pmap.c revision 180873
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 180873 2008-07-28 05:41:35Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/vm_reserv.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
156#define CPU_ENABLE_SSE
157#endif
158
159#ifndef PMAP_SHPGPERPROC
160#define PMAP_SHPGPERPROC 200
161#endif
162
163#if !defined(DIAGNOSTIC)
164#define PMAP_INLINE	__gnu89_inline
165#else
166#define PMAP_INLINE
167#endif
168
169#define PV_STATS
170#ifdef PV_STATS
171#define PV_STAT(x)	do { x ; } while (0)
172#else
173#define PV_STAT(x)	do { } while (0)
174#endif
175
176#define	pa_index(pa)	((pa) >> PDRSHIFT)
177#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
178
179/*
180 * Get PDEs and PTEs for user/kernel address space
181 */
182#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
183#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
184
185#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
186#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
187#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
188#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
189#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
190
191#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
192    atomic_clear_int((u_int *)(pte), PG_W))
193#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
194
195struct pmap kernel_pmap_store;
196LIST_HEAD(pmaplist, pmap);
197static struct pmaplist allpmaps;
198static struct mtx allpmaps_lock;
199
200vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
201vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
202int pgeflag = 0;		/* PG_G or-in */
203int pseflag = 0;		/* PG_PS or-in */
204
205static int nkpt;
206vm_offset_t kernel_vm_end;
207extern u_int32_t KERNend;
208
209#ifdef PAE
210pt_entry_t pg_nx;
211static uma_zone_t pdptzone;
212#endif
213
214SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
215
216static int pg_ps_enabled;
217SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
218    "Are large page mappings enabled?");
219
220/*
221 * Data for the pv entry allocation mechanism
222 */
223static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224static struct md_page *pv_table;
225static int shpgperproc = PMAP_SHPGPERPROC;
226
227struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
228int pv_maxchunks;			/* How many chunks we have KVA for */
229vm_offset_t pv_vafree;			/* freelist stored in the PTE */
230
231/*
232 * All those kernel PT submaps that BSD is so fond of
233 */
234struct sysmaps {
235	struct	mtx lock;
236	pt_entry_t *CMAP1;
237	pt_entry_t *CMAP2;
238	caddr_t	CADDR1;
239	caddr_t	CADDR2;
240};
241static struct sysmaps sysmaps_pcpu[MAXCPU];
242pt_entry_t *CMAP1 = 0;
243static pt_entry_t *CMAP3;
244caddr_t CADDR1 = 0, ptvmmap = 0;
245static caddr_t CADDR3;
246struct msgbuf *msgbufp = 0;
247
248/*
249 * Crashdump maps.
250 */
251static caddr_t crashdumpmap;
252
253static pt_entry_t *PMAP1 = 0, *PMAP2;
254static pt_entry_t *PADDR1 = 0, *PADDR2;
255#ifdef SMP
256static int PMAP1cpu;
257static int PMAP1changedcpu;
258SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
259	   &PMAP1changedcpu, 0,
260	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
261#endif
262static int PMAP1changed;
263SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
264	   &PMAP1changed, 0,
265	   "Number of times pmap_pte_quick changed PMAP1");
266static int PMAP1unchanged;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
268	   &PMAP1unchanged, 0,
269	   "Number of times pmap_pte_quick didn't change PMAP1");
270static struct mtx PMAP2mutex;
271
272static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
273static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
274static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
275static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
276static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
277static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
278static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
279		    vm_offset_t va);
280static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
281
282static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
283static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
284    vm_prot_t prot);
285static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
286    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
287static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
288static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
289static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
290static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
291static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
292    vm_prot_t prot);
293static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
294    vm_page_t *free);
295static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
296    vm_page_t *free);
297static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
298static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
299    vm_page_t *free);
300static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
301					vm_offset_t va);
302static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
303static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
304    vm_page_t m);
305
306static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
307
308static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
309static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
310static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
311static void pmap_pte_release(pt_entry_t *pte);
312static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
313static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
314#ifdef PAE
315static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
316#endif
317
318CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
319CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
320
321/*
322 * If you get an error here, then you set KVA_PAGES wrong! See the
323 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
324 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
325 */
326CTASSERT(KERNBASE % (1 << 24) == 0);
327
328/*
329 * Move the kernel virtual free pointer to the next
330 * 4MB.  This is used to help improve performance
331 * by using a large (4MB) page for much of the kernel
332 * (.text, .data, .bss)
333 */
334static vm_offset_t
335pmap_kmem_choose(vm_offset_t addr)
336{
337	vm_offset_t newaddr = addr;
338
339#ifndef DISABLE_PSE
340	if (cpu_feature & CPUID_PSE)
341		newaddr = (addr + PDRMASK) & ~PDRMASK;
342#endif
343	return newaddr;
344}
345
346/*
347 *	Bootstrap the system enough to run with virtual memory.
348 *
349 *	On the i386 this is called after mapping has already been enabled
350 *	and just syncs the pmap module with what has already been done.
351 *	[We can't call it easily with mapping off since the kernel is not
352 *	mapped with PA == VA, hence we would have to relocate every address
353 *	from the linked base (virtual) address "KERNBASE" to the actual
354 *	(physical) address starting relative to 0]
355 */
356void
357pmap_bootstrap(vm_paddr_t firstaddr)
358{
359	vm_offset_t va;
360	pt_entry_t *pte, *unused;
361	struct sysmaps *sysmaps;
362	int i;
363
364	/*
365	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
366	 * large. It should instead be correctly calculated in locore.s and
367	 * not based on 'first' (which is a physical address, not a virtual
368	 * address, for the start of unused physical memory). The kernel
369	 * page tables are NOT double mapped and thus should not be included
370	 * in this calculation.
371	 */
372	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
373	virtual_avail = pmap_kmem_choose(virtual_avail);
374
375	virtual_end = VM_MAX_KERNEL_ADDRESS;
376
377	/*
378	 * Initialize the kernel pmap (which is statically allocated).
379	 */
380	PMAP_LOCK_INIT(kernel_pmap);
381	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
382#ifdef PAE
383	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
384#endif
385	kernel_pmap->pm_root = NULL;
386	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
387	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
388	LIST_INIT(&allpmaps);
389	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
390	mtx_lock_spin(&allpmaps_lock);
391	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
392	mtx_unlock_spin(&allpmaps_lock);
393	nkpt = NKPT;
394
395	/*
396	 * Reserve some special page table entries/VA space for temporary
397	 * mapping of pages.
398	 */
399#define	SYSMAP(c, p, v, n)	\
400	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
401
402	va = virtual_avail;
403	pte = vtopte(va);
404
405	/*
406	 * CMAP1/CMAP2 are used for zeroing and copying pages.
407	 * CMAP3 is used for the idle process page zeroing.
408	 */
409	for (i = 0; i < MAXCPU; i++) {
410		sysmaps = &sysmaps_pcpu[i];
411		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
412		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
413		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
414	}
415	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
416	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
417	*CMAP3 = 0;
418
419	/*
420	 * Crashdump maps.
421	 */
422	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
423
424	/*
425	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
426	 */
427	SYSMAP(caddr_t, unused, ptvmmap, 1)
428
429	/*
430	 * msgbufp is used to map the system message buffer.
431	 */
432	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
433
434	/*
435	 * ptemap is used for pmap_pte_quick
436	 */
437	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
438	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
439
440	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
441
442	virtual_avail = va;
443
444	*CMAP1 = 0;
445
446	/*
447	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
448	 * physical memory region that is used by the ACPI wakeup code.  This
449	 * mapping must not have PG_G set.
450	 */
451#ifdef XBOX
452	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
453	 * an early stadium, we cannot yet neatly map video memory ... :-(
454	 * Better fixes are very welcome! */
455	if (!arch_i386_is_xbox)
456#endif
457	for (i = 1; i < NKPT; i++)
458		PTD[i] = 0;
459
460	/* Initialize the PAT MSR if present. */
461	pmap_init_pat();
462
463	/* Turn on PG_G on kernel page(s) */
464	pmap_set_pg();
465}
466
467/*
468 * Setup the PAT MSR.
469 */
470void
471pmap_init_pat(void)
472{
473	uint64_t pat_msr;
474
475	/* Bail if this CPU doesn't implement PAT. */
476	if (!(cpu_feature & CPUID_PAT))
477		return;
478
479#ifdef PAT_WORKS
480	/*
481	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
482	 * Program 4 and 5 as WP and WC.
483	 * Leave 6 and 7 as UC and UC-.
484	 */
485	pat_msr = rdmsr(MSR_PAT);
486	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
487	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
488	    PAT_VALUE(5, PAT_WRITE_COMBINING);
489#else
490	/*
491	 * Due to some Intel errata, we can only safely use the lower 4
492	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
493	 * of UC-.
494	 *
495	 *   Intel Pentium III Processor Specification Update
496	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
497	 * or Mode C Paging)
498	 *
499	 *   Intel Pentium IV  Processor Specification Update
500	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
501	 */
502	pat_msr = rdmsr(MSR_PAT);
503	pat_msr &= ~PAT_MASK(2);
504	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
505#endif
506	wrmsr(MSR_PAT, pat_msr);
507}
508
509/*
510 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
511 */
512void
513pmap_set_pg(void)
514{
515	pd_entry_t pdir;
516	pt_entry_t *pte;
517	vm_offset_t va, endva;
518	int i;
519
520	if (pgeflag == 0)
521		return;
522
523	i = KERNLOAD/NBPDR;
524	endva = KERNBASE + KERNend;
525
526	if (pseflag) {
527		va = KERNBASE + KERNLOAD;
528		while (va  < endva) {
529			pdir = kernel_pmap->pm_pdir[KPTDI+i];
530			pdir |= pgeflag;
531			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
532			invltlb();	/* Play it safe, invltlb() every time */
533			i++;
534			va += NBPDR;
535		}
536	} else {
537		va = (vm_offset_t)btext;
538		while (va < endva) {
539			pte = vtopte(va);
540			if (*pte)
541				*pte |= pgeflag;
542			invltlb();	/* Play it safe, invltlb() every time */
543			va += PAGE_SIZE;
544		}
545	}
546}
547
548/*
549 * Initialize a vm_page's machine-dependent fields.
550 */
551void
552pmap_page_init(vm_page_t m)
553{
554
555	TAILQ_INIT(&m->md.pv_list);
556}
557
558#ifdef PAE
559
560static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
561
562static void *
563pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
564{
565
566	/* Inform UMA that this allocator uses kernel_map/object. */
567	*flags = UMA_SLAB_KERNEL;
568	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
569	    1, 0));
570}
571#endif
572
573/*
574 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
575 * Requirements:
576 *  - Must deal with pages in order to ensure that none of the PG_* bits
577 *    are ever set, PG_V in particular.
578 *  - Assumes we can write to ptes without pte_store() atomic ops, even
579 *    on PAE systems.  This should be ok.
580 *  - Assumes nothing will ever test these addresses for 0 to indicate
581 *    no mapping instead of correctly checking PG_V.
582 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
583 * Because PG_V is never set, there can be no mappings to invalidate.
584 */
585static vm_offset_t
586pmap_ptelist_alloc(vm_offset_t *head)
587{
588	pt_entry_t *pte;
589	vm_offset_t va;
590
591	va = *head;
592	if (va == 0)
593		return (va);	/* Out of memory */
594	pte = vtopte(va);
595	*head = *pte;
596	if (*head & PG_V)
597		panic("pmap_ptelist_alloc: va with PG_V set!");
598	*pte = 0;
599	return (va);
600}
601
602static void
603pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
604{
605	pt_entry_t *pte;
606
607	if (va & PG_V)
608		panic("pmap_ptelist_free: freeing va with PG_V set!");
609	pte = vtopte(va);
610	*pte = *head;		/* virtual! PG_V is 0 though */
611	*head = va;
612}
613
614static void
615pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
616{
617	int i;
618	vm_offset_t va;
619
620	*head = 0;
621	for (i = npages - 1; i >= 0; i--) {
622		va = (vm_offset_t)base + i * PAGE_SIZE;
623		pmap_ptelist_free(head, va);
624	}
625}
626
627
628/*
629 *	Initialize the pmap module.
630 *	Called by vm_init, to initialize any structures that the pmap
631 *	system needs to map virtual memory.
632 */
633void
634pmap_init(void)
635{
636	vm_page_t mpte;
637	vm_size_t s;
638	int i, pv_npg;
639
640	/*
641	 * Initialize the vm page array entries for the kernel pmap's
642	 * page table pages.
643	 */
644	for (i = 0; i < nkpt; i++) {
645		mpte = PHYS_TO_VM_PAGE(PTD[i + KPTDI] & PG_FRAME);
646		KASSERT(mpte >= vm_page_array &&
647		    mpte < &vm_page_array[vm_page_array_size],
648		    ("pmap_init: page table page is out of range"));
649		mpte->pindex = i + KPTDI;
650		mpte->phys_addr = PTD[i + KPTDI] & PG_FRAME;
651	}
652
653	/*
654	 * Initialize the address space (zone) for the pv entries.  Set a
655	 * high water mark so that the system can recover from excessive
656	 * numbers of pv entries.
657	 */
658	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
659	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
660	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
661	pv_entry_max = roundup(pv_entry_max, _NPCPV);
662	pv_entry_high_water = 9 * (pv_entry_max / 10);
663
664	/*
665	 * Are large page mappings enabled?
666	 */
667	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
668
669	/*
670	 * Calculate the size of the pv head table for superpages.
671	 */
672	for (i = 0; phys_avail[i + 1]; i += 2);
673	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
674
675	/*
676	 * Allocate memory for the pv head table for superpages.
677	 */
678	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
679	s = round_page(s);
680	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
681	for (i = 0; i < pv_npg; i++)
682		TAILQ_INIT(&pv_table[i].pv_list);
683
684	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
685	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
686	    PAGE_SIZE * pv_maxchunks);
687	if (pv_chunkbase == NULL)
688		panic("pmap_init: not enough kvm for pv chunks");
689	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
690#ifdef PAE
691	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
692	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
693	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
694	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
695#endif
696}
697
698
699SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
700	"Max number of PV entries");
701SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
702	"Page share factor per proc");
703
704SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
705    "2/4MB page mapping counters");
706
707static u_long pmap_pde_demotions;
708SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
709    &pmap_pde_demotions, 0, "2/4MB page demotions");
710
711static u_long pmap_pde_mappings;
712SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
713    &pmap_pde_mappings, 0, "2/4MB page mappings");
714
715static u_long pmap_pde_p_failures;
716SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
717    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
718
719static u_long pmap_pde_promotions;
720SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
721    &pmap_pde_promotions, 0, "2/4MB page promotions");
722
723/***************************************************
724 * Low level helper routines.....
725 ***************************************************/
726
727/*
728 * Determine the appropriate bits to set in a PTE or PDE for a specified
729 * caching mode.
730 */
731static int
732pmap_cache_bits(int mode, boolean_t is_pde)
733{
734	int pat_flag, pat_index, cache_bits;
735
736	/* The PAT bit is different for PTE's and PDE's. */
737	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
738
739	/* If we don't support PAT, map extended modes to older ones. */
740	if (!(cpu_feature & CPUID_PAT)) {
741		switch (mode) {
742		case PAT_UNCACHEABLE:
743		case PAT_WRITE_THROUGH:
744		case PAT_WRITE_BACK:
745			break;
746		case PAT_UNCACHED:
747		case PAT_WRITE_COMBINING:
748		case PAT_WRITE_PROTECTED:
749			mode = PAT_UNCACHEABLE;
750			break;
751		}
752	}
753
754	/* Map the caching mode to a PAT index. */
755	switch (mode) {
756#ifdef PAT_WORKS
757	case PAT_UNCACHEABLE:
758		pat_index = 3;
759		break;
760	case PAT_WRITE_THROUGH:
761		pat_index = 1;
762		break;
763	case PAT_WRITE_BACK:
764		pat_index = 0;
765		break;
766	case PAT_UNCACHED:
767		pat_index = 2;
768		break;
769	case PAT_WRITE_COMBINING:
770		pat_index = 5;
771		break;
772	case PAT_WRITE_PROTECTED:
773		pat_index = 4;
774		break;
775#else
776	case PAT_UNCACHED:
777	case PAT_UNCACHEABLE:
778	case PAT_WRITE_PROTECTED:
779		pat_index = 3;
780		break;
781	case PAT_WRITE_THROUGH:
782		pat_index = 1;
783		break;
784	case PAT_WRITE_BACK:
785		pat_index = 0;
786		break;
787	case PAT_WRITE_COMBINING:
788		pat_index = 2;
789		break;
790#endif
791	default:
792		panic("Unknown caching mode %d\n", mode);
793	}
794
795	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
796	cache_bits = 0;
797	if (pat_index & 0x4)
798		cache_bits |= pat_flag;
799	if (pat_index & 0x2)
800		cache_bits |= PG_NC_PCD;
801	if (pat_index & 0x1)
802		cache_bits |= PG_NC_PWT;
803	return (cache_bits);
804}
805#ifdef SMP
806/*
807 * For SMP, these functions have to use the IPI mechanism for coherence.
