pmap.c revision 171907
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 171907 2007-08-21 04:59:34Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sx.h>
122#include <sys/vmmeter.h>
123#include <sys/sched.h>
124#include <sys/sysctl.h>
125#ifdef SMP
126#include <sys/smp.h>
127#endif
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/uma.h>
139
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149#ifdef XBOX
150#include <machine/xbox.h>
151#endif
152
153#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
154#define CPU_ENABLE_SSE
155#endif
156
157#ifndef PMAP_SHPGPERPROC
158#define PMAP_SHPGPERPROC 200
159#endif
160
161#if defined(DIAGNOSTIC)
162#define PMAP_DIAGNOSTIC
163#endif
164
165#if !defined(PMAP_DIAGNOSTIC)
166#define PMAP_INLINE __inline
167#else
168#define PMAP_INLINE
169#endif
170
171#define PV_STATS
172#ifdef PV_STATS
173#define PV_STAT(x)	do { x ; } while (0)
174#else
175#define PV_STAT(x)	do { } while (0)
176#endif
177
178/*
179 * Get PDEs and PTEs for user/kernel address space
180 */
181#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
182#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
183
184#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
185#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
186#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
187#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
188#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
189
190#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
191    atomic_clear_int((u_int *)(pte), PG_W))
192#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
193
194struct pmap kernel_pmap_store;
195LIST_HEAD(pmaplist, pmap);
196static struct pmaplist allpmaps;
197static struct mtx allpmaps_lock;
198
199vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
200vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
201int pgeflag = 0;		/* PG_G or-in */
202int pseflag = 0;		/* PG_PS or-in */
203
204static int nkpt;
205vm_offset_t kernel_vm_end;
206extern u_int32_t KERNend;
207
208#ifdef PAE
209pt_entry_t pg_nx;
210static uma_zone_t pdptzone;
211#endif
212
213/*
214 * Data for the pv entry allocation mechanism
215 */
216static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
217static int shpgperproc = PMAP_SHPGPERPROC;
218
219struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
220int pv_maxchunks;			/* How many chunks we have KVA for */
221vm_offset_t pv_vafree;			/* freelist stored in the PTE */
222
223/*
224 * All those kernel PT submaps that BSD is so fond of
225 */
226struct sysmaps {
227	struct	mtx lock;
228	pt_entry_t *CMAP1;
229	pt_entry_t *CMAP2;
230	caddr_t	CADDR1;
231	caddr_t	CADDR2;
232};
233static struct sysmaps sysmaps_pcpu[MAXCPU];
234pt_entry_t *CMAP1 = 0;
235static pt_entry_t *CMAP3;
236caddr_t CADDR1 = 0, ptvmmap = 0;
237static caddr_t CADDR3;
238struct msgbuf *msgbufp = 0;
239
240/*
241 * Crashdump maps.
242 */
243static caddr_t crashdumpmap;
244
245#ifdef SMP
246extern pt_entry_t *SMPpt;
247#endif
248static pt_entry_t *PMAP1 = 0, *PMAP2;
249static pt_entry_t *PADDR1 = 0, *PADDR2;
250#ifdef SMP
251static int PMAP1cpu;
252static int PMAP1changedcpu;
253SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
254	   &PMAP1changedcpu, 0,
255	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
256#endif
257static int PMAP1changed;
258SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
259	   &PMAP1changed, 0,
260	   "Number of times pmap_pte_quick changed PMAP1");
261static int PMAP1unchanged;
262SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
263	   &PMAP1unchanged, 0,
264	   "Number of times pmap_pte_quick didn't change PMAP1");
265static struct mtx PMAP2mutex;
266
267static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
268static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
269
270static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
271    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
272static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
273    vm_page_t *free);
274static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
275    vm_page_t *free);
276static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
277					vm_offset_t va);
278static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
279static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
280    vm_page_t m);
281
282static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
283
284static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
285static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
286static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
287static void pmap_pte_release(pt_entry_t *pte);
288static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
289static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
290#ifdef PAE
291static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
292#endif
293
294CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
295CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
296
297/*
298 * Move the kernel virtual free pointer to the next
299 * 4MB.  This is used to help improve performance
300 * by using a large (4MB) page for much of the kernel
301 * (.text, .data, .bss)
302 */
303static vm_offset_t
304pmap_kmem_choose(vm_offset_t addr)
305{
306	vm_offset_t newaddr = addr;
307
308#ifndef DISABLE_PSE
309	if (cpu_feature & CPUID_PSE)
310		newaddr = (addr + PDRMASK) & ~PDRMASK;
311#endif
312	return newaddr;
313}
314
315/*
316 *	Bootstrap the system enough to run with virtual memory.
317 *
318 *	On the i386 this is called after mapping has already been enabled
319 *	and just syncs the pmap module with what has already been done.
320 *	[We can't call it easily with mapping off since the kernel is not
321 *	mapped with PA == VA, hence we would have to relocate every address
322 *	from the linked base (virtual) address "KERNBASE" to the actual
323 *	(physical) address starting relative to 0]
324 */
325void
326pmap_bootstrap(vm_paddr_t firstaddr)
327{
328	vm_offset_t va;
329	pt_entry_t *pte, *unused;
330	struct sysmaps *sysmaps;
331	int i;
332
333	/*
334	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
335	 * large. It should instead be correctly calculated in locore.s and
336	 * not based on 'first' (which is a physical address, not a virtual
337	 * address, for the start of unused physical memory). The kernel
338	 * page tables are NOT double mapped and thus should not be included
339	 * in this calculation.
340	 */
341	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
342	virtual_avail = pmap_kmem_choose(virtual_avail);
343
344	virtual_end = VM_MAX_KERNEL_ADDRESS;
345
346	/*
347	 * Initialize the kernel pmap (which is statically allocated).
348	 */
349	PMAP_LOCK_INIT(kernel_pmap);
350	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
351#ifdef PAE
352	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
353#endif
354	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
355	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
356	LIST_INIT(&allpmaps);
357	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
358	mtx_lock_spin(&allpmaps_lock);
359	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
360	mtx_unlock_spin(&allpmaps_lock);
361	nkpt = NKPT;
362
363	/*
364	 * Reserve some special page table entries/VA space for temporary
365	 * mapping of pages.
366	 */
367#define	SYSMAP(c, p, v, n)	\
368	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
369
370	va = virtual_avail;
371	pte = vtopte(va);
372
373	/*
374	 * CMAP1/CMAP2 are used for zeroing and copying pages.
375	 * CMAP3 is used for the idle process page zeroing.
376	 */
377	for (i = 0; i < MAXCPU; i++) {
378		sysmaps = &sysmaps_pcpu[i];
379		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
380		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
381		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
382	}
383	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
384	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
385	*CMAP3 = 0;
386
387	/*
388	 * Crashdump maps.
389	 */
390	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
391
392	/*
393	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
394	 */
395	SYSMAP(caddr_t, unused, ptvmmap, 1)
396
397	/*
398	 * msgbufp is used to map the system message buffer.
399	 */
400	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
401
402	/*
403	 * ptemap is used for pmap_pte_quick
404	 */
405	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
406	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
407
408	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
409
410	virtual_avail = va;
411
412	*CMAP1 = 0;
413
414	/*
415	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
416	 * physical memory region that is used by the ACPI wakeup code.  This
417	 * mapping must not have PG_G set.
418	 */
419#ifdef XBOX
420	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
421	 * an early stadium, we cannot yet neatly map video memory ... :-(
422	 * Better fixes are very welcome! */
423	if (!arch_i386_is_xbox)
424#endif
425	for (i = 1; i < NKPT; i++)
426		PTD[i] = 0;
427
428	/* Initialize the PAT MSR if present. */
429	pmap_init_pat();
430
431	/* Turn on PG_G on kernel page(s) */
432	pmap_set_pg();
433}
434
435/*
436 * Setup the PAT MSR.
437 */
438void
439pmap_init_pat(void)
440{
441	uint64_t pat_msr;
442
443	/* Bail if this CPU doesn't implement PAT. */
444	if (!(cpu_feature & CPUID_PAT))
445		return;
446
447#ifdef PAT_WORKS
448	/*
449	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
450	 * Program 4 and 5 as WP and WC.
451	 * Leave 6 and 7 as UC and UC-.
452	 */
453	pat_msr = rdmsr(MSR_PAT);
454	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
455	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
456	    PAT_VALUE(5, PAT_WRITE_COMBINING);
457#else
458	/*
459	 * Due to some Intel errata, we can only safely use the lower 4
460	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
461	 * of UC-.
462	 *
463	 *   Intel Pentium III Processor Specification Update
464	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
465	 * or Mode C Paging)
466	 *
467	 *   Intel Pentium IV  Processor Specification Update
468	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
469	 */
470	pat_msr = rdmsr(MSR_PAT);
471	pat_msr &= ~PAT_MASK(2);
472	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
473#endif
474	wrmsr(MSR_PAT, pat_msr);
475}
476
477/*
478 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
479 */
480void
481pmap_set_pg(void)
482{
483	pd_entry_t pdir;
484	pt_entry_t *pte;
485	vm_offset_t va, endva;
486	int i;
487
488	if (pgeflag == 0)
489		return;
490
491	i = KERNLOAD/NBPDR;
492	endva = KERNBASE + KERNend;
493
494	if (pseflag) {
495		va = KERNBASE + KERNLOAD;
496		while (va  < endva) {
497			pdir = kernel_pmap->pm_pdir[KPTDI+i];
498			pdir |= pgeflag;
499			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
500			invltlb();	/* Play it safe, invltlb() every time */
501			i++;
502			va += NBPDR;
503		}
504	} else {
505		va = (vm_offset_t)btext;
506		while (va < endva) {
507			pte = vtopte(va);
508			if (*pte)
509				*pte |= pgeflag;
510			invltlb();	/* Play it safe, invltlb() every time */
511			va += PAGE_SIZE;
512		}
513	}
514}
515
516/*
517 * Initialize a vm_page's machine-dependent fields.
518 */
519void
520pmap_page_init(vm_page_t m)
521{
522
523	TAILQ_INIT(&m->md.pv_list);
524	m->md.pv_list_count = 0;
525}
526
527#ifdef PAE
528
529static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
530
531static void *
532pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
533{
534	*flags = UMA_SLAB_PRIV;
535	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
536	    1, 0));
537}
538#endif
539
540/*
541 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
542 * Requirements:
543 *  - Must deal with pages in order to ensure that none of the PG_* bits
544 *    are ever set, PG_V in particular.
545 *  - Assumes we can write to ptes without pte_store() atomic ops, even
546 *    on PAE systems.  This should be ok.
547 *  - Assumes nothing will ever test these addresses for 0 to indicate
548 *    no mapping instead of correctly checking PG_V.
549 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
550 * Because PG_V is never set, there can be no mappings to invalidate.
551 */
552static vm_offset_t
553pmap_ptelist_alloc(vm_offset_t *head)
554{
555	pt_entry_t *pte;
556	vm_offset_t va;
557
558	va = *head;
559	if (va == 0)
560		return (va);	/* Out of memory */
561	pte = vtopte(va);
562	*head = *pte;
563	if (*head & PG_V)
564		panic("pmap_ptelist_alloc: va with PG_V set!");
565	*pte = 0;
566	return (va);
567}
568
569static void
570pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
571{
572	pt_entry_t *pte;
573
574	if (va & PG_V)
575		panic("pmap_ptelist_free: freeing va with PG_V set!");
576	pte = vtopte(va);
577	*pte = *head;		/* virtual! PG_V is 0 though */
578	*head = va;
579}
580
581static void
582pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
583{
584	int i;
585	vm_offset_t va;
586
587	*head = 0;
588	for (i = npages - 1; i >= 0; i--) {
589		va = (vm_offset_t)base + i * PAGE_SIZE;
590		pmap_ptelist_free(head, va);
591	}
592}
593
594
595/*
596 *	Initialize the pmap module.
597 *	Called by vm_init, to initialize any structures that the pmap
598 *	system needs to map virtual memory.
599 */
600void
601pmap_init(void)
602{
603
604	/*
605	 * Initialize the address space (zone) for the pv entries.  Set a
606	 * high water mark so that the system can recover from excessive
607	 * numbers of pv entries.
608	 */
609	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
610	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
611	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
612	pv_entry_max = roundup(pv_entry_max, _NPCPV);
613	pv_entry_high_water = 9 * (pv_entry_max / 10);
614
615	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
616	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
617	    PAGE_SIZE * pv_maxchunks);
618	if (pv_chunkbase == NULL)
619		panic("pmap_init: not enough kvm for pv chunks");
620	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
621#ifdef PAE
622	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
623	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
624	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
625	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
626#endif
627}
628
629
630SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
631SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
632	"Max number of PV entries");
633SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
634	"Page share factor per proc");
635
636/***************************************************
637 * Low level helper routines.....
