pmap.c revision 177684
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 177684 2008-03-28 08:19:03Z brooks $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/vm_reserv.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
156#define CPU_ENABLE_SSE
157#endif
158
159#ifndef PMAP_SHPGPERPROC
160#define PMAP_SHPGPERPROC 200
161#endif
162
163#if !defined(DIAGNOSTIC)
164#define PMAP_INLINE	__gnu89_inline
165#else
166#define PMAP_INLINE
167#endif
168
169#define PV_STATS
170#ifdef PV_STATS
171#define PV_STAT(x)	do { x ; } while (0)
172#else
173#define PV_STAT(x)	do { } while (0)
174#endif
175
176#define	pa_index(pa)	((pa) >> PDRSHIFT)
177#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
178
179/*
180 * Get PDEs and PTEs for user/kernel address space
181 */
182#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
183#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
184
185#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
186#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
187#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
188#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
189#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
190
191#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
192    atomic_clear_int((u_int *)(pte), PG_W))
193#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
194
195struct pmap kernel_pmap_store;
196LIST_HEAD(pmaplist, pmap);
197static struct pmaplist allpmaps;
198static struct mtx allpmaps_lock;
199
200vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
201vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
202int pgeflag = 0;		/* PG_G or-in */
203int pseflag = 0;		/* PG_PS or-in */
204
205static int nkpt;
206vm_offset_t kernel_vm_end;
207extern u_int32_t KERNend;
208
209#ifdef PAE
210pt_entry_t pg_nx;
211static uma_zone_t pdptzone;
212#endif
213
214SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
215
216static int pg_ps_enabled;
217SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
218    "Are large page mappings enabled?");
219
220/*
221 * Data for the pv entry allocation mechanism
222 */
223static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224static struct md_page *pv_table;
225static int shpgperproc = PMAP_SHPGPERPROC;
226
227struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
228int pv_maxchunks;			/* How many chunks we have KVA for */
229vm_offset_t pv_vafree;			/* freelist stored in the PTE */
230
231/*
232 * All those kernel PT submaps that BSD is so fond of
233 */
234struct sysmaps {
235	struct	mtx lock;
236	pt_entry_t *CMAP1;
237	pt_entry_t *CMAP2;
238	caddr_t	CADDR1;
239	caddr_t	CADDR2;
240};
241static struct sysmaps sysmaps_pcpu[MAXCPU];
242pt_entry_t *CMAP1 = 0;
243static pt_entry_t *CMAP3;
244caddr_t CADDR1 = 0, ptvmmap = 0;
245static caddr_t CADDR3;
246struct msgbuf *msgbufp = 0;
247
248/*
249 * Crashdump maps.
250 */
251static caddr_t crashdumpmap;
252
253static pt_entry_t *PMAP1 = 0, *PMAP2;
254static pt_entry_t *PADDR1 = 0, *PADDR2;
255#ifdef SMP
256static int PMAP1cpu;
257static int PMAP1changedcpu;
258SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
259	   &PMAP1changedcpu, 0,
260	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
261#endif
262static int PMAP1changed;
263SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
264	   &PMAP1changed, 0,
265	   "Number of times pmap_pte_quick changed PMAP1");
266static int PMAP1unchanged;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
268	   &PMAP1unchanged, 0,
269	   "Number of times pmap_pte_quick didn't change PMAP1");
270static struct mtx PMAP2mutex;
271
272static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
273static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
274static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
275static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_page_t m);
276static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
277static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
278static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
279		    vm_offset_t va);
280
281static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
282static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
283    vm_prot_t prot);
284static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
285    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
286static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
287static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
288static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
289static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
290static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
291    vm_prot_t prot);
292static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
293    vm_page_t *free);
294static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
295    vm_page_t *free);
296static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
297static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
298    vm_page_t *free);
299static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
300					vm_offset_t va);
301static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
302static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
303    vm_page_t m);
304
305static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
306
307static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
308static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
309static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
310static void pmap_pte_release(pt_entry_t *pte);
311static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
312static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
313#ifdef PAE
314static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
315#endif
316
317CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
318CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
319
320/*
321 * If you get an error here, then you set KVA_PAGES wrong! See the
322 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
323 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
324 */
325CTASSERT(KERNBASE % (1 << 24) == 0);
326
327/*
328 * Move the kernel virtual free pointer to the next
329 * 4MB.  This is used to help improve performance
330 * by using a large (4MB) page for much of the kernel
331 * (.text, .data, .bss)
332 */
333static vm_offset_t
334pmap_kmem_choose(vm_offset_t addr)
335{
336	vm_offset_t newaddr = addr;
337
338#ifndef DISABLE_PSE
339	if (cpu_feature & CPUID_PSE)
340		newaddr = (addr + PDRMASK) & ~PDRMASK;
341#endif
342	return newaddr;
343}
344
345/*
346 *	Bootstrap the system enough to run with virtual memory.
347 *
348 *	On the i386 this is called after mapping has already been enabled
349 *	and just syncs the pmap module with what has already been done.
350 *	[We can't call it easily with mapping off since the kernel is not
351 *	mapped with PA == VA, hence we would have to relocate every address
352 *	from the linked base (virtual) address "KERNBASE" to the actual
353 *	(physical) address starting relative to 0]
354 */
355void
356pmap_bootstrap(vm_paddr_t firstaddr)
357{
358	vm_offset_t va;
359	pt_entry_t *pte, *unused;
360	struct sysmaps *sysmaps;
361	int i;
362
363	/*
364	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
365	 * large. It should instead be correctly calculated in locore.s and
366	 * not based on 'first' (which is a physical address, not a virtual
367	 * address, for the start of unused physical memory). The kernel
368	 * page tables are NOT double mapped and thus should not be included
369	 * in this calculation.
370	 */
371	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
372	virtual_avail = pmap_kmem_choose(virtual_avail);
373
374	virtual_end = VM_MAX_KERNEL_ADDRESS;
375
376	/*
377	 * Initialize the kernel pmap (which is statically allocated).
378	 */
379	PMAP_LOCK_INIT(kernel_pmap);
380	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
381#ifdef PAE
382	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
383#endif
384	kernel_pmap->pm_root = NULL;
385	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
386	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
387	LIST_INIT(&allpmaps);
388	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
389	mtx_lock_spin(&allpmaps_lock);
390	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
391	mtx_unlock_spin(&allpmaps_lock);
392	nkpt = NKPT;
393
394	/*
395	 * Reserve some special page table entries/VA space for temporary
396	 * mapping of pages.
397	 */
398#define	SYSMAP(c, p, v, n)	\
399	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
400
401	va = virtual_avail;
402	pte = vtopte(va);
403
404	/*
405	 * CMAP1/CMAP2 are used for zeroing and copying pages.
406	 * CMAP3 is used for the idle process page zeroing.
407	 */
408	for (i = 0; i < MAXCPU; i++) {
409		sysmaps = &sysmaps_pcpu[i];
410		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
411		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
412		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
413	}
414	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
415	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
416	*CMAP3 = 0;
417
418	/*
419	 * Crashdump maps.
420	 */
421	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
422
423	/*
424	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
425	 */
426	SYSMAP(caddr_t, unused, ptvmmap, 1)
427
428	/*
429	 * msgbufp is used to map the system message buffer.
430	 */
431	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
432
433	/*
434	 * ptemap is used for pmap_pte_quick
435	 */
436	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
437	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
438
439	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
440
441	virtual_avail = va;
442
443	*CMAP1 = 0;
444
445	/*
446	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
447	 * physical memory region that is used by the ACPI wakeup code.  This
448	 * mapping must not have PG_G set.
449	 */
450#ifdef XBOX
451	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
452	 * an early stadium, we cannot yet neatly map video memory ... :-(
453	 * Better fixes are very welcome! */
454	if (!arch_i386_is_xbox)
455#endif
456	for (i = 1; i < NKPT; i++)
457		PTD[i] = 0;
458
459	/* Initialize the PAT MSR if present. */
460	pmap_init_pat();
461
462	/* Turn on PG_G on kernel page(s) */
463	pmap_set_pg();
464}
465
466/*
467 * Setup the PAT MSR.
468 */
469void
470pmap_init_pat(void)
471{
472	uint64_t pat_msr;
473
474	/* Bail if this CPU doesn't implement PAT. */
475	if (!(cpu_feature & CPUID_PAT))
476		return;
477
478#ifdef PAT_WORKS
479	/*
480	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
481	 * Program 4 and 5 as WP and WC.
482	 * Leave 6 and 7 as UC and UC-.
483	 */
484	pat_msr = rdmsr(MSR_PAT);
485	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
486	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
487	    PAT_VALUE(5, PAT_WRITE_COMBINING);
488#else
489	/*
490	 * Due to some Intel errata, we can only safely use the lower 4
491	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
492	 * of UC-.
493	 *
494	 *   Intel Pentium III Processor Specification Update
495	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
496	 * or Mode C Paging)
497	 *
498	 *   Intel Pentium IV  Processor Specification Update
499	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
500	 */
501	pat_msr = rdmsr(MSR_PAT);
502	pat_msr &= ~PAT_MASK(2);
503	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
504#endif
505	wrmsr(MSR_PAT, pat_msr);
506}
507
508/*
509 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
510 */
511void
512pmap_set_pg(void)
513{
514	pd_entry_t pdir;
515	pt_entry_t *pte;
516	vm_offset_t va, endva;
517	int i;
518
519	if (pgeflag == 0)
520		return;
521
522	i = KERNLOAD/NBPDR;
523	endva = KERNBASE + KERNend;
524
525	if (pseflag) {
526		va = KERNBASE + KERNLOAD;
527		while (va  < endva) {
528			pdir = kernel_pmap->pm_pdir[KPTDI+i];
529			pdir |= pgeflag;
530			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
531			invltlb();	/* Play it safe, invltlb() every time */
532			i++;
533			va += NBPDR;
534		}
535	} else {
536		va = (vm_offset_t)btext;
537		while (va < endva) {
538			pte = vtopte(va);
539			if (*pte)
540				*pte |= pgeflag;
541			invltlb();	/* Play it safe, invltlb() every time */
542			va += PAGE_SIZE;
543		}
544	}
545}
546
547/*
548 * Initialize a vm_page's machine-dependent fields.
549 */
550void
551pmap_page_init(vm_page_t m)
552{
553
554	TAILQ_INIT(&m->md.pv_list);
555}
556
557#ifdef PAE
558
559static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
560
561static void *
562pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
563{
564	*flags = UMA_SLAB_PRIV;
565	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
566	    1, 0));
567}
568#endif
569
570/*
571 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
572 * Requirements:
573 *  - Must deal with pages in order to ensure that none of the PG_* bits
574 *    are ever set, PG_V in particular.
575 *  - Assumes we can write to ptes without pte_store() atomic ops, even
576 *    on PAE systems.  This should be ok.
577 *  - Assumes nothing will ever test these addresses for 0 to indicate
578 *    no mapping instead of correctly checking PG_V.
579 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
580 * Because PG_V is never set, there can be no mappings to invalidate.
581 */
582static vm_offset_t
583pmap_ptelist_alloc(vm_offset_t *head)
584{
585	pt_entry_t *pte;
586	vm_offset_t va;
587
588	va = *head;
589	if (va == 0)
590		return (va);	/* Out of memory */
591	pte = vtopte(va);
592	*head = *pte;
593	if (*head & PG_V)
594		panic("pmap_ptelist_alloc: va with PG_V set!");
595	*pte = 0;
596	return (va);
597}
598
599static void
600pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
601{
602	pt_entry_t *pte;
603
604	if (va & PG_V)
605		panic("pmap_ptelist_free: freeing va with PG_V set!");
606	pte = vtopte(va);
607	*pte = *head;		/* virtual! PG_V is 0 though */
608	*head = va;
609}
610
611static void
612pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
613{
614	int i;
615	vm_offset_t va;
616
617	*head = 0;
618	for (i = npages - 1; i >= 0; i--) {
619		va = (vm_offset_t)base + i * PAGE_SIZE;
620		pmap_ptelist_free(head, va);
621	}
622}
623
624
625/*
626 *	Initialize the pmap module.
627 *	Called by vm_init, to initialize any structures that the pmap
628 *	system needs to map virtual memory.
629 */
630void
631pmap_init(void)
632{
633	vm_page_t mpte;
634	vm_size_t s;
635	int i, pv_npg;
636
637	/*
638	 * Initialize the vm page array entries for the kernel pmap's
639	 * page table pages.
640	 */
641	for (i = 0; i < nkpt; i++) {
642		mpte = PHYS_TO_VM_PAGE(PTD[i + KPTDI] & PG_FRAME);
643		KASSERT(mpte >= vm_page_array &&
644		    mpte < &vm_page_array[vm_page_array_size],
645		    ("pmap_init: page table page is out of range"));
646		mpte->pindex = i + KPTDI;
647		mpte->phys_addr = PTD[i + KPTDI] & PG_FRAME;
648	}
649
650	/*
651	 * Initialize the address space (zone) for the pv entries.  Set a
652	 * high water mark so that the system can recover from excessive
653	 * numbers of pv entries.
654	 */
655	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
656	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
657	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
658	pv_entry_max = roundup(pv_entry_max, _NPCPV);
659	pv_entry_high_water = 9 * (pv_entry_max / 10);
660
661	/*
662	 * Are large page mappings enabled?
663	 */
664	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
665
666	/*
667	 * Calculate the size of the pv head table for superpages.
668	 */
669	for (i = 0; phys_avail[i + 1]; i += 2);
670	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
671
672	/*
673	 * Allocate memory for the pv head table for superpages.
674	 */
675	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
676	s = round_page(s);
677	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
678	for (i = 0; i < pv_npg; i++)
679		TAILQ_INIT(&pv_table[i].pv_list);
680
681	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
682	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
683	    PAGE_SIZE * pv_maxchunks);
684	if (pv_chunkbase == NULL)
685		panic("pmap_init: not enough kvm for pv chunks");
686	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
687#ifdef PAE
688	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
689	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
690	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
691	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
692#endif
693}
694
695
696SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
697	"Max number of PV entries");
698SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
699	"Page share factor per proc");
700
701SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
702    "2/4MB page mapping counters");
703
704static u_long pmap_pde_demotions;
705SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
706    &pmap_pde_demotions, 0, "2/4MB page demotions");
707
708static u_long pmap_pde_mappings;
709SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
710    &pmap_pde_mappings, 0, "2/4MB page mappings");
711
712static u_long pmap_pde_p_failures;
713SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
714    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
715
716static u_long pmap_pde_promotions;
717SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
718    &pmap_pde_promotions, 0, "2/4MB page promotions");
719
720/***************************************************
721 * Low level helper routines.....
722 ***************************************************/
723
724/*
725 * Determine the appropriate bits to set in a PTE or PDE for a specified
726 * caching mode.
727 */
728static int
729pmap_cache_bits(int mode, boolean_t is_pde)
730{
731	int pat_flag, pat_index, cache_bits;
732
733	/* The PAT bit is different for PTE's and PDE's. */
734	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
735
736	/* If we don't support PAT, map extended modes to older ones. */
737	if (!(cpu_feature & CPUID_PAT)) {
738		switch (mode) {
739		case PAT_UNCACHEABLE:
740		case PAT_WRITE_THROUGH:
741		case PAT_WRITE_BACK:
742			break;
743		case PAT_UNCACHED:
744		case PAT_WRITE_COMBINING:
745		case PAT_WRITE_PROTECTED:
746			mode = PAT_UNCACHEABLE;
747			break;
748		}
749	}
750
751	/* Map the caching mode to a PAT index. */
752	switch (mode) {
753#ifdef PAT_WORKS
754	case PAT_UNCACHEABLE:
755		pat_index = 3;
756		break;
757	case PAT_WRITE_THROUGH:
758		pat_index = 1;
759		break;
760	case PAT_WRITE_BACK:
761		pat_index = 0;
762		break;
763	case PAT_UNCACHED:
764		pat_index = 2;
765		break;
766	case PAT_WRITE_COMBINING:
767		pat_index = 5;
768		break;
769	case PAT_WRITE_PROTECTED:
770		pat_index = 4;
771		break;
772#else
773	case PAT_UNCACHED:
774	case PAT_UNCACHEABLE:
775	case PAT_WRITE_PROTECTED:
776		pat_index = 3;
777		break;
778	case PAT_WRITE_THROUGH:
779		pat_index = 1;
780		break;
781	case PAT_WRITE_BACK:
782		pat_index = 0;
783		break;
784	case PAT_WRITE_COMBINING:
785		pat_index = 2;
786		break;
787#endif
788	default:
789		panic("Unknown caching mode %d\n", mode);
790	}
791
792	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
793	cache_bits = 0;
794	if (pat_index & 0x4)
795		cache_bits |= pat_flag;
796	if (pat_index & 0x2)
797		cache_bits |= PG_NC_PCD;
798	if (pat_index & 0x1)
799		cache_bits |= PG_NC_PWT;
800	return (cache_bits);
801}
802#ifdef SMP
803/*
804 * For SMP, these functions have to use the IPI mechanism for coherence.
