pmap.c revision 174250
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 174250 2007-12-04 09:06:08Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sx.h>
122#include <sys/vmmeter.h>
123#include <sys/sched.h>
124#include <sys/sysctl.h>
125#ifdef SMP
126#include <sys/smp.h>
127#endif
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/uma.h>
139
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149#ifdef XBOX
150#include <machine/xbox.h>
151#endif
152
153#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
154#define CPU_ENABLE_SSE
155#endif
156
157#ifndef PMAP_SHPGPERPROC
158#define PMAP_SHPGPERPROC 200
159#endif
160
161#if defined(DIAGNOSTIC)
162#define PMAP_DIAGNOSTIC
163#endif
164
165#if !defined(PMAP_DIAGNOSTIC)
166#define PMAP_INLINE __inline
167#else
168#define PMAP_INLINE
169#endif
170
171#define PV_STATS
172#ifdef PV_STATS
173#define PV_STAT(x)	do { x ; } while (0)
174#else
175#define PV_STAT(x)	do { } while (0)
176#endif
177
178/*
179 * Get PDEs and PTEs for user/kernel address space
180 */
181#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
182#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
183
184#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
185#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
186#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
187#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
188#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
189
190#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
191    atomic_clear_int((u_int *)(pte), PG_W))
192#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
193
194struct pmap kernel_pmap_store;
195LIST_HEAD(pmaplist, pmap);
196static struct pmaplist allpmaps;
197static struct mtx allpmaps_lock;
198
199vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
200vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
201int pgeflag = 0;		/* PG_G or-in */
202int pseflag = 0;		/* PG_PS or-in */
203
204static int nkpt;
205vm_offset_t kernel_vm_end;
206extern u_int32_t KERNend;
207
208#ifdef PAE
209pt_entry_t pg_nx;
210static uma_zone_t pdptzone;
211#endif
212
213/*
214 * Data for the pv entry allocation mechanism
215 */
216static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
217static int shpgperproc = PMAP_SHPGPERPROC;
218
219struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
220int pv_maxchunks;			/* How many chunks we have KVA for */
221vm_offset_t pv_vafree;			/* freelist stored in the PTE */
222
223/*
224 * All those kernel PT submaps that BSD is so fond of
225 */
226struct sysmaps {
227	struct	mtx lock;
228	pt_entry_t *CMAP1;
229	pt_entry_t *CMAP2;
230	caddr_t	CADDR1;
231	caddr_t	CADDR2;
232};
233static struct sysmaps sysmaps_pcpu[MAXCPU];
234pt_entry_t *CMAP1 = 0;
235static pt_entry_t *CMAP3;
236caddr_t CADDR1 = 0, ptvmmap = 0;
237static caddr_t CADDR3;
238struct msgbuf *msgbufp = 0;
239
240/*
241 * Crashdump maps.
242 */
243static caddr_t crashdumpmap;
244
245static pt_entry_t *PMAP1 = 0, *PMAP2;
246static pt_entry_t *PADDR1 = 0, *PADDR2;
247#ifdef SMP
248static int PMAP1cpu;
249static int PMAP1changedcpu;
250SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
251	   &PMAP1changedcpu, 0,
252	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
253#endif
254static int PMAP1changed;
255SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
256	   &PMAP1changed, 0,
257	   "Number of times pmap_pte_quick changed PMAP1");
258static int PMAP1unchanged;
259SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
260	   &PMAP1unchanged, 0,
261	   "Number of times pmap_pte_quick didn't change PMAP1");
262static struct mtx PMAP2mutex;
263
264static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
265static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
266
267static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
268    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
269static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
270    vm_page_t *free);
271static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
272    vm_page_t *free);
273static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
274					vm_offset_t va);
275static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
276static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
277    vm_page_t m);
278
279static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
280
281static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
282static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
283static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
284static void pmap_pte_release(pt_entry_t *pte);
285static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
286static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
287#ifdef PAE
288static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
289#endif
290
291CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
292CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
293
294/*
295 * Move the kernel virtual free pointer to the next
296 * 4MB.  This is used to help improve performance
297 * by using a large (4MB) page for much of the kernel
298 * (.text, .data, .bss)
299 */
300static vm_offset_t
301pmap_kmem_choose(vm_offset_t addr)
302{
303	vm_offset_t newaddr = addr;
304
305#ifndef DISABLE_PSE
306	if (cpu_feature & CPUID_PSE)
307		newaddr = (addr + PDRMASK) & ~PDRMASK;
308#endif
309	return newaddr;
310}
311
312/*
313 *	Bootstrap the system enough to run with virtual memory.
314 *
315 *	On the i386 this is called after mapping has already been enabled
316 *	and just syncs the pmap module with what has already been done.
317 *	[We can't call it easily with mapping off since the kernel is not
318 *	mapped with PA == VA, hence we would have to relocate every address
319 *	from the linked base (virtual) address "KERNBASE" to the actual
320 *	(physical) address starting relative to 0]
321 */
322void
323pmap_bootstrap(vm_paddr_t firstaddr)
324{
325	vm_offset_t va;
326	pt_entry_t *pte, *unused;
327	struct sysmaps *sysmaps;
328	int i;
329
330	/*
331	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
332	 * large. It should instead be correctly calculated in locore.s and
333	 * not based on 'first' (which is a physical address, not a virtual
334	 * address, for the start of unused physical memory). The kernel
335	 * page tables are NOT double mapped and thus should not be included
336	 * in this calculation.
337	 */
338	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
339	virtual_avail = pmap_kmem_choose(virtual_avail);
340
341	virtual_end = VM_MAX_KERNEL_ADDRESS;
342
343	/*
344	 * Initialize the kernel pmap (which is statically allocated).
345	 */
346	PMAP_LOCK_INIT(kernel_pmap);
347	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
348#ifdef PAE
349	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
350#endif
351	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
352	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
353	LIST_INIT(&allpmaps);
354	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
355	mtx_lock_spin(&allpmaps_lock);
356	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
357	mtx_unlock_spin(&allpmaps_lock);
358	nkpt = NKPT;
359
360	/*
361	 * Reserve some special page table entries/VA space for temporary
362	 * mapping of pages.
363	 */
364#define	SYSMAP(c, p, v, n)	\
365	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
366
367	va = virtual_avail;
368	pte = vtopte(va);
369
370	/*
371	 * CMAP1/CMAP2 are used for zeroing and copying pages.
372	 * CMAP3 is used for the idle process page zeroing.
373	 */
374	for (i = 0; i < MAXCPU; i++) {
375		sysmaps = &sysmaps_pcpu[i];
376		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
377		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
378		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
379	}
380	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
381	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
382	*CMAP3 = 0;
383
384	/*
385	 * Crashdump maps.
386	 */
387	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
388
389	/*
390	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
391	 */
392	SYSMAP(caddr_t, unused, ptvmmap, 1)
393
394	/*
395	 * msgbufp is used to map the system message buffer.
396	 */
397	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
398
399	/*
400	 * ptemap is used for pmap_pte_quick
401	 */
402	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
403	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
404
405	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
406
407	virtual_avail = va;
408
409	*CMAP1 = 0;
410
411	/*
412	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
413	 * physical memory region that is used by the ACPI wakeup code.  This
414	 * mapping must not have PG_G set.
415	 */
416#ifdef XBOX
417	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
418	 * an early stadium, we cannot yet neatly map video memory ... :-(
419	 * Better fixes are very welcome! */
420	if (!arch_i386_is_xbox)
421#endif
422	for (i = 1; i < NKPT; i++)
423		PTD[i] = 0;
424
425	/* Initialize the PAT MSR if present. */
426	pmap_init_pat();
427
428	/* Turn on PG_G on kernel page(s) */
429	pmap_set_pg();
430}
431
432/*
433 * Setup the PAT MSR.
434 */
435void
436pmap_init_pat(void)
437{
438	uint64_t pat_msr;
439
440	/* Bail if this CPU doesn't implement PAT. */
441	if (!(cpu_feature & CPUID_PAT))
442		return;
443
444#ifdef PAT_WORKS
445	/*
446	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
447	 * Program 4 and 5 as WP and WC.
448	 * Leave 6 and 7 as UC and UC-.
449	 */
450	pat_msr = rdmsr(MSR_PAT);
451	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
452	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
453	    PAT_VALUE(5, PAT_WRITE_COMBINING);
454#else
455	/*
456	 * Due to some Intel errata, we can only safely use the lower 4
457	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
458	 * of UC-.
459	 *
460	 *   Intel Pentium III Processor Specification Update
461	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
462	 * or Mode C Paging)
463	 *
464	 *   Intel Pentium IV  Processor Specification Update
465	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
466	 */
467	pat_msr = rdmsr(MSR_PAT);
468	pat_msr &= ~PAT_MASK(2);
469	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
470#endif
471	wrmsr(MSR_PAT, pat_msr);
472}
473
474/*
475 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
476 */
477void
478pmap_set_pg(void)
479{
480	pd_entry_t pdir;
481	pt_entry_t *pte;
482	vm_offset_t va, endva;
483	int i;
484
485	if (pgeflag == 0)
486		return;
487
488	i = KERNLOAD/NBPDR;
489	endva = KERNBASE + KERNend;
490
491	if (pseflag) {
492		va = KERNBASE + KERNLOAD;
493		while (va  < endva) {
494			pdir = kernel_pmap->pm_pdir[KPTDI+i];
495			pdir |= pgeflag;
496			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
497			invltlb();	/* Play it safe, invltlb() every time */
498			i++;
499			va += NBPDR;
500		}
501	} else {
502		va = (vm_offset_t)btext;
503		while (va < endva) {
504			pte = vtopte(va);
505			if (*pte)
506				*pte |= pgeflag;
507			invltlb();	/* Play it safe, invltlb() every time */
508			va += PAGE_SIZE;
509		}
510	}
511}
512
513/*
514 * Initialize a vm_page's machine-dependent fields.
515 */
516void
517pmap_page_init(vm_page_t m)
518{
519
520	TAILQ_INIT(&m->md.pv_list);
521	m->md.pv_list_count = 0;
522}
523
524#ifdef PAE
525
526static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
527
528static void *
529pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
530{
531	*flags = UMA_SLAB_PRIV;
532	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
533	    1, 0));
534}
535#endif
536
537/*
538 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
539 * Requirements:
540 *  - Must deal with pages in order to ensure that none of the PG_* bits
541 *    are ever set, PG_V in particular.
542 *  - Assumes we can write to ptes without pte_store() atomic ops, even
543 *    on PAE systems.  This should be ok.
544 *  - Assumes nothing will ever test these addresses for 0 to indicate
545 *    no mapping instead of correctly checking PG_V.
546 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
547 * Because PG_V is never set, there can be no mappings to invalidate.
548 */
549static vm_offset_t
550pmap_ptelist_alloc(vm_offset_t *head)
551{
552	pt_entry_t *pte;
553	vm_offset_t va;
554
555	va = *head;
556	if (va == 0)
557		return (va);	/* Out of memory */
558	pte = vtopte(va);
559	*head = *pte;
560	if (*head & PG_V)
561		panic("pmap_ptelist_alloc: va with PG_V set!");
562	*pte = 0;
563	return (va);
564}
565
566static void
567pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
568{
569	pt_entry_t *pte;
570
571	if (va & PG_V)
572		panic("pmap_ptelist_free: freeing va with PG_V set!");
573	pte = vtopte(va);
574	*pte = *head;		/* virtual! PG_V is 0 though */
575	*head = va;
576}
577
578static void
579pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
580{
581	int i;
582	vm_offset_t va;
583
584	*head = 0;
585	for (i = npages - 1; i >= 0; i--) {
586		va = (vm_offset_t)base + i * PAGE_SIZE;
587		pmap_ptelist_free(head, va);
588	}
589}
590
591
592/*
593 *	Initialize the pmap module.
594 *	Called by vm_init, to initialize any structures that the pmap
595 *	system needs to map virtual memory.
596 */
597void
598pmap_init(void)
599{
600
601	/*
602	 * Initialize the address space (zone) for the pv entries.  Set a
603	 * high water mark so that the system can recover from excessive
604	 * numbers of pv entries.
605	 */
606	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
607	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
608	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
609	pv_entry_max = roundup(pv_entry_max, _NPCPV);
610	pv_entry_high_water = 9 * (pv_entry_max / 10);
611
612	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
613	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
614	    PAGE_SIZE * pv_maxchunks);
615	if (pv_chunkbase == NULL)
616		panic("pmap_init: not enough kvm for pv chunks");
617	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
618#ifdef PAE
619	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
620	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
621	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
622	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
623#endif
624}
625
626
627SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
628SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
629	"Max number of PV entries");
630SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
631	"Page share factor per proc");
632
633/***************************************************
634 * Low level helper routines.....
