pmap.c revision 167578
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 167578 2007-03-14 22:30:02Z njl $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sx.h>
122#include <sys/vmmeter.h>
123#include <sys/sched.h>
124#include <sys/sysctl.h>
125#ifdef SMP
126#include <sys/smp.h>
127#endif
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/uma.h>
139
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149#ifdef XBOX
150#include <machine/xbox.h>
151#endif
152
153#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
154#define CPU_ENABLE_SSE
155#endif
156
157#ifndef PMAP_SHPGPERPROC
158#define PMAP_SHPGPERPROC 200
159#endif
160
161#if defined(DIAGNOSTIC)
162#define PMAP_DIAGNOSTIC
163#endif
164
165#if !defined(PMAP_DIAGNOSTIC)
166#define PMAP_INLINE __inline
167#else
168#define PMAP_INLINE
169#endif
170
171#define PV_STATS
172#ifdef PV_STATS
173#define PV_STAT(x)	do { x ; } while (0)
174#else
175#define PV_STAT(x)	do { } while (0)
176#endif
177
178/*
179 * Get PDEs and PTEs for user/kernel address space
180 */
181#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
182#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
183
184#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
185#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
186#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
187#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
188#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
189
190#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
191    atomic_clear_int((u_int *)(pte), PG_W))
192#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
193
194struct pmap kernel_pmap_store;
195LIST_HEAD(pmaplist, pmap);
196static struct pmaplist allpmaps;
197static struct mtx allpmaps_lock;
198
199vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
200vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
201int pgeflag = 0;		/* PG_G or-in */
202int pseflag = 0;		/* PG_PS or-in */
203
204static int nkpt;
205vm_offset_t kernel_vm_end;
206extern u_int32_t KERNend;
207
208#ifdef PAE
209static uma_zone_t pdptzone;
210#endif
211
212/*
213 * Data for the pv entry allocation mechanism
214 */
215static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
216static int shpgperproc = PMAP_SHPGPERPROC;
217
218struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
219int pv_maxchunks;			/* How many chunks we have KVA for */
220vm_offset_t pv_vafree;			/* freelist stored in the PTE */
221
222/*
223 * All those kernel PT submaps that BSD is so fond of
224 */
225struct sysmaps {
226	struct	mtx lock;
227	pt_entry_t *CMAP1;
228	pt_entry_t *CMAP2;
229	caddr_t	CADDR1;
230	caddr_t	CADDR2;
231};
232static struct sysmaps sysmaps_pcpu[MAXCPU];
233pt_entry_t *CMAP1 = 0;
234static pt_entry_t *CMAP3;
235caddr_t CADDR1 = 0, ptvmmap = 0;
236static caddr_t CADDR3;
237struct msgbuf *msgbufp = 0;
238
239/*
240 * Crashdump maps.
241 */
242static caddr_t crashdumpmap;
243
244#ifdef SMP
245extern pt_entry_t *SMPpt;
246#endif
247static pt_entry_t *PMAP1 = 0, *PMAP2;
248static pt_entry_t *PADDR1 = 0, *PADDR2;
249#ifdef SMP
250static int PMAP1cpu;
251static int PMAP1changedcpu;
252SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
253	   &PMAP1changedcpu, 0,
254	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
255#endif
256static int PMAP1changed;
257SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
258	   &PMAP1changed, 0,
259	   "Number of times pmap_pte_quick changed PMAP1");
260static int PMAP1unchanged;
261SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
262	   &PMAP1unchanged, 0,
263	   "Number of times pmap_pte_quick didn't change PMAP1");
264static struct mtx PMAP2mutex;
265
266static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
267static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
268
269static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
270    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
271static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
272static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
273static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
274					vm_offset_t va);
275static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
276static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
277    vm_page_t m);
278
279static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
280
281static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
282static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m);
283static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
284static void pmap_pte_release(pt_entry_t *pte);
285static int pmap_unuse_pt(pmap_t, vm_offset_t);
286static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
287#ifdef PAE
288static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
289#endif
290
291CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
292CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
293
294/*
295 * Move the kernel virtual free pointer to the next
296 * 4MB.  This is used to help improve performance
297 * by using a large (4MB) page for much of the kernel
298 * (.text, .data, .bss)
299 */
300static vm_offset_t
301pmap_kmem_choose(vm_offset_t addr)
302{
303	vm_offset_t newaddr = addr;
304
305#ifndef DISABLE_PSE
306	if (cpu_feature & CPUID_PSE)
307		newaddr = (addr + PDRMASK) & ~PDRMASK;
308#endif
309	return newaddr;
310}
311
312/*
313 *	Bootstrap the system enough to run with virtual memory.