805 *
806 * N.B.: Before calling any of the following TLB invalidation functions,
807 * the calling processor must ensure that all stores updating a non-
808 * kernel page table are globally performed.  Otherwise, another
809 * processor could cache an old, pre-update entry without being
810 * invalidated.  This can happen one of two ways: (1) The pmap becomes
811 * active on another processor after its pm_active field is checked by
812 * one of the following functions but before a store updating the page
813 * table is globally performed. (2) The pmap becomes active on another
814 * processor before its pm_active field is checked but due to
815 * speculative loads one of the following functions stills reads the
816 * pmap as inactive on the other processor.
817 *
818 * The kernel page table is exempt because its pm_active field is
819 * immutable.  The kernel page table is always active on every
820 * processor.
821 */
822void
823pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
824{
825	u_int cpumask;
826	u_int other_cpus;
827
828	sched_pin();
829	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
830		invlpg(va);
831		smp_invlpg(va);
832	} else {
833		cpumask = PCPU_GET(cpumask);
834		other_cpus = PCPU_GET(other_cpus);
835		if (pmap->pm_active & cpumask)
836			invlpg(va);
837		if (pmap->pm_active & other_cpus)
838			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
839	}
840	sched_unpin();
841}
842
843void
844pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
845{
846	u_int cpumask;
847	u_int other_cpus;
848	vm_offset_t addr;
849
850	sched_pin();
851	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
852		for (addr = sva; addr < eva; addr += PAGE_SIZE)
853			invlpg(addr);
854		smp_invlpg_range(sva, eva);
855	} else {
856		cpumask = PCPU_GET(cpumask);
857		other_cpus = PCPU_GET(other_cpus);
858		if (pmap->pm_active & cpumask)
859			for (addr = sva; addr < eva; addr += PAGE_SIZE)
860				invlpg(addr);
861		if (pmap->pm_active & other_cpus)
862			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
863			    sva, eva);
864	}
865	sched_unpin();
866}
867
868void
869pmap_invalidate_all(pmap_t pmap)
870{
871	u_int cpumask;
872	u_int other_cpus;
873
874	sched_pin();
875	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
876		invltlb();
877		smp_invltlb();
878	} else {
879		cpumask = PCPU_GET(cpumask);
880		other_cpus = PCPU_GET(other_cpus);
881		if (pmap->pm_active & cpumask)
882			invltlb();
883		if (pmap->pm_active & other_cpus)
884			smp_masked_invltlb(pmap->pm_active & other_cpus);
885	}
886	sched_unpin();
887}
888
889void
890pmap_invalidate_cache(void)
891{
892
893	sched_pin();
894	wbinvd();
895	smp_cache_flush();
896	sched_unpin();
897}
898#else /* !SMP */
899/*
900 * Normal, non-SMP, 486+ invalidation functions.
901 * We inline these within pmap.c for speed.
902 */
903PMAP_INLINE void
904pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
905{
906
907	if (pmap == kernel_pmap || pmap->pm_active)
908		invlpg(va);
909}
910
911PMAP_INLINE void
912pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
913{
914	vm_offset_t addr;
915
916	if (pmap == kernel_pmap || pmap->pm_active)
917		for (addr = sva; addr < eva; addr += PAGE_SIZE)
918			invlpg(addr);
919}
920
921PMAP_INLINE void
922pmap_invalidate_all(pmap_t pmap)
923{
924
925	if (pmap == kernel_pmap || pmap->pm_active)
926		invltlb();
927}
928
929PMAP_INLINE void
930pmap_invalidate_cache(void)
931{
932
933	wbinvd();
934}
935#endif /* !SMP */
936
937/*
938 * Are we current address space or kernel?  N.B. We return FALSE when
939 * a pmap's page table is in use because a kernel thread is borrowing
940 * it.  The borrowed page table can change spontaneously, making any
941 * dependence on its continued use subject to a race condition.
942 */
943static __inline int
944pmap_is_current(pmap_t pmap)
945{
946
947	return (pmap == kernel_pmap ||
948		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
949	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
950}
951
952/*
953 * If the given pmap is not the current or kernel pmap, the returned pte must
954 * be released by passing it to pmap_pte_release().
955 */
956pt_entry_t *
957pmap_pte(pmap_t pmap, vm_offset_t va)
958{
959	pd_entry_t newpf;
960	pd_entry_t *pde;
961
962	pde = pmap_pde(pmap, va);
963	if (*pde & PG_PS)
964		return (pde);
965	if (*pde != 0) {
966		/* are we current address space or kernel? */
967		if (pmap_is_current(pmap))
968			return (vtopte(va));
969		mtx_lock(&PMAP2mutex);
970		newpf = *pde & PG_FRAME;
971		if ((*PMAP2 & PG_FRAME) != newpf) {
972			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
973			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
974		}
975		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
976	}
977	return (0);
978}
979
980/*
981 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
982 * being NULL.
983 */
984static __inline void
985pmap_pte_release(pt_entry_t *pte)
986{
987
988	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
989		mtx_unlock(&PMAP2mutex);
990}
991
992static __inline void
993invlcaddr(void *caddr)
994{
995
996	invlpg((u_int)caddr);
997}
998
999/*
1000 * Super fast pmap_pte routine best used when scanning
1001 * the pv lists.  This eliminates many coarse-grained
1002 * invltlb calls.  Note that many of the pv list
1003 * scans are across different pmaps.  It is very wasteful
1004 * to do an entire invltlb for checking a single mapping.
1005 *
1006 * If the given pmap is not the current pmap, vm_page_queue_mtx
1007 * must be held and curthread pinned to a CPU.
1008 */
1009static pt_entry_t *
1010pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1011{
1012	pd_entry_t newpf;
1013	pd_entry_t *pde;
1014
1015	pde = pmap_pde(pmap, va);
1016	if (*pde & PG_PS)
1017		return (pde);
1018	if (*pde != 0) {
1019		/* are we current address space or kernel? */
1020		if (pmap_is_current(pmap))
1021			return (vtopte(va));
1022		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1023		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1024		newpf = *pde & PG_FRAME;
1025		if ((*PMAP1 & PG_FRAME) != newpf) {
1026			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1027#ifdef SMP
1028			PMAP1cpu = PCPU_GET(cpuid);
1029#endif
1030			invlcaddr(PADDR1);
1031			PMAP1changed++;
1032		} else
1033#ifdef SMP
1034		if (PMAP1cpu != PCPU_GET(cpuid)) {
1035			PMAP1cpu = PCPU_GET(cpuid);
1036			invlcaddr(PADDR1);
1037			PMAP1changedcpu++;
1038		} else
1039#endif
1040			PMAP1unchanged++;
1041		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1042	}
1043	return (0);
1044}
1045
1046/*
1047 *	Routine:	pmap_extract
1048 *	Function:
1049 *		Extract the physical page address associated
1050 *		with the given map/virtual_address pair.
1051 */
1052vm_paddr_t
1053pmap_extract(pmap_t pmap, vm_offset_t va)
1054{
1055	vm_paddr_t rtval;
1056	pt_entry_t *pte;
1057	pd_entry_t pde;
1058
1059	rtval = 0;
1060	PMAP_LOCK(pmap);
1061	pde = pmap->pm_pdir[va >> PDRSHIFT];
1062	if (pde != 0) {
1063		if ((pde & PG_PS) != 0) {
1064			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1065			PMAP_UNLOCK(pmap);
1066			return rtval;
1067		}
1068		pte = pmap_pte(pmap, va);
1069		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1070		pmap_pte_release(pte);
1071	}
1072	PMAP_UNLOCK(pmap);
1073	return (rtval);
1074}
1075
1076/*
1077 *	Routine:	pmap_extract_and_hold
1078 *	Function:
1079 *		Atomically extract and hold the physical page
1080 *		with the given pmap and virtual address pair
1081 *		if that mapping permits the given protection.
1082 */
1083vm_page_t
1084pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1085{
1086	pd_entry_t pde;
1087	pt_entry_t pte;
1088	vm_page_t m;
1089
1090	m = NULL;
1091	vm_page_lock_queues();
1092	PMAP_LOCK(pmap);
1093	pde = *pmap_pde(pmap, va);
1094	if (pde != 0) {
1095		if (pde & PG_PS) {
1096			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1097				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1098				    (va & PDRMASK));
1099				vm_page_hold(m);
1100			}
1101		} else {
1102			sched_pin();
1103			pte = *pmap_pte_quick(pmap, va);
1104			if (pte != 0 &&
1105			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1106				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1107				vm_page_hold(m);
1108			}
1109			sched_unpin();
1110		}
1111	}
1112	vm_page_unlock_queues();
1113	PMAP_UNLOCK(pmap);
1114	return (m);
1115}
1116
1117/***************************************************
1118 * Low level mapping routines.....
1119 ***************************************************/
1120
1121/*
1122 * Add a wired page to the kva.
1123 * Note: not SMP coherent.
1124 */
1125PMAP_INLINE void
1126pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1127{
1128	pt_entry_t *pte;
1129
1130	pte = vtopte(va);
1131	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1132}
1133
1134PMAP_INLINE void
1135pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1136{
1137	pt_entry_t *pte;
1138
1139	pte = vtopte(va);
1140	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1141}
1142
1143/*
1144 * Remove a page from the kernel pagetables.
1145 * Note: not SMP coherent.
1146 */
1147PMAP_INLINE void
1148pmap_kremove(vm_offset_t va)
1149{
1150	pt_entry_t *pte;
1151
1152	pte = vtopte(va);
1153	pte_clear(pte);
1154}
1155
1156/*
1157 *	Used to map a range of physical addresses into kernel
1158 *	virtual address space.
1159 *
1160 *	The value passed in '*virt' is a suggested virtual address for
1161 *	the mapping. Architectures which can support a direct-mapped
1162 *	physical to virtual region can return the appropriate address
1163 *	within that region, leaving '*virt' unchanged. Other
1164 *	architectures should map the pages starting at '*virt' and
1165 *	update '*virt' with the first usable address after the mapped
1166 *	region.
1167 */
1168vm_offset_t
1169pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1170{
1171	vm_offset_t va, sva;
1172
1173	va = sva = *virt;
1174	while (start < end) {
1175		pmap_kenter(va, start);
1176		va += PAGE_SIZE;
1177		start += PAGE_SIZE;
1178	}
1179	pmap_invalidate_range(kernel_pmap, sva, va);
1180	*virt = va;
1181	return (sva);
1182}
1183
1184
1185/*
1186 * Add a list of wired pages to the kva
1187 * this routine is only used for temporary
1188 * kernel mappings that do not need to have
1189 * page modification or references recorded.
1190 * Note that old mappings are simply written
1191 * over.  The page *must* be wired.
1192 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1193 */
1194void
1195pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1196{
1197	pt_entry_t *endpte, oldpte, *pte;
1198
1199	oldpte = 0;
1200	pte = vtopte(sva);
1201	endpte = pte + count;
1202	while (pte < endpte) {
1203		oldpte |= *pte;
1204		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1205		pte++;
1206		ma++;
1207	}
1208	if ((oldpte & PG_V) != 0)
1209		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1210		    PAGE_SIZE);
1211}
1212
1213/*
1214 * This routine tears out page mappings from the
1215 * kernel -- it is meant only for temporary mappings.
1216 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1217 */
1218void
1219pmap_qremove(vm_offset_t sva, int count)
1220{
1221	vm_offset_t va;
1222
1223	va = sva;
1224	while (count-- > 0) {
1225		pmap_kremove(va);
1226		va += PAGE_SIZE;
1227	}
1228	pmap_invalidate_range(kernel_pmap, sva, va);
1229}
1230
1231/***************************************************
1232 * Page table page management routines.....
1233 ***************************************************/
1234static __inline void
1235pmap_free_zero_pages(vm_page_t free)
1236{
1237	vm_page_t m;
1238
1239	while (free != NULL) {
1240		m = free;
1241		free = m->right;
1242		/* Preserve the page's PG_ZERO setting. */
1243		vm_page_free_toq(m);
1244	}
1245}
1246
1247/*
1248 * Schedule the specified unused page table page to be freed.  Specifically,
1249 * add the page to the specified list of pages that will be released to the
1250 * physical memory manager after the TLB has been updated.
1251 */
1252static __inline void
1253pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1254{
1255
1256	if (set_PG_ZERO)
1257		m->flags |= PG_ZERO;
1258	else
1259		m->flags &= ~PG_ZERO;
1260	m->right = *free;
1261	*free = m;
1262}
1263
1264/*
1265 * Inserts the specified page table page into the specified pmap's collection
1266 * of idle page table pages.  Each of a pmap's page table pages is responsible
1267 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1268 * ordered by this virtual address range.
1269 */
1270static void
1271pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1272{
1273	vm_page_t root;
1274
1275	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1276	root = pmap->pm_root;
1277	if (root == NULL) {
1278		mpte->left = NULL;
1279		mpte->right = NULL;
1280	} else {
1281		root = vm_page_splay(mpte->pindex, root);
1282		if (mpte->pindex < root->pindex) {
1283			mpte->left = root->left;
1284			mpte->right = root;
1285			root->left = NULL;
1286		} else if (mpte->pindex == root->pindex)
1287			panic("pmap_insert_pt_page: pindex already inserted");
1288		else {
1289			mpte->right = root->right;
1290			mpte->left = root;
1291			root->right = NULL;
1292		}
1293	}
1294	pmap->pm_root = mpte;
1295}
1296
1297/*
1298 * Looks for a page table page mapping the specified virtual address in the
1299 * specified pmap's collection of idle page table pages.  Returns NULL if there
1300 * is no page table page corresponding to the specified virtual address.
1301 */
1302static vm_page_t
1303pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1304{
1305	vm_page_t mpte;
1306	vm_pindex_t pindex = va >> PDRSHIFT;
1307
1308	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1309	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1310		mpte = vm_page_splay(pindex, mpte);
1311		if ((pmap->pm_root = mpte)->pindex != pindex)
1312			mpte = NULL;
1313	}
1314	return (mpte);
1315}
1316
1317/*
1318 * Removes the specified page table page from the specified pmap's collection
1319 * of idle page table pages.  The specified page table page must be a member of
1320 * the pmap's collection.
1321 */
1322static void
1323pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1324{
1325	vm_page_t root;
1326
1327	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1328	if (mpte != pmap->pm_root)
1329		vm_page_splay(mpte->pindex, pmap->pm_root);
1330	if (mpte->left == NULL)
1331		root = mpte->right;
1332	else {
1333		root = vm_page_splay(mpte->pindex, mpte->left);
1334		root->right = mpte->right;
1335	}
1336	pmap->pm_root = root;
1337}
1338
1339/*
1340 * This routine unholds page table pages, and if the hold count
1341 * drops to zero, then it decrements the wire count.
1342 */
1343static __inline int
1344pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1345{
1346
1347	--m->wire_count;
1348	if (m->wire_count == 0)
1349		return _pmap_unwire_pte_hold(pmap, m, free);
1350	else
1351		return 0;
1352}
1353
1354static int
1355_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1356{
1357	vm_offset_t pteva;
1358
1359	/*
1360	 * unmap the page table page
1361	 */
1362	pmap->pm_pdir[m->pindex] = 0;
1363	--pmap->pm_stats.resident_count;
1364
1365	/*
1366	 * This is a release store so that the ordinary store unmapping
1367	 * the page table page is globally performed before TLB shoot-
1368	 * down is begun.
1369	 */
1370	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1371
1372	/*
1373	 * Do an invltlb to make the invalidated mapping
1374	 * take effect immediately.
1375	 */
1376	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1377	pmap_invalidate_page(pmap, pteva);
1378
1379	/*
1380	 * Put page on a list so that it is released after
1381	 * *ALL* TLB shootdown is done
1382	 */
1383	pmap_add_delayed_free_list(m, free, TRUE);
1384
1385	return 1;
1386}
1387
1388/*
1389 * After removing a page table entry, this routine is used to
1390 * conditionally free the page, and manage the hold/wire counts.
