
359	int prot;
360{
361	while (start < end) {
362		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
363		virt += PAGE_SIZE;
364		start += PAGE_SIZE;
365	}
366	return (virt);
367}
368
369
370/***************************************************
371 * Low level helper routines.....
372 ***************************************************/
373
374#if defined(PMAP_DIAGNOSTIC)
375
376/*
377 * This code checks for non-writeable/modified pages.
378 * This should be an invalid condition.
379 */
380static int
381pmap_nw_modified(pt_entry_t ptea) {
382	int pte;
383
384	pte = (int) ptea;
385
386	if ((pte & (PG_M|PG_RW)) == PG_M)
387		return 1;
388	else
389		return 0;
390}
391#endif
392
393
394/*
395 * this routine defines the region(s) of memory that should
396 * not be tested for the modified bit.
397 */
398static PMAP_INLINE int
399pmap_track_modified( vm_offset_t va) {
400	if ((va < clean_sva) || (va >= clean_eva))
401		return 1;
402	else
403		return 0;
404}
405
406static PMAP_INLINE void
407invltlb_1pg( vm_offset_t va) {
408#if defined(I386_CPU)
409	if (cpu_class == CPUCLASS_386) {
410		invltlb();
411	} else
412#endif
413	{
414		invlpg(va);
415	}
416}
417
418static PMAP_INLINE void
419invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
420#if defined(I386_CPU)
421	if (cpu_class == CPUCLASS_386) {
422		invltlb();
423	} else
424#endif
425	{
426		invlpg(va1);
427		invlpg(va2);
428	}
429}
430
431
432static PMAP_INLINE void
433pmap_lock(pmap)
434pmap_t pmap;
435{
436	int s;
437	if (pmap == kernel_pmap)
438		return;
439	s = splhigh();
440	while (pmap->pm_flags & PM_FLAG_LOCKED) {
441		pmap->pm_flags |= PM_FLAG_WANTED;
442		tsleep(pmap, PVM - 1, "pmaplk", 0);
443	}
444	splx(s);
445}
446
447static PMAP_INLINE void
448pmap_unlock(pmap)
449pmap_t pmap;
450{
451	int s;
452	if (pmap == kernel_pmap)
453		return;
454	s = splhigh();
455	pmap->pm_flags &= ~PM_FLAG_LOCKED;
456	if (pmap->pm_flags & PM_FLAG_WANTED) {
457		pmap->pm_flags &= ~PM_FLAG_WANTED;
458		wakeup(pmap);
459	}
460}
461
462static void
463pmap_lock2(pmap1, pmap2)
464pmap_t pmap1, pmap2;
465{
466	int s;
467	if (pmap1 == kernel_pmap || pmap2 == kernel_pmap)
468		return;
469	s = splhigh();
470	while ((pmap1->pm_flags | pmap2->pm_flags) & PM_FLAG_LOCKED) {
471		while (pmap1->pm_flags & PM_FLAG_LOCKED) {
472			pmap1->pm_flags |= PM_FLAG_WANTED;
473			tsleep(pmap1, PVM - 1, "pmapl1", 0);
474		}
475		while (pmap2->pm_flags & PM_FLAG_LOCKED) {
476			pmap2->pm_flags |= PM_FLAG_WANTED;
477			tsleep(pmap2, PVM - 1, "pmapl2", 0);
478		}
479	}
480	splx(s);
481}
482
483static unsigned *
484get_ptbase(pmap)
485	pmap_t pmap;
486{
487	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
488
489	/* are we current address space or kernel? */
490	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
491		return (unsigned *) PTmap;
492	}
493	/* otherwise, we are alternate address space */
494	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
495		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
496		invltlb();
497	}
498	return (unsigned *) APTmap;
499}
500
501/*
502 *	Routine:	pmap_pte
503 *	Function:
504 *		Extract the page table entry associated
505 *		with the given map/virtual_address pair.
506 */
507
508PMAP_INLINE unsigned *
509pmap_pte(pmap, va)
510	register pmap_t pmap;
511	vm_offset_t va;
512{
513	if (pmap && *pmap_pde(pmap, va)) {
514		return get_ptbase(pmap) + i386_btop(va);
515	}
516	return (0);
517}
518
519/*
520 * Super fast pmap_pte routine best used when scanning
521 * the pv lists.  This eliminates many coarse-grained
522 * invltlb calls.  Note that many of the pv list
523 * scans are across different pmaps.  It is very wasteful
524 * to do an entire invltlb for checking a single mapping.
525 */
526
527unsigned *
528pmap_pte_quick(pmap, va)
529	register pmap_t pmap;
530	vm_offset_t va;
531{
532	unsigned pde, newpf;
533	if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
534		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
535		unsigned index = i386_btop(va);
536		/* are we current address space or kernel? */
537		if ((pmap == kernel_pmap) ||
538			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
539			return (unsigned *) PTmap + index;
540		}
541		newpf = pde & PG_FRAME;
542		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
543			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
544			invltlb_1pg((vm_offset_t) PADDR1);
545		}
546		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
547	}
548	return (0);
549}
550
551/*
552 *	Routine:	pmap_extract
553 *	Function:
554 *		Extract the physical page address associated
555 *		with the given map/virtual_address pair.
556 */
557vm_offset_t
558pmap_extract(pmap, va)
559	register pmap_t pmap;
560	vm_offset_t va;
561{
562	vm_offset_t rtval;
563	pmap_lock(pmap);
564	if (pmap && *pmap_pde(pmap, va)) {
565		unsigned *pte;
566		pte = get_ptbase(pmap) + i386_btop(va);
567		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
568		pmap_unlock(pmap);
569		return rtval;
570	}
571	pmap_unlock(pmap);
572	return 0;
573
574}
575
576/*
577 * determine if a page is managed (memory vs. device)
578 */
579static PMAP_INLINE int
580pmap_is_managed(pa)
581	vm_offset_t pa;
582{
583	int i;
584
585	if (!pmap_initialized)
586		return 0;
587
588	for (i = 0; phys_avail[i + 1]; i += 2) {
589		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
590			return 1;
591	}
592	return 0;
593}
594
595
596/***************************************************
597 * Low level mapping routines.....
598 ***************************************************/
599
600/*
601 * Add a list of wired pages to the kva
602 * this routine is only used for temporary
603 * kernel mappings that do not need to have
604 * page modification or references recorded.
605 * Note that old mappings are simply written
606 * over.  The page *must* be wired.
607 */
608void
609pmap_qenter(va, m, count)
610	vm_offset_t va;
611	vm_page_t *m;
612	int count;
613{
614	int i;
615	register unsigned *pte;
616
617	for (i = 0; i < count; i++) {
618		vm_offset_t tva = va + i * PAGE_SIZE;
619		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V;
620		unsigned opte;
621		pte = (unsigned *)vtopte(tva);
622		opte = *pte;
623		*pte = npte;
624		if (opte)
625			invltlb_1pg(tva);
626	}
627}
628
629/*
630 * this routine jerks page mappings from the
631 * kernel -- it is meant only for temporary mappings.
632 */
633void
634pmap_qremove(va, count)
635	vm_offset_t va;
636	int count;
637{
638	int i;
639	register unsigned *pte;
640
641	for (i = 0; i < count; i++) {
642		pte = (unsigned *)vtopte(va);
643		*pte = 0;
644		invltlb_1pg(va);
645		va += PAGE_SIZE;
646	}
647}
648
649/*
650 * add a wired page to the kva
651 * note that in order for the mapping to take effect -- you
652 * should do a invltlb after doing the pmap_kenter...
653 */
654PMAP_INLINE void
655pmap_kenter(va, pa)
656	vm_offset_t va;
657	register vm_offset_t pa;
658{
659	register unsigned *pte;
660	unsigned npte, opte;
661
662	npte = pa | PG_RW | PG_V;
663	pte = (unsigned *)vtopte(va);
664	opte = *pte;
665	*pte = npte;
666	if (opte)
667		invltlb_1pg(va);
668}
669
670/*
671 * remove a page from the kernel pagetables
672 */
673PMAP_INLINE void
674pmap_kremove(va)
675	vm_offset_t va;
676{
677	register unsigned *pte;
678
679	pte = (unsigned *)vtopte(va);
680	*pte = 0;
681	invltlb_1pg(va);
682}
683
684static vm_page_t
685pmap_page_alloc(object, pindex)
686	vm_object_t object;
687	vm_pindex_t pindex;
688{
689	vm_page_t m;
690	m = vm_page_alloc(object, pindex, VM_ALLOC_ZERO);
691	if (m == NULL) {
692		VM_WAIT;
693	}
694	return m;
695}
696
697vm_page_t
698pmap_page_lookup(object, pindex)
699	vm_object_t object;
700	vm_pindex_t pindex;
701{
702	vm_page_t m;
703retry:
704	m = vm_page_lookup(object, pindex);
705	if (m) {
706		if (m->flags & PG_BUSY) {
707			m->flags |= PG_WANTED;
708			tsleep(m, PVM, "pplookp", 0);
709			goto retry;
710		}
711	}
712
713	return m;
714}
715
716
717
718
719/***************************************************
720 * Page table page management routines.....