638 ***************************************************/
639
640/*
641 * Determine the appropriate bits to set in a PTE or PDE for a specified
642 * caching mode.
643 */
644static int
645pmap_cache_bits(int mode, boolean_t is_pde)
646{
647	int pat_flag, pat_index, cache_bits;
648
649	/* The PAT bit is different for PTE's and PDE's. */
650	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
651
652	/* If we don't support PAT, map extended modes to older ones. */
653	if (!(cpu_feature & CPUID_PAT)) {
654		switch (mode) {
655		case PAT_UNCACHEABLE:
656		case PAT_WRITE_THROUGH:
657		case PAT_WRITE_BACK:
658			break;
659		case PAT_UNCACHED:
660		case PAT_WRITE_COMBINING:
661		case PAT_WRITE_PROTECTED:
662			mode = PAT_UNCACHEABLE;
663			break;
664		}
665	}
666
667	/* Map the caching mode to a PAT index. */
668	switch (mode) {
669#ifdef PAT_WORKS
670	case PAT_UNCACHEABLE:
671		pat_index = 3;
672		break;
673	case PAT_WRITE_THROUGH:
674		pat_index = 1;
675		break;
676	case PAT_WRITE_BACK:
677		pat_index = 0;
678		break;
679	case PAT_UNCACHED:
680		pat_index = 2;
681		break;
682	case PAT_WRITE_COMBINING:
683		pat_index = 5;
684		break;
685	case PAT_WRITE_PROTECTED:
686		pat_index = 4;
687		break;
688#else
689	case PAT_UNCACHED:
690	case PAT_UNCACHEABLE:
691	case PAT_WRITE_PROTECTED:
692		pat_index = 3;
693		break;
694	case PAT_WRITE_THROUGH:
695		pat_index = 1;
696		break;
697	case PAT_WRITE_BACK:
698		pat_index = 0;
699		break;
700	case PAT_WRITE_COMBINING:
701		pat_index = 2;
702		break;
703#endif
704	default:
705		panic("Unknown caching mode %d\n", mode);
706	}
707
708	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
709	cache_bits = 0;
710	if (pat_index & 0x4)
711		cache_bits |= pat_flag;
712	if (pat_index & 0x2)
713		cache_bits |= PG_NC_PCD;
714	if (pat_index & 0x1)
715		cache_bits |= PG_NC_PWT;
716	return (cache_bits);
717}
718#ifdef SMP
719/*
720 * For SMP, these functions have to use the IPI mechanism for coherence.
721 */
722void
723pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
724{
725	u_int cpumask;
726	u_int other_cpus;
727
728	sched_pin();
729	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
730		invlpg(va);
731		smp_invlpg(va);
732	} else {
733		cpumask = PCPU_GET(cpumask);
734		other_cpus = PCPU_GET(other_cpus);
735		if (pmap->pm_active & cpumask)
736			invlpg(va);
737		if (pmap->pm_active & other_cpus)
738			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
739	}
740	sched_unpin();
741}
742
743void
744pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
745{
746	u_int cpumask;
747	u_int other_cpus;
748	vm_offset_t addr;
749
750	sched_pin();
751	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
752		for (addr = sva; addr < eva; addr += PAGE_SIZE)
753			invlpg(addr);
754		smp_invlpg_range(sva, eva);
755	} else {
756		cpumask = PCPU_GET(cpumask);
757		other_cpus = PCPU_GET(other_cpus);
758		if (pmap->pm_active & cpumask)
759			for (addr = sva; addr < eva; addr += PAGE_SIZE)
760				invlpg(addr);
761		if (pmap->pm_active & other_cpus)
762			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
763			    sva, eva);
764	}
765	sched_unpin();
766}
767
768void
769pmap_invalidate_all(pmap_t pmap)
770{
771	u_int cpumask;
772	u_int other_cpus;
773
774	sched_pin();
775	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
776		invltlb();
777		smp_invltlb();
778	} else {
779		cpumask = PCPU_GET(cpumask);
780		other_cpus = PCPU_GET(other_cpus);
781		if (pmap->pm_active & cpumask)
782			invltlb();
783		if (pmap->pm_active & other_cpus)
784			smp_masked_invltlb(pmap->pm_active & other_cpus);
785	}
786	sched_unpin();
787}
788
789void
790pmap_invalidate_cache(void)
791{
792
793	sched_pin();
794	wbinvd();
795	smp_cache_flush();
796	sched_unpin();
797}
798#else /* !SMP */
799/*
800 * Normal, non-SMP, 486+ invalidation functions.
801 * We inline these within pmap.c for speed.
802 */
803PMAP_INLINE void
804pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
805{
806
807	if (pmap == kernel_pmap || pmap->pm_active)
808		invlpg(va);
809}
810
811PMAP_INLINE void
812pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
813{
814	vm_offset_t addr;
815
816	if (pmap == kernel_pmap || pmap->pm_active)
817		for (addr = sva; addr < eva; addr += PAGE_SIZE)
818			invlpg(addr);
819}
820
821PMAP_INLINE void
822pmap_invalidate_all(pmap_t pmap)
823{
824
825	if (pmap == kernel_pmap || pmap->pm_active)
826		invltlb();
827}
828
829PMAP_INLINE void
830pmap_invalidate_cache(void)
831{
832
833	wbinvd();
834}
835#endif /* !SMP */
836
837/*
838 * Are we current address space or kernel?  N.B. We return FALSE when
839 * a pmap's page table is in use because a kernel thread is borrowing
840 * it.  The borrowed page table can change spontaneously, making any
841 * dependence on its continued use subject to a race condition.
842 */
843static __inline int
844pmap_is_current(pmap_t pmap)
845{
846
847	return (pmap == kernel_pmap ||
848		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
849	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
850}
851
852/*
853 * If the given pmap is not the current or kernel pmap, the returned pte must
854 * be released by passing it to pmap_pte_release().
855 */
856pt_entry_t *
857pmap_pte(pmap_t pmap, vm_offset_t va)
858{
859	pd_entry_t newpf;
860	pd_entry_t *pde;
861
862	pde = pmap_pde(pmap, va);
863	if (*pde & PG_PS)
864		return (pde);
865	if (*pde != 0) {
866		/* are we current address space or kernel? */
867		if (pmap_is_current(pmap))
868			return (vtopte(va));
869		mtx_lock(&PMAP2mutex);
870		newpf = *pde & PG_FRAME;
871		if ((*PMAP2 & PG_FRAME) != newpf) {
872			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
873			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
874		}
875		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
876	}
877	return (0);
878}
879
880/*
881 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
882 * being NULL.
883 */
884static __inline void
885pmap_pte_release(pt_entry_t *pte)
886{
887
888	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
889		mtx_unlock(&PMAP2mutex);
890}
891
892static __inline void
893invlcaddr(void *caddr)
894{
895
896	invlpg((u_int)caddr);
897}
898
899/*
900 * Super fast pmap_pte routine best used when scanning
901 * the pv lists.  This eliminates many coarse-grained
902 * invltlb calls.  Note that many of the pv list
903 * scans are across different pmaps.  It is very wasteful
904 * to do an entire invltlb for checking a single mapping.
905 *
906 * If the given pmap is not the current pmap, vm_page_queue_mtx
907 * must be held and curthread pinned to a CPU.
908 */
909static pt_entry_t *
910pmap_pte_quick(pmap_t pmap, vm_offset_t va)
911{
912	pd_entry_t newpf;
913	pd_entry_t *pde;
914
915	pde = pmap_pde(pmap, va);
916	if (*pde & PG_PS)
917		return (pde);
918	if (*pde != 0) {
919		/* are we current address space or kernel? */
920		if (pmap_is_current(pmap))
921			return (vtopte(va));
922		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
923		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
924		newpf = *pde & PG_FRAME;
925		if ((*PMAP1 & PG_FRAME) != newpf) {
926			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
927#ifdef SMP
928			PMAP1cpu = PCPU_GET(cpuid);
929#endif
930			invlcaddr(PADDR1);
931			PMAP1changed++;
932		} else
933#ifdef SMP
934		if (PMAP1cpu != PCPU_GET(cpuid)) {
935			PMAP1cpu = PCPU_GET(cpuid);
936			invlcaddr(PADDR1);
937			PMAP1changedcpu++;
938		} else
939#endif
940			PMAP1unchanged++;
941		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
942	}
943	return (0);
944}
945
946/*
947 *	Routine:	pmap_extract
948 *	Function:
949 *		Extract the physical page address associated
950 *		with the given map/virtual_address pair.
951 */
952vm_paddr_t
953pmap_extract(pmap_t pmap, vm_offset_t va)
954{
955	vm_paddr_t rtval;
956	pt_entry_t *pte;
957	pd_entry_t pde;
958
959	rtval = 0;
960	PMAP_LOCK(pmap);
961	pde = pmap->pm_pdir[va >> PDRSHIFT];
962	if (pde != 0) {
963		if ((pde & PG_PS) != 0) {
964			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
965			PMAP_UNLOCK(pmap);
966			return rtval;
967		}
968		pte = pmap_pte(pmap, va);
969		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
970		pmap_pte_release(pte);
971	}
972	PMAP_UNLOCK(pmap);
973	return (rtval);
974}
975
976/*
977 *	Routine:	pmap_extract_and_hold
978 *	Function:
979 *		Atomically extract and hold the physical page
980 *		with the given pmap and virtual address pair
981 *		if that mapping permits the given protection.
982 */
983vm_page_t
984pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
985{
986	pd_entry_t pde;
987	pt_entry_t pte;
988	vm_page_t m;
989
990	m = NULL;
991	vm_page_lock_queues();
992	PMAP_LOCK(pmap);
993	pde = *pmap_pde(pmap, va);
994	if (pde != 0) {
995		if (pde & PG_PS) {
996			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
997				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
998				    (va & PDRMASK));
999				vm_page_hold(m);
1000			}
1001		} else {
1002			sched_pin();
1003			pte = *pmap_pte_quick(pmap, va);
1004			if (pte != 0 &&
1005			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1006				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1007				vm_page_hold(m);
1008			}
1009			sched_unpin();
1010		}
1011	}
1012	vm_page_unlock_queues();
1013	PMAP_UNLOCK(pmap);
1014	return (m);
1015}
1016
1017/***************************************************
1018 * Low level mapping routines.....
1019 ***************************************************/
1020
1021/*
1022 * Add a wired page to the kva.
1023 * Note: not SMP coherent.
1024 */
1025PMAP_INLINE void
1026pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1027{
1028	pt_entry_t *pte;
1029
1030	pte = vtopte(va);
1031	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1032}
1033
1034PMAP_INLINE void
1035pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1036{
1037	pt_entry_t *pte;
1038
1039	pte = vtopte(va);
1040	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1041}
1042
1043/*
1044 * Remove a page from the kernel pagetables.
1045 * Note: not SMP coherent.
1046 */
1047PMAP_INLINE void
1048pmap_kremove(vm_offset_t va)
1049{
1050	pt_entry_t *pte;
1051
1052	pte = vtopte(va);
1053	pte_clear(pte);
1054}
1055
1056/*
1057 *	Used to map a range of physical addresses into kernel
1058 *	virtual address space.
1059 *
1060 *	The value passed in '*virt' is a suggested virtual address for
1061 *	the mapping. Architectures which can support a direct-mapped
1062 *	physical to virtual region can return the appropriate address
1063 *	within that region, leaving '*virt' unchanged. Other
1064 *	architectures should map the pages starting at '*virt' and
1065 *	update '*virt' with the first usable address after the mapped
1066 *	region.
1067 */
1068vm_offset_t
1069pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1070{
1071	vm_offset_t va, sva;
1072
1073	va = sva = *virt;
1074	while (start < end) {
1075		pmap_kenter(va, start);
1076		va += PAGE_SIZE;
1077		start += PAGE_SIZE;
1078	}
1079	pmap_invalidate_range(kernel_pmap, sva, va);
1080	*virt = va;
1081	return (sva);
1082}
1083
1084
1085/*
1086 * Add a list of wired pages to the kva
1087 * this routine is only used for temporary
1088 * kernel mappings that do not need to have
1089 * page modification or references recorded.
1090 * Note that old mappings are simply written
1091 * over.  The page *must* be wired.
1092 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1093 */
1094void
1095pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1096{
1097	pt_entry_t *endpte, oldpte, *pte;
1098
1099	oldpte = 0;
1100	pte = vtopte(sva);
1101	endpte = pte + count;
1102	while (pte < endpte) {
1103		oldpte |= *pte;
1104		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1105		pte++;
1106		ma++;
1107	}
1108	if ((oldpte & PG_V) != 0)
1109		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1110		    PAGE_SIZE);
1111}
1112
1113/*
1114 * This routine tears out page mappings from the
1115 * kernel -- it is meant only for temporary mappings.