635 ***************************************************/
636
637/*
638 * Determine the appropriate bits to set in a PTE or PDE for a specified
639 * caching mode.
640 */
641static int
642pmap_cache_bits(int mode, boolean_t is_pde)
643{
644	int pat_flag, pat_index, cache_bits;
645
646	/* The PAT bit is different for PTE's and PDE's. */
647	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
648
649	/* If we don't support PAT, map extended modes to older ones. */
650	if (!(cpu_feature & CPUID_PAT)) {
651		switch (mode) {
652		case PAT_UNCACHEABLE:
653		case PAT_WRITE_THROUGH:
654		case PAT_WRITE_BACK:
655			break;
656		case PAT_UNCACHED:
657		case PAT_WRITE_COMBINING:
658		case PAT_WRITE_PROTECTED:
659			mode = PAT_UNCACHEABLE;
660			break;
661		}
662	}
663
664	/* Map the caching mode to a PAT index. */
665	switch (mode) {
666#ifdef PAT_WORKS
667	case PAT_UNCACHEABLE:
668		pat_index = 3;
669		break;
670	case PAT_WRITE_THROUGH:
671		pat_index = 1;
672		break;
673	case PAT_WRITE_BACK:
674		pat_index = 0;
675		break;
676	case PAT_UNCACHED:
677		pat_index = 2;
678		break;
679	case PAT_WRITE_COMBINING:
680		pat_index = 5;
681		break;
682	case PAT_WRITE_PROTECTED:
683		pat_index = 4;
684		break;
685#else
686	case PAT_UNCACHED:
687	case PAT_UNCACHEABLE:
688	case PAT_WRITE_PROTECTED:
689		pat_index = 3;
690		break;
691	case PAT_WRITE_THROUGH:
692		pat_index = 1;
693		break;
694	case PAT_WRITE_BACK:
695		pat_index = 0;
696		break;
697	case PAT_WRITE_COMBINING:
698		pat_index = 2;
699		break;
700#endif
701	default:
702		panic("Unknown caching mode %d\n", mode);
703	}
704
705	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
706	cache_bits = 0;
707	if (pat_index & 0x4)
708		cache_bits |= pat_flag;
709	if (pat_index & 0x2)
710		cache_bits |= PG_NC_PCD;
711	if (pat_index & 0x1)
712		cache_bits |= PG_NC_PWT;
713	return (cache_bits);
714}
715#ifdef SMP
716/*
717 * For SMP, these functions have to use the IPI mechanism for coherence.
718 *
719 * N.B.: Before calling any of the following TLB invalidation functions,
720 * the calling processor must ensure that all stores updating a non-
721 * kernel page table are globally performed.  Otherwise, another
722 * processor could cache an old, pre-update entry without being
723 * invalidated.  This can happen one of two ways: (1) The pmap becomes
724 * active on another processor after its pm_active field is checked by
725 * one of the following functions but before a store updating the page
726 * table is globally performed. (2) The pmap becomes active on another
727 * processor before its pm_active field is checked but due to
728 * speculative loads one of the following functions stills reads the
729 * pmap as inactive on the other processor.
730 *
731 * The kernel page table is exempt because its pm_active field is
732 * immutable.  The kernel page table is always active on every
733 * processor.
734 */
735void
736pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
737{
738	u_int cpumask;
739	u_int other_cpus;
740
741	sched_pin();
742	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
743		invlpg(va);
744		smp_invlpg(va);
745	} else {
746		cpumask = PCPU_GET(cpumask);
747		other_cpus = PCPU_GET(other_cpus);
748		if (pmap->pm_active & cpumask)
749			invlpg(va);
750		if (pmap->pm_active & other_cpus)
751			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
752	}
753	sched_unpin();
754}
755
756void
757pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
758{
759	u_int cpumask;
760	u_int other_cpus;
761	vm_offset_t addr;
762
763	sched_pin();
764	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
765		for (addr = sva; addr < eva; addr += PAGE_SIZE)
766			invlpg(addr);
767		smp_invlpg_range(sva, eva);
768	} else {
769		cpumask = PCPU_GET(cpumask);
770		other_cpus = PCPU_GET(other_cpus);
771		if (pmap->pm_active & cpumask)
772			for (addr = sva; addr < eva; addr += PAGE_SIZE)
773				invlpg(addr);
774		if (pmap->pm_active & other_cpus)
775			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
776			    sva, eva);
777	}
778	sched_unpin();
779}
780
781void
782pmap_invalidate_all(pmap_t pmap)
783{
784	u_int cpumask;
785	u_int other_cpus;
786
787	sched_pin();
788	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
789		invltlb();
790		smp_invltlb();
791	} else {
792		cpumask = PCPU_GET(cpumask);
793		other_cpus = PCPU_GET(other_cpus);
794		if (pmap->pm_active & cpumask)
795			invltlb();
796		if (pmap->pm_active & other_cpus)
797			smp_masked_invltlb(pmap->pm_active & other_cpus);
798	}
799	sched_unpin();
800}
801
802void
803pmap_invalidate_cache(void)
804{
805
806	sched_pin();
807	wbinvd();
808	smp_cache_flush();
809	sched_unpin();
810}
811#else /* !SMP */
812/*
813 * Normal, non-SMP, 486+ invalidation functions.
814 * We inline these within pmap.c for speed.
815 */
816PMAP_INLINE void
817pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
818{
819
820	if (pmap == kernel_pmap || pmap->pm_active)
821		invlpg(va);
822}
823
824PMAP_INLINE void
825pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
826{
827	vm_offset_t addr;
828
829	if (pmap == kernel_pmap || pmap->pm_active)
830		for (addr = sva; addr < eva; addr += PAGE_SIZE)
831			invlpg(addr);
832}
833
834PMAP_INLINE void
835pmap_invalidate_all(pmap_t pmap)
836{
837
838	if (pmap == kernel_pmap || pmap->pm_active)
839		invltlb();
840}
841
842PMAP_INLINE void
843pmap_invalidate_cache(void)
844{
845
846	wbinvd();
847}
848#endif /* !SMP */
849
850/*
851 * Are we current address space or kernel?  N.B. We return FALSE when
852 * a pmap's page table is in use because a kernel thread is borrowing
853 * it.  The borrowed page table can change spontaneously, making any
854 * dependence on its continued use subject to a race condition.
855 */
856static __inline int
857pmap_is_current(pmap_t pmap)
858{
859
860	return (pmap == kernel_pmap ||
861		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
862	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
863}
864
865/*
866 * If the given pmap is not the current or kernel pmap, the returned pte must
867 * be released by passing it to pmap_pte_release().
868 */
869pt_entry_t *
870pmap_pte(pmap_t pmap, vm_offset_t va)
871{
872	pd_entry_t newpf;
873	pd_entry_t *pde;
874
875	pde = pmap_pde(pmap, va);
876	if (*pde & PG_PS)
877		return (pde);
878	if (*pde != 0) {
879		/* are we current address space or kernel? */
880		if (pmap_is_current(pmap))
881			return (vtopte(va));
882		mtx_lock(&PMAP2mutex);
883		newpf = *pde & PG_FRAME;
884		if ((*PMAP2 & PG_FRAME) != newpf) {
885			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
886			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
887		}
888		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
889	}
890	return (0);
891}
892
893/*
894 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
895 * being NULL.
896 */
897static __inline void
898pmap_pte_release(pt_entry_t *pte)
899{
900
901	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
902		mtx_unlock(&PMAP2mutex);
903}
904
905static __inline void
906invlcaddr(void *caddr)
907{
908
909	invlpg((u_int)caddr);
910}
911
912/*
913 * Super fast pmap_pte routine best used when scanning
914 * the pv lists.  This eliminates many coarse-grained
915 * invltlb calls.  Note that many of the pv list
916 * scans are across different pmaps.  It is very wasteful
917 * to do an entire invltlb for checking a single mapping.
918 *
919 * If the given pmap is not the current pmap, vm_page_queue_mtx
920 * must be held and curthread pinned to a CPU.
921 */
922static pt_entry_t *
923pmap_pte_quick(pmap_t pmap, vm_offset_t va)
924{
925	pd_entry_t newpf;
926	pd_entry_t *pde;
927
928	pde = pmap_pde(pmap, va);
929	if (*pde & PG_PS)
930		return (pde);
931	if (*pde != 0) {
932		/* are we current address space or kernel? */
933		if (pmap_is_current(pmap))
934			return (vtopte(va));
935		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
936		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
937		newpf = *pde & PG_FRAME;
938		if ((*PMAP1 & PG_FRAME) != newpf) {
939			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
940#ifdef SMP
941			PMAP1cpu = PCPU_GET(cpuid);
942#endif
943			invlcaddr(PADDR1);
944			PMAP1changed++;
945		} else
946#ifdef SMP
947		if (PMAP1cpu != PCPU_GET(cpuid)) {
948			PMAP1cpu = PCPU_GET(cpuid);
949			invlcaddr(PADDR1);
950			PMAP1changedcpu++;
951		} else
952#endif
953			PMAP1unchanged++;
954		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
955	}
956	return (0);
957}
958
959/*
960 *	Routine:	pmap_extract
961 *	Function:
962 *		Extract the physical page address associated
963 *		with the given map/virtual_address pair.
964 */
965vm_paddr_t
966pmap_extract(pmap_t pmap, vm_offset_t va)
967{
968	vm_paddr_t rtval;
969	pt_entry_t *pte;
970	pd_entry_t pde;
971
972	rtval = 0;
973	PMAP_LOCK(pmap);
974	pde = pmap->pm_pdir[va >> PDRSHIFT];
975	if (pde != 0) {
976		if ((pde & PG_PS) != 0) {
977			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
978			PMAP_UNLOCK(pmap);
979			return rtval;
980		}
981		pte = pmap_pte(pmap, va);
982		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
983		pmap_pte_release(pte);
984	}
985	PMAP_UNLOCK(pmap);
986	return (rtval);
987}
988
989/*
990 *	Routine:	pmap_extract_and_hold
991 *	Function:
992 *		Atomically extract and hold the physical page
993 *		with the given pmap and virtual address pair
994 *		if that mapping permits the given protection.
995 */
996vm_page_t
997pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
998{
999	pd_entry_t pde;
1000	pt_entry_t pte;
1001	vm_page_t m;
1002
1003	m = NULL;
1004	vm_page_lock_queues();
1005	PMAP_LOCK(pmap);
1006	pde = *pmap_pde(pmap, va);
1007	if (pde != 0) {
1008		if (pde & PG_PS) {
1009			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1010				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1011				    (va & PDRMASK));
1012				vm_page_hold(m);
1013			}
1014		} else {
1015			sched_pin();
1016			pte = *pmap_pte_quick(pmap, va);
1017			if (pte != 0 &&
1018			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1019				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1020				vm_page_hold(m);
1021			}
1022			sched_unpin();
1023		}
1024	}
1025	vm_page_unlock_queues();
1026	PMAP_UNLOCK(pmap);
1027	return (m);
1028}
1029
1030/***************************************************
1031 * Low level mapping routines.....
1032 ***************************************************/
1033
1034/*
1035 * Add a wired page to the kva.
1036 * Note: not SMP coherent.
1037 */
1038PMAP_INLINE void
1039pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1040{
1041	pt_entry_t *pte;
1042
1043	pte = vtopte(va);
1044	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1045}
1046
1047PMAP_INLINE void
1048pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1049{
1050	pt_entry_t *pte;
1051
1052	pte = vtopte(va);
1053	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1054}
1055
1056/*
1057 * Remove a page from the kernel pagetables.
1058 * Note: not SMP coherent.
1059 */
1060PMAP_INLINE void
1061pmap_kremove(vm_offset_t va)
1062{
1063	pt_entry_t *pte;
1064
1065	pte = vtopte(va);
1066	pte_clear(pte);
1067}
1068
1069/*
1070 *	Used to map a range of physical addresses into kernel
1071 *	virtual address space.
1072 *
1073 *	The value passed in '*virt' is a suggested virtual address for
1074 *	the mapping. Architectures which can support a direct-mapped
1075 *	physical to virtual region can return the appropriate address
1076 *	within that region, leaving '*virt' unchanged. Other
1077 *	architectures should map the pages starting at '*virt' and
1078 *	update '*virt' with the first usable address after the mapped
1079 *	region.
1080 */
1081vm_offset_t
1082pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1083{
1084	vm_offset_t va, sva;
1085
1086	va = sva = *virt;
1087	while (start < end) {
1088		pmap_kenter(va, start);
1089		va += PAGE_SIZE;
1090		start += PAGE_SIZE;
1091	}
1092	pmap_invalidate_range(kernel_pmap, sva, va);
1093	*virt = va;
1094	return (sva);
1095}
1096
1097
1098/*
1099 * Add a list of wired pages to the kva
1100 * this routine is only used for temporary
1101 * kernel mappings that do not need to have
1102 * page modification or references recorded.