1391 */
1392static int
1393pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1394{
1395	pd_entry_t ptepde;
1396	vm_page_t mpte;
1397
1398	if (va >= VM_MAXUSER_ADDRESS)
1399		return 0;
1400	ptepde = *pmap_pde(pmap, va);
1401	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1402	return pmap_unwire_pte_hold(pmap, mpte, free);
1403}
1404
1405void
1406pmap_pinit0(pmap_t pmap)
1407{
1408
1409	PMAP_LOCK_INIT(pmap);
1410	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1411#ifdef PAE
1412	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1413#endif
1414	pmap->pm_root = NULL;
1415	pmap->pm_active = 0;
1416	PCPU_SET(curpmap, pmap);
1417	TAILQ_INIT(&pmap->pm_pvchunk);
1418	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1419	mtx_lock_spin(&allpmaps_lock);
1420	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1421	mtx_unlock_spin(&allpmaps_lock);
1422}
1423
1424/*
1425 * Initialize a preallocated and zeroed pmap structure,
1426 * such as one in a vmspace structure.
1427 */
1428int
1429pmap_pinit(pmap_t pmap)
1430{
1431	vm_page_t m, ptdpg[NPGPTD];
1432	vm_paddr_t pa;
1433	static int color;
1434	int i;
1435
1436	PMAP_LOCK_INIT(pmap);
1437
1438	/*
1439	 * No need to allocate page table space yet but we do need a valid
1440	 * page directory table.
1441	 */
1442	if (pmap->pm_pdir == NULL) {
1443		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1444		    NBPTD);
1445
1446		if (pmap->pm_pdir == NULL) {
1447			PMAP_LOCK_DESTROY(pmap);
1448			return (0);
1449		}
1450#ifdef PAE
1451		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1452		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1453		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1454		    ("pmap_pinit: pdpt misaligned"));
1455		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1456		    ("pmap_pinit: pdpt above 4g"));
1457#endif
1458		pmap->pm_root = NULL;
1459	}
1460	KASSERT(pmap->pm_root == NULL,
1461	    ("pmap_pinit: pmap has reserved page table page(s)"));
1462
1463	/*
1464	 * allocate the page directory page(s)
1465	 */
1466	for (i = 0; i < NPGPTD;) {
1467		m = vm_page_alloc(NULL, color++,
1468		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1469		    VM_ALLOC_ZERO);
1470		if (m == NULL)
1471			VM_WAIT;
1472		else {
1473			ptdpg[i++] = m;
1474		}
1475	}
1476
1477	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1478
1479	for (i = 0; i < NPGPTD; i++) {
1480		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1481			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1482	}
1483
1484	mtx_lock_spin(&allpmaps_lock);
1485	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1486	mtx_unlock_spin(&allpmaps_lock);
1487	/* Wire in kernel global address entries. */
1488	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1489
1490	/* install self-referential address mapping entry(s) */
1491	for (i = 0; i < NPGPTD; i++) {
1492		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1493		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1494#ifdef PAE
1495		pmap->pm_pdpt[i] = pa | PG_V;
1496#endif
1497	}
1498
1499	pmap->pm_active = 0;
1500	TAILQ_INIT(&pmap->pm_pvchunk);
1501	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1502
1503	return (1);
1504}
1505
1506/*
1507 * this routine is called if the page table page is not
1508 * mapped correctly.
1509 */
1510static vm_page_t
1511_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1512{
1513	vm_paddr_t ptepa;
1514	vm_page_t m;
1515
1516	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1517	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1518	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1519
1520	/*
1521	 * Allocate a page table page.
1522	 */
1523	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1524	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1525		if (flags & M_WAITOK) {
1526			PMAP_UNLOCK(pmap);
1527			vm_page_unlock_queues();
1528			VM_WAIT;
1529			vm_page_lock_queues();
1530			PMAP_LOCK(pmap);
1531		}
1532
1533		/*
1534		 * Indicate the need to retry.  While waiting, the page table
1535		 * page may have been allocated.
1536		 */
1537		return (NULL);
1538	}
1539	if ((m->flags & PG_ZERO) == 0)
1540		pmap_zero_page(m);
1541
1542	/*
1543	 * Map the pagetable page into the process address space, if
1544	 * it isn't already there.
1545	 */
1546
1547	pmap->pm_stats.resident_count++;
1548
1549	ptepa = VM_PAGE_TO_PHYS(m);
1550	pmap->pm_pdir[ptepindex] =
1551		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1552
1553	return m;
1554}
1555
1556static vm_page_t
1557pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1558{
1559	unsigned ptepindex;
1560	pd_entry_t ptepa;
1561	vm_page_t m;
1562
1563	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1564	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1565	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1566
1567	/*
1568	 * Calculate pagetable page index
1569	 */
1570	ptepindex = va >> PDRSHIFT;
1571retry:
1572	/*
1573	 * Get the page directory entry
1574	 */
1575	ptepa = pmap->pm_pdir[ptepindex];
1576
1577	/*
1578	 * This supports switching from a 4MB page to a
1579	 * normal 4K page.
1580	 */
1581	if (ptepa & PG_PS) {
1582		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1583		ptepa = pmap->pm_pdir[ptepindex];
1584	}
1585
1586	/*
1587	 * If the page table page is mapped, we just increment the
1588	 * hold count, and activate it.
1589	 */
1590	if (ptepa) {
1591		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1592		m->wire_count++;
1593	} else {
1594		/*
1595		 * Here if the pte page isn't mapped, or if it has
1596		 * been deallocated.
1597		 */
1598		m = _pmap_allocpte(pmap, ptepindex, flags);
1599		if (m == NULL && (flags & M_WAITOK))
1600			goto retry;
1601	}
1602	return (m);
1603}
1604
1605
1606/***************************************************
1607* Pmap allocation/deallocation routines.
1608 ***************************************************/
1609
1610#ifdef SMP
1611/*
1612 * Deal with a SMP shootdown of other users of the pmap that we are
1613 * trying to dispose of.  This can be a bit hairy.
1614 */
1615static u_int *lazymask;
1616static u_int lazyptd;
1617static volatile u_int lazywait;
1618
1619void pmap_lazyfix_action(void);
1620
1621void
1622pmap_lazyfix_action(void)
1623{
1624	u_int mymask = PCPU_GET(cpumask);
1625
1626#ifdef COUNT_IPIS
1627	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1628#endif
1629	if (rcr3() == lazyptd)
1630		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1631	atomic_clear_int(lazymask, mymask);
1632	atomic_store_rel_int(&lazywait, 1);
1633}
1634
1635static void
1636pmap_lazyfix_self(u_int mymask)
1637{
1638
1639	if (rcr3() == lazyptd)
1640		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1641	atomic_clear_int(lazymask, mymask);
1642}
1643
1644
1645static void
1646pmap_lazyfix(pmap_t pmap)
1647{
1648	u_int mymask;
1649	u_int mask;
1650	u_int spins;
1651
1652	while ((mask = pmap->pm_active) != 0) {
1653		spins = 50000000;
1654		mask = mask & -mask;	/* Find least significant set bit */
1655		mtx_lock_spin(&smp_ipi_mtx);
1656#ifdef PAE
1657		lazyptd = vtophys(pmap->pm_pdpt);
1658#else
1659		lazyptd = vtophys(pmap->pm_pdir);
1660#endif
1661		mymask = PCPU_GET(cpumask);
1662		if (mask == mymask) {
1663			lazymask = &pmap->pm_active;
1664			pmap_lazyfix_self(mymask);
1665		} else {
1666			atomic_store_rel_int((u_int *)&lazymask,
1667			    (u_int)&pmap->pm_active);
1668			atomic_store_rel_int(&lazywait, 0);
1669			ipi_selected(mask, IPI_LAZYPMAP);
1670			while (lazywait == 0) {
1671				ia32_pause();
1672				if (--spins == 0)
1673					break;
1674			}
1675		}
1676		mtx_unlock_spin(&smp_ipi_mtx);
1677		if (spins == 0)
1678			printf("pmap_lazyfix: spun for 50000000\n");
1679	}
1680}
1681
1682#else	/* SMP */
1683
1684/*
1685 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1686 * unlikely to have to even execute this code, including the fact
1687 * that the cleanup is deferred until the parent does a wait(2), which
1688 * means that another userland process has run.
1689 */
1690static void
1691pmap_lazyfix(pmap_t pmap)
1692{
1693	u_int cr3;
1694
1695	cr3 = vtophys(pmap->pm_pdir);
1696	if (cr3 == rcr3()) {
1697		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1698		pmap->pm_active &= ~(PCPU_GET(cpumask));
1699	}
1700}
1701#endif	/* SMP */
1702
1703/*
1704 * Release any resources held by the given physical map.
1705 * Called when a pmap initialized by pmap_pinit is being released.
1706 * Should only be called if the map contains no valid mappings.
1707 */
1708void
1709pmap_release(pmap_t pmap)
1710{
1711	vm_page_t m, ptdpg[NPGPTD];
1712	int i;
1713
1714	KASSERT(pmap->pm_stats.resident_count == 0,
1715	    ("pmap_release: pmap resident count %ld != 0",
1716	    pmap->pm_stats.resident_count));
1717	KASSERT(pmap->pm_root == NULL,
1718	    ("pmap_release: pmap has reserved page table page(s)"));
1719
1720	pmap_lazyfix(pmap);
1721	mtx_lock_spin(&allpmaps_lock);
1722	LIST_REMOVE(pmap, pm_list);
1723	mtx_unlock_spin(&allpmaps_lock);
1724
1725	for (i = 0; i < NPGPTD; i++)
1726		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1727		    PG_FRAME);
1728
1729	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1730	    sizeof(*pmap->pm_pdir));
1731
1732	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1733
1734	for (i = 0; i < NPGPTD; i++) {
1735		m = ptdpg[i];
1736#ifdef PAE
1737		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1738		    ("pmap_release: got wrong ptd page"));
1739#endif
1740		m->wire_count--;
1741		atomic_subtract_int(&cnt.v_wire_count, 1);
1742		vm_page_free_zero(m);
1743	}
1744	PMAP_LOCK_DESTROY(pmap);
1745}
1746
1747static int
1748kvm_size(SYSCTL_HANDLER_ARGS)
1749{
1750	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1751
1752	return sysctl_handle_long(oidp, &ksize, 0, req);
1753}
1754SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1755    0, 0, kvm_size, "IU", "Size of KVM");
1756
1757static int
1758kvm_free(SYSCTL_HANDLER_ARGS)
1759{
1760	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1761
1762	return sysctl_handle_long(oidp, &kfree, 0, req);
1763}
1764SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1765    0, 0, kvm_free, "IU", "Amount of KVM free");
1766
1767/*
1768 * grow the number of kernel page table entries, if needed
1769 */
1770void
1771pmap_growkernel(vm_offset_t addr)
1772{
1773	struct pmap *pmap;
1774	vm_paddr_t ptppaddr;
1775	vm_page_t nkpg;
1776	pd_entry_t newpdir;
1777	pt_entry_t *pde;
1778
1779	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1780	if (kernel_vm_end == 0) {
1781		kernel_vm_end = KERNBASE;
1782		nkpt = 0;
1783		while (pdir_pde(PTD, kernel_vm_end)) {
1784			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1785			nkpt++;
1786			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1787				kernel_vm_end = kernel_map->max_offset;
1788				break;
1789			}
1790		}
1791	}
1792	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1793	if (addr - 1 >= kernel_map->max_offset)
1794		addr = kernel_map->max_offset;
1795	while (kernel_vm_end < addr) {
1796		if (pdir_pde(PTD, kernel_vm_end)) {
1797			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1798			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1799				kernel_vm_end = kernel_map->max_offset;
1800				break;
1801			}
1802			continue;
1803		}
1804
1805		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1806		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1807		if (nkpg == NULL)
1808			panic("pmap_growkernel: no memory to grow kernel");
1809
1810		nkpt++;
1811
1812		pmap_zero_page(nkpg);
1813		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1814		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1815		pdir_pde(PTD, kernel_vm_end) = newpdir;
1816
1817		mtx_lock_spin(&allpmaps_lock);
1818		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1819			pde = pmap_pde(pmap, kernel_vm_end);
1820			pde_store(pde, newpdir);
1821		}
1822		mtx_unlock_spin(&allpmaps_lock);
1823		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1824		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1825			kernel_vm_end = kernel_map->max_offset;
1826			break;
1827		}
1828	}
1829}
1830
1831
1832/***************************************************
1833 * page management routines.
1834 ***************************************************/
1835
1836CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1837CTASSERT(_NPCM == 11);
1838
1839static __inline struct pv_chunk *
1840pv_to_chunk(pv_entry_t pv)
1841{
1842
1843	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1844}
1845
1846#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1847
1848#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1849#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1850
1851static uint32_t pc_freemask[11] = {
1852	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1853	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1854	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1855	PC_FREE0_9, PC_FREE10
1856};
1857
1858SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1859	"Current number of pv entries");
1860
1861#ifdef PV_STATS
1862static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1863
1864SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1865	"Current number of pv entry chunks");
1866SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1867	"Current number of pv entry chunks allocated");
1868SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1869	"Current number of pv entry chunks frees");
1870SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1871	"Number of times tried to get a chunk page but failed.");
1872
1873static long pv_entry_frees, pv_entry_allocs;
1874static int pv_entry_spare;
1875
1876SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1877	"Current number of pv entry frees");
1878SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1879	"Current number of pv entry allocs");
1880SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1881	"Current number of spare pv entries");
1882
1883static int pmap_collect_inactive, pmap_collect_active;
1884
1885SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1886	"Current number times pmap_collect called on inactive queue");
1887SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1888	"Current number times pmap_collect called on active queue");
1889#endif
1890
1891/*
1892 * We are in a serious low memory condition.  Resort to
1893 * drastic measures to free some pages so we can allocate
1894 * another pv entry chunk.  This is normally called to
1895 * unmap inactive pages, and if necessary, active pages.
1896 */
1897static void
1898pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1899{
1900	struct md_page *pvh;
1901	pd_entry_t *pde;
1902	pmap_t pmap;
1903	pt_entry_t *pte, tpte;
1904	pv_entry_t next_pv, pv;
1905	vm_offset_t va;
1906	vm_page_t m, free;
1907
1908	sched_pin();
1909	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1910		if (m->hold_count || m->busy)
1911			continue;
1912		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1913			va = pv->pv_va;
1914			pmap = PV_PMAP(pv);
1915			/* Avoid deadlock and lock recursion. */
1916			if (pmap > locked_pmap)
1917				PMAP_LOCK(pmap);
1918			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1919				continue;
1920			pmap->pm_stats.resident_count--;
1921			pde = pmap_pde(pmap, va);
1922			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
1923			    " a 4mpage in page %p's pv list", m));
1924			pte = pmap_pte_quick(pmap, va);
1925			tpte = pte_load_clear(pte);
1926			KASSERT((tpte & PG_W) == 0,
1927			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1928			if (tpte & PG_A)
1929				vm_page_flag_set(m, PG_REFERENCED);
1930			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1931				vm_page_dirty(m);
1932			free = NULL;
1933			pmap_unuse_pt(pmap, va, &free);
1934			pmap_invalidate_page(pmap, va);
1935			pmap_free_zero_pages(free);
1936			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1937			if (TAILQ_EMPTY(&m->md.pv_list)) {
1938				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1939				if (TAILQ_EMPTY(&pvh->pv_list))
1940					vm_page_flag_clear(m, PG_WRITEABLE);
1941			}
1942			free_pv_entry(pmap, pv);
1943			if (pmap != locked_pmap)
1944				PMAP_UNLOCK(pmap);
1945		}
1946	}
1947	sched_unpin();
1948}
1949
1950
1951/*
1952 * free the pv_entry back to the free list
1953 */
1954static void
1955free_pv_entry(pmap_t pmap, pv_entry_t pv)
1956{
1957	vm_page_t m;
1958	struct pv_chunk *pc;
1959	int idx, field, bit;
1960
1961	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1962	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1963	PV_STAT(pv_entry_frees++);
1964	PV_STAT(pv_entry_spare++);
1965	pv_entry_count--;
1966	pc = pv_to_chunk(pv);
1967	idx = pv - &pc->pc_pventry[0];
1968	field = idx / 32;
1969	bit = idx % 32;
1970	pc->pc_map[field] |= 1ul << bit;
1971	/* move to head of list */
1972	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1973	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1974	for (idx = 0; idx < _NPCM; idx++)
1975		if (pc->pc_map[idx] != pc_freemask[idx])
1976			return;
1977	PV_STAT(pv_entry_spare -= _NPCPV);
1978	PV_STAT(pc_chunk_count--);
1979	PV_STAT(pc_chunk_frees++);
1980	/* entire chunk is free, return it */
1981	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1982	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1983	pmap_qremove((vm_offset_t)pc, 1);
1984	vm_page_unwire(m, 0);
1985	vm_page_free(m);
1986	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1987}
1988
1989/*
1990 * get a new pv_entry, allocating a block from the system
1991 * when needed.
