pmap.c revision 178070
1130389Sle/*-
2190507Slulf * Copyright (c) 1991 Regents of the University of California.
3130389Sle * All rights reserved.
4130389Sle * Copyright (c) 1994 John S. Dyson
5130389Sle * All rights reserved.
6130389Sle * Copyright (c) 1994 David Greenman
7130389Sle * All rights reserved.
8130389Sle * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9130389Sle * All rights reserved.
10130389Sle *
11130389Sle * This code is derived from software contributed to Berkeley by
12130389Sle * the Systems Programming Group of the University of Utah Computer
13130389Sle * Science Department and William Jolitz of UUNET Technologies Inc.
14130389Sle *
15130389Sle * Redistribution and use in source and binary forms, with or without
16130389Sle * modification, are permitted provided that the following conditions
17130389Sle * are met:
18130389Sle * 1. Redistributions of source code must retain the above copyright
19130389Sle *    notice, this list of conditions and the following disclaimer.
20130389Sle * 2. Redistributions in binary form must reproduce the above copyright
21130389Sle *    notice, this list of conditions and the following disclaimer in the
22130389Sle *    documentation and/or other materials provided with the distribution.
23130389Sle * 3. All advertising materials mentioning features or use of this software
24130389Sle *    must display the following acknowledgement:
25130389Sle *	This product includes software developed by the University of
26130389Sle *	California, Berkeley and its contributors.
27130389Sle * 4. Neither the name of the University nor the names of its contributors
28130389Sle *    may be used to endorse or promote products derived from this software
29130389Sle *    without specific prior written permission.
30130389Sle *
31130389Sle * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32130389Sle * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33130389Sle * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34130389Sle * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35130389Sle * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36130389Sle * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37130389Sle * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38130389Sle * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39130389Sle * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40130389Sle * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41190507Slulf * SUCH DAMAGE.
42190507Slulf *
43190507Slulf *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44190507Slulf */
45190507Slulf/*-
46190507Slulf * Copyright (c) 2003 Networks Associates Technology, Inc.
47190507Slulf * All rights reserved.
48190507Slulf *
49190507Slulf * This software was developed for the FreeBSD Project by Jake Burkholder,
50190507Slulf * Safeport Network Services, and Network Associates Laboratories, the
51137730Sle * Security Research Division of Network Associates, Inc. under
52190507Slulf * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53190507Slulf * CHATS research program.
54190507Slulf *
55190507Slulf * Redistribution and use in source and binary forms, with or without
56190507Slulf * modification, are permitted provided that the following conditions
57190507Slulf * are met:
58190507Slulf * 1. Redistributions of source code must retain the above copyright
59190507Slulf *    notice, this list of conditions and the following disclaimer.
60190507Slulf * 2. Redistributions in binary form must reproduce the above copyright
61190507Slulf *    notice, this list of conditions and the following disclaimer in the
62190507Slulf *    documentation and/or other materials provided with the distribution.
63190507Slulf *
64190507Slulf * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65190507Slulf * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66190507Slulf * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67190507Slulf * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68191856Slulf * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69190507Slulf * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70191856Slulf * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71190507Slulf * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72190507Slulf * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73190507Slulf * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74190507Slulf * SUCH DAMAGE.
75190507Slulf */
76190507Slulf
77190507Slulf#include <sys/cdefs.h>
78190507Slulf__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 178070 2008-04-10 16:04:50Z alc $");
79190507Slulf
80190507Slulf/*
81190507Slulf *	Manages physical address maps.
82190507Slulf *
83190507Slulf *	In addition to hardware address maps, this
84190507Slulf *	module is called upon to provide software-use-only
85190507Slulf *	maps which may or may not be stored in the same
86190507Slulf *	form as hardware maps.  These pseudo-maps are
87190507Slulf *	used to store intermediate results from copy
88190507Slulf *	operations to and from address spaces.
89190507Slulf *
90190507Slulf *	Since the information managed by this module is
91190507Slulf *	also stored by the logical address mapping module,
92190507Slulf *	this module may throw away valid virtual-to-physical
93190507Slulf *	mappings at almost any time.  However, invalidations
94190507Slulf *	of virtual-to-physical mappings must be done as
95190507Slulf *	requested.
96190507Slulf *
97190507Slulf *	In order to cope with hardware architectures which
98190507Slulf *	make virtual-to-physical map invalidates expensive,
99190507Slulf *	this module may delay invalidate or reduced protection
100190507Slulf *	operations until such time as they are actually
101190507Slulf *	necessary.  This module is given full information as
102190507Slulf *	to which processors are currently using which maps,
103190507Slulf *	and to when physical maps must be made correct.
104190507Slulf */
105190507Slulf
106190507Slulf#include "opt_cpu.h"
107190507Slulf#include "opt_pmap.h"
108190507Slulf#include "opt_msgbuf.h"
109190507Slulf#include "opt_smp.h"
110190507Slulf#include "opt_xbox.h"
111190507Slulf
112190507Slulf#include <sys/param.h>
113190507Slulf#include <sys/systm.h>
114190507Slulf#include <sys/kernel.h>
115190507Slulf#include <sys/ktr.h>
116190507Slulf#include <sys/lock.h>
117190507Slulf#include <sys/malloc.h>
118190507Slulf#include <sys/mman.h>
119190507Slulf#include <sys/msgbuf.h>
120190507Slulf#include <sys/mutex.h>
121190507Slulf#include <sys/proc.h>
122190507Slulf#include <sys/sx.h>
123191856Slulf#include <sys/vmmeter.h>
124191856Slulf#include <sys/sched.h>
125191852Slulf#include <sys/sysctl.h>
126190507Slulf#ifdef SMP
127190507Slulf#include <sys/smp.h>
128190507Slulf#endif
129190507Slulf
130190507Slulf#include <vm/vm.h>
131190507Slulf#include <vm/vm_param.h>
132190507Slulf#include <vm/vm_kern.h>
133190507Slulf#include <vm/vm_page.h>
134190507Slulf#include <vm/vm_map.h>
135190507Slulf#include <vm/vm_object.h>
136190507Slulf#include <vm/vm_extern.h>
137190507Slulf#include <vm/vm_pageout.h>
138190507Slulf#include <vm/vm_pager.h>
139130389Sle#include <vm/vm_reserv.h>
140130389Sle#include <vm/uma.h>
141130389Sle
142130389Sle#include <machine/cpu.h>
143130389Sle#include <machine/cputypes.h>
144135426Sle#include <machine/md_var.h>
145130389Sle#include <machine/pcb.h>
146135426Sle#include <machine/specialreg.h>
147135426Sle#ifdef SMP
148130389Sle#include <machine/smp.h>
149190507Slulf#endif
150135426Sle
151135426Sle#ifdef XBOX
152130389Sle#include <machine/xbox.h>
153135426Sle#endif
154135426Sle
155135426Sle#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
156135426Sle#define CPU_ENABLE_SSE
157135426Sle#endif
158135426Sle
159135426Sle#ifndef PMAP_SHPGPERPROC
160135426Sle#define PMAP_SHPGPERPROC 200
161130389Sle#endif
162135426Sle
163135426Sle#if !defined(DIAGNOSTIC)
164135426Sle#define PMAP_INLINE	__gnu89_inline
165135426Sle#else
166130389Sle#define PMAP_INLINE
167130389Sle#endif
168130389Sle
169135426Sle#define PV_STATS
170130389Sle#ifdef PV_STATS
171130389Sle#define PV_STAT(x)	do { x ; } while (0)
172190507Slulf#else
173190507Slulf#define PV_STAT(x)	do { } while (0)
174138110Sle#endif
175138110Sle
176138110Sle#define	pa_index(pa)	((pa) >> PDRSHIFT)
177138110Sle#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
178190507Slulf
179138110Sle/*
180138110Sle * Get PDEs and PTEs for user/kernel address space
181138110Sle */
182138110Sle#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
183138110Sle#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
184138110Sle
185190507Slulf#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
186138110Sle#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
187138110Sle#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
188138110Sle#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
189138110Sle#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
190138110Sle
191138110Sle#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
192138110Sle    atomic_clear_int((u_int *)(pte), PG_W))
193138110Sle#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
194138110Sle
195138110Slestruct pmap kernel_pmap_store;
196138110SleLIST_HEAD(pmaplist, pmap);
197138110Slestatic struct pmaplist allpmaps;
198138110Slestatic struct mtx allpmaps_lock;
199138110Sle
200138110Slevm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
201138110Slevm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
202138110Sleint pgeflag = 0;		/* PG_G or-in */
203138110Sleint pseflag = 0;		/* PG_PS or-in */
204138110Sle
205138110Slestatic int nkpt;
206138110Slevm_offset_t kernel_vm_end;
207138110Sleextern u_int32_t KERNend;
208138110Sle
209138110Sle#ifdef PAE
210138110Slept_entry_t pg_nx;
211138110Slestatic uma_zone_t pdptzone;
212138110Sle#endif
213138110Sle
214190507SlulfSYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
215190507Slulf
216190507Slulfstatic int pg_ps_enabled;
217138110SleSYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
218190507Slulf    "Are large page mappings enabled?");
219138110Sle
220138110Sle/*
221138110Sle * Data for the pv entry allocation mechanism
222138110Sle */
223190507Slulfstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224138110Slestatic struct md_page *pv_table;
225138110Slestatic int shpgperproc = PMAP_SHPGPERPROC;
226138110Sle
227138110Slestruct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
228138110Sleint pv_maxchunks;			/* How many chunks we have KVA for */
229138110Slevm_offset_t pv_vafree;			/* freelist stored in the PTE */
230138110Sle
231190507Slulf/*
232138110Sle * All those kernel PT submaps that BSD is so fond of
233138110Sle */
234138110Slestruct sysmaps {
235138110Sle	struct	mtx lock;
236138110Sle	pt_entry_t *CMAP1;
237138110Sle	pt_entry_t *CMAP2;
238138110Sle	caddr_t	CADDR1;
239138110Sle	caddr_t	CADDR2;
240138110Sle};
241190507Slulfstatic struct sysmaps sysmaps_pcpu[MAXCPU];
242138110Slept_entry_t *CMAP1 = 0;
243138110Slestatic pt_entry_t *CMAP3;
244138110Slecaddr_t CADDR1 = 0, ptvmmap = 0;
245138110Slestatic caddr_t CADDR3;
246138110Slestruct msgbuf *msgbufp = 0;
247138110Sle
248138110Sle/*
249138110Sle * Crashdump maps.
250190507Slulf */
251190507Slulfstatic caddr_t crashdumpmap;
252135966Sle
253135966Slestatic pt_entry_t *PMAP1 = 0, *PMAP2;
254135966Slestatic pt_entry_t *PADDR1 = 0, *PADDR2;
255135966Sle#ifdef SMP
256190507Slulfstatic int PMAP1cpu;
257137730Slestatic int PMAP1changedcpu;
258135966SleSYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
259135966Sle	   &PMAP1changedcpu, 0,
260135966Sle	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
261135966Sle#endif
262190507Slulfstatic int PMAP1changed;
263135966SleSYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
264135966Sle	   &PMAP1changed, 0,
265135966Sle	   "Number of times pmap_pte_quick changed PMAP1");
266135966Slestatic int PMAP1unchanged;
267135966SleSYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
268135966Sle	   &PMAP1unchanged, 0,
269135966Sle	   "Number of times pmap_pte_quick didn't change PMAP1");
270135966Slestatic struct mtx PMAP2mutex;
271138110Sle
272135966Slestatic void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
273135966Slestatic pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
274135966Slestatic void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
275135966Slestatic boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
276135966Slestatic void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
277135966Slestatic void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
278135966Slestatic pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
279135966Sle		    vm_offset_t va);
280191856Slulfstatic int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
281135966Sle
282135966Slestatic boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
283184292Slulfstatic boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
284135966Sle    vm_prot_t prot);
285190507Slulfstatic vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
286190507Slulf    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
287135966Slestatic void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
288135966Slestatic boolean_t pmap_is_modified_pvh(struct md_page *pvh);
289135966Slestatic vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
290135966Slestatic void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
291135966Slestatic boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
292135966Sle    vm_prot_t prot);
293135966Slestatic void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
294135966Sle    vm_page_t *free);
295135966Slestatic int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
296135966Sle    vm_page_t *free);
297135966Slestatic void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
298135966Slestatic void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
299135966Sle    vm_page_t *free);
300135966Slestatic void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
301137730Sle					vm_offset_t va);
302135966Slestatic void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
303135966Slestatic boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
304135966Sle    vm_page_t m);
305135966Sle
306135966Slestatic vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
307135966Sle
308135966Slestatic vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
309190507Slulfstatic int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
310190507Slulfstatic pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
311190507Slulfstatic void pmap_pte_release(pt_entry_t *pte);
312190507Slulfstatic int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
313190507Slulfstatic vm_offset_t pmap_kmem_choose(vm_offset_t addr);
314135966Sle#ifdef PAE
315135966Slestatic void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
316135966Sle#endif
317135966Sle
318190507SlulfCTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
319135966SleCTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
320135966Sle
321135966Sle/*
322135966Sle * If you get an error here, then you set KVA_PAGES wrong! See the
323135966Sle * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
324135966Sle * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
325135966Sle */
326190507SlulfCTASSERT(KERNBASE % (1 << 24) == 0);
327135966Sle
328135966Sle/*
329135966Sle * Move the kernel virtual free pointer to the next
330135966Sle * 4MB.  This is used to help improve performance
331135966Sle * by using a large (4MB) page for much of the kernel
332135966Sle * (.text, .data, .bss)
333190507Slulf */
334135966Slestatic vm_offset_t
335135966Slepmap_kmem_choose(vm_offset_t addr)
336135966Sle{
337130389Sle	vm_offset_t newaddr = addr;
338190507Slulf
339190507Slulf#ifndef DISABLE_PSE
340190507Slulf	if (cpu_feature & CPUID_PSE)
341130389Sle		newaddr = (addr + PDRMASK) & ~PDRMASK;
342130389Sle#endif
343130389Sle	return newaddr;
344135426Sle}
345190507Slulf
346190507Slulf/*
347137730Sle *	Bootstrap the system enough to run with virtual memory.
348130389Sle *
349130389Sle *	On the i386 this is called after mapping has already been enabled
350130389Sle *	and just syncs the pmap module with what has already been done.
351130389Sle *	[We can't call it easily with mapping off since the kernel is not
352130389Sle *	mapped with PA == VA, hence we would have to relocate every address
353130389Sle *	from the linked base (virtual) address "KERNBASE" to the actual
354130389Sle *	(physical) address starting relative to 0]
355135426Sle */
356135426Slevoid
357135426Slepmap_bootstrap(vm_paddr_t firstaddr)
358135426Sle{
359135426Sle	vm_offset_t va;
360130389Sle	pt_entry_t *pte, *unused;
361130389Sle	struct sysmaps *sysmaps;
362190507Slulf	int i;
363190507Slulf
364190507Slulf	/*
365190507Slulf	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
366190507Slulf	 * large. It should instead be correctly calculated in locore.s and
367190507Slulf	 * not based on 'first' (which is a physical address, not a virtual
368190507Slulf	 * address, for the start of unused physical memory). The kernel
369190507Slulf	 * page tables are NOT double mapped and thus should not be included
370190507Slulf	 * in this calculation.
371190507Slulf	 */
372190507Slulf	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
373190507Slulf	virtual_avail = pmap_kmem_choose(virtual_avail);
374190507Slulf
375190507Slulf	virtual_end = VM_MAX_KERNEL_ADDRESS;
376190507Slulf
377190507Slulf	/*
378190507Slulf	 * Initialize the kernel pmap (which is statically allocated).
379190507Slulf	 */
380130389Sle	PMAP_LOCK_INIT(kernel_pmap);
381130389Sle	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
382130389Sle#ifdef PAE
383130389Sle	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
384130389Sle#endif
385130389Sle	kernel_pmap->pm_root = NULL;
386130389Sle	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
387130389Sle	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
388130389Sle	LIST_INIT(&allpmaps);
389130389Sle	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
390130389Sle	mtx_lock_spin(&allpmaps_lock);
391130389Sle	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
392130389Sle	mtx_unlock_spin(&allpmaps_lock);
393130389Sle	nkpt = NKPT;
394130389Sle
395130389Sle	/*
396130389Sle	 * Reserve some special page table entries/VA space for temporary
397130389Sle	 * mapping of pages.
398135426Sle	 */
399190507Slulf#define	SYSMAP(c, p, v, n)	\
400190507Slulf	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
401190507Slulf
402191856Slulf	va = virtual_avail;
403190507Slulf	pte = vtopte(va);
404130389Sle
405190507Slulf	/*
406130389Sle	 * CMAP1/CMAP2 are used for zeroing and copying pages.
407135426Sle	 * CMAP3 is used for the idle process page zeroing.
408130389Sle	 */
409130389Sle	for (i = 0; i < MAXCPU; i++) {
410135426Sle		sysmaps = &sysmaps_pcpu[i];
411130389Sle		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
412130389Sle		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
413135426Sle		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
414130389Sle	}
415135426Sle	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
416130389Sle	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
417130389Sle	*CMAP3 = 0;
418130389Sle
419190507Slulf	/*
420135966Sle	 * Crashdump maps.
421135966Sle	 */
422190507Slulf	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
423190507Slulf
424190507Slulf	/*
425190507Slulf	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
426190507Slulf	 */
427190507Slulf	SYSMAP(caddr_t, unused, ptvmmap, 1)
428130389Sle
429130389Sle	/*
430130389Sle	 * msgbufp is used to map the system message buffer.
431130389Sle	 */
432130389Sle	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
433130389Sle
434130389Sle	/*
435135426Sle	 * ptemap is used for pmap_pte_quick
436135426Sle	 */
437130389Sle	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
438130389Sle	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
439130389Sle
440130389Sle	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
441190507Slulf
442190507Slulf	virtual_avail = va;
443190507Slulf
444190507Slulf	*CMAP1 = 0;
445135426Sle
446130389Sle	/*
447135426Sle	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
448190507Slulf	 * physical memory region that is used by the ACPI wakeup code.  This
449135426Sle	 * mapping must not have PG_G set.