721 ***************************************************/
722
723/*
724 * This routine unholds page table pages, and if the hold count
725 * drops to zero, then it decrements the wire count.
726 */
727static int
728pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
729	int s;
730
731	vm_page_unhold(m);
732
733	s = splvm();
734	while (m->flags & PG_BUSY) {
735		m->flags |= PG_WANTED;
736		tsleep(m, PVM, "pmuwpt", 0);
737	}
738	splx(s);
739
740	if (m->hold_count == 0) {
741		vm_offset_t pteva;
742		/*
743		 * unmap the page table page
744		 */
745		pmap->pm_pdir[m->pindex] = 0;
746		--pmap->pm_stats.resident_count;
747		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
748			(((unsigned) PTDpde) & PG_FRAME)) {
749			/*
750			 * Do a invltlb to make the invalidated mapping
751			 * take effect immediately.
752			 */
753			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
754			invltlb_1pg(pteva);
755		}
756
757#if defined(PTPHINT)
758		if (pmap->pm_ptphint == m)
759			pmap->pm_ptphint = NULL;
760#endif
761
762		/*
763		 * If the page is finally unwired, simply free it.
764		 */
765		--m->wire_count;
766		if (m->wire_count == 0) {
767
768			if (m->flags & PG_WANTED) {
769				m->flags &= ~PG_WANTED;
770				wakeup(m);
771			}
772
773			vm_page_free_zero(m);
774			--cnt.v_wire_count;
775		}
776		return 1;
777	}
778	return 0;
779}
780
781/*
782 * After removing a page table entry, this routine is used to
783 * conditionally free the page, and manage the hold/wire counts.
784 */
785int
786pmap_unuse_pt(pmap, va, mpte)
787	pmap_t pmap;
788	vm_offset_t va;
789	vm_page_t mpte;
790{
791	unsigned ptepindex;
792	if (va >= UPT_MIN_ADDRESS)
793		return 0;
794
795	if (mpte == NULL) {
796		ptepindex = (va >> PDRSHIFT);
797#if defined(PTPHINT)
798		if (pmap->pm_ptphint &&
799			(pmap->pm_ptphint->pindex == ptepindex)) {
800			mpte = pmap->pm_ptphint;
801		} else {
802			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
803			pmap->pm_ptphint = mpte;
804		}
805#else
806		mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
807#endif
808	}
809
810	return pmap_unwire_pte_hold(pmap, mpte);
811}
812
813/*
814 * Initialize a preallocated and zeroed pmap structure,
815 * such as one in a vmspace structure.
816 */
817void
818pmap_pinit(pmap)
819	register struct pmap *pmap;
820{
821	vm_page_t ptdpg;
822	/*
823	 * No need to allocate page table space yet but we do need a valid
824	 * page directory table.
825	 */
826
827	if (pdstackptr > 0) {
828		--pdstackptr;
829		pmap->pm_pdir = (pd_entry_t *)pdstack[pdstackptr];
830	} else {
831		pmap->pm_pdir =
832			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
833	}
834
835	/*
836	 * allocate object for the ptes
837	 */
838	pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
839
840	/*
841	 * allocate the page directory page
842	 */
843retry:
844	ptdpg = pmap_page_alloc( pmap->pm_pteobj, PTDPTDI);
845	if (ptdpg == NULL)
846		goto retry;
847
848	ptdpg->wire_count = 1;
849	++cnt.v_wire_count;
850
851	ptdpg->flags &= ~(PG_MAPPED|PG_BUSY);	/* not mapped normally */
852	ptdpg->valid = VM_PAGE_BITS_ALL;
853
854	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
855	if ((ptdpg->flags & PG_ZERO) == 0)
856		bzero(pmap->pm_pdir, PAGE_SIZE);
857
858	/* wire in kernel global address entries */
859	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
860
861	/* install self-referential address mapping entry */
862	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
863		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
864
865	pmap->pm_flags = 0;
866	pmap->pm_count = 1;
867	pmap->pm_ptphint = NULL;
868	TAILQ_INIT(&pmap->pm_pvlist);
869}
870
871static int
872pmap_release_free_page(pmap, p)
873	struct pmap *pmap;
874	vm_page_t p;
875{
876	int s;
877	unsigned *pde = (unsigned *) pmap->pm_pdir;
878	/*
879	 * This code optimizes the case of freeing non-busy
880	 * page-table pages.  Those pages are zero now, and
881	 * might as well be placed directly into the zero queue.
882	 */
883	s = splvm();
884	if (p->flags & PG_BUSY) {
885		p->flags |= PG_WANTED;
886		tsleep(p, PVM, "pmaprl", 0);
887		splx(s);
888		return 0;
889	}
890
891	if (p->flags & PG_WANTED) {
892		p->flags &= ~PG_WANTED;
893		wakeup(p);
894	}
895
896	/*
897	 * Remove the page table page from the processes address space.
898	 */
899	pde[p->pindex] = 0;
900	--pmap->pm_stats.resident_count;
901
902	if (p->hold_count)  {
903		panic("pmap_release: freeing held page table page");
904	}
905	/*
906	 * Page directory pages need to have the kernel
907	 * stuff cleared, so they can go into the zero queue also.
908	 */
909	if (p->pindex == PTDPTDI) {
910		bzero(pde + KPTDI, nkpt * PTESIZE);
911		pde[APTDPTDI] = 0;
912		pmap_kremove((vm_offset_t) pmap->pm_pdir);
913	}
914
915#if defined(PTPHINT)
916	if (pmap->pm_ptphint &&
917		(pmap->pm_ptphint->pindex == p->pindex))
918		pmap->pm_ptphint = NULL;
919#endif
920
921	vm_page_free_zero(p);
922	splx(s);
923	return 1;
924}
925
926/*
927 * this routine is called if the page table page is not
928 * mapped correctly.
929 */
930static vm_page_t
931_pmap_allocpte(pmap, ptepindex)
932	pmap_t	pmap;
933	unsigned ptepindex;
934{
935	vm_offset_t pteva, ptepa;
936	vm_page_t m;
937	int needszero = 0;
938
939	/*
940	 * Find or fabricate a new pagetable page
941	 */
942retry:
943	m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
944	if (m == NULL) {
945		m = pmap_page_alloc(pmap->pm_pteobj, ptepindex);
946		if (m == NULL)
947			goto retry;
948		if ((m->flags & PG_ZERO) == 0)
949			needszero = 1;
950		m->flags &= ~(PG_ZERO|PG_BUSY);
951		m->valid = VM_PAGE_BITS_ALL;
952	} else {
953		if ((m->flags & PG_BUSY) || m->busy) {
954			m->flags |= PG_WANTED;
955			tsleep(m, PVM, "ptewai", 0);
956			goto retry;
957		}
958	}
959
960	if (m->queue != PQ_NONE) {
961		int s = splvm();
962		vm_page_unqueue(m);
963		splx(s);
964	}
965
966	if (m->wire_count == 0)
967		++cnt.v_wire_count;
968	++m->wire_count;
969
970	/*
971	 * Increment the hold count for the page table page
972	 * (denoting a new mapping.)
973	 */
974	++m->hold_count;
975
976	/*
977	 * Map the pagetable page into the process address space, if
978	 * it isn't already there.
979	 */
980
981	pmap->pm_stats.resident_count++;
982
983	ptepa = VM_PAGE_TO_PHYS(m);
984	pmap->pm_pdir[ptepindex] = (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V);
985
986#if defined(PTPHINT)
987	/*
988	 * Set the page table hint
989	 */
990	pmap->pm_ptphint = m;
991#endif
992
993	/*
994	 * Try to use the new mapping, but if we cannot, then
995	 * do it with the routine that maps the page explicitly.
996	 */
997	if (needszero) {
998		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
999			(((unsigned) PTDpde) & PG_FRAME)) {
1000			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1001			bzero((caddr_t) pteva, PAGE_SIZE);
1002		} else {
1003			pmap_zero_page(ptepa);
1004		}
1005	}
1006
1007	m->valid = VM_PAGE_BITS_ALL;
1008	m->flags |= PG_MAPPED;
1009
1010	return m;
1011}
1012
1013static vm_page_t
1014pmap_allocpte(pmap, va)
1015	pmap_t	pmap;
1016	vm_offset_t va;
1017{
1018	unsigned ptepindex;
1019	vm_offset_t ptepa;
1020	vm_page_t m;
1021
1022	/*
1023	 * Calculate pagetable page index
1024	 */
1025	ptepindex = va >> PDRSHIFT;
1026
1027	/*
1028	 * Get the page directory entry
1029	 */
1030	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1031
1032	/*
1033	 * If the page table page is mapped, we just increment the
1034	 * hold count, and activate it.
1035	 */
1036	if (ptepa) {
1037#if defined(PTPHINT)
1038		/*
1039		 * In order to get the page table page, try the
1040		 * hint first.
1041		 */
1042		if (pmap->pm_ptphint &&
1043			(pmap->pm_ptphint->pindex == ptepindex)) {
1044			m = pmap->pm_ptphint;
1045		} else {
1046			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1047			pmap->pm_ptphint = m;
1048		}
1049#else
1050		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1051#endif
1052		++m->hold_count;
1053		return m;
1054	}
1055	/*
1056	 * Here if the pte page isn't mapped, or if it has been deallocated.