314 *
315 *	On the i386 this is called after mapping has already been enabled
316 *	and just syncs the pmap module with what has already been done.
317 *	[We can't call it easily with mapping off since the kernel is not
318 *	mapped with PA == VA, hence we would have to relocate every address
319 *	from the linked base (virtual) address "KERNBASE" to the actual
320 *	(physical) address starting relative to 0]
321 */
322void
323pmap_bootstrap(vm_paddr_t firstaddr, vm_paddr_t loadaddr)
324{
325	vm_offset_t va;
326	pt_entry_t *pte, *unused;
327	struct sysmaps *sysmaps;
328	int i;
329
330	/*
331	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
332	 * large. It should instead be correctly calculated in locore.s and
333	 * not based on 'first' (which is a physical address, not a virtual
334	 * address, for the start of unused physical memory). The kernel
335	 * page tables are NOT double mapped and thus should not be included
336	 * in this calculation.
337	 */
338	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
339	virtual_avail = pmap_kmem_choose(virtual_avail);
340
341	virtual_end = VM_MAX_KERNEL_ADDRESS;
342
343	/*
344	 * Initialize the kernel pmap (which is statically allocated).
345	 */
346	PMAP_LOCK_INIT(kernel_pmap);
347	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
348#ifdef PAE
349	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
350#endif
351	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
352	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
353	LIST_INIT(&allpmaps);
354	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
355	mtx_lock_spin(&allpmaps_lock);
356	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
357	mtx_unlock_spin(&allpmaps_lock);
358	nkpt = NKPT;
359
360	/*
361	 * Reserve some special page table entries/VA space for temporary
362	 * mapping of pages.
363	 */
364#define	SYSMAP(c, p, v, n)	\
365	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
366
367	va = virtual_avail;
368	pte = vtopte(va);
369
370	/*
371	 * CMAP1/CMAP2 are used for zeroing and copying pages.
372	 * CMAP3 is used for the idle process page zeroing.
373	 */
374	for (i = 0; i < MAXCPU; i++) {
375		sysmaps = &sysmaps_pcpu[i];
376		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
377		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
378		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
379	}
380	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
381	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
382	*CMAP3 = 0;
383
384	/*
385	 * Crashdump maps.
386	 */
387	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
388
389	/*
390	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
391	 */
392	SYSMAP(caddr_t, unused, ptvmmap, 1)
393
394	/*
395	 * msgbufp is used to map the system message buffer.
396	 */
397	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
398
399	/*
400	 * ptemap is used for pmap_pte_quick
401	 */
402	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
403	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
404
405	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
406
407	virtual_avail = va;
408
409	*CMAP1 = 0;
410
411#ifdef XBOX
412	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
413	 * an early stadium, we cannot yet neatly map video memory ... :-(
414	 * Better fixes are very welcome! */
415	if (!arch_i386_is_xbox)
416#endif
417	for (i = 0; i < NKPT; i++)
418		PTD[i] = 0;
419
420	/* Initialize the PAT MSR if present. */
421	pmap_init_pat();
422
423	/* Turn on PG_G on kernel page(s) */
424	pmap_set_pg();
425
426	/*
427	 * Create an identity mapping (virt == phys) for the low 1 MB
428	 * physical memory region that is used by the ACPI wakeup code.
429	 * This mapping must not have PG_G set.
430	 */
431	kernel_pmap->pm_pdir[0] = PG_PS | PG_RW | PG_V;
432}
433
434/*
435 * Setup the PAT MSR.
436 */
437void
438pmap_init_pat(void)
439{
440	uint64_t pat_msr;
441
442	/* Bail if this CPU doesn't implement PAT. */
443	if (!(cpu_feature & CPUID_PAT))
444		return;
445
446#ifdef PAT_WORKS
447	/*
448	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
449	 * Program 4 and 5 as WP and WC.
450	 * Leave 6 and 7 as UC and UC-.
451	 */
452	pat_msr = rdmsr(MSR_PAT);
453	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
454	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
455	    PAT_VALUE(5, PAT_WRITE_COMBINING);
456#else
457	/*
458	 * Due to some Intel errata, we can only safely use the lower 4
459	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
460	 * of UC-.