1103 * Note that old mappings are simply written
1104 * over.  The page *must* be wired.
1105 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1106 */
1107void
1108pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1109{
1110	pt_entry_t *endpte, oldpte, *pte;
1111
1112	oldpte = 0;
1113	pte = vtopte(sva);
1114	endpte = pte + count;
1115	while (pte < endpte) {
1116		oldpte |= *pte;
1117		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1118		pte++;
1119		ma++;
1120	}
1121	if ((oldpte & PG_V) != 0)
1122		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1123		    PAGE_SIZE);
1124}
1125
1126/*
1127 * This routine tears out page mappings from the
1128 * kernel -- it is meant only for temporary mappings.
1129 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1130 */
1131void
1132pmap_qremove(vm_offset_t sva, int count)
1133{
1134	vm_offset_t va;
1135
1136	va = sva;
1137	while (count-- > 0) {
1138		pmap_kremove(va);
1139		va += PAGE_SIZE;
1140	}
1141	pmap_invalidate_range(kernel_pmap, sva, va);
1142}
1143
1144/***************************************************
1145 * Page table page management routines.....
1146 ***************************************************/
1147static PMAP_INLINE void
1148pmap_free_zero_pages(vm_page_t free)
1149{
1150	vm_page_t m;
1151
1152	while (free != NULL) {
1153		m = free;
1154		free = m->right;
1155		vm_page_free_zero(m);
1156	}
1157}
1158
1159/*
1160 * This routine unholds page table pages, and if the hold count
1161 * drops to zero, then it decrements the wire count.
1162 */
1163static PMAP_INLINE int
1164pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1165{
1166
1167	--m->wire_count;
1168	if (m->wire_count == 0)
1169		return _pmap_unwire_pte_hold(pmap, m, free);
1170	else
1171		return 0;
1172}
1173
1174static int
1175_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1176{
1177	vm_offset_t pteva;
1178
1179	/*
1180	 * unmap the page table page
1181	 */
1182	pmap->pm_pdir[m->pindex] = 0;
1183	--pmap->pm_stats.resident_count;
1184
1185	/*
1186	 * This is a release store so that the ordinary store unmapping
1187	 * the page table page is globally performed before TLB shoot-
1188	 * down is begun.
1189	 */
1190	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1191
1192	/*
1193	 * Do an invltlb to make the invalidated mapping
1194	 * take effect immediately.
1195	 */
1196	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1197	pmap_invalidate_page(pmap, pteva);
1198
1199	/*
1200	 * Put page on a list so that it is released after
1201	 * *ALL* TLB shootdown is done
1202	 */
1203	m->right = *free;
1204	*free = m;
1205
1206	return 1;
1207}
1208
1209/*
1210 * After removing a page table entry, this routine is used to
1211 * conditionally free the page, and manage the hold/wire counts.
1212 */
1213static int
1214pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1215{
1216	pd_entry_t ptepde;
1217	vm_page_t mpte;
1218
1219	if (va >= VM_MAXUSER_ADDRESS)
1220		return 0;
1221	ptepde = *pmap_pde(pmap, va);
1222	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1223	return pmap_unwire_pte_hold(pmap, mpte, free);
1224}
1225
1226void
1227pmap_pinit0(pmap_t pmap)
1228{
1229
1230	PMAP_LOCK_INIT(pmap);
1231	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1232#ifdef PAE
1233	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1234#endif
1235	pmap->pm_active = 0;
1236	PCPU_SET(curpmap, pmap);
1237	TAILQ_INIT(&pmap->pm_pvchunk);
1238	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1239	mtx_lock_spin(&allpmaps_lock);
1240	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1241	mtx_unlock_spin(&allpmaps_lock);
1242}
1243
1244/*
1245 * Initialize a preallocated and zeroed pmap structure,
1246 * such as one in a vmspace structure.
1247 */
1248int
1249pmap_pinit(pmap_t pmap)
1250{
1251	vm_page_t m, ptdpg[NPGPTD];
1252	vm_paddr_t pa;
1253	static int color;
1254	int i;
1255
1256	PMAP_LOCK_INIT(pmap);
1257
1258	/*
1259	 * No need to allocate page table space yet but we do need a valid
1260	 * page directory table.
1261	 */
1262	if (pmap->pm_pdir == NULL) {
1263		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1264		    NBPTD);
1265
1266		if (pmap->pm_pdir == NULL) {
1267			PMAP_LOCK_DESTROY(pmap);
1268			return (0);
1269		}
1270#ifdef PAE
1271		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1272		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1273		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1274		    ("pmap_pinit: pdpt misaligned"));
1275		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1276		    ("pmap_pinit: pdpt above 4g"));
1277#endif
1278	}
1279
1280	/*
1281	 * allocate the page directory page(s)
1282	 */
1283	for (i = 0; i < NPGPTD;) {
1284		m = vm_page_alloc(NULL, color++,
1285		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1286		    VM_ALLOC_ZERO);
1287		if (m == NULL)
1288			VM_WAIT;
1289		else {
1290			ptdpg[i++] = m;
1291		}
1292	}
1293
1294	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1295
1296	for (i = 0; i < NPGPTD; i++) {
1297		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1298			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1299	}
1300
1301	mtx_lock_spin(&allpmaps_lock);
1302	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1303	mtx_unlock_spin(&allpmaps_lock);
1304	/* Wire in kernel global address entries. */
1305	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1306
1307	/* install self-referential address mapping entry(s) */
1308	for (i = 0; i < NPGPTD; i++) {
1309		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1310		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1311#ifdef PAE
1312		pmap->pm_pdpt[i] = pa | PG_V;
1313#endif
1314	}
1315
1316	pmap->pm_active = 0;
1317	TAILQ_INIT(&pmap->pm_pvchunk);
1318	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1319
1320	return (1);
1321}
1322
1323/*
1324 * this routine is called if the page table page is not
1325 * mapped correctly.
1326 */
1327static vm_page_t
1328_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1329{
1330	vm_paddr_t ptepa;
1331	vm_page_t m;
1332
1333	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1334	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1335	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1336
1337	/*
1338	 * Allocate a page table page.
1339	 */
1340	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1341	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1342		if (flags & M_WAITOK) {
1343			PMAP_UNLOCK(pmap);
1344			vm_page_unlock_queues();
1345			VM_WAIT;
1346			vm_page_lock_queues();
1347			PMAP_LOCK(pmap);
1348		}
1349
1350		/*
1351		 * Indicate the need to retry.  While waiting, the page table
1352		 * page may have been allocated.
1353		 */
1354		return (NULL);
1355	}
1356	if ((m->flags & PG_ZERO) == 0)
1357		pmap_zero_page(m);
1358
1359	/*
1360	 * Map the pagetable page into the process address space, if
1361	 * it isn't already there.
1362	 */
1363
1364	pmap->pm_stats.resident_count++;
1365
1366	ptepa = VM_PAGE_TO_PHYS(m);
1367	pmap->pm_pdir[ptepindex] =
1368		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1369
1370	return m;
1371}
1372
1373static vm_page_t
1374pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1375{
1376	unsigned ptepindex;
1377	pd_entry_t ptepa;
1378	vm_page_t m;
1379
1380	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1381	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1382	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1383
1384	/*
1385	 * Calculate pagetable page index
1386	 */
1387	ptepindex = va >> PDRSHIFT;
1388retry:
1389	/*
1390	 * Get the page directory entry
1391	 */
1392	ptepa = pmap->pm_pdir[ptepindex];
1393
1394	/*
1395	 * This supports switching from a 4MB page to a
1396	 * normal 4K page.
1397	 */
1398	if (ptepa & PG_PS) {
1399		pmap->pm_pdir[ptepindex] = 0;
1400		ptepa = 0;
1401		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1402		pmap_invalidate_all(kernel_pmap);
1403	}
1404
1405	/*
1406	 * If the page table page is mapped, we just increment the
1407	 * hold count, and activate it.
1408	 */
1409	if (ptepa) {
1410		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1411		m->wire_count++;
1412	} else {
1413		/*
1414		 * Here if the pte page isn't mapped, or if it has
1415		 * been deallocated.
1416		 */
1417		m = _pmap_allocpte(pmap, ptepindex, flags);
1418		if (m == NULL && (flags & M_WAITOK))
1419			goto retry;
1420	}
1421	return (m);
1422}
1423
1424
1425/***************************************************
1426* Pmap allocation/deallocation routines.
1427 ***************************************************/
1428
1429#ifdef SMP
1430/*
1431 * Deal with a SMP shootdown of other users of the pmap that we are
1432 * trying to dispose of.  This can be a bit hairy.
1433 */
1434static u_int *lazymask;
1435static u_int lazyptd;
1436static volatile u_int lazywait;
1437
1438void pmap_lazyfix_action(void);
1439
1440void
1441pmap_lazyfix_action(void)
1442{
1443	u_int mymask = PCPU_GET(cpumask);
1444
1445#ifdef COUNT_IPIS
1446	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1447#endif
1448	if (rcr3() == lazyptd)
1449		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1450	atomic_clear_int(lazymask, mymask);
1451	atomic_store_rel_int(&lazywait, 1);
1452}
1453
1454static void
1455pmap_lazyfix_self(u_int mymask)
1456{
1457
1458	if (rcr3() == lazyptd)
1459		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1460	atomic_clear_int(lazymask, mymask);
1461}
1462
1463
1464static void
1465pmap_lazyfix(pmap_t pmap)
1466{
1467	u_int mymask;
1468	u_int mask;
1469	u_int spins;
1470
1471	while ((mask = pmap->pm_active) != 0) {
1472		spins = 50000000;
1473		mask = mask & -mask;	/* Find least significant set bit */
1474		mtx_lock_spin(&smp_ipi_mtx);
1475#ifdef PAE
1476		lazyptd = vtophys(pmap->pm_pdpt);
1477#else
1478		lazyptd = vtophys(pmap->pm_pdir);
1479#endif
1480		mymask = PCPU_GET(cpumask);
1481		if (mask == mymask) {
1482			lazymask = &pmap->pm_active;
1483			pmap_lazyfix_self(mymask);
1484		} else {
1485			atomic_store_rel_int((u_int *)&lazymask,
1486			    (u_int)&pmap->pm_active);
1487			atomic_store_rel_int(&lazywait, 0);
1488			ipi_selected(mask, IPI_LAZYPMAP);
1489			while (lazywait == 0) {
1490				ia32_pause();
1491				if (--spins == 0)
1492					break;
1493			}
1494		}
1495		mtx_unlock_spin(&smp_ipi_mtx);
1496		if (spins == 0)
1497			printf("pmap_lazyfix: spun for 50000000\n");
1498	}
1499}
1500
1501#else	/* SMP */
1502
1503/*
1504 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1505 * unlikely to have to even execute this code, including the fact
1506 * that the cleanup is deferred until the parent does a wait(2), which
1507 * means that another userland process has run.
1508 */
1509static void
1510pmap_lazyfix(pmap_t pmap)
1511{
1512	u_int cr3;
1513
1514	cr3 = vtophys(pmap->pm_pdir);
1515	if (cr3 == rcr3()) {
1516		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1517		pmap->pm_active &= ~(PCPU_GET(cpumask));
1518	}
1519}
1520#endif	/* SMP */
1521
1522/*
1523 * Release any resources held by the given physical map.
1524 * Called when a pmap initialized by pmap_pinit is being released.
1525 * Should only be called if the map contains no valid mappings.