808 *
809 * N.B.: Before calling any of the following TLB invalidation functions,
810 * the calling processor must ensure that all stores updating a non-
811 * kernel page table are globally performed.  Otherwise, another
812 * processor could cache an old, pre-update entry without being
813 * invalidated.  This can happen one of two ways: (1) The pmap becomes
814 * active on another processor after its pm_active field is checked by
815 * one of the following functions but before a store updating the page
816 * table is globally performed. (2) The pmap becomes active on another
817 * processor before its pm_active field is checked but due to
818 * speculative loads one of the following functions stills reads the
819 * pmap as inactive on the other processor.
820 *
821 * The kernel page table is exempt because its pm_active field is
822 * immutable.  The kernel page table is always active on every
823 * processor.
824 */
825void
826pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
827{
828	u_int cpumask;
829	u_int other_cpus;
830
831	sched_pin();
832	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
833		invlpg(va);
834		smp_invlpg(va);
835	} else {
836		cpumask = PCPU_GET(cpumask);
837		other_cpus = PCPU_GET(other_cpus);
838		if (pmap->pm_active & cpumask)
839			invlpg(va);
840		if (pmap->pm_active & other_cpus)
841			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
842	}
843	sched_unpin();
844}
845
846void
847pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
848{
849	u_int cpumask;
850	u_int other_cpus;
851	vm_offset_t addr;
852
853	sched_pin();
854	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
855		for (addr = sva; addr < eva; addr += PAGE_SIZE)
856			invlpg(addr);
857		smp_invlpg_range(sva, eva);
858	} else {
859		cpumask = PCPU_GET(cpumask);
860		other_cpus = PCPU_GET(other_cpus);
861		if (pmap->pm_active & cpumask)
862			for (addr = sva; addr < eva; addr += PAGE_SIZE)
863				invlpg(addr);
864		if (pmap->pm_active & other_cpus)
865			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
866			    sva, eva);
867	}
868	sched_unpin();
869}
870
871void
872pmap_invalidate_all(pmap_t pmap)
873{
874	u_int cpumask;
875	u_int other_cpus;
876
877	sched_pin();
878	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
879		invltlb();
880		smp_invltlb();
881	} else {
882		cpumask = PCPU_GET(cpumask);
883		other_cpus = PCPU_GET(other_cpus);
884		if (pmap->pm_active & cpumask)
885			invltlb();
886		if (pmap->pm_active & other_cpus)
887			smp_masked_invltlb(pmap->pm_active & other_cpus);
888	}
889	sched_unpin();
890}
891
892void
893pmap_invalidate_cache(void)
894{
895
896	sched_pin();
897	wbinvd();
898	smp_cache_flush();
899	sched_unpin();
900}
901#else /* !SMP */
902/*
903 * Normal, non-SMP, 486+ invalidation functions.
904 * We inline these within pmap.c for speed.
905 */
906PMAP_INLINE void
907pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
908{
909
910	if (pmap == kernel_pmap || pmap->pm_active)
911		invlpg(va);
912}
913
914PMAP_INLINE void
915pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
916{
917	vm_offset_t addr;
918
919	if (pmap == kernel_pmap || pmap->pm_active)
920		for (addr = sva; addr < eva; addr += PAGE_SIZE)
921			invlpg(addr);
922}
923
924PMAP_INLINE void
925pmap_invalidate_all(pmap_t pmap)
926{
927
928	if (pmap == kernel_pmap || pmap->pm_active)
929		invltlb();
930}
931
932PMAP_INLINE void
933pmap_invalidate_cache(void)
934{
935
936	wbinvd();
937}
938#endif /* !SMP */
939
940/*
941 * Are we current address space or kernel?  N.B. We return FALSE when
942 * a pmap's page table is in use because a kernel thread is borrowing
943 * it.  The borrowed page table can change spontaneously, making any
944 * dependence on its continued use subject to a race condition.
945 */
946static __inline int
947pmap_is_current(pmap_t pmap)
948{
949
950	return (pmap == kernel_pmap ||
951		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
952	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
953}
954
955/*
956 * If the given pmap is not the current or kernel pmap, the returned pte must
957 * be released by passing it to pmap_pte_release().
958 */
959pt_entry_t *
960pmap_pte(pmap_t pmap, vm_offset_t va)
961{
962	pd_entry_t newpf;
963	pd_entry_t *pde;
964
965	pde = pmap_pde(pmap, va);
966	if (*pde & PG_PS)
967		return (pde);
968	if (*pde != 0) {
969		/* are we current address space or kernel? */
970		if (pmap_is_current(pmap))
971			return (vtopte(va));
972		mtx_lock(&PMAP2mutex);
973		newpf = *pde & PG_FRAME;
974		if ((*PMAP2 & PG_FRAME) != newpf) {
975			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
976			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
977		}
978		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
979	}
980	return (0);
981}
982
983/*
984 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
985 * being NULL.
986 */
987static __inline void
988pmap_pte_release(pt_entry_t *pte)
989{
990
991	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
992		mtx_unlock(&PMAP2mutex);
993}
994
995static __inline void
996invlcaddr(void *caddr)
997{
998
999	invlpg((u_int)caddr);
1000}
1001
1002/*
1003 * Super fast pmap_pte routine best used when scanning
1004 * the pv lists.  This eliminates many coarse-grained
1005 * invltlb calls.  Note that many of the pv list
1006 * scans are across different pmaps.  It is very wasteful
1007 * to do an entire invltlb for checking a single mapping.
1008 *
1009 * If the given pmap is not the current pmap, vm_page_queue_mtx
1010 * must be held and curthread pinned to a CPU.
1011 */
1012static pt_entry_t *
1013pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1014{
1015	pd_entry_t newpf;
1016	pd_entry_t *pde;
1017
1018	pde = pmap_pde(pmap, va);
1019	if (*pde & PG_PS)
1020		return (pde);
1021	if (*pde != 0) {
1022		/* are we current address space or kernel? */
1023		if (pmap_is_current(pmap))
1024			return (vtopte(va));
1025		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1026		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1027		newpf = *pde & PG_FRAME;
1028		if ((*PMAP1 & PG_FRAME) != newpf) {
1029			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1030#ifdef SMP
1031			PMAP1cpu = PCPU_GET(cpuid);
1032#endif
1033			invlcaddr(PADDR1);
1034			PMAP1changed++;
1035		} else
1036#ifdef SMP
1037		if (PMAP1cpu != PCPU_GET(cpuid)) {
1038			PMAP1cpu = PCPU_GET(cpuid);
1039			invlcaddr(PADDR1);
1040			PMAP1changedcpu++;
1041		} else
1042#endif
1043			PMAP1unchanged++;
1044		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1045	}
1046	return (0);
1047}
1048
1049/*
1050 *	Routine:	pmap_extract
1051 *	Function:
1052 *		Extract the physical page address associated
1053 *		with the given map/virtual_address pair.
1054 */
1055vm_paddr_t
1056pmap_extract(pmap_t pmap, vm_offset_t va)
1057{
1058	vm_paddr_t rtval;
1059	pt_entry_t *pte;
1060	pd_entry_t pde;
1061
1062	rtval = 0;
1063	PMAP_LOCK(pmap);
1064	pde = pmap->pm_pdir[va >> PDRSHIFT];
1065	if (pde != 0) {
1066		if ((pde & PG_PS) != 0)
1067			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1068		else {
1069			pte = pmap_pte(pmap, va);
1070			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1071			pmap_pte_release(pte);
1072		}
1073	}
1074	PMAP_UNLOCK(pmap);
1075	return (rtval);
1076}
1077
1078/*
1079 *	Routine:	pmap_extract_and_hold
1080 *	Function:
1081 *		Atomically extract and hold the physical page
1082 *		with the given pmap and virtual address pair
1083 *		if that mapping permits the given protection.
1084 */
1085vm_page_t
1086pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1087{
1088	pd_entry_t pde;
1089	pt_entry_t pte;
1090	vm_page_t m;
1091
1092	m = NULL;
1093	vm_page_lock_queues();
1094	PMAP_LOCK(pmap);
1095	pde = *pmap_pde(pmap, va);
1096	if (pde != 0) {
1097		if (pde & PG_PS) {
1098			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1099				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1100				    (va & PDRMASK));
1101				vm_page_hold(m);
1102			}
1103		} else {
1104			sched_pin();
1105			pte = *pmap_pte_quick(pmap, va);
1106			if (pte != 0 &&
1107			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1108				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1109				vm_page_hold(m);
1110			}
1111			sched_unpin();
1112		}
1113	}
1114	vm_page_unlock_queues();
1115	PMAP_UNLOCK(pmap);
1116	return (m);
1117}
1118
1119/***************************************************
1120 * Low level mapping routines.....
1121 ***************************************************/
1122
1123/*
1124 * Add a wired page to the kva.
1125 * Note: not SMP coherent.
1126 */
1127PMAP_INLINE void
1128pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1129{
1130	pt_entry_t *pte;
1131
1132	pte = vtopte(va);
1133	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1134}
1135
1136PMAP_INLINE void
1137pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1138{
1139	pt_entry_t *pte;
1140
1141	pte = vtopte(va);
1142	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1143}
1144
1145/*
1146 * Remove a page from the kernel pagetables.
1147 * Note: not SMP coherent.
1148 */
1149PMAP_INLINE void
1150pmap_kremove(vm_offset_t va)
1151{
1152	pt_entry_t *pte;
1153
1154	pte = vtopte(va);
1155	pte_clear(pte);
1156}
1157
1158/*
1159 *	Used to map a range of physical addresses into kernel
1160 *	virtual address space.
1161 *
1162 *	The value passed in '*virt' is a suggested virtual address for
1163 *	the mapping. Architectures which can support a direct-mapped
1164 *	physical to virtual region can return the appropriate address
1165 *	within that region, leaving '*virt' unchanged. Other
1166 *	architectures should map the pages starting at '*virt' and
1167 *	update '*virt' with the first usable address after the mapped
1168 *	region.
1169 */
1170vm_offset_t
1171pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1172{
1173	vm_offset_t va, sva;
1174
1175	va = sva = *virt;
1176	while (start < end) {
1177		pmap_kenter(va, start);
1178		va += PAGE_SIZE;
1179		start += PAGE_SIZE;
1180	}
1181	pmap_invalidate_range(kernel_pmap, sva, va);
1182	*virt = va;
1183	return (sva);
1184}
1185
1186
1187/*
1188 * Add a list of wired pages to the kva
1189 * this routine is only used for temporary
1190 * kernel mappings that do not need to have
1191 * page modification or references recorded.
1192 * Note that old mappings are simply written
1193 * over.  The page *must* be wired.
1194 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1195 */
1196void
1197pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1198{
1199	pt_entry_t *endpte, oldpte, *pte;
1200
1201	oldpte = 0;
1202	pte = vtopte(sva);
1203	endpte = pte + count;
1204	while (pte < endpte) {
1205		oldpte |= *pte;
1206		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1207		pte++;
1208		ma++;
1209	}
1210	if ((oldpte & PG_V) != 0)
1211		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1212		    PAGE_SIZE);
1213}
1214
1215/*
1216 * This routine tears out page mappings from the
1217 * kernel -- it is meant only for temporary mappings.
1218 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1219 */
1220void
1221pmap_qremove(vm_offset_t sva, int count)
1222{
1223	vm_offset_t va;
1224
1225	va = sva;
1226	while (count-- > 0) {
1227		pmap_kremove(va);
1228		va += PAGE_SIZE;
1229	}
1230	pmap_invalidate_range(kernel_pmap, sva, va);
1231}
1232
1233/***************************************************
1234 * Page table page management routines.....
1235 ***************************************************/
1236static __inline void
1237pmap_free_zero_pages(vm_page_t free)
1238{
1239	vm_page_t m;
1240
1241	while (free != NULL) {
1242		m = free;
1243		free = m->right;
1244		/* Preserve the page's PG_ZERO setting. */
1245		vm_page_free_toq(m);
1246	}
1247}
1248
1249/*
1250 * Schedule the specified unused page table page to be freed.  Specifically,
1251 * add the page to the specified list of pages that will be released to the
1252 * physical memory manager after the TLB has been updated.
1253 */
1254static __inline void
1255pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1256{
1257
1258	if (set_PG_ZERO)
1259		m->flags |= PG_ZERO;
1260	else
1261		m->flags &= ~PG_ZERO;
1262	m->right = *free;
1263	*free = m;
1264}
1265
1266/*
1267 * Inserts the specified page table page into the specified pmap's collection
1268 * of idle page table pages.  Each of a pmap's page table pages is responsible
1269 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1270 * ordered by this virtual address range.
1271 */
1272static void
1273pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1274{
1275	vm_page_t root;
1276
1277	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1278	root = pmap->pm_root;
1279	if (root == NULL) {
1280		mpte->left = NULL;
1281		mpte->right = NULL;
1282	} else {
1283		root = vm_page_splay(mpte->pindex, root);
1284		if (mpte->pindex < root->pindex) {
1285			mpte->left = root->left;
1286			mpte->right = root;
1287			root->left = NULL;
1288		} else if (mpte->pindex == root->pindex)
1289			panic("pmap_insert_pt_page: pindex already inserted");
1290		else {
1291			mpte->right = root->right;
1292			mpte->left = root;
1293			root->right = NULL;
1294		}
1295	}
1296	pmap->pm_root = mpte;
1297}
1298
1299/*
1300 * Looks for a page table page mapping the specified virtual address in the
1301 * specified pmap's collection of idle page table pages.  Returns NULL if there
1302 * is no page table page corresponding to the specified virtual address.
1303 */
1304static vm_page_t
1305pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1306{
1307	vm_page_t mpte;
1308	vm_pindex_t pindex = va >> PDRSHIFT;
1309
1310	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1311	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1312		mpte = vm_page_splay(pindex, mpte);
1313		if ((pmap->pm_root = mpte)->pindex != pindex)
1314			mpte = NULL;
1315	}
1316	return (mpte);
1317}
1318
1319/*
1320 * Removes the specified page table page from the specified pmap's collection
1321 * of idle page table pages.  The specified page table page must be a member of
1322 * the pmap's collection.
1323 */
1324static void
1325pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1326{
1327	vm_page_t root;
1328
1329	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1330	if (mpte != pmap->pm_root)
1331		vm_page_splay(mpte->pindex, pmap->pm_root);
1332	if (mpte->left == NULL)
1333		root = mpte->right;
1334	else {
1335		root = vm_page_splay(mpte->pindex, mpte->left);
1336		root->right = mpte->right;
1337	}
1338	pmap->pm_root = root;
1339}
1340
1341/*
1342 * This routine unholds page table pages, and if the hold count
1343 * drops to zero, then it decrements the wire count.
1344 */
1345static __inline int
1346pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1347{
1348
1349	--m->wire_count;
1350	if (m->wire_count == 0)
1351		return _pmap_unwire_pte_hold(pmap, m, free);
1352	else
1353		return 0;
1354}
1355
1356static int
1357_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1358{
1359	vm_offset_t pteva;
1360
1361	/*
1362	 * unmap the page table page
1363	 */
1364	pmap->pm_pdir[m->pindex] = 0;
1365	--pmap->pm_stats.resident_count;
1366
1367	/*
1368	 * This is a release store so that the ordinary store unmapping
1369	 * the page table page is globally performed before TLB shoot-
1370	 * down is begun.
1371	 */
1372	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1373
1374	/*
1375	 * Do an invltlb to make the invalidated mapping
1376	 * take effect immediately.
1377	 */
1378	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1379	pmap_invalidate_page(pmap, pteva);
1380
1381	/*
1382	 * Put page on a list so that it is released after
1383	 * *ALL* TLB shootdown is done
1384	 */
1385	pmap_add_delayed_free_list(m, free, TRUE);
1386
1387	return 1;
1388}
1389
1390/*
1391 * After removing a page table entry, this routine is used to
1392 * conditionally free the page, and manage the hold/wire counts.