461	 *
462	 *   Intel Pentium III Processor Specification Update
463	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
464	 * or Mode C Paging)
465	 *
466	 *   Intel Pentium IV  Processor Specification Update
467	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
468	 */
469	pat_msr = rdmsr(MSR_PAT);
470	pat_msr &= ~PAT_MASK(2);
471	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
472#endif
473	wrmsr(MSR_PAT, pat_msr);
474}
475
476/*
477 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
478 */
479void
480pmap_set_pg(void)
481{
482	pd_entry_t pdir;
483	pt_entry_t *pte;
484	vm_offset_t va, endva;
485	int i;
486
487	if (pgeflag == 0)
488		return;
489
490	i = KERNLOAD/NBPDR;
491	endva = KERNBASE + KERNend;
492
493	if (pseflag) {
494		va = KERNBASE + KERNLOAD;
495		while (va  < endva) {
496			pdir = kernel_pmap->pm_pdir[KPTDI+i];
497			pdir |= pgeflag;
498			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
499			invltlb();	/* Play it safe, invltlb() every time */
500			i++;
501			va += NBPDR;
502		}
503	} else {
504		va = (vm_offset_t)btext;
505		while (va < endva) {
506			pte = vtopte(va);
507			if (*pte)
508				*pte |= pgeflag;
509			invltlb();	/* Play it safe, invltlb() every time */
510			va += PAGE_SIZE;
511		}
512	}
513}
514
515/*
516 * Initialize a vm_page's machine-dependent fields.
517 */
518void
519pmap_page_init(vm_page_t m)
520{
521
522	TAILQ_INIT(&m->md.pv_list);
523	m->md.pv_list_count = 0;
524}
525
526#ifdef PAE
527
528static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
529
530static void *
531pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
532{
533	*flags = UMA_SLAB_PRIV;
534	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
535	    1, 0));
536}
537#endif
538
539/*
540 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
541 * Requirements:
542 *  - Must deal with pages in order to ensure that none of the PG_* bits
543 *    are ever set, PG_V in particular.
544 *  - Assumes we can write to ptes without pte_store() atomic ops, even
545 *    on PAE systems.  This should be ok.
546 *  - Assumes nothing will ever test these addresses for 0 to indicate
547 *    no mapping instead of correctly checking PG_V.
548 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
549 * Because PG_V is never set, there can be no mappings to invalidate.
550 */
551static vm_offset_t
552pmap_ptelist_alloc(vm_offset_t *head)
553{
554	pt_entry_t *pte;
555	vm_offset_t va;
556
557	va = *head;
558	if (va == 0)
559		return (va);	/* Out of memory */
560	pte = vtopte(va);
561	*head = *pte;
562	if (*head & PG_V)
563		panic("pmap_ptelist_alloc: va with PG_V set!");
564	*pte = 0;
565	return (va);
566}
567
568static void
569pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
570{
571	pt_entry_t *pte;
572
573	if (va & PG_V)
574		panic("pmap_ptelist_free: freeing va with PG_V set!");
575	pte = vtopte(va);
576	*pte = *head;		/* virtual! PG_V is 0 though */
577	*head = va;
578}
579
580static void
581pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
582{
583	int i;
584	vm_offset_t va;
585
586	*head = 0;
587	for (i = npages - 1; i >= 0; i--) {
588		va = (vm_offset_t)base + i * PAGE_SIZE;
589		pmap_ptelist_free(head, va);
590	}
591}
592
593
594/*
595 *	Initialize the pmap module.
596 *	Called by vm_init, to initialize any structures that the pmap
597 *	system needs to map virtual memory.
598 */
599void
600pmap_init(void)
601{
602
603	/*
604	 * Initialize the address space (zone) for the pv entries.  Set a
605	 * high water mark so that the system can recover from excessive
606	 * numbers of pv entries.
607	 */
608	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
609	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
610	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
611	pv_entry_max = roundup(pv_entry_max, _NPCPV);
612	pv_entry_high_water = 9 * (pv_entry_max / 10);
613
614	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
615	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
616	    PAGE_SIZE * pv_maxchunks);
617	if (pv_chunkbase == NULL)
618		panic("pmap_init: not enough kvm for pv chunks");
619	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
620#ifdef PAE
621	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
622	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
623	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
624	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
625#endif
626}
627
628
629SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
630SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
631	"Max number of PV entries");
632SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
633	"Page share factor per proc");
634
635/***************************************************
636 * Low level helper routines.....