1526 */
1527void
1528pmap_release(pmap_t pmap)
1529{
1530	vm_page_t m, ptdpg[NPGPTD];
1531	int i;
1532
1533	KASSERT(pmap->pm_stats.resident_count == 0,
1534	    ("pmap_release: pmap resident count %ld != 0",
1535	    pmap->pm_stats.resident_count));
1536
1537	pmap_lazyfix(pmap);
1538	mtx_lock_spin(&allpmaps_lock);
1539	LIST_REMOVE(pmap, pm_list);
1540	mtx_unlock_spin(&allpmaps_lock);
1541
1542	for (i = 0; i < NPGPTD; i++)
1543		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1544		    PG_FRAME);
1545
1546	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1547	    sizeof(*pmap->pm_pdir));
1548
1549	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1550
1551	for (i = 0; i < NPGPTD; i++) {
1552		m = ptdpg[i];
1553#ifdef PAE
1554		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1555		    ("pmap_release: got wrong ptd page"));
1556#endif
1557		m->wire_count--;
1558		atomic_subtract_int(&cnt.v_wire_count, 1);
1559		vm_page_free_zero(m);
1560	}
1561	PMAP_LOCK_DESTROY(pmap);
1562}
1563
1564static int
1565kvm_size(SYSCTL_HANDLER_ARGS)
1566{
1567	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1568
1569	return sysctl_handle_long(oidp, &ksize, 0, req);
1570}
1571SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1572    0, 0, kvm_size, "IU", "Size of KVM");
1573
1574static int
1575kvm_free(SYSCTL_HANDLER_ARGS)
1576{
1577	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1578
1579	return sysctl_handle_long(oidp, &kfree, 0, req);
1580}
1581SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1582    0, 0, kvm_free, "IU", "Amount of KVM free");
1583
1584/*
1585 * grow the number of kernel page table entries, if needed
1586 */
1587void
1588pmap_growkernel(vm_offset_t addr)
1589{
1590	struct pmap *pmap;
1591	vm_paddr_t ptppaddr;
1592	vm_page_t nkpg;
1593	pd_entry_t newpdir;
1594	pt_entry_t *pde;
1595
1596	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1597	if (kernel_vm_end == 0) {
1598		kernel_vm_end = KERNBASE;
1599		nkpt = 0;
1600		while (pdir_pde(PTD, kernel_vm_end)) {
1601			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1602			nkpt++;
1603			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1604				kernel_vm_end = kernel_map->max_offset;
1605				break;
1606			}
1607		}
1608	}
1609	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1610	if (addr - 1 >= kernel_map->max_offset)
1611		addr = kernel_map->max_offset;
1612	while (kernel_vm_end < addr) {
1613		if (pdir_pde(PTD, kernel_vm_end)) {
1614			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1615			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1616				kernel_vm_end = kernel_map->max_offset;
1617				break;
1618			}
1619			continue;
1620		}
1621
1622		/*
1623		 * This index is bogus, but out of the way
1624		 */
1625		nkpg = vm_page_alloc(NULL, nkpt,
1626		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1627		if (!nkpg)
1628			panic("pmap_growkernel: no memory to grow kernel");
1629
1630		nkpt++;
1631
1632		pmap_zero_page(nkpg);
1633		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1634		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1635		pdir_pde(PTD, kernel_vm_end) = newpdir;
1636
1637		mtx_lock_spin(&allpmaps_lock);
1638		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1639			pde = pmap_pde(pmap, kernel_vm_end);
1640			pde_store(pde, newpdir);
1641		}
1642		mtx_unlock_spin(&allpmaps_lock);
1643		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1644		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1645			kernel_vm_end = kernel_map->max_offset;
1646			break;
1647		}
1648	}
1649}
1650
1651
1652/***************************************************
1653 * page management routines.
1654 ***************************************************/
1655
1656CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1657CTASSERT(_NPCM == 11);
1658
1659static __inline struct pv_chunk *
1660pv_to_chunk(pv_entry_t pv)
1661{
1662
1663	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1664}
1665
1666#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1667
1668#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1669#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1670
1671static uint32_t pc_freemask[11] = {
1672	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1673	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1674	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1675	PC_FREE0_9, PC_FREE10
1676};
1677
1678SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1679	"Current number of pv entries");
1680
1681#ifdef PV_STATS
1682static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1683
1684SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1685	"Current number of pv entry chunks");
1686SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1687	"Current number of pv entry chunks allocated");
1688SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1689	"Current number of pv entry chunks frees");
1690SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1691	"Number of times tried to get a chunk page but failed.");
1692
1693static long pv_entry_frees, pv_entry_allocs;
1694static int pv_entry_spare;
1695
1696SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1697	"Current number of pv entry frees");
1698SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1699	"Current number of pv entry allocs");
1700SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1701	"Current number of spare pv entries");
1702
1703static int pmap_collect_inactive, pmap_collect_active;
1704
1705SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1706	"Current number times pmap_collect called on inactive queue");
1707SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1708	"Current number times pmap_collect called on active queue");
1709#endif
1710
1711/*
1712 * We are in a serious low memory condition.  Resort to
1713 * drastic measures to free some pages so we can allocate
1714 * another pv entry chunk.  This is normally called to
1715 * unmap inactive pages, and if necessary, active pages.
1716 */
1717static void
1718pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1719{
1720	pmap_t pmap;
1721	pt_entry_t *pte, tpte;
1722	pv_entry_t next_pv, pv;
1723	vm_offset_t va;
1724	vm_page_t m, free;
1725
1726	sched_pin();
1727	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1728		if (m->hold_count || m->busy)
1729			continue;
1730		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1731			va = pv->pv_va;
1732			pmap = PV_PMAP(pv);
1733			/* Avoid deadlock and lock recursion. */
1734			if (pmap > locked_pmap)
1735				PMAP_LOCK(pmap);
1736			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1737				continue;
1738			pmap->pm_stats.resident_count--;
1739			pte = pmap_pte_quick(pmap, va);
1740			tpte = pte_load_clear(pte);
1741			KASSERT((tpte & PG_W) == 0,
1742			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1743			if (tpte & PG_A)
1744				vm_page_flag_set(m, PG_REFERENCED);
1745			if (tpte & PG_M) {
1746				KASSERT((tpte & PG_RW),
1747	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
1748				    va, (uintmax_t)tpte));
1749				vm_page_dirty(m);
1750			}
1751			free = NULL;
1752			pmap_unuse_pt(pmap, va, &free);
1753			pmap_invalidate_page(pmap, va);
1754			pmap_free_zero_pages(free);
1755			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1756			if (TAILQ_EMPTY(&m->md.pv_list))
1757				vm_page_flag_clear(m, PG_WRITEABLE);
1758			m->md.pv_list_count--;
1759			free_pv_entry(pmap, pv);
1760			if (pmap != locked_pmap)
1761				PMAP_UNLOCK(pmap);
1762		}
1763	}
1764	sched_unpin();
1765}
1766
1767
1768/*
1769 * free the pv_entry back to the free list
1770 */
1771static void
1772free_pv_entry(pmap_t pmap, pv_entry_t pv)
1773{
1774	vm_page_t m;
1775	struct pv_chunk *pc;
1776	int idx, field, bit;
1777
1778	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1779	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1780	PV_STAT(pv_entry_frees++);
1781	PV_STAT(pv_entry_spare++);
1782	pv_entry_count--;
1783	pc = pv_to_chunk(pv);
1784	idx = pv - &pc->pc_pventry[0];
1785	field = idx / 32;
1786	bit = idx % 32;
1787	pc->pc_map[field] |= 1ul << bit;
1788	/* move to head of list */
1789	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1790	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1791	for (idx = 0; idx < _NPCM; idx++)
1792		if (pc->pc_map[idx] != pc_freemask[idx])
1793			return;
1794	PV_STAT(pv_entry_spare -= _NPCPV);
1795	PV_STAT(pc_chunk_count--);
1796	PV_STAT(pc_chunk_frees++);
1797	/* entire chunk is free, return it */
1798	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1799	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1800	pmap_qremove((vm_offset_t)pc, 1);
1801	vm_page_unwire(m, 0);
1802	vm_page_free(m);
1803	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1804}
1805
1806/*
1807 * get a new pv_entry, allocating a block from the system
1808 * when needed.
1809 */
1810static pv_entry_t
1811get_pv_entry(pmap_t pmap, int try)
1812{
1813	static const struct timeval printinterval = { 60, 0 };
1814	static struct timeval lastprint;
1815	static vm_pindex_t colour;
1816	struct vpgqueues *pq;
1817	int bit, field;
1818	pv_entry_t pv;
1819	struct pv_chunk *pc;
1820	vm_page_t m;
1821
1822	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1823	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1824	PV_STAT(pv_entry_allocs++);
1825	pv_entry_count++;
1826	if (pv_entry_count > pv_entry_high_water)
1827		if (ratecheck(&lastprint, &printinterval))
1828			printf("Approaching the limit on PV entries, consider "
1829			    "increasing either the vm.pmap.shpgperproc or the "
1830			    "vm.pmap.pv_entry_max tunable.\n");
1831	pq = NULL;
1832retry:
1833	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1834	if (pc != NULL) {
1835		for (field = 0; field < _NPCM; field++) {
1836			if (pc->pc_map[field]) {
1837				bit = bsfl(pc->pc_map[field]);
1838				break;
1839			}
1840		}
1841		if (field < _NPCM) {
1842			pv = &pc->pc_pventry[field * 32 + bit];
1843			pc->pc_map[field] &= ~(1ul << bit);
1844			/* If this was the last item, move it to tail */
1845			for (field = 0; field < _NPCM; field++)
1846				if (pc->pc_map[field] != 0) {
1847					PV_STAT(pv_entry_spare--);
1848					return (pv);	/* not full, return */
1849				}
1850			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1851			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1852			PV_STAT(pv_entry_spare--);
1853			return (pv);
1854		}
1855	}
1856	/*
1857	 * Access to the ptelist "pv_vafree" is synchronized by the page
1858	 * queues lock.  If "pv_vafree" is currently non-empty, it will
1859	 * remain non-empty until pmap_ptelist_alloc() completes.
1860	 */
1861	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
1862	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
1863	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
1864		if (try) {
1865			pv_entry_count--;
1866			PV_STAT(pc_chunk_tryfail++);
1867			return (NULL);
1868		}
1869		/*
1870		 * Reclaim pv entries: At first, destroy mappings to
1871		 * inactive pages.  After that, if a pv chunk entry
1872		 * is still needed, destroy mappings to active pages.
1873		 */
1874		if (pq == NULL) {
1875			PV_STAT(pmap_collect_inactive++);
1876			pq = &vm_page_queues[PQ_INACTIVE];
1877		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
1878			PV_STAT(pmap_collect_active++);
1879			pq = &vm_page_queues[PQ_ACTIVE];
1880		} else
1881			panic("get_pv_entry: increase vm.pmap.shpgperproc");
1882		pmap_collect(pmap, pq);
1883		goto retry;
1884	}
1885	PV_STAT(pc_chunk_count++);
1886	PV_STAT(pc_chunk_allocs++);
1887	colour++;
1888	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
1889	pmap_qenter((vm_offset_t)pc, &m, 1);
1890	pc->pc_pmap = pmap;
1891	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1892	for (field = 1; field < _NPCM; field++)
1893		pc->pc_map[field] = pc_freemask[field];
1894	pv = &pc->pc_pventry[0];
1895	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1896	PV_STAT(pv_entry_spare += _NPCPV - 1);
1897	return (pv);
1898}
1899
1900static void
1901pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1902{
1903	pv_entry_t pv;
1904
1905	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1906	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1907	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1908		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
1909			break;
1910	}
1911	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1912	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1913	m->md.pv_list_count--;
1914	if (TAILQ_EMPTY(&m->md.pv_list))
1915		vm_page_flag_clear(m, PG_WRITEABLE);
1916	free_pv_entry(pmap, pv);
1917}
1918
1919/*
1920 * Create a pv entry for page at pa for
1921 * (pmap, va).
1922 */
1923static void
1924pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1925{
1926	pv_entry_t pv;
1927
1928	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1929	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1930	pv = get_pv_entry(pmap, FALSE);
1931	pv->pv_va = va;
1932	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1933	m->md.pv_list_count++;
1934}
1935
1936/*
1937 * Conditionally create a pv entry.
1938 */
1939static boolean_t
1940pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1941{
1942	pv_entry_t pv;
1943
1944	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1945	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1946	if (pv_entry_count < pv_entry_high_water &&
1947	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
1948		pv->pv_va = va;
1949		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1950		m->md.pv_list_count++;
1951		return (TRUE);
1952	} else
1953		return (FALSE);
1954}
1955
1956/*
1957 * pmap_remove_pte: do the things to unmap a page in a process
1958 */
1959static int
1960pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
1961{
1962	pt_entry_t oldpte;
1963	vm_page_t m;
1964
1965	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1966	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1967	oldpte = pte_load_clear(ptq);
1968	if (oldpte & PG_W)
1969		pmap->pm_stats.wired_count -= 1;
1970	/*
1971	 * Machines that don't support invlpg, also don't support
1972	 * PG_G.
1973	 */
1974	if (oldpte & PG_G)
1975		pmap_invalidate_page(kernel_pmap, va);
1976	pmap->pm_stats.resident_count -= 1;
1977	if (oldpte & PG_MANAGED) {
1978		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
1979		if (oldpte & PG_M) {
1980			KASSERT((oldpte & PG_RW),
1981	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1982			    va, (uintmax_t)oldpte));
1983			vm_page_dirty(m);
1984		}
1985		if (oldpte & PG_A)
1986			vm_page_flag_set(m, PG_REFERENCED);
1987		pmap_remove_entry(pmap, m, va);
1988	}
1989	return (pmap_unuse_pt(pmap, va, free));
1990}
1991
1992/*
1993 * Remove a single page from a process address space
1994 */
1995static void
1996pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1997{
1998	pt_entry_t *pte;
1999
2000	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2001	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2002	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2003	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2004		return;
2005	pmap_remove_pte(pmap, pte, va, free);
2006	pmap_invalidate_page(pmap, va);
2007}
2008
2009/*
2010 *	Remove the given range of addresses from the specified map.