1057	 */
1058	return _pmap_allocpte(pmap, ptepindex);
1059}
1060
1061
1062/***************************************************
1063* Pmap allocation/deallocation routines.
1064 ***************************************************/
1065
1066/*
1067 * Release any resources held by the given physical map.
1068 * Called when a pmap initialized by pmap_pinit is being released.
1069 * Should only be called if the map contains no valid mappings.
1070 */
1071void
1072pmap_release(pmap)
1073	register struct pmap *pmap;
1074{
1075	vm_page_t p,n,ptdpg;
1076	vm_object_t object = pmap->pm_pteobj;
1077
1078	if (object->ref_count != 1)
1079		panic("pmap_release: pteobj reference count != 1");
1080
1081	pmap_lock(pmap);
1082	ptdpg = NULL;
1083retry:
1084	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1085		n = TAILQ_NEXT(p, listq);
1086		if (p->pindex == PTDPTDI) {
1087			ptdpg = p;
1088			continue;
1089		}
1090		if (!pmap_release_free_page(pmap, p))
1091			goto retry;
1092	}
1093
1094	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1095		goto retry;
1096
1097	vm_object_deallocate(object);
1098	if (pdstackptr < PDSTACKMAX) {
1099		pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
1100		++pdstackptr;
1101	} else {
1102		kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
1103	}
1104	pmap->pm_pdir = 0;
1105}
1106
1107/*
1108 * grow the number of kernel page table entries, if needed
1109 */
1110void
1111pmap_growkernel(vm_offset_t addr)
1112{
1113	struct proc *p;
1114	struct pmap *pmap;
1115	int s;
1116
1117	s = splhigh();
1118	if (kernel_vm_end == 0) {
1119		kernel_vm_end = KERNBASE;
1120		nkpt = 0;
1121		while (pdir_pde(PTD, kernel_vm_end)) {
1122			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1123			++nkpt;
1124		}
1125	}
1126	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1127	while (kernel_vm_end < addr) {
1128		if (pdir_pde(PTD, kernel_vm_end)) {
1129			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1130			continue;
1131		}
1132		++nkpt;
1133		if (!nkpg) {
1134			vm_offset_t ptpkva = (vm_offset_t) vtopte(addr);
1135			/*
1136			 * This index is bogus, but out of the way
1137			 */
1138			vm_pindex_t ptpidx = (ptpkva >> PAGE_SHIFT);
1139			nkpg = vm_page_alloc(kernel_object,
1140				ptpidx, VM_ALLOC_SYSTEM);
1141			if (!nkpg)
1142				panic("pmap_growkernel: no memory to grow kernel");
1143			vm_page_wire(nkpg);
1144			vm_page_remove(nkpg);
1145			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
1146		}
1147		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW);
1148		nkpg = NULL;
1149
1150		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1151			if (p->p_vmspace) {
1152				pmap = &p->p_vmspace->vm_pmap;
1153				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1154			}
1155		}
1156		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
1157		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1158	}
1159	splx(s);
1160}
1161
1162/*
1163 *	Retire the given physical map from service.
1164 *	Should only be called if the map contains
1165 *	no valid mappings.
1166 */
1167void
1168pmap_destroy(pmap)
1169	register pmap_t pmap;
1170{
1171	int count;
1172
1173	if (pmap == NULL)
1174		return;
1175
1176	count = --pmap->pm_count;
1177	if (count == 0) {
1178		pmap_release(pmap);
1179		free((caddr_t) pmap, M_VMPMAP);
1180	}
1181}
1182
1183/*
1184 *	Add a reference to the specified pmap.
1185 */
1186void
1187pmap_reference(pmap)
1188	pmap_t pmap;
1189{
1190	if (pmap != NULL) {
1191		pmap->pm_count++;
1192	}
1193}
1194
1195/***************************************************
1196* page management routines.
1197 ***************************************************/
1198
1199/*
1200 * free the pv_entry back to the free list
1201 */
1202static PMAP_INLINE void
1203free_pv_entry(pv)
1204	pv_entry_t pv;
1205{
1206	++pv_freelistcnt;
1207	TAILQ_INSERT_HEAD(&pv_freelist, pv, pv_list);
1208}
1209
1210/*
1211 * get a new pv_entry, allocating a block from the system
1212 * when needed.
1213 * the memory allocation is performed bypassing the malloc code
1214 * because of the possibility of allocations at interrupt time.
1215 */
1216static pv_entry_t
1217get_pv_entry()
1218{
1219	pv_entry_t tmp;
1220
1221	/*
1222	 * get more pv_entry pages if needed
1223	 */
1224	if (pv_freelistcnt < PV_FREELIST_MIN || !TAILQ_FIRST(&pv_freelist)) {
1225		pmap_alloc_pv_entry();
1226	}
1227	/*
1228	 * get a pv_entry off of the free list
1229	 */
1230	--pv_freelistcnt;
1231	tmp = TAILQ_FIRST(&pv_freelist);
1232	TAILQ_REMOVE(&pv_freelist, tmp, pv_list);
1233	return tmp;
1234}
1235
1236/*
1237 * This *strange* allocation routine eliminates the possibility of a malloc
1238 * failure (*FATAL*) for a pv_entry_t data structure.
1239 * also -- this code is MUCH MUCH faster than the malloc equiv...
1240 * We really need to do the slab allocator thingie here.
1241 */
1242static void
1243pmap_alloc_pv_entry()
1244{
1245	/*
1246	 * do we have any pre-allocated map-pages left?
1247	 */
1248	if (npvvapg) {
1249		vm_page_t m;
1250
1251		/*
1252		 * allocate a physical page out of the vm system
1253		 */
1254		m = vm_page_alloc(kernel_object,
1255		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
1256		    VM_ALLOC_INTERRUPT);
1257		if (m) {
1258			int newentries;
1259			int i;
1260			pv_entry_t entry;
1261
1262			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
1263			/*
1264			 * wire the page
1265			 */
1266			vm_page_wire(m);
1267			m->flags &= ~PG_BUSY;
1268			/*
1269			 * let the kernel see it
1270			 */
1271			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
1272
1273			entry = (pv_entry_t) pvva;
1274			/*
1275			 * update the allocation pointers
1276			 */
1277			pvva += PAGE_SIZE;
1278			--npvvapg;
1279
1280			/*
1281			 * free the entries into the free list
1282			 */
1283			for (i = 0; i < newentries; i++) {
1284				free_pv_entry(entry);
1285				entry++;
1286			}
1287		}
1288	}
1289	if (!TAILQ_FIRST(&pv_freelist))
1290		panic("get_pv_entry: cannot get a pv_entry_t");
1291}
1292
1293/*
1294 * init the pv_entry allocation system
1295 */
1296#define PVSPERPAGE 64
1297void
1298init_pv_entries(npg)
1299	int npg;
1300{
1301	/*
1302	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
1303	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
1304	 * this is too small.)
1305	 */
1306	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
1307		+ PAGE_SIZE - 1) / PAGE_SIZE;
1308	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
1309	/*
1310	 * get the first batch of entries
1311	 */
1312	pmap_alloc_pv_entry();
1313}
1314
1315/*
1316 * If it is the first entry on the list, it is actually
1317 * in the header and we must copy the following entry up
1318 * to the header.  Otherwise we must search the list for
1319 * the entry.  In either case we free the now unused entry.
1320 */
1321
1322static int
1323pmap_remove_entry(pmap, ppv, va)
1324	struct pmap *pmap;
1325	pv_table_t *ppv;
1326	vm_offset_t va;
1327{
1328	pv_entry_t pv;
1329	int rtval;
1330	int s;
1331
1332	s = splvm();
1333	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1334		for (pv = TAILQ_FIRST(&ppv->pv_list);
1335			pv;
1336			pv = TAILQ_NEXT(pv, pv_list)) {
1337			if (pmap == pv->pv_pmap && va == pv->pv_va)
1338				break;
1339		}
1340	} else {
1341		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1342			pv;
1343			pv = TAILQ_NEXT(pv, pv_plist)) {
1344			if (va == pv->pv_va)
1345				break;
1346		}
1347	}
1348
1349	rtval = 0;
1350	if (pv) {
1351		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1352		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1353		--ppv->pv_list_count;
1354		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1355		free_pv_entry(pv);
1356	}
1357
1358	splx(s);
1359	return rtval;
1360}
1361
1362/*
1363 * Create a pv entry for page at pa for
1364 * (pmap, va).