637 ***************************************************/
638
639/*
640 * Determine the appropriate bits to set in a PTE or PDE for a specified
641 * caching mode.
642 */
643static int
644pmap_cache_bits(int mode, boolean_t is_pde)
645{
646	int pat_flag, pat_index, cache_bits;
647
648	/* The PAT bit is different for PTE's and PDE's. */
649	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
650
651	/* If we don't support PAT, map extended modes to older ones. */
652	if (!(cpu_feature & CPUID_PAT)) {
653		switch (mode) {
654		case PAT_UNCACHEABLE:
655		case PAT_WRITE_THROUGH:
656		case PAT_WRITE_BACK:
657			break;
658		case PAT_UNCACHED:
659		case PAT_WRITE_COMBINING:
660		case PAT_WRITE_PROTECTED:
661			mode = PAT_UNCACHEABLE;
662			break;
663		}
664	}
665
666	/* Map the caching mode to a PAT index. */
667	switch (mode) {
668#ifdef PAT_WORKS
669	case PAT_UNCACHEABLE:
670		pat_index = 3;
671		break;
672	case PAT_WRITE_THROUGH:
673		pat_index = 1;
674		break;
675	case PAT_WRITE_BACK:
676		pat_index = 0;
677		break;
678	case PAT_UNCACHED:
679		pat_index = 2;
680		break;
681	case PAT_WRITE_COMBINING:
682		pat_index = 5;
683		break;
684	case PAT_WRITE_PROTECTED:
685		pat_index = 4;
686		break;
687#else
688	case PAT_UNCACHED:
689	case PAT_UNCACHEABLE:
690	case PAT_WRITE_PROTECTED:
691		pat_index = 3;
692		break;
693	case PAT_WRITE_THROUGH:
694		pat_index = 1;
695		break;
696	case PAT_WRITE_BACK:
697		pat_index = 0;
698		break;
699	case PAT_WRITE_COMBINING:
700		pat_index = 2;
701		break;
702#endif
703	default:
704		panic("Unknown caching mode %d\n", mode);
705	}
706
707	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
708	cache_bits = 0;
709	if (pat_index & 0x4)
710		cache_bits |= pat_flag;
711	if (pat_index & 0x2)
712		cache_bits |= PG_NC_PCD;
713	if (pat_index & 0x1)
714		cache_bits |= PG_NC_PWT;
715	return (cache_bits);
716}
717#ifdef SMP
718/*
719 * For SMP, these functions have to use the IPI mechanism for coherence.
720 */
721void
722pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
723{
724	u_int cpumask;
725	u_int other_cpus;
726
727	sched_pin();
728	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
729		invlpg(va);
730		smp_invlpg(va);
731	} else {
732		cpumask = PCPU_GET(cpumask);
733		other_cpus = PCPU_GET(other_cpus);
734		if (pmap->pm_active & cpumask)
735			invlpg(va);
736		if (pmap->pm_active & other_cpus)
737			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
738	}
739	sched_unpin();
740}
741
742void
743pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
744{
745	u_int cpumask;
746	u_int other_cpus;
747	vm_offset_t addr;
748
749	sched_pin();
750	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
751		for (addr = sva; addr < eva; addr += PAGE_SIZE)
752			invlpg(addr);
753		smp_invlpg_range(sva, eva);
754	} else {
755		cpumask = PCPU_GET(cpumask);
756		other_cpus = PCPU_GET(other_cpus);
757		if (pmap->pm_active & cpumask)
758			for (addr = sva; addr < eva; addr += PAGE_SIZE)
759				invlpg(addr);
760		if (pmap->pm_active & other_cpus)
761			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
762			    sva, eva);
763	}
764	sched_unpin();
765}
766
767void
768pmap_invalidate_all(pmap_t pmap)
769{
770	u_int cpumask;
771	u_int other_cpus;
772
773	sched_pin();
774	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
775		invltlb();
776		smp_invltlb();
777	} else {
778		cpumask = PCPU_GET(cpumask);
779		other_cpus = PCPU_GET(other_cpus);
780		if (pmap->pm_active & cpumask)
781			invltlb();
782		if (pmap->pm_active & other_cpus)
783			smp_masked_invltlb(pmap->pm_active & other_cpus);
784	}
785	sched_unpin();
786}
787
788void
789pmap_invalidate_cache(void)
790{
791
792	sched_pin();
793	wbinvd();
794	smp_cache_flush();
795	sched_unpin();
796}
797#else /* !SMP */
798/*
799 * Normal, non-SMP, 486+ invalidation functions.