450135426Sle	 */
451135426Sle#ifdef XBOX
452135426Sle	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
453130389Sle	 * an early stadium, we cannot yet neatly map video memory ... :-(
454130389Sle	 * Better fixes are very welcome! */
455130389Sle	if (!arch_i386_is_xbox)
456130389Sle#endif
457190507Slulf	for (i = 1; i < NKPT; i++)
458135426Sle		PTD[i] = 0;
459130389Sle
460135426Sle	/* Initialize the PAT MSR if present. */
461190507Slulf	pmap_init_pat();
462130389Sle
463135426Sle	/* Turn on PG_G on kernel page(s) */
464135426Sle	pmap_set_pg();
465130389Sle}
466130389Sle
467130389Sle/*
468130389Sle * Setup the PAT MSR.
469130389Sle */
470130389Slevoid
471130389Slepmap_init_pat(void)
472130389Sle{
473130389Sle	uint64_t pat_msr;
474135426Sle
475135426Sle	/* Bail if this CPU doesn't implement PAT. */
476130389Sle	if (!(cpu_feature & CPUID_PAT))
477130389Sle		return;
478135426Sle
479130389Sle#ifdef PAT_WORKS
480190507Slulf	/*
481190507Slulf	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
482190507Slulf	 * Program 4 and 5 as WP and WC.
483130389Sle	 * Leave 6 and 7 as UC and UC-.
484190507Slulf	 */
485135426Sle	pat_msr = rdmsr(MSR_PAT);
486130389Sle	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
487135426Sle	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
488135426Sle	    PAT_VALUE(5, PAT_WRITE_COMBINING);
489190507Slulf#else
490135426Sle	/*
491135426Sle	 * Due to some Intel errata, we can only safely use the lower 4
492135426Sle	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
493135426Sle	 * of UC-.
494130389Sle	 *
495130389Sle	 *   Intel Pentium III Processor Specification Update
496135426Sle	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
497190507Slulf	 * or Mode C Paging)
498135426Sle	 *
499130389Sle	 *   Intel Pentium IV  Processor Specification Update
500190507Slulf	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
501135426Sle	 */
502130389Sle	pat_msr = rdmsr(MSR_PAT);
503130389Sle	pat_msr &= ~PAT_MASK(2);
504135426Sle	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
505130389Sle#endif
506135426Sle	wrmsr(MSR_PAT, pat_msr);
507190507Slulf}
508135426Sle
509130925Sle/*
510130389Sle * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
511190507Slulf */
512130389Slevoid
513135426Slepmap_set_pg(void)
514135426Sle{
515135426Sle	pd_entry_t pdir;
516130389Sle	pt_entry_t *pte;
517130389Sle	vm_offset_t va, endva;
518130389Sle	int i;
519130389Sle
520130389Sle	if (pgeflag == 0)
521130389Sle		return;
522130389Sle
523135426Sle	i = KERNLOAD/NBPDR;
524190507Slulf	endva = KERNBASE + KERNend;
525135426Sle
526130925Sle	if (pseflag) {
527135426Sle		va = KERNBASE + KERNLOAD;
528130389Sle		while (va  < endva) {
529190507Slulf			pdir = kernel_pmap->pm_pdir[KPTDI+i];
530135426Sle			pdir |= pgeflag;
531135426Sle			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
532135426Sle			invltlb();	/* Play it safe, invltlb() every time */
533135426Sle			i++;
534135426Sle			va += NBPDR;
535135426Sle		}
536190507Slulf	} else {
537135426Sle		va = (vm_offset_t)btext;
538135426Sle		while (va < endva) {
539135426Sle			pte = vtopte(va);
540135426Sle			if (*pte)
541190507Slulf				*pte |= pgeflag;
542135426Sle			invltlb();	/* Play it safe, invltlb() every time */
543135426Sle			va += PAGE_SIZE;
544135426Sle		}
545135426Sle	}
546135426Sle}
547135426Sle
548190507Slulf/*
549135426Sle * Initialize a vm_page's machine-dependent fields.
550135426Sle */
551135426Slevoid
552135426Slepmap_page_init(vm_page_t m)
553135426Sle{
554135426Sle
555135426Sle	TAILQ_INIT(&m->md.pv_list);
556135426Sle}
557135426Sle
558135426Sle#ifdef PAE
559135426Sle
560190507Slulfstatic MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
561135426Sle
562135426Slestatic void *
563135426Slepmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
564135426Sle{
565135426Sle
566130389Sle	/* Inform UMA that this allocator uses kernel_map/object. */
567130389Sle	*flags = UMA_SLAB_KERNEL;
568135426Sle	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
569130389Sle	    1, 0));
570130389Sle}
571130389Sle#endif
572130389Sle
573130389Sle/*
574130389Sle * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
575137730Sle * Requirements:
576190507Slulf *  - Must deal with pages in order to ensure that none of the PG_* bits
577190507Slulf *    are ever set, PG_V in particular.
578190507Slulf *  - Assumes we can write to ptes without pte_store() atomic ops, even
579190507Slulf *    on PAE systems.  This should be ok.
580190507Slulf *  - Assumes nothing will ever test these addresses for 0 to indicate
581190507Slulf *    no mapping instead of correctly checking PG_V.
582190507Slulf *  - Assumes a vm_offset_t will fit in a pte (true for i386).
583190507Slulf * Because PG_V is never set, there can be no mappings to invalidate.
584137730Sle */
585190507Slulfstatic vm_offset_t
586137730Slepmap_ptelist_alloc(vm_offset_t *head)
587190507Slulf{
588190507Slulf	pt_entry_t *pte;
589137730Sle	vm_offset_t va;
590137730Sle
591190507Slulf	va = *head;
592190507Slulf	if (va == 0)
593190507Slulf		return (va);	/* Out of memory */
594190507Slulf	pte = vtopte(va);
595190507Slulf	*head = *pte;
596190507Slulf	if (*head & PG_V)
597190507Slulf		panic("pmap_ptelist_alloc: va with PG_V set!");
598190507Slulf	*pte = 0;
599137730Sle	return (va);
600190507Slulf}
601190507Slulf
602137730Slestatic void
603137730Slepmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
604137730Sle{
605190507Slulf	pt_entry_t *pte;
606137730Sle
607137730Sle	if (va & PG_V)
608137730Sle		panic("pmap_ptelist_free: freeing va with PG_V set!");
609137730Sle	pte = vtopte(va);
610137730Sle	*pte = *head;		/* virtual! PG_V is 0 though */
611137730Sle	*head = va;
612137730Sle}
613137730Sle
614137730Slestatic void
615137730Slepmap_ptelist_init(vm_offset_t *head, void *base, int npages)
616137730Sle{
617190507Slulf	int i;
618137730Sle	vm_offset_t va;
619137730Sle
620137730Sle	*head = 0;
621137730Sle	for (i = npages - 1; i >= 0; i--) {
622137730Sle		va = (vm_offset_t)base + i * PAGE_SIZE;
623137730Sle		pmap_ptelist_free(head, va);
624137730Sle	}
625137730Sle}
626137730Sle
627137730Sle
628137730Sle/*
629137730Sle *	Initialize the pmap module.
630137730Sle *	Called by vm_init, to initialize any structures that the pmap
631137730Sle *	system needs to map virtual memory.
632137730Sle */
633137730Slevoid
634137730Slepmap_init(void)
635137730Sle{
636137730Sle	vm_page_t mpte;
637137730Sle	vm_size_t s;
638190507Slulf	int i, pv_npg;
639190507Slulf
640190507Slulf	/*
641190507Slulf	 * Initialize the vm page array entries for the kernel pmap's
642190507Slulf	 * page table pages.
643190507Slulf	 */
644190507Slulf	for (i = 0; i < nkpt; i++) {
645190507Slulf		mpte = PHYS_TO_VM_PAGE(PTD[i + KPTDI] & PG_FRAME);
646190507Slulf		KASSERT(mpte >= vm_page_array &&
647190507Slulf		    mpte < &vm_page_array[vm_page_array_size],
648190507Slulf		    ("pmap_init: page table page is out of range"));
649190507Slulf		mpte->pindex = i + KPTDI;
650190507Slulf		mpte->phys_addr = PTD[i + KPTDI] & PG_FRAME;
651190507Slulf	}
652190507Slulf
653190507Slulf	/*
654190507Slulf	 * Initialize the address space (zone) for the pv entries.  Set a
655190507Slulf	 * high water mark so that the system can recover from excessive
656190507Slulf	 * numbers of pv entries.
657190507Slulf	 */
658190507Slulf	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
659190507Slulf	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
660190507Slulf	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
661190507Slulf	pv_entry_max = roundup(pv_entry_max, _NPCPV);
662	pv_entry_high_water = 9 * (pv_entry_max / 10);
663
664	/*
665	 * Are large page mappings enabled?
666	 */
667	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
668
669	/*
670	 * Calculate the size of the pv head table for superpages.
671	 */
672	for (i = 0; phys_avail[i + 1]; i += 2);
673	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
674
675	/*
676	 * Allocate memory for the pv head table for superpages.
677	 */
678	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
679	s = round_page(s);
680	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
681	for (i = 0; i < pv_npg; i++)
682		TAILQ_INIT(&pv_table[i].pv_list);
683
684	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
685	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
686	    PAGE_SIZE * pv_maxchunks);
687	if (pv_chunkbase == NULL)
688		panic("pmap_init: not enough kvm for pv chunks");
689	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
690#ifdef PAE
691	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
692	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
693	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
694	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
695#endif
696}
697
698
699SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
700	"Max number of PV entries");
701SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
702	"Page share factor per proc");
703
704SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
705    "2/4MB page mapping counters");
706
707static u_long pmap_pde_demotions;
708SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
709    &pmap_pde_demotions, 0, "2/4MB page demotions");
710
711static u_long pmap_pde_mappings;
712SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
713    &pmap_pde_mappings, 0, "2/4MB page mappings");
714
715static u_long pmap_pde_p_failures;
716SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
717    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
718
719static u_long pmap_pde_promotions;
720SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
721    &pmap_pde_promotions, 0, "2/4MB page promotions");
722
723/***************************************************
724 * Low level helper routines.....
725 ***************************************************/
726
727/*
728 * Determine the appropriate bits to set in a PTE or PDE for a specified
729 * caching mode.
730 */
731static int
732pmap_cache_bits(int mode, boolean_t is_pde)
733{
734	int pat_flag, pat_index, cache_bits;
735
736	/* The PAT bit is different for PTE's and PDE's. */
737	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
738
739	/* If we don't support PAT, map extended modes to older ones. */
740	if (!(cpu_feature & CPUID_PAT)) {
741		switch (mode) {
742		case PAT_UNCACHEABLE:
743		case PAT_WRITE_THROUGH:
744		case PAT_WRITE_BACK:
745			break;
746		case PAT_UNCACHED:
747		case PAT_WRITE_COMBINING:
748		case PAT_WRITE_PROTECTED:
749			mode = PAT_UNCACHEABLE;
750			break;
751		}
752	}
753
754	/* Map the caching mode to a PAT index. */
755	switch (mode) {
756#ifdef PAT_WORKS
757	case PAT_UNCACHEABLE:
758		pat_index = 3;
759		break;
760	case PAT_WRITE_THROUGH:
761		pat_index = 1;
762		break;
763	case PAT_WRITE_BACK:
764		pat_index = 0;
765		break;
766	case PAT_UNCACHED:
767		pat_index = 2;
768		break;
769	case PAT_WRITE_COMBINING:
770		pat_index = 5;
771		break;
772	case PAT_WRITE_PROTECTED:
773		pat_index = 4;
774		break;
775#else
776	case PAT_UNCACHED:
777	case PAT_UNCACHEABLE:
778	case PAT_WRITE_PROTECTED:
779		pat_index = 3;
780		break;
781	case PAT_WRITE_THROUGH:
782		pat_index = 1;
783		break;
784	case PAT_WRITE_BACK:
785		pat_index = 0;
786		break;
787	case PAT_WRITE_COMBINING:
788		pat_index = 2;
789		break;
790#endif
791	default:
792		panic("Unknown caching mode %d\n", mode);
793	}
794
795	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
796	cache_bits = 0;
797	if (pat_index & 0x4)
798		cache_bits |= pat_flag;
799	if (pat_index & 0x2)
800		cache_bits |= PG_NC_PCD;
801	if (pat_index & 0x1)
802		cache_bits |= PG_NC_PWT;
803	return (cache_bits);
804}
805#ifdef SMP
806/*
807 * For SMP, these functions have to use the IPI mechanism for coherence.
808 *
809 * N.B.: Before calling any of the following TLB invalidation functions,
810 * the calling processor must ensure that all stores updating a non-
811 * kernel page table are globally performed.  Otherwise, another
812 * processor could cache an old, pre-update entry without being
813 * invalidated.  This can happen one of two ways: (1) The pmap becomes
814 * active on another processor after its pm_active field is checked by
815 * one of the following functions but before a store updating the page
816 * table is globally performed. (2) The pmap becomes active on another
817 * processor before its pm_active field is checked but due to
818 * speculative loads one of the following functions stills reads the
819 * pmap as inactive on the other processor.
820 *
821 * The kernel page table is exempt because its pm_active field is
822 * immutable.  The kernel page table is always active on every
823 * processor.
824 */
825void
826pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
827{
828	u_int cpumask;
829	u_int other_cpus;
830
831	sched_pin();
832	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
833		invlpg(va);
834		smp_invlpg(va);
835	} else {
836		cpumask = PCPU_GET(cpumask);
837		other_cpus = PCPU_GET(other_cpus);
838		if (pmap->pm_active & cpumask)
839			invlpg(va);
840		if (pmap->pm_active & other_cpus)
841			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
842	}
843	sched_unpin();
844}
845
846void
847pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
848{
849	u_int cpumask;
850	u_int other_cpus;
851	vm_offset_t addr;
852
853	sched_pin();
854	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
855		for (addr = sva; addr < eva; addr += PAGE_SIZE)
856			invlpg(addr);
857		smp_invlpg_range(sva, eva);
858	} else {
859		cpumask = PCPU_GET(cpumask);
860		other_cpus = PCPU_GET(other_cpus);
861		if (pmap->pm_active & cpumask)
862			for (addr = sva; addr < eva; addr += PAGE_SIZE)
863				invlpg(addr);
864		if (pmap->pm_active & other_cpus)
865			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
866			    sva, eva);
867	}
868	sched_unpin();
869}
870
871void
872pmap_invalidate_all(pmap_t pmap)
873{
874	u_int cpumask;
875	u_int other_cpus;
876
877	sched_pin();
878	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
879		invltlb();
880		smp_invltlb();
881	} else {
882		cpumask = PCPU_GET(cpumask);
883		other_cpus = PCPU_GET(other_cpus);
884		if (pmap->pm_active & cpumask)
885			invltlb();
886		if (pmap->pm_active & other_cpus)
887			smp_masked_invltlb(pmap->pm_active & other_cpus);
888	}
889	sched_unpin();
890}
891
892void
893pmap_invalidate_cache(void)
894{
895
896	sched_pin();
897	wbinvd();
898	smp_cache_flush();
899	sched_unpin();
900}
901#else /* !SMP */
902/*
903 * Normal, non-SMP, 486+ invalidation functions.
904 * We inline these within pmap.c for speed.
905 */
906PMAP_INLINE void
907pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
908{
909
910	if (pmap == kernel_pmap || pmap->pm_active)
911		invlpg(va);
912}
913
914PMAP_INLINE void
915pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
916{
917	vm_offset_t addr;
918
919	if (pmap == kernel_pmap || pmap->pm_active)
920		for (addr = sva; addr < eva; addr += PAGE_SIZE)
921			invlpg(addr);
922}
923
924PMAP_INLINE void
925pmap_invalidate_all(pmap_t pmap)
926{
927
928	if (pmap == kernel_pmap || pmap->pm_active)
929		invltlb();
930}
931
932PMAP_INLINE void
933pmap_invalidate_cache(void)
934{
935
936	wbinvd();
937}
938#endif /* !SMP */
939
940/*
941 * Are we current address space or kernel?  N.B. We return FALSE when
942 * a pmap's page table is in use because a kernel thread is borrowing
943 * it.  The borrowed page table can change spontaneously, making any
944 * dependence on its continued use subject to a race condition.
945 */
946static __inline int
947pmap_is_current(pmap_t pmap)
948{
949
950	return (pmap == kernel_pmap ||
951		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
952	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
953}
954
955/*
956 * If the given pmap is not the current or kernel pmap, the returned pte must
957 * be released by passing it to pmap_pte_release().
958 */
959pt_entry_t *
960pmap_pte(pmap_t pmap, vm_offset_t va)
961{
962	pd_entry_t newpf;
963	pd_entry_t *pde;
964
965	pde = pmap_pde(pmap, va);
966	if (*pde & PG_PS)
967		return (pde);
968	if (*pde != 0) {
969		/* are we current address space or kernel? */
970		if (pmap_is_current(pmap))
971			return (vtopte(va));
972		mtx_lock(&PMAP2mutex);
973		newpf = *pde & PG_FRAME;
974		if ((*PMAP2 & PG_FRAME) != newpf) {
975			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
976			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
977		}
978		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
979	}
980	return (0);
981}
982
983/*
984 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
985 * being NULL.
986 */
987static __inline void
988pmap_pte_release(pt_entry_t *pte)
989{
990
991	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
992		mtx_unlock(&PMAP2mutex);
993}
994
995static __inline void
996invlcaddr(void *caddr)
997{
998
999	invlpg((u_int)caddr);
1000}
1001
1002/*
1003 * Super fast pmap_pte routine best used when scanning
1004 * the pv lists.  This eliminates many coarse-grained
1005 * invltlb calls.  Note that many of the pv list
1006 * scans are across different pmaps.  It is very wasteful
1007 * to do an entire invltlb for checking a single mapping.
1008 *
1009 * If the given pmap is not the current pmap, vm_page_queue_mtx
1010 * must be held and curthread pinned to a CPU.