1116 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1117 */
1118void
1119pmap_qremove(vm_offset_t sva, int count)
1120{
1121	vm_offset_t va;
1122
1123	va = sva;
1124	while (count-- > 0) {
1125		pmap_kremove(va);
1126		va += PAGE_SIZE;
1127	}
1128	pmap_invalidate_range(kernel_pmap, sva, va);
1129}
1130
1131/***************************************************
1132 * Page table page management routines.....
1133 ***************************************************/
1134static PMAP_INLINE void
1135pmap_free_zero_pages(vm_page_t free)
1136{
1137	vm_page_t m;
1138
1139	while (free != NULL) {
1140		m = free;
1141		free = m->right;
1142		vm_page_free_zero(m);
1143	}
1144}
1145
1146/*
1147 * This routine unholds page table pages, and if the hold count
1148 * drops to zero, then it decrements the wire count.
1149 */
1150static PMAP_INLINE int
1151pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1152{
1153
1154	--m->wire_count;
1155	if (m->wire_count == 0)
1156		return _pmap_unwire_pte_hold(pmap, m, free);
1157	else
1158		return 0;
1159}
1160
1161static int
1162_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1163{
1164	vm_offset_t pteva;
1165
1166	/*
1167	 * unmap the page table page
1168	 */
1169	pmap->pm_pdir[m->pindex] = 0;
1170	--pmap->pm_stats.resident_count;
1171
1172	atomic_subtract_int(&cnt.v_wire_count, 1);
1173
1174	/*
1175	 * Do an invltlb to make the invalidated mapping
1176	 * take effect immediately.
1177	 */
1178	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1179	pmap_invalidate_page(pmap, pteva);
1180
1181	/*
1182	 * Put page on a list so that it is released after
1183	 * *ALL* TLB shootdown is done
1184	 */
1185	m->right = *free;
1186	*free = m;
1187
1188	return 1;
1189}
1190
1191/*
1192 * After removing a page table entry, this routine is used to
1193 * conditionally free the page, and manage the hold/wire counts.
1194 */
1195static int
1196pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1197{
1198	pd_entry_t ptepde;
1199	vm_page_t mpte;
1200
1201	if (va >= VM_MAXUSER_ADDRESS)
1202		return 0;
1203	ptepde = *pmap_pde(pmap, va);
1204	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1205	return pmap_unwire_pte_hold(pmap, mpte, free);
1206}
1207
1208void
1209pmap_pinit0(pmap_t pmap)
1210{
1211
1212	PMAP_LOCK_INIT(pmap);
1213	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1214#ifdef PAE
1215	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1216#endif
1217	pmap->pm_active = 0;
1218	PCPU_SET(curpmap, pmap);
1219	TAILQ_INIT(&pmap->pm_pvchunk);
1220	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1221	mtx_lock_spin(&allpmaps_lock);
1222	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1223	mtx_unlock_spin(&allpmaps_lock);
1224}
1225
1226/*
1227 * Initialize a preallocated and zeroed pmap structure,
1228 * such as one in a vmspace structure.
1229 */
1230void
1231pmap_pinit(pmap_t pmap)
1232{
1233	vm_page_t m, ptdpg[NPGPTD];
1234	vm_paddr_t pa;
1235	static int color;
1236	int i;
1237
1238	PMAP_LOCK_INIT(pmap);
1239
1240	/*
1241	 * No need to allocate page table space yet but we do need a valid
1242	 * page directory table.
1243	 */
1244	if (pmap->pm_pdir == NULL) {
1245		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1246		    NBPTD);
1247#ifdef PAE
1248		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1249		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1250		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1251		    ("pmap_pinit: pdpt misaligned"));
1252		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1253		    ("pmap_pinit: pdpt above 4g"));
1254#endif
1255	}
1256
1257	/*
1258	 * allocate the page directory page(s)
1259	 */
1260	for (i = 0; i < NPGPTD;) {
1261		m = vm_page_alloc(NULL, color++,
1262		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1263		    VM_ALLOC_ZERO);
1264		if (m == NULL)
1265			VM_WAIT;
1266		else {
1267			ptdpg[i++] = m;
1268		}
1269	}
1270
1271	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1272
1273	for (i = 0; i < NPGPTD; i++) {
1274		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1275			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1276	}
1277
1278	mtx_lock_spin(&allpmaps_lock);
1279	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1280	mtx_unlock_spin(&allpmaps_lock);
1281	/* Wire in kernel global address entries. */
1282	/* XXX copies current process, does not fill in MPPTDI */
1283	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1284#ifdef SMP
1285	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1286#endif
1287
1288	/* install self-referential address mapping entry(s) */
1289	for (i = 0; i < NPGPTD; i++) {
1290		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1291		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1292#ifdef PAE
1293		pmap->pm_pdpt[i] = pa | PG_V;
1294#endif
1295	}
1296
1297	pmap->pm_active = 0;
1298	TAILQ_INIT(&pmap->pm_pvchunk);
1299	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1300}
1301
1302/*
1303 * this routine is called if the page table page is not
1304 * mapped correctly.
1305 */
1306static vm_page_t
1307_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1308{
1309	vm_paddr_t ptepa;
1310	vm_page_t m;
1311
1312	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1313	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1314	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1315
1316	/*
1317	 * Allocate a page table page.
1318	 */
1319	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1320	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1321		if (flags & M_WAITOK) {
1322			PMAP_UNLOCK(pmap);
1323			vm_page_unlock_queues();
1324			VM_WAIT;
1325			vm_page_lock_queues();
1326			PMAP_LOCK(pmap);
1327		}
1328
1329		/*
1330		 * Indicate the need to retry.  While waiting, the page table
1331		 * page may have been allocated.
1332		 */
1333		return (NULL);
1334	}
1335	if ((m->flags & PG_ZERO) == 0)
1336		pmap_zero_page(m);
1337
1338	/*
1339	 * Map the pagetable page into the process address space, if
1340	 * it isn't already there.
1341	 */
1342
1343	pmap->pm_stats.resident_count++;
1344
1345	ptepa = VM_PAGE_TO_PHYS(m);
1346	pmap->pm_pdir[ptepindex] =
1347		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1348
1349	return m;
1350}
1351
1352static vm_page_t
1353pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1354{
1355	unsigned ptepindex;
1356	pd_entry_t ptepa;
1357	vm_page_t m;
1358
1359	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1360	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1361	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1362
1363	/*
1364	 * Calculate pagetable page index
1365	 */
1366	ptepindex = va >> PDRSHIFT;
1367retry:
1368	/*
1369	 * Get the page directory entry
1370	 */
1371	ptepa = pmap->pm_pdir[ptepindex];
1372
1373	/*
1374	 * This supports switching from a 4MB page to a
1375	 * normal 4K page.
1376	 */
1377	if (ptepa & PG_PS) {
1378		pmap->pm_pdir[ptepindex] = 0;
1379		ptepa = 0;
1380		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1381		pmap_invalidate_all(kernel_pmap);
1382	}
1383
1384	/*
1385	 * If the page table page is mapped, we just increment the
1386	 * hold count, and activate it.
1387	 */
1388	if (ptepa) {
1389		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1390		m->wire_count++;
1391	} else {
1392		/*
1393		 * Here if the pte page isn't mapped, or if it has
1394		 * been deallocated.
1395		 */
1396		m = _pmap_allocpte(pmap, ptepindex, flags);
1397		if (m == NULL && (flags & M_WAITOK))
1398			goto retry;
1399	}
1400	return (m);
1401}
1402
1403
1404/***************************************************
1405* Pmap allocation/deallocation routines.
1406 ***************************************************/
1407
1408#ifdef SMP
1409/*
1410 * Deal with a SMP shootdown of other users of the pmap that we are
1411 * trying to dispose of.  This can be a bit hairy.
1412 */
1413static u_int *lazymask;
1414static u_int lazyptd;
1415static volatile u_int lazywait;
1416
1417void pmap_lazyfix_action(void);
1418
1419void
1420pmap_lazyfix_action(void)
1421{
1422	u_int mymask = PCPU_GET(cpumask);
1423
1424#ifdef COUNT_IPIS
1425	*ipi_lazypmap_counts[PCPU_GET(cpuid)]++;
1426#endif
1427	if (rcr3() == lazyptd)
1428		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1429	atomic_clear_int(lazymask, mymask);
1430	atomic_store_rel_int(&lazywait, 1);
1431}
1432
1433static void
1434pmap_lazyfix_self(u_int mymask)
1435{
1436
1437	if (rcr3() == lazyptd)
1438		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1439	atomic_clear_int(lazymask, mymask);
1440}
1441
1442
1443static void
1444pmap_lazyfix(pmap_t pmap)
1445{
1446	u_int mymask;
1447	u_int mask;
1448	u_int spins;
1449
1450	while ((mask = pmap->pm_active) != 0) {
1451		spins = 50000000;
1452		mask = mask & -mask;	/* Find least significant set bit */
1453		mtx_lock_spin(&smp_ipi_mtx);
1454#ifdef PAE
1455		lazyptd = vtophys(pmap->pm_pdpt);
1456#else
1457		lazyptd = vtophys(pmap->pm_pdir);
1458#endif
1459		mymask = PCPU_GET(cpumask);
1460		if (mask == mymask) {
1461			lazymask = &pmap->pm_active;
1462			pmap_lazyfix_self(mymask);
1463		} else {
1464			atomic_store_rel_int((u_int *)&lazymask,
1465			    (u_int)&pmap->pm_active);
1466			atomic_store_rel_int(&lazywait, 0);
1467			ipi_selected(mask, IPI_LAZYPMAP);
1468			while (lazywait == 0) {
1469				ia32_pause();
1470				if (--spins == 0)
1471					break;
1472			}
1473		}
1474		mtx_unlock_spin(&smp_ipi_mtx);
1475		if (spins == 0)
1476			printf("pmap_lazyfix: spun for 50000000\n");
1477	}
1478}
1479
1480#else	/* SMP */
1481
1482/*
1483 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1484 * unlikely to have to even execute this code, including the fact
1485 * that the cleanup is deferred until the parent does a wait(2), which
1486 * means that another userland process has run.
1487 */
1488static void
1489pmap_lazyfix(pmap_t pmap)
1490{
1491	u_int cr3;
1492
1493	cr3 = vtophys(pmap->pm_pdir);
1494	if (cr3 == rcr3()) {
1495		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1496		pmap->pm_active &= ~(PCPU_GET(cpumask));
1497	}
1498}
1499#endif	/* SMP */
1500
1501/*
1502 * Release any resources held by the given physical map.
1503 * Called when a pmap initialized by pmap_pinit is being released.
1504 * Should only be called if the map contains no valid mappings.