1393 */
1394static int
1395pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1396{
1397	pd_entry_t ptepde;
1398	vm_page_t mpte;
1399
1400	if (va >= VM_MAXUSER_ADDRESS)
1401		return 0;
1402	ptepde = *pmap_pde(pmap, va);
1403	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1404	return pmap_unwire_pte_hold(pmap, mpte, free);
1405}
1406
1407void
1408pmap_pinit0(pmap_t pmap)
1409{
1410
1411	PMAP_LOCK_INIT(pmap);
1412	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1413#ifdef PAE
1414	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1415#endif
1416	pmap->pm_root = NULL;
1417	pmap->pm_active = 0;
1418	PCPU_SET(curpmap, pmap);
1419	TAILQ_INIT(&pmap->pm_pvchunk);
1420	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1421	mtx_lock_spin(&allpmaps_lock);
1422	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1423	mtx_unlock_spin(&allpmaps_lock);
1424}
1425
1426/*
1427 * Initialize a preallocated and zeroed pmap structure,
1428 * such as one in a vmspace structure.
1429 */
1430int
1431pmap_pinit(pmap_t pmap)
1432{
1433	vm_page_t m, ptdpg[NPGPTD];
1434	vm_paddr_t pa;
1435	static int color;
1436	int i;
1437
1438	PMAP_LOCK_INIT(pmap);
1439
1440	/*
1441	 * No need to allocate page table space yet but we do need a valid
1442	 * page directory table.
1443	 */
1444	if (pmap->pm_pdir == NULL) {
1445		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1446		    NBPTD);
1447
1448		if (pmap->pm_pdir == NULL) {
1449			PMAP_LOCK_DESTROY(pmap);
1450			return (0);
1451		}
1452#ifdef PAE
1453		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1454		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1455		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1456		    ("pmap_pinit: pdpt misaligned"));
1457		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1458		    ("pmap_pinit: pdpt above 4g"));
1459#endif
1460		pmap->pm_root = NULL;
1461	}
1462	KASSERT(pmap->pm_root == NULL,
1463	    ("pmap_pinit: pmap has reserved page table page(s)"));
1464
1465	/*
1466	 * allocate the page directory page(s)
1467	 */
1468	for (i = 0; i < NPGPTD;) {
1469		m = vm_page_alloc(NULL, color++,
1470		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1471		    VM_ALLOC_ZERO);
1472		if (m == NULL)
1473			VM_WAIT;
1474		else {
1475			ptdpg[i++] = m;
1476		}
1477	}
1478
1479	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1480
1481	for (i = 0; i < NPGPTD; i++) {
1482		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1483			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1484	}
1485
1486	mtx_lock_spin(&allpmaps_lock);
1487	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1488	mtx_unlock_spin(&allpmaps_lock);
1489	/* Wire in kernel global address entries. */
1490	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1491
1492	/* install self-referential address mapping entry(s) */
1493	for (i = 0; i < NPGPTD; i++) {
1494		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1495		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1496#ifdef PAE
1497		pmap->pm_pdpt[i] = pa | PG_V;
1498#endif
1499	}
1500
1501	pmap->pm_active = 0;
1502	TAILQ_INIT(&pmap->pm_pvchunk);
1503	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1504
1505	return (1);
1506}
1507
1508/*
1509 * this routine is called if the page table page is not
1510 * mapped correctly.
1511 */
1512static vm_page_t
1513_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1514{
1515	vm_paddr_t ptepa;
1516	vm_page_t m;
1517
1518	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1519	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1520	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1521
1522	/*
1523	 * Allocate a page table page.
1524	 */
1525	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1526	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1527		if (flags & M_WAITOK) {
1528			PMAP_UNLOCK(pmap);
1529			vm_page_unlock_queues();
1530			VM_WAIT;
1531			vm_page_lock_queues();
1532			PMAP_LOCK(pmap);
1533		}
1534
1535		/*
1536		 * Indicate the need to retry.  While waiting, the page table
1537		 * page may have been allocated.
1538		 */
1539		return (NULL);
1540	}
1541	if ((m->flags & PG_ZERO) == 0)
1542		pmap_zero_page(m);
1543
1544	/*
1545	 * Map the pagetable page into the process address space, if
1546	 * it isn't already there.
1547	 */
1548
1549	pmap->pm_stats.resident_count++;
1550
1551	ptepa = VM_PAGE_TO_PHYS(m);
1552	pmap->pm_pdir[ptepindex] =
1553		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1554
1555	return m;
1556}
1557
1558static vm_page_t
1559pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1560{
1561	unsigned ptepindex;
1562	pd_entry_t ptepa;
1563	vm_page_t m;
1564
1565	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1566	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1567	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1568
1569	/*
1570	 * Calculate pagetable page index
1571	 */
1572	ptepindex = va >> PDRSHIFT;
1573retry:
1574	/*
1575	 * Get the page directory entry
1576	 */
1577	ptepa = pmap->pm_pdir[ptepindex];
1578
1579	/*
1580	 * This supports switching from a 4MB page to a
1581	 * normal 4K page.
1582	 */
1583	if (ptepa & PG_PS) {
1584		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1585		ptepa = pmap->pm_pdir[ptepindex];
1586	}
1587
1588	/*
1589	 * If the page table page is mapped, we just increment the
1590	 * hold count, and activate it.
1591	 */
1592	if (ptepa) {
1593		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1594		m->wire_count++;
1595	} else {
1596		/*
1597		 * Here if the pte page isn't mapped, or if it has
1598		 * been deallocated.
1599		 */
1600		m = _pmap_allocpte(pmap, ptepindex, flags);
1601		if (m == NULL && (flags & M_WAITOK))
1602			goto retry;
1603	}
1604	return (m);
1605}
1606
1607
1608/***************************************************
1609* Pmap allocation/deallocation routines.
1610 ***************************************************/
1611
1612#ifdef SMP
1613/*
1614 * Deal with a SMP shootdown of other users of the pmap that we are
1615 * trying to dispose of.  This can be a bit hairy.
1616 */
1617static u_int *lazymask;
1618static u_int lazyptd;
1619static volatile u_int lazywait;
1620
1621void pmap_lazyfix_action(void);
1622
1623void
1624pmap_lazyfix_action(void)
1625{
1626	u_int mymask = PCPU_GET(cpumask);
1627
1628#ifdef COUNT_IPIS
1629	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1630#endif
1631	if (rcr3() == lazyptd)
1632		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1633	atomic_clear_int(lazymask, mymask);
1634	atomic_store_rel_int(&lazywait, 1);
1635}
1636
1637static void
1638pmap_lazyfix_self(u_int mymask)
1639{
1640
1641	if (rcr3() == lazyptd)
1642		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1643	atomic_clear_int(lazymask, mymask);
1644}
1645
1646
1647static void
1648pmap_lazyfix(pmap_t pmap)
1649{
1650	u_int mymask;
1651	u_int mask;
1652	u_int spins;
1653
1654	while ((mask = pmap->pm_active) != 0) {
1655		spins = 50000000;
1656		mask = mask & -mask;	/* Find least significant set bit */
1657		mtx_lock_spin(&smp_ipi_mtx);
1658#ifdef PAE
1659		lazyptd = vtophys(pmap->pm_pdpt);
1660#else
1661		lazyptd = vtophys(pmap->pm_pdir);
1662#endif
1663		mymask = PCPU_GET(cpumask);
1664		if (mask == mymask) {
1665			lazymask = &pmap->pm_active;
1666			pmap_lazyfix_self(mymask);
1667		} else {
1668			atomic_store_rel_int((u_int *)&lazymask,
1669			    (u_int)&pmap->pm_active);
1670			atomic_store_rel_int(&lazywait, 0);
1671			ipi_selected(mask, IPI_LAZYPMAP);
1672			while (lazywait == 0) {
1673				ia32_pause();
1674				if (--spins == 0)
1675					break;
1676			}
1677		}
1678		mtx_unlock_spin(&smp_ipi_mtx);
1679		if (spins == 0)
1680			printf("pmap_lazyfix: spun for 50000000\n");
1681	}
1682}
1683
1684#else	/* SMP */
1685
1686/*
1687 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1688 * unlikely to have to even execute this code, including the fact
1689 * that the cleanup is deferred until the parent does a wait(2), which
1690 * means that another userland process has run.
1691 */
1692static void
1693pmap_lazyfix(pmap_t pmap)
1694{
1695	u_int cr3;
1696
1697	cr3 = vtophys(pmap->pm_pdir);
1698	if (cr3 == rcr3()) {
1699		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1700		pmap->pm_active &= ~(PCPU_GET(cpumask));
1701	}
1702}
1703#endif	/* SMP */
1704
1705/*
1706 * Release any resources held by the given physical map.
1707 * Called when a pmap initialized by pmap_pinit is being released.
1708 * Should only be called if the map contains no valid mappings.
1709 */
1710void
1711pmap_release(pmap_t pmap)
1712{
1713	vm_page_t m, ptdpg[NPGPTD];
1714	int i;
1715
1716	KASSERT(pmap->pm_stats.resident_count == 0,
1717	    ("pmap_release: pmap resident count %ld != 0",
1718	    pmap->pm_stats.resident_count));
1719	KASSERT(pmap->pm_root == NULL,
1720	    ("pmap_release: pmap has reserved page table page(s)"));
1721
1722	pmap_lazyfix(pmap);
1723	mtx_lock_spin(&allpmaps_lock);
1724	LIST_REMOVE(pmap, pm_list);
1725	mtx_unlock_spin(&allpmaps_lock);
1726
1727	for (i = 0; i < NPGPTD; i++)
1728		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1729		    PG_FRAME);
1730
1731	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1732	    sizeof(*pmap->pm_pdir));
1733
1734	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1735
1736	for (i = 0; i < NPGPTD; i++) {
1737		m = ptdpg[i];
1738#ifdef PAE
1739		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1740		    ("pmap_release: got wrong ptd page"));
1741#endif
1742		m->wire_count--;
1743		atomic_subtract_int(&cnt.v_wire_count, 1);
1744		vm_page_free_zero(m);
1745	}
1746	PMAP_LOCK_DESTROY(pmap);
1747}
1748
1749static int
1750kvm_size(SYSCTL_HANDLER_ARGS)
1751{
1752	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1753
1754	return sysctl_handle_long(oidp, &ksize, 0, req);
1755}
1756SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1757    0, 0, kvm_size, "IU", "Size of KVM");
1758
1759static int
1760kvm_free(SYSCTL_HANDLER_ARGS)
1761{
1762	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1763
1764	return sysctl_handle_long(oidp, &kfree, 0, req);
1765}
1766SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1767    0, 0, kvm_free, "IU", "Amount of KVM free");
1768
1769/*
1770 * grow the number of kernel page table entries, if needed
1771 */
1772void
1773pmap_growkernel(vm_offset_t addr)
1774{
1775	struct pmap *pmap;
1776	vm_paddr_t ptppaddr;
1777	vm_page_t nkpg;
1778	pd_entry_t newpdir;
1779	pt_entry_t *pde;
1780
1781	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1782	if (kernel_vm_end == 0) {
1783		kernel_vm_end = KERNBASE;
1784		nkpt = 0;
1785		while (pdir_pde(PTD, kernel_vm_end)) {
1786			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1787			nkpt++;
1788			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1789				kernel_vm_end = kernel_map->max_offset;
1790				break;
1791			}
1792		}
1793	}
1794	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1795	if (addr - 1 >= kernel_map->max_offset)
1796		addr = kernel_map->max_offset;
1797	while (kernel_vm_end < addr) {
1798		if (pdir_pde(PTD, kernel_vm_end)) {
1799			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1800			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1801				kernel_vm_end = kernel_map->max_offset;
1802				break;
1803			}
1804			continue;
1805		}
1806
1807		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1808		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1809		    VM_ALLOC_ZERO);
1810		if (nkpg == NULL)
1811			panic("pmap_growkernel: no memory to grow kernel");
1812
1813		nkpt++;
1814
1815		if ((nkpg->flags & PG_ZERO) == 0)
1816			pmap_zero_page(nkpg);
1817		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1818		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1819		pdir_pde(PTD, kernel_vm_end) = newpdir;
1820
1821		mtx_lock_spin(&allpmaps_lock);
1822		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1823			pde = pmap_pde(pmap, kernel_vm_end);
1824			pde_store(pde, newpdir);
1825		}
1826		mtx_unlock_spin(&allpmaps_lock);
1827		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1828		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1829			kernel_vm_end = kernel_map->max_offset;
1830			break;
1831		}
1832	}
1833}
1834
1835
1836/***************************************************
1837 * page management routines.
1838 ***************************************************/
1839
1840CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1841CTASSERT(_NPCM == 11);
1842
1843static __inline struct pv_chunk *
1844pv_to_chunk(pv_entry_t pv)
1845{
1846
1847	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1848}
1849
1850#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1851
1852#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1853#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1854
1855static uint32_t pc_freemask[11] = {
1856	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1857	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1858	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1859	PC_FREE0_9, PC_FREE10
1860};
1861
1862SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1863	"Current number of pv entries");
1864
1865#ifdef PV_STATS
1866static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1867
1868SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1869	"Current number of pv entry chunks");
1870SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1871	"Current number of pv entry chunks allocated");
1872SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1873	"Current number of pv entry chunks frees");
1874SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1875	"Number of times tried to get a chunk page but failed.");
1876
1877static long pv_entry_frees, pv_entry_allocs;
1878static int pv_entry_spare;
1879
1880SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1881	"Current number of pv entry frees");
1882SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1883	"Current number of pv entry allocs");
1884SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1885	"Current number of spare pv entries");
1886
1887static int pmap_collect_inactive, pmap_collect_active;
1888
1889SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1890	"Current number times pmap_collect called on inactive queue");
1891SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1892	"Current number times pmap_collect called on active queue");
1893#endif
1894
1895/*
1896 * We are in a serious low memory condition.  Resort to
1897 * drastic measures to free some pages so we can allocate
1898 * another pv entry chunk.  This is normally called to
1899 * unmap inactive pages, and if necessary, active pages.
1900 */
1901static void
1902pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1903{
1904	struct md_page *pvh;
1905	pd_entry_t *pde;
1906	pmap_t pmap;
1907	pt_entry_t *pte, tpte;
1908	pv_entry_t next_pv, pv;
1909	vm_offset_t va;
1910	vm_page_t m, free;
1911
1912	sched_pin();
1913	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1914		if (m->hold_count || m->busy)
1915			continue;
1916		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1917			va = pv->pv_va;
1918			pmap = PV_PMAP(pv);
1919			/* Avoid deadlock and lock recursion. */
1920			if (pmap > locked_pmap)
1921				PMAP_LOCK(pmap);
1922			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1923				continue;
1924			pmap->pm_stats.resident_count--;
1925			pde = pmap_pde(pmap, va);
1926			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
1927			    " a 4mpage in page %p's pv list", m));
1928			pte = pmap_pte_quick(pmap, va);
1929			tpte = pte_load_clear(pte);
1930			KASSERT((tpte & PG_W) == 0,
1931			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1932			if (tpte & PG_A)
1933				vm_page_flag_set(m, PG_REFERENCED);
1934			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1935				vm_page_dirty(m);
1936			free = NULL;
1937			pmap_unuse_pt(pmap, va, &free);
1938			pmap_invalidate_page(pmap, va);
1939			pmap_free_zero_pages(free);
1940			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1941			if (TAILQ_EMPTY(&m->md.pv_list)) {
1942				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1943				if (TAILQ_EMPTY(&pvh->pv_list))
1944					vm_page_flag_clear(m, PG_WRITEABLE);
1945			}
1946			free_pv_entry(pmap, pv);
1947			if (pmap != locked_pmap)
1948				PMAP_UNLOCK(pmap);
1949		}
1950	}
1951	sched_unpin();
1952}
1953
1954
1955/*
1956 * free the pv_entry back to the free list
1957 */
1958static void
1959free_pv_entry(pmap_t pmap, pv_entry_t pv)
1960{
1961	vm_page_t m;
1962	struct pv_chunk *pc;
1963	int idx, field, bit;
1964
1965	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1966	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1967	PV_STAT(pv_entry_frees++);
1968	PV_STAT(pv_entry_spare++);
1969	pv_entry_count--;
1970	pc = pv_to_chunk(pv);
1971	idx = pv - &pc->pc_pventry[0];
1972	field = idx / 32;
1973	bit = idx % 32;
1974	pc->pc_map[field] |= 1ul << bit;
1975	/* move to head of list */
1976	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1977	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1978	for (idx = 0; idx < _NPCM; idx++)
1979		if (pc->pc_map[idx] != pc_freemask[idx])
1980			return;
1981	PV_STAT(pv_entry_spare -= _NPCPV);
1982	PV_STAT(pc_chunk_count--);
1983	PV_STAT(pc_chunk_frees++);
1984	/* entire chunk is free, return it */
1985	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1986	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1987	pmap_qremove((vm_offset_t)pc, 1);
1988	vm_page_unwire(m, 0);
1989	vm_page_free(m);
1990	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1991}
1992
1993/*
1994 * get a new pv_entry, allocating a block from the system
1995 * when needed.