1365 */
1366static void
1367pmap_insert_entry(pmap, va, mpte, pa)
1368	pmap_t pmap;
1369	vm_offset_t va;
1370	vm_page_t mpte;
1371	vm_offset_t pa;
1372{
1373
1374	int s;
1375	pv_entry_t pv;
1376	pv_table_t *ppv;
1377
1378	s = splvm();
1379	pv = get_pv_entry();
1380	pv->pv_va = va;
1381	pv->pv_pmap = pmap;
1382	pv->pv_ptem = mpte;
1383
1384	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1385
1386	ppv = pa_to_pvh(pa);
1387	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1388	++ppv->pv_list_count;
1389
1390	splx(s);
1391}
1392
1393/*
1394 * pmap_remove_pte: do the things to unmap a page in a process
1395 */
1396static int
1397pmap_remove_pte(pmap, ptq, va)
1398	struct pmap *pmap;
1399	unsigned *ptq;
1400	vm_offset_t va;
1401{
1402	unsigned oldpte;
1403	pv_table_t *ppv;
1404
1405	oldpte = *ptq;
1406	*ptq = 0;
1407	if (oldpte & PG_W)
1408		pmap->pm_stats.wired_count -= 1;
1409	pmap->pm_stats.resident_count -= 1;
1410	if (oldpte & PG_MANAGED) {
1411		ppv = pa_to_pvh(oldpte);
1412		if (oldpte & PG_M) {
1413#if defined(PMAP_DIAGNOSTIC)
1414			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1415				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1416			}
1417#endif
1418			if (pmap_track_modified(va))
1419				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1420		}
1421		return pmap_remove_entry(pmap, ppv, va);
1422	} else {
1423		return pmap_unuse_pt(pmap, va, NULL);
1424	}
1425
1426	return 0;
1427}
1428
1429/*
1430 * Remove a single page from a process address space
1431 */
1432static void
1433pmap_remove_page(pmap, va)
1434	struct pmap *pmap;
1435	register vm_offset_t va;
1436{
1437	register unsigned *ptq;
1438
1439	/*
1440	 * if there is no pte for this address, just skip it!!!
1441	 */
1442	if (*pmap_pde(pmap, va) == 0) {
1443		return;
1444	}
1445
1446	/*
1447	 * get a local va for mappings for this pmap.
1448	 */
1449	ptq = get_ptbase(pmap) + i386_btop(va);
1450	if (*ptq) {
1451		(void) pmap_remove_pte(pmap, ptq, va);
1452		invltlb_1pg(va);
1453	}
1454	return;
1455}
1456
1457/*
1458 *	Remove the given range of addresses from the specified map.
1459 *
1460 *	It is assumed that the start and end are properly
1461 *	rounded to the page size.
1462 */
1463void
1464pmap_remove(pmap, sva, eva)
1465	struct pmap *pmap;
1466	register vm_offset_t sva;
1467	register vm_offset_t eva;
1468{
1469	register unsigned *ptbase;
1470	vm_offset_t pdnxt;
1471	vm_offset_t ptpaddr;
1472	vm_offset_t sindex, eindex;
1473	int anyvalid;
1474
1475	if (pmap == NULL)
1476		return;
1477
1478	pmap_lock(pmap);
1479	/*
1480	 * special handling of removing one page.  a very
1481	 * common operation and easy to short circuit some
1482	 * code.
1483	 */
1484	if ((sva + PAGE_SIZE) == eva) {
1485		pmap_remove_page(pmap, sva);
1486		pmap_unlock(pmap);
1487		return;
1488	}
1489
1490	anyvalid = 0;
1491
1492	/*
1493	 * Get a local virtual address for the mappings that are being
1494	 * worked with.
1495	 */
1496	ptbase = get_ptbase(pmap);
1497
1498	sindex = i386_btop(sva);
1499	eindex = i386_btop(eva);
1500
1501	for (; sindex < eindex; sindex = pdnxt) {
1502
1503		/*
1504		 * Calculate index for next page table.
1505		 */
1506		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1507		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1508
1509		/*
1510		 * Weed out invalid mappings. Note: we assume that the page
1511		 * directory table is always allocated, and in kernel virtual.
1512		 */
1513		if (ptpaddr == 0)
1514			continue;
1515
1516		/*
1517		 * Limit our scan to either the end of the va represented
1518		 * by the current page table page, or to the end of the
1519		 * range being removed.
1520		 */
1521		if (pdnxt > eindex) {
1522			pdnxt = eindex;
1523		}
1524
1525		for ( ;sindex != pdnxt; sindex++) {
1526			vm_offset_t va;
1527			if (ptbase[sindex] == 0) {
1528				continue;
1529			}
1530			va = i386_ptob(sindex);
1531
1532			anyvalid++;
1533			if (pmap_remove_pte(pmap,
1534				ptbase + sindex, va))
1535				break;
1536		}
1537	}
1538
1539	if (anyvalid) {
1540		invltlb();
1541	}
1542	pmap_unlock(pmap);
1543}
1544
1545/*
1546 *	Routine:	pmap_remove_all
1547 *	Function:
1548 *		Removes this physical page from
1549 *		all physical maps in which it resides.
1550 *		Reflects back modify bits to the pager.
1551 *
1552 *	Notes:
1553 *		Original versions of this routine were very
1554 *		inefficient because they iteratively called
1555 *		pmap_remove (slow...)
1556 */
1557
1558static void
1559pmap_remove_all(pa)
1560	vm_offset_t pa;
1561{
1562	register pv_entry_t pv;
1563	pv_table_t *ppv;
1564	register unsigned *pte, tpte;
1565	int nmodify;
1566	int update_needed;
1567	int s;
1568
1569	nmodify = 0;
1570	update_needed = 0;
1571#if defined(PMAP_DIAGNOSTIC)
1572	/*
1573	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1574	 * pages!
1575	 */
1576	if (!pmap_is_managed(pa)) {
1577		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1578	}
1579#endif
1580
1581	s = splvm();
1582	ppv = pa_to_pvh(pa);
1583	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1584		pmap_lock(pv->pv_pmap);
1585		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1586
1587		pv->pv_pmap->pm_stats.resident_count--;
1588
1589		tpte = *pte;
1590		*pte = 0;
1591		if (tpte & PG_W)
1592			pv->pv_pmap->pm_stats.wired_count--;
1593		/*
1594		 * Update the vm_page_t clean and reference bits.
1595		 */
1596		if (tpte & PG_M) {
1597#if defined(PMAP_DIAGNOSTIC)
1598			if (pmap_nw_modified((pt_entry_t) tpte)) {
1599				printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", pv->pv_va, tpte);
1600			}
1601#endif
1602			if (pmap_track_modified(pv->pv_va))
1603				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
1604		}
1605		if (!update_needed &&
1606			((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
1607			(pv->pv_pmap == kernel_pmap))) {
1608			update_needed = 1;
1609		}
1610
1611		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1612		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1613		--ppv->pv_list_count;
1614		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1615		pmap_unlock(pv->pv_pmap);
1616		free_pv_entry(pv);
1617	}
1618
1619	if (update_needed)
1620		invltlb();
1621	splx(s);
1622	return;
1623}
1624
1625/*
1626 *	Set the physical protection on the
1627 *	specified range of this map as requested.
1628 */
1629void
1630pmap_protect(pmap, sva, eva, prot)
1631	register pmap_t pmap;
1632	vm_offset_t sva, eva;
1633	vm_prot_t prot;
1634{
1635	register unsigned *ptbase;
1636	vm_offset_t pdnxt;
1637	vm_offset_t ptpaddr;
1638	vm_offset_t sindex, eindex;
1639	int anychanged;
1640
1641
1642	if (pmap == NULL)
1643		return;
1644
1645	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1646		pmap_remove(pmap, sva, eva);
1647		return;
1648	}
1649	if (prot & VM_PROT_WRITE) {
1650		return;
1651	}
1652
1653	pmap_lock(pmap);
1654	anychanged = 0;
1655
1656	ptbase = get_ptbase(pmap);
1657
1658	sindex = i386_btop(sva);
1659	eindex = i386_btop(eva);
1660
1661	for (; sindex < eindex; sindex = pdnxt) {
1662
1663		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1664		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1665
1666		/*
1667		 * Weed out invalid mappings. Note: we assume that the page
1668		 * directory table is always allocated, and in kernel virtual.
1669		 */
1670		if (ptpaddr == 0)
1671			continue;
1672
1673		if (pdnxt > eindex) {
1674			pdnxt = eindex;
1675		}
1676
1677		for (; sindex != pdnxt; sindex++) {
1678
1679			unsigned pbits = ptbase[sindex];
1680
1681			if (pbits & PG_RW) {
1682				if (pbits & PG_M) {
1683					vm_offset_t sva = i386_ptob(sindex);
1684					if (pmap_track_modified(sva)) {
1685						vm_page_t m = PHYS_TO_VM_PAGE(pbits);
1686						m->dirty = VM_PAGE_BITS_ALL;
1687					}
1688				}
1689				ptbase[sindex] = pbits & ~(PG_M|PG_RW);
1690				anychanged = 1;
1691			}
1692		}
1693	}
1694	pmap_unlock(pmap);
1695	if (anychanged)
1696		invltlb();
1697}
1698
1699/*
1700 *	Insert the given physical page (p) at
1701 *	the specified virtual address (v) in the
1702 *	target physical map with the protection requested.
1703 *
1704 *	If specified, the page will be wired down, meaning
1705 *	that the related pte can not be reclaimed.
1706 *
1707 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1708 *	or lose information.  That is, this routine must actually
1709 *	insert this page into the given map NOW.