1505 */
1506void
1507pmap_release(pmap_t pmap)
1508{
1509	vm_page_t m, ptdpg[NPGPTD];
1510	int i;
1511
1512	KASSERT(pmap->pm_stats.resident_count == 0,
1513	    ("pmap_release: pmap resident count %ld != 0",
1514	    pmap->pm_stats.resident_count));
1515
1516	pmap_lazyfix(pmap);
1517	mtx_lock_spin(&allpmaps_lock);
1518	LIST_REMOVE(pmap, pm_list);
1519	mtx_unlock_spin(&allpmaps_lock);
1520
1521	for (i = 0; i < NPGPTD; i++)
1522		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1523		    PG_FRAME);
1524
1525	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1526	    sizeof(*pmap->pm_pdir));
1527#ifdef SMP
1528	pmap->pm_pdir[MPPTDI] = 0;
1529#endif
1530
1531	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1532
1533	for (i = 0; i < NPGPTD; i++) {
1534		m = ptdpg[i];
1535#ifdef PAE
1536		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1537		    ("pmap_release: got wrong ptd page"));
1538#endif
1539		m->wire_count--;
1540		atomic_subtract_int(&cnt.v_wire_count, 1);
1541		vm_page_free_zero(m);
1542	}
1543	PMAP_LOCK_DESTROY(pmap);
1544}
1545
1546static int
1547kvm_size(SYSCTL_HANDLER_ARGS)
1548{
1549	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1550
1551	return sysctl_handle_long(oidp, &ksize, 0, req);
1552}
1553SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1554    0, 0, kvm_size, "IU", "Size of KVM");
1555
1556static int
1557kvm_free(SYSCTL_HANDLER_ARGS)
1558{
1559	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1560
1561	return sysctl_handle_long(oidp, &kfree, 0, req);
1562}
1563SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1564    0, 0, kvm_free, "IU", "Amount of KVM free");
1565
1566/*
1567 * grow the number of kernel page table entries, if needed
1568 */
1569void
1570pmap_growkernel(vm_offset_t addr)
1571{
1572	struct pmap *pmap;
1573	vm_paddr_t ptppaddr;
1574	vm_page_t nkpg;
1575	pd_entry_t newpdir;
1576	pt_entry_t *pde;
1577
1578	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1579	if (kernel_vm_end == 0) {
1580		kernel_vm_end = KERNBASE;
1581		nkpt = 0;
1582		while (pdir_pde(PTD, kernel_vm_end)) {
1583			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1584			nkpt++;
1585			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1586				kernel_vm_end = kernel_map->max_offset;
1587				break;
1588			}
1589		}
1590	}
1591	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1592	if (addr - 1 >= kernel_map->max_offset)
1593		addr = kernel_map->max_offset;
1594	while (kernel_vm_end < addr) {
1595		if (pdir_pde(PTD, kernel_vm_end)) {
1596			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1597			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1598				kernel_vm_end = kernel_map->max_offset;
1599				break;
1600			}
1601			continue;
1602		}
1603
1604		/*
1605		 * This index is bogus, but out of the way
1606		 */
1607		nkpg = vm_page_alloc(NULL, nkpt,
1608		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1609		if (!nkpg)
1610			panic("pmap_growkernel: no memory to grow kernel");
1611
1612		nkpt++;
1613
1614		pmap_zero_page(nkpg);
1615		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1616		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1617		pdir_pde(PTD, kernel_vm_end) = newpdir;
1618
1619		mtx_lock_spin(&allpmaps_lock);
1620		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1621			pde = pmap_pde(pmap, kernel_vm_end);
1622			pde_store(pde, newpdir);
1623		}
1624		mtx_unlock_spin(&allpmaps_lock);
1625		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1626		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1627			kernel_vm_end = kernel_map->max_offset;
1628			break;
1629		}
1630	}
1631}
1632
1633
1634/***************************************************
1635 * page management routines.
1636 ***************************************************/
1637
1638CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1639CTASSERT(_NPCM == 11);
1640
1641static __inline struct pv_chunk *
1642pv_to_chunk(pv_entry_t pv)
1643{
1644
1645	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1646}
1647
1648#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1649
1650#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1651#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1652
1653static uint32_t pc_freemask[11] = {
1654	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1655	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1656	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1657	PC_FREE0_9, PC_FREE10
1658};
1659
1660SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1661	"Current number of pv entries");
1662
1663#ifdef PV_STATS
1664static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1665
1666SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1667	"Current number of pv entry chunks");
1668SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1669	"Current number of pv entry chunks allocated");
1670SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1671	"Current number of pv entry chunks frees");
1672SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1673	"Number of times tried to get a chunk page but failed.");
1674
1675static long pv_entry_frees, pv_entry_allocs;
1676static int pv_entry_spare;
1677
1678SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1679	"Current number of pv entry frees");
1680SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1681	"Current number of pv entry allocs");
1682SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1683	"Current number of spare pv entries");
1684
1685static int pmap_collect_inactive, pmap_collect_active;
1686
1687SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1688	"Current number times pmap_collect called on inactive queue");
1689SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1690	"Current number times pmap_collect called on active queue");
1691#endif
1692
1693/*
1694 * We are in a serious low memory condition.  Resort to
1695 * drastic measures to free some pages so we can allocate
1696 * another pv entry chunk.  This is normally called to
1697 * unmap inactive pages, and if necessary, active pages.
1698 */
1699static void
1700pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1701{
1702	pmap_t pmap;
1703	pt_entry_t *pte, tpte;
1704	pv_entry_t next_pv, pv;
1705	vm_offset_t va;
1706	vm_page_t m, free;
1707
1708	sched_pin();
1709	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1710		if (m->hold_count || m->busy)
1711			continue;
1712		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1713			va = pv->pv_va;
1714			pmap = PV_PMAP(pv);
1715			/* Avoid deadlock and lock recursion. */
1716			if (pmap > locked_pmap)
1717				PMAP_LOCK(pmap);
1718			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1719				continue;
1720			pmap->pm_stats.resident_count--;
1721			pte = pmap_pte_quick(pmap, va);
1722			tpte = pte_load_clear(pte);
1723			KASSERT((tpte & PG_W) == 0,
1724			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1725			if (tpte & PG_A)
1726				vm_page_flag_set(m, PG_REFERENCED);
1727			if (tpte & PG_M) {
1728				KASSERT((tpte & PG_RW),
1729	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
1730				    va, (uintmax_t)tpte));
1731				vm_page_dirty(m);
1732			}
1733			free = NULL;
1734			pmap_unuse_pt(pmap, va, &free);
1735			pmap_invalidate_page(pmap, va);
1736			pmap_free_zero_pages(free);
1737			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1738			if (TAILQ_EMPTY(&m->md.pv_list))
1739				vm_page_flag_clear(m, PG_WRITEABLE);
1740			m->md.pv_list_count--;
1741			free_pv_entry(pmap, pv);
1742			if (pmap != locked_pmap)
1743				PMAP_UNLOCK(pmap);
1744		}
1745	}
1746	sched_unpin();
1747}
1748
1749
1750/*
1751 * free the pv_entry back to the free list
1752 */
1753static void
1754free_pv_entry(pmap_t pmap, pv_entry_t pv)
1755{
1756	vm_page_t m;
1757	struct pv_chunk *pc;
1758	int idx, field, bit;
1759
1760	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1761	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1762	PV_STAT(pv_entry_frees++);
1763	PV_STAT(pv_entry_spare++);
1764	pv_entry_count--;
1765	pc = pv_to_chunk(pv);
1766	idx = pv - &pc->pc_pventry[0];
1767	field = idx / 32;
1768	bit = idx % 32;
1769	pc->pc_map[field] |= 1ul << bit;
1770	/* move to head of list */
1771	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1772	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1773	for (idx = 0; idx < _NPCM; idx++)
1774		if (pc->pc_map[idx] != pc_freemask[idx])
1775			return;
1776	PV_STAT(pv_entry_spare -= _NPCPV);
1777	PV_STAT(pc_chunk_count--);
1778	PV_STAT(pc_chunk_frees++);
1779	/* entire chunk is free, return it */
1780	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1781	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1782	pmap_qremove((vm_offset_t)pc, 1);
1783	vm_page_unwire(m, 0);
1784	vm_page_free(m);
1785	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1786}
1787
1788/*
1789 * get a new pv_entry, allocating a block from the system
1790 * when needed.
1791 */
1792static pv_entry_t
1793get_pv_entry(pmap_t pmap, int try)
1794{
1795	static const struct timeval printinterval = { 60, 0 };
1796	static struct timeval lastprint;
1797	static vm_pindex_t colour;
1798	int bit, field;
1799	pv_entry_t pv;
1800	struct pv_chunk *pc;
1801	vm_page_t m;
1802
1803	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1804	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1805	PV_STAT(pv_entry_allocs++);
1806	pv_entry_count++;
1807	if (pv_entry_count > pv_entry_high_water)
1808		pagedaemon_wakeup();
1809	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1810	if (pc != NULL) {
1811		for (field = 0; field < _NPCM; field++) {
1812			if (pc->pc_map[field]) {
1813				bit = bsfl(pc->pc_map[field]);
1814				break;
1815			}
1816		}
1817		if (field < _NPCM) {
1818			pv = &pc->pc_pventry[field * 32 + bit];
1819			pc->pc_map[field] &= ~(1ul << bit);
1820			/* If this was the last item, move it to tail */
1821			for (field = 0; field < _NPCM; field++)
1822				if (pc->pc_map[field] != 0) {
1823					PV_STAT(pv_entry_spare--);
1824					return (pv);	/* not full, return */
1825				}
1826			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1827			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1828			PV_STAT(pv_entry_spare--);
1829			return (pv);
1830		}
1831	}
1832	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
1833	m = vm_page_alloc(NULL, colour, VM_ALLOC_NORMAL |
1834	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
1835	if (m == NULL || pc == NULL) {
1836		if (try) {
1837			pv_entry_count--;
1838			PV_STAT(pc_chunk_tryfail++);
1839			if (m) {
1840				vm_page_lock_queues();
1841				vm_page_unwire(m, 0);
1842				vm_page_free(m);
1843				vm_page_unlock_queues();
1844			}
1845			if (pc)
1846				pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1847			return (NULL);
1848		}
1849		/*
1850		 * Reclaim pv entries: At first, destroy mappings to
1851		 * inactive pages.  After that, if a pv chunk entry
1852		 * is still needed, destroy mappings to active pages.
1853		 */
1854		if (ratecheck(&lastprint, &printinterval))
1855			printf("Approaching the limit on PV entries, "
1856			    "consider increasing tunables "
1857			    "vm.pmap.shpgperproc or "
1858			    "vm.pmap.pv_entry_max\n");
1859		PV_STAT(pmap_collect_inactive++);
1860		pmap_collect(pmap, &vm_page_queues[PQ_INACTIVE]);
1861		if (m == NULL)
1862			m = vm_page_alloc(NULL, colour, VM_ALLOC_NORMAL |
1863			    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
1864		if (pc == NULL)
1865			pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
1866		if (m == NULL || pc == NULL) {
1867			PV_STAT(pmap_collect_active++);
1868			pmap_collect(pmap, &vm_page_queues[PQ_ACTIVE]);
1869			if (m == NULL)
1870				m = vm_page_alloc(NULL, colour,
1871				    VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
1872				    VM_ALLOC_WIRED);
1873			if (pc == NULL)
1874				pc = (struct pv_chunk *)
1875				    pmap_ptelist_alloc(&pv_vafree);
1876			if (m == NULL || pc == NULL)
1877				panic("get_pv_entry: increase vm.pmap.shpgperproc");
1878		}
1879	}
1880	PV_STAT(pc_chunk_count++);
1881	PV_STAT(pc_chunk_allocs++);
1882	colour++;
1883	pmap_qenter((vm_offset_t)pc, &m, 1);
1884	pc->pc_pmap = pmap;
1885	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1886	for (field = 1; field < _NPCM; field++)
1887		pc->pc_map[field] = pc_freemask[field];
1888	pv = &pc->pc_pventry[0];
1889	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1890	PV_STAT(pv_entry_spare += _NPCPV - 1);
1891	return (pv);
1892}
1893
1894static void
1895pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1896{
1897	pv_entry_t pv;
1898
1899	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1900	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1901	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1902		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
1903			break;
1904	}
1905	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1906	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1907	m->md.pv_list_count--;
1908	if (TAILQ_EMPTY(&m->md.pv_list))
1909		vm_page_flag_clear(m, PG_WRITEABLE);
1910	free_pv_entry(pmap, pv);
1911}
1912
1913/*
1914 * Create a pv entry for page at pa for
1915 * (pmap, va).
1916 */
1917static void
1918pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1919{
1920	pv_entry_t pv;
1921
1922	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1923	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1924	pv = get_pv_entry(pmap, FALSE);
1925	pv->pv_va = va;
1926	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1927	m->md.pv_list_count++;
1928}
1929
1930/*
1931 * Conditionally create a pv entry.
1932 */
1933static boolean_t
1934pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1935{
1936	pv_entry_t pv;
1937
1938	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1939	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1940	if (pv_entry_count < pv_entry_high_water &&
1941	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
1942		pv->pv_va = va;
1943		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1944		m->md.pv_list_count++;
1945		return (TRUE);
1946	} else
1947		return (FALSE);
1948}
1949
1950/*
1951 * pmap_remove_pte: do the things to unmap a page in a process
1952 */
1953static int
1954pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
1955{
1956	pt_entry_t oldpte;
1957	vm_page_t m;
1958
1959	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1960	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1961	oldpte = pte_load_clear(ptq);
1962	if (oldpte & PG_W)
1963		pmap->pm_stats.wired_count -= 1;
1964	/*
1965	 * Machines that don't support invlpg, also don't support
1966	 * PG_G.
1967	 */
1968	if (oldpte & PG_G)
1969		pmap_invalidate_page(kernel_pmap, va);
1970	pmap->pm_stats.resident_count -= 1;
1971	if (oldpte & PG_MANAGED) {
1972		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
1973		if (oldpte & PG_M) {
1974			KASSERT((oldpte & PG_RW),
1975	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1976			    va, (uintmax_t)oldpte));
1977			vm_page_dirty(m);
1978		}
1979		if (oldpte & PG_A)
1980			vm_page_flag_set(m, PG_REFERENCED);
1981		pmap_remove_entry(pmap, m, va);
1982	}
1983	return (pmap_unuse_pt(pmap, va, free));
1984}
1985
1986/*
1987 * Remove a single page from a process address space
1988 */
1989static void
1990pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1991{
1992	pt_entry_t *pte;
1993
1994	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1995	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1996	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1997	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1998		return;
1999	pmap_remove_pte(pmap, pte, va, free);
2000	pmap_invalidate_page(pmap, va);
2001}
2002
2003/*
2004 *	Remove the given range of addresses from the specified map.