1011 */
1012static pt_entry_t *
1013pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1014{
1015	pd_entry_t newpf;
1016	pd_entry_t *pde;
1017
1018	pde = pmap_pde(pmap, va);
1019	if (*pde & PG_PS)
1020		return (pde);
1021	if (*pde != 0) {
1022		/* are we current address space or kernel? */
1023		if (pmap_is_current(pmap))
1024			return (vtopte(va));
1025		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1026		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1027		newpf = *pde & PG_FRAME;
1028		if ((*PMAP1 & PG_FRAME) != newpf) {
1029			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1030#ifdef SMP
1031			PMAP1cpu = PCPU_GET(cpuid);
1032#endif
1033			invlcaddr(PADDR1);
1034			PMAP1changed++;
1035		} else
1036#ifdef SMP
1037		if (PMAP1cpu != PCPU_GET(cpuid)) {
1038			PMAP1cpu = PCPU_GET(cpuid);
1039			invlcaddr(PADDR1);
1040			PMAP1changedcpu++;
1041		} else
1042#endif
1043			PMAP1unchanged++;
1044		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1045	}
1046	return (0);
1047}
1048
1049/*
1050 *	Routine:	pmap_extract
1051 *	Function:
1052 *		Extract the physical page address associated
1053 *		with the given map/virtual_address pair.
1054 */
1055vm_paddr_t
1056pmap_extract(pmap_t pmap, vm_offset_t va)
1057{
1058	vm_paddr_t rtval;
1059	pt_entry_t *pte;
1060	pd_entry_t pde;
1061
1062	rtval = 0;
1063	PMAP_LOCK(pmap);
1064	pde = pmap->pm_pdir[va >> PDRSHIFT];
1065	if (pde != 0) {
1066		if ((pde & PG_PS) != 0) {
1067			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1068			PMAP_UNLOCK(pmap);
1069			return rtval;
1070		}
1071		pte = pmap_pte(pmap, va);
1072		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1073		pmap_pte_release(pte);
1074	}
1075	PMAP_UNLOCK(pmap);
1076	return (rtval);
1077}
1078
1079/*
1080 *	Routine:	pmap_extract_and_hold
1081 *	Function:
1082 *		Atomically extract and hold the physical page
1083 *		with the given pmap and virtual address pair
1084 *		if that mapping permits the given protection.
1085 */
1086vm_page_t
1087pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1088{
1089	pd_entry_t pde;
1090	pt_entry_t pte;
1091	vm_page_t m;
1092
1093	m = NULL;
1094	vm_page_lock_queues();
1095	PMAP_LOCK(pmap);
1096	pde = *pmap_pde(pmap, va);
1097	if (pde != 0) {
1098		if (pde & PG_PS) {
1099			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1100				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1101				    (va & PDRMASK));
1102				vm_page_hold(m);
1103			}
1104		} else {
1105			sched_pin();
1106			pte = *pmap_pte_quick(pmap, va);
1107			if (pte != 0 &&
1108			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1109				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1110				vm_page_hold(m);
1111			}
1112			sched_unpin();
1113		}
1114	}
1115	vm_page_unlock_queues();
1116	PMAP_UNLOCK(pmap);
1117	return (m);
1118}
1119
1120/***************************************************
1121 * Low level mapping routines.....
1122 ***************************************************/
1123
1124/*
1125 * Add a wired page to the kva.
1126 * Note: not SMP coherent.
1127 */
1128PMAP_INLINE void
1129pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1130{
1131	pt_entry_t *pte;
1132
1133	pte = vtopte(va);
1134	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1135}
1136
1137PMAP_INLINE void
1138pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1139{
1140	pt_entry_t *pte;
1141
1142	pte = vtopte(va);
1143	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1144}
1145
1146/*
1147 * Remove a page from the kernel pagetables.
1148 * Note: not SMP coherent.
1149 */
1150PMAP_INLINE void
1151pmap_kremove(vm_offset_t va)
1152{
1153	pt_entry_t *pte;
1154
1155	pte = vtopte(va);
1156	pte_clear(pte);
1157}
1158
1159/*
1160 *	Used to map a range of physical addresses into kernel
1161 *	virtual address space.
1162 *
1163 *	The value passed in '*virt' is a suggested virtual address for
1164 *	the mapping. Architectures which can support a direct-mapped
1165 *	physical to virtual region can return the appropriate address
1166 *	within that region, leaving '*virt' unchanged. Other
1167 *	architectures should map the pages starting at '*virt' and
1168 *	update '*virt' with the first usable address after the mapped
1169 *	region.
1170 */
1171vm_offset_t
1172pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1173{
1174	vm_offset_t va, sva;
1175
1176	va = sva = *virt;
1177	while (start < end) {
1178		pmap_kenter(va, start);
1179		va += PAGE_SIZE;
1180		start += PAGE_SIZE;
1181	}
1182	pmap_invalidate_range(kernel_pmap, sva, va);
1183	*virt = va;
1184	return (sva);
1185}
1186
1187
1188/*
1189 * Add a list of wired pages to the kva
1190 * this routine is only used for temporary
1191 * kernel mappings that do not need to have
1192 * page modification or references recorded.
1193 * Note that old mappings are simply written
1194 * over.  The page *must* be wired.
1195 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1196 */
1197void
1198pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1199{
1200	pt_entry_t *endpte, oldpte, *pte;
1201
1202	oldpte = 0;
1203	pte = vtopte(sva);
1204	endpte = pte + count;
1205	while (pte < endpte) {
1206		oldpte |= *pte;
1207		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1208		pte++;
1209		ma++;
1210	}
1211	if ((oldpte & PG_V) != 0)
1212		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1213		    PAGE_SIZE);
1214}
1215
1216/*
1217 * This routine tears out page mappings from the
1218 * kernel -- it is meant only for temporary mappings.
1219 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1220 */
1221void
1222pmap_qremove(vm_offset_t sva, int count)
1223{
1224	vm_offset_t va;
1225
1226	va = sva;
1227	while (count-- > 0) {
1228		pmap_kremove(va);
1229		va += PAGE_SIZE;
1230	}
1231	pmap_invalidate_range(kernel_pmap, sva, va);
1232}
1233
1234/***************************************************
1235 * Page table page management routines.....
1236 ***************************************************/
1237static __inline void
1238pmap_free_zero_pages(vm_page_t free)
1239{
1240	vm_page_t m;
1241
1242	while (free != NULL) {
1243		m = free;
1244		free = m->right;
1245		/* Preserve the page's PG_ZERO setting. */
1246		vm_page_free_toq(m);
1247	}
1248}
1249
1250/*
1251 * Schedule the specified unused page table page to be freed.  Specifically,
1252 * add the page to the specified list of pages that will be released to the
1253 * physical memory manager after the TLB has been updated.
1254 */
1255static __inline void
1256pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1257{
1258
1259	if (set_PG_ZERO)
1260		m->flags |= PG_ZERO;
1261	else
1262		m->flags &= ~PG_ZERO;
1263	m->right = *free;
1264	*free = m;
1265}
1266
1267/*
1268 * Inserts the specified page table page into the specified pmap's collection
1269 * of idle page table pages.  Each of a pmap's page table pages is responsible
1270 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1271 * ordered by this virtual address range.
1272 */
1273static void
1274pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1275{
1276	vm_page_t root;
1277
1278	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1279	root = pmap->pm_root;
1280	if (root == NULL) {
1281		mpte->left = NULL;
1282		mpte->right = NULL;
1283	} else {
1284		root = vm_page_splay(mpte->pindex, root);
1285		if (mpte->pindex < root->pindex) {
1286			mpte->left = root->left;
1287			mpte->right = root;
1288			root->left = NULL;
1289		} else if (mpte->pindex == root->pindex)
1290			panic("pmap_insert_pt_page: pindex already inserted");
1291		else {
1292			mpte->right = root->right;
1293			mpte->left = root;
1294			root->right = NULL;
1295		}
1296	}
1297	pmap->pm_root = mpte;
1298}
1299
1300/*
1301 * Looks for a page table page mapping the specified virtual address in the
1302 * specified pmap's collection of idle page table pages.  Returns NULL if there
1303 * is no page table page corresponding to the specified virtual address.
1304 */
1305static vm_page_t
1306pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1307{
1308	vm_page_t mpte;
1309	vm_pindex_t pindex = va >> PDRSHIFT;
1310
1311	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1312	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1313		mpte = vm_page_splay(pindex, mpte);
1314		if ((pmap->pm_root = mpte)->pindex != pindex)
1315			mpte = NULL;
1316	}
1317	return (mpte);
1318}
1319
1320/*
1321 * Removes the specified page table page from the specified pmap's collection
1322 * of idle page table pages.  The specified page table page must be a member of
1323 * the pmap's collection.
1324 */
1325static void
1326pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1327{
1328	vm_page_t root;
1329
1330	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1331	if (mpte != pmap->pm_root)
1332		vm_page_splay(mpte->pindex, pmap->pm_root);
1333	if (mpte->left == NULL)
1334		root = mpte->right;
1335	else {
1336		root = vm_page_splay(mpte->pindex, mpte->left);
1337		root->right = mpte->right;
1338	}
1339	pmap->pm_root = root;
1340}
1341
1342/*
1343 * This routine unholds page table pages, and if the hold count
1344 * drops to zero, then it decrements the wire count.
1345 */
1346static __inline int
1347pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1348{
1349
1350	--m->wire_count;
1351	if (m->wire_count == 0)
1352		return _pmap_unwire_pte_hold(pmap, m, free);
1353	else
1354		return 0;
1355}
1356
1357static int
1358_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1359{
1360	vm_offset_t pteva;
1361
1362	/*
1363	 * unmap the page table page
1364	 */
1365	pmap->pm_pdir[m->pindex] = 0;
1366	--pmap->pm_stats.resident_count;
1367
1368	/*
1369	 * This is a release store so that the ordinary store unmapping
1370	 * the page table page is globally performed before TLB shoot-
1371	 * down is begun.
1372	 */
1373	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1374
1375	/*
1376	 * Do an invltlb to make the invalidated mapping
1377	 * take effect immediately.
1378	 */
1379	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1380	pmap_invalidate_page(pmap, pteva);
1381
1382	/*
1383	 * Put page on a list so that it is released after
1384	 * *ALL* TLB shootdown is done
1385	 */
1386	pmap_add_delayed_free_list(m, free, TRUE);
1387
1388	return 1;
1389}
1390
1391/*
1392 * After removing a page table entry, this routine is used to
1393 * conditionally free the page, and manage the hold/wire counts.
1394 */
1395static int
1396pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1397{
1398	pd_entry_t ptepde;
1399	vm_page_t mpte;
1400
1401	if (va >= VM_MAXUSER_ADDRESS)
1402		return 0;
1403	ptepde = *pmap_pde(pmap, va);
1404	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1405	return pmap_unwire_pte_hold(pmap, mpte, free);
1406}
1407
1408void
1409pmap_pinit0(pmap_t pmap)
1410{
1411
1412	PMAP_LOCK_INIT(pmap);
1413	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1414#ifdef PAE
1415	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1416#endif
1417	pmap->pm_root = NULL;
1418	pmap->pm_active = 0;
1419	PCPU_SET(curpmap, pmap);
1420	TAILQ_INIT(&pmap->pm_pvchunk);
1421	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1422	mtx_lock_spin(&allpmaps_lock);
1423	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1424	mtx_unlock_spin(&allpmaps_lock);
1425}
1426
1427/*
1428 * Initialize a preallocated and zeroed pmap structure,
1429 * such as one in a vmspace structure.
1430 */
1431int
1432pmap_pinit(pmap_t pmap)
1433{
1434	vm_page_t m, ptdpg[NPGPTD];
1435	vm_paddr_t pa;
1436	static int color;
1437	int i;
1438
1439	PMAP_LOCK_INIT(pmap);
1440
1441	/*
1442	 * No need to allocate page table space yet but we do need a valid
1443	 * page directory table.
1444	 */
1445	if (pmap->pm_pdir == NULL) {
1446		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1447		    NBPTD);
1448
1449		if (pmap->pm_pdir == NULL) {
1450			PMAP_LOCK_DESTROY(pmap);
1451			return (0);
1452		}
1453#ifdef PAE
1454		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1455		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1456		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1457		    ("pmap_pinit: pdpt misaligned"));
1458		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1459		    ("pmap_pinit: pdpt above 4g"));
1460#endif
1461		pmap->pm_root = NULL;
1462	}
1463	KASSERT(pmap->pm_root == NULL,
1464	    ("pmap_pinit: pmap has reserved page table page(s)"));
1465
1466	/*
1467	 * allocate the page directory page(s)
1468	 */
1469	for (i = 0; i < NPGPTD;) {
1470		m = vm_page_alloc(NULL, color++,
1471		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1472		    VM_ALLOC_ZERO);
1473		if (m == NULL)
1474			VM_WAIT;
1475		else {
1476			ptdpg[i++] = m;
1477		}
1478	}
1479
1480	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1481
1482	for (i = 0; i < NPGPTD; i++) {
1483		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1484			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1485	}
1486
1487	mtx_lock_spin(&allpmaps_lock);
1488	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1489	mtx_unlock_spin(&allpmaps_lock);
1490	/* Wire in kernel global address entries. */
1491	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1492
1493	/* install self-referential address mapping entry(s) */
1494	for (i = 0; i < NPGPTD; i++) {
1495		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1496		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1497#ifdef PAE
1498		pmap->pm_pdpt[i] = pa | PG_V;
1499#endif
1500	}
1501
1502	pmap->pm_active = 0;
1503	TAILQ_INIT(&pmap->pm_pvchunk);
1504	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1505
1506	return (1);
1507}
1508
1509/*
1510 * this routine is called if the page table page is not
1511 * mapped correctly.
1512 */
1513static vm_page_t
1514_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1515{
1516	vm_paddr_t ptepa;
1517	vm_page_t m;
1518
1519	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1520	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1521	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1522
1523	/*
1524	 * Allocate a page table page.
1525	 */
1526	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1527	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1528		if (flags & M_WAITOK) {
1529			PMAP_UNLOCK(pmap);
1530			vm_page_unlock_queues();
1531			VM_WAIT;
1532			vm_page_lock_queues();
1533			PMAP_LOCK(pmap);
1534		}
1535
1536		/*
1537		 * Indicate the need to retry.  While waiting, the page table
1538		 * page may have been allocated.
1539		 */
1540		return (NULL);
1541	}
1542	if ((m->flags & PG_ZERO) == 0)
1543		pmap_zero_page(m);
1544
1545	/*
1546	 * Map the pagetable page into the process address space, if
1547	 * it isn't already there.
1548	 */
1549
1550	pmap->pm_stats.resident_count++;
1551
1552	ptepa = VM_PAGE_TO_PHYS(m);
1553	pmap->pm_pdir[ptepindex] =
1554		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1555
1556	return m;
1557}
1558
1559static vm_page_t
1560pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1561{
1562	unsigned ptepindex;
1563	pd_entry_t ptepa;
1564	vm_page_t m;
1565
1566	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1567	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1568	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1569
1570	/*
1571	 * Calculate pagetable page index
1572	 */
1573	ptepindex = va >> PDRSHIFT;
1574retry:
1575	/*
1576	 * Get the page directory entry
1577	 */
1578	ptepa = pmap->pm_pdir[ptepindex];
1579
1580	/*
1581	 * This supports switching from a 4MB page to a
1582	 * normal 4K page.
1583	 */
1584	if (ptepa & PG_PS) {
1585		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1586		ptepa = pmap->pm_pdir[ptepindex];
1587	}
1588
1589	/*
1590	 * If the page table page is mapped, we just increment the
1591	 * hold count, and activate it.
1592	 */
1593	if (ptepa) {
1594		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1595		m->wire_count++;
1596	} else {
1597		/*
1598		 * Here if the pte page isn't mapped, or if it has
1599		 * been deallocated.
1600		 */
1601		m = _pmap_allocpte(pmap, ptepindex, flags);
1602		if (m == NULL && (flags & M_WAITOK))
1603			goto retry;
1604	}
1605	return (m);
1606}
1607
1608
1609/***************************************************
1610* Pmap allocation/deallocation routines.
1611 ***************************************************/
1612
1613#ifdef SMP
1614/*
1615 * Deal with a SMP shootdown of other users of the pmap that we are
1616 * trying to dispose of.  This can be a bit hairy.
1617 */
1618static u_int *lazymask;
1619static u_int lazyptd;
1620static volatile u_int lazywait;
1621
1622void pmap_lazyfix_action(void);
1623
1624void
1625pmap_lazyfix_action(void)
1626{
1627	u_int mymask = PCPU_GET(cpumask);
1628
1629#ifdef COUNT_IPIS
1630	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1631#endif
1632	if (rcr3() == lazyptd)
1633		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1634	atomic_clear_int(lazymask, mymask);
1635	atomic_store_rel_int(&lazywait, 1);
1636}
1637
1638static void
1639pmap_lazyfix_self(u_int mymask)
1640{
1641
1642	if (rcr3() == lazyptd)
1643		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1644	atomic_clear_int(lazymask, mymask);
1645}
1646
1647
1648static void
1649pmap_lazyfix(pmap_t pmap)
1650{
1651	u_int mymask;
1652	u_int mask;
1653	u_int spins;
1654
1655	while ((mask = pmap->pm_active) != 0) {
1656		spins = 50000000;
1657		mask = mask & -mask;	/* Find least significant set bit */
1658		mtx_lock_spin(&smp_ipi_mtx);
1659#ifdef PAE
1660		lazyptd = vtophys(pmap->pm_pdpt);
1661#else
1662		lazyptd = vtophys(pmap->pm_pdir);
1663#endif
1664		mymask = PCPU_GET(cpumask);
1665		if (mask == mymask) {
1666			lazymask = &pmap->pm_active;
1667			pmap_lazyfix_self(mymask);
1668		} else {
1669			atomic_store_rel_int((u_int *)&lazymask,
1670			    (u_int)&pmap->pm_active);
1671			atomic_store_rel_int(&lazywait, 0);
1672			ipi_selected(mask, IPI_LAZYPMAP);
1673			while (lazywait == 0) {
1674				ia32_pause();
1675				if (--spins == 0)
1676					break;
1677			}
1678		}
1679		mtx_unlock_spin(&smp_ipi_mtx);
1680		if (spins == 0)
1681			printf("pmap_lazyfix: spun for 50000000\n");
1682	}
1683}
1684
1685#else	/* SMP */
1686
1687/*
1688 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1689 * unlikely to have to even execute this code, including the fact
1690 * that the cleanup is deferred until the parent does a wait(2), which
1691 * means that another userland process has run.
1692 */
1693static void
1694pmap_lazyfix(pmap_t pmap)
1695{
1696	u_int cr3;
1697
1698	cr3 = vtophys(pmap->pm_pdir);
1699	if (cr3 == rcr3()) {
1700		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1701		pmap->pm_active &= ~(PCPU_GET(cpumask));
1702	}
1703}
1704#endif	/* SMP */
1705
1706/*
1707 * Release any resources held by the given physical map.