1992 */
1993static pv_entry_t
1994get_pv_entry(pmap_t pmap, int try)
1995{
1996	static const struct timeval printinterval = { 60, 0 };
1997	static struct timeval lastprint;
1998	static vm_pindex_t colour;
1999	struct vpgqueues *pq;
2000	int bit, field;
2001	pv_entry_t pv;
2002	struct pv_chunk *pc;
2003	vm_page_t m;
2004
2005	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2006	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2007	PV_STAT(pv_entry_allocs++);
2008	pv_entry_count++;
2009	if (pv_entry_count > pv_entry_high_water)
2010		if (ratecheck(&lastprint, &printinterval))
2011			printf("Approaching the limit on PV entries, consider "
2012			    "increasing either the vm.pmap.shpgperproc or the "
2013			    "vm.pmap.pv_entry_max tunable.\n");
2014	pq = NULL;
2015retry:
2016	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2017	if (pc != NULL) {
2018		for (field = 0; field < _NPCM; field++) {
2019			if (pc->pc_map[field]) {
2020				bit = bsfl(pc->pc_map[field]);
2021				break;
2022			}
2023		}
2024		if (field < _NPCM) {
2025			pv = &pc->pc_pventry[field * 32 + bit];
2026			pc->pc_map[field] &= ~(1ul << bit);
2027			/* If this was the last item, move it to tail */
2028			for (field = 0; field < _NPCM; field++)
2029				if (pc->pc_map[field] != 0) {
2030					PV_STAT(pv_entry_spare--);
2031					return (pv);	/* not full, return */
2032				}
2033			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2034			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2035			PV_STAT(pv_entry_spare--);
2036			return (pv);
2037		}
2038	}
2039	/*
2040	 * Access to the ptelist "pv_vafree" is synchronized by the page
2041	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2042	 * remain non-empty until pmap_ptelist_alloc() completes.
2043	 */
2044	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2045	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2046	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2047		if (try) {
2048			pv_entry_count--;
2049			PV_STAT(pc_chunk_tryfail++);
2050			return (NULL);
2051		}
2052		/*
2053		 * Reclaim pv entries: At first, destroy mappings to
2054		 * inactive pages.  After that, if a pv chunk entry
2055		 * is still needed, destroy mappings to active pages.
2056		 */
2057		if (pq == NULL) {
2058			PV_STAT(pmap_collect_inactive++);
2059			pq = &vm_page_queues[PQ_INACTIVE];
2060		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2061			PV_STAT(pmap_collect_active++);
2062			pq = &vm_page_queues[PQ_ACTIVE];
2063		} else
2064			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2065		pmap_collect(pmap, pq);
2066		goto retry;
2067	}
2068	PV_STAT(pc_chunk_count++);
2069	PV_STAT(pc_chunk_allocs++);
2070	colour++;
2071	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2072	pmap_qenter((vm_offset_t)pc, &m, 1);
2073	pc->pc_pmap = pmap;
2074	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2075	for (field = 1; field < _NPCM; field++)
2076		pc->pc_map[field] = pc_freemask[field];
2077	pv = &pc->pc_pventry[0];
2078	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2079	PV_STAT(pv_entry_spare += _NPCPV - 1);
2080	return (pv);
2081}
2082
2083static __inline pv_entry_t
2084pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2085{
2086	pv_entry_t pv;
2087
2088	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2089	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2090		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2091			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2092			break;
2093		}
2094	}
2095	return (pv);
2096}
2097
2098static void
2099pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2100{
2101	struct md_page *pvh;
2102	pv_entry_t pv;
2103	vm_offset_t va_last;
2104	vm_page_t m;
2105
2106	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2107	KASSERT((pa & PDRMASK) == 0,
2108	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2109
2110	/*
2111	 * Transfer the 4mpage's pv entry for this mapping to the first
2112	 * page's pv list.
2113	 */
2114	pvh = pa_to_pvh(pa);
2115	va = trunc_4mpage(va);
2116	pv = pmap_pvh_remove(pvh, pmap, va);
2117	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2118	m = PHYS_TO_VM_PAGE(pa);
2119	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2120	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2121	va_last = va + NBPDR - PAGE_SIZE;
2122	do {
2123		m++;
2124		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2125		    ("pmap_pv_demote_pde: page %p is not managed", m));
2126		va += PAGE_SIZE;
2127		pmap_insert_entry(pmap, va, m);
2128	} while (va < va_last);
2129}
2130
2131static void
2132pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2133{
2134	struct md_page *pvh;
2135	pv_entry_t pv;
2136	vm_offset_t va_last;
2137	vm_page_t m;
2138
2139	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2140	KASSERT((pa & PDRMASK) == 0,
2141	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2142
2143	/*
2144	 * Transfer the first page's pv entry for this mapping to the
2145	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2146	 * to get_pv_entry(), a transfer avoids the possibility that
2147	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2148	 * removes one of the mappings that is being promoted.
2149	 */
2150	m = PHYS_TO_VM_PAGE(pa);
2151	va = trunc_4mpage(va);
2152	pv = pmap_pvh_remove(&m->md, pmap, va);
2153	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2154	pvh = pa_to_pvh(pa);
2155	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2156	/* Free the remaining NPTEPG - 1 pv entries. */
2157	va_last = va + NBPDR - PAGE_SIZE;
2158	do {
2159		m++;
2160		va += PAGE_SIZE;
2161		pmap_pvh_free(&m->md, pmap, va);
2162	} while (va < va_last);
2163}
2164
2165static void
2166pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2167{
2168	pv_entry_t pv;
2169
2170	pv = pmap_pvh_remove(pvh, pmap, va);
2171	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2172	free_pv_entry(pmap, pv);
2173}
2174
2175static void
2176pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2177{
2178	struct md_page *pvh;
2179
2180	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2181	pmap_pvh_free(&m->md, pmap, va);
2182	if (TAILQ_EMPTY(&m->md.pv_list)) {
2183		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2184		if (TAILQ_EMPTY(&pvh->pv_list))
2185			vm_page_flag_clear(m, PG_WRITEABLE);
2186	}
2187}
2188
2189/*
2190 * Create a pv entry for page at pa for
2191 * (pmap, va).
2192 */
2193static void
2194pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2195{
2196	pv_entry_t pv;
2197
2198	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2199	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2200	pv = get_pv_entry(pmap, FALSE);
2201	pv->pv_va = va;
2202	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2203}
2204
2205/*
2206 * Conditionally create a pv entry.
2207 */
2208static boolean_t
2209pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2210{
2211	pv_entry_t pv;
2212
2213	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2214	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2215	if (pv_entry_count < pv_entry_high_water &&
2216	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2217		pv->pv_va = va;
2218		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2219		return (TRUE);
2220	} else
2221		return (FALSE);
2222}
2223
2224/*
2225 * Create the pv entries for each of the pages within a superpage.
2226 */
2227static boolean_t
2228pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_page_t m)
2229{
2230	struct md_page *pvh;
2231	pv_entry_t pv;
2232
2233	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2234	if (pv_entry_count < pv_entry_high_water &&
2235	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2236		pv->pv_va = va;
2237		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2238		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2239		return (TRUE);
2240	} else
2241		return (FALSE);
2242}
2243
2244/*
2245 * Tries to demote a 2- or 4MB page mapping.
2246 */
2247static boolean_t
2248pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2249{
2250	pd_entry_t newpde, oldpde;
2251	pmap_t allpmaps_entry;
2252	pt_entry_t *firstpte, newpte, *pte;
2253	vm_paddr_t mptepa;
2254	vm_page_t free, mpte;
2255
2256	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2257	mpte = pmap_lookup_pt_page(pmap, va);
2258	if (mpte != NULL)
2259		pmap_remove_pt_page(pmap, mpte);
2260	else {
2261		KASSERT((*pde & PG_W) == 0,
2262		    ("pmap_demote_pde: page table page for a wired mapping"
2263		    " is missing"));
2264		free = NULL;
2265		pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2266		pmap_invalidate_page(pmap, trunc_4mpage(va));
2267		pmap_free_zero_pages(free);
2268		CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2269		    " in pmap %p", va, pmap);
2270		return (FALSE);
2271	}
2272	mptepa = VM_PAGE_TO_PHYS(mpte);
2273
2274	/*
2275	 * Temporarily map the page table page (mpte) into the kernel's
2276	 * address space at either PADDR1 or PADDR2.
2277	 */
2278	if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2279		if ((*PMAP1 & PG_FRAME) != mptepa) {
2280			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2281#ifdef SMP
2282			PMAP1cpu = PCPU_GET(cpuid);
2283#endif
2284			invlcaddr(PADDR1);
2285			PMAP1changed++;
2286		} else
2287#ifdef SMP
2288		if (PMAP1cpu != PCPU_GET(cpuid)) {
2289			PMAP1cpu = PCPU_GET(cpuid);
2290			invlcaddr(PADDR1);
2291			PMAP1changedcpu++;
2292		} else
2293#endif
2294			PMAP1unchanged++;
2295		firstpte = PADDR1;
2296	} else {
2297		mtx_lock(&PMAP2mutex);
2298		if ((*PMAP2 & PG_FRAME) != mptepa) {
2299			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2300			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2301		}
2302		firstpte = PADDR2;
2303	}
2304	oldpde = *pde;
2305	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2306	KASSERT((oldpde & (PG_A | PG_V)) == (PG_A | PG_V),
2307	    ("pmap_demote_pde: oldpde is missing PG_A and/or PG_V"));
2308	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2309	    ("pmap_demote_pde: oldpde is missing PG_M"));
2310	KASSERT((oldpde & PG_PS) != 0,
2311	    ("pmap_demote_pde: oldpde is missing PG_PS"));
2312	newpte = oldpde & ~PG_PS;
2313	if ((newpte & PG_PDE_PAT) != 0)
2314		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2315
2316	/*
2317	 * If the mapping has changed attributes, update the page table
2318	 * entries.
2319	 */
2320	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2321	    ("pmap_demote_pde: firstpte and newpte map different physical"
2322	    " addresses"));
2323	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2324		for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2325			*pte = newpte;
2326			newpte += PAGE_SIZE;
2327		}
2328
2329	/*
2330	 * Demote the mapping.  This pmap is locked.  The old PDE has
2331	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2332	 * set.  Thus, there is no danger of a race with another
2333	 * processor changing the setting of PG_A and/or PG_M between
2334	 * the read above and the store below.
2335	 */
2336	if (pmap == kernel_pmap) {
2337		/*
2338		 * A harmless race exists between this loop and the bcopy()
2339		 * in pmap_pinit() that initializes the kernel segment of
2340		 * the new page table.  Specifically, that bcopy() may copy
2341		 * the new PDE from the PTD, which is first in allpmaps, to
2342		 * the new page table before this loop updates that new
2343		 * page table.
2344		 */
2345		mtx_lock_spin(&allpmaps_lock);
2346		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2347			pde = pmap_pde(allpmaps_entry, va);
2348			KASSERT(*pde == newpde || (*pde & PG_PTE_PROMOTE) ==
2349			    (oldpde & PG_PTE_PROMOTE),
2350			    ("pmap_demote_pde: pde was %#jx, expected %#jx",
2351			    (uintmax_t)*pde, (uintmax_t)oldpde));
2352			pde_store(pde, newpde);
2353		}
2354		mtx_unlock_spin(&allpmaps_lock);
2355	} else
2356		pde_store(pde, newpde);
2357	if (firstpte == PADDR2)
2358		mtx_unlock(&PMAP2mutex);
2359
2360	/*
2361	 * Invalidate the recursive mapping of the page table page.
2362	 */
2363	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2364
2365	/*
2366	 * Demote the pv entry.  This depends on the earlier demotion
2367	 * of the mapping.  Specifically, the (re)creation of a per-
2368	 * page pv entry might trigger the execution of pmap_collect(),
2369	 * which might reclaim a newly (re)created per-page pv entry
2370	 * and destroy the associated mapping.  In order to destroy
2371	 * the mapping, the PDE must have already changed from mapping
2372	 * the 2mpage to referencing the page table page.
2373	 */
2374	if ((oldpde & PG_MANAGED) != 0)
2375		pmap_pv_demote_pde(pmap, va, oldpde & PG_FRAME);
2376
2377	pmap_pde_demotions++;
2378	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2379	    " in pmap %p", va, pmap);
2380	return (TRUE);
2381}
2382
2383/*
2384 * pmap_remove_pde: do the things to unmap a superpage in a process
2385 */
2386static void
2387pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2388    vm_page_t *free)
2389{
2390	struct md_page *pvh;
2391	pd_entry_t oldpde;
2392	vm_offset_t eva, va;
2393	vm_page_t m, mpte;
2394
2395	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2396	KASSERT((sva & PDRMASK) == 0,
2397	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2398	oldpde = pte_load_clear(pdq);
2399	if (oldpde & PG_W)
2400		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2401
2402	/*
2403	 * Machines that don't support invlpg, also don't support
2404	 * PG_G.
2405	 */
2406	if (oldpde & PG_G)
2407		pmap_invalidate_page(kernel_pmap, sva);
2408	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2409	if (oldpde & PG_MANAGED) {
2410		pvh = pa_to_pvh(oldpde & PG_FRAME);
2411		pmap_pvh_free(pvh, pmap, sva);
2412		eva = sva + NBPDR;
2413		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_FRAME);
2414		    va < eva; va += PAGE_SIZE, m++) {
2415			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2416				vm_page_dirty(m);
2417			if (oldpde & PG_A)
2418				vm_page_flag_set(m, PG_REFERENCED);
2419			if (TAILQ_EMPTY(&m->md.pv_list) &&
2420			    TAILQ_EMPTY(&pvh->pv_list))
2421				vm_page_flag_clear(m, PG_WRITEABLE);
2422		}
2423	}
2424	if (pmap == kernel_pmap) {
2425		if (!pmap_demote_pde(pmap, pdq, sva))
2426			panic("pmap_remove_pde: failed demotion");
2427	} else {
2428		mpte = pmap_lookup_pt_page(pmap, sva);
2429		if (mpte != NULL) {
2430			pmap_remove_pt_page(pmap, mpte);
2431			KASSERT(mpte->wire_count == NPTEPG,
2432			    ("pmap_remove_pde: pte page wire count error"));
2433			mpte->wire_count = 0;
2434			pmap_add_delayed_free_list(mpte, free, FALSE);
2435			atomic_subtract_int(&cnt.v_wire_count, 1);
2436		}
2437	}
2438}
2439
2440/*
2441 * pmap_remove_pte: do the things to unmap a page in a process
2442 */
2443static int
2444pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2445{
2446	pt_entry_t oldpte;
2447	vm_page_t m;
2448
2449	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2450	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2451	oldpte = pte_load_clear(ptq);
2452	if (oldpte & PG_W)
2453		pmap->pm_stats.wired_count -= 1;
2454	/*
2455	 * Machines that don't support invlpg, also don't support
2456	 * PG_G.
2457	 */
2458	if (oldpte & PG_G)
2459		pmap_invalidate_page(kernel_pmap, va);
2460	pmap->pm_stats.resident_count -= 1;
2461	if (oldpte & PG_MANAGED) {
2462		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2463		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2464			vm_page_dirty(m);
2465		if (oldpte & PG_A)
2466			vm_page_flag_set(m, PG_REFERENCED);
2467		pmap_remove_entry(pmap, m, va);
2468	}
2469	return (pmap_unuse_pt(pmap, va, free));
2470}
2471
2472/*
2473 * Remove a single page from a process address space
2474 */
2475static void
2476pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2477{
2478	pt_entry_t *pte;
2479
2480	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2481	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2482	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2483	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2484		return;
2485	pmap_remove_pte(pmap, pte, va, free);
2486	pmap_invalidate_page(pmap, va);
2487}
2488
2489/*
2490 *	Remove the given range of addresses from the specified map.
2491 *
2492 *	It is assumed that the start and end are properly
2493 *	rounded to the page size.
2494 */
2495void
2496pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2497{
2498	vm_offset_t pdnxt;
2499	pd_entry_t ptpaddr;
2500	pt_entry_t *pte;
2501	vm_page_t free = NULL;
2502	int anyvalid;
2503
2504	/*
2505	 * Perform an unsynchronized read.  This is, however, safe.
2506	 */
2507	if (pmap->pm_stats.resident_count == 0)
2508		return;
2509
2510	anyvalid = 0;
2511
2512	vm_page_lock_queues();
2513	sched_pin();
2514	PMAP_LOCK(pmap);
2515
2516	/*
2517	 * special handling of removing one page.  a very
2518	 * common operation and easy to short circuit some
2519	 * code.