2005 *
2006 *	It is assumed that the start and end are properly
2007 *	rounded to the page size.
2008 */
2009void
2010pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2011{
2012	vm_offset_t pdnxt;
2013	pd_entry_t ptpaddr;
2014	pt_entry_t *pte;
2015	vm_page_t free = NULL;
2016	int anyvalid;
2017
2018	/*
2019	 * Perform an unsynchronized read.  This is, however, safe.
2020	 */
2021	if (pmap->pm_stats.resident_count == 0)
2022		return;
2023
2024	anyvalid = 0;
2025
2026	vm_page_lock_queues();
2027	sched_pin();
2028	PMAP_LOCK(pmap);
2029
2030	/*
2031	 * special handling of removing one page.  a very
2032	 * common operation and easy to short circuit some
2033	 * code.
2034	 */
2035	if ((sva + PAGE_SIZE == eva) &&
2036	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2037		pmap_remove_page(pmap, sva, &free);
2038		goto out;
2039	}
2040
2041	for (; sva < eva; sva = pdnxt) {
2042		unsigned pdirindex;
2043
2044		/*
2045		 * Calculate index for next page table.
2046		 */
2047		pdnxt = (sva + NBPDR) & ~PDRMASK;
2048		if (pmap->pm_stats.resident_count == 0)
2049			break;
2050
2051		pdirindex = sva >> PDRSHIFT;
2052		ptpaddr = pmap->pm_pdir[pdirindex];
2053
2054		/*
2055		 * Weed out invalid mappings. Note: we assume that the page
2056		 * directory table is always allocated, and in kernel virtual.
2057		 */
2058		if (ptpaddr == 0)
2059			continue;
2060
2061		/*
2062		 * Check for large page.
2063		 */
2064		if ((ptpaddr & PG_PS) != 0) {
2065			pmap->pm_pdir[pdirindex] = 0;
2066			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2067			anyvalid = 1;
2068			continue;
2069		}
2070
2071		/*
2072		 * Limit our scan to either the end of the va represented
2073		 * by the current page table page, or to the end of the
2074		 * range being removed.
2075		 */
2076		if (pdnxt > eva)
2077			pdnxt = eva;
2078
2079		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2080		    sva += PAGE_SIZE) {
2081			if (*pte == 0)
2082				continue;
2083
2084			/*
2085			 * The TLB entry for a PG_G mapping is invalidated
2086			 * by pmap_remove_pte().
2087			 */
2088			if ((*pte & PG_G) == 0)
2089				anyvalid = 1;
2090			if (pmap_remove_pte(pmap, pte, sva, &free))
2091				break;
2092		}
2093	}
2094out:
2095	sched_unpin();
2096	if (anyvalid)
2097		pmap_invalidate_all(pmap);
2098	vm_page_unlock_queues();
2099	PMAP_UNLOCK(pmap);
2100	pmap_free_zero_pages(free);
2101}
2102
2103/*
2104 *	Routine:	pmap_remove_all
2105 *	Function:
2106 *		Removes this physical page from
2107 *		all physical maps in which it resides.
2108 *		Reflects back modify bits to the pager.
2109 *
2110 *	Notes:
2111 *		Original versions of this routine were very
2112 *		inefficient because they iteratively called
2113 *		pmap_remove (slow...)
2114 */
2115
2116void
2117pmap_remove_all(vm_page_t m)
2118{
2119	pv_entry_t pv;
2120	pmap_t pmap;
2121	pt_entry_t *pte, tpte;
2122	vm_page_t free;
2123
2124#if defined(PMAP_DIAGNOSTIC)
2125	/*
2126	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2127	 */
2128	if (m->flags & PG_FICTITIOUS) {
2129		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
2130		    VM_PAGE_TO_PHYS(m));
2131	}
2132#endif
2133	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2134	sched_pin();
2135	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2136		pmap = PV_PMAP(pv);
2137		PMAP_LOCK(pmap);
2138		pmap->pm_stats.resident_count--;
2139		pte = pmap_pte_quick(pmap, pv->pv_va);
2140		tpte = pte_load_clear(pte);
2141		if (tpte & PG_W)
2142			pmap->pm_stats.wired_count--;
2143		if (tpte & PG_A)
2144			vm_page_flag_set(m, PG_REFERENCED);
2145
2146		/*
2147		 * Update the vm_page_t clean and reference bits.
2148		 */
2149		if (tpte & PG_M) {
2150			KASSERT((tpte & PG_RW),
2151	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2152			    pv->pv_va, (uintmax_t)tpte));
2153			vm_page_dirty(m);
2154		}
2155		free = NULL;
2156		pmap_unuse_pt(pmap, pv->pv_va, &free);
2157		pmap_invalidate_page(pmap, pv->pv_va);
2158		pmap_free_zero_pages(free);
2159		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2160		m->md.pv_list_count--;
2161		free_pv_entry(pmap, pv);
2162		PMAP_UNLOCK(pmap);
2163	}
2164	vm_page_flag_clear(m, PG_WRITEABLE);
2165	sched_unpin();
2166}
2167
2168/*
2169 *	Set the physical protection on the
2170 *	specified range of this map as requested.
2171 */
2172void
2173pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2174{
2175	vm_offset_t pdnxt;
2176	pd_entry_t ptpaddr;
2177	pt_entry_t *pte;
2178	int anychanged;
2179
2180	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2181		pmap_remove(pmap, sva, eva);
2182		return;
2183	}
2184
2185#ifdef PAE
2186	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2187	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2188		return;
2189#else
2190	if (prot & VM_PROT_WRITE)
2191		return;
2192#endif
2193
2194	anychanged = 0;
2195
2196	vm_page_lock_queues();
2197	sched_pin();
2198	PMAP_LOCK(pmap);
2199	for (; sva < eva; sva = pdnxt) {
2200		pt_entry_t obits, pbits;
2201		unsigned pdirindex;
2202
2203		pdnxt = (sva + NBPDR) & ~PDRMASK;
2204
2205		pdirindex = sva >> PDRSHIFT;
2206		ptpaddr = pmap->pm_pdir[pdirindex];
2207
2208		/*
2209		 * Weed out invalid mappings. Note: we assume that the page
2210		 * directory table is always allocated, and in kernel virtual.
2211		 */
2212		if (ptpaddr == 0)
2213			continue;
2214
2215		/*
2216		 * Check for large page.
2217		 */
2218		if ((ptpaddr & PG_PS) != 0) {
2219			if ((prot & VM_PROT_WRITE) == 0)
2220				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2221#ifdef PAE
2222			if ((prot & VM_PROT_EXECUTE) == 0)
2223				pmap->pm_pdir[pdirindex] |= pg_nx;
2224#endif
2225			anychanged = 1;
2226			continue;
2227		}
2228
2229		if (pdnxt > eva)
2230			pdnxt = eva;
2231
2232		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2233		    sva += PAGE_SIZE) {
2234			vm_page_t m;
2235
2236retry:
2237			/*
2238			 * Regardless of whether a pte is 32 or 64 bits in
2239			 * size, PG_RW, PG_A, and PG_M are among the least
2240			 * significant 32 bits.
2241			 */
2242			obits = pbits = *pte;
2243			if ((pbits & PG_V) == 0)
2244				continue;
2245			if (pbits & PG_MANAGED) {
2246				m = NULL;
2247				if (pbits & PG_A) {
2248					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2249					vm_page_flag_set(m, PG_REFERENCED);
2250					pbits &= ~PG_A;
2251				}
2252				if ((pbits & PG_M) != 0) {
2253					if (m == NULL)
2254						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2255					vm_page_dirty(m);
2256				}
2257			}
2258
2259			if ((prot & VM_PROT_WRITE) == 0)
2260				pbits &= ~(PG_RW | PG_M);
2261#ifdef PAE
2262			if ((prot & VM_PROT_EXECUTE) == 0)
2263				pbits |= pg_nx;
2264#endif
2265
2266			if (pbits != obits) {
2267#ifdef PAE
2268				if (!atomic_cmpset_64(pte, obits, pbits))
2269					goto retry;
2270#else
2271				if (!atomic_cmpset_int((u_int *)pte, obits,
2272				    pbits))
2273					goto retry;
2274#endif
2275				if (obits & PG_G)
2276					pmap_invalidate_page(pmap, sva);
2277				else
2278					anychanged = 1;
2279			}
2280		}
2281	}
2282	sched_unpin();
2283	if (anychanged)
2284		pmap_invalidate_all(pmap);
2285	vm_page_unlock_queues();
2286	PMAP_UNLOCK(pmap);
2287}
2288
2289/*
2290 *	Insert the given physical page (p) at
2291 *	the specified virtual address (v) in the
2292 *	target physical map with the protection requested.
2293 *
2294 *	If specified, the page will be wired down, meaning
2295 *	that the related pte can not be reclaimed.
2296 *
2297 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2298 *	or lose information.  That is, this routine must actually
2299 *	insert this page into the given map NOW.
2300 */
2301void
2302pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2303	   boolean_t wired)
2304{
2305	vm_paddr_t pa;
2306	pd_entry_t *pde;
2307	pt_entry_t *pte;
2308	vm_paddr_t opa;
2309	pt_entry_t origpte, newpte;
2310	vm_page_t mpte, om;
2311	boolean_t invlva;
2312
2313	va = trunc_page(va);
2314#ifdef PMAP_DIAGNOSTIC
2315	if (va > VM_MAX_KERNEL_ADDRESS)
2316		panic("pmap_enter: toobig");
2317	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2318		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2319#endif
2320
2321	mpte = NULL;
2322
2323	vm_page_lock_queues();
2324	PMAP_LOCK(pmap);
2325	sched_pin();
2326
2327	/*
2328	 * In the case that a page table page is not
2329	 * resident, we are creating it here.
2330	 */
2331	if (va < VM_MAXUSER_ADDRESS) {
2332		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2333	}
2334#if 0 && defined(PMAP_DIAGNOSTIC)
2335	else {
2336		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2337		origpte = *pdeaddr;
2338		if ((origpte & PG_V) == 0) {
2339			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2340				pmap->pm_pdir[PTDPTDI], origpte, va);
2341		}
2342	}
2343#endif
2344
2345	pde = pmap_pde(pmap, va);
2346	if ((*pde & PG_PS) != 0)
2347		panic("pmap_enter: attempted pmap_enter on 4MB page");
2348	pte = pmap_pte_quick(pmap, va);
2349
2350	/*
2351	 * Page Directory table entry not valid, we need a new PT page
2352	 */
2353	if (pte == NULL) {
2354		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2355			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
2356	}
2357
2358	pa = VM_PAGE_TO_PHYS(m);
2359	om = NULL;
2360	origpte = *pte;
2361	opa = origpte & PG_FRAME;
2362
2363	/*
2364	 * Mapping has not changed, must be protection or wiring change.
2365	 */
2366	if (origpte && (opa == pa)) {
2367		/*
2368		 * Wiring change, just update stats. We don't worry about
2369		 * wiring PT pages as they remain resident as long as there
2370		 * are valid mappings in them. Hence, if a user page is wired,
2371		 * the PT page will be also.
2372		 */
2373		if (wired && ((origpte & PG_W) == 0))
2374			pmap->pm_stats.wired_count++;
2375		else if (!wired && (origpte & PG_W))
2376			pmap->pm_stats.wired_count--;
2377
2378		/*
2379		 * Remove extra pte reference
2380		 */
2381		if (mpte)
2382			mpte->wire_count--;
2383
2384		/*
2385		 * We might be turning off write access to the page,
2386		 * so we go ahead and sense modify status.
2387		 */
2388		if (origpte & PG_MANAGED) {
2389			om = m;
2390			pa |= PG_MANAGED;
2391		}
2392		goto validate;
2393	}
2394	/*
2395	 * Mapping has changed, invalidate old range and fall through to
2396	 * handle validating new mapping.
2397	 */
2398	if (opa) {
2399		if (origpte & PG_W)
2400			pmap->pm_stats.wired_count--;
2401		if (origpte & PG_MANAGED) {
2402			om = PHYS_TO_VM_PAGE(opa);
2403			pmap_remove_entry(pmap, om, va);
2404		}
2405		if (mpte != NULL) {
2406			mpte->wire_count--;
2407			KASSERT(mpte->wire_count > 0,
2408			    ("pmap_enter: missing reference to page table page,"
2409			     " va: 0x%x", va));
2410		}
2411	} else
2412		pmap->pm_stats.resident_count++;
2413
2414	/*
2415	 * Enter on the PV list if part of our managed memory.