1708 * Called when a pmap initialized by pmap_pinit is being released.
1709 * Should only be called if the map contains no valid mappings.
1710 */
1711void
1712pmap_release(pmap_t pmap)
1713{
1714	vm_page_t m, ptdpg[NPGPTD];
1715	int i;
1716
1717	KASSERT(pmap->pm_stats.resident_count == 0,
1718	    ("pmap_release: pmap resident count %ld != 0",
1719	    pmap->pm_stats.resident_count));
1720	KASSERT(pmap->pm_root == NULL,
1721	    ("pmap_release: pmap has reserved page table page(s)"));
1722
1723	pmap_lazyfix(pmap);
1724	mtx_lock_spin(&allpmaps_lock);
1725	LIST_REMOVE(pmap, pm_list);
1726	mtx_unlock_spin(&allpmaps_lock);
1727
1728	for (i = 0; i < NPGPTD; i++)
1729		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1730		    PG_FRAME);
1731
1732	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1733	    sizeof(*pmap->pm_pdir));
1734
1735	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1736
1737	for (i = 0; i < NPGPTD; i++) {
1738		m = ptdpg[i];
1739#ifdef PAE
1740		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1741		    ("pmap_release: got wrong ptd page"));
1742#endif
1743		m->wire_count--;
1744		atomic_subtract_int(&cnt.v_wire_count, 1);
1745		vm_page_free_zero(m);
1746	}
1747	PMAP_LOCK_DESTROY(pmap);
1748}
1749
1750static int
1751kvm_size(SYSCTL_HANDLER_ARGS)
1752{
1753	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1754
1755	return sysctl_handle_long(oidp, &ksize, 0, req);
1756}
1757SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1758    0, 0, kvm_size, "IU", "Size of KVM");
1759
1760static int
1761kvm_free(SYSCTL_HANDLER_ARGS)
1762{
1763	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1764
1765	return sysctl_handle_long(oidp, &kfree, 0, req);
1766}
1767SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1768    0, 0, kvm_free, "IU", "Amount of KVM free");
1769
1770/*
1771 * grow the number of kernel page table entries, if needed
1772 */
1773void
1774pmap_growkernel(vm_offset_t addr)
1775{
1776	struct pmap *pmap;
1777	vm_paddr_t ptppaddr;
1778	vm_page_t nkpg;
1779	pd_entry_t newpdir;
1780	pt_entry_t *pde;
1781
1782	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1783	if (kernel_vm_end == 0) {
1784		kernel_vm_end = KERNBASE;
1785		nkpt = 0;
1786		while (pdir_pde(PTD, kernel_vm_end)) {
1787			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1788			nkpt++;
1789			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1790				kernel_vm_end = kernel_map->max_offset;
1791				break;
1792			}
1793		}
1794	}
1795	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1796	if (addr - 1 >= kernel_map->max_offset)
1797		addr = kernel_map->max_offset;
1798	while (kernel_vm_end < addr) {
1799		if (pdir_pde(PTD, kernel_vm_end)) {
1800			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1801			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1802				kernel_vm_end = kernel_map->max_offset;
1803				break;
1804			}
1805			continue;
1806		}
1807
1808		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1809		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1810		if (nkpg == NULL)
1811			panic("pmap_growkernel: no memory to grow kernel");
1812
1813		nkpt++;
1814
1815		pmap_zero_page(nkpg);
1816		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1817		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1818		pdir_pde(PTD, kernel_vm_end) = newpdir;
1819
1820		mtx_lock_spin(&allpmaps_lock);
1821		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1822			pde = pmap_pde(pmap, kernel_vm_end);
1823			pde_store(pde, newpdir);
1824		}
1825		mtx_unlock_spin(&allpmaps_lock);
1826		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1827		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1828			kernel_vm_end = kernel_map->max_offset;
1829			break;
1830		}
1831	}
1832}
1833
1834
1835/***************************************************
1836 * page management routines.
1837 ***************************************************/
1838
1839CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1840CTASSERT(_NPCM == 11);
1841
1842static __inline struct pv_chunk *
1843pv_to_chunk(pv_entry_t pv)
1844{
1845
1846	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1847}
1848
1849#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1850
1851#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1852#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1853
1854static uint32_t pc_freemask[11] = {
1855	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1856	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1857	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1858	PC_FREE0_9, PC_FREE10
1859};
1860
1861SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1862	"Current number of pv entries");
1863
1864#ifdef PV_STATS
1865static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1866
1867SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1868	"Current number of pv entry chunks");
1869SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1870	"Current number of pv entry chunks allocated");
1871SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1872	"Current number of pv entry chunks frees");
1873SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1874	"Number of times tried to get a chunk page but failed.");
1875
1876static long pv_entry_frees, pv_entry_allocs;
1877static int pv_entry_spare;
1878
1879SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1880	"Current number of pv entry frees");
1881SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1882	"Current number of pv entry allocs");
1883SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1884	"Current number of spare pv entries");
1885
1886static int pmap_collect_inactive, pmap_collect_active;
1887
1888SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1889	"Current number times pmap_collect called on inactive queue");
1890SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1891	"Current number times pmap_collect called on active queue");
1892#endif
1893
1894/*
1895 * We are in a serious low memory condition.  Resort to
1896 * drastic measures to free some pages so we can allocate
1897 * another pv entry chunk.  This is normally called to
1898 * unmap inactive pages, and if necessary, active pages.
1899 */
1900static void
1901pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1902{
1903	struct md_page *pvh;
1904	pd_entry_t *pde;
1905	pmap_t pmap;
1906	pt_entry_t *pte, tpte;
1907	pv_entry_t next_pv, pv;
1908	vm_offset_t va;
1909	vm_page_t m, free;
1910
1911	sched_pin();
1912	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1913		if (m->hold_count || m->busy)
1914			continue;
1915		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1916			va = pv->pv_va;
1917			pmap = PV_PMAP(pv);
1918			/* Avoid deadlock and lock recursion. */
1919			if (pmap > locked_pmap)
1920				PMAP_LOCK(pmap);
1921			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1922				continue;
1923			pmap->pm_stats.resident_count--;
1924			pde = pmap_pde(pmap, va);
1925			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
1926			    " a 4mpage in page %p's pv list", m));
1927			pte = pmap_pte_quick(pmap, va);
1928			tpte = pte_load_clear(pte);
1929			KASSERT((tpte & PG_W) == 0,
1930			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1931			if (tpte & PG_A)
1932				vm_page_flag_set(m, PG_REFERENCED);
1933			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1934				vm_page_dirty(m);
1935			free = NULL;
1936			pmap_unuse_pt(pmap, va, &free);
1937			pmap_invalidate_page(pmap, va);
1938			pmap_free_zero_pages(free);
1939			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1940			if (TAILQ_EMPTY(&m->md.pv_list)) {
1941				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1942				if (TAILQ_EMPTY(&pvh->pv_list))
1943					vm_page_flag_clear(m, PG_WRITEABLE);
1944			}
1945			free_pv_entry(pmap, pv);
1946			if (pmap != locked_pmap)
1947				PMAP_UNLOCK(pmap);
1948		}
1949	}
1950	sched_unpin();
1951}
1952
1953
1954/*
1955 * free the pv_entry back to the free list
1956 */
1957static void
1958free_pv_entry(pmap_t pmap, pv_entry_t pv)
1959{
1960	vm_page_t m;
1961	struct pv_chunk *pc;
1962	int idx, field, bit;
1963
1964	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1965	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1966	PV_STAT(pv_entry_frees++);
1967	PV_STAT(pv_entry_spare++);
1968	pv_entry_count--;
1969	pc = pv_to_chunk(pv);
1970	idx = pv - &pc->pc_pventry[0];
1971	field = idx / 32;
1972	bit = idx % 32;
1973	pc->pc_map[field] |= 1ul << bit;
1974	/* move to head of list */
1975	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1976	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1977	for (idx = 0; idx < _NPCM; idx++)
1978		if (pc->pc_map[idx] != pc_freemask[idx])
1979			return;
1980	PV_STAT(pv_entry_spare -= _NPCPV);
1981	PV_STAT(pc_chunk_count--);
1982	PV_STAT(pc_chunk_frees++);
1983	/* entire chunk is free, return it */
1984	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1985	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1986	pmap_qremove((vm_offset_t)pc, 1);
1987	vm_page_unwire(m, 0);
1988	vm_page_free(m);
1989	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1990}
1991
1992/*
1993 * get a new pv_entry, allocating a block from the system
1994 * when needed.
1995 */
1996static pv_entry_t
1997get_pv_entry(pmap_t pmap, int try)
1998{
1999	static const struct timeval printinterval = { 60, 0 };
2000	static struct timeval lastprint;
2001	static vm_pindex_t colour;
2002	struct vpgqueues *pq;
2003	int bit, field;
2004	pv_entry_t pv;
2005	struct pv_chunk *pc;
2006	vm_page_t m;
2007
2008	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2009	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2010	PV_STAT(pv_entry_allocs++);
2011	pv_entry_count++;
2012	if (pv_entry_count > pv_entry_high_water)
2013		if (ratecheck(&lastprint, &printinterval))
2014			printf("Approaching the limit on PV entries, consider "
2015			    "increasing either the vm.pmap.shpgperproc or the "
2016			    "vm.pmap.pv_entry_max tunable.\n");
2017	pq = NULL;
2018retry:
2019	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2020	if (pc != NULL) {
2021		for (field = 0; field < _NPCM; field++) {
2022			if (pc->pc_map[field]) {
2023				bit = bsfl(pc->pc_map[field]);
2024				break;
2025			}
2026		}
2027		if (field < _NPCM) {
2028			pv = &pc->pc_pventry[field * 32 + bit];
2029			pc->pc_map[field] &= ~(1ul << bit);
2030			/* If this was the last item, move it to tail */
2031			for (field = 0; field < _NPCM; field++)
2032				if (pc->pc_map[field] != 0) {
2033					PV_STAT(pv_entry_spare--);
2034					return (pv);	/* not full, return */
2035				}
2036			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2037			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2038			PV_STAT(pv_entry_spare--);
2039			return (pv);
2040		}
2041	}
2042	/*
2043	 * Access to the ptelist "pv_vafree" is synchronized by the page
2044	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2045	 * remain non-empty until pmap_ptelist_alloc() completes.
2046	 */
2047	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2048	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2049	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2050		if (try) {
2051			pv_entry_count--;
2052			PV_STAT(pc_chunk_tryfail++);
2053			return (NULL);
2054		}
2055		/*
2056		 * Reclaim pv entries: At first, destroy mappings to
2057		 * inactive pages.  After that, if a pv chunk entry
2058		 * is still needed, destroy mappings to active pages.
2059		 */
2060		if (pq == NULL) {
2061			PV_STAT(pmap_collect_inactive++);
2062			pq = &vm_page_queues[PQ_INACTIVE];
2063		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2064			PV_STAT(pmap_collect_active++);
2065			pq = &vm_page_queues[PQ_ACTIVE];
2066		} else
2067			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2068		pmap_collect(pmap, pq);
2069		goto retry;
2070	}
2071	PV_STAT(pc_chunk_count++);
2072	PV_STAT(pc_chunk_allocs++);
2073	colour++;
2074	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2075	pmap_qenter((vm_offset_t)pc, &m, 1);
2076	pc->pc_pmap = pmap;
2077	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2078	for (field = 1; field < _NPCM; field++)
2079		pc->pc_map[field] = pc_freemask[field];
2080	pv = &pc->pc_pventry[0];
2081	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2082	PV_STAT(pv_entry_spare += _NPCPV - 1);
2083	return (pv);
2084}
2085
2086static __inline pv_entry_t
2087pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2088{
2089	pv_entry_t pv;
2090
2091	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2092	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2093		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2094			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2095			break;
2096		}
2097	}
2098	return (pv);
2099}
2100
2101static void
2102pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2103{
2104	struct md_page *pvh;
2105	pv_entry_t pv;
2106	vm_offset_t va_last;
2107	vm_page_t m;
2108
2109	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2110	KASSERT((pa & PDRMASK) == 0,
2111	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2112
2113	/*
2114	 * Transfer the 4mpage's pv entry for this mapping to the first
2115	 * page's pv list.
2116	 */
2117	pvh = pa_to_pvh(pa);
2118	va = trunc_4mpage(va);
2119	pv = pmap_pvh_remove(pvh, pmap, va);
2120	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2121	m = PHYS_TO_VM_PAGE(pa);
2122	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2123	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2124	va_last = va + NBPDR - PAGE_SIZE;
2125	do {
2126		m++;
2127		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2128		    ("pmap_pv_demote_pde: page %p is not managed", m));
2129		va += PAGE_SIZE;
2130		pmap_insert_entry(pmap, va, m);
2131	} while (va < va_last);
2132}
2133
2134static void
2135pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2136{
2137	struct md_page *pvh;
2138	pv_entry_t pv;
2139	vm_offset_t va_last;
2140	vm_page_t m;
2141
2142	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2143	KASSERT((pa & PDRMASK) == 0,
2144	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2145
2146	/*
2147	 * Transfer the first page's pv entry for this mapping to the
2148	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2149	 * to get_pv_entry(), a transfer avoids the possibility that
2150	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2151	 * removes one of the mappings that is being promoted.
2152	 */
2153	m = PHYS_TO_VM_PAGE(pa);
2154	va = trunc_4mpage(va);
2155	pv = pmap_pvh_remove(&m->md, pmap, va);
2156	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2157	pvh = pa_to_pvh(pa);
2158	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2159	/* Free the remaining NPTEPG - 1 pv entries. */
2160	va_last = va + NBPDR - PAGE_SIZE;
2161	do {
2162		m++;
2163		va += PAGE_SIZE;
2164		pmap_pvh_free(&m->md, pmap, va);
2165	} while (va < va_last);
2166}
2167
2168static void
2169pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2170{
2171	pv_entry_t pv;
2172
2173	pv = pmap_pvh_remove(pvh, pmap, va);
2174	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2175	free_pv_entry(pmap, pv);
2176}
2177
2178static void
2179pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2180{
2181	struct md_page *pvh;
2182
2183	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2184	pmap_pvh_free(&m->md, pmap, va);
2185	if (TAILQ_EMPTY(&m->md.pv_list)) {
2186		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2187		if (TAILQ_EMPTY(&pvh->pv_list))
2188			vm_page_flag_clear(m, PG_WRITEABLE);
2189	}
2190}
2191
2192/*
2193 * Create a pv entry for page at pa for
2194 * (pmap, va).
2195 */
2196static void
2197pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2198{
2199	pv_entry_t pv;
2200
2201	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2202	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2203	pv = get_pv_entry(pmap, FALSE);
2204	pv->pv_va = va;
2205	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2206}
2207
2208/*
2209 * Conditionally create a pv entry.
2210 */
2211static boolean_t
2212pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2213{
2214	pv_entry_t pv;
2215
2216	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2217	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2218	if (pv_entry_count < pv_entry_high_water &&
2219	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2220		pv->pv_va = va;
2221		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2222		return (TRUE);
2223	} else
2224		return (FALSE);
2225}
2226
2227/*
2228 * Create the pv entries for each of the pages within a superpage.
2229 */
2230static boolean_t
2231pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2232{
2233	struct md_page *pvh;
2234	pv_entry_t pv;
2235
2236	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2237	if (pv_entry_count < pv_entry_high_water &&
2238	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2239		pv->pv_va = va;
2240		pvh = pa_to_pvh(pa);
2241		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2242		return (TRUE);
2243	} else
2244		return (FALSE);
2245}
2246
2247/*
2248 * Tries to demote a 2- or 4MB page mapping.
2249 */
2250static boolean_t
2251pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2252{
2253	pd_entry_t newpde, oldpde;
2254	pmap_t allpmaps_entry;
2255	pt_entry_t *firstpte, newpte, *pte;
2256	vm_paddr_t mptepa;
2257	vm_page_t free, mpte;
2258
2259	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2260	mpte = pmap_lookup_pt_page(pmap, va);
2261	if (mpte != NULL)
2262		pmap_remove_pt_page(pmap, mpte);
2263	else {
2264		KASSERT((*pde & PG_W) == 0,
2265		    ("pmap_demote_pde: page table page for a wired mapping"
2266		    " is missing"));
2267		free = NULL;
2268		pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2269		pmap_invalidate_page(pmap, trunc_4mpage(va));
2270		pmap_free_zero_pages(free);
2271		CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2272		    " in pmap %p", va, pmap);
2273		return (FALSE);
2274	}
2275	mptepa = VM_PAGE_TO_PHYS(mpte);
2276
2277	/*
2278	 * Temporarily map the page table page (mpte) into the kernel's
2279	 * address space at either PADDR1 or PADDR2.
2280	 */
2281	if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2282		if ((*PMAP1 & PG_FRAME) != mptepa) {
2283			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2284#ifdef SMP
2285			PMAP1cpu = PCPU_GET(cpuid);
2286#endif
2287			invlcaddr(PADDR1);
2288			PMAP1changed++;
2289		} else
2290#ifdef SMP
2291		if (PMAP1cpu != PCPU_GET(cpuid)) {
2292			PMAP1cpu = PCPU_GET(cpuid);
2293			invlcaddr(PADDR1);
2294			PMAP1changedcpu++;
2295		} else
2296#endif
2297			PMAP1unchanged++;
2298		firstpte = PADDR1;
2299	} else {
2300		mtx_lock(&PMAP2mutex);
2301		if ((*PMAP2 & PG_FRAME) != mptepa) {
2302			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2303			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2304		}
2305		firstpte = PADDR2;
2306	}
2307	oldpde = *pde;
2308	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2309	KASSERT((oldpde & (PG_A | PG_V)) == (PG_A | PG_V),
2310	    ("pmap_demote_pde: oldpde is missing PG_A and/or PG_V"));
2311	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2312	    ("pmap_demote_pde: oldpde is missing PG_M"));
2313	KASSERT((oldpde & PG_PS) != 0,
2314	    ("pmap_demote_pde: oldpde is missing PG_PS"));
2315	newpte = oldpde & ~PG_PS;
2316	if ((newpte & PG_PDE_PAT) != 0)
2317		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2318
2319	/*
2320	 * If the mapping has changed attributes, update the page table
2321	 * entries.