800 * We inline these within pmap.c for speed.
801 */
802PMAP_INLINE void
803pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
804{
805
806	if (pmap == kernel_pmap || pmap->pm_active)
807		invlpg(va);
808}
809
810PMAP_INLINE void
811pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
812{
813	vm_offset_t addr;
814
815	if (pmap == kernel_pmap || pmap->pm_active)
816		for (addr = sva; addr < eva; addr += PAGE_SIZE)
817			invlpg(addr);
818}
819
820PMAP_INLINE void
821pmap_invalidate_all(pmap_t pmap)
822{
823
824	if (pmap == kernel_pmap || pmap->pm_active)
825		invltlb();
826}
827
828PMAP_INLINE void
829pmap_invalidate_cache(void)
830{
831
832	wbinvd();
833}
834#endif /* !SMP */
835
836/*
837 * Are we current address space or kernel?  N.B. We return FALSE when
838 * a pmap's page table is in use because a kernel thread is borrowing
839 * it.  The borrowed page table can change spontaneously, making any
840 * dependence on its continued use subject to a race condition.
841 */
842static __inline int
843pmap_is_current(pmap_t pmap)
844{
845
846	return (pmap == kernel_pmap ||
847		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
848	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
849}
850
851/*
852 * If the given pmap is not the current or kernel pmap, the returned pte must
853 * be released by passing it to pmap_pte_release().
854 */
855pt_entry_t *
856pmap_pte(pmap_t pmap, vm_offset_t va)
857{
858	pd_entry_t newpf;
859	pd_entry_t *pde;
860
861	pde = pmap_pde(pmap, va);
862	if (*pde & PG_PS)
863		return (pde);
864	if (*pde != 0) {
865		/* are we current address space or kernel? */
866		if (pmap_is_current(pmap))
867			return (vtopte(va));
868		mtx_lock(&PMAP2mutex);
869		newpf = *pde & PG_FRAME;
870		if ((*PMAP2 & PG_FRAME) != newpf) {
871			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
872			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
873		}
874		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
875	}
876	return (0);
877}
878
879/*
880 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
881 * being NULL.
882 */
883static __inline void
884pmap_pte_release(pt_entry_t *pte)
885{
886
887	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
888		mtx_unlock(&PMAP2mutex);
889}
890
891static __inline void
892invlcaddr(void *caddr)
893{
894
895	invlpg((u_int)caddr);
896}
897
898/*
899 * Super fast pmap_pte routine best used when scanning
900 * the pv lists.  This eliminates many coarse-grained
901 * invltlb calls.  Note that many of the pv list
902 * scans are across different pmaps.  It is very wasteful
903 * to do an entire invltlb for checking a single mapping.
904 *
905 * If the given pmap is not the current pmap, vm_page_queue_mtx
906 * must be held and curthread pinned to a CPU.
907 */
908static pt_entry_t *
909pmap_pte_quick(pmap_t pmap, vm_offset_t va)
910{
911	pd_entry_t newpf;
912	pd_entry_t *pde;
913
914	pde = pmap_pde(pmap, va);
915	if (*pde & PG_PS)
916		return (pde);
917	if (*pde != 0) {
918		/* are we current address space or kernel? */
919		if (pmap_is_current(pmap))
920			return (vtopte(va));
921		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
922		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
923		newpf = *pde & PG_FRAME;
924		if ((*PMAP1 & PG_FRAME) != newpf) {
925			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
926#ifdef SMP
927			PMAP1cpu = PCPU_GET(cpuid);
928#endif
929			invlcaddr(PADDR1);
930			PMAP1changed++;
931		} else
932#ifdef SMP
933		if (PMAP1cpu != PCPU_GET(cpuid)) {
934			PMAP1cpu = PCPU_GET(cpuid);
935			invlcaddr(PADDR1);
936			PMAP1changedcpu++;
937		} else
938#endif
939			PMAP1unchanged++;
940		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
941	}
942	return (0);
943}
944
945/*
946 *	Routine:	pmap_extract
947 *	Function:
948 *		Extract the physical page address associated
949 *		with the given map/virtual_address pair.