2416	 */
2417	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2418		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2419		    ("pmap_enter: managed mapping within the clean submap"));
2420		pmap_insert_entry(pmap, va, m);
2421		pa |= PG_MANAGED;
2422	}
2423
2424	/*
2425	 * Increment counters
2426	 */
2427	if (wired)
2428		pmap->pm_stats.wired_count++;
2429
2430validate:
2431	/*
2432	 * Now validate mapping with desired protection/wiring.
2433	 */
2434	newpte = (pt_entry_t)(pa | PG_V);
2435	if ((prot & VM_PROT_WRITE) != 0) {
2436		newpte |= PG_RW;
2437		vm_page_flag_set(m, PG_WRITEABLE);
2438	}
2439#ifdef PAE
2440	if ((prot & VM_PROT_EXECUTE) == 0)
2441		newpte |= pg_nx;
2442#endif
2443	if (wired)
2444		newpte |= PG_W;
2445	if (va < VM_MAXUSER_ADDRESS)
2446		newpte |= PG_U;
2447	if (pmap == kernel_pmap)
2448		newpte |= pgeflag;
2449
2450	/*
2451	 * if the mapping or permission bits are different, we need
2452	 * to update the pte.
2453	 */
2454	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2455		if (origpte & PG_V) {
2456			invlva = FALSE;
2457			origpte = pte_load_store(pte, newpte | PG_A);
2458			if (origpte & PG_A) {
2459				if (origpte & PG_MANAGED)
2460					vm_page_flag_set(om, PG_REFERENCED);
2461				if (opa != VM_PAGE_TO_PHYS(m))
2462					invlva = TRUE;
2463#ifdef PAE
2464				if ((origpte & PG_NX) == 0 &&
2465				    (newpte & PG_NX) != 0)
2466					invlva = TRUE;
2467#endif
2468			}
2469			if (origpte & PG_M) {
2470				KASSERT((origpte & PG_RW),
2471	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2472				    va, (uintmax_t)origpte));
2473				if ((origpte & PG_MANAGED) != 0)
2474					vm_page_dirty(om);
2475				if ((prot & VM_PROT_WRITE) == 0)
2476					invlva = TRUE;
2477			}
2478			if (invlva)
2479				pmap_invalidate_page(pmap, va);
2480		} else
2481			pte_store(pte, newpte | PG_A);
2482	}
2483	sched_unpin();
2484	vm_page_unlock_queues();
2485	PMAP_UNLOCK(pmap);
2486}
2487
2488/*
2489 * Maps a sequence of resident pages belonging to the same object.
2490 * The sequence begins with the given page m_start.  This page is
2491 * mapped at the given virtual address start.  Each subsequent page is
2492 * mapped at a virtual address that is offset from start by the same
2493 * amount as the page is offset from m_start within the object.  The
2494 * last page in the sequence is the page with the largest offset from
2495 * m_start that can be mapped at a virtual address less than the given
2496 * virtual address end.  Not every virtual page between start and end
2497 * is mapped; only those for which a resident page exists with the
2498 * corresponding offset from m_start are mapped.
2499 */
2500void
2501pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2502    vm_page_t m_start, vm_prot_t prot)
2503{
2504	vm_page_t m, mpte;
2505	vm_pindex_t diff, psize;
2506
2507	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2508	psize = atop(end - start);
2509	mpte = NULL;
2510	m = m_start;
2511	PMAP_LOCK(pmap);
2512	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2513		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2514		    prot, mpte);
2515		m = TAILQ_NEXT(m, listq);
2516	}
2517 	PMAP_UNLOCK(pmap);
2518}
2519
2520/*
2521 * this code makes some *MAJOR* assumptions:
2522 * 1. Current pmap & pmap exists.
2523 * 2. Not wired.
2524 * 3. Read access.
2525 * 4. No page table pages.
2526 * but is *MUCH* faster than pmap_enter...
2527 */
2528
2529void
2530pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2531{
2532
2533	PMAP_LOCK(pmap);
2534	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2535	PMAP_UNLOCK(pmap);
2536}
2537
2538static vm_page_t
2539pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2540    vm_prot_t prot, vm_page_t mpte)
2541{
2542	pt_entry_t *pte;
2543	vm_paddr_t pa;
2544	vm_page_t free;
2545
2546	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2547	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2548	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2549	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2550	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2551
2552	/*
2553	 * In the case that a page table page is not
2554	 * resident, we are creating it here.
2555	 */
2556	if (va < VM_MAXUSER_ADDRESS) {
2557		unsigned ptepindex;
2558		pd_entry_t ptepa;
2559
2560		/*
2561		 * Calculate pagetable page index
2562		 */
2563		ptepindex = va >> PDRSHIFT;
2564		if (mpte && (mpte->pindex == ptepindex)) {
2565			mpte->wire_count++;
2566		} else {
2567			/*
2568			 * Get the page directory entry
2569			 */
2570			ptepa = pmap->pm_pdir[ptepindex];
2571
2572			/*
2573			 * If the page table page is mapped, we just increment
2574			 * the hold count, and activate it.
2575			 */
2576			if (ptepa) {
2577				if (ptepa & PG_PS)
2578					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2579				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2580				mpte->wire_count++;
2581			} else {
2582				mpte = _pmap_allocpte(pmap, ptepindex,
2583				    M_NOWAIT);
2584				if (mpte == NULL)
2585					return (mpte);
2586			}
2587		}
2588	} else {
2589		mpte = NULL;
2590	}
2591
2592	/*
2593	 * This call to vtopte makes the assumption that we are
2594	 * entering the page into the current pmap.  In order to support
2595	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2596	 * But that isn't as quick as vtopte.
2597	 */
2598	pte = vtopte(va);
2599	if (*pte) {
2600		if (mpte != NULL) {
2601			mpte->wire_count--;
2602			mpte = NULL;
2603		}
2604		return (mpte);
2605	}
2606
2607	/*
2608	 * Enter on the PV list if part of our managed memory.
2609	 */
2610	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2611	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2612		if (mpte != NULL) {
2613			free = NULL;
2614			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2615				pmap_invalidate_page(pmap, va);
2616				pmap_free_zero_pages(free);
2617			}
2618
2619			mpte = NULL;
2620		}
2621		return (mpte);
2622	}
2623
2624	/*
2625	 * Increment counters
2626	 */
2627	pmap->pm_stats.resident_count++;
2628
2629	pa = VM_PAGE_TO_PHYS(m);
2630#ifdef PAE
2631	if ((prot & VM_PROT_EXECUTE) == 0)
2632		pa |= pg_nx;
2633#endif
2634
2635	/*
2636	 * Now validate mapping with RO protection
2637	 */
2638	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2639		pte_store(pte, pa | PG_V | PG_U);
2640	else
2641		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2642	return mpte;
2643}
2644
2645/*
2646 * Make a temporary mapping for a physical address.  This is only intended
2647 * to be used for panic dumps.
2648 */
2649void *
2650pmap_kenter_temporary(vm_paddr_t pa, int i)
2651{
2652	vm_offset_t va;
2653
2654	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2655	pmap_kenter(va, pa);
2656	invlpg(va);
2657	return ((void *)crashdumpmap);
2658}
2659
2660/*
2661 * This code maps large physical mmap regions into the
2662 * processor address space.  Note that some shortcuts
2663 * are taken, but the code works.
2664 */
2665void
2666pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2667		    vm_object_t object, vm_pindex_t pindex,
2668		    vm_size_t size)
2669{
2670	vm_page_t p;
2671
2672	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2673	KASSERT(object->type == OBJT_DEVICE,
2674	    ("pmap_object_init_pt: non-device object"));
2675	if (pseflag &&
2676	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2677		int i;
2678		vm_page_t m[1];
2679		unsigned int ptepindex;
2680		int npdes;
2681		pd_entry_t ptepa;
2682
2683		PMAP_LOCK(pmap);
2684		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2685			goto out;
2686		PMAP_UNLOCK(pmap);
2687retry:
2688		p = vm_page_lookup(object, pindex);
2689		if (p != NULL) {
2690			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2691				goto retry;
2692		} else {
2693			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2694			if (p == NULL)
2695				return;
2696			m[0] = p;
2697
2698			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2699				vm_page_lock_queues();
2700				vm_page_free(p);
2701				vm_page_unlock_queues();
2702				return;
2703			}
2704
2705			p = vm_page_lookup(object, pindex);
2706			vm_page_lock_queues();
2707			vm_page_wakeup(p);
2708			vm_page_unlock_queues();
2709		}
2710
2711		ptepa = VM_PAGE_TO_PHYS(p);
2712		if (ptepa & (NBPDR - 1))
2713			return;
2714
2715		p->valid = VM_PAGE_BITS_ALL;
2716
2717		PMAP_LOCK(pmap);
2718		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2719		npdes = size >> PDRSHIFT;
2720		for(i = 0; i < npdes; i++) {
2721			pde_store(&pmap->pm_pdir[ptepindex],
2722			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2723			ptepa += NBPDR;
2724			ptepindex += 1;
2725		}
2726		pmap_invalidate_all(pmap);
2727out:
2728		PMAP_UNLOCK(pmap);
2729	}
2730}
2731
2732/*
2733 *	Routine:	pmap_change_wiring
2734 *	Function:	Change the wiring attribute for a map/virtual-address
2735 *			pair.
2736 *	In/out conditions:
2737 *			The mapping must already exist in the pmap.
2738 */
2739void
2740pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2741{
2742	pt_entry_t *pte;
2743
2744	PMAP_LOCK(pmap);
2745	pte = pmap_pte(pmap, va);
2746
2747	if (wired && !pmap_pte_w(pte))
2748		pmap->pm_stats.wired_count++;
2749	else if (!wired && pmap_pte_w(pte))
2750		pmap->pm_stats.wired_count--;
2751
2752	/*
2753	 * Wiring is not a hardware characteristic so there is no need to
2754	 * invalidate TLB.
2755	 */
2756	pmap_pte_set_w(pte, wired);
2757	pmap_pte_release(pte);
2758	PMAP_UNLOCK(pmap);
2759}
2760
2761
2762
2763/*
2764 *	Copy the range specified by src_addr/len
2765 *	from the source map to the range dst_addr/len
2766 *	in the destination map.
2767 *
2768 *	This routine is only advisory and need not do anything.
2769 */
2770
2771void
2772pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2773	  vm_offset_t src_addr)
2774{
2775	vm_page_t   free;
2776	vm_offset_t addr;
2777	vm_offset_t end_addr = src_addr + len;
2778	vm_offset_t pdnxt;
2779
2780	if (dst_addr != src_addr)
2781		return;
2782
2783	if (!pmap_is_current(src_pmap))
2784		return;
2785
2786	vm_page_lock_queues();
2787	if (dst_pmap < src_pmap) {
2788		PMAP_LOCK(dst_pmap);
2789		PMAP_LOCK(src_pmap);
2790	} else {
2791		PMAP_LOCK(src_pmap);
2792		PMAP_LOCK(dst_pmap);
2793	}
2794	sched_pin();
2795	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2796		pt_entry_t *src_pte, *dst_pte;
2797		vm_page_t dstmpte, srcmpte;
2798		pd_entry_t srcptepaddr;
2799		unsigned ptepindex;
2800
2801		if (addr >= UPT_MIN_ADDRESS)
2802			panic("pmap_copy: invalid to pmap_copy page tables");
2803
2804		pdnxt = (addr + NBPDR) & ~PDRMASK;
2805		ptepindex = addr >> PDRSHIFT;
2806
2807		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2808		if (srcptepaddr == 0)
2809			continue;
2810
2811		if (srcptepaddr & PG_PS) {
2812			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2813				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
2814				    ~PG_W;
2815				dst_pmap->pm_stats.resident_count +=
2816				    NBPDR / PAGE_SIZE;
2817			}
2818			continue;
2819		}
2820
2821		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
2822		if (srcmpte->wire_count == 0)
2823			panic("pmap_copy: source page table page is unused");
2824
2825		if (pdnxt > end_addr)
2826			pdnxt = end_addr;
2827
2828		src_pte = vtopte(addr);
2829		while (addr < pdnxt) {
2830			pt_entry_t ptetemp;
2831			ptetemp = *src_pte;
2832			/*
2833			 * we only virtual copy managed pages
2834			 */
2835			if ((ptetemp & PG_MANAGED) != 0) {
2836				dstmpte = pmap_allocpte(dst_pmap, addr,
2837				    M_NOWAIT);
2838				if (dstmpte == NULL)
2839					break;
2840				dst_pte = pmap_pte_quick(dst_pmap, addr);
2841				if (*dst_pte == 0 &&
2842				    pmap_try_insert_pv_entry(dst_pmap, addr,
2843				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
2844					/*
2845					 * Clear the wired, modified, and
2846					 * accessed (referenced) bits
2847					 * during the copy.