2322	 */
2323	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2324	    ("pmap_demote_pde: firstpte and newpte map different physical"
2325	    " addresses"));
2326	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2327		for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2328			*pte = newpte;
2329			newpte += PAGE_SIZE;
2330		}
2331
2332	/*
2333	 * Demote the mapping.  This pmap is locked.  The old PDE has
2334	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2335	 * set.  Thus, there is no danger of a race with another
2336	 * processor changing the setting of PG_A and/or PG_M between
2337	 * the read above and the store below.
2338	 */
2339	if (pmap == kernel_pmap) {
2340		/*
2341		 * A harmless race exists between this loop and the bcopy()
2342		 * in pmap_pinit() that initializes the kernel segment of
2343		 * the new page table.  Specifically, that bcopy() may copy
2344		 * the new PDE from the PTD, which is first in allpmaps, to
2345		 * the new page table before this loop updates that new
2346		 * page table.
2347		 */
2348		mtx_lock_spin(&allpmaps_lock);
2349		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2350			pde = pmap_pde(allpmaps_entry, va);
2351			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2352			    (oldpde & PG_PTE_PROMOTE),
2353			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2354			    (uintmax_t)*pde, (uintmax_t)oldpde));
2355			pde_store(pde, newpde);
2356		}
2357		mtx_unlock_spin(&allpmaps_lock);
2358	} else
2359		pde_store(pde, newpde);
2360	if (firstpte == PADDR2)
2361		mtx_unlock(&PMAP2mutex);
2362
2363	/*
2364	 * Invalidate the recursive mapping of the page table page.
2365	 */
2366	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2367
2368	/*
2369	 * Demote the pv entry.  This depends on the earlier demotion
2370	 * of the mapping.  Specifically, the (re)creation of a per-
2371	 * page pv entry might trigger the execution of pmap_collect(),
2372	 * which might reclaim a newly (re)created per-page pv entry
2373	 * and destroy the associated mapping.  In order to destroy
2374	 * the mapping, the PDE must have already changed from mapping
2375	 * the 2mpage to referencing the page table page.
2376	 */
2377	if ((oldpde & PG_MANAGED) != 0)
2378		pmap_pv_demote_pde(pmap, va, oldpde & PG_FRAME);
2379
2380	pmap_pde_demotions++;
2381	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2382	    " in pmap %p", va, pmap);
2383	return (TRUE);
2384}
2385
2386/*
2387 * pmap_remove_pde: do the things to unmap a superpage in a process
2388 */
2389static void
2390pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2391    vm_page_t *free)
2392{
2393	struct md_page *pvh;
2394	pd_entry_t oldpde;
2395	vm_offset_t eva, va;
2396	vm_page_t m, mpte;
2397
2398	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2399	KASSERT((sva & PDRMASK) == 0,
2400	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2401	oldpde = pte_load_clear(pdq);
2402	if (oldpde & PG_W)
2403		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2404
2405	/*
2406	 * Machines that don't support invlpg, also don't support
2407	 * PG_G.
2408	 */
2409	if (oldpde & PG_G)
2410		pmap_invalidate_page(kernel_pmap, sva);
2411	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2412	if (oldpde & PG_MANAGED) {
2413		pvh = pa_to_pvh(oldpde & PG_FRAME);
2414		pmap_pvh_free(pvh, pmap, sva);
2415		eva = sva + NBPDR;
2416		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_FRAME);
2417		    va < eva; va += PAGE_SIZE, m++) {
2418			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2419				vm_page_dirty(m);
2420			if (oldpde & PG_A)
2421				vm_page_flag_set(m, PG_REFERENCED);
2422			if (TAILQ_EMPTY(&m->md.pv_list) &&
2423			    TAILQ_EMPTY(&pvh->pv_list))
2424				vm_page_flag_clear(m, PG_WRITEABLE);
2425		}
2426	}
2427	if (pmap == kernel_pmap) {
2428		if (!pmap_demote_pde(pmap, pdq, sva))
2429			panic("pmap_remove_pde: failed demotion");
2430	} else {
2431		mpte = pmap_lookup_pt_page(pmap, sva);
2432		if (mpte != NULL) {
2433			pmap_remove_pt_page(pmap, mpte);
2434			KASSERT(mpte->wire_count == NPTEPG,
2435			    ("pmap_remove_pde: pte page wire count error"));
2436			mpte->wire_count = 0;
2437			pmap_add_delayed_free_list(mpte, free, FALSE);
2438			atomic_subtract_int(&cnt.v_wire_count, 1);
2439		}
2440	}
2441}
2442
2443/*
2444 * pmap_remove_pte: do the things to unmap a page in a process
2445 */
2446static int
2447pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2448{
2449	pt_entry_t oldpte;
2450	vm_page_t m;
2451
2452	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2453	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2454	oldpte = pte_load_clear(ptq);
2455	if (oldpte & PG_W)
2456		pmap->pm_stats.wired_count -= 1;
2457	/*
2458	 * Machines that don't support invlpg, also don't support
2459	 * PG_G.
2460	 */
2461	if (oldpte & PG_G)
2462		pmap_invalidate_page(kernel_pmap, va);
2463	pmap->pm_stats.resident_count -= 1;
2464	if (oldpte & PG_MANAGED) {
2465		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2466		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2467			vm_page_dirty(m);
2468		if (oldpte & PG_A)
2469			vm_page_flag_set(m, PG_REFERENCED);
2470		pmap_remove_entry(pmap, m, va);
2471	}
2472	return (pmap_unuse_pt(pmap, va, free));
2473}
2474
2475/*
2476 * Remove a single page from a process address space
2477 */
2478static void
2479pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2480{
2481	pt_entry_t *pte;
2482
2483	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2484	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2485	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2486	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2487		return;
2488	pmap_remove_pte(pmap, pte, va, free);
2489	pmap_invalidate_page(pmap, va);
2490}
2491
2492/*
2493 *	Remove the given range of addresses from the specified map.
2494 *
2495 *	It is assumed that the start and end are properly
2496 *	rounded to the page size.
2497 */
2498void
2499pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2500{
2501	vm_offset_t pdnxt;
2502	pd_entry_t ptpaddr;
2503	pt_entry_t *pte;
2504	vm_page_t free = NULL;
2505	int anyvalid;
2506
2507	/*
2508	 * Perform an unsynchronized read.  This is, however, safe.
2509	 */
2510	if (pmap->pm_stats.resident_count == 0)
2511		return;
2512
2513	anyvalid = 0;
2514
2515	vm_page_lock_queues();
2516	sched_pin();
2517	PMAP_LOCK(pmap);
2518
2519	/*
2520	 * special handling of removing one page.  a very
2521	 * common operation and easy to short circuit some
2522	 * code.
2523	 */
2524	if ((sva + PAGE_SIZE == eva) &&
2525	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2526		pmap_remove_page(pmap, sva, &free);
2527		goto out;
2528	}
2529
2530	for (; sva < eva; sva = pdnxt) {
2531		unsigned pdirindex;
2532
2533		/*
2534		 * Calculate index for next page table.
2535		 */
2536		pdnxt = (sva + NBPDR) & ~PDRMASK;
2537		if (pdnxt < sva)
2538			pdnxt = eva;
2539		if (pmap->pm_stats.resident_count == 0)
2540			break;
2541
2542		pdirindex = sva >> PDRSHIFT;
2543		ptpaddr = pmap->pm_pdir[pdirindex];
2544
2545		/*
2546		 * Weed out invalid mappings. Note: we assume that the page
2547		 * directory table is always allocated, and in kernel virtual.
2548		 */
2549		if (ptpaddr == 0)
2550			continue;
2551
2552		/*
2553		 * Check for large page.
2554		 */
2555		if ((ptpaddr & PG_PS) != 0) {
2556			/*
2557			 * Are we removing the entire large page?  If not,
2558			 * demote the mapping and fall through.
2559			 */
2560			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2561				/*
2562				 * The TLB entry for a PG_G mapping is
2563				 * invalidated by pmap_remove_pde().
2564				 */
2565				if ((ptpaddr & PG_G) == 0)
2566					anyvalid = 1;
2567				pmap_remove_pde(pmap,
2568				    &pmap->pm_pdir[pdirindex], sva, &free);
2569				continue;
2570			} else if (!pmap_demote_pde(pmap,
2571			    &pmap->pm_pdir[pdirindex], sva)) {
2572				/* The large page mapping was destroyed. */
2573				continue;
2574			}
2575		}
2576
2577		/*
2578		 * Limit our scan to either the end of the va represented
2579		 * by the current page table page, or to the end of the
2580		 * range being removed.
2581		 */
2582		if (pdnxt > eva)
2583			pdnxt = eva;
2584
2585		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2586		    sva += PAGE_SIZE) {
2587			if (*pte == 0)
2588				continue;
2589
2590			/*
2591			 * The TLB entry for a PG_G mapping is invalidated
2592			 * by pmap_remove_pte().
2593			 */
2594			if ((*pte & PG_G) == 0)
2595				anyvalid = 1;
2596			if (pmap_remove_pte(pmap, pte, sva, &free))
2597				break;
2598		}
2599	}
2600out:
2601	sched_unpin();
2602	if (anyvalid)
2603		pmap_invalidate_all(pmap);
2604	vm_page_unlock_queues();
2605	PMAP_UNLOCK(pmap);
2606	pmap_free_zero_pages(free);
2607}
2608
2609/*
2610 *	Routine:	pmap_remove_all
2611 *	Function:
2612 *		Removes this physical page from
2613 *		all physical maps in which it resides.
2614 *		Reflects back modify bits to the pager.
2615 *
2616 *	Notes:
2617 *		Original versions of this routine were very
2618 *		inefficient because they iteratively called
2619 *		pmap_remove (slow...)
2620 */
2621
2622void
2623pmap_remove_all(vm_page_t m)
2624{
2625	struct md_page *pvh;
2626	pv_entry_t pv;
2627	pmap_t pmap;
2628	pt_entry_t *pte, tpte;
2629	pd_entry_t *pde;
2630	vm_offset_t va;
2631	vm_page_t free;
2632
2633	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2634	    ("pmap_remove_all: page %p is fictitious", m));
2635	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2636	sched_pin();
2637	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2638	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2639		va = pv->pv_va;
2640		pmap = PV_PMAP(pv);
2641		PMAP_LOCK(pmap);
2642		pde = pmap_pde(pmap, va);
2643		(void)pmap_demote_pde(pmap, pde, va);
2644		PMAP_UNLOCK(pmap);
2645	}
2646	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2647		pmap = PV_PMAP(pv);
2648		PMAP_LOCK(pmap);
2649		pmap->pm_stats.resident_count--;
2650		pde = pmap_pde(pmap, pv->pv_va);
2651		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2652		    " a 4mpage in page %p's pv list", m));
2653		pte = pmap_pte_quick(pmap, pv->pv_va);
2654		tpte = pte_load_clear(pte);
2655		if (tpte & PG_W)
2656			pmap->pm_stats.wired_count--;
2657		if (tpte & PG_A)
2658			vm_page_flag_set(m, PG_REFERENCED);
2659
2660		/*
2661		 * Update the vm_page_t clean and reference bits.
2662		 */
2663		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2664			vm_page_dirty(m);
2665		free = NULL;
2666		pmap_unuse_pt(pmap, pv->pv_va, &free);
2667		pmap_invalidate_page(pmap, pv->pv_va);
2668		pmap_free_zero_pages(free);
2669		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2670		free_pv_entry(pmap, pv);
2671		PMAP_UNLOCK(pmap);
2672	}
2673	vm_page_flag_clear(m, PG_WRITEABLE);
2674	sched_unpin();
2675}
2676
2677/*
2678 * pmap_protect_pde: do the things to protect a 4mpage in a process
2679 */
2680static boolean_t
2681pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2682{
2683	pd_entry_t newpde, oldpde;
2684	vm_offset_t eva, va;
2685	vm_page_t m;
2686	boolean_t anychanged;
2687
2688	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2689	KASSERT((sva & PDRMASK) == 0,
2690	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2691	anychanged = FALSE;
2692retry:
2693	oldpde = newpde = *pde;
2694	if (oldpde & PG_MANAGED) {
2695		eva = sva + NBPDR;
2696		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_FRAME);
2697		    va < eva; va += PAGE_SIZE, m++) {
2698			/*
2699			 * In contrast to the analogous operation on a 4KB page
2700			 * mapping, the mapping's PG_A flag is not cleared and
2701			 * the page's PG_REFERENCED flag is not set.  The
2702			 * reason is that pmap_demote_pde() expects that a 2/4MB
2703			 * page mapping with a stored page table page has PG_A
2704			 * set.
2705			 */
2706			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2707				vm_page_dirty(m);
2708		}
2709	}
2710	if ((prot & VM_PROT_WRITE) == 0)
2711		newpde &= ~(PG_RW | PG_M);
2712#ifdef PAE
2713	if ((prot & VM_PROT_EXECUTE) == 0)
2714		newpde |= pg_nx;
2715#endif
2716	if (newpde != oldpde) {
2717		if (!pde_cmpset(pde, oldpde, newpde))
2718			goto retry;
2719		if (oldpde & PG_G)
2720			pmap_invalidate_page(pmap, sva);
2721		else
2722			anychanged = TRUE;
2723	}
2724	return (anychanged);
2725}
2726
2727/*
2728 *	Set the physical protection on the
2729 *	specified range of this map as requested.
2730 */
2731void
2732pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2733{
2734	vm_offset_t pdnxt;
2735	pd_entry_t ptpaddr;
2736	pt_entry_t *pte;
2737	int anychanged;
2738
2739	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2740		pmap_remove(pmap, sva, eva);
2741		return;
2742	}
2743
2744#ifdef PAE
2745	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2746	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2747		return;
2748#else
2749	if (prot & VM_PROT_WRITE)
2750		return;
2751#endif
2752
2753	anychanged = 0;
2754
2755	vm_page_lock_queues();
2756	sched_pin();
2757	PMAP_LOCK(pmap);
2758	for (; sva < eva; sva = pdnxt) {
2759		pt_entry_t obits, pbits;
2760		unsigned pdirindex;
2761
2762		pdnxt = (sva + NBPDR) & ~PDRMASK;
2763		if (pdnxt < sva)
2764			pdnxt = eva;
2765
2766		pdirindex = sva >> PDRSHIFT;
2767		ptpaddr = pmap->pm_pdir[pdirindex];
2768
2769		/*
2770		 * Weed out invalid mappings. Note: we assume that the page
2771		 * directory table is always allocated, and in kernel virtual.
2772		 */
2773		if (ptpaddr == 0)
2774			continue;
2775
2776		/*
2777		 * Check for large page.
2778		 */
2779		if ((ptpaddr & PG_PS) != 0) {
2780			/*
2781			 * Are we protecting the entire large page?  If not,
2782			 * demote the mapping and fall through.
2783			 */
2784			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2785				/*
2786				 * The TLB entry for a PG_G mapping is
2787				 * invalidated by pmap_protect_pde().
2788				 */
2789				if (pmap_protect_pde(pmap,
2790				    &pmap->pm_pdir[pdirindex], sva, prot))
2791					anychanged = 1;
2792				continue;
2793			} else if (!pmap_demote_pde(pmap,
2794			    &pmap->pm_pdir[pdirindex], sva)) {
2795				/* The large page mapping was destroyed. */
2796				continue;
2797			}
2798		}
2799
2800		if (pdnxt > eva)
2801			pdnxt = eva;
2802
2803		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2804		    sva += PAGE_SIZE) {
2805			vm_page_t m;
2806
2807retry:
2808			/*
2809			 * Regardless of whether a pte is 32 or 64 bits in
2810			 * size, PG_RW, PG_A, and PG_M are among the least
2811			 * significant 32 bits.
2812			 */
2813			obits = pbits = *pte;
2814			if ((pbits & PG_V) == 0)
2815				continue;
2816			if (pbits & PG_MANAGED) {
2817				m = NULL;
2818				if (pbits & PG_A) {
2819					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2820					vm_page_flag_set(m, PG_REFERENCED);
2821					pbits &= ~PG_A;
2822				}
2823				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2824					if (m == NULL)
2825						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2826					vm_page_dirty(m);
2827				}
2828			}
2829
2830			if ((prot & VM_PROT_WRITE) == 0)
2831				pbits &= ~(PG_RW | PG_M);
2832#ifdef PAE
2833			if ((prot & VM_PROT_EXECUTE) == 0)
2834				pbits |= pg_nx;
2835#endif
2836
2837			if (pbits != obits) {
2838#ifdef PAE
2839				if (!atomic_cmpset_64(pte, obits, pbits))
2840					goto retry;
2841#else
2842				if (!atomic_cmpset_int((u_int *)pte, obits,
2843				    pbits))
2844					goto retry;
2845#endif
2846				if (obits & PG_G)
2847					pmap_invalidate_page(pmap, sva);
2848				else
2849					anychanged = 1;
2850			}
2851		}
2852	}
2853	sched_unpin();
2854	if (anychanged)
2855		pmap_invalidate_all(pmap);
2856	vm_page_unlock_queues();
2857	PMAP_UNLOCK(pmap);
2858}
2859
2860/*
2861 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2862 * within a single page table page to a single 2- or 4MB page mapping.  For
2863 * promotion to occur, two conditions must be met: (1) the 4KB page mappings
2864 * must map aligned, contiguous physical memory and (2) the 4KB page mappings
2865 * must have identical characteristics.
2866 *
2867 * Managed (PG_MANAGED) mappings within the kernel address space are not
2868 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2869 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2870 * pmap.
2871 */
2872static void
2873pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2874{
2875	pd_entry_t newpde;
2876	pmap_t allpmaps_entry;
2877	pt_entry_t *firstpte, oldpte, *pte;
2878	vm_offset_t oldpteva;
2879	vm_paddr_t pa;
2880	vm_page_t mpte;
2881
2882	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2883	firstpte = vtopte(trunc_4mpage(va));
2884	KASSERT((*firstpte & PG_V) != 0,
2885	    ("pmap_promote_pde: firstpte is missing PG_V"));
2886	if ((*firstpte & PG_A) == 0) {
2887		pmap_pde_p_failures++;
2888		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2889		    " in pmap %p", va, pmap);
2890		return;
2891	}
2892	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
2893		pmap_pde_p_failures++;
2894		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2895		    " in pmap %p", va, pmap);
2896		return;
2897	}
2898	pa = *firstpte & PG_PS_FRAME;
2899	newpde = *firstpte;
2900	if ((newpde & (PG_M | PG_RW)) == PG_RW)
2901		newpde &= ~PG_RW;
2902
2903	/*
2904	 * Check all the ptes before promotion
2905	 */
2906	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2907retry:
2908		oldpte = *pte;
2909		if ((oldpte & PG_FRAME) != pa) {
2910			pmap_pde_p_failures++;
2911			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2912			    " in pmap %p", va, pmap);
2913			return;
2914		}
2915		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2916			/*
2917			 * When PG_M is already clear, PG_RW can be cleared
2918			 * without a TLB invalidation.