1996 */
1997static pv_entry_t
1998get_pv_entry(pmap_t pmap, int try)
1999{
2000	static const struct timeval printinterval = { 60, 0 };
2001	static struct timeval lastprint;
2002	static vm_pindex_t colour;
2003	struct vpgqueues *pq;
2004	int bit, field;
2005	pv_entry_t pv;
2006	struct pv_chunk *pc;
2007	vm_page_t m;
2008
2009	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2010	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2011	PV_STAT(pv_entry_allocs++);
2012	pv_entry_count++;
2013	if (pv_entry_count > pv_entry_high_water)
2014		if (ratecheck(&lastprint, &printinterval))
2015			printf("Approaching the limit on PV entries, consider "
2016			    "increasing either the vm.pmap.shpgperproc or the "
2017			    "vm.pmap.pv_entry_max tunable.\n");
2018	pq = NULL;
2019retry:
2020	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2021	if (pc != NULL) {
2022		for (field = 0; field < _NPCM; field++) {
2023			if (pc->pc_map[field]) {
2024				bit = bsfl(pc->pc_map[field]);
2025				break;
2026			}
2027		}
2028		if (field < _NPCM) {
2029			pv = &pc->pc_pventry[field * 32 + bit];
2030			pc->pc_map[field] &= ~(1ul << bit);
2031			/* If this was the last item, move it to tail */
2032			for (field = 0; field < _NPCM; field++)
2033				if (pc->pc_map[field] != 0) {
2034					PV_STAT(pv_entry_spare--);
2035					return (pv);	/* not full, return */
2036				}
2037			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2038			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2039			PV_STAT(pv_entry_spare--);
2040			return (pv);
2041		}
2042	}
2043	/*
2044	 * Access to the ptelist "pv_vafree" is synchronized by the page
2045	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2046	 * remain non-empty until pmap_ptelist_alloc() completes.
2047	 */
2048	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2049	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2050	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2051		if (try) {
2052			pv_entry_count--;
2053			PV_STAT(pc_chunk_tryfail++);
2054			return (NULL);
2055		}
2056		/*
2057		 * Reclaim pv entries: At first, destroy mappings to
2058		 * inactive pages.  After that, if a pv chunk entry
2059		 * is still needed, destroy mappings to active pages.
2060		 */
2061		if (pq == NULL) {
2062			PV_STAT(pmap_collect_inactive++);
2063			pq = &vm_page_queues[PQ_INACTIVE];
2064		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2065			PV_STAT(pmap_collect_active++);
2066			pq = &vm_page_queues[PQ_ACTIVE];
2067		} else
2068			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2069		pmap_collect(pmap, pq);
2070		goto retry;
2071	}
2072	PV_STAT(pc_chunk_count++);
2073	PV_STAT(pc_chunk_allocs++);
2074	colour++;
2075	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2076	pmap_qenter((vm_offset_t)pc, &m, 1);
2077	pc->pc_pmap = pmap;
2078	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2079	for (field = 1; field < _NPCM; field++)
2080		pc->pc_map[field] = pc_freemask[field];
2081	pv = &pc->pc_pventry[0];
2082	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2083	PV_STAT(pv_entry_spare += _NPCPV - 1);
2084	return (pv);
2085}
2086
2087static __inline pv_entry_t
2088pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2089{
2090	pv_entry_t pv;
2091
2092	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2093	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2094		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2095			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2096			break;
2097		}
2098	}
2099	return (pv);
2100}
2101
2102static void
2103pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2104{
2105	struct md_page *pvh;
2106	pv_entry_t pv;
2107	vm_offset_t va_last;
2108	vm_page_t m;
2109
2110	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2111	KASSERT((pa & PDRMASK) == 0,
2112	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2113
2114	/*
2115	 * Transfer the 4mpage's pv entry for this mapping to the first
2116	 * page's pv list.
2117	 */
2118	pvh = pa_to_pvh(pa);
2119	va = trunc_4mpage(va);
2120	pv = pmap_pvh_remove(pvh, pmap, va);
2121	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2122	m = PHYS_TO_VM_PAGE(pa);
2123	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2124	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2125	va_last = va + NBPDR - PAGE_SIZE;
2126	do {
2127		m++;
2128		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2129		    ("pmap_pv_demote_pde: page %p is not managed", m));
2130		va += PAGE_SIZE;
2131		pmap_insert_entry(pmap, va, m);
2132	} while (va < va_last);
2133}
2134
2135static void
2136pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2137{
2138	struct md_page *pvh;
2139	pv_entry_t pv;
2140	vm_offset_t va_last;
2141	vm_page_t m;
2142
2143	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2144	KASSERT((pa & PDRMASK) == 0,
2145	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2146
2147	/*
2148	 * Transfer the first page's pv entry for this mapping to the
2149	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2150	 * to get_pv_entry(), a transfer avoids the possibility that
2151	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2152	 * removes one of the mappings that is being promoted.
2153	 */
2154	m = PHYS_TO_VM_PAGE(pa);
2155	va = trunc_4mpage(va);
2156	pv = pmap_pvh_remove(&m->md, pmap, va);
2157	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2158	pvh = pa_to_pvh(pa);
2159	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2160	/* Free the remaining NPTEPG - 1 pv entries. */
2161	va_last = va + NBPDR - PAGE_SIZE;
2162	do {
2163		m++;
2164		va += PAGE_SIZE;
2165		pmap_pvh_free(&m->md, pmap, va);
2166	} while (va < va_last);
2167}
2168
2169static void
2170pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2171{
2172	pv_entry_t pv;
2173
2174	pv = pmap_pvh_remove(pvh, pmap, va);
2175	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2176	free_pv_entry(pmap, pv);
2177}
2178
2179static void
2180pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2181{
2182	struct md_page *pvh;
2183
2184	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2185	pmap_pvh_free(&m->md, pmap, va);
2186	if (TAILQ_EMPTY(&m->md.pv_list)) {
2187		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2188		if (TAILQ_EMPTY(&pvh->pv_list))
2189			vm_page_flag_clear(m, PG_WRITEABLE);
2190	}
2191}
2192
2193/*
2194 * Create a pv entry for page at pa for
2195 * (pmap, va).
2196 */
2197static void
2198pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2199{
2200	pv_entry_t pv;
2201
2202	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2203	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2204	pv = get_pv_entry(pmap, FALSE);
2205	pv->pv_va = va;
2206	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2207}
2208
2209/*
2210 * Conditionally create a pv entry.
2211 */
2212static boolean_t
2213pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2214{
2215	pv_entry_t pv;
2216
2217	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2218	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2219	if (pv_entry_count < pv_entry_high_water &&
2220	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2221		pv->pv_va = va;
2222		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2223		return (TRUE);
2224	} else
2225		return (FALSE);
2226}
2227
2228/*
2229 * Create the pv entries for each of the pages within a superpage.
2230 */
2231static boolean_t
2232pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2233{
2234	struct md_page *pvh;
2235	pv_entry_t pv;
2236
2237	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2238	if (pv_entry_count < pv_entry_high_water &&
2239	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2240		pv->pv_va = va;
2241		pvh = pa_to_pvh(pa);
2242		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2243		return (TRUE);
2244	} else
2245		return (FALSE);
2246}
2247
2248/*
2249 * Tries to demote a 2- or 4MB page mapping.
2250 */
2251static boolean_t
2252pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2253{
2254	pd_entry_t newpde, oldpde;
2255	pmap_t allpmaps_entry;
2256	pt_entry_t *firstpte, newpte, *pte;
2257	vm_paddr_t mptepa;
2258	vm_page_t free, mpte;
2259
2260	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2261	mpte = pmap_lookup_pt_page(pmap, va);
2262	if (mpte != NULL)
2263		pmap_remove_pt_page(pmap, mpte);
2264	else {
2265		KASSERT((*pde & PG_W) == 0,
2266		    ("pmap_demote_pde: page table page for a wired mapping"
2267		    " is missing"));
2268		free = NULL;
2269		pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2270		pmap_invalidate_page(pmap, trunc_4mpage(va));
2271		pmap_free_zero_pages(free);
2272		CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2273		    " in pmap %p", va, pmap);
2274		return (FALSE);
2275	}
2276	mptepa = VM_PAGE_TO_PHYS(mpte);
2277
2278	/*
2279	 * Temporarily map the page table page (mpte) into the kernel's
2280	 * address space at either PADDR1 or PADDR2.
2281	 */
2282	if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2283		if ((*PMAP1 & PG_FRAME) != mptepa) {
2284			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2285#ifdef SMP
2286			PMAP1cpu = PCPU_GET(cpuid);
2287#endif
2288			invlcaddr(PADDR1);
2289			PMAP1changed++;
2290		} else
2291#ifdef SMP
2292		if (PMAP1cpu != PCPU_GET(cpuid)) {
2293			PMAP1cpu = PCPU_GET(cpuid);
2294			invlcaddr(PADDR1);
2295			PMAP1changedcpu++;
2296		} else
2297#endif
2298			PMAP1unchanged++;
2299		firstpte = PADDR1;
2300	} else {
2301		mtx_lock(&PMAP2mutex);
2302		if ((*PMAP2 & PG_FRAME) != mptepa) {
2303			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2304			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2305		}
2306		firstpte = PADDR2;
2307	}
2308	oldpde = *pde;
2309	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2310	KASSERT((oldpde & (PG_A | PG_V)) == (PG_A | PG_V),
2311	    ("pmap_demote_pde: oldpde is missing PG_A and/or PG_V"));
2312	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2313	    ("pmap_demote_pde: oldpde is missing PG_M"));
2314	KASSERT((oldpde & PG_PS) != 0,
2315	    ("pmap_demote_pde: oldpde is missing PG_PS"));
2316	newpte = oldpde & ~PG_PS;
2317	if ((newpte & PG_PDE_PAT) != 0)
2318		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2319
2320	/*
2321	 * If the mapping has changed attributes, update the page table
2322	 * entries.
2323	 */
2324	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2325	    ("pmap_demote_pde: firstpte and newpte map different physical"
2326	    " addresses"));
2327	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2328		for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2329			*pte = newpte;
2330			newpte += PAGE_SIZE;
2331		}
2332
2333	/*
2334	 * Demote the mapping.  This pmap is locked.  The old PDE has
2335	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2336	 * set.  Thus, there is no danger of a race with another
2337	 * processor changing the setting of PG_A and/or PG_M between
2338	 * the read above and the store below.
2339	 */
2340	if (pmap == kernel_pmap) {
2341		/*
2342		 * A harmless race exists between this loop and the bcopy()
2343		 * in pmap_pinit() that initializes the kernel segment of
2344		 * the new page table.  Specifically, that bcopy() may copy
2345		 * the new PDE from the PTD, which is first in allpmaps, to
2346		 * the new page table before this loop updates that new
2347		 * page table.
2348		 */
2349		mtx_lock_spin(&allpmaps_lock);
2350		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2351			pde = pmap_pde(allpmaps_entry, va);
2352			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2353			    (oldpde & PG_PTE_PROMOTE),
2354			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2355			    (uintmax_t)*pde, (uintmax_t)oldpde));
2356			pde_store(pde, newpde);
2357		}
2358		mtx_unlock_spin(&allpmaps_lock);
2359	} else
2360		pde_store(pde, newpde);
2361	if (firstpte == PADDR2)
2362		mtx_unlock(&PMAP2mutex);
2363
2364	/*
2365	 * Invalidate the recursive mapping of the page table page.
2366	 */
2367	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2368
2369	/*
2370	 * Demote the pv entry.  This depends on the earlier demotion
2371	 * of the mapping.  Specifically, the (re)creation of a per-
2372	 * page pv entry might trigger the execution of pmap_collect(),
2373	 * which might reclaim a newly (re)created per-page pv entry
2374	 * and destroy the associated mapping.  In order to destroy
2375	 * the mapping, the PDE must have already changed from mapping
2376	 * the 2mpage to referencing the page table page.
2377	 */
2378	if ((oldpde & PG_MANAGED) != 0)
2379		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2380
2381	pmap_pde_demotions++;
2382	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2383	    " in pmap %p", va, pmap);
2384	return (TRUE);
2385}
2386
2387/*
2388 * pmap_remove_pde: do the things to unmap a superpage in a process
2389 */
2390static void
2391pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2392    vm_page_t *free)
2393{
2394	struct md_page *pvh;
2395	pd_entry_t oldpde;
2396	vm_offset_t eva, va;
2397	vm_page_t m, mpte;
2398
2399	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2400	KASSERT((sva & PDRMASK) == 0,
2401	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2402	oldpde = pte_load_clear(pdq);
2403	if (oldpde & PG_W)
2404		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2405
2406	/*
2407	 * Machines that don't support invlpg, also don't support
2408	 * PG_G.
2409	 */
2410	if (oldpde & PG_G)
2411		pmap_invalidate_page(kernel_pmap, sva);
2412	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2413	if (oldpde & PG_MANAGED) {
2414		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2415		pmap_pvh_free(pvh, pmap, sva);
2416		eva = sva + NBPDR;
2417		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2418		    va < eva; va += PAGE_SIZE, m++) {
2419			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2420				vm_page_dirty(m);
2421			if (oldpde & PG_A)
2422				vm_page_flag_set(m, PG_REFERENCED);
2423			if (TAILQ_EMPTY(&m->md.pv_list) &&
2424			    TAILQ_EMPTY(&pvh->pv_list))
2425				vm_page_flag_clear(m, PG_WRITEABLE);
2426		}
2427	}
2428	if (pmap == kernel_pmap) {
2429		if (!pmap_demote_pde(pmap, pdq, sva))
2430			panic("pmap_remove_pde: failed demotion");
2431	} else {
2432		mpte = pmap_lookup_pt_page(pmap, sva);
2433		if (mpte != NULL) {
2434			pmap_remove_pt_page(pmap, mpte);
2435			KASSERT(mpte->wire_count == NPTEPG,
2436			    ("pmap_remove_pde: pte page wire count error"));
2437			mpte->wire_count = 0;
2438			pmap_add_delayed_free_list(mpte, free, FALSE);
2439			atomic_subtract_int(&cnt.v_wire_count, 1);
2440		}
2441	}
2442}
2443
2444/*
2445 * pmap_remove_pte: do the things to unmap a page in a process
2446 */
2447static int
2448pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2449{
2450	pt_entry_t oldpte;
2451	vm_page_t m;
2452
2453	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2454	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2455	oldpte = pte_load_clear(ptq);
2456	if (oldpte & PG_W)
2457		pmap->pm_stats.wired_count -= 1;
2458	/*
2459	 * Machines that don't support invlpg, also don't support
2460	 * PG_G.
2461	 */
2462	if (oldpte & PG_G)
2463		pmap_invalidate_page(kernel_pmap, va);
2464	pmap->pm_stats.resident_count -= 1;
2465	if (oldpte & PG_MANAGED) {
2466		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2467		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2468			vm_page_dirty(m);
2469		if (oldpte & PG_A)
2470			vm_page_flag_set(m, PG_REFERENCED);
2471		pmap_remove_entry(pmap, m, va);
2472	}
2473	return (pmap_unuse_pt(pmap, va, free));
2474}
2475
2476/*
2477 * Remove a single page from a process address space
2478 */
2479static void
2480pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2481{
2482	pt_entry_t *pte;
2483
2484	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2485	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2486	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2487	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2488		return;
2489	pmap_remove_pte(pmap, pte, va, free);
2490	pmap_invalidate_page(pmap, va);
2491}
2492
2493/*
2494 *	Remove the given range of addresses from the specified map.
2495 *
2496 *	It is assumed that the start and end are properly
2497 *	rounded to the page size.
2498 */
2499void
2500pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2501{
2502	vm_offset_t pdnxt;
2503	pd_entry_t ptpaddr;
2504	pt_entry_t *pte;
2505	vm_page_t free = NULL;
2506	int anyvalid;
2507
2508	/*
2509	 * Perform an unsynchronized read.  This is, however, safe.
2510	 */
2511	if (pmap->pm_stats.resident_count == 0)
2512		return;
2513
2514	anyvalid = 0;
2515
2516	vm_page_lock_queues();
2517	sched_pin();
2518	PMAP_LOCK(pmap);
2519
2520	/*
2521	 * special handling of removing one page.  a very
2522	 * common operation and easy to short circuit some
2523	 * code.
2524	 */
2525	if ((sva + PAGE_SIZE == eva) &&
2526	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2527		pmap_remove_page(pmap, sva, &free);
2528		goto out;
2529	}
2530
2531	for (; sva < eva; sva = pdnxt) {
2532		unsigned pdirindex;
2533
2534		/*
2535		 * Calculate index for next page table.