950 */
951vm_paddr_t
952pmap_extract(pmap_t pmap, vm_offset_t va)
953{
954	vm_paddr_t rtval;
955	pt_entry_t *pte;
956	pd_entry_t pde;
957
958	rtval = 0;
959	PMAP_LOCK(pmap);
960	pde = pmap->pm_pdir[va >> PDRSHIFT];
961	if (pde != 0) {
962		if ((pde & PG_PS) != 0) {
963			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
964			PMAP_UNLOCK(pmap);
965			return rtval;
966		}
967		pte = pmap_pte(pmap, va);
968		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
969		pmap_pte_release(pte);
970	}
971	PMAP_UNLOCK(pmap);
972	return (rtval);
973}
974
975/*
976 *	Routine:	pmap_extract_and_hold
977 *	Function:
978 *		Atomically extract and hold the physical page
979 *		with the given pmap and virtual address pair
980 *		if that mapping permits the given protection.
981 */
982vm_page_t
983pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
984{
985	pd_entry_t pde;
986	pt_entry_t pte;
987	vm_page_t m;
988
989	m = NULL;
990	vm_page_lock_queues();
991	PMAP_LOCK(pmap);
992	pde = *pmap_pde(pmap, va);
993	if (pde != 0) {
994		if (pde & PG_PS) {
995			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
996				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
997				    (va & PDRMASK));
998				vm_page_hold(m);
999			}
1000		} else {
1001			sched_pin();
1002			pte = *pmap_pte_quick(pmap, va);
1003			if (pte != 0 &&
1004			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1005				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1006				vm_page_hold(m);
1007			}
1008			sched_unpin();
1009		}
1010	}
1011	vm_page_unlock_queues();
1012	PMAP_UNLOCK(pmap);
1013	return (m);
1014}
1015
1016/***************************************************
1017 * Low level mapping routines.....
1018 ***************************************************/
1019
1020/*
1021 * Add a wired page to the kva.
1022 * Note: not SMP coherent.
1023 */
1024PMAP_INLINE void
1025pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1026{
1027	pt_entry_t *pte;
1028
1029	pte = vtopte(va);
1030	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1031}
1032
1033PMAP_INLINE void
1034pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1035{
1036	pt_entry_t *pte;
1037
1038	pte = vtopte(va);
1039	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1040}
1041
1042/*
1043 * Remove a page from the kernel pagetables.
1044 * Note: not SMP coherent.
1045 */
1046PMAP_INLINE void
1047pmap_kremove(vm_offset_t va)
1048{
1049	pt_entry_t *pte;
1050
1051	pte = vtopte(va);
1052	pte_clear(pte);
1053}
1054
1055/*
1056 *	Used to map a range of physical addresses into kernel
1057 *	virtual address space.
1058 *
1059 *	The value passed in '*virt' is a suggested virtual address for
1060 *	the mapping. Architectures which can support a direct-mapped
1061 *	physical to virtual region can return the appropriate address
1062 *	within that region, leaving '*virt' unchanged. Other
1063 *	architectures should map the pages starting at '*virt' and
1064 *	update '*virt' with the first usable address after the mapped
1065 *	region.
1066 */
1067vm_offset_t
1068pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1069{
1070	vm_offset_t va, sva;
1071
1072	va = sva = *virt;
1073	while (start < end) {
1074		pmap_kenter(va, start);
1075		va += PAGE_SIZE;
1076		start += PAGE_SIZE;
1077	}
1078	pmap_invalidate_range(kernel_pmap, sva, va);
1079	*virt = va;
1080	return (sva);
1081}
1082
1083
1084/*
1085 * Add a list of wired pages to the kva
1086 * this routine is only used for temporary
1087 * kernel mappings that do not need to have
1088 * page modification or references recorded.
1089 * Note that old mappings are simply written
1090 * over.  The page *must* be wired.
1091 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1092 */
1093void
1094pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1095{
1096	pt_entry_t *endpte, oldpte, *pte;
1097
1098	oldpte = 0;
1099	pte = vtopte(sva);
1100	endpte = pte + count;
1101	while (pte < endpte) {
1102		oldpte |= *pte;
1103		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1104		pte++;
1105		ma++;
1106	}
1107	if ((oldpte & PG_V) != 0)
1108		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1109		    PAGE_SIZE);
1110}
1111
1112/*
1113 * This routine tears out page mappings from the
1114 * kernel -- it is meant only for temporary mappings.