2848					 */
2849					*dst_pte = ptetemp & ~(PG_W | PG_M |
2850					    PG_A);
2851					dst_pmap->pm_stats.resident_count++;
2852	 			} else {
2853					free = NULL;
2854					if (pmap_unwire_pte_hold( dst_pmap,
2855					    dstmpte, &free)) {
2856						pmap_invalidate_page(dst_pmap,
2857						    addr);
2858						pmap_free_zero_pages(free);
2859					}
2860				}
2861				if (dstmpte->wire_count >= srcmpte->wire_count)
2862					break;
2863			}
2864			addr += PAGE_SIZE;
2865			src_pte++;
2866		}
2867	}
2868	sched_unpin();
2869	vm_page_unlock_queues();
2870	PMAP_UNLOCK(src_pmap);
2871	PMAP_UNLOCK(dst_pmap);
2872}
2873
2874static __inline void
2875pagezero(void *page)
2876{
2877#if defined(I686_CPU)
2878	if (cpu_class == CPUCLASS_686) {
2879#if defined(CPU_ENABLE_SSE)
2880		if (cpu_feature & CPUID_SSE2)
2881			sse2_pagezero(page);
2882		else
2883#endif
2884			i686_pagezero(page);
2885	} else
2886#endif
2887		bzero(page, PAGE_SIZE);
2888}
2889
2890/*
2891 *	pmap_zero_page zeros the specified hardware page by mapping
2892 *	the page into KVM and using bzero to clear its contents.
2893 */
2894void
2895pmap_zero_page(vm_page_t m)
2896{
2897	struct sysmaps *sysmaps;
2898
2899	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2900	mtx_lock(&sysmaps->lock);
2901	if (*sysmaps->CMAP2)
2902		panic("pmap_zero_page: CMAP2 busy");
2903	sched_pin();
2904	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2905	invlcaddr(sysmaps->CADDR2);
2906	pagezero(sysmaps->CADDR2);
2907	*sysmaps->CMAP2 = 0;
2908	sched_unpin();
2909	mtx_unlock(&sysmaps->lock);
2910}
2911
2912/*
2913 *	pmap_zero_page_area zeros the specified hardware page by mapping
2914 *	the page into KVM and using bzero to clear its contents.
2915 *
2916 *	off and size may not cover an area beyond a single hardware page.
2917 */
2918void
2919pmap_zero_page_area(vm_page_t m, int off, int size)
2920{
2921	struct sysmaps *sysmaps;
2922
2923	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2924	mtx_lock(&sysmaps->lock);
2925	if (*sysmaps->CMAP2)
2926		panic("pmap_zero_page: CMAP2 busy");
2927	sched_pin();
2928	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2929	invlcaddr(sysmaps->CADDR2);
2930	if (off == 0 && size == PAGE_SIZE)
2931		pagezero(sysmaps->CADDR2);
2932	else
2933		bzero((char *)sysmaps->CADDR2 + off, size);
2934	*sysmaps->CMAP2 = 0;
2935	sched_unpin();
2936	mtx_unlock(&sysmaps->lock);
2937}
2938
2939/*
2940 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2941 *	the page into KVM and using bzero to clear its contents.  This
2942 *	is intended to be called from the vm_pagezero process only and
2943 *	outside of Giant.
2944 */
2945void
2946pmap_zero_page_idle(vm_page_t m)
2947{
2948
2949	if (*CMAP3)
2950		panic("pmap_zero_page: CMAP3 busy");
2951	sched_pin();
2952	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2953	invlcaddr(CADDR3);
2954	pagezero(CADDR3);
2955	*CMAP3 = 0;
2956	sched_unpin();
2957}
2958
2959/*
2960 *	pmap_copy_page copies the specified (machine independent)
2961 *	page by mapping the page into virtual memory and using
2962 *	bcopy to copy the page, one machine dependent page at a
2963 *	time.
2964 */
2965void
2966pmap_copy_page(vm_page_t src, vm_page_t dst)
2967{
2968	struct sysmaps *sysmaps;
2969
2970	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2971	mtx_lock(&sysmaps->lock);
2972	if (*sysmaps->CMAP1)
2973		panic("pmap_copy_page: CMAP1 busy");
2974	if (*sysmaps->CMAP2)
2975		panic("pmap_copy_page: CMAP2 busy");
2976	sched_pin();
2977	invlpg((u_int)sysmaps->CADDR1);
2978	invlpg((u_int)sysmaps->CADDR2);
2979	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2980	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2981	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2982	*sysmaps->CMAP1 = 0;
2983	*sysmaps->CMAP2 = 0;
2984	sched_unpin();
2985	mtx_unlock(&sysmaps->lock);
2986}
2987
2988/*
2989 * Returns true if the pmap's pv is one of the first
2990 * 16 pvs linked to from this page.  This count may
2991 * be changed upwards or downwards in the future; it
2992 * is only necessary that true be returned for a small
2993 * subset of pmaps for proper page aging.
2994 */
2995boolean_t
2996pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2997{
2998	pv_entry_t pv;
2999	int loops = 0;
3000
3001	if (m->flags & PG_FICTITIOUS)
3002		return FALSE;
3003
3004	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3005	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3006		if (PV_PMAP(pv) == pmap) {
3007			return TRUE;
3008		}
3009		loops++;
3010		if (loops >= 16)
3011			break;
3012	}
3013	return (FALSE);
3014}
3015
3016/*
3017 * Remove all pages from specified address space
3018 * this aids process exit speeds.  Also, this code
3019 * is special cased for current process only, but
3020 * can have the more generic (and slightly slower)
3021 * mode enabled.  This is much faster than pmap_remove
3022 * in the case of running down an entire address space.
3023 */
3024void
3025pmap_remove_pages(pmap_t pmap)
3026{
3027	pt_entry_t *pte, tpte;
3028	vm_page_t m, free = NULL;
3029	pv_entry_t pv;
3030	struct pv_chunk *pc, *npc;
3031	int field, idx;
3032	int32_t bit;
3033	uint32_t inuse, bitmask;
3034	int allfree;
3035
3036	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3037		printf("warning: pmap_remove_pages called with non-current pmap\n");
3038		return;
3039	}
3040	vm_page_lock_queues();
3041	PMAP_LOCK(pmap);
3042	sched_pin();
3043	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3044		allfree = 1;
3045		for (field = 0; field < _NPCM; field++) {
3046			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3047			while (inuse != 0) {
3048				bit = bsfl(inuse);
3049				bitmask = 1UL << bit;
3050				idx = field * 32 + bit;
3051				pv = &pc->pc_pventry[idx];
3052				inuse &= ~bitmask;
3053
3054				pte = vtopte(pv->pv_va);
3055				tpte = *pte;
3056
3057				if (tpte == 0) {
3058					printf(
3059					    "TPTE at %p  IS ZERO @ VA %08x\n",
3060					    pte, pv->pv_va);
3061					panic("bad pte");
3062				}
3063
3064/*
3065 * We cannot remove wired pages from a process' mapping at this time
3066 */
3067				if (tpte & PG_W) {
3068					allfree = 0;
3069					continue;
3070				}
3071
3072				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3073				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3074				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3075				    m, (uintmax_t)m->phys_addr,
3076				    (uintmax_t)tpte));
3077
3078				KASSERT(m < &vm_page_array[vm_page_array_size],
3079					("pmap_remove_pages: bad tpte %#jx",
3080					(uintmax_t)tpte));
3081
3082				pmap->pm_stats.resident_count--;
3083
3084				pte_clear(pte);
3085
3086				/*
3087				 * Update the vm_page_t clean/reference bits.
3088				 */
3089				if (tpte & PG_M)
3090					vm_page_dirty(m);
3091
3092				/* Mark free */
3093				PV_STAT(pv_entry_frees++);
3094				PV_STAT(pv_entry_spare++);
3095				pv_entry_count--;
3096				pc->pc_map[field] |= bitmask;
3097				m->md.pv_list_count--;
3098				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3099				if (TAILQ_EMPTY(&m->md.pv_list))
3100					vm_page_flag_clear(m, PG_WRITEABLE);
3101
3102				pmap_unuse_pt(pmap, pv->pv_va, &free);
3103			}
3104		}
3105		if (allfree) {
3106			PV_STAT(pv_entry_spare -= _NPCPV);
3107			PV_STAT(pc_chunk_count--);
3108			PV_STAT(pc_chunk_frees++);
3109			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3110			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3111			pmap_qremove((vm_offset_t)pc, 1);
3112			vm_page_unwire(m, 0);
3113			vm_page_free(m);
3114			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3115		}
3116	}
3117	sched_unpin();
3118	pmap_invalidate_all(pmap);
3119	vm_page_unlock_queues();
3120	PMAP_UNLOCK(pmap);
3121	pmap_free_zero_pages(free);
3122}
3123
3124/*
3125 *	pmap_is_modified:
3126 *
3127 *	Return whether or not the specified physical page was modified
3128 *	in any physical maps.
3129 */
3130boolean_t
3131pmap_is_modified(vm_page_t m)
3132{
3133	pv_entry_t pv;
3134	pt_entry_t *pte;
3135	pmap_t pmap;
3136	boolean_t rv;
3137
3138	rv = FALSE;
3139	if (m->flags & PG_FICTITIOUS)
3140		return (rv);
3141
3142	sched_pin();
3143	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3144	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3145		pmap = PV_PMAP(pv);
3146		PMAP_LOCK(pmap);
3147		pte = pmap_pte_quick(pmap, pv->pv_va);
3148		rv = (*pte & PG_M) != 0;
3149		PMAP_UNLOCK(pmap);
3150		if (rv)
3151			break;
3152	}
3153	sched_unpin();
3154	return (rv);
3155}
3156
3157/*
3158 *	pmap_is_prefaultable:
3159 *
3160 *	Return whether or not the specified virtual address is elgible
3161 *	for prefault.
3162 */
3163boolean_t
3164pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3165{
3166	pt_entry_t *pte;
3167	boolean_t rv;
3168
3169	rv = FALSE;
3170	PMAP_LOCK(pmap);
3171	if (*pmap_pde(pmap, addr)) {
3172		pte = vtopte(addr);
3173		rv = *pte == 0;
3174	}
3175	PMAP_UNLOCK(pmap);
3176	return (rv);
3177}
3178
3179/*
3180 * Clear the write and modified bits in each of the given page's mappings.
3181 */
3182void
3183pmap_remove_write(vm_page_t m)
3184{
3185	pv_entry_t pv;
3186	pmap_t pmap;
3187	pt_entry_t oldpte, *pte;
3188
3189	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3190	if ((m->flags & PG_FICTITIOUS) != 0 ||
3191	    (m->flags & PG_WRITEABLE) == 0)
3192		return;
3193	sched_pin();
3194	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3195		pmap = PV_PMAP(pv);
3196		PMAP_LOCK(pmap);
3197		pte = pmap_pte_quick(pmap, pv->pv_va);
3198retry:
3199		oldpte = *pte;
3200		if ((oldpte & PG_RW) != 0) {
3201			/*
3202			 * Regardless of whether a pte is 32 or 64 bits
3203			 * in size, PG_RW and PG_M are among the least
3204			 * significant 32 bits.
3205			 */
3206			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3207			    oldpte & ~(PG_RW | PG_M)))
3208				goto retry;
3209			if ((oldpte & PG_M) != 0)
3210				vm_page_dirty(m);
3211			pmap_invalidate_page(pmap, pv->pv_va);
3212		}
3213		PMAP_UNLOCK(pmap);
3214	}
3215	vm_page_flag_clear(m, PG_WRITEABLE);
3216	sched_unpin();
3217}
3218
3219/*
3220 *	pmap_ts_referenced:
3221 *
3222 *	Return a count of reference bits for a page, clearing those bits.
3223 *	It is not necessary for every reference bit to be cleared, but it
3224 *	is necessary that 0 only be returned when there are truly no
3225 *	reference bits set.
3226 *
3227 *	XXX: The exact number of bits to check and clear is a matter that
3228 *	should be tested and standardized at some point in the future for
3229 *	optimal aging of shared pages.