2536		 */
2537		pdnxt = (sva + NBPDR) & ~PDRMASK;
2538		if (pdnxt < sva)
2539			pdnxt = eva;
2540		if (pmap->pm_stats.resident_count == 0)
2541			break;
2542
2543		pdirindex = sva >> PDRSHIFT;
2544		ptpaddr = pmap->pm_pdir[pdirindex];
2545
2546		/*
2547		 * Weed out invalid mappings. Note: we assume that the page
2548		 * directory table is always allocated, and in kernel virtual.
2549		 */
2550		if (ptpaddr == 0)
2551			continue;
2552
2553		/*
2554		 * Check for large page.
2555		 */
2556		if ((ptpaddr & PG_PS) != 0) {
2557			/*
2558			 * Are we removing the entire large page?  If not,
2559			 * demote the mapping and fall through.
2560			 */
2561			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2562				/*
2563				 * The TLB entry for a PG_G mapping is
2564				 * invalidated by pmap_remove_pde().
2565				 */
2566				if ((ptpaddr & PG_G) == 0)
2567					anyvalid = 1;
2568				pmap_remove_pde(pmap,
2569				    &pmap->pm_pdir[pdirindex], sva, &free);
2570				continue;
2571			} else if (!pmap_demote_pde(pmap,
2572			    &pmap->pm_pdir[pdirindex], sva)) {
2573				/* The large page mapping was destroyed. */
2574				continue;
2575			}
2576		}
2577
2578		/*
2579		 * Limit our scan to either the end of the va represented
2580		 * by the current page table page, or to the end of the
2581		 * range being removed.
2582		 */
2583		if (pdnxt > eva)
2584			pdnxt = eva;
2585
2586		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2587		    sva += PAGE_SIZE) {
2588			if (*pte == 0)
2589				continue;
2590
2591			/*
2592			 * The TLB entry for a PG_G mapping is invalidated
2593			 * by pmap_remove_pte().
2594			 */
2595			if ((*pte & PG_G) == 0)
2596				anyvalid = 1;
2597			if (pmap_remove_pte(pmap, pte, sva, &free))
2598				break;
2599		}
2600	}
2601out:
2602	sched_unpin();
2603	if (anyvalid)
2604		pmap_invalidate_all(pmap);
2605	vm_page_unlock_queues();
2606	PMAP_UNLOCK(pmap);
2607	pmap_free_zero_pages(free);
2608}
2609
2610/*
2611 *	Routine:	pmap_remove_all
2612 *	Function:
2613 *		Removes this physical page from
2614 *		all physical maps in which it resides.
2615 *		Reflects back modify bits to the pager.
2616 *
2617 *	Notes:
2618 *		Original versions of this routine were very
2619 *		inefficient because they iteratively called
2620 *		pmap_remove (slow...)
2621 */
2622
2623void
2624pmap_remove_all(vm_page_t m)
2625{
2626	struct md_page *pvh;
2627	pv_entry_t pv;
2628	pmap_t pmap;
2629	pt_entry_t *pte, tpte;
2630	pd_entry_t *pde;
2631	vm_offset_t va;
2632	vm_page_t free;
2633
2634	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2635	    ("pmap_remove_all: page %p is fictitious", m));
2636	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2637	sched_pin();
2638	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2639	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2640		va = pv->pv_va;
2641		pmap = PV_PMAP(pv);
2642		PMAP_LOCK(pmap);
2643		pde = pmap_pde(pmap, va);
2644		(void)pmap_demote_pde(pmap, pde, va);
2645		PMAP_UNLOCK(pmap);
2646	}
2647	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2648		pmap = PV_PMAP(pv);
2649		PMAP_LOCK(pmap);
2650		pmap->pm_stats.resident_count--;
2651		pde = pmap_pde(pmap, pv->pv_va);
2652		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2653		    " a 4mpage in page %p's pv list", m));
2654		pte = pmap_pte_quick(pmap, pv->pv_va);
2655		tpte = pte_load_clear(pte);
2656		if (tpte & PG_W)
2657			pmap->pm_stats.wired_count--;
2658		if (tpte & PG_A)
2659			vm_page_flag_set(m, PG_REFERENCED);
2660
2661		/*
2662		 * Update the vm_page_t clean and reference bits.
2663		 */
2664		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2665			vm_page_dirty(m);
2666		free = NULL;
2667		pmap_unuse_pt(pmap, pv->pv_va, &free);
2668		pmap_invalidate_page(pmap, pv->pv_va);
2669		pmap_free_zero_pages(free);
2670		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2671		free_pv_entry(pmap, pv);
2672		PMAP_UNLOCK(pmap);
2673	}
2674	vm_page_flag_clear(m, PG_WRITEABLE);
2675	sched_unpin();
2676}
2677
2678/*
2679 * pmap_protect_pde: do the things to protect a 4mpage in a process
2680 */
2681static boolean_t
2682pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2683{
2684	pd_entry_t newpde, oldpde;
2685	vm_offset_t eva, va;
2686	vm_page_t m;
2687	boolean_t anychanged;
2688
2689	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2690	KASSERT((sva & PDRMASK) == 0,
2691	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2692	anychanged = FALSE;
2693retry:
2694	oldpde = newpde = *pde;
2695	if (oldpde & PG_MANAGED) {
2696		eva = sva + NBPDR;
2697		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2698		    va < eva; va += PAGE_SIZE, m++) {
2699			/*
2700			 * In contrast to the analogous operation on a 4KB page
2701			 * mapping, the mapping's PG_A flag is not cleared and
2702			 * the page's PG_REFERENCED flag is not set.  The
2703			 * reason is that pmap_demote_pde() expects that a 2/4MB
2704			 * page mapping with a stored page table page has PG_A
2705			 * set.
2706			 */
2707			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2708				vm_page_dirty(m);
2709		}
2710	}
2711	if ((prot & VM_PROT_WRITE) == 0)
2712		newpde &= ~(PG_RW | PG_M);
2713#ifdef PAE
2714	if ((prot & VM_PROT_EXECUTE) == 0)
2715		newpde |= pg_nx;
2716#endif
2717	if (newpde != oldpde) {
2718		if (!pde_cmpset(pde, oldpde, newpde))
2719			goto retry;
2720		if (oldpde & PG_G)
2721			pmap_invalidate_page(pmap, sva);
2722		else
2723			anychanged = TRUE;
2724	}
2725	return (anychanged);
2726}
2727
2728/*
2729 *	Set the physical protection on the
2730 *	specified range of this map as requested.
2731 */
2732void
2733pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2734{
2735	vm_offset_t pdnxt;
2736	pd_entry_t ptpaddr;
2737	pt_entry_t *pte;
2738	int anychanged;
2739
2740	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2741		pmap_remove(pmap, sva, eva);
2742		return;
2743	}
2744
2745#ifdef PAE
2746	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2747	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2748		return;
2749#else
2750	if (prot & VM_PROT_WRITE)
2751		return;
2752#endif
2753
2754	anychanged = 0;
2755
2756	vm_page_lock_queues();
2757	sched_pin();
2758	PMAP_LOCK(pmap);
2759	for (; sva < eva; sva = pdnxt) {
2760		pt_entry_t obits, pbits;
2761		unsigned pdirindex;
2762
2763		pdnxt = (sva + NBPDR) & ~PDRMASK;
2764		if (pdnxt < sva)
2765			pdnxt = eva;
2766
2767		pdirindex = sva >> PDRSHIFT;
2768		ptpaddr = pmap->pm_pdir[pdirindex];
2769
2770		/*
2771		 * Weed out invalid mappings. Note: we assume that the page
2772		 * directory table is always allocated, and in kernel virtual.
2773		 */
2774		if (ptpaddr == 0)
2775			continue;
2776
2777		/*
2778		 * Check for large page.
2779		 */
2780		if ((ptpaddr & PG_PS) != 0) {
2781			/*
2782			 * Are we protecting the entire large page?  If not,
2783			 * demote the mapping and fall through.
2784			 */
2785			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2786				/*
2787				 * The TLB entry for a PG_G mapping is
2788				 * invalidated by pmap_protect_pde().
2789				 */
2790				if (pmap_protect_pde(pmap,
2791				    &pmap->pm_pdir[pdirindex], sva, prot))
2792					anychanged = 1;
2793				continue;
2794			} else if (!pmap_demote_pde(pmap,
2795			    &pmap->pm_pdir[pdirindex], sva)) {
2796				/* The large page mapping was destroyed. */
2797				continue;
2798			}
2799		}
2800
2801		if (pdnxt > eva)
2802			pdnxt = eva;
2803
2804		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2805		    sva += PAGE_SIZE) {
2806			vm_page_t m;
2807
2808retry:
2809			/*
2810			 * Regardless of whether a pte is 32 or 64 bits in
2811			 * size, PG_RW, PG_A, and PG_M are among the least
2812			 * significant 32 bits.
2813			 */
2814			obits = pbits = *pte;
2815			if ((pbits & PG_V) == 0)
2816				continue;
2817			if (pbits & PG_MANAGED) {
2818				m = NULL;
2819				if (pbits & PG_A) {
2820					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2821					vm_page_flag_set(m, PG_REFERENCED);
2822					pbits &= ~PG_A;
2823				}
2824				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2825					if (m == NULL)
2826						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2827					vm_page_dirty(m);
2828				}
2829			}
2830
2831			if ((prot & VM_PROT_WRITE) == 0)
2832				pbits &= ~(PG_RW | PG_M);
2833#ifdef PAE
2834			if ((prot & VM_PROT_EXECUTE) == 0)
2835				pbits |= pg_nx;
2836#endif
2837
2838			if (pbits != obits) {
2839#ifdef PAE
2840				if (!atomic_cmpset_64(pte, obits, pbits))
2841					goto retry;
2842#else
2843				if (!atomic_cmpset_int((u_int *)pte, obits,
2844				    pbits))
2845					goto retry;
2846#endif
2847				if (obits & PG_G)
2848					pmap_invalidate_page(pmap, sva);
2849				else
2850					anychanged = 1;
2851			}
2852		}
2853	}
2854	sched_unpin();
2855	if (anychanged)
2856		pmap_invalidate_all(pmap);
2857	vm_page_unlock_queues();
2858	PMAP_UNLOCK(pmap);
2859}
2860
2861/*
2862 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2863 * within a single page table page to a single 2- or 4MB page mapping.  For
2864 * promotion to occur, two conditions must be met: (1) the 4KB page mappings
2865 * must map aligned, contiguous physical memory and (2) the 4KB page mappings
2866 * must have identical characteristics.
2867 *
2868 * Managed (PG_MANAGED) mappings within the kernel address space are not
2869 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2870 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2871 * pmap.
2872 */
2873static void
2874pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2875{
2876	pd_entry_t newpde;
2877	pmap_t allpmaps_entry;
2878	pt_entry_t *firstpte, oldpte, *pte;
2879	vm_offset_t oldpteva;
2880	vm_paddr_t pa;
2881	vm_page_t mpte;
2882
2883	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2884	firstpte = vtopte(trunc_4mpage(va));
2885	KASSERT((*firstpte & PG_V) != 0,
2886	    ("pmap_promote_pde: firstpte is missing PG_V"));
2887	if ((*firstpte & PG_A) == 0) {
2888		pmap_pde_p_failures++;
2889		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2890		    " in pmap %p", va, pmap);
2891		return;
2892	}
2893	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
2894		pmap_pde_p_failures++;
2895		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2896		    " in pmap %p", va, pmap);
2897		return;
2898	}
2899	pa = *firstpte & PG_PS_FRAME;
2900	newpde = *firstpte;
2901	if ((newpde & (PG_M | PG_RW)) == PG_RW)
2902		newpde &= ~PG_RW;
2903
2904	/*
2905	 * Check all the ptes before promotion
2906	 */
2907	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2908retry:
2909		oldpte = *pte;
2910		if ((oldpte & PG_FRAME) != pa) {
2911			pmap_pde_p_failures++;
2912			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2913			    " in pmap %p", va, pmap);
2914			return;
2915		}
2916		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2917			/*
2918			 * When PG_M is already clear, PG_RW can be cleared
2919			 * without a TLB invalidation.
2920			 */
2921			if (!atomic_cmpset_int((u_int *)pte, oldpte,
2922			    oldpte & ~PG_RW))
2923				goto retry;
2924			oldpte &= ~PG_RW;
2925			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
2926			    (va & ~PDRMASK);
2927			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
2928			    " in pmap %p", oldpteva, pmap);
2929		}
2930		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2931			pmap_pde_p_failures++;
2932			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2933			    " in pmap %p", va, pmap);
2934			return;
2935		}
2936		pa += PAGE_SIZE;
2937	}
2938
2939	/*
2940	 * Save the page table page in its current state until the PDE
2941	 * mapping the superpage is demoted by pmap_demote_pde() or
2942	 * destroyed by pmap_remove_pde().
2943	 */
2944	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
2945	KASSERT(mpte >= vm_page_array &&
2946	    mpte < &vm_page_array[vm_page_array_size],
2947	    ("pmap_promote_pde: page table page is out of range"));
2948	KASSERT(mpte->pindex == va >> PDRSHIFT,
2949	    ("pmap_promote_pde: page table page's pindex is wrong"));
2950	pmap_insert_pt_page(pmap, mpte);
2951
2952	/*
2953	 * Promote the pv entries.
2954	 */
2955	if ((newpde & PG_MANAGED) != 0)
2956		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
2957
2958	/*
2959	 * Propagate the PAT index to its proper position.
2960	 */
2961	if ((newpde & PG_PTE_PAT) != 0)
2962		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
2963
2964	/*
2965	 * Map the superpage.
2966	 */
2967	if (pmap == kernel_pmap) {
2968		mtx_lock_spin(&allpmaps_lock);
2969		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2970			pde = pmap_pde(allpmaps_entry, va);
2971			pde_store(pde, PG_PS | newpde);
2972		}
2973		mtx_unlock_spin(&allpmaps_lock);
2974	} else
2975		pde_store(pde, PG_PS | newpde);
2976
2977	pmap_pde_promotions++;
2978	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
2979	    " in pmap %p", va, pmap);
2980}
2981
2982/*
2983 *	Insert the given physical page (p) at
2984 *	the specified virtual address (v) in the
2985 *	target physical map with the protection requested.
2986 *
2987 *	If specified, the page will be wired down, meaning
2988 *	that the related pte can not be reclaimed.
2989 *
2990 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2991 *	or lose information.  That is, this routine must actually
2992 *	insert this page into the given map NOW.
2993 */
2994void
2995pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2996    vm_prot_t prot, boolean_t wired)
2997{
2998	vm_paddr_t pa;
2999	pd_entry_t *pde;
3000	pt_entry_t *pte;
3001	vm_paddr_t opa;
3002	pt_entry_t origpte, newpte;
3003	vm_page_t mpte, om;
3004	boolean_t invlva;
3005
3006	va = trunc_page(va);
3007	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3008	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3009	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3010
3011	mpte = NULL;
3012
3013	vm_page_lock_queues();
3014	PMAP_LOCK(pmap);
3015	sched_pin();
3016
3017	/*
3018	 * In the case that a page table page is not
3019	 * resident, we are creating it here.
3020	 */
3021	if (va < VM_MAXUSER_ADDRESS) {
3022		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3023	}
3024
3025	pde = pmap_pde(pmap, va);
3026	if ((*pde & PG_PS) != 0)
3027		panic("pmap_enter: attempted pmap_enter on 4MB page");
3028	pte = pmap_pte_quick(pmap, va);
3029
3030	/*
3031	 * Page Directory table entry not valid, we need a new PT page
3032	 */
3033	if (pte == NULL) {
3034		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3035			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3036	}
3037
3038	pa = VM_PAGE_TO_PHYS(m);
3039	om = NULL;
3040	origpte = *pte;
3041	opa = origpte & PG_FRAME;
3042
3043	/*
3044	 * Mapping has not changed, must be protection or wiring change.
3045	 */
3046	if (origpte && (opa == pa)) {
3047		/*
3048		 * Wiring change, just update stats. We don't worry about
3049		 * wiring PT pages as they remain resident as long as there
3050		 * are valid mappings in them. Hence, if a user page is wired,
3051		 * the PT page will be also.
3052		 */
3053		if (wired && ((origpte & PG_W) == 0))
3054			pmap->pm_stats.wired_count++;
3055		else if (!wired && (origpte & PG_W))
3056			pmap->pm_stats.wired_count--;
3057
3058		/*
3059		 * Remove extra pte reference
3060		 */
3061		if (mpte)
3062			mpte->wire_count--;
3063
3064		/*
3065		 * We might be turning off write access to the page,
3066		 * so we go ahead and sense modify status.