1710 */
1711void
1712pmap_enter(pmap, va, pa, prot, wired)
1713	register pmap_t pmap;
1714	vm_offset_t va;
1715	register vm_offset_t pa;
1716	vm_prot_t prot;
1717	boolean_t wired;
1718{
1719	register unsigned *pte;
1720	vm_offset_t opa;
1721	vm_offset_t origpte, newpte;
1722	vm_page_t mpte;
1723
1724	if (pmap == NULL)
1725		return;
1726
1727	pmap_lock(pmap);
1728	va &= PG_FRAME;
1729#ifdef PMAP_DIAGNOSTIC
1730	if (va > VM_MAX_KERNEL_ADDRESS)
1731		panic("pmap_enter: toobig");
1732	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1733		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1734#endif
1735
1736	mpte = NULL;
1737	/*
1738	 * In the case that a page table page is not
1739	 * resident, we are creating it here.
1740	 */
1741	if (va < UPT_MIN_ADDRESS)
1742		mpte = pmap_allocpte(pmap, va);
1743
1744	pte = pmap_pte(pmap, va);
1745	/*
1746	 * Page Directory table entry not valid, we need a new PT page
1747	 */
1748	if (pte == NULL) {
1749		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%lx\n",
1750			pmap->pm_pdir[PTDPTDI], va);
1751	}
1752
1753	origpte = *(vm_offset_t *)pte;
1754	pa &= PG_FRAME;
1755	opa = origpte & PG_FRAME;
1756
1757	/*
1758	 * Mapping has not changed, must be protection or wiring change.
1759	 */
1760	if (origpte && (opa == pa)) {
1761		/*
1762		 * Wiring change, just update stats. We don't worry about
1763		 * wiring PT pages as they remain resident as long as there
1764		 * are valid mappings in them. Hence, if a user page is wired,
1765		 * the PT page will be also.
1766		 */
1767		if (wired && ((origpte & PG_W) == 0))
1768			pmap->pm_stats.wired_count++;
1769		else if (!wired && (origpte & PG_W))
1770			pmap->pm_stats.wired_count--;
1771
1772#if defined(PMAP_DIAGNOSTIC)
1773		if (pmap_nw_modified((pt_entry_t) origpte)) {
1774			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1775		}
1776#endif
1777
1778		/*
1779		 * We might be turning off write access to the page,
1780		 * so we go ahead and sense modify status.
1781		 */
1782		if (origpte & PG_MANAGED) {
1783			vm_page_t m;
1784			if (origpte & PG_M) {
1785				if (pmap_track_modified(va)) {
1786					m = PHYS_TO_VM_PAGE(pa);
1787					m->dirty = VM_PAGE_BITS_ALL;
1788				}
1789			}
1790			pa |= PG_MANAGED;
1791		}
1792
1793		if (mpte)
1794			--mpte->hold_count;
1795
1796		goto validate;
1797	}
1798	/*
1799	 * Mapping has changed, invalidate old range and fall through to
1800	 * handle validating new mapping.
1801	 */
1802	if (opa) {
1803		int err;
1804		err = pmap_remove_pte(pmap, pte, va);
1805		if (err)
1806			panic("pmap_enter: pte vanished, va: 0x%x", va);
1807	}
1808
1809	/*
1810	 * Enter on the PV list if part of our managed memory Note that we
1811	 * raise IPL while manipulating pv_table since pmap_enter can be
1812	 * called at interrupt time.
1813	 */
1814	if (pmap_is_managed(pa)) {
1815		pmap_insert_entry(pmap, va, mpte, pa);
1816		pa |= PG_MANAGED;
1817	}
1818
1819	/*
1820	 * Increment counters
1821	 */
1822	pmap->pm_stats.resident_count++;
1823	if (wired)
1824		pmap->pm_stats.wired_count++;
1825
1826validate:
1827	/*
1828	 * Now validate mapping with desired protection/wiring.
1829	 */
1830	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1831
1832	if (wired)
1833		newpte |= PG_W;
1834	if (va < UPT_MIN_ADDRESS)
1835		newpte |= PG_U;
1836
1837	/*
1838	 * if the mapping or permission bits are different, we need
1839	 * to update the pte.
1840	 */
1841	if ((origpte & ~(PG_M|PG_A)) != newpte) {
1842		*pte = newpte;
1843		if (origpte)
1844			invltlb_1pg(va);
1845	}
1846	pmap_unlock(pmap);
1847}
1848
1849/*
1850 * this code makes some *MAJOR* assumptions:
1851 * 1. Current pmap & pmap exists.
1852 * 2. Not wired.
1853 * 3. Read access.
1854 * 4. No page table pages.
1855 * 5. Tlbflush is deferred to calling procedure.
1856 * 6. Page IS managed.
1857 * but is *MUCH* faster than pmap_enter...
1858 */
1859
1860static vm_page_t
1861pmap_enter_quick(pmap, va, pa, mpte)
1862	register pmap_t pmap;
1863	vm_offset_t va;
1864	register vm_offset_t pa;
1865	vm_page_t mpte;
1866{
1867	register unsigned *pte;
1868
1869	/*
1870	 * In the case that a page table page is not
1871	 * resident, we are creating it here.
1872	 */
1873	if (va < UPT_MIN_ADDRESS) {
1874		unsigned ptepindex;
1875		vm_offset_t ptepa;
1876
1877		/*
1878		 * Calculate pagetable page index
1879		 */
1880		ptepindex = va >> PDRSHIFT;
1881		if (mpte && (mpte->pindex == ptepindex)) {
1882			++mpte->hold_count;
1883		} else {
1884retry:
1885			/*
1886			 * Get the page directory entry
1887			 */
1888			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1889
1890			/*
1891			 * If the page table page is mapped, we just increment
1892			 * the hold count, and activate it.
1893			 */
1894			if (ptepa) {
1895#if defined(PTPHINT)
1896				if (pmap->pm_ptphint &&
1897					(pmap->pm_ptphint->pindex == ptepindex)) {
1898					mpte = pmap->pm_ptphint;
1899				} else {
1900					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1901					pmap->pm_ptphint = mpte;
1902				}
1903#else
1904				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1905#endif
1906				if (mpte == NULL)
1907					goto retry;
1908				++mpte->hold_count;
1909			} else {
1910				mpte = _pmap_allocpte(pmap, ptepindex);
1911			}
1912		}
1913	} else {
1914		mpte = NULL;
1915	}
1916
1917	/*
1918	 * This call to vtopte makes the assumption that we are
1919	 * entering the page into the current pmap.  In order to support
1920	 * quick entry into any pmap, one would likely use pmap_pte_quick.
1921	 * But that isn't as quick as vtopte.
1922	 */
1923	pte = (unsigned *)vtopte(va);
1924	if (*pte) {
1925		if (mpte)
1926			pmap_unwire_pte_hold(pmap, mpte);
1927		return 0;
1928	}
1929
1930	/*
1931	 * Enter on the PV list if part of our managed memory Note that we
1932	 * raise IPL while manipulating pv_table since pmap_enter can be
1933	 * called at interrupt time.
1934	 */
1935	pmap_insert_entry(pmap, va, mpte, pa);
1936
1937	/*
1938	 * Increment counters
1939	 */
1940	pmap->pm_stats.resident_count++;
1941
1942	/*
1943	 * Now validate mapping with RO protection
1944	 */
1945	*pte = pa | PG_V | PG_U | PG_MANAGED;
1946
1947	return mpte;
1948}
1949
1950#define MAX_INIT_PT (96)
1951/*
1952 * pmap_object_init_pt preloads the ptes for a given object
1953 * into the specified pmap.  This eliminates the blast of soft
1954 * faults on process startup and immediately after an mmap.
1955 */
1956void
1957pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
1958	pmap_t pmap;
1959	vm_offset_t addr;
1960	vm_object_t object;
1961	vm_pindex_t pindex;
1962	vm_size_t size;
1963	int limit;
1964{
1965	vm_offset_t tmpidx;
1966	int psize;
1967	vm_page_t p, mpte;
1968	int objpgs;
1969
1970	psize = i386_btop(size);
1971
1972	if (!pmap || (object->type != OBJT_VNODE) ||
1973		(limit && (psize > MAX_INIT_PT) &&
1974			(object->resident_page_count > MAX_INIT_PT))) {
1975		return;
1976	}
1977
1978	pmap_lock(pmap);
1979	if (psize + pindex > object->size)
1980		psize = object->size - pindex;
1981
1982	mpte = NULL;
1983	/*
1984	 * if we are processing a major portion of the object, then scan the
1985	 * entire thing.
1986	 */
1987	if (psize > (object->size >> 2)) {
1988		objpgs = psize;
1989
1990		for (p = TAILQ_FIRST(&object->memq);
1991		    ((objpgs > 0) && (p != NULL));
1992		    p = TAILQ_NEXT(p, listq)) {
1993
1994			tmpidx = p->pindex;
1995			if (tmpidx < pindex) {
1996				continue;
1997			}
1998			tmpidx -= pindex;
1999			if (tmpidx >= psize) {
2000				continue;
2001			}
2002			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2003			    (p->busy == 0) &&
2004			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2005				if ((p->queue - p->pc) == PQ_CACHE)
2006					vm_page_deactivate(p);
2007				p->flags |= PG_BUSY;
2008				mpte = pmap_enter_quick(pmap,
2009					addr + i386_ptob(tmpidx),
2010					VM_PAGE_TO_PHYS(p), mpte);
2011				p->flags |= PG_MAPPED;
2012				PAGE_WAKEUP(p);
2013			}
2014			objpgs -= 1;
2015		}
2016	} else {
2017		/*
2018		 * else lookup the pages one-by-one.