2919			 */
2920			if (!atomic_cmpset_int((u_int *)pte, oldpte,
2921			    oldpte & ~PG_RW))
2922				goto retry;
2923			oldpte &= ~PG_RW;
2924			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
2925			    (va & ~PDRMASK);
2926			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
2927			    " in pmap %p", oldpteva, pmap);
2928		}
2929		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2930			pmap_pde_p_failures++;
2931			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2932			    " in pmap %p", va, pmap);
2933			return;
2934		}
2935		pa += PAGE_SIZE;
2936	}
2937
2938	/*
2939	 * Save the page table page in its current state until the PDE
2940	 * mapping the superpage is demoted by pmap_demote_pde() or
2941	 * destroyed by pmap_remove_pde().
2942	 */
2943	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
2944	KASSERT(mpte >= vm_page_array &&
2945	    mpte < &vm_page_array[vm_page_array_size],
2946	    ("pmap_promote_pde: page table page is out of range"));
2947	KASSERT(mpte->pindex == va >> PDRSHIFT,
2948	    ("pmap_promote_pde: page table page's pindex is wrong"));
2949	pmap_insert_pt_page(pmap, mpte);
2950
2951	/*
2952	 * Promote the pv entries.
2953	 */
2954	if ((newpde & PG_MANAGED) != 0)
2955		pmap_pv_promote_pde(pmap, va, newpde & PG_FRAME);
2956
2957	/*
2958	 * Propagate the PAT index to its proper position.
2959	 */
2960	if ((newpde & PG_PTE_PAT) != 0)
2961		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
2962
2963	/*
2964	 * Map the superpage.
2965	 */
2966	if (pmap == kernel_pmap) {
2967		mtx_lock_spin(&allpmaps_lock);
2968		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2969			pde = pmap_pde(allpmaps_entry, va);
2970			pde_store(pde, PG_PS | newpde);
2971		}
2972		mtx_unlock_spin(&allpmaps_lock);
2973	} else
2974		pde_store(pde, PG_PS | newpde);
2975
2976	pmap_pde_promotions++;
2977	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
2978	    " in pmap %p", va, pmap);
2979}
2980
2981/*
2982 *	Insert the given physical page (p) at
2983 *	the specified virtual address (v) in the
2984 *	target physical map with the protection requested.
2985 *
2986 *	If specified, the page will be wired down, meaning
2987 *	that the related pte can not be reclaimed.
2988 *
2989 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2990 *	or lose information.  That is, this routine must actually
2991 *	insert this page into the given map NOW.
2992 */
2993void
2994pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2995    vm_prot_t prot, boolean_t wired)
2996{
2997	vm_paddr_t pa;
2998	pd_entry_t *pde;
2999	pt_entry_t *pte;
3000	vm_paddr_t opa;
3001	pt_entry_t origpte, newpte;
3002	vm_page_t mpte, om;
3003	boolean_t invlva;
3004
3005	va = trunc_page(va);
3006	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3007	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3008	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3009
3010	mpte = NULL;
3011
3012	vm_page_lock_queues();
3013	PMAP_LOCK(pmap);
3014	sched_pin();
3015
3016	/*
3017	 * In the case that a page table page is not
3018	 * resident, we are creating it here.
3019	 */
3020	if (va < VM_MAXUSER_ADDRESS) {
3021		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3022	}
3023
3024	pde = pmap_pde(pmap, va);
3025	if ((*pde & PG_PS) != 0)
3026		panic("pmap_enter: attempted pmap_enter on 4MB page");
3027	pte = pmap_pte_quick(pmap, va);
3028
3029	/*
3030	 * Page Directory table entry not valid, we need a new PT page
3031	 */
3032	if (pte == NULL) {
3033		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3034			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3035	}
3036
3037	pa = VM_PAGE_TO_PHYS(m);
3038	om = NULL;
3039	origpte = *pte;
3040	opa = origpte & PG_FRAME;
3041
3042	/*
3043	 * Mapping has not changed, must be protection or wiring change.
3044	 */
3045	if (origpte && (opa == pa)) {
3046		/*
3047		 * Wiring change, just update stats. We don't worry about
3048		 * wiring PT pages as they remain resident as long as there
3049		 * are valid mappings in them. Hence, if a user page is wired,
3050		 * the PT page will be also.
3051		 */
3052		if (wired && ((origpte & PG_W) == 0))
3053			pmap->pm_stats.wired_count++;
3054		else if (!wired && (origpte & PG_W))
3055			pmap->pm_stats.wired_count--;
3056
3057		/*
3058		 * Remove extra pte reference
3059		 */
3060		if (mpte)
3061			mpte->wire_count--;
3062
3063		/*
3064		 * We might be turning off write access to the page,
3065		 * so we go ahead and sense modify status.
3066		 */
3067		if (origpte & PG_MANAGED) {
3068			om = m;
3069			pa |= PG_MANAGED;
3070		}
3071		goto validate;
3072	}
3073	/*
3074	 * Mapping has changed, invalidate old range and fall through to
3075	 * handle validating new mapping.
3076	 */
3077	if (opa) {
3078		if (origpte & PG_W)
3079			pmap->pm_stats.wired_count--;
3080		if (origpte & PG_MANAGED) {
3081			om = PHYS_TO_VM_PAGE(opa);
3082			pmap_remove_entry(pmap, om, va);
3083		}
3084		if (mpte != NULL) {
3085			mpte->wire_count--;
3086			KASSERT(mpte->wire_count > 0,
3087			    ("pmap_enter: missing reference to page table page,"
3088			     " va: 0x%x", va));
3089		}
3090	} else
3091		pmap->pm_stats.resident_count++;
3092
3093	/*
3094	 * Enter on the PV list if part of our managed memory.
3095	 */
3096	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3097		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3098		    ("pmap_enter: managed mapping within the clean submap"));
3099		pmap_insert_entry(pmap, va, m);
3100		pa |= PG_MANAGED;
3101	}
3102
3103	/*
3104	 * Increment counters
3105	 */
3106	if (wired)
3107		pmap->pm_stats.wired_count++;
3108
3109validate:
3110	/*
3111	 * Now validate mapping with desired protection/wiring.
3112	 */
3113	newpte = (pt_entry_t)(pa | PG_V);
3114	if ((prot & VM_PROT_WRITE) != 0) {
3115		newpte |= PG_RW;
3116		vm_page_flag_set(m, PG_WRITEABLE);
3117	}
3118#ifdef PAE
3119	if ((prot & VM_PROT_EXECUTE) == 0)
3120		newpte |= pg_nx;
3121#endif
3122	if (wired)
3123		newpte |= PG_W;
3124	if (va < VM_MAXUSER_ADDRESS)
3125		newpte |= PG_U;
3126	if (pmap == kernel_pmap)
3127		newpte |= pgeflag;
3128
3129	/*
3130	 * if the mapping or permission bits are different, we need
3131	 * to update the pte.
3132	 */
3133	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3134		newpte |= PG_A;
3135		if ((access & VM_PROT_WRITE) != 0)
3136			newpte |= PG_M;
3137		if (origpte & PG_V) {
3138			invlva = FALSE;
3139			origpte = pte_load_store(pte, newpte);
3140			if (origpte & PG_A) {
3141				if (origpte & PG_MANAGED)
3142					vm_page_flag_set(om, PG_REFERENCED);
3143				if (opa != VM_PAGE_TO_PHYS(m))
3144					invlva = TRUE;
3145#ifdef PAE
3146				if ((origpte & PG_NX) == 0 &&
3147				    (newpte & PG_NX) != 0)
3148					invlva = TRUE;
3149#endif
3150			}
3151			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3152				if ((origpte & PG_MANAGED) != 0)
3153					vm_page_dirty(om);
3154				if ((prot & VM_PROT_WRITE) == 0)
3155					invlva = TRUE;
3156			}
3157			if (invlva)
3158				pmap_invalidate_page(pmap, va);
3159		} else
3160			pte_store(pte, newpte);
3161	}
3162
3163	/*
3164	 * If both the page table page and the reservation are fully
3165	 * populated, then attempt promotion.
3166	 */
3167	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3168	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3169		pmap_promote_pde(pmap, pde, va);
3170
3171	sched_unpin();
3172	vm_page_unlock_queues();
3173	PMAP_UNLOCK(pmap);
3174}
3175
3176/*
3177 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3178 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3179 * blocking, (2) a mapping already exists at the specified virtual address, or
3180 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3181 */
3182static boolean_t
3183pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3184{
3185	pd_entry_t *pde, newpde;
3186
3187	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3188	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3189	pde = pmap_pde(pmap, va);
3190	if (*pde != 0) {
3191		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3192		    " in pmap %p", va, pmap);
3193		return (FALSE);
3194	}
3195	newpde = VM_PAGE_TO_PHYS(m) | PG_PS | PG_V;
3196	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3197		newpde |= PG_MANAGED;
3198
3199		/*
3200		 * Abort this mapping if its PV entry could not be created.
3201		 */
3202		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3203			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3204			    " in pmap %p", va, pmap);
3205			return (FALSE);
3206		}
3207	}
3208#ifdef PAE
3209	if ((prot & VM_PROT_EXECUTE) == 0)
3210		newpde |= pg_nx;
3211#endif
3212	if (va < VM_MAXUSER_ADDRESS)
3213		newpde |= PG_U;
3214
3215	/*
3216	 * Increment counters.
3217	 */
3218	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3219
3220	/*
3221	 * Map the superpage.
3222	 */
3223	pde_store(pde, newpde);
3224
3225	pmap_pde_mappings++;
3226	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3227	    " in pmap %p", va, pmap);
3228	return (TRUE);
3229}
3230
3231/*
3232 * Maps a sequence of resident pages belonging to the same object.
3233 * The sequence begins with the given page m_start.  This page is
3234 * mapped at the given virtual address start.  Each subsequent page is
3235 * mapped at a virtual address that is offset from start by the same
3236 * amount as the page is offset from m_start within the object.  The
3237 * last page in the sequence is the page with the largest offset from
3238 * m_start that can be mapped at a virtual address less than the given
3239 * virtual address end.  Not every virtual page between start and end
3240 * is mapped; only those for which a resident page exists with the
3241 * corresponding offset from m_start are mapped.
3242 */
3243void
3244pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3245    vm_page_t m_start, vm_prot_t prot)
3246{
3247	vm_offset_t va;
3248	vm_page_t m, mpte;
3249	vm_pindex_t diff, psize;
3250
3251	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3252	psize = atop(end - start);
3253	mpte = NULL;
3254	m = m_start;
3255	PMAP_LOCK(pmap);
3256	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3257		va = start + ptoa(diff);
3258		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3259		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3260		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3261		    pmap_enter_pde(pmap, va, m, prot))
3262			m = &m[NBPDR / PAGE_SIZE - 1];
3263		else
3264			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3265			    mpte);
3266		m = TAILQ_NEXT(m, listq);
3267	}
3268 	PMAP_UNLOCK(pmap);
3269}
3270
3271/*
3272 * this code makes some *MAJOR* assumptions:
3273 * 1. Current pmap & pmap exists.
3274 * 2. Not wired.
3275 * 3. Read access.
3276 * 4. No page table pages.
3277 * but is *MUCH* faster than pmap_enter...
3278 */
3279
3280void
3281pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3282{
3283
3284	PMAP_LOCK(pmap);
3285	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3286	PMAP_UNLOCK(pmap);
3287}
3288
3289static vm_page_t
3290pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3291    vm_prot_t prot, vm_page_t mpte)
3292{
3293	pt_entry_t *pte;
3294	vm_paddr_t pa;
3295	vm_page_t free;
3296
3297	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3298	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3299	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3300	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3301	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3302
3303	/*
3304	 * In the case that a page table page is not
3305	 * resident, we are creating it here.
3306	 */
3307	if (va < VM_MAXUSER_ADDRESS) {
3308		unsigned ptepindex;
3309		pd_entry_t ptepa;
3310
3311		/*
3312		 * Calculate pagetable page index
3313		 */
3314		ptepindex = va >> PDRSHIFT;
3315		if (mpte && (mpte->pindex == ptepindex)) {
3316			mpte->wire_count++;
3317		} else {
3318			/*
3319			 * Get the page directory entry
3320			 */
3321			ptepa = pmap->pm_pdir[ptepindex];
3322
3323			/*
3324			 * If the page table page is mapped, we just increment
3325			 * the hold count, and activate it.
3326			 */
3327			if (ptepa) {
3328				if (ptepa & PG_PS)
3329					return (NULL);
3330				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3331				mpte->wire_count++;
3332			} else {
3333				mpte = _pmap_allocpte(pmap, ptepindex,
3334				    M_NOWAIT);
3335				if (mpte == NULL)
3336					return (mpte);
3337			}
3338		}
3339	} else {
3340		mpte = NULL;
3341	}
3342
3343	/*
3344	 * This call to vtopte makes the assumption that we are
3345	 * entering the page into the current pmap.  In order to support
3346	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3347	 * But that isn't as quick as vtopte.
3348	 */
3349	pte = vtopte(va);
3350	if (*pte) {
3351		if (mpte != NULL) {
3352			mpte->wire_count--;
3353			mpte = NULL;
3354		}
3355		return (mpte);
3356	}
3357
3358	/*
3359	 * Enter on the PV list if part of our managed memory.
3360	 */
3361	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3362	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3363		if (mpte != NULL) {
3364			free = NULL;
3365			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3366				pmap_invalidate_page(pmap, va);
3367				pmap_free_zero_pages(free);
3368			}
3369
3370			mpte = NULL;
3371		}
3372		return (mpte);
3373	}
3374
3375	/*
3376	 * Increment counters
3377	 */
3378	pmap->pm_stats.resident_count++;
3379
3380	pa = VM_PAGE_TO_PHYS(m);
3381#ifdef PAE
3382	if ((prot & VM_PROT_EXECUTE) == 0)
3383		pa |= pg_nx;
3384#endif
3385
3386	/*
3387	 * Now validate mapping with RO protection
3388	 */
3389	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3390		pte_store(pte, pa | PG_V | PG_U);
3391	else
3392		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3393	return mpte;
3394}
3395
3396/*
3397 * Make a temporary mapping for a physical address.  This is only intended
3398 * to be used for panic dumps.
3399 */
3400void *
3401pmap_kenter_temporary(vm_paddr_t pa, int i)
3402{
3403	vm_offset_t va;
3404
3405	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3406	pmap_kenter(va, pa);
3407	invlpg(va);
3408	return ((void *)crashdumpmap);
3409}
3410
3411/*
3412 * This code maps large physical mmap regions into the
3413 * processor address space.  Note that some shortcuts
3414 * are taken, but the code works.
3415 */
3416void
3417pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3418		    vm_object_t object, vm_pindex_t pindex,
3419		    vm_size_t size)
3420{
3421	vm_page_t p;
3422
3423	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3424	KASSERT(object->type == OBJT_DEVICE,
3425	    ("pmap_object_init_pt: non-device object"));
3426	if (pseflag &&
3427	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3428		int i;
3429		vm_page_t m[1];
3430		unsigned int ptepindex;
3431		int npdes;
3432		pd_entry_t ptepa;
3433
3434		PMAP_LOCK(pmap);
3435		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3436			goto out;
3437		PMAP_UNLOCK(pmap);
3438retry:
3439		p = vm_page_lookup(object, pindex);
3440		if (p != NULL) {
3441			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3442				goto retry;
3443		} else {
3444			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3445			if (p == NULL)
3446				return;
3447			m[0] = p;
3448
3449			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3450				vm_page_lock_queues();
3451				vm_page_free(p);
3452				vm_page_unlock_queues();
3453				return;
3454			}
3455
3456			p = vm_page_lookup(object, pindex);
3457			vm_page_lock_queues();
3458			vm_page_wakeup(p);
3459			vm_page_unlock_queues();
3460		}
3461
3462		ptepa = VM_PAGE_TO_PHYS(p);
3463		if (ptepa & (NBPDR - 1))
3464			return;
3465
3466		p->valid = VM_PAGE_BITS_ALL;
3467
3468		PMAP_LOCK(pmap);
3469		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3470		npdes = size >> PDRSHIFT;
3471		for(i = 0; i < npdes; i++) {
3472			pde_store(&pmap->pm_pdir[ptepindex],
3473			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
3474			ptepa += NBPDR;
3475			ptepindex += 1;
3476		}
3477		pmap_invalidate_all(pmap);
3478out:
3479		PMAP_UNLOCK(pmap);
3480	}
3481}
3482
3483/*
3484 *	Routine:	pmap_change_wiring
3485 *	Function:	Change the wiring attribute for a map/virtual-address
3486 *			pair.
3487 *	In/out conditions:
3488 *			The mapping must already exist in the pmap.
3489 */
3490void
3491pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3492{
3493	pd_entry_t *pde;
3494	pt_entry_t *pte;
3495	boolean_t are_queues_locked;
3496
3497	are_queues_locked = FALSE;
3498retry:
3499	PMAP_LOCK(pmap);
3500	pde = pmap_pde(pmap, va);
3501	if ((*pde & PG_PS) != 0) {
3502		if (!wired != ((*pde & PG_W) == 0)) {
3503			if (!are_queues_locked) {
3504				are_queues_locked = TRUE;
3505				if (!mtx_trylock(&vm_page_queue_mtx)) {
3506					PMAP_UNLOCK(pmap);
3507					vm_page_lock_queues();
3508					goto retry;
3509				}
3510			}
3511			if (!pmap_demote_pde(pmap, pde, va))
3512				panic("pmap_change_wiring: demotion failed");
3513		} else
3514			goto out;
3515	}
3516	pte = pmap_pte(pmap, va);
3517
3518	if (wired && !pmap_pte_w(pte))
3519		pmap->pm_stats.wired_count++;
3520	else if (!wired && pmap_pte_w(pte))
3521		pmap->pm_stats.wired_count--;
3522
3523	/*
3524	 * Wiring is not a hardware characteristic so there is no need to
3525	 * invalidate TLB.