1115 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1116 */
1117void
1118pmap_qremove(vm_offset_t sva, int count)
1119{
1120	vm_offset_t va;
1121
1122	va = sva;
1123	while (count-- > 0) {
1124		pmap_kremove(va);
1125		va += PAGE_SIZE;
1126	}
1127	pmap_invalidate_range(kernel_pmap, sva, va);
1128}
1129
1130/***************************************************
1131 * Page table page management routines.....
1132 ***************************************************/
1133
1134/*
1135 * This routine unholds page table pages, and if the hold count
1136 * drops to zero, then it decrements the wire count.
1137 */
1138static PMAP_INLINE int
1139pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1140{
1141
1142	--m->wire_count;
1143	if (m->wire_count == 0)
1144		return _pmap_unwire_pte_hold(pmap, m);
1145	else
1146		return 0;
1147}
1148
1149static int
1150_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1151{
1152	vm_offset_t pteva;
1153
1154	/*
1155	 * unmap the page table page
1156	 */
1157	pmap->pm_pdir[m->pindex] = 0;
1158	--pmap->pm_stats.resident_count;
1159
1160	/*
1161	 * Do an invltlb to make the invalidated mapping
1162	 * take effect immediately.
1163	 */
1164	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1165	pmap_invalidate_page(pmap, pteva);
1166
1167	vm_page_free_zero(m);
1168	atomic_subtract_int(&cnt.v_wire_count, 1);
1169	return 1;
1170}
1171
1172/*
1173 * After removing a page table entry, this routine is used to
1174 * conditionally free the page, and manage the hold/wire counts.
1175 */
1176static int
1177pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
1178{
1179	pd_entry_t ptepde;
1180	vm_page_t mpte;
1181
1182	if (va >= VM_MAXUSER_ADDRESS)
1183		return 0;
1184	ptepde = *pmap_pde(pmap, va);
1185	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1186	return pmap_unwire_pte_hold(pmap, mpte);
1187}
1188
1189void
1190pmap_pinit0(pmap_t pmap)
1191{
1192
1193	PMAP_LOCK_INIT(pmap);
1194	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1195#ifdef PAE
1196	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1197#endif
1198	pmap->pm_active = 0;
1199	PCPU_SET(curpmap, pmap);
1200	TAILQ_INIT(&pmap->pm_pvchunk);
1201	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1202	mtx_lock_spin(&allpmaps_lock);
1203	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1204	mtx_unlock_spin(&allpmaps_lock);
1205}
1206
1207/*
1208 * Initialize a preallocated and zeroed pmap structure,
1209 * such as one in a vmspace structure.
1210 */
1211void
1212pmap_pinit(pmap_t pmap)
1213{
1214	vm_page_t m, ptdpg[NPGPTD];
1215	vm_paddr_t pa;
1216	static int color;
1217	int i;
1218
1219	PMAP_LOCK_INIT(pmap);
1220
1221	/*
1222	 * No need to allocate page table space yet but we do need a valid
1223	 * page directory table.
1224	 */
1225	if (pmap->pm_pdir == NULL) {
1226		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1227		    NBPTD);
1228#ifdef PAE
1229		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1230		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1231		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1232		    ("pmap_pinit: pdpt misaligned"));
1233		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1234		    ("pmap_pinit: pdpt above 4g"));
1235#endif
1236	}
1237
1238	/*
1239	 * allocate the page directory page(s)
1240	 */
1241	for (i = 0; i < NPGPTD;) {
1242		m = vm_page_alloc(NULL, color++,
1243		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1244		    VM_ALLOC_ZERO);
1245		if (m == NULL)
1246			VM_WAIT;
1247		else {
1248			ptdpg[i++] = m;
1249		}
1250	}
1251
1252	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1253
1254	for (i = 0; i < NPGPTD; i++) {
1255		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1256			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1257	}
1258
1259	mtx_lock_spin(&allpmaps_lock);
1260	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1261	mtx_unlock_spin(&allpmaps_lock);
1262	/* Wire in kernel global address entries. */
1263	/* XXX copies current process, does not fill in MPPTDI */
1264	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1265#ifdef SMP
1266	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1267#endif
1268
1269	/* install self-referential address mapping entry(s) */
1270	for (i = 0; i < NPGPTD; i++) {
1271		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1272		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1273#ifdef PAE
1274		pmap->pm_pdpt[i] = pa | PG_V;
1275#endif
1276	}
1277
1278	pmap->pm_active = 0;
1279	TAILQ_INIT(&pmap->pm_pvchunk);
1280	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1281}
1282
1283/*
1284 * this routine is called if the page table page is not
1285 * mapped correctly.