2019		 */
2020		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2021			p = vm_page_lookup(object, tmpidx + pindex);
2022			if (p &&
2023			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2024			    (p->busy == 0) &&
2025			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2026				if ((p->queue - p->pc) == PQ_CACHE)
2027					vm_page_deactivate(p);
2028				p->flags |= PG_BUSY;
2029				mpte = pmap_enter_quick(pmap,
2030					addr + i386_ptob(tmpidx),
2031					VM_PAGE_TO_PHYS(p), mpte);
2032				p->flags |= PG_MAPPED;
2033				PAGE_WAKEUP(p);
2034			}
2035		}
2036	}
2037	pmap_unlock(pmap);
2038	return;
2039}
2040
2041/*
2042 * pmap_prefault provides a quick way of clustering
2043 * pagefaults into a processes address space.  It is a "cousin"
2044 * of pmap_object_init_pt, except it runs at page fault time instead
2045 * of mmap time.
2046 */
2047#define PFBAK 2
2048#define PFFOR 2
2049#define PAGEORDER_SIZE (PFBAK+PFFOR)
2050
2051static int pmap_prefault_pageorder[] = {
2052	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
2053};
2054
2055void
2056pmap_prefault(pmap, addra, entry, object)
2057	pmap_t pmap;
2058	vm_offset_t addra;
2059	vm_map_entry_t entry;
2060	vm_object_t object;
2061{
2062	int i;
2063	vm_offset_t starta;
2064	vm_offset_t addr;
2065	vm_pindex_t pindex;
2066	vm_page_t m, mpte;
2067
2068	if (entry->object.vm_object != object)
2069		return;
2070
2071	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
2072		return;
2073
2074	pmap_lock(pmap);
2075	starta = addra - PFBAK * PAGE_SIZE;
2076	if (starta < entry->start) {
2077		starta = entry->start;
2078	} else if (starta > addra) {
2079		starta = 0;
2080	}
2081
2082	mpte = NULL;
2083	for (i = 0; i < PAGEORDER_SIZE; i++) {
2084		vm_object_t lobject;
2085		unsigned *pte;
2086
2087		addr = addra + pmap_prefault_pageorder[i];
2088		if (addr < starta || addr >= entry->end)
2089			continue;
2090
2091		if ((*pmap_pde(pmap, addr)) == NULL)
2092			continue;
2093
2094		pte = (unsigned *) vtopte(addr);
2095		if (*pte)
2096			continue;
2097
2098		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2099		lobject = object;
2100		for (m = vm_page_lookup(lobject, pindex);
2101		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2102		    lobject = lobject->backing_object) {
2103			if (lobject->backing_object_offset & PAGE_MASK)
2104				break;
2105			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2106			m = vm_page_lookup(lobject->backing_object, pindex);
2107		}
2108
2109		/*
2110		 * give-up when a page is not in memory
2111		 */
2112		if (m == NULL)
2113			break;
2114
2115		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2116		    (m->busy == 0) &&
2117		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2118
2119			if ((m->queue - m->pc) == PQ_CACHE) {
2120				vm_page_deactivate(m);
2121			}
2122			m->flags |= PG_BUSY;
2123			mpte = pmap_enter_quick(pmap, addr,
2124				VM_PAGE_TO_PHYS(m), mpte);
2125			m->flags |= PG_MAPPED;
2126			PAGE_WAKEUP(m);
2127		}
2128	}
2129	pmap_unlock(pmap);
2130}
2131
2132/*
2133 *	Routine:	pmap_change_wiring
2134 *	Function:	Change the wiring attribute for a map/virtual-address
2135 *			pair.
2136 *	In/out conditions:
2137 *			The mapping must already exist in the pmap.
2138 */
2139void
2140pmap_change_wiring(pmap, va, wired)
2141	register pmap_t pmap;
2142	vm_offset_t va;
2143	boolean_t wired;
2144{
2145	register unsigned *pte;
2146
2147	if (pmap == NULL)
2148		return;
2149
2150	pmap_lock(pmap);
2151	pte = pmap_pte(pmap, va);
2152
2153	if (wired && !pmap_pte_w(pte))
2154		pmap->pm_stats.wired_count++;
2155	else if (!wired && pmap_pte_w(pte))
2156		pmap->pm_stats.wired_count--;
2157
2158	/*
2159	 * Wiring is not a hardware characteristic so there is no need to
2160	 * invalidate TLB.
2161	 */
2162	pmap_pte_set_w(pte, wired);
2163	pmap_unlock(pmap);
2164}
2165
2166
2167
2168/*
2169 *	Copy the range specified by src_addr/len
2170 *	from the source map to the range dst_addr/len
2171 *	in the destination map.
2172 *
2173 *	This routine is only advisory and need not do anything.
2174 */
2175
2176void
2177pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2178	pmap_t dst_pmap, src_pmap;
2179	vm_offset_t dst_addr;
2180	vm_size_t len;
2181	vm_offset_t src_addr;
2182{
2183	vm_offset_t addr;
2184	vm_offset_t end_addr = src_addr + len;
2185	vm_offset_t pdnxt;
2186	unsigned src_frame, dst_frame;
2187
2188	if (dst_addr != src_addr)
2189		return;
2190
2191	pmap_lock2(src_pmap, dst_pmap);
2192	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2193	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2194		pmap_unlock(src_pmap);
2195		pmap_unlock(dst_pmap);
2196		return;
2197	}
2198
2199	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2200	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2201		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2202		invltlb();
2203	}
2204
2205	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2206		unsigned *src_pte, *dst_pte;
2207		vm_page_t dstmpte, srcmpte;
2208		vm_offset_t srcptepaddr;
2209		unsigned ptepindex;
2210
2211		if (addr >= UPT_MIN_ADDRESS)
2212			panic("pmap_copy: invalid to pmap_copy page tables\n");
2213
2214		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2215		ptepindex = addr >> PDRSHIFT;
2216
2217		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2218		if (srcptepaddr == 0)
2219			continue;
2220
2221		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2222		if ((srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2223			continue;
2224
2225		if (pdnxt > end_addr)
2226			pdnxt = end_addr;
2227
2228		src_pte = (unsigned *) vtopte(addr);
2229		dst_pte = (unsigned *) avtopte(addr);
2230		while (addr < pdnxt) {
2231			unsigned ptetemp;
2232			ptetemp = *src_pte;
2233			/*
2234			 * we only virtual copy managed pages
2235			 */
2236			if ((ptetemp & PG_MANAGED) != 0) {
2237				/*
2238				 * We have to check after allocpte for the
2239				 * pte still being around...  allocpte can
2240				 * block.
2241				 */
2242				dstmpte = pmap_allocpte(dst_pmap, addr);
2243				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2244					/*
2245					 * Clear the modified and
2246					 * accessed (referenced) bits
2247					 * during the copy.
2248					 */
2249					*dst_pte = ptetemp & ~(PG_M|PG_A);
2250					dst_pmap->pm_stats.resident_count++;
2251					pmap_insert_entry(dst_pmap, addr,
2252						dstmpte,
2253						(ptetemp & PG_FRAME));
2254	 			} else {
2255					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2256				}
2257				if (dstmpte->hold_count >= srcmpte->hold_count)
2258					break;
2259			}
2260			addr += PAGE_SIZE;
2261			++src_pte;
2262			++dst_pte;
2263		}
2264	}
2265	pmap_unlock(src_pmap);
2266	pmap_unlock(dst_pmap);
2267}
2268
2269/*
2270 *	Routine:	pmap_kernel
2271 *	Function:
2272 *		Returns the physical map handle for the kernel.
2273 */
2274pmap_t
2275pmap_kernel()
2276{
2277	return (kernel_pmap);
2278}
2279
2280/*
2281 *	pmap_zero_page zeros the specified (machine independent)
2282 *	page by mapping the page into virtual memory and using
2283 *	bzero to clear its contents, one machine dependent page
2284 *	at a time.
2285 */
2286void
2287pmap_zero_page(phys)
2288	vm_offset_t phys;
2289{
2290	if (*(int *) CMAP2)
2291		panic("pmap_zero_page: CMAP busy");
2292
2293	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
2294	bzero(CADDR2, PAGE_SIZE);
2295	*(int *) CMAP2 = 0;
2296	invltlb_1pg((vm_offset_t) CADDR2);
2297}
2298
2299/*
2300 *	pmap_copy_page copies the specified (machine independent)
2301 *	page by mapping the page into virtual memory and using
2302 *	bcopy to copy the page, one machine dependent page at a
2303 *	time.
2304 */
2305void
2306pmap_copy_page(src, dst)
2307	vm_offset_t src;
2308	vm_offset_t dst;
2309{
2310	if (*(int *) CMAP1 || *(int *) CMAP2)
2311		panic("pmap_copy_page: CMAP busy");
2312
2313	*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
2314	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
2315
2316	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2317
2318	*(int *) CMAP1 = 0;
2319	*(int *) CMAP2 = 0;
2320	invltlb_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
2321}
2322
2323
2324/*
2325 *	Routine:	pmap_pageable
2326 *	Function:
2327 *		Make the specified pages (by pmap, offset)
2328 *		pageable (or not) as requested.