2520	 */
2521	if ((sva + PAGE_SIZE == eva) &&
2522	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2523		pmap_remove_page(pmap, sva, &free);
2524		goto out;
2525	}
2526
2527	for (; sva < eva; sva = pdnxt) {
2528		unsigned pdirindex;
2529
2530		/*
2531		 * Calculate index for next page table.
2532		 */
2533		pdnxt = (sva + NBPDR) & ~PDRMASK;
2534		if (pdnxt < sva)
2535			pdnxt = eva;
2536		if (pmap->pm_stats.resident_count == 0)
2537			break;
2538
2539		pdirindex = sva >> PDRSHIFT;
2540		ptpaddr = pmap->pm_pdir[pdirindex];
2541
2542		/*
2543		 * Weed out invalid mappings. Note: we assume that the page
2544		 * directory table is always allocated, and in kernel virtual.
2545		 */
2546		if (ptpaddr == 0)
2547			continue;
2548
2549		/*
2550		 * Check for large page.
2551		 */
2552		if ((ptpaddr & PG_PS) != 0) {
2553			/*
2554			 * Are we removing the entire large page?  If not,
2555			 * demote the mapping and fall through.
2556			 */
2557			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2558				/*
2559				 * The TLB entry for a PG_G mapping is
2560				 * invalidated by pmap_remove_pde().
2561				 */
2562				if ((ptpaddr & PG_G) == 0)
2563					anyvalid = 1;
2564				pmap_remove_pde(pmap,
2565				    &pmap->pm_pdir[pdirindex], sva, &free);
2566				continue;
2567			} else if (!pmap_demote_pde(pmap,
2568			    &pmap->pm_pdir[pdirindex], sva)) {
2569				/* The large page mapping was destroyed. */
2570				continue;
2571			}
2572		}
2573
2574		/*
2575		 * Limit our scan to either the end of the va represented
2576		 * by the current page table page, or to the end of the
2577		 * range being removed.
2578		 */
2579		if (pdnxt > eva)
2580			pdnxt = eva;
2581
2582		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2583		    sva += PAGE_SIZE) {
2584			if (*pte == 0)
2585				continue;
2586
2587			/*
2588			 * The TLB entry for a PG_G mapping is invalidated
2589			 * by pmap_remove_pte().
2590			 */
2591			if ((*pte & PG_G) == 0)
2592				anyvalid = 1;
2593			if (pmap_remove_pte(pmap, pte, sva, &free))
2594				break;
2595		}
2596	}
2597out:
2598	sched_unpin();
2599	if (anyvalid)
2600		pmap_invalidate_all(pmap);
2601	vm_page_unlock_queues();
2602	PMAP_UNLOCK(pmap);
2603	pmap_free_zero_pages(free);
2604}
2605
2606/*
2607 *	Routine:	pmap_remove_all
2608 *	Function:
2609 *		Removes this physical page from
2610 *		all physical maps in which it resides.
2611 *		Reflects back modify bits to the pager.
2612 *
2613 *	Notes:
2614 *		Original versions of this routine were very
2615 *		inefficient because they iteratively called
2616 *		pmap_remove (slow...)
2617 */
2618
2619void
2620pmap_remove_all(vm_page_t m)
2621{
2622	struct md_page *pvh;
2623	pv_entry_t pv;
2624	pmap_t pmap;
2625	pt_entry_t *pte, tpte;
2626	pd_entry_t *pde;
2627	vm_offset_t va;
2628	vm_page_t free;
2629
2630#if 0
2631	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2632	    ("pmap_remove_all: page %p is fictitious", m));
2633#endif
2634	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2635	sched_pin();
2636	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2637	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2638		va = pv->pv_va;
2639		pmap = PV_PMAP(pv);
2640		PMAP_LOCK(pmap);
2641		pde = pmap_pde(pmap, va);
2642		(void)pmap_demote_pde(pmap, pde, va);
2643		PMAP_UNLOCK(pmap);
2644	}
2645	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2646		pmap = PV_PMAP(pv);
2647		PMAP_LOCK(pmap);
2648		pmap->pm_stats.resident_count--;
2649		pde = pmap_pde(pmap, pv->pv_va);
2650		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2651		    " a 4mpage in page %p's pv list", m));
2652		pte = pmap_pte_quick(pmap, pv->pv_va);
2653		tpte = pte_load_clear(pte);
2654		if (tpte & PG_W)
2655			pmap->pm_stats.wired_count--;
2656		if (tpte & PG_A)
2657			vm_page_flag_set(m, PG_REFERENCED);
2658
2659		/*
2660		 * Update the vm_page_t clean and reference bits.
2661		 */
2662		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2663			vm_page_dirty(m);
2664		free = NULL;
2665		pmap_unuse_pt(pmap, pv->pv_va, &free);
2666		pmap_invalidate_page(pmap, pv->pv_va);
2667		pmap_free_zero_pages(free);
2668		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2669		free_pv_entry(pmap, pv);
2670		PMAP_UNLOCK(pmap);
2671	}
2672	vm_page_flag_clear(m, PG_WRITEABLE);
2673	sched_unpin();
2674}
2675
2676/*
2677 * pmap_protect_pde: do the things to protect a 4mpage in a process
2678 */
2679static boolean_t
2680pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2681{
2682	pd_entry_t newpde, oldpde;
2683	vm_offset_t eva, va;
2684	vm_page_t m;
2685	boolean_t anychanged;
2686
2687	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2688	KASSERT((sva & PDRMASK) == 0,
2689	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2690	anychanged = FALSE;
2691retry:
2692	oldpde = newpde = *pde;
2693	if (oldpde & PG_MANAGED) {
2694		eva = sva + NBPDR;
2695		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_FRAME);
2696		    va < eva; va += PAGE_SIZE, m++) {
2697			/*
2698			 * In contrast to the analogous operation on a 4KB page
2699			 * mapping, the mapping's PG_A flag is not cleared and
2700			 * the page's PG_REFERENCED flag is not set.  The
2701			 * reason is that pmap_demote_pde() expects that a 2/4MB
2702			 * page mapping with a stored page table page has PG_A
2703			 * set.
2704			 */
2705			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2706				vm_page_dirty(m);
2707		}
2708	}
2709	if ((prot & VM_PROT_WRITE) == 0)
2710		newpde &= ~(PG_RW | PG_M);
2711#ifdef PAE
2712	if ((prot & VM_PROT_EXECUTE) == 0)
2713		newpde |= pg_nx;
2714#endif
2715	if (newpde != oldpde) {
2716		if (!pde_cmpset(pde, oldpde, newpde))
2717			goto retry;
2718		if (oldpde & PG_G)
2719			pmap_invalidate_page(pmap, sva);
2720		else
2721			anychanged = TRUE;
2722	}
2723	return (anychanged);
2724}
2725
2726/*
2727 *	Set the physical protection on the
2728 *	specified range of this map as requested.
2729 */
2730void
2731pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2732{
2733	vm_offset_t pdnxt;
2734	pd_entry_t ptpaddr;
2735	pt_entry_t *pte;
2736	int anychanged;
2737
2738	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2739		pmap_remove(pmap, sva, eva);
2740		return;
2741	}
2742
2743#ifdef PAE
2744	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2745	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2746		return;
2747#else
2748	if (prot & VM_PROT_WRITE)
2749		return;
2750#endif
2751
2752	anychanged = 0;
2753
2754	vm_page_lock_queues();
2755	sched_pin();
2756	PMAP_LOCK(pmap);
2757	for (; sva < eva; sva = pdnxt) {
2758		pt_entry_t obits, pbits;
2759		unsigned pdirindex;
2760
2761		pdnxt = (sva + NBPDR) & ~PDRMASK;
2762		if (pdnxt < sva)
2763			pdnxt = eva;
2764
2765		pdirindex = sva >> PDRSHIFT;
2766		ptpaddr = pmap->pm_pdir[pdirindex];
2767
2768		/*
2769		 * Weed out invalid mappings. Note: we assume that the page
2770		 * directory table is always allocated, and in kernel virtual.
2771		 */
2772		if (ptpaddr == 0)
2773			continue;
2774
2775		/*
2776		 * Check for large page.
2777		 */
2778		if ((ptpaddr & PG_PS) != 0) {
2779			/*
2780			 * Are we protecting the entire large page?  If not,
2781			 * demote the mapping and fall through.
2782			 */
2783			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2784				/*
2785				 * The TLB entry for a PG_G mapping is
2786				 * invalidated by pmap_protect_pde().
2787				 */
2788				if (pmap_protect_pde(pmap,
2789				    &pmap->pm_pdir[pdirindex], sva, prot))
2790					anychanged = 1;
2791				continue;
2792			} else if (!pmap_demote_pde(pmap,
2793			    &pmap->pm_pdir[pdirindex], sva)) {
2794				/* The large page mapping was destroyed. */
2795				continue;
2796			}
2797		}
2798
2799		if (pdnxt > eva)
2800			pdnxt = eva;
2801
2802		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2803		    sva += PAGE_SIZE) {
2804			vm_page_t m;
2805
2806retry:
2807			/*
2808			 * Regardless of whether a pte is 32 or 64 bits in
2809			 * size, PG_RW, PG_A, and PG_M are among the least
2810			 * significant 32 bits.
2811			 */
2812			obits = pbits = *pte;
2813			if ((pbits & PG_V) == 0)
2814				continue;
2815			if (pbits & PG_MANAGED) {
2816				m = NULL;
2817				if (pbits & PG_A) {
2818					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2819					vm_page_flag_set(m, PG_REFERENCED);
2820					pbits &= ~PG_A;
2821				}
2822				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2823					if (m == NULL)
2824						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2825					vm_page_dirty(m);
2826				}
2827			}
2828
2829			if ((prot & VM_PROT_WRITE) == 0)
2830				pbits &= ~(PG_RW | PG_M);
2831#ifdef PAE
2832			if ((prot & VM_PROT_EXECUTE) == 0)
2833				pbits |= pg_nx;
2834#endif
2835
2836			if (pbits != obits) {
2837#ifdef PAE
2838				if (!atomic_cmpset_64(pte, obits, pbits))
2839					goto retry;
2840#else
2841				if (!atomic_cmpset_int((u_int *)pte, obits,
2842				    pbits))
2843					goto retry;
2844#endif
2845				if (obits & PG_G)
2846					pmap_invalidate_page(pmap, sva);
2847				else
2848					anychanged = 1;
2849			}
2850		}
2851	}
2852	sched_unpin();
2853	if (anychanged)
2854		pmap_invalidate_all(pmap);
2855	vm_page_unlock_queues();
2856	PMAP_UNLOCK(pmap);
2857}
2858
2859/*
2860 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
2861 * within a single page table page to a single 2- or 4MB page mapping.  For
2862 * promotion to occur, two conditions must be met: (1) the 4KB page mappings
2863 * must map aligned, contiguous physical memory and (2) the 4KB page mappings
2864 * must have identical characteristics.
2865 *
2866 * Managed (PG_MANAGED) mappings within the kernel address space are not
2867 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
2868 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
2869 * pmap.
2870 */
2871static void
2872pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2873{
2874	pd_entry_t newpde;
2875	pmap_t allpmaps_entry;
2876	pt_entry_t *firstpte, oldpte, *pte;
2877	vm_offset_t oldpteva;
2878	vm_paddr_t pa;
2879	vm_page_t mpte;
2880
2881	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2882	firstpte = vtopte(trunc_4mpage(va));
2883	KASSERT((*firstpte & PG_V) != 0,
2884	    ("pmap_promote_pde: firstpte is missing PG_V"));
2885	if ((*firstpte & PG_A) == 0) {
2886		pmap_pde_p_failures++;
2887		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2888		    " in pmap %p", va, pmap);
2889		return;
2890	}
2891	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
2892		pmap_pde_p_failures++;
2893		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2894		    " in pmap %p", va, pmap);
2895		return;
2896	}
2897	pa = *firstpte & PG_PS_FRAME;
2898	newpde = *firstpte;
2899	if ((newpde & (PG_M | PG_RW)) == PG_RW)
2900		newpde &= ~PG_RW;
2901
2902	/*
2903	 * Check all the ptes before promotion
2904	 */
2905	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2906retry:
2907		oldpte = *pte;
2908		if ((oldpte & PG_FRAME) != pa) {
2909			pmap_pde_p_failures++;
2910			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2911			    " in pmap %p", va, pmap);
2912			return;
2913		}
2914		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2915			/*
2916			 * When PG_M is already clear, PG_RW can be cleared
2917			 * without a TLB invalidation.
2918			 */
2919			if (!atomic_cmpset_int((u_int *)pte, oldpte,
2920			    oldpte & ~PG_RW))
2921				goto retry;
2922			oldpte &= ~PG_RW;
2923			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
2924			    (va & ~PDRMASK);
2925			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
2926			    " in pmap %p", oldpteva, pmap);
2927		}
2928		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2929			pmap_pde_p_failures++;
2930			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
2931			    " in pmap %p", va, pmap);
2932			return;
2933		}
2934		pa += PAGE_SIZE;
2935	}
2936
2937	/*
2938	 * Save the page table page in its current state until the PDE
2939	 * mapping the superpage is demoted by pmap_demote_pde() or
2940	 * destroyed by pmap_remove_pde().
2941	 */
2942	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
2943	KASSERT(mpte >= vm_page_array &&
2944	    mpte < &vm_page_array[vm_page_array_size],
2945	    ("pmap_promote_pde: page table page is out of range"));
2946	KASSERT(mpte->pindex == va >> PDRSHIFT,
2947	    ("pmap_promote_pde: page table page's pindex is wrong"));
2948	pmap_insert_pt_page(pmap, mpte);
2949
2950	/*
2951	 * Promote the pv entries.
2952	 */
2953	if ((newpde & PG_MANAGED) != 0)
2954		pmap_pv_promote_pde(pmap, va, newpde & PG_FRAME);
2955
2956	/*
2957	 * Propagate the PAT index to its proper position.
2958	 */
2959	if ((newpde & PG_PTE_PAT) != 0)
2960		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
2961
2962	/*
2963	 * Map the superpage.
2964	 */
2965	if (pmap == kernel_pmap) {
2966		mtx_lock_spin(&allpmaps_lock);
2967		LIST_FOREACH(allpmaps_entry, &allpmaps, pm_list) {
2968			pde = pmap_pde(allpmaps_entry, va);
2969			pde_store(pde, PG_PS | newpde);
2970		}
2971		mtx_unlock_spin(&allpmaps_lock);
2972	} else
2973		pde_store(pde, PG_PS | newpde);
2974
2975	pmap_pde_promotions++;
2976	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
2977	    " in pmap %p", va, pmap);
2978}
2979
2980/*
2981 *	Insert the given physical page (p) at
2982 *	the specified virtual address (v) in the
2983 *	target physical map with the protection requested.
2984 *
2985 *	If specified, the page will be wired down, meaning
2986 *	that the related pte can not be reclaimed.
2987 *
2988 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2989 *	or lose information.  That is, this routine must actually
2990 *	insert this page into the given map NOW.
2991 */
2992void
2993pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2994    vm_prot_t prot, boolean_t wired)
2995{
2996	vm_paddr_t pa;
2997	pd_entry_t *pde;
2998	pt_entry_t *pte;
2999	vm_paddr_t opa;
3000	pt_entry_t origpte, newpte;
3001	vm_page_t mpte, om;
3002	boolean_t invlva;
3003
3004	va = trunc_page(va);
3005	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3006	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3007	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
3008
3009	mpte = NULL;
3010
3011	vm_page_lock_queues();
3012	PMAP_LOCK(pmap);
3013	sched_pin();
3014
3015	/*
3016	 * In the case that a page table page is not
3017	 * resident, we are creating it here.
3018	 */
3019	if (va < VM_MAXUSER_ADDRESS) {
3020		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3021	}
3022
3023	pde = pmap_pde(pmap, va);
3024	if ((*pde & PG_PS) != 0)
3025		panic("pmap_enter: attempted pmap_enter on 4MB page");
3026	pte = pmap_pte_quick(pmap, va);
3027
3028	/*
3029	 * Page Directory table entry not valid, we need a new PT page
3030	 */
3031	if (pte == NULL) {
3032		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3033			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3034	}
3035
3036	pa = VM_PAGE_TO_PHYS(m);
3037	om = NULL;
3038	origpte = *pte;
3039	opa = origpte & PG_FRAME;
3040
3041	/*
3042	 * Mapping has not changed, must be protection or wiring change.
3043	 */
3044	if (origpte && (opa == pa)) {
3045		/*
3046		 * Wiring change, just update stats. We don't worry about
3047		 * wiring PT pages as they remain resident as long as there
3048		 * are valid mappings in them. Hence, if a user page is wired,
3049		 * the PT page will be also.