3067		 */
3068		if (origpte & PG_MANAGED) {
3069			om = m;
3070			pa |= PG_MANAGED;
3071		}
3072		goto validate;
3073	}
3074	/*
3075	 * Mapping has changed, invalidate old range and fall through to
3076	 * handle validating new mapping.
3077	 */
3078	if (opa) {
3079		if (origpte & PG_W)
3080			pmap->pm_stats.wired_count--;
3081		if (origpte & PG_MANAGED) {
3082			om = PHYS_TO_VM_PAGE(opa);
3083			pmap_remove_entry(pmap, om, va);
3084		}
3085		if (mpte != NULL) {
3086			mpte->wire_count--;
3087			KASSERT(mpte->wire_count > 0,
3088			    ("pmap_enter: missing reference to page table page,"
3089			     " va: 0x%x", va));
3090		}
3091	} else
3092		pmap->pm_stats.resident_count++;
3093
3094	/*
3095	 * Enter on the PV list if part of our managed memory.
3096	 */
3097	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3098		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3099		    ("pmap_enter: managed mapping within the clean submap"));
3100		pmap_insert_entry(pmap, va, m);
3101		pa |= PG_MANAGED;
3102	}
3103
3104	/*
3105	 * Increment counters
3106	 */
3107	if (wired)
3108		pmap->pm_stats.wired_count++;
3109
3110validate:
3111	/*
3112	 * Now validate mapping with desired protection/wiring.
3113	 */
3114	newpte = (pt_entry_t)(pa | PG_V);
3115	if ((prot & VM_PROT_WRITE) != 0) {
3116		newpte |= PG_RW;
3117		vm_page_flag_set(m, PG_WRITEABLE);
3118	}
3119#ifdef PAE
3120	if ((prot & VM_PROT_EXECUTE) == 0)
3121		newpte |= pg_nx;
3122#endif
3123	if (wired)
3124		newpte |= PG_W;
3125	if (va < VM_MAXUSER_ADDRESS)
3126		newpte |= PG_U;
3127	if (pmap == kernel_pmap)
3128		newpte |= pgeflag;
3129
3130	/*
3131	 * if the mapping or permission bits are different, we need
3132	 * to update the pte.
3133	 */
3134	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3135		newpte |= PG_A;
3136		if ((access & VM_PROT_WRITE) != 0)
3137			newpte |= PG_M;
3138		if (origpte & PG_V) {
3139			invlva = FALSE;
3140			origpte = pte_load_store(pte, newpte);
3141			if (origpte & PG_A) {
3142				if (origpte & PG_MANAGED)
3143					vm_page_flag_set(om, PG_REFERENCED);
3144				if (opa != VM_PAGE_TO_PHYS(m))
3145					invlva = TRUE;
3146#ifdef PAE
3147				if ((origpte & PG_NX) == 0 &&
3148				    (newpte & PG_NX) != 0)
3149					invlva = TRUE;
3150#endif
3151			}
3152			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3153				if ((origpte & PG_MANAGED) != 0)
3154					vm_page_dirty(om);
3155				if ((prot & VM_PROT_WRITE) == 0)
3156					invlva = TRUE;
3157			}
3158			if (invlva)
3159				pmap_invalidate_page(pmap, va);
3160		} else
3161			pte_store(pte, newpte);
3162	}
3163
3164	/*
3165	 * If both the page table page and the reservation are fully
3166	 * populated, then attempt promotion.
3167	 */
3168	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3169	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3170		pmap_promote_pde(pmap, pde, va);
3171
3172	sched_unpin();
3173	vm_page_unlock_queues();
3174	PMAP_UNLOCK(pmap);
3175}
3176
3177/*
3178 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3179 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3180 * blocking, (2) a mapping already exists at the specified virtual address, or
3181 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3182 */
3183static boolean_t
3184pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3185{
3186	pd_entry_t *pde, newpde;
3187
3188	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3189	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3190	pde = pmap_pde(pmap, va);
3191	if (*pde != 0) {
3192		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3193		    " in pmap %p", va, pmap);
3194		return (FALSE);
3195	}
3196	newpde = VM_PAGE_TO_PHYS(m) | PG_PS | PG_V;
3197	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3198		newpde |= PG_MANAGED;
3199
3200		/*
3201		 * Abort this mapping if its PV entry could not be created.
3202		 */
3203		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3204			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3205			    " in pmap %p", va, pmap);
3206			return (FALSE);
3207		}
3208	}
3209#ifdef PAE
3210	if ((prot & VM_PROT_EXECUTE) == 0)
3211		newpde |= pg_nx;
3212#endif
3213	if (va < VM_MAXUSER_ADDRESS)
3214		newpde |= PG_U;
3215
3216	/*
3217	 * Increment counters.
3218	 */
3219	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3220
3221	/*
3222	 * Map the superpage.
3223	 */
3224	pde_store(pde, newpde);
3225
3226	pmap_pde_mappings++;
3227	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3228	    " in pmap %p", va, pmap);
3229	return (TRUE);
3230}
3231
3232/*
3233 * Maps a sequence of resident pages belonging to the same object.
3234 * The sequence begins with the given page m_start.  This page is
3235 * mapped at the given virtual address start.  Each subsequent page is
3236 * mapped at a virtual address that is offset from start by the same
3237 * amount as the page is offset from m_start within the object.  The
3238 * last page in the sequence is the page with the largest offset from
3239 * m_start that can be mapped at a virtual address less than the given
3240 * virtual address end.  Not every virtual page between start and end
3241 * is mapped; only those for which a resident page exists with the
3242 * corresponding offset from m_start are mapped.
3243 */
3244void
3245pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3246    vm_page_t m_start, vm_prot_t prot)
3247{
3248	vm_offset_t va;
3249	vm_page_t m, mpte;
3250	vm_pindex_t diff, psize;
3251
3252	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3253	psize = atop(end - start);
3254	mpte = NULL;
3255	m = m_start;
3256	PMAP_LOCK(pmap);
3257	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3258		va = start + ptoa(diff);
3259		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3260		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3261		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3262		    pmap_enter_pde(pmap, va, m, prot))
3263			m = &m[NBPDR / PAGE_SIZE - 1];
3264		else
3265			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3266			    mpte);
3267		m = TAILQ_NEXT(m, listq);
3268	}
3269 	PMAP_UNLOCK(pmap);
3270}
3271
3272/*
3273 * this code makes some *MAJOR* assumptions:
3274 * 1. Current pmap & pmap exists.
3275 * 2. Not wired.
3276 * 3. Read access.
3277 * 4. No page table pages.
3278 * but is *MUCH* faster than pmap_enter...
3279 */
3280
3281void
3282pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3283{
3284
3285	PMAP_LOCK(pmap);
3286	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3287	PMAP_UNLOCK(pmap);
3288}
3289
3290static vm_page_t
3291pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3292    vm_prot_t prot, vm_page_t mpte)
3293{
3294	pt_entry_t *pte;
3295	vm_paddr_t pa;
3296	vm_page_t free;
3297
3298	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3299	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3300	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3301	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3302	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3303
3304	/*
3305	 * In the case that a page table page is not
3306	 * resident, we are creating it here.
3307	 */
3308	if (va < VM_MAXUSER_ADDRESS) {
3309		unsigned ptepindex;
3310		pd_entry_t ptepa;
3311
3312		/*
3313		 * Calculate pagetable page index
3314		 */
3315		ptepindex = va >> PDRSHIFT;
3316		if (mpte && (mpte->pindex == ptepindex)) {
3317			mpte->wire_count++;
3318		} else {
3319			/*
3320			 * Get the page directory entry
3321			 */
3322			ptepa = pmap->pm_pdir[ptepindex];
3323
3324			/*
3325			 * If the page table page is mapped, we just increment
3326			 * the hold count, and activate it.
3327			 */
3328			if (ptepa) {
3329				if (ptepa & PG_PS)
3330					return (NULL);
3331				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3332				mpte->wire_count++;
3333			} else {
3334				mpte = _pmap_allocpte(pmap, ptepindex,
3335				    M_NOWAIT);
3336				if (mpte == NULL)
3337					return (mpte);
3338			}
3339		}
3340	} else {
3341		mpte = NULL;
3342	}
3343
3344	/*
3345	 * This call to vtopte makes the assumption that we are
3346	 * entering the page into the current pmap.  In order to support
3347	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3348	 * But that isn't as quick as vtopte.
3349	 */
3350	pte = vtopte(va);
3351	if (*pte) {
3352		if (mpte != NULL) {
3353			mpte->wire_count--;
3354			mpte = NULL;
3355		}
3356		return (mpte);
3357	}
3358
3359	/*
3360	 * Enter on the PV list if part of our managed memory.
3361	 */
3362	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3363	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3364		if (mpte != NULL) {
3365			free = NULL;
3366			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3367				pmap_invalidate_page(pmap, va);
3368				pmap_free_zero_pages(free);
3369			}
3370
3371			mpte = NULL;
3372		}
3373		return (mpte);
3374	}
3375
3376	/*
3377	 * Increment counters
3378	 */
3379	pmap->pm_stats.resident_count++;
3380
3381	pa = VM_PAGE_TO_PHYS(m);
3382#ifdef PAE
3383	if ((prot & VM_PROT_EXECUTE) == 0)
3384		pa |= pg_nx;
3385#endif
3386
3387	/*
3388	 * Now validate mapping with RO protection
3389	 */
3390	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3391		pte_store(pte, pa | PG_V | PG_U);
3392	else
3393		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3394	return mpte;
3395}
3396
3397/*
3398 * Make a temporary mapping for a physical address.  This is only intended
3399 * to be used for panic dumps.
3400 */
3401void *
3402pmap_kenter_temporary(vm_paddr_t pa, int i)
3403{
3404	vm_offset_t va;
3405
3406	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3407	pmap_kenter(va, pa);
3408	invlpg(va);
3409	return ((void *)crashdumpmap);
3410}
3411
3412/*
3413 * This code maps large physical mmap regions into the
3414 * processor address space.  Note that some shortcuts
3415 * are taken, but the code works.
3416 */
3417void
3418pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3419    vm_pindex_t pindex, vm_size_t size)
3420{
3421	vm_page_t p;
3422
3423	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3424	KASSERT(object->type == OBJT_DEVICE,
3425	    ("pmap_object_init_pt: non-device object"));
3426	if (pseflag &&
3427	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3428		int i;
3429		vm_page_t m[1];
3430		unsigned int ptepindex;
3431		int npdes;
3432		pd_entry_t ptepa;
3433
3434		PMAP_LOCK(pmap);
3435		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3436			goto out;
3437		PMAP_UNLOCK(pmap);
3438retry:
3439		p = vm_page_lookup(object, pindex);
3440		if (p != NULL) {
3441			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3442				goto retry;
3443		} else {
3444			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3445			if (p == NULL)
3446				return;
3447			m[0] = p;
3448
3449			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3450				vm_page_lock_queues();
3451				vm_page_free(p);
3452				vm_page_unlock_queues();
3453				return;
3454			}
3455
3456			p = vm_page_lookup(object, pindex);
3457			vm_page_lock_queues();
3458			vm_page_wakeup(p);
3459			vm_page_unlock_queues();
3460		}
3461
3462		ptepa = VM_PAGE_TO_PHYS(p);
3463		if (ptepa & (NBPDR - 1))
3464			return;
3465
3466		p->valid = VM_PAGE_BITS_ALL;
3467
3468		PMAP_LOCK(pmap);
3469		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3470		npdes = size >> PDRSHIFT;
3471		for(i = 0; i < npdes; i++) {
3472			pde_store(&pmap->pm_pdir[ptepindex],
3473			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
3474			ptepa += NBPDR;
3475			ptepindex += 1;
3476		}
3477		pmap_invalidate_all(pmap);
3478out:
3479		PMAP_UNLOCK(pmap);
3480	}
3481}
3482
3483/*
3484 *	Routine:	pmap_change_wiring
3485 *	Function:	Change the wiring attribute for a map/virtual-address
3486 *			pair.
3487 *	In/out conditions:
3488 *			The mapping must already exist in the pmap.
3489 */
3490void
3491pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3492{
3493	pd_entry_t *pde;
3494	pt_entry_t *pte;
3495	boolean_t are_queues_locked;
3496
3497	are_queues_locked = FALSE;
3498retry:
3499	PMAP_LOCK(pmap);
3500	pde = pmap_pde(pmap, va);
3501	if ((*pde & PG_PS) != 0) {
3502		if (!wired != ((*pde & PG_W) == 0)) {
3503			if (!are_queues_locked) {
3504				are_queues_locked = TRUE;
3505				if (!mtx_trylock(&vm_page_queue_mtx)) {
3506					PMAP_UNLOCK(pmap);
3507					vm_page_lock_queues();
3508					goto retry;
3509				}
3510			}
3511			if (!pmap_demote_pde(pmap, pde, va))
3512				panic("pmap_change_wiring: demotion failed");
3513		} else
3514			goto out;
3515	}
3516	pte = pmap_pte(pmap, va);
3517
3518	if (wired && !pmap_pte_w(pte))
3519		pmap->pm_stats.wired_count++;
3520	else if (!wired && pmap_pte_w(pte))
3521		pmap->pm_stats.wired_count--;
3522
3523	/*
3524	 * Wiring is not a hardware characteristic so there is no need to
3525	 * invalidate TLB.
3526	 */
3527	pmap_pte_set_w(pte, wired);
3528	pmap_pte_release(pte);
3529out:
3530	if (are_queues_locked)
3531		vm_page_unlock_queues();
3532	PMAP_UNLOCK(pmap);
3533}
3534
3535
3536
3537/*
3538 *	Copy the range specified by src_addr/len
3539 *	from the source map to the range dst_addr/len
3540 *	in the destination map.
3541 *
3542 *	This routine is only advisory and need not do anything.
3543 */
3544
3545void
3546pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3547    vm_offset_t src_addr)
3548{
3549	vm_page_t   free;
3550	vm_offset_t addr;
3551	vm_offset_t end_addr = src_addr + len;
3552	vm_offset_t pdnxt;
3553
3554	if (dst_addr != src_addr)
3555		return;
3556
3557	if (!pmap_is_current(src_pmap))
3558		return;
3559
3560	vm_page_lock_queues();
3561	if (dst_pmap < src_pmap) {
3562		PMAP_LOCK(dst_pmap);
3563		PMAP_LOCK(src_pmap);
3564	} else {
3565		PMAP_LOCK(src_pmap);
3566		PMAP_LOCK(dst_pmap);
3567	}
3568	sched_pin();
3569	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3570		pt_entry_t *src_pte, *dst_pte;
3571		vm_page_t dstmpte, srcmpte;
3572		pd_entry_t srcptepaddr;
3573		unsigned ptepindex;
3574
3575		KASSERT(addr < UPT_MIN_ADDRESS,
3576		    ("pmap_copy: invalid to pmap_copy page tables"));
3577
3578		pdnxt = (addr + NBPDR) & ~PDRMASK;
3579		if (pdnxt < addr)
3580			pdnxt = end_addr;
3581		ptepindex = addr >> PDRSHIFT;
3582
3583		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3584		if (srcptepaddr == 0)
3585			continue;
3586
3587		if (srcptepaddr & PG_PS) {
3588			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3589			    ((srcptepaddr & PG_MANAGED) == 0 ||
3590			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3591			    PG_PS_FRAME))) {
3592				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3593				    ~PG_W;
3594				dst_pmap->pm_stats.resident_count +=
3595				    NBPDR / PAGE_SIZE;
3596			}
3597			continue;
3598		}
3599
3600		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3601		KASSERT(srcmpte->wire_count > 0,
3602		    ("pmap_copy: source page table page is unused"));
3603
3604		if (pdnxt > end_addr)
3605			pdnxt = end_addr;
3606
3607		src_pte = vtopte(addr);
3608		while (addr < pdnxt) {
3609			pt_entry_t ptetemp;
3610			ptetemp = *src_pte;
3611			/*
3612			 * we only virtual copy managed pages
3613			 */
3614			if ((ptetemp & PG_MANAGED) != 0) {
3615				dstmpte = pmap_allocpte(dst_pmap, addr,
3616				    M_NOWAIT);
3617				if (dstmpte == NULL)
3618					break;
3619				dst_pte = pmap_pte_quick(dst_pmap, addr);
3620				if (*dst_pte == 0 &&
3621				    pmap_try_insert_pv_entry(dst_pmap, addr,
3622				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3623					/*
3624					 * Clear the wired, modified, and
3625					 * accessed (referenced) bits
3626					 * during the copy.