3526	 */
3527	pmap_pte_set_w(pte, wired);
3528	pmap_pte_release(pte);
3529out:
3530	if (are_queues_locked)
3531		vm_page_unlock_queues();
3532	PMAP_UNLOCK(pmap);
3533}
3534
3535
3536
3537/*
3538 *	Copy the range specified by src_addr/len
3539 *	from the source map to the range dst_addr/len
3540 *	in the destination map.
3541 *
3542 *	This routine is only advisory and need not do anything.
3543 */
3544
3545void
3546pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3547	  vm_offset_t src_addr)
3548{
3549	vm_page_t   free;
3550	vm_offset_t addr;
3551	vm_offset_t end_addr = src_addr + len;
3552	vm_offset_t pdnxt;
3553
3554	if (dst_addr != src_addr)
3555		return;
3556
3557	if (!pmap_is_current(src_pmap))
3558		return;
3559
3560	vm_page_lock_queues();
3561	if (dst_pmap < src_pmap) {
3562		PMAP_LOCK(dst_pmap);
3563		PMAP_LOCK(src_pmap);
3564	} else {
3565		PMAP_LOCK(src_pmap);
3566		PMAP_LOCK(dst_pmap);
3567	}
3568	sched_pin();
3569	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3570		pt_entry_t *src_pte, *dst_pte;
3571		vm_page_t dstmpte, srcmpte;
3572		pd_entry_t srcptepaddr;
3573		unsigned ptepindex;
3574
3575		KASSERT(addr < UPT_MIN_ADDRESS,
3576		    ("pmap_copy: invalid to pmap_copy page tables"));
3577
3578		pdnxt = (addr + NBPDR) & ~PDRMASK;
3579		if (pdnxt < addr)
3580			pdnxt = end_addr;
3581		ptepindex = addr >> PDRSHIFT;
3582
3583		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3584		if (srcptepaddr == 0)
3585			continue;
3586
3587		if (srcptepaddr & PG_PS) {
3588			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3589			    ((srcptepaddr & PG_MANAGED) == 0 ||
3590			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3591			    PG_PS_FRAME))) {
3592				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3593				    ~PG_W;
3594				dst_pmap->pm_stats.resident_count +=
3595				    NBPDR / PAGE_SIZE;
3596			}
3597			continue;
3598		}
3599
3600		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3601		KASSERT(srcmpte->wire_count > 0,
3602		    ("pmap_copy: source page table page is unused"));
3603
3604		if (pdnxt > end_addr)
3605			pdnxt = end_addr;
3606
3607		src_pte = vtopte(addr);
3608		while (addr < pdnxt) {
3609			pt_entry_t ptetemp;
3610			ptetemp = *src_pte;
3611			/*
3612			 * we only virtual copy managed pages
3613			 */
3614			if ((ptetemp & PG_MANAGED) != 0) {
3615				dstmpte = pmap_allocpte(dst_pmap, addr,
3616				    M_NOWAIT);
3617				if (dstmpte == NULL)
3618					break;
3619				dst_pte = pmap_pte_quick(dst_pmap, addr);
3620				if (*dst_pte == 0 &&
3621				    pmap_try_insert_pv_entry(dst_pmap, addr,
3622				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3623					/*
3624					 * Clear the wired, modified, and
3625					 * accessed (referenced) bits
3626					 * during the copy.
3627					 */
3628					*dst_pte = ptetemp & ~(PG_W | PG_M |
3629					    PG_A);
3630					dst_pmap->pm_stats.resident_count++;
3631	 			} else {
3632					free = NULL;
3633					if (pmap_unwire_pte_hold( dst_pmap,
3634					    dstmpte, &free)) {
3635						pmap_invalidate_page(dst_pmap,
3636						    addr);
3637						pmap_free_zero_pages(free);
3638					}
3639				}
3640				if (dstmpte->wire_count >= srcmpte->wire_count)
3641					break;
3642			}
3643			addr += PAGE_SIZE;
3644			src_pte++;
3645		}
3646	}
3647	sched_unpin();
3648	vm_page_unlock_queues();
3649	PMAP_UNLOCK(src_pmap);
3650	PMAP_UNLOCK(dst_pmap);
3651}
3652
3653static __inline void
3654pagezero(void *page)
3655{
3656#if defined(I686_CPU)
3657	if (cpu_class == CPUCLASS_686) {
3658#if defined(CPU_ENABLE_SSE)
3659		if (cpu_feature & CPUID_SSE2)
3660			sse2_pagezero(page);
3661		else
3662#endif
3663			i686_pagezero(page);
3664	} else
3665#endif
3666		bzero(page, PAGE_SIZE);
3667}
3668
3669/*
3670 *	pmap_zero_page zeros the specified hardware page by mapping
3671 *	the page into KVM and using bzero to clear its contents.
3672 */
3673void
3674pmap_zero_page(vm_page_t m)
3675{
3676	struct sysmaps *sysmaps;
3677
3678	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3679	mtx_lock(&sysmaps->lock);
3680	if (*sysmaps->CMAP2)
3681		panic("pmap_zero_page: CMAP2 busy");
3682	sched_pin();
3683	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3684	invlcaddr(sysmaps->CADDR2);
3685	pagezero(sysmaps->CADDR2);
3686	*sysmaps->CMAP2 = 0;
3687	sched_unpin();
3688	mtx_unlock(&sysmaps->lock);
3689}
3690
3691/*
3692 *	pmap_zero_page_area zeros the specified hardware page by mapping
3693 *	the page into KVM and using bzero to clear its contents.
3694 *
3695 *	off and size may not cover an area beyond a single hardware page.
3696 */
3697void
3698pmap_zero_page_area(vm_page_t m, int off, int size)
3699{
3700	struct sysmaps *sysmaps;
3701
3702	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3703	mtx_lock(&sysmaps->lock);
3704	if (*sysmaps->CMAP2)
3705		panic("pmap_zero_page: CMAP2 busy");
3706	sched_pin();
3707	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3708	invlcaddr(sysmaps->CADDR2);
3709	if (off == 0 && size == PAGE_SIZE)
3710		pagezero(sysmaps->CADDR2);
3711	else
3712		bzero((char *)sysmaps->CADDR2 + off, size);
3713	*sysmaps->CMAP2 = 0;
3714	sched_unpin();
3715	mtx_unlock(&sysmaps->lock);
3716}
3717
3718/*
3719 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3720 *	the page into KVM and using bzero to clear its contents.  This
3721 *	is intended to be called from the vm_pagezero process only and
3722 *	outside of Giant.
3723 */
3724void
3725pmap_zero_page_idle(vm_page_t m)
3726{
3727
3728	if (*CMAP3)
3729		panic("pmap_zero_page: CMAP3 busy");
3730	sched_pin();
3731	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3732	invlcaddr(CADDR3);
3733	pagezero(CADDR3);
3734	*CMAP3 = 0;
3735	sched_unpin();
3736}
3737
3738/*
3739 *	pmap_copy_page copies the specified (machine independent)
3740 *	page by mapping the page into virtual memory and using
3741 *	bcopy to copy the page, one machine dependent page at a
3742 *	time.
3743 */
3744void
3745pmap_copy_page(vm_page_t src, vm_page_t dst)
3746{
3747	struct sysmaps *sysmaps;
3748
3749	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3750	mtx_lock(&sysmaps->lock);
3751	if (*sysmaps->CMAP1)
3752		panic("pmap_copy_page: CMAP1 busy");
3753	if (*sysmaps->CMAP2)
3754		panic("pmap_copy_page: CMAP2 busy");
3755	sched_pin();
3756	invlpg((u_int)sysmaps->CADDR1);
3757	invlpg((u_int)sysmaps->CADDR2);
3758	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
3759	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
3760	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3761	*sysmaps->CMAP1 = 0;
3762	*sysmaps->CMAP2 = 0;
3763	sched_unpin();
3764	mtx_unlock(&sysmaps->lock);
3765}
3766
3767/*
3768 * Returns true if the pmap's pv is one of the first
3769 * 16 pvs linked to from this page.  This count may
3770 * be changed upwards or downwards in the future; it
3771 * is only necessary that true be returned for a small
3772 * subset of pmaps for proper page aging.
3773 */
3774boolean_t
3775pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3776{
3777	struct md_page *pvh;
3778	pv_entry_t pv;
3779	int loops = 0;
3780
3781	if (m->flags & PG_FICTITIOUS)
3782		return FALSE;
3783
3784	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3785	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3786		if (PV_PMAP(pv) == pmap) {
3787			return TRUE;
3788		}
3789		loops++;
3790		if (loops >= 16)
3791			break;
3792	}
3793	if (loops < 16) {
3794		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3795		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3796			if (PV_PMAP(pv) == pmap)
3797				return (TRUE);
3798			loops++;
3799			if (loops >= 16)
3800				break;
3801		}
3802	}
3803	return (FALSE);
3804}
3805
3806/*
3807 *	pmap_page_wired_mappings:
3808 *
3809 *	Return the number of managed mappings to the given physical page
3810 *	that are wired.
3811 */
3812int
3813pmap_page_wired_mappings(vm_page_t m)
3814{
3815	int count;
3816
3817	count = 0;
3818	if ((m->flags & PG_FICTITIOUS) != 0)
3819		return (count);
3820	count = pmap_pvh_wired_mappings(&m->md, count);
3821	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3822}
3823
3824/*
3825 *	pmap_pvh_wired_mappings:
3826 *
3827 *	Return the updated number "count" of managed mappings that are wired.
3828 */
3829static int
3830pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3831{
3832	pmap_t pmap;
3833	pt_entry_t *pte;
3834	pv_entry_t pv;
3835
3836	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3837	sched_pin();
3838	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3839		pmap = PV_PMAP(pv);
3840		PMAP_LOCK(pmap);
3841		pte = pmap_pte_quick(pmap, pv->pv_va);
3842		if ((*pte & PG_W) != 0)
3843			count++;
3844		PMAP_UNLOCK(pmap);
3845	}
3846	sched_unpin();
3847	return (count);
3848}
3849
3850/*
3851 * Returns TRUE if the given page is mapped individually or as part of
3852 * a 4mpage.  Otherwise, returns FALSE.
3853 */
3854boolean_t
3855pmap_page_is_mapped(vm_page_t m)
3856{
3857	struct md_page *pvh;
3858
3859	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3860		return (FALSE);
3861	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3862	if (TAILQ_EMPTY(&m->md.pv_list)) {
3863		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3864		return (!TAILQ_EMPTY(&pvh->pv_list));
3865	} else
3866		return (TRUE);
3867}
3868
3869/*
3870 * Remove all pages from specified address space
3871 * this aids process exit speeds.  Also, this code
3872 * is special cased for current process only, but
3873 * can have the more generic (and slightly slower)
3874 * mode enabled.  This is much faster than pmap_remove
3875 * in the case of running down an entire address space.
3876 */
3877void
3878pmap_remove_pages(pmap_t pmap)
3879{
3880	pt_entry_t *pte, tpte;
3881	vm_page_t free = NULL;
3882	vm_page_t m, mpte, mt;
3883	pv_entry_t pv;
3884	struct md_page *pvh;
3885	struct pv_chunk *pc, *npc;
3886	int field, idx;
3887	int32_t bit;
3888	uint32_t inuse, bitmask;
3889	int allfree;
3890
3891	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3892		printf("warning: pmap_remove_pages called with non-current pmap\n");
3893		return;
3894	}
3895	vm_page_lock_queues();
3896	PMAP_LOCK(pmap);
3897	sched_pin();
3898	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3899		allfree = 1;
3900		for (field = 0; field < _NPCM; field++) {
3901			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3902			while (inuse != 0) {
3903				bit = bsfl(inuse);
3904				bitmask = 1UL << bit;
3905				idx = field * 32 + bit;
3906				pv = &pc->pc_pventry[idx];
3907				inuse &= ~bitmask;
3908
3909				pte = pmap_pde(pmap, pv->pv_va);
3910				tpte = *pte;
3911				if ((tpte & PG_PS) == 0) {
3912					pte = vtopte(pv->pv_va);
3913					tpte = *pte & ~PG_PTE_PAT;
3914				}
3915
3916				if (tpte == 0) {
3917					printf(
3918					    "TPTE at %p  IS ZERO @ VA %08x\n",
3919					    pte, pv->pv_va);
3920					panic("bad pte");
3921				}
3922
3923/*
3924 * We cannot remove wired pages from a process' mapping at this time
3925 */
3926				if (tpte & PG_W) {
3927					allfree = 0;
3928					continue;
3929				}
3930
3931				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3932				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3933				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3934				    m, (uintmax_t)m->phys_addr,
3935				    (uintmax_t)tpte));
3936
3937				KASSERT(m < &vm_page_array[vm_page_array_size],
3938					("pmap_remove_pages: bad tpte %#jx",
3939					(uintmax_t)tpte));
3940
3941				pte_clear(pte);
3942
3943				/*
3944				 * Update the vm_page_t clean/reference bits.
3945				 */
3946				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3947					if ((tpte & PG_PS) != 0) {
3948						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3949							vm_page_dirty(mt);
3950					} else
3951						vm_page_dirty(m);
3952				}
3953
3954				/* Mark free */
3955				PV_STAT(pv_entry_frees++);
3956				PV_STAT(pv_entry_spare++);
3957				pv_entry_count--;
3958				pc->pc_map[field] |= bitmask;
3959				if ((tpte & PG_PS) != 0) {
3960					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3961					pvh = pa_to_pvh(tpte & PG_FRAME);
3962					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
3963					if (TAILQ_EMPTY(&pvh->pv_list)) {
3964						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3965							if (TAILQ_EMPTY(&mt->md.pv_list))
3966								vm_page_flag_clear(mt, PG_WRITEABLE);
3967					}
3968					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
3969					if (mpte != NULL) {
3970						pmap_remove_pt_page(pmap, mpte);
3971						KASSERT(mpte->wire_count == NPTEPG,
3972						    ("pmap_remove_pages: pte page wire count error"));
3973						mpte->wire_count = 0;
3974						pmap_add_delayed_free_list(mpte, &free, FALSE);
3975						atomic_subtract_int(&cnt.v_wire_count, 1);
3976					}
3977				} else {
3978					pmap->pm_stats.resident_count--;
3979					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3980					if (TAILQ_EMPTY(&m->md.pv_list)) {
3981						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3982						if (TAILQ_EMPTY(&pvh->pv_list))
3983							vm_page_flag_clear(m, PG_WRITEABLE);
3984					}
3985					pmap_unuse_pt(pmap, pv->pv_va, &free);
3986				}
3987			}
3988		}
3989		if (allfree) {
3990			PV_STAT(pv_entry_spare -= _NPCPV);
3991			PV_STAT(pc_chunk_count--);
3992			PV_STAT(pc_chunk_frees++);
3993			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3994			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3995			pmap_qremove((vm_offset_t)pc, 1);
3996			vm_page_unwire(m, 0);
3997			vm_page_free(m);
3998			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3999		}
4000	}
4001	sched_unpin();
4002	pmap_invalidate_all(pmap);
4003	vm_page_unlock_queues();
4004	PMAP_UNLOCK(pmap);
4005	pmap_free_zero_pages(free);
4006}
4007
4008/*
4009 *	pmap_is_modified:
4010 *
4011 *	Return whether or not the specified physical page was modified
4012 *	in any physical maps.
4013 */
4014boolean_t
4015pmap_is_modified(vm_page_t m)
4016{
4017
4018	if (m->flags & PG_FICTITIOUS)
4019		return (FALSE);
4020	if (pmap_is_modified_pvh(&m->md))
4021		return (TRUE);
4022	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4023}
4024
4025/*
4026 * Returns TRUE if any of the given mappings were used to modify
4027 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4028 * mappings are supported.
4029 */
4030static boolean_t
4031pmap_is_modified_pvh(struct md_page *pvh)
4032{
4033	pv_entry_t pv;
4034	pt_entry_t *pte;
4035	pmap_t pmap;
4036	boolean_t rv;
4037
4038	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4039	rv = FALSE;
4040	sched_pin();
4041	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4042		pmap = PV_PMAP(pv);
4043		PMAP_LOCK(pmap);
4044		pte = pmap_pte_quick(pmap, pv->pv_va);
4045		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4046		PMAP_UNLOCK(pmap);
4047		if (rv)
4048			break;
4049	}
4050	sched_unpin();
4051	return (rv);
4052}
4053
4054/*
4055 *	pmap_is_prefaultable:
4056 *
4057 *	Return whether or not the specified virtual address is elgible
4058 *	for prefault.
4059 */
4060boolean_t
4061pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4062{
4063	pd_entry_t *pde;
4064	pt_entry_t *pte;
4065	boolean_t rv;
4066
4067	rv = FALSE;
4068	PMAP_LOCK(pmap);
4069	pde = pmap_pde(pmap, addr);
4070	if (*pde != 0 && (*pde & PG_PS) == 0) {
4071		pte = vtopte(addr);
4072		rv = *pte == 0;
4073	}
4074	PMAP_UNLOCK(pmap);
4075	return (rv);
4076}
4077
4078/*
4079 * Clear the write and modified bits in each of the given page's mappings.
4080 */
4081void
4082pmap_remove_write(vm_page_t m)
4083{
4084	struct md_page *pvh;
4085	pv_entry_t next_pv, pv;
4086	pmap_t pmap;
4087	pd_entry_t *pde;
4088	pt_entry_t oldpte, *pte;
4089	vm_offset_t va;
4090
4091	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4092	if ((m->flags & PG_FICTITIOUS) != 0 ||
4093	    (m->flags & PG_WRITEABLE) == 0)
4094		return;
4095	sched_pin();
4096	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4097	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4098		va = pv->pv_va;
4099		pmap = PV_PMAP(pv);
4100		PMAP_LOCK(pmap);
4101		pde = pmap_pde(pmap, va);
4102		if ((*pde & PG_RW) != 0)
4103			(void)pmap_demote_pde(pmap, pde, va);
4104		PMAP_UNLOCK(pmap);
4105	}
4106	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4107		pmap = PV_PMAP(pv);
4108		PMAP_LOCK(pmap);
4109		pde = pmap_pde(pmap, pv->pv_va);
4110		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4111		    " a 4mpage in page %p's pv list", m));
4112		pte = pmap_pte_quick(pmap, pv->pv_va);
4113retry:
4114		oldpte = *pte;
4115		if ((oldpte & PG_RW) != 0) {
4116			/*
4117			 * Regardless of whether a pte is 32 or 64 bits
4118			 * in size, PG_RW and PG_M are among the least
4119			 * significant 32 bits.