2011 *
2012 *	It is assumed that the start and end are properly
2013 *	rounded to the page size.
2014 */
2015void
2016pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2017{
2018	vm_offset_t pdnxt;
2019	pd_entry_t ptpaddr;
2020	pt_entry_t *pte;
2021	vm_page_t free = NULL;
2022	int anyvalid;
2023
2024	/*
2025	 * Perform an unsynchronized read.  This is, however, safe.
2026	 */
2027	if (pmap->pm_stats.resident_count == 0)
2028		return;
2029
2030	anyvalid = 0;
2031
2032	vm_page_lock_queues();
2033	sched_pin();
2034	PMAP_LOCK(pmap);
2035
2036	/*
2037	 * special handling of removing one page.  a very
2038	 * common operation and easy to short circuit some
2039	 * code.
2040	 */
2041	if ((sva + PAGE_SIZE == eva) &&
2042	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2043		pmap_remove_page(pmap, sva, &free);
2044		goto out;
2045	}
2046
2047	for (; sva < eva; sva = pdnxt) {
2048		unsigned pdirindex;
2049
2050		/*
2051		 * Calculate index for next page table.
2052		 */
2053		pdnxt = (sva + NBPDR) & ~PDRMASK;
2054		if (pmap->pm_stats.resident_count == 0)
2055			break;
2056
2057		pdirindex = sva >> PDRSHIFT;
2058		ptpaddr = pmap->pm_pdir[pdirindex];
2059
2060		/*
2061		 * Weed out invalid mappings. Note: we assume that the page
2062		 * directory table is always allocated, and in kernel virtual.
2063		 */
2064		if (ptpaddr == 0)
2065			continue;
2066
2067		/*
2068		 * Check for large page.
2069		 */
2070		if ((ptpaddr & PG_PS) != 0) {
2071			pmap->pm_pdir[pdirindex] = 0;
2072			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2073			anyvalid = 1;
2074			continue;
2075		}
2076
2077		/*
2078		 * Limit our scan to either the end of the va represented
2079		 * by the current page table page, or to the end of the
2080		 * range being removed.
2081		 */
2082		if (pdnxt > eva)
2083			pdnxt = eva;
2084
2085		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2086		    sva += PAGE_SIZE) {
2087			if (*pte == 0)
2088				continue;
2089
2090			/*
2091			 * The TLB entry for a PG_G mapping is invalidated
2092			 * by pmap_remove_pte().
2093			 */
2094			if ((*pte & PG_G) == 0)
2095				anyvalid = 1;
2096			if (pmap_remove_pte(pmap, pte, sva, &free))
2097				break;
2098		}
2099	}
2100out:
2101	sched_unpin();
2102	if (anyvalid)
2103		pmap_invalidate_all(pmap);
2104	vm_page_unlock_queues();
2105	PMAP_UNLOCK(pmap);
2106	pmap_free_zero_pages(free);
2107}
2108
2109/*
2110 *	Routine:	pmap_remove_all
2111 *	Function:
2112 *		Removes this physical page from
2113 *		all physical maps in which it resides.
2114 *		Reflects back modify bits to the pager.
2115 *
2116 *	Notes:
2117 *		Original versions of this routine were very
2118 *		inefficient because they iteratively called
2119 *		pmap_remove (slow...)
2120 */
2121
2122void
2123pmap_remove_all(vm_page_t m)
2124{
2125	pv_entry_t pv;
2126	pmap_t pmap;
2127	pt_entry_t *pte, tpte;
2128	vm_page_t free;
2129
2130#if defined(PMAP_DIAGNOSTIC)
2131	/*
2132	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2133	 */
2134	if (m->flags & PG_FICTITIOUS) {
2135		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
2136		    VM_PAGE_TO_PHYS(m));
2137	}
2138#endif
2139	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2140	sched_pin();
2141	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2142		pmap = PV_PMAP(pv);
2143		PMAP_LOCK(pmap);
2144		pmap->pm_stats.resident_count--;
2145		pte = pmap_pte_quick(pmap, pv->pv_va);
2146		tpte = pte_load_clear(pte);
2147		if (tpte & PG_W)
2148			pmap->pm_stats.wired_count--;
2149		if (tpte & PG_A)
2150			vm_page_flag_set(m, PG_REFERENCED);
2151
2152		/*
2153		 * Update the vm_page_t clean and reference bits.
2154		 */
2155		if (tpte & PG_M) {
2156			KASSERT((tpte & PG_RW),
2157	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2158			    pv->pv_va, (uintmax_t)tpte));
2159			vm_page_dirty(m);
2160		}
2161		free = NULL;
2162		pmap_unuse_pt(pmap, pv->pv_va, &free);
2163		pmap_invalidate_page(pmap, pv->pv_va);
2164		pmap_free_zero_pages(free);
2165		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2166		m->md.pv_list_count--;
2167		free_pv_entry(pmap, pv);
2168		PMAP_UNLOCK(pmap);
2169	}
2170	vm_page_flag_clear(m, PG_WRITEABLE);
2171	sched_unpin();
2172}
2173
2174/*
2175 *	Set the physical protection on the
2176 *	specified range of this map as requested.
2177 */
2178void
2179pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2180{
2181	vm_offset_t pdnxt;
2182	pd_entry_t ptpaddr;
2183	pt_entry_t *pte;
2184	int anychanged;
2185
2186	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2187		pmap_remove(pmap, sva, eva);
2188		return;
2189	}
2190
2191#ifdef PAE
2192	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2193	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2194		return;
2195#else
2196	if (prot & VM_PROT_WRITE)
2197		return;
2198#endif
2199
2200	anychanged = 0;
2201
2202	vm_page_lock_queues();
2203	sched_pin();
2204	PMAP_LOCK(pmap);
2205	for (; sva < eva; sva = pdnxt) {
2206		pt_entry_t obits, pbits;
2207		unsigned pdirindex;
2208
2209		pdnxt = (sva + NBPDR) & ~PDRMASK;
2210
2211		pdirindex = sva >> PDRSHIFT;
2212		ptpaddr = pmap->pm_pdir[pdirindex];
2213
2214		/*
2215		 * Weed out invalid mappings. Note: we assume that the page
2216		 * directory table is always allocated, and in kernel virtual.
2217		 */
2218		if (ptpaddr == 0)
2219			continue;
2220
2221		/*
2222		 * Check for large page.
2223		 */
2224		if ((ptpaddr & PG_PS) != 0) {
2225			if ((prot & VM_PROT_WRITE) == 0)
2226				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2227#ifdef PAE
2228			if ((prot & VM_PROT_EXECUTE) == 0)
2229				pmap->pm_pdir[pdirindex] |= pg_nx;
2230#endif
2231			anychanged = 1;
2232			continue;
2233		}
2234
2235		if (pdnxt > eva)
2236			pdnxt = eva;
2237
2238		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2239		    sva += PAGE_SIZE) {
2240			vm_page_t m;
2241
2242retry:
2243			/*
2244			 * Regardless of whether a pte is 32 or 64 bits in
2245			 * size, PG_RW, PG_A, and PG_M are among the least
2246			 * significant 32 bits.
2247			 */
2248			obits = pbits = *pte;
2249			if ((pbits & PG_V) == 0)
2250				continue;
2251			if (pbits & PG_MANAGED) {
2252				m = NULL;
2253				if (pbits & PG_A) {
2254					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2255					vm_page_flag_set(m, PG_REFERENCED);
2256					pbits &= ~PG_A;
2257				}
2258				if ((pbits & PG_M) != 0) {
2259					if (m == NULL)
2260						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2261					vm_page_dirty(m);
2262				}
2263			}
2264
2265			if ((prot & VM_PROT_WRITE) == 0)
2266				pbits &= ~(PG_RW | PG_M);
2267#ifdef PAE
2268			if ((prot & VM_PROT_EXECUTE) == 0)
2269				pbits |= pg_nx;
2270#endif
2271
2272			if (pbits != obits) {
2273#ifdef PAE
2274				if (!atomic_cmpset_64(pte, obits, pbits))
2275					goto retry;
2276#else
2277				if (!atomic_cmpset_int((u_int *)pte, obits,
2278				    pbits))
2279					goto retry;
2280#endif
2281				if (obits & PG_G)
2282					pmap_invalidate_page(pmap, sva);
2283				else
2284					anychanged = 1;
2285			}
2286		}
2287	}
2288	sched_unpin();
2289	if (anychanged)
2290		pmap_invalidate_all(pmap);
2291	vm_page_unlock_queues();
2292	PMAP_UNLOCK(pmap);
2293}
2294
2295/*
2296 *	Insert the given physical page (p) at
2297 *	the specified virtual address (v) in the
2298 *	target physical map with the protection requested.
2299 *
2300 *	If specified, the page will be wired down, meaning
2301 *	that the related pte can not be reclaimed.
2302 *
2303 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2304 *	or lose information.  That is, this routine must actually
2305 *	insert this page into the given map NOW.
2306 */
2307void
2308pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2309	   boolean_t wired)
2310{
2311	vm_paddr_t pa;
2312	pd_entry_t *pde;
2313	pt_entry_t *pte;
2314	vm_paddr_t opa;
2315	pt_entry_t origpte, newpte;
2316	vm_page_t mpte, om;
2317	boolean_t invlva;
2318
2319	va = trunc_page(va);
2320#ifdef PMAP_DIAGNOSTIC
2321	if (va > VM_MAX_KERNEL_ADDRESS)
2322		panic("pmap_enter: toobig");
2323	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2324		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2325#endif
2326
2327	mpte = NULL;
2328
2329	vm_page_lock_queues();
2330	PMAP_LOCK(pmap);
2331	sched_pin();
2332
2333	/*
2334	 * In the case that a page table page is not
2335	 * resident, we are creating it here.
2336	 */
2337	if (va < VM_MAXUSER_ADDRESS) {
2338		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2339	}
2340#if 0 && defined(PMAP_DIAGNOSTIC)
2341	else {
2342		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2343		origpte = *pdeaddr;
2344		if ((origpte & PG_V) == 0) {
2345			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2346				pmap->pm_pdir[PTDPTDI], origpte, va);
2347		}
2348	}
2349#endif
2350
2351	pde = pmap_pde(pmap, va);
2352	if ((*pde & PG_PS) != 0)
2353		panic("pmap_enter: attempted pmap_enter on 4MB page");
2354	pte = pmap_pte_quick(pmap, va);
2355
2356	/*
2357	 * Page Directory table entry not valid, we need a new PT page
2358	 */
2359	if (pte == NULL) {
2360		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2361			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
2362	}
2363
2364	pa = VM_PAGE_TO_PHYS(m);
2365	om = NULL;
2366	origpte = *pte;
2367	opa = origpte & PG_FRAME;
2368
2369	/*
2370	 * Mapping has not changed, must be protection or wiring change.
2371	 */
2372	if (origpte && (opa == pa)) {
2373		/*
2374		 * Wiring change, just update stats. We don't worry about
2375		 * wiring PT pages as they remain resident as long as there
2376		 * are valid mappings in them. Hence, if a user page is wired,
2377		 * the PT page will be also.
2378		 */
2379		if (wired && ((origpte & PG_W) == 0))
2380			pmap->pm_stats.wired_count++;
2381		else if (!wired && (origpte & PG_W))
2382			pmap->pm_stats.wired_count--;
2383
2384		/*
2385		 * Remove extra pte reference
2386		 */
2387		if (mpte)
2388			mpte->wire_count--;
2389
2390		/*
2391		 * We might be turning off write access to the page,
2392		 * so we go ahead and sense modify status.
2393		 */
2394		if (origpte & PG_MANAGED) {
2395			om = m;
2396			pa |= PG_MANAGED;
2397		}
2398		goto validate;
2399	}
2400	/*
2401	 * Mapping has changed, invalidate old range and fall through to
2402	 * handle validating new mapping.
2403	 */
2404	if (opa) {
2405		if (origpte & PG_W)
2406			pmap->pm_stats.wired_count--;
2407		if (origpte & PG_MANAGED) {
2408			om = PHYS_TO_VM_PAGE(opa);
2409			pmap_remove_entry(pmap, om, va);
2410		}
2411		if (mpte != NULL) {
2412			mpte->wire_count--;
2413			KASSERT(mpte->wire_count > 0,
2414			    ("pmap_enter: missing reference to page table page,"
2415			     " va: 0x%x", va));
2416		}
2417	} else
2418		pmap->pm_stats.resident_count++;
2419
2420	/*
2421	 * Enter on the PV list if part of our managed memory.
2422	 */
2423	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2424		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2425		    ("pmap_enter: managed mapping within the clean submap"));
2426		pmap_insert_entry(pmap, va, m);
2427		pa |= PG_MANAGED;
2428	}
2429
2430	/*
2431	 * Increment counters
2432	 */
2433	if (wired)
2434		pmap->pm_stats.wired_count++;
2435
2436validate:
2437	/*
2438	 * Now validate mapping with desired protection/wiring.