3627					 */
3628					*dst_pte = ptetemp & ~(PG_W | PG_M |
3629					    PG_A);
3630					dst_pmap->pm_stats.resident_count++;
3631	 			} else {
3632					free = NULL;
3633					if (pmap_unwire_pte_hold( dst_pmap,
3634					    dstmpte, &free)) {
3635						pmap_invalidate_page(dst_pmap,
3636						    addr);
3637						pmap_free_zero_pages(free);
3638					}
3639				}
3640				if (dstmpte->wire_count >= srcmpte->wire_count)
3641					break;
3642			}
3643			addr += PAGE_SIZE;
3644			src_pte++;
3645		}
3646	}
3647	sched_unpin();
3648	vm_page_unlock_queues();
3649	PMAP_UNLOCK(src_pmap);
3650	PMAP_UNLOCK(dst_pmap);
3651}
3652
3653static __inline void
3654pagezero(void *page)
3655{
3656#if defined(I686_CPU)
3657	if (cpu_class == CPUCLASS_686) {
3658#if defined(CPU_ENABLE_SSE)
3659		if (cpu_feature & CPUID_SSE2)
3660			sse2_pagezero(page);
3661		else
3662#endif
3663			i686_pagezero(page);
3664	} else
3665#endif
3666		bzero(page, PAGE_SIZE);
3667}
3668
3669/*
3670 *	pmap_zero_page zeros the specified hardware page by mapping
3671 *	the page into KVM and using bzero to clear its contents.
3672 */
3673void
3674pmap_zero_page(vm_page_t m)
3675{
3676	struct sysmaps *sysmaps;
3677
3678	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3679	mtx_lock(&sysmaps->lock);
3680	if (*sysmaps->CMAP2)
3681		panic("pmap_zero_page: CMAP2 busy");
3682	sched_pin();
3683	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3684	invlcaddr(sysmaps->CADDR2);
3685	pagezero(sysmaps->CADDR2);
3686	*sysmaps->CMAP2 = 0;
3687	sched_unpin();
3688	mtx_unlock(&sysmaps->lock);
3689}
3690
3691/*
3692 *	pmap_zero_page_area zeros the specified hardware page by mapping
3693 *	the page into KVM and using bzero to clear its contents.
3694 *
3695 *	off and size may not cover an area beyond a single hardware page.
3696 */
3697void
3698pmap_zero_page_area(vm_page_t m, int off, int size)
3699{
3700	struct sysmaps *sysmaps;
3701
3702	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3703	mtx_lock(&sysmaps->lock);
3704	if (*sysmaps->CMAP2)
3705		panic("pmap_zero_page: CMAP2 busy");
3706	sched_pin();
3707	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3708	invlcaddr(sysmaps->CADDR2);
3709	if (off == 0 && size == PAGE_SIZE)
3710		pagezero(sysmaps->CADDR2);
3711	else
3712		bzero((char *)sysmaps->CADDR2 + off, size);
3713	*sysmaps->CMAP2 = 0;
3714	sched_unpin();
3715	mtx_unlock(&sysmaps->lock);
3716}
3717
3718/*
3719 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3720 *	the page into KVM and using bzero to clear its contents.  This
3721 *	is intended to be called from the vm_pagezero process only and
3722 *	outside of Giant.
3723 */
3724void
3725pmap_zero_page_idle(vm_page_t m)
3726{
3727
3728	if (*CMAP3)
3729		panic("pmap_zero_page: CMAP3 busy");
3730	sched_pin();
3731	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3732	invlcaddr(CADDR3);
3733	pagezero(CADDR3);
3734	*CMAP3 = 0;
3735	sched_unpin();
3736}
3737
3738/*
3739 *	pmap_copy_page copies the specified (machine independent)
3740 *	page by mapping the page into virtual memory and using
3741 *	bcopy to copy the page, one machine dependent page at a
3742 *	time.
3743 */
3744void
3745pmap_copy_page(vm_page_t src, vm_page_t dst)
3746{
3747	struct sysmaps *sysmaps;
3748
3749	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3750	mtx_lock(&sysmaps->lock);
3751	if (*sysmaps->CMAP1)
3752		panic("pmap_copy_page: CMAP1 busy");
3753	if (*sysmaps->CMAP2)
3754		panic("pmap_copy_page: CMAP2 busy");
3755	sched_pin();
3756	invlpg((u_int)sysmaps->CADDR1);
3757	invlpg((u_int)sysmaps->CADDR2);
3758	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
3759	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
3760	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3761	*sysmaps->CMAP1 = 0;
3762	*sysmaps->CMAP2 = 0;
3763	sched_unpin();
3764	mtx_unlock(&sysmaps->lock);
3765}
3766
3767/*
3768 * Returns true if the pmap's pv is one of the first
3769 * 16 pvs linked to from this page.  This count may
3770 * be changed upwards or downwards in the future; it
3771 * is only necessary that true be returned for a small
3772 * subset of pmaps for proper page aging.
3773 */
3774boolean_t
3775pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3776{
3777	struct md_page *pvh;
3778	pv_entry_t pv;
3779	int loops = 0;
3780
3781	if (m->flags & PG_FICTITIOUS)
3782		return FALSE;
3783
3784	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3785	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3786		if (PV_PMAP(pv) == pmap) {
3787			return TRUE;
3788		}
3789		loops++;
3790		if (loops >= 16)
3791			break;
3792	}
3793	if (loops < 16) {
3794		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3795		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3796			if (PV_PMAP(pv) == pmap)
3797				return (TRUE);
3798			loops++;
3799			if (loops >= 16)
3800				break;
3801		}
3802	}
3803	return (FALSE);
3804}
3805
3806/*
3807 *	pmap_page_wired_mappings:
3808 *
3809 *	Return the number of managed mappings to the given physical page
3810 *	that are wired.
3811 */
3812int
3813pmap_page_wired_mappings(vm_page_t m)
3814{
3815	int count;
3816
3817	count = 0;
3818	if ((m->flags & PG_FICTITIOUS) != 0)
3819		return (count);
3820	count = pmap_pvh_wired_mappings(&m->md, count);
3821	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3822}
3823
3824/*
3825 *	pmap_pvh_wired_mappings:
3826 *
3827 *	Return the updated number "count" of managed mappings that are wired.
3828 */
3829static int
3830pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3831{
3832	pmap_t pmap;
3833	pt_entry_t *pte;
3834	pv_entry_t pv;
3835
3836	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3837	sched_pin();
3838	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3839		pmap = PV_PMAP(pv);
3840		PMAP_LOCK(pmap);
3841		pte = pmap_pte_quick(pmap, pv->pv_va);
3842		if ((*pte & PG_W) != 0)
3843			count++;
3844		PMAP_UNLOCK(pmap);
3845	}
3846	sched_unpin();
3847	return (count);
3848}
3849
3850/*
3851 * Returns TRUE if the given page is mapped individually or as part of
3852 * a 4mpage.  Otherwise, returns FALSE.
3853 */
3854boolean_t
3855pmap_page_is_mapped(vm_page_t m)
3856{
3857	struct md_page *pvh;
3858
3859	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3860		return (FALSE);
3861	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3862	if (TAILQ_EMPTY(&m->md.pv_list)) {
3863		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3864		return (!TAILQ_EMPTY(&pvh->pv_list));
3865	} else
3866		return (TRUE);
3867}
3868
3869/*
3870 * Remove all pages from specified address space
3871 * this aids process exit speeds.  Also, this code
3872 * is special cased for current process only, but
3873 * can have the more generic (and slightly slower)
3874 * mode enabled.  This is much faster than pmap_remove
3875 * in the case of running down an entire address space.
3876 */
3877void
3878pmap_remove_pages(pmap_t pmap)
3879{
3880	pt_entry_t *pte, tpte;
3881	vm_page_t free = NULL;
3882	vm_page_t m, mpte, mt;
3883	pv_entry_t pv;
3884	struct md_page *pvh;
3885	struct pv_chunk *pc, *npc;
3886	int field, idx;
3887	int32_t bit;
3888	uint32_t inuse, bitmask;
3889	int allfree;
3890
3891	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3892		printf("warning: pmap_remove_pages called with non-current pmap\n");
3893		return;
3894	}
3895	vm_page_lock_queues();
3896	PMAP_LOCK(pmap);
3897	sched_pin();
3898	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3899		allfree = 1;
3900		for (field = 0; field < _NPCM; field++) {
3901			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3902			while (inuse != 0) {
3903				bit = bsfl(inuse);
3904				bitmask = 1UL << bit;
3905				idx = field * 32 + bit;
3906				pv = &pc->pc_pventry[idx];
3907				inuse &= ~bitmask;
3908
3909				pte = pmap_pde(pmap, pv->pv_va);
3910				tpte = *pte;
3911				if ((tpte & PG_PS) == 0) {
3912					pte = vtopte(pv->pv_va);
3913					tpte = *pte & ~PG_PTE_PAT;
3914				}
3915
3916				if (tpte == 0) {
3917					printf(
3918					    "TPTE at %p  IS ZERO @ VA %08x\n",
3919					    pte, pv->pv_va);
3920					panic("bad pte");
3921				}
3922
3923/*
3924 * We cannot remove wired pages from a process' mapping at this time
3925 */
3926				if (tpte & PG_W) {
3927					allfree = 0;
3928					continue;
3929				}
3930
3931				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3932				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3933				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3934				    m, (uintmax_t)m->phys_addr,
3935				    (uintmax_t)tpte));
3936
3937				KASSERT(m < &vm_page_array[vm_page_array_size],
3938					("pmap_remove_pages: bad tpte %#jx",
3939					(uintmax_t)tpte));
3940
3941				pte_clear(pte);
3942
3943				/*
3944				 * Update the vm_page_t clean/reference bits.
3945				 */
3946				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3947					if ((tpte & PG_PS) != 0) {
3948						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3949							vm_page_dirty(mt);
3950					} else
3951						vm_page_dirty(m);
3952				}
3953
3954				/* Mark free */
3955				PV_STAT(pv_entry_frees++);
3956				PV_STAT(pv_entry_spare++);
3957				pv_entry_count--;
3958				pc->pc_map[field] |= bitmask;
3959				if ((tpte & PG_PS) != 0) {
3960					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3961					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
3962					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
3963					if (TAILQ_EMPTY(&pvh->pv_list)) {
3964						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3965							if (TAILQ_EMPTY(&mt->md.pv_list))
3966								vm_page_flag_clear(mt, PG_WRITEABLE);
3967					}
3968					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
3969					if (mpte != NULL) {
3970						pmap_remove_pt_page(pmap, mpte);
3971						KASSERT(mpte->wire_count == NPTEPG,
3972						    ("pmap_remove_pages: pte page wire count error"));
3973						mpte->wire_count = 0;
3974						pmap_add_delayed_free_list(mpte, &free, FALSE);
3975						atomic_subtract_int(&cnt.v_wire_count, 1);
3976					}
3977				} else {
3978					pmap->pm_stats.resident_count--;
3979					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3980					if (TAILQ_EMPTY(&m->md.pv_list)) {
3981						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3982						if (TAILQ_EMPTY(&pvh->pv_list))
3983							vm_page_flag_clear(m, PG_WRITEABLE);
3984					}
3985					pmap_unuse_pt(pmap, pv->pv_va, &free);
3986				}
3987			}
3988		}
3989		if (allfree) {
3990			PV_STAT(pv_entry_spare -= _NPCPV);
3991			PV_STAT(pc_chunk_count--);
3992			PV_STAT(pc_chunk_frees++);
3993			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3994			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3995			pmap_qremove((vm_offset_t)pc, 1);
3996			vm_page_unwire(m, 0);
3997			vm_page_free(m);
3998			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3999		}
4000	}
4001	sched_unpin();
4002	pmap_invalidate_all(pmap);
4003	vm_page_unlock_queues();
4004	PMAP_UNLOCK(pmap);
4005	pmap_free_zero_pages(free);
4006}
4007
4008/*
4009 *	pmap_is_modified:
4010 *
4011 *	Return whether or not the specified physical page was modified
4012 *	in any physical maps.
4013 */
4014boolean_t
4015pmap_is_modified(vm_page_t m)
4016{
4017
4018	if (m->flags & PG_FICTITIOUS)
4019		return (FALSE);
4020	if (pmap_is_modified_pvh(&m->md))
4021		return (TRUE);
4022	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4023}
4024
4025/*
4026 * Returns TRUE if any of the given mappings were used to modify
4027 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4028 * mappings are supported.
4029 */
4030static boolean_t
4031pmap_is_modified_pvh(struct md_page *pvh)
4032{
4033	pv_entry_t pv;
4034	pt_entry_t *pte;
4035	pmap_t pmap;
4036	boolean_t rv;
4037
4038	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4039	rv = FALSE;
4040	sched_pin();
4041	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4042		pmap = PV_PMAP(pv);
4043		PMAP_LOCK(pmap);
4044		pte = pmap_pte_quick(pmap, pv->pv_va);
4045		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4046		PMAP_UNLOCK(pmap);
4047		if (rv)
4048			break;
4049	}
4050	sched_unpin();
4051	return (rv);
4052}
4053
4054/*
4055 *	pmap_is_prefaultable:
4056 *
4057 *	Return whether or not the specified virtual address is elgible
4058 *	for prefault.
4059 */
4060boolean_t
4061pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4062{
4063	pd_entry_t *pde;
4064	pt_entry_t *pte;
4065	boolean_t rv;
4066
4067	rv = FALSE;
4068	PMAP_LOCK(pmap);
4069	pde = pmap_pde(pmap, addr);
4070	if (*pde != 0 && (*pde & PG_PS) == 0) {
4071		pte = vtopte(addr);
4072		rv = *pte == 0;
4073	}
4074	PMAP_UNLOCK(pmap);
4075	return (rv);
4076}
4077
4078/*
4079 * Clear the write and modified bits in each of the given page's mappings.
4080 */
4081void
4082pmap_remove_write(vm_page_t m)
4083{
4084	struct md_page *pvh;
4085	pv_entry_t next_pv, pv;
4086	pmap_t pmap;
4087	pd_entry_t *pde;
4088	pt_entry_t oldpte, *pte;
4089	vm_offset_t va;
4090
4091	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4092	if ((m->flags & PG_FICTITIOUS) != 0 ||
4093	    (m->flags & PG_WRITEABLE) == 0)
4094		return;
4095	sched_pin();
4096	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4097	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4098		va = pv->pv_va;
4099		pmap = PV_PMAP(pv);
4100		PMAP_LOCK(pmap);
4101		pde = pmap_pde(pmap, va);
4102		if ((*pde & PG_RW) != 0)
4103			(void)pmap_demote_pde(pmap, pde, va);
4104		PMAP_UNLOCK(pmap);
4105	}
4106	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4107		pmap = PV_PMAP(pv);
4108		PMAP_LOCK(pmap);
4109		pde = pmap_pde(pmap, pv->pv_va);
4110		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4111		    " a 4mpage in page %p's pv list", m));
4112		pte = pmap_pte_quick(pmap, pv->pv_va);
4113retry:
4114		oldpte = *pte;
4115		if ((oldpte & PG_RW) != 0) {
4116			/*
4117			 * Regardless of whether a pte is 32 or 64 bits
4118			 * in size, PG_RW and PG_M are among the least
4119			 * significant 32 bits.
4120			 */
4121			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4122			    oldpte & ~(PG_RW | PG_M)))
4123				goto retry;
4124			if ((oldpte & PG_M) != 0)
4125				vm_page_dirty(m);
4126			pmap_invalidate_page(pmap, pv->pv_va);
4127		}
4128		PMAP_UNLOCK(pmap);
4129	}
4130	vm_page_flag_clear(m, PG_WRITEABLE);
4131	sched_unpin();
4132}
4133
4134/*
4135 *	pmap_ts_referenced:
4136 *
4137 *	Return a count of reference bits for a page, clearing those bits.
4138 *	It is not necessary for every reference bit to be cleared, but it
4139 *	is necessary that 0 only be returned when there are truly no
4140 *	reference bits set.
4141 *
4142 *	XXX: The exact number of bits to check and clear is a matter that
4143 *	should be tested and standardized at some point in the future for
4144 *	optimal aging of shared pages.
4145 */
4146int
4147pmap_ts_referenced(vm_page_t m)
4148{
4149	struct md_page *pvh;
4150	pv_entry_t pv, pvf, pvn;
4151	pmap_t pmap;
4152	pd_entry_t oldpde, *pde;
4153	pt_entry_t *pte;
4154	vm_offset_t va;
4155	int rtval = 0;
4156
4157	if (m->flags & PG_FICTITIOUS)
4158		return (rtval);
4159	sched_pin();
4160	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4161	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4162	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4163		va = pv->pv_va;
4164		pmap = PV_PMAP(pv);
4165		PMAP_LOCK(pmap);
4166		pde = pmap_pde(pmap, va);
4167		oldpde = *pde;
4168		if ((oldpde & PG_A) != 0) {
4169			if (pmap_demote_pde(pmap, pde, va)) {
4170				if ((oldpde & PG_W) == 0) {
4171					/*
4172					 * Remove the mapping to a single page
4173					 * so that a subsequent access may
4174					 * repromote.  Since the underlying
4175					 * page table page is fully populated,
4176					 * this removal never frees a page
4177					 * table page.