3230 */
3231int
3232pmap_ts_referenced(vm_page_t m)
3233{
3234	pv_entry_t pv, pvf, pvn;
3235	pmap_t pmap;
3236	pt_entry_t *pte;
3237	int rtval = 0;
3238
3239	if (m->flags & PG_FICTITIOUS)
3240		return (rtval);
3241	sched_pin();
3242	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3243	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3244		pvf = pv;
3245		do {
3246			pvn = TAILQ_NEXT(pv, pv_list);
3247			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3248			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3249			pmap = PV_PMAP(pv);
3250			PMAP_LOCK(pmap);
3251			pte = pmap_pte_quick(pmap, pv->pv_va);
3252			if ((*pte & PG_A) != 0) {
3253				atomic_clear_int((u_int *)pte, PG_A);
3254				pmap_invalidate_page(pmap, pv->pv_va);
3255				rtval++;
3256				if (rtval > 4)
3257					pvn = NULL;
3258			}
3259			PMAP_UNLOCK(pmap);
3260		} while ((pv = pvn) != NULL && pv != pvf);
3261	}
3262	sched_unpin();
3263	return (rtval);
3264}
3265
3266/*
3267 *	Clear the modify bits on the specified physical page.
3268 */
3269void
3270pmap_clear_modify(vm_page_t m)
3271{
3272	pv_entry_t pv;
3273	pmap_t pmap;
3274	pt_entry_t *pte;
3275
3276	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3277	if ((m->flags & PG_FICTITIOUS) != 0)
3278		return;
3279	sched_pin();
3280	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3281		pmap = PV_PMAP(pv);
3282		PMAP_LOCK(pmap);
3283		pte = pmap_pte_quick(pmap, pv->pv_va);
3284		if ((*pte & PG_M) != 0) {
3285			/*
3286			 * Regardless of whether a pte is 32 or 64 bits
3287			 * in size, PG_M is among the least significant
3288			 * 32 bits.
3289			 */
3290			atomic_clear_int((u_int *)pte, PG_M);
3291			pmap_invalidate_page(pmap, pv->pv_va);
3292		}
3293		PMAP_UNLOCK(pmap);
3294	}
3295	sched_unpin();
3296}
3297
3298/*
3299 *	pmap_clear_reference:
3300 *
3301 *	Clear the reference bit on the specified physical page.
3302 */
3303void
3304pmap_clear_reference(vm_page_t m)
3305{
3306	pv_entry_t pv;
3307	pmap_t pmap;
3308	pt_entry_t *pte;
3309
3310	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3311	if ((m->flags & PG_FICTITIOUS) != 0)
3312		return;
3313	sched_pin();
3314	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3315		pmap = PV_PMAP(pv);
3316		PMAP_LOCK(pmap);
3317		pte = pmap_pte_quick(pmap, pv->pv_va);
3318		if ((*pte & PG_A) != 0) {
3319			/*
3320			 * Regardless of whether a pte is 32 or 64 bits
3321			 * in size, PG_A is among the least significant
3322			 * 32 bits.
3323			 */
3324			atomic_clear_int((u_int *)pte, PG_A);
3325			pmap_invalidate_page(pmap, pv->pv_va);
3326		}
3327		PMAP_UNLOCK(pmap);
3328	}
3329	sched_unpin();
3330}
3331
3332/*
3333 * Miscellaneous support routines follow
3334 */
3335
3336/*
3337 * Map a set of physical memory pages into the kernel virtual
3338 * address space. Return a pointer to where it is mapped. This
3339 * routine is intended to be used for mapping device memory,
3340 * NOT real memory.
3341 */
3342void *
3343pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3344{
3345	vm_offset_t va, tmpva, offset;
3346
3347	offset = pa & PAGE_MASK;
3348	size = roundup(offset + size, PAGE_SIZE);
3349	pa = pa & PG_FRAME;
3350
3351	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3352		va = KERNBASE + pa;
3353	else
3354		va = kmem_alloc_nofault(kernel_map, size);
3355	if (!va)
3356		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3357
3358	for (tmpva = va; size > 0; ) {
3359		pmap_kenter_attr(tmpva, pa, mode);
3360		size -= PAGE_SIZE;
3361		tmpva += PAGE_SIZE;
3362		pa += PAGE_SIZE;
3363	}
3364	pmap_invalidate_range(kernel_pmap, va, tmpva);
3365	pmap_invalidate_cache();
3366	return ((void *)(va + offset));
3367}
3368
3369void *
3370pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3371{
3372
3373	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3374}
3375
3376void *
3377pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3378{
3379
3380	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3381}
3382
3383void
3384pmap_unmapdev(vm_offset_t va, vm_size_t size)
3385{
3386	vm_offset_t base, offset, tmpva;
3387
3388	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3389		return;
3390	base = trunc_page(va);
3391	offset = va & PAGE_MASK;
3392	size = roundup(offset + size, PAGE_SIZE);
3393	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3394		pmap_kremove(tmpva);
3395	pmap_invalidate_range(kernel_pmap, va, tmpva);
3396	kmem_free(kernel_map, base, size);
3397}
3398
3399int
3400pmap_change_attr(va, size, mode)
3401	vm_offset_t va;
3402	vm_size_t size;
3403	int mode;
3404{
3405	vm_offset_t base, offset, tmpva;
3406	pt_entry_t *pte;
3407	u_int opte, npte;
3408	pd_entry_t *pde;
3409
3410	base = trunc_page(va);
3411	offset = va & PAGE_MASK;
3412	size = roundup(offset + size, PAGE_SIZE);
3413
3414	/* Only supported on kernel virtual addresses. */
3415	if (base <= VM_MAXUSER_ADDRESS)
3416		return (EINVAL);
3417
3418	/* 4MB pages and pages that aren't mapped aren't supported. */
3419	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3420		pde = pmap_pde(kernel_pmap, tmpva);
3421		if (*pde & PG_PS)
3422			return (EINVAL);
3423		if (*pde == 0)
3424			return (EINVAL);
3425		pte = vtopte(va);
3426		if (*pte == 0)
3427			return (EINVAL);
3428	}
3429
3430	/*
3431	 * Ok, all the pages exist and are 4k, so run through them updating
3432	 * their cache mode.
3433	 */
3434	for (tmpva = base; size > 0; ) {
3435		pte = vtopte(tmpva);
3436
3437		/*
3438		 * The cache mode bits are all in the low 32-bits of the
3439		 * PTE, so we can just spin on updating the low 32-bits.
3440		 */
3441		do {
3442			opte = *(u_int *)pte;
3443			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
3444			npte |= pmap_cache_bits(mode, 0);
3445		} while (npte != opte &&
3446		    !atomic_cmpset_int((u_int *)pte, opte, npte));
3447		tmpva += PAGE_SIZE;
3448		size -= PAGE_SIZE;
3449	}
3450
3451	/*
3452	 * Flush CPU caches to make sure any data isn't cached that shouldn't
3453	 * be, etc.
3454	 */
3455	pmap_invalidate_range(kernel_pmap, base, tmpva);
3456	pmap_invalidate_cache();
3457	return (0);
3458}
3459
3460/*
3461 * perform the pmap work for mincore
3462 */
3463int
3464pmap_mincore(pmap_t pmap, vm_offset_t addr)
3465{
3466	pt_entry_t *ptep, pte;
3467	vm_page_t m;
3468	int val = 0;
3469
3470	PMAP_LOCK(pmap);
3471	ptep = pmap_pte(pmap, addr);
3472	pte = (ptep != NULL) ? *ptep : 0;
3473	pmap_pte_release(ptep);
3474	PMAP_UNLOCK(pmap);
3475
3476	if (pte != 0) {
3477		vm_paddr_t pa;
3478
3479		val = MINCORE_INCORE;
3480		if ((pte & PG_MANAGED) == 0)
3481			return val;
3482
3483		pa = pte & PG_FRAME;
3484
3485		m = PHYS_TO_VM_PAGE(pa);
3486
3487		/*
3488		 * Modified by us
3489		 */
3490		if (pte & PG_M)
3491			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3492		else {
3493			/*
3494			 * Modified by someone else
3495			 */
3496			vm_page_lock_queues();
3497			if (m->dirty || pmap_is_modified(m))
3498				val |= MINCORE_MODIFIED_OTHER;
3499			vm_page_unlock_queues();
3500		}
3501		/*
3502		 * Referenced by us
3503		 */
3504		if (pte & PG_A)
3505			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3506		else {
3507			/*
3508			 * Referenced by someone else
3509			 */
3510			vm_page_lock_queues();
3511			if ((m->flags & PG_REFERENCED) ||
3512			    pmap_ts_referenced(m)) {
3513				val |= MINCORE_REFERENCED_OTHER;
3514				vm_page_flag_set(m, PG_REFERENCED);
3515			}
3516			vm_page_unlock_queues();
3517		}
3518	}
3519	return val;
3520}
3521
3522void
3523pmap_activate(struct thread *td)
3524{
3525	pmap_t	pmap, oldpmap;
3526	u_int32_t  cr3;
3527
3528	critical_enter();
3529	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3530	oldpmap = PCPU_GET(curpmap);
3531#if defined(SMP)
3532	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3533	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3534#else
3535	oldpmap->pm_active &= ~1;
3536	pmap->pm_active |= 1;
3537#endif
3538#ifdef PAE
3539	cr3 = vtophys(pmap->pm_pdpt);
3540#else
3541	cr3 = vtophys(pmap->pm_pdir);
3542#endif
3543	/*
3544	 * pmap_activate is for the current thread on the current cpu
3545	 */
3546	td->td_pcb->pcb_cr3 = cr3;
3547	load_cr3(cr3);
3548	PCPU_SET(curpmap, pmap);
3549	critical_exit();
3550}
3551
3552vm_offset_t
3553pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3554{
3555
3556	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3557		return addr;
3558	}
3559
3560	addr = (addr + PDRMASK) & ~PDRMASK;
3561	return addr;
3562}
3563
3564
3565#if defined(PMAP_DEBUG)
3566pmap_pid_dump(int pid)
3567{
3568	pmap_t pmap;
3569	struct proc *p;
3570	int npte = 0;
3571	int index;
3572
3573	sx_slock(&allproc_lock);
3574	FOREACH_PROC_IN_SYSTEM(p) {
3575		if (p->p_pid != pid)
3576			continue;
3577
3578		if (p->p_vmspace) {
3579			int i,j;
3580			index = 0;
3581			pmap = vmspace_pmap(p->p_vmspace);
3582			for (i = 0; i < NPDEPTD; i++) {
3583				pd_entry_t *pde;
3584				pt_entry_t *pte;
3585				vm_offset_t base = i << PDRSHIFT;
3586
3587				pde = &pmap->pm_pdir[i];
3588				if (pde && pmap_pde_v(pde)) {
3589					for (j = 0; j < NPTEPG; j++) {
3590						vm_offset_t va = base + (j << PAGE_SHIFT);
3591						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3592							if (index) {
3593								index = 0;
3594								printf("\n");
3595							}
3596							sx_sunlock(&allproc_lock);
3597							return npte;
3598						}
3599						pte = pmap_pte(pmap, va);
3600						if (pte && pmap_pte_v(pte)) {
3601							pt_entry_t pa;
3602							vm_page_t m;
3603							pa = *pte;
3604							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
3605							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3606								va, pa, m->hold_count, m->wire_count, m->flags);
3607							npte++;
3608							index++;
3609							if (index >= 2) {
3610								index = 0;
3611								printf("\n");
3612							} else {
3613								printf(" ");
3614							}
3615						}
3616					}
3617				}
3618			}
3619		}
3620	}
3621	sx_sunlock(&allproc_lock);
3622	return npte;
3623}
3624#endif
3625
3626#if defined(DEBUG)
3627
3628static void	pads(pmap_t pm);
3629void		pmap_pvdump(vm_offset_t pa);
3630
3631/* print address space of pmap*/
3632static void
3633pads(pmap_t pm)
3634{
3635	int i, j;
3636	vm_paddr_t va;
3637	pt_entry_t *ptep;
3638
3639	if (pm == kernel_pmap)
3640		return;
3641	for (i = 0; i < NPDEPTD; i++)
3642		if (pm->pm_pdir[i])
3643			for (j = 0; j < NPTEPG; j++) {
3644				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3645				if (pm == kernel_pmap && va < KERNBASE)
3646					continue;
3647				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3648					continue;
3649				ptep = pmap_pte(pm, va);
3650				if (pmap_pte_v(ptep))
3651					printf("%x:%x ", va, *ptep);
3652			};
3653
3654}
3655
3656void
3657pmap_pvdump(vm_paddr_t pa)
3658{
3659	pv_entry_t pv;
3660	pmap_t pmap;
3661	vm_page_t m;
3662
3663	printf("pa %x", pa);
3664	m = PHYS_TO_VM_PAGE(pa);
3665	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3666		pmap = PV_PMAP(pv);
3667		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
3668		pads(pmap);
3669	}
3670	printf(" ");
3671}
3672#endif
3673