2439	 */
2440	newpte = (pt_entry_t)(pa | PG_V);
2441	if ((prot & VM_PROT_WRITE) != 0) {
2442		newpte |= PG_RW;
2443		vm_page_flag_set(m, PG_WRITEABLE);
2444	}
2445#ifdef PAE
2446	if ((prot & VM_PROT_EXECUTE) == 0)
2447		newpte |= pg_nx;
2448#endif
2449	if (wired)
2450		newpte |= PG_W;
2451	if (va < VM_MAXUSER_ADDRESS)
2452		newpte |= PG_U;
2453	if (pmap == kernel_pmap)
2454		newpte |= pgeflag;
2455
2456	/*
2457	 * if the mapping or permission bits are different, we need
2458	 * to update the pte.
2459	 */
2460	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2461		if (origpte & PG_V) {
2462			invlva = FALSE;
2463			origpte = pte_load_store(pte, newpte | PG_A);
2464			if (origpte & PG_A) {
2465				if (origpte & PG_MANAGED)
2466					vm_page_flag_set(om, PG_REFERENCED);
2467				if (opa != VM_PAGE_TO_PHYS(m))
2468					invlva = TRUE;
2469#ifdef PAE
2470				if ((origpte & PG_NX) == 0 &&
2471				    (newpte & PG_NX) != 0)
2472					invlva = TRUE;
2473#endif
2474			}
2475			if (origpte & PG_M) {
2476				KASSERT((origpte & PG_RW),
2477	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2478				    va, (uintmax_t)origpte));
2479				if ((origpte & PG_MANAGED) != 0)
2480					vm_page_dirty(om);
2481				if ((prot & VM_PROT_WRITE) == 0)
2482					invlva = TRUE;
2483			}
2484			if (invlva)
2485				pmap_invalidate_page(pmap, va);
2486		} else
2487			pte_store(pte, newpte | PG_A);
2488	}
2489	sched_unpin();
2490	vm_page_unlock_queues();
2491	PMAP_UNLOCK(pmap);
2492}
2493
2494/*
2495 * Maps a sequence of resident pages belonging to the same object.
2496 * The sequence begins with the given page m_start.  This page is
2497 * mapped at the given virtual address start.  Each subsequent page is
2498 * mapped at a virtual address that is offset from start by the same
2499 * amount as the page is offset from m_start within the object.  The
2500 * last page in the sequence is the page with the largest offset from
2501 * m_start that can be mapped at a virtual address less than the given
2502 * virtual address end.  Not every virtual page between start and end
2503 * is mapped; only those for which a resident page exists with the
2504 * corresponding offset from m_start are mapped.
2505 */
2506void
2507pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2508    vm_page_t m_start, vm_prot_t prot)
2509{
2510	vm_page_t m, mpte;
2511	vm_pindex_t diff, psize;
2512
2513	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2514	psize = atop(end - start);
2515	mpte = NULL;
2516	m = m_start;
2517	PMAP_LOCK(pmap);
2518	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2519		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2520		    prot, mpte);
2521		m = TAILQ_NEXT(m, listq);
2522	}
2523 	PMAP_UNLOCK(pmap);
2524}
2525
2526/*
2527 * this code makes some *MAJOR* assumptions:
2528 * 1. Current pmap & pmap exists.
2529 * 2. Not wired.
2530 * 3. Read access.
2531 * 4. No page table pages.
2532 * but is *MUCH* faster than pmap_enter...
2533 */
2534
2535void
2536pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2537{
2538
2539	PMAP_LOCK(pmap);
2540	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2541	PMAP_UNLOCK(pmap);
2542}
2543
2544static vm_page_t
2545pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2546    vm_prot_t prot, vm_page_t mpte)
2547{
2548	pt_entry_t *pte;
2549	vm_paddr_t pa;
2550	vm_page_t free;
2551
2552	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2553	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2554	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2555	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2556	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2557
2558	/*
2559	 * In the case that a page table page is not
2560	 * resident, we are creating it here.
2561	 */
2562	if (va < VM_MAXUSER_ADDRESS) {
2563		unsigned ptepindex;
2564		pd_entry_t ptepa;
2565
2566		/*
2567		 * Calculate pagetable page index
2568		 */
2569		ptepindex = va >> PDRSHIFT;
2570		if (mpte && (mpte->pindex == ptepindex)) {
2571			mpte->wire_count++;
2572		} else {
2573			/*
2574			 * Get the page directory entry
2575			 */
2576			ptepa = pmap->pm_pdir[ptepindex];
2577
2578			/*
2579			 * If the page table page is mapped, we just increment
2580			 * the hold count, and activate it.
2581			 */
2582			if (ptepa) {
2583				if (ptepa & PG_PS)
2584					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2585				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2586				mpte->wire_count++;
2587			} else {
2588				mpte = _pmap_allocpte(pmap, ptepindex,
2589				    M_NOWAIT);
2590				if (mpte == NULL)
2591					return (mpte);
2592			}
2593		}
2594	} else {
2595		mpte = NULL;
2596	}
2597
2598	/*
2599	 * This call to vtopte makes the assumption that we are
2600	 * entering the page into the current pmap.  In order to support
2601	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2602	 * But that isn't as quick as vtopte.
2603	 */
2604	pte = vtopte(va);
2605	if (*pte) {
2606		if (mpte != NULL) {
2607			mpte->wire_count--;
2608			mpte = NULL;
2609		}
2610		return (mpte);
2611	}
2612
2613	/*
2614	 * Enter on the PV list if part of our managed memory.
2615	 */
2616	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2617	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2618		if (mpte != NULL) {
2619			free = NULL;
2620			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2621				pmap_invalidate_page(pmap, va);
2622				pmap_free_zero_pages(free);
2623			}
2624
2625			mpte = NULL;
2626		}
2627		return (mpte);
2628	}
2629
2630	/*
2631	 * Increment counters
2632	 */
2633	pmap->pm_stats.resident_count++;
2634
2635	pa = VM_PAGE_TO_PHYS(m);
2636#ifdef PAE
2637	if ((prot & VM_PROT_EXECUTE) == 0)
2638		pa |= pg_nx;
2639#endif
2640
2641	/*
2642	 * Now validate mapping with RO protection
2643	 */
2644	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2645		pte_store(pte, pa | PG_V | PG_U);
2646	else
2647		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2648	return mpte;
2649}
2650
2651/*
2652 * Make a temporary mapping for a physical address.  This is only intended
2653 * to be used for panic dumps.
2654 */
2655void *
2656pmap_kenter_temporary(vm_paddr_t pa, int i)
2657{
2658	vm_offset_t va;
2659
2660	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2661	pmap_kenter(va, pa);
2662	invlpg(va);
2663	return ((void *)crashdumpmap);
2664}
2665
2666/*
2667 * This code maps large physical mmap regions into the
2668 * processor address space.  Note that some shortcuts
2669 * are taken, but the code works.
2670 */
2671void
2672pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2673		    vm_object_t object, vm_pindex_t pindex,
2674		    vm_size_t size)
2675{
2676	vm_page_t p;
2677
2678	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2679	KASSERT(object->type == OBJT_DEVICE,
2680	    ("pmap_object_init_pt: non-device object"));
2681	if (pseflag &&
2682	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2683		int i;
2684		vm_page_t m[1];
2685		unsigned int ptepindex;
2686		int npdes;
2687		pd_entry_t ptepa;
2688
2689		PMAP_LOCK(pmap);
2690		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2691			goto out;
2692		PMAP_UNLOCK(pmap);
2693retry:
2694		p = vm_page_lookup(object, pindex);
2695		if (p != NULL) {
2696			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2697				goto retry;
2698		} else {
2699			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2700			if (p == NULL)
2701				return;
2702			m[0] = p;
2703
2704			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2705				vm_page_lock_queues();
2706				vm_page_free(p);
2707				vm_page_unlock_queues();
2708				return;
2709			}
2710
2711			p = vm_page_lookup(object, pindex);
2712			vm_page_lock_queues();
2713			vm_page_wakeup(p);
2714			vm_page_unlock_queues();
2715		}
2716
2717		ptepa = VM_PAGE_TO_PHYS(p);
2718		if (ptepa & (NBPDR - 1))
2719			return;
2720
2721		p->valid = VM_PAGE_BITS_ALL;
2722
2723		PMAP_LOCK(pmap);
2724		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2725		npdes = size >> PDRSHIFT;
2726		for(i = 0; i < npdes; i++) {
2727			pde_store(&pmap->pm_pdir[ptepindex],
2728			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2729			ptepa += NBPDR;
2730			ptepindex += 1;
2731		}
2732		pmap_invalidate_all(pmap);
2733out:
2734		PMAP_UNLOCK(pmap);
2735	}
2736}
2737
2738/*
2739 *	Routine:	pmap_change_wiring
2740 *	Function:	Change the wiring attribute for a map/virtual-address
2741 *			pair.
2742 *	In/out conditions:
2743 *			The mapping must already exist in the pmap.
2744 */
2745void
2746pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2747{
2748	pt_entry_t *pte;
2749
2750	PMAP_LOCK(pmap);
2751	pte = pmap_pte(pmap, va);
2752
2753	if (wired && !pmap_pte_w(pte))
2754		pmap->pm_stats.wired_count++;
2755	else if (!wired && pmap_pte_w(pte))
2756		pmap->pm_stats.wired_count--;
2757
2758	/*
2759	 * Wiring is not a hardware characteristic so there is no need to
2760	 * invalidate TLB.
2761	 */
2762	pmap_pte_set_w(pte, wired);
2763	pmap_pte_release(pte);
2764	PMAP_UNLOCK(pmap);
2765}
2766
2767
2768
2769/*
2770 *	Copy the range specified by src_addr/len
2771 *	from the source map to the range dst_addr/len
2772 *	in the destination map.
2773 *
2774 *	This routine is only advisory and need not do anything.
2775 */
2776
2777void
2778pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2779	  vm_offset_t src_addr)
2780{
2781	vm_page_t   free;
2782	vm_offset_t addr;
2783	vm_offset_t end_addr = src_addr + len;
2784	vm_offset_t pdnxt;
2785
2786	if (dst_addr != src_addr)
2787		return;
2788
2789	if (!pmap_is_current(src_pmap))
2790		return;
2791
2792	vm_page_lock_queues();
2793	if (dst_pmap < src_pmap) {
2794		PMAP_LOCK(dst_pmap);
2795		PMAP_LOCK(src_pmap);
2796	} else {
2797		PMAP_LOCK(src_pmap);
2798		PMAP_LOCK(dst_pmap);
2799	}
2800	sched_pin();
2801	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2802		pt_entry_t *src_pte, *dst_pte;
2803		vm_page_t dstmpte, srcmpte;
2804		pd_entry_t srcptepaddr;
2805		unsigned ptepindex;
2806
2807		if (addr >= UPT_MIN_ADDRESS)
2808			panic("pmap_copy: invalid to pmap_copy page tables");
2809
2810		pdnxt = (addr + NBPDR) & ~PDRMASK;
2811		ptepindex = addr >> PDRSHIFT;
2812
2813		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2814		if (srcptepaddr == 0)
2815			continue;
2816
2817		if (srcptepaddr & PG_PS) {
2818			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2819				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
2820				    ~PG_W;
2821				dst_pmap->pm_stats.resident_count +=
2822				    NBPDR / PAGE_SIZE;
2823			}
2824			continue;
2825		}
2826
2827		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
2828		if (srcmpte->wire_count == 0)
2829			panic("pmap_copy: source page table page is unused");
2830
2831		if (pdnxt > end_addr)
2832			pdnxt = end_addr;
2833
2834		src_pte = vtopte(addr);
2835		while (addr < pdnxt) {
2836			pt_entry_t ptetemp;
2837			ptetemp = *src_pte;
2838			/*
2839			 * we only virtual copy managed pages
2840			 */
2841			if ((ptetemp & PG_MANAGED) != 0) {
2842				dstmpte = pmap_allocpte(dst_pmap, addr,
2843				    M_NOWAIT);
2844				if (dstmpte == NULL)
2845					break;
2846				dst_pte = pmap_pte_quick(dst_pmap, addr);
2847				if (*dst_pte == 0 &&
2848				    pmap_try_insert_pv_entry(dst_pmap, addr,
2849				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
2850					/*
2851					 * Clear the wired, modified, and
2852					 * accessed (referenced) bits
2853					 * during the copy.