3050		 */
3051		if (wired && ((origpte & PG_W) == 0))
3052			pmap->pm_stats.wired_count++;
3053		else if (!wired && (origpte & PG_W))
3054			pmap->pm_stats.wired_count--;
3055
3056		/*
3057		 * Remove extra pte reference
3058		 */
3059		if (mpte)
3060			mpte->wire_count--;
3061
3062		/*
3063		 * We might be turning off write access to the page,
3064		 * so we go ahead and sense modify status.
3065		 */
3066		if (origpte & PG_MANAGED) {
3067			om = m;
3068			pa |= PG_MANAGED;
3069		}
3070		goto validate;
3071	}
3072	/*
3073	 * Mapping has changed, invalidate old range and fall through to
3074	 * handle validating new mapping.
3075	 */
3076	if (opa) {
3077		if (origpte & PG_W)
3078			pmap->pm_stats.wired_count--;
3079		if (origpte & PG_MANAGED) {
3080			om = PHYS_TO_VM_PAGE(opa);
3081			pmap_remove_entry(pmap, om, va);
3082		}
3083		if (mpte != NULL) {
3084			mpte->wire_count--;
3085			KASSERT(mpte->wire_count > 0,
3086			    ("pmap_enter: missing reference to page table page,"
3087			     " va: 0x%x", va));
3088		}
3089	} else
3090		pmap->pm_stats.resident_count++;
3091
3092	/*
3093	 * Enter on the PV list if part of our managed memory.
3094	 */
3095	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3096		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3097		    ("pmap_enter: managed mapping within the clean submap"));
3098		pmap_insert_entry(pmap, va, m);
3099		pa |= PG_MANAGED;
3100	}
3101
3102	/*
3103	 * Increment counters
3104	 */
3105	if (wired)
3106		pmap->pm_stats.wired_count++;
3107
3108validate:
3109	/*
3110	 * Now validate mapping with desired protection/wiring.
3111	 */
3112	newpte = (pt_entry_t)(pa | PG_V);
3113	if ((prot & VM_PROT_WRITE) != 0) {
3114		newpte |= PG_RW;
3115		vm_page_flag_set(m, PG_WRITEABLE);
3116	}
3117#ifdef PAE
3118	if ((prot & VM_PROT_EXECUTE) == 0)
3119		newpte |= pg_nx;
3120#endif
3121	if (wired)
3122		newpte |= PG_W;
3123	if (va < VM_MAXUSER_ADDRESS)
3124		newpte |= PG_U;
3125	if (pmap == kernel_pmap)
3126		newpte |= pgeflag;
3127
3128	/*
3129	 * if the mapping or permission bits are different, we need
3130	 * to update the pte.
3131	 */
3132	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3133		newpte |= PG_A;
3134		if ((access & VM_PROT_WRITE) != 0)
3135			newpte |= PG_M;
3136		if (origpte & PG_V) {
3137			invlva = FALSE;
3138			origpte = pte_load_store(pte, newpte);
3139			if (origpte & PG_A) {
3140				if (origpte & PG_MANAGED)
3141					vm_page_flag_set(om, PG_REFERENCED);
3142				if (opa != VM_PAGE_TO_PHYS(m))
3143					invlva = TRUE;
3144#ifdef PAE
3145				if ((origpte & PG_NX) == 0 &&
3146				    (newpte & PG_NX) != 0)
3147					invlva = TRUE;
3148#endif
3149			}
3150			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3151				if ((origpte & PG_MANAGED) != 0)
3152					vm_page_dirty(om);
3153				if ((prot & VM_PROT_WRITE) == 0)
3154					invlva = TRUE;
3155			}
3156			if (invlva)
3157				pmap_invalidate_page(pmap, va);
3158		} else
3159			pte_store(pte, newpte);
3160	}
3161
3162	/*
3163	 * If both the page table page and the reservation are fully
3164	 * populated, then attempt promotion.
3165	 */
3166	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3167	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3168		pmap_promote_pde(pmap, pde, va);
3169
3170	sched_unpin();
3171	vm_page_unlock_queues();
3172	PMAP_UNLOCK(pmap);
3173}
3174
3175/*
3176 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3177 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3178 * blocking, (2) a mapping already exists at the specified virtual address, or
3179 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3180 */
3181static boolean_t
3182pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3183{
3184	pd_entry_t *pde, newpde;
3185
3186	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3187	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3188	pde = pmap_pde(pmap, va);
3189	if (*pde != 0) {
3190		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3191		    " in pmap %p", va, pmap);
3192		return (FALSE);
3193	}
3194	newpde = VM_PAGE_TO_PHYS(m) | PG_PS | PG_V;
3195	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3196		newpde |= PG_MANAGED;
3197
3198		/*
3199		 * Abort this mapping if its PV entry could not be created.
3200		 */
3201		if (!pmap_pv_insert_pde(pmap, va, m)) {
3202			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3203			    " in pmap %p", va, pmap);
3204			return (FALSE);
3205		}
3206	}
3207#ifdef PAE
3208	if ((prot & VM_PROT_EXECUTE) == 0)
3209		newpde |= pg_nx;
3210#endif
3211	if (va < VM_MAXUSER_ADDRESS)
3212		newpde |= PG_U;
3213
3214	/*
3215	 * Increment counters.
3216	 */
3217	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3218
3219	/*
3220	 * Map the superpage.
3221	 */
3222	pde_store(pde, newpde);
3223
3224	pmap_pde_mappings++;
3225	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3226	    " in pmap %p", va, pmap);
3227	return (TRUE);
3228}
3229
3230/*
3231 * Maps a sequence of resident pages belonging to the same object.
3232 * The sequence begins with the given page m_start.  This page is
3233 * mapped at the given virtual address start.  Each subsequent page is
3234 * mapped at a virtual address that is offset from start by the same
3235 * amount as the page is offset from m_start within the object.  The
3236 * last page in the sequence is the page with the largest offset from
3237 * m_start that can be mapped at a virtual address less than the given
3238 * virtual address end.  Not every virtual page between start and end
3239 * is mapped; only those for which a resident page exists with the
3240 * corresponding offset from m_start are mapped.
3241 */
3242void
3243pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3244    vm_page_t m_start, vm_prot_t prot)
3245{
3246	vm_offset_t va;
3247	vm_page_t m, mpte;
3248	vm_pindex_t diff, psize;
3249
3250	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3251	psize = atop(end - start);
3252	mpte = NULL;
3253	m = m_start;
3254	PMAP_LOCK(pmap);
3255	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3256		va = start + ptoa(diff);
3257		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3258		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3259		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3260		    pmap_enter_pde(pmap, va, m, prot))
3261			m = &m[NBPDR / PAGE_SIZE - 1];
3262		else
3263			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3264			    mpte);
3265		m = TAILQ_NEXT(m, listq);
3266	}
3267 	PMAP_UNLOCK(pmap);
3268}
3269
3270/*
3271 * this code makes some *MAJOR* assumptions:
3272 * 1. Current pmap & pmap exists.
3273 * 2. Not wired.
3274 * 3. Read access.
3275 * 4. No page table pages.
3276 * but is *MUCH* faster than pmap_enter...
3277 */
3278
3279void
3280pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3281{
3282
3283	PMAP_LOCK(pmap);
3284	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3285	PMAP_UNLOCK(pmap);
3286}
3287
3288static vm_page_t
3289pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3290    vm_prot_t prot, vm_page_t mpte)
3291{
3292	pt_entry_t *pte;
3293	vm_paddr_t pa;
3294	vm_page_t free;
3295
3296	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3297	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3298	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3299	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3300	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3301
3302	/*
3303	 * In the case that a page table page is not
3304	 * resident, we are creating it here.
3305	 */
3306	if (va < VM_MAXUSER_ADDRESS) {
3307		unsigned ptepindex;
3308		pd_entry_t ptepa;
3309
3310		/*
3311		 * Calculate pagetable page index
3312		 */
3313		ptepindex = va >> PDRSHIFT;
3314		if (mpte && (mpte->pindex == ptepindex)) {
3315			mpte->wire_count++;
3316		} else {
3317			/*
3318			 * Get the page directory entry
3319			 */
3320			ptepa = pmap->pm_pdir[ptepindex];
3321
3322			/*
3323			 * If the page table page is mapped, we just increment
3324			 * the hold count, and activate it.
3325			 */
3326			if (ptepa) {
3327				if (ptepa & PG_PS)
3328					return (NULL);
3329				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3330				mpte->wire_count++;
3331			} else {
3332				mpte = _pmap_allocpte(pmap, ptepindex,
3333				    M_NOWAIT);
3334				if (mpte == NULL)
3335					return (mpte);
3336			}
3337		}
3338	} else {
3339		mpte = NULL;
3340	}
3341
3342	/*
3343	 * This call to vtopte makes the assumption that we are
3344	 * entering the page into the current pmap.  In order to support
3345	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3346	 * But that isn't as quick as vtopte.
3347	 */
3348	pte = vtopte(va);
3349	if (*pte) {
3350		if (mpte != NULL) {
3351			mpte->wire_count--;
3352			mpte = NULL;
3353		}
3354		return (mpte);
3355	}
3356
3357	/*
3358	 * Enter on the PV list if part of our managed memory.
3359	 */
3360	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3361	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3362		if (mpte != NULL) {
3363			free = NULL;
3364			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3365				pmap_invalidate_page(pmap, va);
3366				pmap_free_zero_pages(free);
3367			}
3368
3369			mpte = NULL;
3370		}
3371		return (mpte);
3372	}
3373
3374	/*
3375	 * Increment counters
3376	 */
3377	pmap->pm_stats.resident_count++;
3378
3379	pa = VM_PAGE_TO_PHYS(m);
3380#ifdef PAE
3381	if ((prot & VM_PROT_EXECUTE) == 0)
3382		pa |= pg_nx;
3383#endif
3384
3385	/*
3386	 * Now validate mapping with RO protection
3387	 */
3388	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3389		pte_store(pte, pa | PG_V | PG_U);
3390	else
3391		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3392	return mpte;
3393}
3394
3395/*
3396 * Make a temporary mapping for a physical address.  This is only intended
3397 * to be used for panic dumps.
3398 */
3399void *
3400pmap_kenter_temporary(vm_paddr_t pa, int i)
3401{
3402	vm_offset_t va;
3403
3404	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3405	pmap_kenter(va, pa);
3406	invlpg(va);
3407	return ((void *)crashdumpmap);
3408}
3409
3410/*
3411 * This code maps large physical mmap regions into the
3412 * processor address space.  Note that some shortcuts
3413 * are taken, but the code works.
3414 */
3415void
3416pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3417		    vm_object_t object, vm_pindex_t pindex,
3418		    vm_size_t size)
3419{
3420	vm_page_t p;
3421
3422	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3423	KASSERT(object->type == OBJT_DEVICE,
3424	    ("pmap_object_init_pt: non-device object"));
3425	if (pseflag &&
3426	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3427		int i;
3428		vm_page_t m[1];
3429		unsigned int ptepindex;
3430		int npdes;
3431		pd_entry_t ptepa;
3432
3433		PMAP_LOCK(pmap);
3434		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3435			goto out;
3436		PMAP_UNLOCK(pmap);
3437retry:
3438		p = vm_page_lookup(object, pindex);
3439		if (p != NULL) {
3440			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3441				goto retry;
3442		} else {
3443			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3444			if (p == NULL)
3445				return;
3446			m[0] = p;
3447
3448			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3449				vm_page_lock_queues();
3450				vm_page_free(p);
3451				vm_page_unlock_queues();
3452				return;
3453			}
3454
3455			p = vm_page_lookup(object, pindex);
3456			vm_page_lock_queues();
3457			vm_page_wakeup(p);
3458			vm_page_unlock_queues();
3459		}
3460
3461		ptepa = VM_PAGE_TO_PHYS(p);
3462		if (ptepa & (NBPDR - 1))
3463			return;
3464
3465		p->valid = VM_PAGE_BITS_ALL;
3466
3467		PMAP_LOCK(pmap);
3468		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3469		npdes = size >> PDRSHIFT;
3470		for(i = 0; i < npdes; i++) {
3471			pde_store(&pmap->pm_pdir[ptepindex],
3472			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
3473			ptepa += NBPDR;
3474			ptepindex += 1;
3475		}
3476		pmap_invalidate_all(pmap);
3477out:
3478		PMAP_UNLOCK(pmap);
3479	}
3480}
3481
3482/*
3483 *	Routine:	pmap_change_wiring
3484 *	Function:	Change the wiring attribute for a map/virtual-address
3485 *			pair.
3486 *	In/out conditions:
3487 *			The mapping must already exist in the pmap.
3488 */
3489void
3490pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3491{
3492	pd_entry_t *pde;
3493	pt_entry_t *pte;
3494	boolean_t are_queues_locked;
3495
3496	are_queues_locked = FALSE;
3497retry:
3498	PMAP_LOCK(pmap);
3499	pde = pmap_pde(pmap, va);
3500	if ((*pde & PG_PS) != 0) {
3501		if (!wired != ((*pde & PG_W) == 0)) {
3502			if (!are_queues_locked) {
3503				are_queues_locked = TRUE;
3504				if (!mtx_trylock(&vm_page_queue_mtx)) {
3505					PMAP_UNLOCK(pmap);
3506					vm_page_lock_queues();
3507					goto retry;
3508				}
3509			}
3510			if (!pmap_demote_pde(pmap, pde, va))
3511				panic("pmap_change_wiring: demotion failed");
3512		} else
3513			goto out;
3514	}
3515	pte = pmap_pte(pmap, va);
3516
3517	if (wired && !pmap_pte_w(pte))
3518		pmap->pm_stats.wired_count++;
3519	else if (!wired && pmap_pte_w(pte))
3520		pmap->pm_stats.wired_count--;
3521
3522	/*
3523	 * Wiring is not a hardware characteristic so there is no need to
3524	 * invalidate TLB.
3525	 */
3526	pmap_pte_set_w(pte, wired);
3527	pmap_pte_release(pte);
3528out:
3529	if (are_queues_locked)
3530		vm_page_unlock_queues();
3531	PMAP_UNLOCK(pmap);
3532}
3533
3534
3535
3536/*
3537 *	Copy the range specified by src_addr/len
3538 *	from the source map to the range dst_addr/len
3539 *	in the destination map.
3540 *
3541 *	This routine is only advisory and need not do anything.
3542 */
3543
3544void
3545pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3546	  vm_offset_t src_addr)
3547{
3548	vm_page_t   free;
3549	vm_offset_t addr;
3550	vm_offset_t end_addr = src_addr + len;
3551	vm_offset_t pdnxt;
3552
3553	if (dst_addr != src_addr)
3554		return;
3555
3556	if (!pmap_is_current(src_pmap))
3557		return;
3558
3559	vm_page_lock_queues();
3560	if (dst_pmap < src_pmap) {
3561		PMAP_LOCK(dst_pmap);
3562		PMAP_LOCK(src_pmap);
3563	} else {
3564		PMAP_LOCK(src_pmap);
3565		PMAP_LOCK(dst_pmap);
3566	}
3567	sched_pin();
3568	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3569		pt_entry_t *src_pte, *dst_pte;
3570		vm_page_t dstmpte, srcmpte;
3571		pd_entry_t srcptepaddr;
3572		unsigned ptepindex;
3573
3574		KASSERT(addr < UPT_MIN_ADDRESS,
3575		    ("pmap_copy: invalid to pmap_copy page tables"));
3576
3577		pdnxt = (addr + NBPDR) & ~PDRMASK;
3578		if (pdnxt < addr)
3579			pdnxt = end_addr;
3580		ptepindex = addr >> PDRSHIFT;
3581
3582		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3583		if (srcptepaddr == 0)
3584			continue;
3585
3586		if (srcptepaddr & PG_PS) {
3587			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3588			    ((srcptepaddr & PG_MANAGED) == 0 ||
3589			    pmap_pv_insert_pde(dst_pmap, addr,
3590			    PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME)))) {
3591				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3592				    ~PG_W;
3593				dst_pmap->pm_stats.resident_count +=
3594				    NBPDR / PAGE_SIZE;
3595			}
3596			continue;
3597		}
3598
3599		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3600		KASSERT(srcmpte->wire_count > 0,
3601		    ("pmap_copy: source page table page is unused"));
3602
3603		if (pdnxt > end_addr)
3604			pdnxt = end_addr;
3605
3606		src_pte = vtopte(addr);
3607		while (addr < pdnxt) {
3608			pt_entry_t ptetemp;
3609			ptetemp = *src_pte;
3610			/*
3611			 * we only virtual copy managed pages
3612			 */
3613			if ((ptetemp & PG_MANAGED) != 0) {
3614				dstmpte = pmap_allocpte(dst_pmap, addr,
3615				    M_NOWAIT);
3616				if (dstmpte == NULL)
3617					break;
3618				dst_pte = pmap_pte_quick(dst_pmap, addr);
3619				if (*dst_pte == 0 &&
3620				    pmap_try_insert_pv_entry(dst_pmap, addr,
3621				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3622					/*
3623					 * Clear the wired, modified, and
3624					 * accessed (referenced) bits
3625					 * during the copy.