2329 *
2330 *		A page which is not pageable may not take
2331 *		a fault; therefore, its page table entry
2332 *		must remain valid for the duration.
2333 *
2334 *		This routine is merely advisory; pmap_enter
2335 *		will specify that these pages are to be wired
2336 *		down (or not) as appropriate.
2337 */
2338void
2339pmap_pageable(pmap, sva, eva, pageable)
2340	pmap_t pmap;
2341	vm_offset_t sva, eva;
2342	boolean_t pageable;
2343{
2344}
2345
2346/*
2347 * this routine returns true if a physical page resides
2348 * in the given pmap.
2349 */
2350boolean_t
2351pmap_page_exists(pmap, pa)
2352	pmap_t pmap;
2353	vm_offset_t pa;
2354{
2355	register pv_entry_t pv;
2356	pv_table_t *ppv;
2357	int s;
2358
2359	if (!pmap_is_managed(pa))
2360		return FALSE;
2361
2362	s = splvm();
2363
2364	ppv = pa_to_pvh(pa);
2365	/*
2366	 * Not found, check current mappings returning immediately if found.
2367	 */
2368	for (pv = TAILQ_FIRST(&ppv->pv_list);
2369		pv;
2370		pv = TAILQ_NEXT(pv, pv_list)) {
2371		if (pv->pv_pmap == pmap) {
2372			splx(s);
2373			return TRUE;
2374		}
2375	}
2376	splx(s);
2377	return (FALSE);
2378}
2379
2380#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2381/*
2382 * Remove all pages from specified address space
2383 * this aids process exit speeds.  Also, this code
2384 * is special cased for current process only, but
2385 * can have the more generic (and slightly slower)
2386 * mode enabled.  This is much faster than pmap_remove
2387 * in the case of running down an entire address space.
2388 */
2389void
2390pmap_remove_pages(pmap, sva, eva)
2391	pmap_t pmap;
2392	vm_offset_t sva, eva;
2393{
2394	unsigned *pte, tpte;
2395	pv_table_t *ppv;
2396	pv_entry_t pv, npv;
2397	int s;
2398
2399#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2400	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
2401		printf("warning: pmap_remove_pages called with non-current pmap\n");
2402		return;
2403	}
2404#endif
2405
2406	pmap_lock(pmap);
2407	s = splhigh();
2408
2409	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2410		pv;
2411		pv = npv) {
2412
2413		if (pv->pv_va >= eva || pv->pv_va < sva) {
2414			npv = TAILQ_NEXT(pv, pv_plist);
2415			continue;
2416		}
2417
2418#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2419		pte = (unsigned *)vtopte(pv->pv_va);
2420#else
2421		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2422#endif
2423		tpte = *pte;
2424		*pte = 0;
2425
2426		ppv = pa_to_pvh(tpte);
2427
2428		if (tpte) {
2429			pv->pv_pmap->pm_stats.resident_count--;
2430			if (tpte & PG_W)
2431				pv->pv_pmap->pm_stats.wired_count--;
2432			/*
2433			 * Update the vm_page_t clean and reference bits.
2434			 */
2435			if (tpte & PG_M) {
2436				ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2437			}
2438		}
2439
2440		npv = TAILQ_NEXT(pv, pv_plist);
2441		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2442
2443		--ppv->pv_list_count;
2444		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2445
2446		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2447		free_pv_entry(pv);
2448	}
2449	splx(s);
2450	invltlb();
2451	pmap_unlock(pmap);
2452}
2453
2454/*
2455 * pmap_testbit tests bits in pte's
2456 * note that the testbit/changebit routines are inline,
2457 * and a lot of things compile-time evaluate.
2458 */
2459static boolean_t
2460pmap_testbit(pa, bit)
2461	register vm_offset_t pa;
2462	int bit;
2463{
2464	register pv_entry_t pv;
2465	pv_table_t *ppv;
2466	unsigned *pte;
2467	int s;
2468
2469	if (!pmap_is_managed(pa))
2470		return FALSE;
2471
2472	ppv = pa_to_pvh(pa);
2473	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
2474		return FALSE;
2475
2476	s = splvm();
2477
2478	for (pv = TAILQ_FIRST(&ppv->pv_list);
2479		pv;
2480		pv = TAILQ_NEXT(pv, pv_list)) {
2481
2482		/*
2483		 * if the bit being tested is the modified bit, then
2484		 * mark clean_map and ptes as never
2485		 * modified.
2486		 */
2487		if (bit & (PG_A|PG_M)) {
2488			if (!pmap_track_modified(pv->pv_va))
2489				continue;
2490		}
2491
2492#if defined(PMAP_DIAGNOSTIC)
2493		if (!pv->pv_pmap) {
2494			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2495			continue;
2496		}
2497#endif
2498		pmap_lock(pv->pv_pmap);
2499		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2500		if (pte == NULL) {
2501			pmap_unlock(pv->pv_pmap);
2502			continue;
2503		}
2504		if (*pte & bit) {
2505			pmap_unlock(pv->pv_pmap);
2506			splx(s);
2507			return TRUE;
2508		}
2509		pmap_unlock(pv->pv_pmap);
2510	}
2511	splx(s);
2512	return (FALSE);
2513}
2514
2515/*
2516 * this routine is used to modify bits in ptes
2517 */
2518static void
2519pmap_changebit(pa, bit, setem)
2520	vm_offset_t pa;
2521	int bit;
2522	boolean_t setem;
2523{
2524	register pv_entry_t pv;
2525	pv_table_t *ppv;
2526	register unsigned *pte;
2527	int changed;
2528	int s;
2529
2530	if (!pmap_is_managed(pa))
2531		return;
2532
2533	s = splvm();
2534	changed = 0;
2535	ppv = pa_to_pvh(pa);
2536
2537	/*
2538	 * Loop over all current mappings setting/clearing as appropos If
2539	 * setting RO do we need to clear the VAC?
2540	 */
2541	for (pv = TAILQ_FIRST(&ppv->pv_list);
2542		pv;
2543		pv = TAILQ_NEXT(pv, pv_list)) {
2544
2545		/*
2546		 * don't write protect pager mappings
2547		 */
2548		if (!setem && (bit == PG_RW)) {
2549			if (!pmap_track_modified(pv->pv_va))
2550				continue;
2551		}
2552
2553#if defined(PMAP_DIAGNOSTIC)
2554		if (!pv->pv_pmap) {
2555			printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2556			continue;
2557		}
2558#endif
2559
2560		pmap_lock(pv->pv_pmap);
2561		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2562		if (pte == NULL) {
2563			pmap_unlock(pv->pv_pmap);
2564			continue;
2565		}
2566		if (setem) {
2567			*(int *)pte |= bit;
2568			changed = 1;
2569		} else {
2570			vm_offset_t pbits = *(vm_offset_t *)pte;
2571			if (pbits & bit) {
2572				changed = 1;
2573				if (bit == PG_RW) {
2574					if (pbits & PG_M) {
2575						ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
2576					}
2577					*(int *)pte = pbits & ~(PG_M|PG_RW);
2578				} else {
2579					*(int *)pte = pbits & ~bit;
2580				}
2581			}
2582		}
2583		pmap_unlock(pv->pv_pmap);
2584	}
2585	splx(s);
2586	if (changed)
2587		invltlb();
2588}
2589
2590/*
2591 *      pmap_page_protect:
2592 *
2593 *      Lower the permission for all mappings to a given page.
2594 */
2595void
2596pmap_page_protect(phys, prot)
2597	vm_offset_t phys;
2598	vm_prot_t prot;
2599{
2600	if ((prot & VM_PROT_WRITE) == 0) {
2601		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2602			pmap_changebit(phys, PG_RW, FALSE);
2603		} else {
2604			pmap_remove_all(phys);
2605		}
2606	}
2607}
2608
2609vm_offset_t
2610pmap_phys_address(ppn)
2611	int ppn;
2612{
2613	return (i386_ptob(ppn));
2614}
2615
2616/*
2617 *	pmap_is_referenced:
2618 *
2619 *	Return whether or not the specified physical page was referenced
2620 *	by any physical maps.
2621 */
2622boolean_t
2623pmap_is_referenced(vm_offset_t pa)
2624{
2625	register pv_entry_t pv;
2626	pv_table_t *ppv;
2627	unsigned *pte;
2628	int s;
2629
2630	if (!pmap_is_managed(pa))
2631		return FALSE;
2632
2633	ppv = pa_to_pvh(pa);
2634
2635	s = splvm();
2636	/*
2637	 * Not found, check current mappings returning immediately if found.
2638	 */
2639	for (pv = TAILQ_FIRST(&ppv->pv_list);
2640		pv;
2641		pv = TAILQ_NEXT(pv, pv_list)) {
2642
2643		/*
2644		 * if the bit being tested is the modified bit, then
2645		 * mark clean_map and ptes as never
2646		 * modified.