2854					 */
2855					*dst_pte = ptetemp & ~(PG_W | PG_M |
2856					    PG_A);
2857					dst_pmap->pm_stats.resident_count++;
2858	 			} else {
2859					free = NULL;
2860					if (pmap_unwire_pte_hold( dst_pmap,
2861					    dstmpte, &free)) {
2862						pmap_invalidate_page(dst_pmap,
2863						    addr);
2864						pmap_free_zero_pages(free);
2865					}
2866				}
2867				if (dstmpte->wire_count >= srcmpte->wire_count)
2868					break;
2869			}
2870			addr += PAGE_SIZE;
2871			src_pte++;
2872		}
2873	}
2874	sched_unpin();
2875	vm_page_unlock_queues();
2876	PMAP_UNLOCK(src_pmap);
2877	PMAP_UNLOCK(dst_pmap);
2878}
2879
2880static __inline void
2881pagezero(void *page)
2882{
2883#if defined(I686_CPU)
2884	if (cpu_class == CPUCLASS_686) {
2885#if defined(CPU_ENABLE_SSE)
2886		if (cpu_feature & CPUID_SSE2)
2887			sse2_pagezero(page);
2888		else
2889#endif
2890			i686_pagezero(page);
2891	} else
2892#endif
2893		bzero(page, PAGE_SIZE);
2894}
2895
2896/*
2897 *	pmap_zero_page zeros the specified hardware page by mapping
2898 *	the page into KVM and using bzero to clear its contents.
2899 */
2900void
2901pmap_zero_page(vm_page_t m)
2902{
2903	struct sysmaps *sysmaps;
2904
2905	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2906	mtx_lock(&sysmaps->lock);
2907	if (*sysmaps->CMAP2)
2908		panic("pmap_zero_page: CMAP2 busy");
2909	sched_pin();
2910	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2911	invlcaddr(sysmaps->CADDR2);
2912	pagezero(sysmaps->CADDR2);
2913	*sysmaps->CMAP2 = 0;
2914	sched_unpin();
2915	mtx_unlock(&sysmaps->lock);
2916}
2917
2918/*
2919 *	pmap_zero_page_area zeros the specified hardware page by mapping
2920 *	the page into KVM and using bzero to clear its contents.
2921 *
2922 *	off and size may not cover an area beyond a single hardware page.
2923 */
2924void
2925pmap_zero_page_area(vm_page_t m, int off, int size)
2926{
2927	struct sysmaps *sysmaps;
2928
2929	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2930	mtx_lock(&sysmaps->lock);
2931	if (*sysmaps->CMAP2)
2932		panic("pmap_zero_page: CMAP2 busy");
2933	sched_pin();
2934	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2935	invlcaddr(sysmaps->CADDR2);
2936	if (off == 0 && size == PAGE_SIZE)
2937		pagezero(sysmaps->CADDR2);
2938	else
2939		bzero((char *)sysmaps->CADDR2 + off, size);
2940	*sysmaps->CMAP2 = 0;
2941	sched_unpin();
2942	mtx_unlock(&sysmaps->lock);
2943}
2944
2945/*
2946 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2947 *	the page into KVM and using bzero to clear its contents.  This
2948 *	is intended to be called from the vm_pagezero process only and
2949 *	outside of Giant.
2950 */
2951void
2952pmap_zero_page_idle(vm_page_t m)
2953{
2954
2955	if (*CMAP3)
2956		panic("pmap_zero_page: CMAP3 busy");
2957	sched_pin();
2958	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2959	invlcaddr(CADDR3);
2960	pagezero(CADDR3);
2961	*CMAP3 = 0;
2962	sched_unpin();
2963}
2964
2965/*
2966 *	pmap_copy_page copies the specified (machine independent)
2967 *	page by mapping the page into virtual memory and using
2968 *	bcopy to copy the page, one machine dependent page at a
2969 *	time.
2970 */
2971void
2972pmap_copy_page(vm_page_t src, vm_page_t dst)
2973{
2974	struct sysmaps *sysmaps;
2975
2976	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2977	mtx_lock(&sysmaps->lock);
2978	if (*sysmaps->CMAP1)
2979		panic("pmap_copy_page: CMAP1 busy");
2980	if (*sysmaps->CMAP2)
2981		panic("pmap_copy_page: CMAP2 busy");
2982	sched_pin();
2983	invlpg((u_int)sysmaps->CADDR1);
2984	invlpg((u_int)sysmaps->CADDR2);
2985	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2986	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2987	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2988	*sysmaps->CMAP1 = 0;
2989	*sysmaps->CMAP2 = 0;
2990	sched_unpin();
2991	mtx_unlock(&sysmaps->lock);
2992}
2993
2994/*
2995 * Returns true if the pmap's pv is one of the first
2996 * 16 pvs linked to from this page.  This count may
2997 * be changed upwards or downwards in the future; it
2998 * is only necessary that true be returned for a small
2999 * subset of pmaps for proper page aging.
3000 */
3001boolean_t
3002pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3003{
3004	pv_entry_t pv;
3005	int loops = 0;
3006
3007	if (m->flags & PG_FICTITIOUS)
3008		return FALSE;
3009
3010	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3011	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3012		if (PV_PMAP(pv) == pmap) {
3013			return TRUE;
3014		}
3015		loops++;
3016		if (loops >= 16)
3017			break;
3018	}
3019	return (FALSE);
3020}
3021
3022/*
3023 *	pmap_page_wired_mappings:
3024 *
3025 *	Return the number of managed mappings to the given physical page
3026 *	that are wired.
3027 */
3028int
3029pmap_page_wired_mappings(vm_page_t m)
3030{
3031	pv_entry_t pv;
3032	pt_entry_t *pte;
3033	pmap_t pmap;
3034	int count;
3035
3036	count = 0;
3037	if ((m->flags & PG_FICTITIOUS) != 0)
3038		return (count);
3039	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3040	sched_pin();
3041	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3042		pmap = PV_PMAP(pv);
3043		PMAP_LOCK(pmap);
3044		pte = pmap_pte_quick(pmap, pv->pv_va);
3045		if ((*pte & PG_W) != 0)
3046			count++;
3047		PMAP_UNLOCK(pmap);
3048	}
3049	sched_unpin();
3050	return (count);
3051}
3052
3053/*
3054 * Remove all pages from specified address space
3055 * this aids process exit speeds.  Also, this code
3056 * is special cased for current process only, but
3057 * can have the more generic (and slightly slower)
3058 * mode enabled.  This is much faster than pmap_remove
3059 * in the case of running down an entire address space.
3060 */
3061void
3062pmap_remove_pages(pmap_t pmap)
3063{
3064	pt_entry_t *pte, tpte;
3065	vm_page_t m, free = NULL;
3066	pv_entry_t pv;
3067	struct pv_chunk *pc, *npc;
3068	int field, idx;
3069	int32_t bit;
3070	uint32_t inuse, bitmask;
3071	int allfree;
3072
3073	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3074		printf("warning: pmap_remove_pages called with non-current pmap\n");
3075		return;
3076	}
3077	vm_page_lock_queues();
3078	PMAP_LOCK(pmap);
3079	sched_pin();
3080	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3081		allfree = 1;
3082		for (field = 0; field < _NPCM; field++) {
3083			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3084			while (inuse != 0) {
3085				bit = bsfl(inuse);
3086				bitmask = 1UL << bit;
3087				idx = field * 32 + bit;
3088				pv = &pc->pc_pventry[idx];
3089				inuse &= ~bitmask;
3090
3091				pte = vtopte(pv->pv_va);
3092				tpte = *pte;
3093
3094				if (tpte == 0) {
3095					printf(
3096					    "TPTE at %p  IS ZERO @ VA %08x\n",
3097					    pte, pv->pv_va);
3098					panic("bad pte");
3099				}
3100
3101/*
3102 * We cannot remove wired pages from a process' mapping at this time
3103 */
3104				if (tpte & PG_W) {
3105					allfree = 0;
3106					continue;
3107				}
3108
3109				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3110				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3111				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3112				    m, (uintmax_t)m->phys_addr,
3113				    (uintmax_t)tpte));
3114
3115				KASSERT(m < &vm_page_array[vm_page_array_size],
3116					("pmap_remove_pages: bad tpte %#jx",
3117					(uintmax_t)tpte));
3118
3119				pmap->pm_stats.resident_count--;
3120
3121				pte_clear(pte);
3122
3123				/*
3124				 * Update the vm_page_t clean/reference bits.
3125				 */
3126				if (tpte & PG_M)
3127					vm_page_dirty(m);
3128
3129				/* Mark free */
3130				PV_STAT(pv_entry_frees++);
3131				PV_STAT(pv_entry_spare++);
3132				pv_entry_count--;
3133				pc->pc_map[field] |= bitmask;
3134				m->md.pv_list_count--;
3135				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3136				if (TAILQ_EMPTY(&m->md.pv_list))
3137					vm_page_flag_clear(m, PG_WRITEABLE);
3138
3139				pmap_unuse_pt(pmap, pv->pv_va, &free);
3140			}
3141		}
3142		if (allfree) {
3143			PV_STAT(pv_entry_spare -= _NPCPV);
3144			PV_STAT(pc_chunk_count--);
3145			PV_STAT(pc_chunk_frees++);
3146			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3147			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3148			pmap_qremove((vm_offset_t)pc, 1);
3149			vm_page_unwire(m, 0);
3150			vm_page_free(m);
3151			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3152		}
3153	}
3154	sched_unpin();
3155	pmap_invalidate_all(pmap);
3156	vm_page_unlock_queues();
3157	PMAP_UNLOCK(pmap);
3158	pmap_free_zero_pages(free);
3159}
3160
3161/*
3162 *	pmap_is_modified:
3163 *
3164 *	Return whether or not the specified physical page was modified
3165 *	in any physical maps.
3166 */
3167boolean_t
3168pmap_is_modified(vm_page_t m)
3169{
3170	pv_entry_t pv;
3171	pt_entry_t *pte;
3172	pmap_t pmap;
3173	boolean_t rv;
3174
3175	rv = FALSE;
3176	if (m->flags & PG_FICTITIOUS)
3177		return (rv);
3178
3179	sched_pin();
3180	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3181	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3182		pmap = PV_PMAP(pv);
3183		PMAP_LOCK(pmap);
3184		pte = pmap_pte_quick(pmap, pv->pv_va);
3185		rv = (*pte & PG_M) != 0;
3186		PMAP_UNLOCK(pmap);
3187		if (rv)
3188			break;
3189	}
3190	sched_unpin();
3191	return (rv);
3192}
3193
3194/*
3195 *	pmap_is_prefaultable:
3196 *
3197 *	Return whether or not the specified virtual address is elgible
3198 *	for prefault.
3199 */
3200boolean_t
3201pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3202{
3203	pt_entry_t *pte;
3204	boolean_t rv;
3205
3206	rv = FALSE;
3207	PMAP_LOCK(pmap);
3208	if (*pmap_pde(pmap, addr)) {
3209		pte = vtopte(addr);
3210		rv = *pte == 0;
3211	}
3212	PMAP_UNLOCK(pmap);
3213	return (rv);
3214}
3215
3216/*
3217 * Clear the write and modified bits in each of the given page's mappings.
3218 */
3219void
3220pmap_remove_write(vm_page_t m)
3221{
3222	pv_entry_t pv;
3223	pmap_t pmap;
3224	pt_entry_t oldpte, *pte;
3225
3226	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3227	if ((m->flags & PG_FICTITIOUS) != 0 ||
3228	    (m->flags & PG_WRITEABLE) == 0)
3229		return;
3230	sched_pin();
3231	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3232		pmap = PV_PMAP(pv);
3233		PMAP_LOCK(pmap);
3234		pte = pmap_pte_quick(pmap, pv->pv_va);
3235retry:
3236		oldpte = *pte;
3237		if ((oldpte & PG_RW) != 0) {
3238			/*
3239			 * Regardless of whether a pte is 32 or 64 bits
3240			 * in size, PG_RW and PG_M are among the least
3241			 * significant 32 bits.
3242			 */
3243			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3244			    oldpte & ~(PG_RW | PG_M)))
3245				goto retry;
3246			if ((oldpte & PG_M) != 0)
3247				vm_page_dirty(m);
3248			pmap_invalidate_page(pmap, pv->pv_va);
3249		}
3250		PMAP_UNLOCK(pmap);
3251	}
3252	vm_page_flag_clear(m, PG_WRITEABLE);
3253	sched_unpin();
3254}
3255
3256/*
3257 *	pmap_ts_referenced:
3258 *
3259 *	Return a count of reference bits for a page, clearing those bits.
3260 *	It is not necessary for every reference bit to be cleared, but it
3261 *	is necessary that 0 only be returned when there are truly no
3262 *	reference bits set.
3263 *
3264 *	XXX: The exact number of bits to check and clear is a matter that
3265 *	should be tested and standardized at some point in the future for
3266 *	optimal aging of shared pages.