3626					 */
3627					*dst_pte = ptetemp & ~(PG_W | PG_M |
3628					    PG_A);
3629					dst_pmap->pm_stats.resident_count++;
3630	 			} else {
3631					free = NULL;
3632					if (pmap_unwire_pte_hold( dst_pmap,
3633					    dstmpte, &free)) {
3634						pmap_invalidate_page(dst_pmap,
3635						    addr);
3636						pmap_free_zero_pages(free);
3637					}
3638				}
3639				if (dstmpte->wire_count >= srcmpte->wire_count)
3640					break;
3641			}
3642			addr += PAGE_SIZE;
3643			src_pte++;
3644		}
3645	}
3646	sched_unpin();
3647	vm_page_unlock_queues();
3648	PMAP_UNLOCK(src_pmap);
3649	PMAP_UNLOCK(dst_pmap);
3650}
3651
3652static __inline void
3653pagezero(void *page)
3654{
3655#if defined(I686_CPU)
3656	if (cpu_class == CPUCLASS_686) {
3657#if defined(CPU_ENABLE_SSE)
3658		if (cpu_feature & CPUID_SSE2)
3659			sse2_pagezero(page);
3660		else
3661#endif
3662			i686_pagezero(page);
3663	} else
3664#endif
3665		bzero(page, PAGE_SIZE);
3666}
3667
3668/*
3669 *	pmap_zero_page zeros the specified hardware page by mapping
3670 *	the page into KVM and using bzero to clear its contents.
3671 */
3672void
3673pmap_zero_page(vm_page_t m)
3674{
3675	struct sysmaps *sysmaps;
3676
3677	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3678	mtx_lock(&sysmaps->lock);
3679	if (*sysmaps->CMAP2)
3680		panic("pmap_zero_page: CMAP2 busy");
3681	sched_pin();
3682	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3683	invlcaddr(sysmaps->CADDR2);
3684	pagezero(sysmaps->CADDR2);
3685	*sysmaps->CMAP2 = 0;
3686	sched_unpin();
3687	mtx_unlock(&sysmaps->lock);
3688}
3689
3690/*
3691 *	pmap_zero_page_area zeros the specified hardware page by mapping
3692 *	the page into KVM and using bzero to clear its contents.
3693 *
3694 *	off and size may not cover an area beyond a single hardware page.
3695 */
3696void
3697pmap_zero_page_area(vm_page_t m, int off, int size)
3698{
3699	struct sysmaps *sysmaps;
3700
3701	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3702	mtx_lock(&sysmaps->lock);
3703	if (*sysmaps->CMAP2)
3704		panic("pmap_zero_page: CMAP2 busy");
3705	sched_pin();
3706	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3707	invlcaddr(sysmaps->CADDR2);
3708	if (off == 0 && size == PAGE_SIZE)
3709		pagezero(sysmaps->CADDR2);
3710	else
3711		bzero((char *)sysmaps->CADDR2 + off, size);
3712	*sysmaps->CMAP2 = 0;
3713	sched_unpin();
3714	mtx_unlock(&sysmaps->lock);
3715}
3716
3717/*
3718 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3719 *	the page into KVM and using bzero to clear its contents.  This
3720 *	is intended to be called from the vm_pagezero process only and
3721 *	outside of Giant.
3722 */
3723void
3724pmap_zero_page_idle(vm_page_t m)
3725{
3726
3727	if (*CMAP3)
3728		panic("pmap_zero_page: CMAP3 busy");
3729	sched_pin();
3730	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
3731	invlcaddr(CADDR3);
3732	pagezero(CADDR3);
3733	*CMAP3 = 0;
3734	sched_unpin();
3735}
3736
3737/*
3738 *	pmap_copy_page copies the specified (machine independent)
3739 *	page by mapping the page into virtual memory and using
3740 *	bcopy to copy the page, one machine dependent page at a
3741 *	time.
3742 */
3743void
3744pmap_copy_page(vm_page_t src, vm_page_t dst)
3745{
3746	struct sysmaps *sysmaps;
3747
3748	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3749	mtx_lock(&sysmaps->lock);
3750	if (*sysmaps->CMAP1)
3751		panic("pmap_copy_page: CMAP1 busy");
3752	if (*sysmaps->CMAP2)
3753		panic("pmap_copy_page: CMAP2 busy");
3754	sched_pin();
3755	invlpg((u_int)sysmaps->CADDR1);
3756	invlpg((u_int)sysmaps->CADDR2);
3757	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
3758	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
3759	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3760	*sysmaps->CMAP1 = 0;
3761	*sysmaps->CMAP2 = 0;
3762	sched_unpin();
3763	mtx_unlock(&sysmaps->lock);
3764}
3765
3766/*
3767 * Returns true if the pmap's pv is one of the first
3768 * 16 pvs linked to from this page.  This count may
3769 * be changed upwards or downwards in the future; it
3770 * is only necessary that true be returned for a small
3771 * subset of pmaps for proper page aging.
3772 */
3773boolean_t
3774pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3775{
3776	struct md_page *pvh;
3777	pv_entry_t pv;
3778	int loops = 0;
3779
3780	if (m->flags & PG_FICTITIOUS)
3781		return FALSE;
3782
3783	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3784	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3785		if (PV_PMAP(pv) == pmap) {
3786			return TRUE;
3787		}
3788		loops++;
3789		if (loops >= 16)
3790			break;
3791	}
3792	if (loops < 16) {
3793		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3794		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3795			if (PV_PMAP(pv) == pmap)
3796				return (TRUE);
3797			loops++;
3798			if (loops >= 16)
3799				break;
3800		}
3801	}
3802	return (FALSE);
3803}
3804
3805/*
3806 *	pmap_page_wired_mappings:
3807 *
3808 *	Return the number of managed mappings to the given physical page
3809 *	that are wired.
3810 */
3811int
3812pmap_page_wired_mappings(vm_page_t m)
3813{
3814	pv_entry_t pv;
3815	pt_entry_t *pte;
3816	pmap_t pmap;
3817	int count;
3818
3819	count = 0;
3820	if ((m->flags & PG_FICTITIOUS) != 0)
3821		return (count);
3822	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3823	sched_pin();
3824	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3825		pmap = PV_PMAP(pv);
3826		PMAP_LOCK(pmap);
3827		pte = pmap_pte_quick(pmap, pv->pv_va);
3828		if ((*pte & PG_W) != 0)
3829			count++;
3830		PMAP_UNLOCK(pmap);
3831	}
3832	sched_unpin();
3833	return (count);
3834}
3835
3836/*
3837 * Returns TRUE if the given page is mapped individually or as part of
3838 * a 4mpage.  Otherwise, returns FALSE.
3839 */
3840boolean_t
3841pmap_page_is_mapped(vm_page_t m)
3842{
3843	struct md_page *pvh;
3844
3845	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3846		return (FALSE);
3847	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3848	if (TAILQ_EMPTY(&m->md.pv_list)) {
3849		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3850		return (!TAILQ_EMPTY(&pvh->pv_list));
3851	} else
3852		return (TRUE);
3853}
3854
3855/*
3856 * Remove all pages from specified address space
3857 * this aids process exit speeds.  Also, this code
3858 * is special cased for current process only, but
3859 * can have the more generic (and slightly slower)
3860 * mode enabled.  This is much faster than pmap_remove
3861 * in the case of running down an entire address space.
3862 */
3863void
3864pmap_remove_pages(pmap_t pmap)
3865{
3866	pt_entry_t *pte, tpte;
3867	vm_page_t free = NULL;
3868	vm_page_t m, mpte, mt;
3869	pv_entry_t pv;
3870	struct md_page *pvh;
3871	struct pv_chunk *pc, *npc;
3872	int field, idx;
3873	int32_t bit;
3874	uint32_t inuse, bitmask;
3875	int allfree;
3876
3877	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3878		printf("warning: pmap_remove_pages called with non-current pmap\n");
3879		return;
3880	}
3881	vm_page_lock_queues();
3882	PMAP_LOCK(pmap);
3883	sched_pin();
3884	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3885		allfree = 1;
3886		for (field = 0; field < _NPCM; field++) {
3887			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3888			while (inuse != 0) {
3889				bit = bsfl(inuse);
3890				bitmask = 1UL << bit;
3891				idx = field * 32 + bit;
3892				pv = &pc->pc_pventry[idx];
3893				inuse &= ~bitmask;
3894
3895				pte = pmap_pde(pmap, pv->pv_va);
3896				tpte = *pte;
3897				if ((tpte & PG_PS) == 0) {
3898					pte = vtopte(pv->pv_va);
3899					tpte = *pte & ~PG_PTE_PAT;
3900				}
3901
3902				if (tpte == 0) {
3903					printf(
3904					    "TPTE at %p  IS ZERO @ VA %08x\n",
3905					    pte, pv->pv_va);
3906					panic("bad pte");
3907				}
3908
3909/*
3910 * We cannot remove wired pages from a process' mapping at this time
3911 */
3912				if (tpte & PG_W) {
3913					allfree = 0;
3914					continue;
3915				}
3916
3917				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3918				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3919				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3920				    m, (uintmax_t)m->phys_addr,
3921				    (uintmax_t)tpte));
3922
3923				KASSERT(m < &vm_page_array[vm_page_array_size],
3924					("pmap_remove_pages: bad tpte %#jx",
3925					(uintmax_t)tpte));
3926
3927				pte_clear(pte);
3928
3929				/*
3930				 * Update the vm_page_t clean/reference bits.
3931				 */
3932				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3933					if ((tpte & PG_PS) != 0) {
3934						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3935							vm_page_dirty(mt);
3936					} else
3937						vm_page_dirty(m);
3938				}
3939
3940				/* Mark free */
3941				PV_STAT(pv_entry_frees++);
3942				PV_STAT(pv_entry_spare++);
3943				pv_entry_count--;
3944				pc->pc_map[field] |= bitmask;
3945				if ((tpte & PG_PS) != 0) {
3946					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3947					pvh = pa_to_pvh(tpte & PG_FRAME);
3948					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
3949					if (TAILQ_EMPTY(&pvh->pv_list)) {
3950						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3951							if (TAILQ_EMPTY(&mt->md.pv_list))
3952								vm_page_flag_clear(mt, PG_WRITEABLE);
3953					}
3954					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
3955					if (mpte != NULL) {
3956						pmap_remove_pt_page(pmap, mpte);
3957						KASSERT(mpte->wire_count == NPTEPG,
3958						    ("pmap_remove_pages: pte page wire count error"));
3959						mpte->wire_count = 0;
3960						pmap_add_delayed_free_list(mpte, &free, FALSE);
3961						atomic_subtract_int(&cnt.v_wire_count, 1);
3962					}
3963				} else {
3964					pmap->pm_stats.resident_count--;
3965					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3966					if (TAILQ_EMPTY(&m->md.pv_list)) {
3967						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3968						if (TAILQ_EMPTY(&pvh->pv_list))
3969							vm_page_flag_clear(m, PG_WRITEABLE);
3970					}
3971					pmap_unuse_pt(pmap, pv->pv_va, &free);
3972				}
3973			}
3974		}
3975		if (allfree) {
3976			PV_STAT(pv_entry_spare -= _NPCPV);
3977			PV_STAT(pc_chunk_count--);
3978			PV_STAT(pc_chunk_frees++);
3979			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3980			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3981			pmap_qremove((vm_offset_t)pc, 1);
3982			vm_page_unwire(m, 0);
3983			vm_page_free(m);
3984			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3985		}
3986	}
3987	sched_unpin();
3988	pmap_invalidate_all(pmap);
3989	vm_page_unlock_queues();
3990	PMAP_UNLOCK(pmap);
3991	pmap_free_zero_pages(free);
3992}
3993
3994/*
3995 *	pmap_is_modified:
3996 *
3997 *	Return whether or not the specified physical page was modified
3998 *	in any physical maps.
3999 */
4000boolean_t
4001pmap_is_modified(vm_page_t m)
4002{
4003
4004	if (m->flags & PG_FICTITIOUS)
4005		return (FALSE);
4006	if (pmap_is_modified_pvh(&m->md))
4007		return (TRUE);
4008	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4009}
4010
4011/*
4012 * Returns TRUE if any of the given mappings were used to modify
4013 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4014 * mappings are supported.
4015 */
4016static boolean_t
4017pmap_is_modified_pvh(struct md_page *pvh)
4018{
4019	pv_entry_t pv;
4020	pt_entry_t *pte;
4021	pmap_t pmap;
4022	boolean_t rv;
4023
4024	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4025	rv = FALSE;
4026	sched_pin();
4027	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4028		pmap = PV_PMAP(pv);
4029		PMAP_LOCK(pmap);
4030		pte = pmap_pte_quick(pmap, pv->pv_va);
4031		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4032		PMAP_UNLOCK(pmap);
4033		if (rv)
4034			break;
4035	}
4036	sched_unpin();
4037	return (rv);
4038}
4039
4040/*
4041 *	pmap_is_prefaultable:
4042 *
4043 *	Return whether or not the specified virtual address is elgible
4044 *	for prefault.
4045 */
4046boolean_t
4047pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4048{
4049	pd_entry_t *pde;
4050	pt_entry_t *pte;
4051	boolean_t rv;
4052
4053	rv = FALSE;
4054	PMAP_LOCK(pmap);
4055	pde = pmap_pde(pmap, addr);
4056	if (*pde != 0 && (*pde & PG_PS) == 0) {
4057		pte = vtopte(addr);
4058		rv = *pte == 0;
4059	}
4060	PMAP_UNLOCK(pmap);
4061	return (rv);
4062}
4063
4064/*
4065 * Clear the write and modified bits in each of the given page's mappings.
4066 */
4067void
4068pmap_remove_write(vm_page_t m)
4069{
4070	struct md_page *pvh;
4071	pv_entry_t next_pv, pv;
4072	pmap_t pmap;
4073	pd_entry_t *pde;
4074	pt_entry_t oldpte, *pte;
4075	vm_offset_t va;
4076
4077	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4078	if ((m->flags & PG_FICTITIOUS) != 0 ||
4079	    (m->flags & PG_WRITEABLE) == 0)
4080		return;
4081	sched_pin();
4082	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4083	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4084		va = pv->pv_va;
4085		pmap = PV_PMAP(pv);
4086		PMAP_LOCK(pmap);
4087		pde = pmap_pde(pmap, va);
4088		if ((*pde & PG_RW) != 0)
4089			(void)pmap_demote_pde(pmap, pde, va);
4090		PMAP_UNLOCK(pmap);
4091	}
4092	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4093		pmap = PV_PMAP(pv);
4094		PMAP_LOCK(pmap);
4095		pde = pmap_pde(pmap, pv->pv_va);
4096		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4097		    " a 4mpage in page %p's pv list", m));
4098		pte = pmap_pte_quick(pmap, pv->pv_va);
4099retry:
4100		oldpte = *pte;
4101		if ((oldpte & PG_RW) != 0) {
4102			/*
4103			 * Regardless of whether a pte is 32 or 64 bits
4104			 * in size, PG_RW and PG_M are among the least
4105			 * significant 32 bits.
4106			 */
4107			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4108			    oldpte & ~(PG_RW | PG_M)))
4109				goto retry;
4110			if ((oldpte & PG_M) != 0)
4111				vm_page_dirty(m);
4112			pmap_invalidate_page(pmap, pv->pv_va);
4113		}
4114		PMAP_UNLOCK(pmap);
4115	}
4116	vm_page_flag_clear(m, PG_WRITEABLE);
4117	sched_unpin();
4118}
4119
4120/*
4121 *	pmap_ts_referenced:
4122 *
4123 *	Return a count of reference bits for a page, clearing those bits.
4124 *	It is not necessary for every reference bit to be cleared, but it
4125 *	is necessary that 0 only be returned when there are truly no
4126 *	reference bits set.
4127 *
4128 *	XXX: The exact number of bits to check and clear is a matter that
4129 *	should be tested and standardized at some point in the future for
4130 *	optimal aging of shared pages.