2647		 */
2648		if (!pmap_track_modified(pv->pv_va))
2649			continue;
2650
2651		pmap_lock(pv->pv_pmap);
2652		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2653		if (pte == NULL) {
2654			pmap_unlock(pv->pv_pmap);
2655			continue;
2656		}
2657		if ((int) *pte & PG_A) {
2658			pmap_unlock(pv->pv_pmap);
2659			splx(s);
2660			return TRUE;
2661		}
2662		pmap_unlock(pv->pv_pmap);
2663	}
2664	splx(s);
2665	return (FALSE);
2666}
2667
2668/*
2669 *	pmap_ts_referenced:
2670 *
2671 *	Return the count of reference bits for a page, clearing all of them.
2672 *
2673 */
2674int
2675pmap_ts_referenced(vm_offset_t pa)
2676{
2677	register pv_entry_t pv;
2678	pv_table_t *ppv;
2679	unsigned *pte;
2680	int s;
2681	int rtval = 0;
2682
2683	if (!pmap_is_managed(pa))
2684		return FALSE;
2685
2686	s = splvm();
2687
2688	ppv = pa_to_pvh(pa);
2689
2690	if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2691		splx(s);
2692		return 0;
2693	}
2694
2695	/*
2696	 * Not found, check current mappings returning immediately if found.
2697	 */
2698	for (pv = TAILQ_FIRST(&ppv->pv_list);
2699		pv;
2700		pv = TAILQ_NEXT(pv, pv_list)) {
2701		/*
2702		 * if the bit being tested is the modified bit, then
2703		 * mark clean_map and ptes as never
2704		 * modified.
2705		 */
2706		if (!pmap_track_modified(pv->pv_va))
2707			continue;
2708
2709		pmap_lock(pv->pv_pmap);
2710		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2711		if (pte == NULL) {
2712			pmap_unlock(pv->pv_pmap);
2713			continue;
2714		}
2715		if (*pte & PG_A) {
2716			rtval++;
2717			*pte &= ~PG_A;
2718		}
2719		pmap_unlock(pv->pv_pmap);
2720	}
2721	splx(s);
2722	if (rtval) {
2723		invltlb();
2724	}
2725	return (rtval);
2726}
2727
2728/*
2729 *	pmap_is_modified:
2730 *
2731 *	Return whether or not the specified physical page was modified
2732 *	in any physical maps.
2733 */
2734boolean_t
2735pmap_is_modified(vm_offset_t pa)
2736{
2737	return pmap_testbit((pa), PG_M);
2738}
2739
2740/*
2741 *	Clear the modify bits on the specified physical page.
2742 */
2743void
2744pmap_clear_modify(vm_offset_t pa)
2745{
2746	pmap_changebit((pa), PG_M, FALSE);
2747}
2748
2749/*
2750 *	pmap_clear_reference:
2751 *
2752 *	Clear the reference bit on the specified physical page.
2753 */
2754void
2755pmap_clear_reference(vm_offset_t pa)
2756{
2757	pmap_changebit((pa), PG_A, FALSE);
2758}
2759
2760/*
2761 * Miscellaneous support routines follow
2762 */
2763
2764static void
2765i386_protection_init()
2766{
2767	register int *kp, prot;
2768
2769	kp = protection_codes;
2770	for (prot = 0; prot < 8; prot++) {
2771		switch (prot) {
2772		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2773			/*
2774			 * Read access is also 0. There isn't any execute bit,
2775			 * so just make it readable.
2776			 */
2777		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2778		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2779		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2780			*kp++ = 0;
2781			break;
2782		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2783		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2784		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2785		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2786			*kp++ = PG_RW;
2787			break;
2788		}
2789	}
2790}
2791
2792/*
2793 * Map a set of physical memory pages into the kernel virtual
2794 * address space. Return a pointer to where it is mapped. This
2795 * routine is intended to be used for mapping device memory,
2796 * NOT real memory. The non-cacheable bits are set on each
2797 * mapped page.
2798 */
2799void *
2800pmap_mapdev(pa, size)
2801	vm_offset_t pa;
2802	vm_size_t size;
2803{
2804	vm_offset_t va, tmpva;
2805	unsigned *pte;
2806
2807	size = roundup(size, PAGE_SIZE);
2808
2809	va = kmem_alloc_pageable(kernel_map, size);
2810	if (!va)
2811		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2812
2813	pa = pa & PG_FRAME;
2814	for (tmpva = va; size > 0;) {
2815		pte = (unsigned *)vtopte(tmpva);
2816		*pte = pa | PG_RW | PG_V | PG_N;
2817		size -= PAGE_SIZE;
2818		tmpva += PAGE_SIZE;
2819		pa += PAGE_SIZE;
2820	}
2821	invltlb();
2822
2823	return ((void *) va);
2824}
2825
2826/*
2827 * perform the pmap work for mincore
2828 */
2829int
2830pmap_mincore(pmap, addr)
2831	pmap_t pmap;
2832	vm_offset_t addr;
2833{
2834
2835	unsigned *ptep, pte;
2836	int val = 0;
2837
2838	pmap_lock(pmap);
2839	ptep = pmap_pte(pmap, addr);
2840	if (ptep == 0) {
2841		pmap_unlock(pmap);
2842		return 0;
2843	}
2844
2845	if (pte = *ptep) {
2846		vm_offset_t pa;
2847		val = MINCORE_INCORE;
2848		pa = pte & PG_FRAME;
2849
2850		/*
2851		 * Modified by us
2852		 */
2853		if (pte & PG_M)
2854			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2855		/*
2856		 * Modified by someone
2857		 */
2858		else if (PHYS_TO_VM_PAGE(pa)->dirty ||
2859			pmap_is_modified(pa))
2860			val |= MINCORE_MODIFIED_OTHER;
2861		/*
2862		 * Referenced by us
2863		 */
2864		if (pte & PG_U)
2865			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2866
2867		/*
2868		 * Referenced by someone
2869		 */
2870		else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
2871			pmap_is_referenced(pa))
2872			val |= MINCORE_REFERENCED_OTHER;
2873	}
2874	pmap_unlock(pmap);
2875	return val;
2876}
2877
2878#if defined(PMAP_DEBUG)
2879pmap_pid_dump(int pid) {
2880	pmap_t pmap;
2881	struct proc *p;
2882	int npte = 0;
2883	int index;
2884	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
2885		if (p->p_pid != pid)
2886			continue;
2887
2888		if (p->p_vmspace) {
2889			int i,j;
2890			index = 0;
2891			pmap = &p->p_vmspace->vm_pmap;
2892			for(i=0;i<1024;i++) {
2893				pd_entry_t *pde;
2894				unsigned *pte;
2895				unsigned base = i << PDRSHIFT;
2896
2897				pde = &pmap->pm_pdir[i];
2898				if (pde && pmap_pde_v(pde)) {
2899					for(j=0;j<1024;j++) {
2900						unsigned va = base + (j << PAGE_SHIFT);
2901						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2902							if (index) {
2903								index = 0;
2904								printf("\n");
2905							}
2906							return npte;
2907						}
2908						pte = pmap_pte_quick( pmap, va);
2909						if (pte && pmap_pte_v(pte)) {
2910							vm_offset_t pa;
2911							vm_page_t m;
2912							pa = *(int *)pte;
2913							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2914							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2915								va, pa, m->hold_count, m->wire_count, m->flags);
2916							npte++;
2917							index++;
2918							if (index >= 2) {
2919								index = 0;
2920								printf("\n");
2921							} else {
2922								printf(" ");
2923							}
2924						}
2925					}
2926				}
2927			}
2928		}
2929	}
2930	return npte;
2931}
2932#endif
2933
2934#if defined(DEBUG)
2935
2936static void	pads __P((pmap_t pm));
2937static void	pmap_pvdump __P((vm_offset_t pa));
2938
2939/* print address space of pmap*/
2940static void
2941pads(pm)
2942	pmap_t pm;
2943{
2944	unsigned va, i, j;
2945	unsigned *ptep;
2946
2947	if (pm == kernel_pmap)
2948		return;
2949	for (i = 0; i < 1024; i++)
2950		if (pm->pm_pdir[i])
2951			for (j = 0; j < 1024; j++) {
2952				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
2953				if (pm == kernel_pmap && va < KERNBASE)
2954					continue;
2955				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2956					continue;
2957				ptep = pmap_pte_quick(pm, va);
2958				if (pmap_pte_v(ptep))
2959					printf("%x:%x ", va, *(int *) ptep);
2960			};
2961
2962}
2963
2964static void
2965pmap_pvdump(pa)
2966	vm_offset_t pa;
2967{
2968	pv_table_t *ppv;
2969	register pv_entry_t pv;
2970
2971	printf("pa %x", pa);
2972	ppv = pa_to_pvh(pa);
2973	for (pv = TAILQ_FIRST(&ppv->pv_list);
2974		pv;
2975		pv = TAILQ_NEXT(pv, pv_list)) {
2976#ifdef used_to_be
2977		printf(" -> pmap %x, va %x, flags %x",
2978		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2979#endif
2980		printf(" -> pmap %x, va %x",
2981		    pv->pv_pmap, pv->pv_va);
2982		pads(pv->pv_pmap);
2983	}
2984	printf(" ");
2985}
2986#endif
2987