4178					 */
4179					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4180					    PG_PS_FRAME);
4181					pmap_remove_page(pmap, va, NULL);
4182					rtval++;
4183					if (rtval > 4) {
4184						PMAP_UNLOCK(pmap);
4185						return (rtval);
4186					}
4187				}
4188			}
4189		}
4190		PMAP_UNLOCK(pmap);
4191	}
4192	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4193		pvf = pv;
4194		do {
4195			pvn = TAILQ_NEXT(pv, pv_list);
4196			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4197			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4198			pmap = PV_PMAP(pv);
4199			PMAP_LOCK(pmap);
4200			pde = pmap_pde(pmap, pv->pv_va);
4201			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4202			    " found a 4mpage in page %p's pv list", m));
4203			pte = pmap_pte_quick(pmap, pv->pv_va);
4204			if ((*pte & PG_A) != 0) {
4205				atomic_clear_int((u_int *)pte, PG_A);
4206				pmap_invalidate_page(pmap, pv->pv_va);
4207				rtval++;
4208				if (rtval > 4)
4209					pvn = NULL;
4210			}
4211			PMAP_UNLOCK(pmap);
4212		} while ((pv = pvn) != NULL && pv != pvf);
4213	}
4214	sched_unpin();
4215	return (rtval);
4216}
4217
4218/*
4219 *	Clear the modify bits on the specified physical page.
4220 */
4221void
4222pmap_clear_modify(vm_page_t m)
4223{
4224	struct md_page *pvh;
4225	pv_entry_t next_pv, pv;
4226	pmap_t pmap;
4227	pd_entry_t oldpde, *pde;
4228	pt_entry_t oldpte, *pte;
4229	vm_offset_t va;
4230
4231	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4232	if ((m->flags & PG_FICTITIOUS) != 0)
4233		return;
4234	sched_pin();
4235	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4236	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4237		va = pv->pv_va;
4238		pmap = PV_PMAP(pv);
4239		PMAP_LOCK(pmap);
4240		pde = pmap_pde(pmap, va);
4241		oldpde = *pde;
4242		if ((oldpde & PG_RW) != 0) {
4243			if (pmap_demote_pde(pmap, pde, va)) {
4244				if ((oldpde & PG_W) == 0) {
4245					/*
4246					 * Write protect the mapping to a
4247					 * single page so that a subsequent
4248					 * write access may repromote.
4249					 */
4250					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4251					    PG_PS_FRAME);
4252					pte = pmap_pte_quick(pmap, va);
4253					oldpte = *pte;
4254					if ((oldpte & PG_V) != 0) {
4255						/*
4256						 * Regardless of whether a pte is 32 or 64 bits
4257						 * in size, PG_RW and PG_M are among the least
4258						 * significant 32 bits.
4259						 */
4260						while (!atomic_cmpset_int((u_int *)pte,
4261						    oldpte,
4262						    oldpte & ~(PG_M | PG_RW)))
4263							oldpte = *pte;
4264						vm_page_dirty(m);
4265						pmap_invalidate_page(pmap, va);
4266					}
4267				}
4268			}
4269		}
4270		PMAP_UNLOCK(pmap);
4271	}
4272	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4273		pmap = PV_PMAP(pv);
4274		PMAP_LOCK(pmap);
4275		pde = pmap_pde(pmap, pv->pv_va);
4276		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4277		    " a 4mpage in page %p's pv list", m));
4278		pte = pmap_pte_quick(pmap, pv->pv_va);
4279		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4280			/*
4281			 * Regardless of whether a pte is 32 or 64 bits
4282			 * in size, PG_M is among the least significant
4283			 * 32 bits.
4284			 */
4285			atomic_clear_int((u_int *)pte, PG_M);
4286			pmap_invalidate_page(pmap, pv->pv_va);
4287		}
4288		PMAP_UNLOCK(pmap);
4289	}
4290	sched_unpin();
4291}
4292
4293/*
4294 *	pmap_clear_reference:
4295 *
4296 *	Clear the reference bit on the specified physical page.
4297 */
4298void
4299pmap_clear_reference(vm_page_t m)
4300{
4301	struct md_page *pvh;
4302	pv_entry_t next_pv, pv;
4303	pmap_t pmap;
4304	pd_entry_t oldpde, *pde;
4305	pt_entry_t *pte;
4306	vm_offset_t va;
4307
4308	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4309	if ((m->flags & PG_FICTITIOUS) != 0)
4310		return;
4311	sched_pin();
4312	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4313	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4314		va = pv->pv_va;
4315		pmap = PV_PMAP(pv);
4316		PMAP_LOCK(pmap);
4317		pde = pmap_pde(pmap, va);
4318		oldpde = *pde;
4319		if ((oldpde & PG_A) != 0) {
4320			if (pmap_demote_pde(pmap, pde, va)) {
4321				/*
4322				 * Remove the mapping to a single page so
4323				 * that a subsequent access may repromote.
4324				 * Since the underlying page table page is
4325				 * fully populated, this removal never frees
4326				 * a page table page.
4327				 */
4328				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4329				    PG_PS_FRAME);
4330				pmap_remove_page(pmap, va, NULL);
4331			}
4332		}
4333		PMAP_UNLOCK(pmap);
4334	}
4335	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4336		pmap = PV_PMAP(pv);
4337		PMAP_LOCK(pmap);
4338		pde = pmap_pde(pmap, pv->pv_va);
4339		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4340		    " a 4mpage in page %p's pv list", m));
4341		pte = pmap_pte_quick(pmap, pv->pv_va);
4342		if ((*pte & PG_A) != 0) {
4343			/*
4344			 * Regardless of whether a pte is 32 or 64 bits
4345			 * in size, PG_A is among the least significant
4346			 * 32 bits.
4347			 */
4348			atomic_clear_int((u_int *)pte, PG_A);
4349			pmap_invalidate_page(pmap, pv->pv_va);
4350		}
4351		PMAP_UNLOCK(pmap);
4352	}
4353	sched_unpin();
4354}
4355
4356/*
4357 * Miscellaneous support routines follow
4358 */
4359
4360/*
4361 * Map a set of physical memory pages into the kernel virtual
4362 * address space. Return a pointer to where it is mapped. This
4363 * routine is intended to be used for mapping device memory,
4364 * NOT real memory.
4365 */
4366void *
4367pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4368{
4369	vm_offset_t va, tmpva, offset;
4370
4371	offset = pa & PAGE_MASK;
4372	size = roundup(offset + size, PAGE_SIZE);
4373	pa = pa & PG_FRAME;
4374
4375	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4376		va = KERNBASE + pa;
4377	else
4378		va = kmem_alloc_nofault(kernel_map, size);
4379	if (!va)
4380		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4381
4382	for (tmpva = va; size > 0; ) {
4383		pmap_kenter_attr(tmpva, pa, mode);
4384		size -= PAGE_SIZE;
4385		tmpva += PAGE_SIZE;
4386		pa += PAGE_SIZE;
4387	}
4388	pmap_invalidate_range(kernel_pmap, va, tmpva);
4389	pmap_invalidate_cache();
4390	return ((void *)(va + offset));
4391}
4392
4393void *
4394pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4395{
4396
4397	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4398}
4399
4400void *
4401pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4402{
4403
4404	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4405}
4406
4407void
4408pmap_unmapdev(vm_offset_t va, vm_size_t size)
4409{
4410	vm_offset_t base, offset, tmpva;
4411
4412	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4413		return;
4414	base = trunc_page(va);
4415	offset = va & PAGE_MASK;
4416	size = roundup(offset + size, PAGE_SIZE);
4417	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4418		pmap_kremove(tmpva);
4419	pmap_invalidate_range(kernel_pmap, va, tmpva);
4420	kmem_free(kernel_map, base, size);
4421}
4422
4423int
4424pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4425{
4426	vm_offset_t base, offset, tmpva;
4427	pt_entry_t *pte;
4428	u_int opte, npte;
4429	pd_entry_t *pde;
4430
4431	base = trunc_page(va);
4432	offset = va & PAGE_MASK;
4433	size = roundup(offset + size, PAGE_SIZE);
4434
4435	/*
4436	 * Only supported on kernel virtual addresses above the recursive map.
4437	 */
4438	if (base < VM_MIN_KERNEL_ADDRESS)
4439		return (EINVAL);
4440
4441	/* 4MB pages and pages that aren't mapped aren't supported. */
4442	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4443		pde = pmap_pde(kernel_pmap, tmpva);
4444		if (*pde & PG_PS)
4445			return (EINVAL);
4446		if (*pde == 0)
4447			return (EINVAL);
4448		pte = vtopte(tmpva);
4449		if (*pte == 0)
4450			return (EINVAL);
4451	}
4452
4453	/*
4454	 * Ok, all the pages exist and are 4k, so run through them updating
4455	 * their cache mode.
4456	 */
4457	for (tmpva = base; size > 0; ) {
4458		pte = vtopte(tmpva);
4459
4460		/*
4461		 * The cache mode bits are all in the low 32-bits of the
4462		 * PTE, so we can just spin on updating the low 32-bits.
4463		 */
4464		do {
4465			opte = *(u_int *)pte;
4466			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4467			npte |= pmap_cache_bits(mode, 0);
4468		} while (npte != opte &&
4469		    !atomic_cmpset_int((u_int *)pte, opte, npte));
4470		tmpva += PAGE_SIZE;
4471		size -= PAGE_SIZE;
4472	}
4473
4474	/*
4475	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4476	 * be, etc.
4477	 */
4478	pmap_invalidate_range(kernel_pmap, base, tmpva);
4479	pmap_invalidate_cache();
4480	return (0);
4481}
4482
4483/*
4484 * perform the pmap work for mincore
4485 */
4486int
4487pmap_mincore(pmap_t pmap, vm_offset_t addr)
4488{
4489	pd_entry_t *pdep;
4490	pt_entry_t *ptep, pte;
4491	vm_paddr_t pa;
4492	vm_page_t m;
4493	int val = 0;
4494
4495	PMAP_LOCK(pmap);
4496	pdep = pmap_pde(pmap, addr);
4497	if (*pdep != 0) {
4498		if (*pdep & PG_PS) {
4499			pte = *pdep;
4500			val = MINCORE_SUPER;
4501			/* Compute the physical address of the 4KB page. */
4502			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4503			    PG_FRAME;
4504		} else {
4505			ptep = pmap_pte(pmap, addr);
4506			pte = *ptep;
4507			pmap_pte_release(ptep);
4508			pa = pte & PG_FRAME;
4509		}
4510	} else {
4511		pte = 0;
4512		pa = 0;
4513	}
4514	PMAP_UNLOCK(pmap);
4515
4516	if (pte != 0) {
4517		val |= MINCORE_INCORE;
4518		if ((pte & PG_MANAGED) == 0)
4519			return val;
4520
4521		m = PHYS_TO_VM_PAGE(pa);
4522
4523		/*
4524		 * Modified by us
4525		 */
4526		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4527			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4528		else {
4529			/*
4530			 * Modified by someone else
4531			 */
4532			vm_page_lock_queues();
4533			if (m->dirty || pmap_is_modified(m))
4534				val |= MINCORE_MODIFIED_OTHER;
4535			vm_page_unlock_queues();
4536		}
4537		/*
4538		 * Referenced by us
4539		 */
4540		if (pte & PG_A)
4541			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4542		else {
4543			/*
4544			 * Referenced by someone else
4545			 */
4546			vm_page_lock_queues();
4547			if ((m->flags & PG_REFERENCED) ||
4548			    pmap_ts_referenced(m)) {
4549				val |= MINCORE_REFERENCED_OTHER;
4550				vm_page_flag_set(m, PG_REFERENCED);
4551			}
4552			vm_page_unlock_queues();
4553		}
4554	}
4555	return val;
4556}
4557
4558void
4559pmap_activate(struct thread *td)
4560{
4561	pmap_t	pmap, oldpmap;
4562	u_int32_t  cr3;
4563
4564	critical_enter();
4565	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4566	oldpmap = PCPU_GET(curpmap);
4567#if defined(SMP)
4568	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4569	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4570#else
4571	oldpmap->pm_active &= ~1;
4572	pmap->pm_active |= 1;
4573#endif
4574#ifdef PAE
4575	cr3 = vtophys(pmap->pm_pdpt);
4576#else
4577	cr3 = vtophys(pmap->pm_pdir);
4578#endif
4579	/*
4580	 * pmap_activate is for the current thread on the current cpu
4581	 */
4582	td->td_pcb->pcb_cr3 = cr3;
4583	load_cr3(cr3);
4584	PCPU_SET(curpmap, pmap);
4585	critical_exit();
4586}
4587
4588/*
4589 *	Increase the starting virtual address of the given mapping if a
4590 *	different alignment might result in more superpage mappings.
4591 */
4592void
4593pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4594    vm_offset_t *addr, vm_size_t size)
4595{
4596	vm_offset_t superpage_offset;
4597
4598	if (size < NBPDR)
4599		return;
4600	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4601		offset += ptoa(object->pg_color);
4602	superpage_offset = offset & PDRMASK;
4603	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4604	    (*addr & PDRMASK) == superpage_offset)
4605		return;
4606	if ((*addr & PDRMASK) < superpage_offset)
4607		*addr = (*addr & ~PDRMASK) + superpage_offset;
4608	else
4609		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4610}
4611
4612
4613#if defined(PMAP_DEBUG)
4614pmap_pid_dump(int pid)
4615{
4616	pmap_t pmap;
4617	struct proc *p;
4618	int npte = 0;
4619	int index;
4620
4621	sx_slock(&allproc_lock);
4622	FOREACH_PROC_IN_SYSTEM(p) {
4623		if (p->p_pid != pid)
4624			continue;
4625
4626		if (p->p_vmspace) {
4627			int i,j;
4628			index = 0;
4629			pmap = vmspace_pmap(p->p_vmspace);
4630			for (i = 0; i < NPDEPTD; i++) {
4631				pd_entry_t *pde;
4632				pt_entry_t *pte;
4633				vm_offset_t base = i << PDRSHIFT;
4634
4635				pde = &pmap->pm_pdir[i];
4636				if (pde && pmap_pde_v(pde)) {
4637					for (j = 0; j < NPTEPG; j++) {
4638						vm_offset_t va = base + (j << PAGE_SHIFT);
4639						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4640							if (index) {
4641								index = 0;
4642								printf("\n");
4643							}
4644							sx_sunlock(&allproc_lock);
4645							return npte;
4646						}
4647						pte = pmap_pte(pmap, va);
4648						if (pte && pmap_pte_v(pte)) {
4649							pt_entry_t pa;
4650							vm_page_t m;
4651							pa = *pte;
4652							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4653							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4654								va, pa, m->hold_count, m->wire_count, m->flags);
4655							npte++;
4656							index++;
4657							if (index >= 2) {
4658								index = 0;
4659								printf("\n");
4660							} else {
4661								printf(" ");
4662							}
4663						}
4664					}
4665				}
4666			}
4667		}
4668	}
4669	sx_sunlock(&allproc_lock);
4670	return npte;
4671}
4672#endif
4673
4674#if defined(DEBUG)
4675
4676static void	pads(pmap_t pm);
4677void		pmap_pvdump(vm_offset_t pa);
4678
4679/* print address space of pmap*/
4680static void
4681pads(pmap_t pm)
4682{
4683	int i, j;
4684	vm_paddr_t va;
4685	pt_entry_t *ptep;
4686
4687	if (pm == kernel_pmap)
4688		return;
4689	for (i = 0; i < NPDEPTD; i++)
4690		if (pm->pm_pdir[i])
4691			for (j = 0; j < NPTEPG; j++) {
4692				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4693				if (pm == kernel_pmap && va < KERNBASE)
4694					continue;
4695				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4696					continue;
4697				ptep = pmap_pte(pm, va);
4698				if (pmap_pte_v(ptep))
4699					printf("%x:%x ", va, *ptep);
4700			};
4701
4702}
4703
4704void
4705pmap_pvdump(vm_paddr_t pa)
4706{
4707	pv_entry_t pv;
4708	pmap_t pmap;
4709	vm_page_t m;
4710
4711	printf("pa %x", pa);
4712	m = PHYS_TO_VM_PAGE(pa);
4713	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4714		pmap = PV_PMAP(pv);
4715		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4716		pads(pmap);
4717	}
4718	printf(" ");
4719}
4720#endif
4721