4131 */
4132int
4133pmap_ts_referenced(vm_page_t m)
4134{
4135	struct md_page *pvh;
4136	pv_entry_t pv, pvf, pvn;
4137	pmap_t pmap;
4138	pd_entry_t oldpde, *pde;
4139	pt_entry_t *pte;
4140	vm_offset_t va;
4141	int rtval = 0;
4142
4143	if (m->flags & PG_FICTITIOUS)
4144		return (rtval);
4145	sched_pin();
4146	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4147	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4148	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4149		va = pv->pv_va;
4150		pmap = PV_PMAP(pv);
4151		PMAP_LOCK(pmap);
4152		pde = pmap_pde(pmap, va);
4153		oldpde = *pde;
4154		if ((oldpde & PG_A) != 0) {
4155			if (pmap_demote_pde(pmap, pde, va)) {
4156				if ((oldpde & PG_W) == 0) {
4157					/*
4158					 * Remove the mapping to a single page
4159					 * so that a subsequent access may
4160					 * repromote.  Since the underlying
4161					 * page table page is fully populated,
4162					 * this removal never frees a page
4163					 * table page.
4164					 */
4165					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4166					    PG_FRAME);
4167					pmap_remove_page(pmap, va, NULL);
4168					rtval++;
4169					if (rtval > 4) {
4170						PMAP_UNLOCK(pmap);
4171						return (rtval);
4172					}
4173				}
4174			}
4175		}
4176		PMAP_UNLOCK(pmap);
4177	}
4178	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4179		pvf = pv;
4180		do {
4181			pvn = TAILQ_NEXT(pv, pv_list);
4182			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4183			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4184			pmap = PV_PMAP(pv);
4185			PMAP_LOCK(pmap);
4186			pde = pmap_pde(pmap, pv->pv_va);
4187			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4188			    " found a 4mpage in page %p's pv list", m));
4189			pte = pmap_pte_quick(pmap, pv->pv_va);
4190			if ((*pte & PG_A) != 0) {
4191				atomic_clear_int((u_int *)pte, PG_A);
4192				pmap_invalidate_page(pmap, pv->pv_va);
4193				rtval++;
4194				if (rtval > 4)
4195					pvn = NULL;
4196			}
4197			PMAP_UNLOCK(pmap);
4198		} while ((pv = pvn) != NULL && pv != pvf);
4199	}
4200	sched_unpin();
4201	return (rtval);
4202}
4203
4204/*
4205 *	Clear the modify bits on the specified physical page.
4206 */
4207void
4208pmap_clear_modify(vm_page_t m)
4209{
4210	struct md_page *pvh;
4211	pv_entry_t next_pv, pv;
4212	pmap_t pmap;
4213	pd_entry_t oldpde, *pde;
4214	pt_entry_t oldpte, *pte;
4215	vm_offset_t va;
4216
4217	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4218	if ((m->flags & PG_FICTITIOUS) != 0)
4219		return;
4220	sched_pin();
4221	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4222	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4223		va = pv->pv_va;
4224		pmap = PV_PMAP(pv);
4225		PMAP_LOCK(pmap);
4226		pde = pmap_pde(pmap, va);
4227		oldpde = *pde;
4228		if ((oldpde & PG_RW) != 0) {
4229			if (pmap_demote_pde(pmap, pde, va)) {
4230				if ((oldpde & PG_W) == 0) {
4231					/*
4232					 * Write protect the mapping to a
4233					 * single page so that a subsequent
4234					 * write access may repromote.
4235					 */
4236					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4237					    PG_FRAME);
4238					pte = pmap_pte_quick(pmap, va);
4239					oldpte = *pte;
4240					if ((oldpte & PG_V) != 0) {
4241						/*
4242						 * Regardless of whether a pte is 32 or 64 bits
4243						 * in size, PG_RW and PG_M are among the least
4244						 * significant 32 bits.
4245						 */
4246						while (!atomic_cmpset_int((u_int *)pte,
4247						    oldpte,
4248						    oldpte & ~(PG_M | PG_RW)))
4249							oldpte = *pte;
4250						vm_page_dirty(m);
4251						pmap_invalidate_page(pmap, va);
4252					}
4253				}
4254			}
4255		}
4256		PMAP_UNLOCK(pmap);
4257	}
4258	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4259		pmap = PV_PMAP(pv);
4260		PMAP_LOCK(pmap);
4261		pde = pmap_pde(pmap, pv->pv_va);
4262		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4263		    " a 4mpage in page %p's pv list", m));
4264		pte = pmap_pte_quick(pmap, pv->pv_va);
4265		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4266			/*
4267			 * Regardless of whether a pte is 32 or 64 bits
4268			 * in size, PG_M is among the least significant
4269			 * 32 bits.
4270			 */
4271			atomic_clear_int((u_int *)pte, PG_M);
4272			pmap_invalidate_page(pmap, pv->pv_va);
4273		}
4274		PMAP_UNLOCK(pmap);
4275	}
4276	sched_unpin();
4277}
4278
4279/*
4280 *	pmap_clear_reference:
4281 *
4282 *	Clear the reference bit on the specified physical page.
4283 */
4284void
4285pmap_clear_reference(vm_page_t m)
4286{
4287	struct md_page *pvh;
4288	pv_entry_t next_pv, pv;
4289	pmap_t pmap;
4290	pd_entry_t oldpde, *pde;
4291	pt_entry_t *pte;
4292	vm_offset_t va;
4293
4294	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4295	if ((m->flags & PG_FICTITIOUS) != 0)
4296		return;
4297	sched_pin();
4298	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4299	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4300		va = pv->pv_va;
4301		pmap = PV_PMAP(pv);
4302		PMAP_LOCK(pmap);
4303		pde = pmap_pde(pmap, va);
4304		oldpde = *pde;
4305		if ((oldpde & PG_A) != 0) {
4306			if (pmap_demote_pde(pmap, pde, va)) {
4307				/*
4308				 * Remove the mapping to a single page so
4309				 * that a subsequent access may repromote.
4310				 * Since the underlying page table page is
4311				 * fully populated, this removal never frees
4312				 * a page table page.
4313				 */
4314				va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_FRAME);
4315				pmap_remove_page(pmap, va, NULL);
4316			}
4317		}
4318		PMAP_UNLOCK(pmap);
4319	}
4320	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4321		pmap = PV_PMAP(pv);
4322		PMAP_LOCK(pmap);
4323		pde = pmap_pde(pmap, pv->pv_va);
4324		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4325		    " a 4mpage in page %p's pv list", m));
4326		pte = pmap_pte_quick(pmap, pv->pv_va);
4327		if ((*pte & PG_A) != 0) {
4328			/*
4329			 * Regardless of whether a pte is 32 or 64 bits
4330			 * in size, PG_A is among the least significant
4331			 * 32 bits.
4332			 */
4333			atomic_clear_int((u_int *)pte, PG_A);
4334			pmap_invalidate_page(pmap, pv->pv_va);
4335		}
4336		PMAP_UNLOCK(pmap);
4337	}
4338	sched_unpin();
4339}
4340
4341/*
4342 * Miscellaneous support routines follow
4343 */
4344
4345/*
4346 * Map a set of physical memory pages into the kernel virtual
4347 * address space. Return a pointer to where it is mapped. This
4348 * routine is intended to be used for mapping device memory,
4349 * NOT real memory.
4350 */
4351void *
4352pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4353{
4354	vm_offset_t va, tmpva, offset;
4355
4356	offset = pa & PAGE_MASK;
4357	size = roundup(offset + size, PAGE_SIZE);
4358	pa = pa & PG_FRAME;
4359
4360	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4361		va = KERNBASE + pa;
4362	else
4363		va = kmem_alloc_nofault(kernel_map, size);
4364	if (!va)
4365		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4366
4367	for (tmpva = va; size > 0; ) {
4368		pmap_kenter_attr(tmpva, pa, mode);
4369		size -= PAGE_SIZE;
4370		tmpva += PAGE_SIZE;
4371		pa += PAGE_SIZE;
4372	}
4373	pmap_invalidate_range(kernel_pmap, va, tmpva);
4374	pmap_invalidate_cache();
4375	return ((void *)(va + offset));
4376}
4377
4378void *
4379pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4380{
4381
4382	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4383}
4384
4385void *
4386pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4387{
4388
4389	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4390}
4391
4392void
4393pmap_unmapdev(vm_offset_t va, vm_size_t size)
4394{
4395	vm_offset_t base, offset, tmpva;
4396
4397	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4398		return;
4399	base = trunc_page(va);
4400	offset = va & PAGE_MASK;
4401	size = roundup(offset + size, PAGE_SIZE);
4402	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4403		pmap_kremove(tmpva);
4404	pmap_invalidate_range(kernel_pmap, va, tmpva);
4405	kmem_free(kernel_map, base, size);
4406}
4407
4408int
4409pmap_change_attr(va, size, mode)
4410	vm_offset_t va;
4411	vm_size_t size;
4412	int mode;
4413{
4414	vm_offset_t base, offset, tmpva;
4415	pt_entry_t *pte;
4416	u_int opte, npte;
4417	pd_entry_t *pde;
4418
4419	base = trunc_page(va);
4420	offset = va & PAGE_MASK;
4421	size = roundup(offset + size, PAGE_SIZE);
4422
4423	/* Only supported on kernel virtual addresses. */
4424	if (base <= VM_MAXUSER_ADDRESS)
4425		return (EINVAL);
4426
4427	/* 4MB pages and pages that aren't mapped aren't supported. */
4428	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4429		pde = pmap_pde(kernel_pmap, tmpva);
4430		if (*pde & PG_PS)
4431			return (EINVAL);
4432		if (*pde == 0)
4433			return (EINVAL);
4434		pte = vtopte(va);
4435		if (*pte == 0)
4436			return (EINVAL);
4437	}
4438
4439	/*
4440	 * Ok, all the pages exist and are 4k, so run through them updating
4441	 * their cache mode.
4442	 */
4443	for (tmpva = base; size > 0; ) {
4444		pte = vtopte(tmpva);
4445
4446		/*
4447		 * The cache mode bits are all in the low 32-bits of the
4448		 * PTE, so we can just spin on updating the low 32-bits.
4449		 */
4450		do {
4451			opte = *(u_int *)pte;
4452			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4453			npte |= pmap_cache_bits(mode, 0);
4454		} while (npte != opte &&
4455		    !atomic_cmpset_int((u_int *)pte, opte, npte));
4456		tmpva += PAGE_SIZE;
4457		size -= PAGE_SIZE;
4458	}
4459
4460	/*
4461	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4462	 * be, etc.
4463	 */
4464	pmap_invalidate_range(kernel_pmap, base, tmpva);
4465	pmap_invalidate_cache();
4466	return (0);
4467}
4468
4469/*
4470 * perform the pmap work for mincore
4471 */
4472int
4473pmap_mincore(pmap_t pmap, vm_offset_t addr)
4474{
4475	pd_entry_t *pdep;
4476	pt_entry_t *ptep, pte;
4477	vm_paddr_t pa;
4478	vm_page_t m;
4479	int val = 0;
4480
4481	PMAP_LOCK(pmap);
4482	pdep = pmap_pde(pmap, addr);
4483	if (*pdep != 0) {
4484		if (*pdep & PG_PS) {
4485			pte = *pdep;
4486			val = MINCORE_SUPER;
4487			/* Compute the physical address of the 4KB page. */
4488			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4489			    PG_FRAME;
4490		} else {
4491			ptep = pmap_pte(pmap, addr);
4492			pte = *ptep;
4493			pmap_pte_release(ptep);
4494			pa = pte & PG_FRAME;
4495		}
4496	} else {
4497		pte = 0;
4498		pa = 0;
4499	}
4500	PMAP_UNLOCK(pmap);
4501
4502	if (pte != 0) {
4503		val |= MINCORE_INCORE;
4504		if ((pte & PG_MANAGED) == 0)
4505			return val;
4506
4507		m = PHYS_TO_VM_PAGE(pa);
4508
4509		/*
4510		 * Modified by us
4511		 */
4512		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4513			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4514		else {
4515			/*
4516			 * Modified by someone else
4517			 */
4518			vm_page_lock_queues();
4519			if (m->dirty || pmap_is_modified(m))
4520				val |= MINCORE_MODIFIED_OTHER;
4521			vm_page_unlock_queues();
4522		}
4523		/*
4524		 * Referenced by us
4525		 */
4526		if (pte & PG_A)
4527			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4528		else {
4529			/*
4530			 * Referenced by someone else
4531			 */
4532			vm_page_lock_queues();
4533			if ((m->flags & PG_REFERENCED) ||
4534			    pmap_ts_referenced(m)) {
4535				val |= MINCORE_REFERENCED_OTHER;
4536				vm_page_flag_set(m, PG_REFERENCED);
4537			}
4538			vm_page_unlock_queues();
4539		}
4540	}
4541	return val;
4542}
4543
4544void
4545pmap_activate(struct thread *td)
4546{
4547	pmap_t	pmap, oldpmap;
4548	u_int32_t  cr3;
4549
4550	critical_enter();
4551	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4552	oldpmap = PCPU_GET(curpmap);
4553#if defined(SMP)
4554	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4555	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4556#else
4557	oldpmap->pm_active &= ~1;
4558	pmap->pm_active |= 1;
4559#endif
4560#ifdef PAE
4561	cr3 = vtophys(pmap->pm_pdpt);
4562#else
4563	cr3 = vtophys(pmap->pm_pdir);
4564#endif
4565	/*
4566	 * pmap_activate is for the current thread on the current cpu
4567	 */
4568	td->td_pcb->pcb_cr3 = cr3;
4569	load_cr3(cr3);
4570	PCPU_SET(curpmap, pmap);
4571	critical_exit();
4572}
4573
4574vm_offset_t
4575pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
4576{
4577
4578	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
4579		return addr;
4580	}
4581
4582	addr = (addr + PDRMASK) & ~PDRMASK;
4583	return addr;
4584}
4585
4586
4587#if defined(PMAP_DEBUG)
4588pmap_pid_dump(int pid)
4589{
4590	pmap_t pmap;
4591	struct proc *p;
4592	int npte = 0;
4593	int index;
4594
4595	sx_slock(&allproc_lock);
4596	FOREACH_PROC_IN_SYSTEM(p) {
4597		if (p->p_pid != pid)
4598			continue;
4599
4600		if (p->p_vmspace) {
4601			int i,j;
4602			index = 0;
4603			pmap = vmspace_pmap(p->p_vmspace);
4604			for (i = 0; i < NPDEPTD; i++) {
4605				pd_entry_t *pde;
4606				pt_entry_t *pte;
4607				vm_offset_t base = i << PDRSHIFT;
4608
4609				pde = &pmap->pm_pdir[i];
4610				if (pde && pmap_pde_v(pde)) {
4611					for (j = 0; j < NPTEPG; j++) {
4612						vm_offset_t va = base + (j << PAGE_SHIFT);
4613						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4614							if (index) {
4615								index = 0;
4616								printf("\n");
4617							}
4618							sx_sunlock(&allproc_lock);
4619							return npte;
4620						}
4621						pte = pmap_pte(pmap, va);
4622						if (pte && pmap_pte_v(pte)) {
4623							pt_entry_t pa;
4624							vm_page_t m;
4625							pa = *pte;
4626							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4627							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4628								va, pa, m->hold_count, m->wire_count, m->flags);
4629							npte++;
4630							index++;
4631							if (index >= 2) {
4632								index = 0;
4633								printf("\n");
4634							} else {
4635								printf(" ");
4636							}
4637						}
4638					}
4639				}
4640			}
4641		}
4642	}
4643	sx_sunlock(&allproc_lock);
4644	return npte;
4645}
4646#endif
4647
4648#if defined(DEBUG)
4649
4650static void	pads(pmap_t pm);
4651void		pmap_pvdump(vm_offset_t pa);
4652
4653/* print address space of pmap*/
4654static void
4655pads(pmap_t pm)
4656{
4657	int i, j;
4658	vm_paddr_t va;
4659	pt_entry_t *ptep;
4660
4661	if (pm == kernel_pmap)
4662		return;
4663	for (i = 0; i < NPDEPTD; i++)
4664		if (pm->pm_pdir[i])
4665			for (j = 0; j < NPTEPG; j++) {
4666				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4667				if (pm == kernel_pmap && va < KERNBASE)
4668					continue;
4669				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4670					continue;
4671				ptep = pmap_pte(pm, va);
4672				if (pmap_pte_v(ptep))
4673					printf("%x:%x ", va, *ptep);
4674			};
4675
4676}
4677
4678void
4679pmap_pvdump(vm_paddr_t pa)
4680{
4681	pv_entry_t pv;
4682	pmap_t pmap;
4683	vm_page_t m;
4684
4685	printf("pa %x", pa);
4686	m = PHYS_TO_VM_PAGE(pa);
4687	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4688		pmap = PV_PMAP(pv);
4689		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4690		pads(pmap);
4691	}
4692	printf(" ");
4693}
4694#endif
4695