3267 */
3268int
3269pmap_ts_referenced(vm_page_t m)
3270{
3271	pv_entry_t pv, pvf, pvn;
3272	pmap_t pmap;
3273	pt_entry_t *pte;
3274	int rtval = 0;
3275
3276	if (m->flags & PG_FICTITIOUS)
3277		return (rtval);
3278	sched_pin();
3279	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3280	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3281		pvf = pv;
3282		do {
3283			pvn = TAILQ_NEXT(pv, pv_list);
3284			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3285			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3286			pmap = PV_PMAP(pv);
3287			PMAP_LOCK(pmap);
3288			pte = pmap_pte_quick(pmap, pv->pv_va);
3289			if ((*pte & PG_A) != 0) {
3290				atomic_clear_int((u_int *)pte, PG_A);
3291				pmap_invalidate_page(pmap, pv->pv_va);
3292				rtval++;
3293				if (rtval > 4)
3294					pvn = NULL;
3295			}
3296			PMAP_UNLOCK(pmap);
3297		} while ((pv = pvn) != NULL && pv != pvf);
3298	}
3299	sched_unpin();
3300	return (rtval);
3301}
3302
3303/*
3304 *	Clear the modify bits on the specified physical page.
3305 */
3306void
3307pmap_clear_modify(vm_page_t m)
3308{
3309	pv_entry_t pv;
3310	pmap_t pmap;
3311	pt_entry_t *pte;
3312
3313	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3314	if ((m->flags & PG_FICTITIOUS) != 0)
3315		return;
3316	sched_pin();
3317	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3318		pmap = PV_PMAP(pv);
3319		PMAP_LOCK(pmap);
3320		pte = pmap_pte_quick(pmap, pv->pv_va);
3321		if ((*pte & PG_M) != 0) {
3322			/*
3323			 * Regardless of whether a pte is 32 or 64 bits
3324			 * in size, PG_M is among the least significant
3325			 * 32 bits.
3326			 */
3327			atomic_clear_int((u_int *)pte, PG_M);
3328			pmap_invalidate_page(pmap, pv->pv_va);
3329		}
3330		PMAP_UNLOCK(pmap);
3331	}
3332	sched_unpin();
3333}
3334
3335/*
3336 *	pmap_clear_reference:
3337 *
3338 *	Clear the reference bit on the specified physical page.
3339 */
3340void
3341pmap_clear_reference(vm_page_t m)
3342{
3343	pv_entry_t pv;
3344	pmap_t pmap;
3345	pt_entry_t *pte;
3346
3347	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3348	if ((m->flags & PG_FICTITIOUS) != 0)
3349		return;
3350	sched_pin();
3351	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3352		pmap = PV_PMAP(pv);
3353		PMAP_LOCK(pmap);
3354		pte = pmap_pte_quick(pmap, pv->pv_va);
3355		if ((*pte & PG_A) != 0) {
3356			/*
3357			 * Regardless of whether a pte is 32 or 64 bits
3358			 * in size, PG_A is among the least significant
3359			 * 32 bits.
3360			 */
3361			atomic_clear_int((u_int *)pte, PG_A);
3362			pmap_invalidate_page(pmap, pv->pv_va);
3363		}
3364		PMAP_UNLOCK(pmap);
3365	}
3366	sched_unpin();
3367}
3368
3369/*
3370 * Miscellaneous support routines follow
3371 */
3372
3373/*
3374 * Map a set of physical memory pages into the kernel virtual
3375 * address space. Return a pointer to where it is mapped. This
3376 * routine is intended to be used for mapping device memory,
3377 * NOT real memory.
3378 */
3379void *
3380pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3381{
3382	vm_offset_t va, tmpva, offset;
3383
3384	offset = pa & PAGE_MASK;
3385	size = roundup(offset + size, PAGE_SIZE);
3386	pa = pa & PG_FRAME;
3387
3388	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3389		va = KERNBASE + pa;
3390	else
3391		va = kmem_alloc_nofault(kernel_map, size);
3392	if (!va)
3393		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3394
3395	for (tmpva = va; size > 0; ) {
3396		pmap_kenter_attr(tmpva, pa, mode);
3397		size -= PAGE_SIZE;
3398		tmpva += PAGE_SIZE;
3399		pa += PAGE_SIZE;
3400	}
3401	pmap_invalidate_range(kernel_pmap, va, tmpva);
3402	pmap_invalidate_cache();
3403	return ((void *)(va + offset));
3404}
3405
3406void *
3407pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3408{
3409
3410	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3411}
3412
3413void *
3414pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3415{
3416
3417	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3418}
3419
3420void
3421pmap_unmapdev(vm_offset_t va, vm_size_t size)
3422{
3423	vm_offset_t base, offset, tmpva;
3424
3425	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3426		return;
3427	base = trunc_page(va);
3428	offset = va & PAGE_MASK;
3429	size = roundup(offset + size, PAGE_SIZE);
3430	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3431		pmap_kremove(tmpva);
3432	pmap_invalidate_range(kernel_pmap, va, tmpva);
3433	kmem_free(kernel_map, base, size);
3434}
3435
3436int
3437pmap_change_attr(va, size, mode)
3438	vm_offset_t va;
3439	vm_size_t size;
3440	int mode;
3441{
3442	vm_offset_t base, offset, tmpva;
3443	pt_entry_t *pte;
3444	u_int opte, npte;
3445	pd_entry_t *pde;
3446
3447	base = trunc_page(va);
3448	offset = va & PAGE_MASK;
3449	size = roundup(offset + size, PAGE_SIZE);
3450
3451	/* Only supported on kernel virtual addresses. */
3452	if (base <= VM_MAXUSER_ADDRESS)
3453		return (EINVAL);
3454
3455	/* 4MB pages and pages that aren't mapped aren't supported. */
3456	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3457		pde = pmap_pde(kernel_pmap, tmpva);
3458		if (*pde & PG_PS)
3459			return (EINVAL);
3460		if (*pde == 0)
3461			return (EINVAL);
3462		pte = vtopte(va);
3463		if (*pte == 0)
3464			return (EINVAL);
3465	}
3466
3467	/*
3468	 * Ok, all the pages exist and are 4k, so run through them updating
3469	 * their cache mode.
3470	 */
3471	for (tmpva = base; size > 0; ) {
3472		pte = vtopte(tmpva);
3473
3474		/*
3475		 * The cache mode bits are all in the low 32-bits of the
3476		 * PTE, so we can just spin on updating the low 32-bits.
3477		 */
3478		do {
3479			opte = *(u_int *)pte;
3480			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
3481			npte |= pmap_cache_bits(mode, 0);
3482		} while (npte != opte &&
3483		    !atomic_cmpset_int((u_int *)pte, opte, npte));
3484		tmpva += PAGE_SIZE;
3485		size -= PAGE_SIZE;
3486	}
3487
3488	/*
3489	 * Flush CPU caches to make sure any data isn't cached that shouldn't
3490	 * be, etc.
3491	 */
3492	pmap_invalidate_range(kernel_pmap, base, tmpva);
3493	pmap_invalidate_cache();
3494	return (0);
3495}
3496
3497/*
3498 * perform the pmap work for mincore
3499 */
3500int
3501pmap_mincore(pmap_t pmap, vm_offset_t addr)
3502{
3503	pt_entry_t *ptep, pte;
3504	vm_page_t m;
3505	int val = 0;
3506
3507	PMAP_LOCK(pmap);
3508	ptep = pmap_pte(pmap, addr);
3509	pte = (ptep != NULL) ? *ptep : 0;
3510	pmap_pte_release(ptep);
3511	PMAP_UNLOCK(pmap);
3512
3513	if (pte != 0) {
3514		vm_paddr_t pa;
3515
3516		val = MINCORE_INCORE;
3517		if ((pte & PG_MANAGED) == 0)
3518			return val;
3519
3520		pa = pte & PG_FRAME;
3521
3522		m = PHYS_TO_VM_PAGE(pa);
3523
3524		/*
3525		 * Modified by us
3526		 */
3527		if (pte & PG_M)
3528			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3529		else {
3530			/*
3531			 * Modified by someone else
3532			 */
3533			vm_page_lock_queues();
3534			if (m->dirty || pmap_is_modified(m))
3535				val |= MINCORE_MODIFIED_OTHER;
3536			vm_page_unlock_queues();
3537		}
3538		/*
3539		 * Referenced by us
3540		 */
3541		if (pte & PG_A)
3542			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3543		else {
3544			/*
3545			 * Referenced by someone else
3546			 */
3547			vm_page_lock_queues();
3548			if ((m->flags & PG_REFERENCED) ||
3549			    pmap_ts_referenced(m)) {
3550				val |= MINCORE_REFERENCED_OTHER;
3551				vm_page_flag_set(m, PG_REFERENCED);
3552			}
3553			vm_page_unlock_queues();
3554		}
3555	}
3556	return val;
3557}
3558
3559void
3560pmap_activate(struct thread *td)
3561{
3562	pmap_t	pmap, oldpmap;
3563	u_int32_t  cr3;
3564
3565	critical_enter();
3566	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3567	oldpmap = PCPU_GET(curpmap);
3568#if defined(SMP)
3569	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3570	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3571#else
3572	oldpmap->pm_active &= ~1;
3573	pmap->pm_active |= 1;
3574#endif
3575#ifdef PAE
3576	cr3 = vtophys(pmap->pm_pdpt);
3577#else
3578	cr3 = vtophys(pmap->pm_pdir);
3579#endif
3580	/*
3581	 * pmap_activate is for the current thread on the current cpu
3582	 */
3583	td->td_pcb->pcb_cr3 = cr3;
3584	load_cr3(cr3);
3585	PCPU_SET(curpmap, pmap);
3586	critical_exit();
3587}
3588
3589vm_offset_t
3590pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3591{
3592
3593	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3594		return addr;
3595	}
3596
3597	addr = (addr + PDRMASK) & ~PDRMASK;
3598	return addr;
3599}
3600
3601
3602#if defined(PMAP_DEBUG)
3603pmap_pid_dump(int pid)
3604{
3605	pmap_t pmap;
3606	struct proc *p;
3607	int npte = 0;
3608	int index;
3609
3610	sx_slock(&allproc_lock);
3611	FOREACH_PROC_IN_SYSTEM(p) {
3612		if (p->p_pid != pid)
3613			continue;
3614
3615		if (p->p_vmspace) {
3616			int i,j;
3617			index = 0;
3618			pmap = vmspace_pmap(p->p_vmspace);
3619			for (i = 0; i < NPDEPTD; i++) {
3620				pd_entry_t *pde;
3621				pt_entry_t *pte;
3622				vm_offset_t base = i << PDRSHIFT;
3623
3624				pde = &pmap->pm_pdir[i];
3625				if (pde && pmap_pde_v(pde)) {
3626					for (j = 0; j < NPTEPG; j++) {
3627						vm_offset_t va = base + (j << PAGE_SHIFT);
3628						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3629							if (index) {
3630								index = 0;
3631								printf("\n");
3632							}
3633							sx_sunlock(&allproc_lock);
3634							return npte;
3635						}
3636						pte = pmap_pte(pmap, va);
3637						if (pte && pmap_pte_v(pte)) {
3638							pt_entry_t pa;
3639							vm_page_t m;
3640							pa = *pte;
3641							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
3642							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3643								va, pa, m->hold_count, m->wire_count, m->flags);
3644							npte++;
3645							index++;
3646							if (index >= 2) {
3647								index = 0;
3648								printf("\n");
3649							} else {
3650								printf(" ");
3651							}
3652						}
3653					}
3654				}
3655			}
3656		}
3657	}
3658	sx_sunlock(&allproc_lock);
3659	return npte;
3660}
3661#endif
3662
3663#if defined(DEBUG)
3664
3665static void	pads(pmap_t pm);
3666void		pmap_pvdump(vm_offset_t pa);
3667
3668/* print address space of pmap*/
3669static void
3670pads(pmap_t pm)
3671{
3672	int i, j;
3673	vm_paddr_t va;
3674	pt_entry_t *ptep;
3675
3676	if (pm == kernel_pmap)
3677		return;
3678	for (i = 0; i < NPDEPTD; i++)
3679		if (pm->pm_pdir[i])
3680			for (j = 0; j < NPTEPG; j++) {
3681				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3682				if (pm == kernel_pmap && va < KERNBASE)
3683					continue;
3684				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3685					continue;
3686				ptep = pmap_pte(pm, va);
3687				if (pmap_pte_v(ptep))
3688					printf("%x:%x ", va, *ptep);
3689			};
3690
3691}
3692
3693void
3694pmap_pvdump(vm_paddr_t pa)
3695{
3696	pv_entry_t pv;
3697	pmap_t pmap;
3698	vm_page_t m;
3699
3700	printf("pa %x", pa);
3701	m = PHYS_TO_VM_PAGE(pa);
3702	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3703		pmap = PV_PMAP(pv);
3704		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
3705		pads(pmap);
3706	}
3707	printf(" ");
3708}
3709#endif
3710