4120			 */
4121			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4122			    oldpte & ~(PG_RW | PG_M)))
4123				goto retry;
4124			if ((oldpte & PG_M) != 0)
4125				vm_page_dirty(m);
4126			pmap_invalidate_page(pmap, pv->pv_va);
4127		}
4128		PMAP_UNLOCK(pmap);
4129	}
4130	vm_page_flag_clear(m, PG_WRITEABLE);
4131	sched_unpin();
4132}
4133
4134/*
4135 *	pmap_ts_referenced:
4136 *
4137 *	Return a count of reference bits for a page, clearing those bits.
4138 *	It is not necessary for every reference bit to be cleared, but it
4139 *	is necessary that 0 only be returned when there are truly no
4140 *	reference bits set.
4141 *
4142 *	XXX: The exact number of bits to check and clear is a matter that
4143 *	should be tested and standardized at some point in the future for
4144 *	optimal aging of shared pages.
4145 */
4146int
4147pmap_ts_referenced(vm_page_t m)
4148{
4149	struct md_page *pvh;
4150	pv_entry_t pv, pvf, pvn;
4151	pmap_t pmap;
4152	pd_entry_t oldpde, *pde;
4153	pt_entry_t *pte;
4154	vm_offset_t va;
4155	int rtval = 0;
4156
4157	if (m->flags & PG_FICTITIOUS)
4158		return (rtval);
4159	sched_pin();
4160	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4161	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4162	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4163		va = pv->pv_va;
4164		pmap = PV_PMAP(pv);
4165		PMAP_LOCK(pmap);
4166		pde = pmap_pde(pmap, va);
4167		oldpde = *pde;
4168		if ((oldpde & PG_A) != 0) {
4169			if (pmap_demote_pde(pmap, pde, va)) {
4170				if ((oldpde & PG_W) == 0) {
4171					/*
4172					 * Remove the mapping to a single page
4173					 * so that a subsequent access may
4174					 * repromote.  Since the underlying
4175					 * page table page is fully populated,
4176					 * this removal never frees a page
4177					 * table page.
4178					 */
4179					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4180					    PG_FRAME);
4181					pmap_remove_page(pmap, va, NULL);
4182					rtval++;
4183					if (rtval > 4) {
4184						PMAP_UNLOCK(pmap);
4185						return (rtval);
4186					}
4187				}
4188			}
4189		}
4190		PMAP_UNLOCK(pmap);
4191	}
4192	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4193		pvf = pv;
4194		do {
4195			pvn = TAILQ_NEXT(pv, pv_list);
4196			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4197			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4198			pmap = PV_PMAP(pv);
4199			PMAP_LOCK(pmap);
4200			pde = pmap_pde(pmap, pv->pv_va);
4201			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4202			    " found a 4mpage in page %p's pv list", m));
4203			pte = pmap_pte_quick(pmap, pv->pv_va);
4204			if ((*pte & PG_A) != 0) {
4205				atomic_clear_int((u_int *)pte, PG_A);
4206				pmap_invalidate_page(pmap, pv->pv_va);
4207				rtval++;
4208				if (rtval > 4)
4209					pvn = NULL;
4210			}
4211			PMAP_UNLOCK(pmap);
4212		} while ((pv = pvn) != NULL && pv != pvf);
4213	}
4214	sched_unpin();
4215	return (rtval);
4216}
4217
4218/*
4219 *	Clear the modify bits on the specified physical page.
4220 */
4221void
4222pmap_clear_modify(vm_page_t m)
4223{
4224	struct md_page *pvh;
4225	pv_entry_t next_pv, pv;
4226	pmap_t pmap;
4227	pd_entry_t oldpde, *pde;
4228	pt_entry_t oldpte, *pte;
4229	vm_offset_t va;
4230
4231	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4232	if ((m->flags & PG_FICTITIOUS) != 0)
4233		return;
4234	sched_pin();
4235	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4236	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4237		va = pv->pv_va;
4238		pmap = PV_PMAP(pv);
4239		PMAP_LOCK(pmap);
4240		pde = pmap_pde(pmap, va);
4241		oldpde = *pde;
4242		if ((oldpde & PG_RW) != 0) {
4243			if (pmap_demote_pde(pmap, pde, va)) {
4244				if ((oldpde & PG_W) == 0) {
4245					/*
4246					 * Write protect the mapping to a
4247					 * single page so that a subsequent
4248					 * write access may repromote.
4249					 */
4250					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4251					    PG_FRAME);
4252					pte = pmap_pte_quick(pmap, va);
4253					oldpte = *pte;
4254					if ((oldpte & PG_V) != 0) {
4255						/*
4256						 * Regardless of whether a pte is 32 or 64 bits
4257						 * in size, PG_RW and PG_M are among the least
4258						 * significant 32 bits.
4259						 */
4260						while (!atomic_cmpset_int((u_int *)pte,
4261						    oldpte,
4262						    oldpte & ~(PG_M | PG_RW)))
4263							oldpte = *pte;
4264						vm_page_dirty(m);
4265						pmap_invalidate_page(pmap, va);
4266					}
4267				}
4268			}
4269		}
4270		PMAP_UNLOCK(pmap);
4271	}
4272	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4273		pmap = PV_PMAP(pv);
4274		PMAP_LOCK(pmap);
4275		pde = pmap_pde(pmap, pv->pv_va);
4276		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4277		    " a 4mpage in page %p's pv list", m));
4278		pte = pmap_pte_quick(pmap, pv->pv_va);
4279		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4280			/*
4281			 * Regardless of whether a pte is 32 or 64 bits
4282			 * in size, PG_M is among the least significant
4283			 * 32 bits.
4284			 */
4285			atomic_clear_int((u_int *)pte, PG_M);
4286			pmap_invalidate_page(pmap, pv->pv_va);
4287		}
4288		PMAP_UNLOCK(pmap);
4289	}
4290	sched_unpin();
4291}
4292
4293/*
4294 *	pmap_clear_reference:
4295 *
4296 *	Clear the reference bit on the specified physical page.
4297 */
4298void
4299pmap_clear_reference(vm_page_t m)
4300{
4301	struct md_page *pvh;
4302	pv_entry_t next_pv, pv;
4303	pmap_t pmap;
4304	pd_entry_t oldpde, *pde;
4305	pt_entry_t *pte;
4306	vm_offset_t va;
4307
4308	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4309	if ((m->flags & PG_FICTITIOUS) != 0)
4310		return;
4311	sched_pin();
4312	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4313	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4314		va = pv->pv_va;
4315		pmap = PV_PMAP(pv);
4316		PMAP_LOCK(pmap);
4317		pde = pmap_pde(pmap, va);
4318		oldpde = *pde;
4319		if ((oldpde & PG_A) != 0) {
4320			if (pmap_demote_pde(pmap, pde, va)) {
4321				/*
4322				 * Remove the mapping to a single page so
4323				 * that a subsequent access may repromote.
4324				 * Since the underlying page table page is
4325				 * fully populated, this removal never frees
4326				 * a page table page.
4327				 */
4328				va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_FRAME);
4329				pmap_remove_page(pmap, va, NULL);
4330			}
4331		}
4332		PMAP_UNLOCK(pmap);
4333	}
4334	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4335		pmap = PV_PMAP(pv);
4336		PMAP_LOCK(pmap);
4337		pde = pmap_pde(pmap, pv->pv_va);
4338		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4339		    " a 4mpage in page %p's pv list", m));
4340		pte = pmap_pte_quick(pmap, pv->pv_va);
4341		if ((*pte & PG_A) != 0) {
4342			/*
4343			 * Regardless of whether a pte is 32 or 64 bits
4344			 * in size, PG_A is among the least significant
4345			 * 32 bits.
4346			 */
4347			atomic_clear_int((u_int *)pte, PG_A);
4348			pmap_invalidate_page(pmap, pv->pv_va);
4349		}
4350		PMAP_UNLOCK(pmap);
4351	}
4352	sched_unpin();
4353}
4354
4355/*
4356 * Miscellaneous support routines follow
4357 */
4358
4359/*
4360 * Map a set of physical memory pages into the kernel virtual
4361 * address space. Return a pointer to where it is mapped. This
4362 * routine is intended to be used for mapping device memory,
4363 * NOT real memory.
4364 */
4365void *
4366pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4367{
4368	vm_offset_t va, tmpva, offset;
4369
4370	offset = pa & PAGE_MASK;
4371	size = roundup(offset + size, PAGE_SIZE);
4372	pa = pa & PG_FRAME;
4373
4374	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4375		va = KERNBASE + pa;
4376	else
4377		va = kmem_alloc_nofault(kernel_map, size);
4378	if (!va)
4379		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4380
4381	for (tmpva = va; size > 0; ) {
4382		pmap_kenter_attr(tmpva, pa, mode);
4383		size -= PAGE_SIZE;
4384		tmpva += PAGE_SIZE;
4385		pa += PAGE_SIZE;
4386	}
4387	pmap_invalidate_range(kernel_pmap, va, tmpva);
4388	pmap_invalidate_cache();
4389	return ((void *)(va + offset));
4390}
4391
4392void *
4393pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4394{
4395
4396	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4397}
4398
4399void *
4400pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4401{
4402
4403	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4404}
4405
4406void
4407pmap_unmapdev(vm_offset_t va, vm_size_t size)
4408{
4409	vm_offset_t base, offset, tmpva;
4410
4411	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4412		return;
4413	base = trunc_page(va);
4414	offset = va & PAGE_MASK;
4415	size = roundup(offset + size, PAGE_SIZE);
4416	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4417		pmap_kremove(tmpva);
4418	pmap_invalidate_range(kernel_pmap, va, tmpva);
4419	kmem_free(kernel_map, base, size);
4420}
4421
4422int
4423pmap_change_attr(va, size, mode)
4424	vm_offset_t va;
4425	vm_size_t size;
4426	int mode;
4427{
4428	vm_offset_t base, offset, tmpva;
4429	pt_entry_t *pte;
4430	u_int opte, npte;
4431	pd_entry_t *pde;
4432
4433	base = trunc_page(va);
4434	offset = va & PAGE_MASK;
4435	size = roundup(offset + size, PAGE_SIZE);
4436
4437	/* Only supported on kernel virtual addresses. */
4438	if (base <= VM_MAXUSER_ADDRESS)
4439		return (EINVAL);
4440
4441	/* 4MB pages and pages that aren't mapped aren't supported. */
4442	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4443		pde = pmap_pde(kernel_pmap, tmpva);
4444		if (*pde & PG_PS)
4445			return (EINVAL);
4446		if (*pde == 0)
4447			return (EINVAL);
4448		pte = vtopte(va);
4449		if (*pte == 0)
4450			return (EINVAL);
4451	}
4452
4453	/*
4454	 * Ok, all the pages exist and are 4k, so run through them updating
4455	 * their cache mode.
4456	 */
4457	for (tmpva = base; size > 0; ) {
4458		pte = vtopte(tmpva);
4459
4460		/*
4461		 * The cache mode bits are all in the low 32-bits of the
4462		 * PTE, so we can just spin on updating the low 32-bits.
4463		 */
4464		do {
4465			opte = *(u_int *)pte;
4466			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4467			npte |= pmap_cache_bits(mode, 0);
4468		} while (npte != opte &&
4469		    !atomic_cmpset_int((u_int *)pte, opte, npte));
4470		tmpva += PAGE_SIZE;
4471		size -= PAGE_SIZE;
4472	}
4473
4474	/*
4475	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4476	 * be, etc.
4477	 */
4478	pmap_invalidate_range(kernel_pmap, base, tmpva);
4479	pmap_invalidate_cache();
4480	return (0);
4481}
4482
4483/*
4484 * perform the pmap work for mincore
4485 */
4486int
4487pmap_mincore(pmap_t pmap, vm_offset_t addr)
4488{
4489	pd_entry_t *pdep;
4490	pt_entry_t *ptep, pte;
4491	vm_paddr_t pa;
4492	vm_page_t m;
4493	int val = 0;
4494
4495	PMAP_LOCK(pmap);
4496	pdep = pmap_pde(pmap, addr);
4497	if (*pdep != 0) {
4498		if (*pdep & PG_PS) {
4499			pte = *pdep;
4500			val = MINCORE_SUPER;
4501			/* Compute the physical address of the 4KB page. */
4502			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4503			    PG_FRAME;
4504		} else {
4505			ptep = pmap_pte(pmap, addr);
4506			pte = *ptep;
4507			pmap_pte_release(ptep);
4508			pa = pte & PG_FRAME;
4509		}
4510	} else {
4511		pte = 0;
4512		pa = 0;
4513	}
4514	PMAP_UNLOCK(pmap);
4515
4516	if (pte != 0) {
4517		val |= MINCORE_INCORE;
4518		if ((pte & PG_MANAGED) == 0)
4519			return val;
4520
4521		m = PHYS_TO_VM_PAGE(pa);
4522
4523		/*
4524		 * Modified by us
4525		 */
4526		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4527			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4528		else {
4529			/*
4530			 * Modified by someone else
4531			 */
4532			vm_page_lock_queues();
4533			if (m->dirty || pmap_is_modified(m))
4534				val |= MINCORE_MODIFIED_OTHER;
4535			vm_page_unlock_queues();
4536		}
4537		/*
4538		 * Referenced by us
4539		 */
4540		if (pte & PG_A)
4541			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4542		else {
4543			/*
4544			 * Referenced by someone else
4545			 */
4546			vm_page_lock_queues();
4547			if ((m->flags & PG_REFERENCED) ||
4548			    pmap_ts_referenced(m)) {
4549				val |= MINCORE_REFERENCED_OTHER;
4550				vm_page_flag_set(m, PG_REFERENCED);
4551			}
4552			vm_page_unlock_queues();
4553		}
4554	}
4555	return val;
4556}
4557
4558void
4559pmap_activate(struct thread *td)
4560{
4561	pmap_t	pmap, oldpmap;
4562	u_int32_t  cr3;
4563
4564	critical_enter();
4565	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4566	oldpmap = PCPU_GET(curpmap);
4567#if defined(SMP)
4568	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4569	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4570#else
4571	oldpmap->pm_active &= ~1;
4572	pmap->pm_active |= 1;
4573#endif
4574#ifdef PAE
4575	cr3 = vtophys(pmap->pm_pdpt);
4576#else
4577	cr3 = vtophys(pmap->pm_pdir);
4578#endif
4579	/*
4580	 * pmap_activate is for the current thread on the current cpu
4581	 */
4582	td->td_pcb->pcb_cr3 = cr3;
4583	load_cr3(cr3);
4584	PCPU_SET(curpmap, pmap);
4585	critical_exit();
4586}
4587
4588vm_offset_t
4589pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
4590{
4591
4592	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
4593		return addr;
4594	}
4595
4596	addr = (addr + PDRMASK) & ~PDRMASK;
4597	return addr;
4598}
4599
4600
4601#if defined(PMAP_DEBUG)
4602pmap_pid_dump(int pid)
4603{
4604	pmap_t pmap;
4605	struct proc *p;
4606	int npte = 0;
4607	int index;
4608
4609	sx_slock(&allproc_lock);
4610	FOREACH_PROC_IN_SYSTEM(p) {
4611		if (p->p_pid != pid)
4612			continue;
4613
4614		if (p->p_vmspace) {
4615			int i,j;
4616			index = 0;
4617			pmap = vmspace_pmap(p->p_vmspace);
4618			for (i = 0; i < NPDEPTD; i++) {
4619				pd_entry_t *pde;
4620				pt_entry_t *pte;
4621				vm_offset_t base = i << PDRSHIFT;
4622
4623				pde = &pmap->pm_pdir[i];
4624				if (pde && pmap_pde_v(pde)) {
4625					for (j = 0; j < NPTEPG; j++) {
4626						vm_offset_t va = base + (j << PAGE_SHIFT);
4627						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4628							if (index) {
4629								index = 0;
4630								printf("\n");
4631							}
4632							sx_sunlock(&allproc_lock);
4633							return npte;
4634						}
4635						pte = pmap_pte(pmap, va);
4636						if (pte && pmap_pte_v(pte)) {
4637							pt_entry_t pa;
4638							vm_page_t m;
4639							pa = *pte;
4640							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4641							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4642								va, pa, m->hold_count, m->wire_count, m->flags);
4643							npte++;
4644							index++;
4645							if (index >= 2) {
4646								index = 0;
4647								printf("\n");
4648							} else {
4649								printf(" ");
4650							}
4651						}
4652					}
4653				}
4654			}
4655		}
4656	}
4657	sx_sunlock(&allproc_lock);
4658	return npte;
4659}
4660#endif
4661
4662#if defined(DEBUG)
4663
4664static void	pads(pmap_t pm);
4665void		pmap_pvdump(vm_offset_t pa);
4666
4667/* print address space of pmap*/
4668static void
4669pads(pmap_t pm)
4670{
4671	int i, j;
4672	vm_paddr_t va;
4673	pt_entry_t *ptep;
4674
4675	if (pm == kernel_pmap)
4676		return;
4677	for (i = 0; i < NPDEPTD; i++)
4678		if (pm->pm_pdir[i])
4679			for (j = 0; j < NPTEPG; j++) {
4680				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4681				if (pm == kernel_pmap && va < KERNBASE)
4682					continue;
4683				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4684					continue;
4685				ptep = pmap_pte(pm, va);
4686				if (pmap_pte_v(ptep))
4687					printf("%x:%x ", va, *ptep);
4688			};
4689
4690}
4691
4692void
4693pmap_pvdump(vm_paddr_t pa)
4694{
4695	pv_entry_t pv;
4696	pmap_t pmap;
4697	vm_page_t m;
4698
4699	printf("pa %x", pa);
4700	m = PHYS_TO_VM_PAGE(pa);
4701	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4702		pmap = PV_PMAP(pv);
4703		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4704		pads(pmap);
4705	}
4706	printf(" ");
4707}
4708#endif
4709