1286 */
1287static vm_page_t
1288_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1289{
1290	vm_paddr_t ptepa;
1291	vm_page_t m;
1292
1293	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1294	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1295	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1296
1297	/*
1298	 * Allocate a page table page.
1299	 */
1300	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1301	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1302		if (flags & M_WAITOK) {
1303			PMAP_UNLOCK(pmap);
1304			vm_page_unlock_queues();
1305			VM_WAIT;
1306			vm_page_lock_queues();
1307			PMAP_LOCK(pmap);
1308		}
1309
1310		/*
1311		 * Indicate the need to retry.  While waiting, the page table
1312		 * page may have been allocated.
1313		 */
1314		return (NULL);
1315	}
1316	if ((m->flags & PG_ZERO) == 0)
1317		pmap_zero_page(m);
1318
1319	/*
1320	 * Map the pagetable page into the process address space, if
1321	 * it isn't already there.
1322	 */
1323
1324	pmap->pm_stats.resident_count++;
1325
1326	ptepa = VM_PAGE_TO_PHYS(m);
1327	pmap->pm_pdir[ptepindex] =
1328		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1329
1330	return m;
1331}
1332
1333static vm_page_t
1334pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1335{
1336	unsigned ptepindex;
1337	pd_entry_t ptepa;
1338	vm_page_t m;
1339
1340	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1341	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1342	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1343
1344	/*
1345	 * Calculate pagetable page index
1346	 */
1347	ptepindex = va >> PDRSHIFT;
1348retry:
1349	/*
1350	 * Get the page directory entry
1351	 */
1352	ptepa = pmap->pm_pdir[ptepindex];
1353
1354	/*
1355	 * This supports switching from a 4MB page to a
1356	 * normal 4K page.
1357	 */
1358	if (ptepa & PG_PS) {
1359		pmap->pm_pdir[ptepindex] = 0;
1360		ptepa = 0;
1361		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1362		pmap_invalidate_all(kernel_pmap);
1363	}
1364
1365	/*
1366	 * If the page table page is mapped, we just increment the
1367	 * hold count, and activate it.
1368	 */
1369	if (ptepa) {
1370		m = PHYS_TO_VM_PAGE(ptepa);
1371		m->wire_count++;
1372	} else {
1373		/*
1374		 * Here if the pte page isn't mapped, or if it has
1375		 * been deallocated.
1376		 */
1377		m = _pmap_allocpte(pmap, ptepindex, flags);
1378		if (m == NULL && (flags & M_WAITOK))
1379			goto retry;
1380	}
1381	return (m);
1382}
1383
1384
1385/***************************************************
1386* Pmap allocation/deallocation routines.
1387 ***************************************************/
1388
1389#ifdef SMP
1390/*
1391 * Deal with a SMP shootdown of other users of the pmap that we are
1392 * trying to dispose of.  This can be a bit hairy.
1393 */
1394static u_int *lazymask;
1395static u_int lazyptd;
1396static volatile u_int lazywait;
1397
1398void pmap_lazyfix_action(void);
1399
1400void
1401pmap_lazyfix_action(void)
1402{
1403	u_int mymask = PCPU_GET(cpumask);
1404
1405#ifdef COUNT_IPIS
1406	*ipi_lazypmap_counts[PCPU_GET(cpuid)]++;
1407#endif
1408	if (rcr3() == lazyptd)
1409		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1410	atomic_clear_int(lazymask, mymask);
1411	atomic_store_rel_int(&lazywait, 1);
1412}
1413
1414static void
1415pmap_lazyfix_self(u_int mymask)
1416{
1417
1418	if (rcr3() == lazyptd)
1419		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1420	atomic_clear_int(lazymask, mymask);
1421}
1422
1423
1424static void
1425pmap_lazyfix(pmap_t pmap)
1426{
1427	u_int mymask;
1428	u_int mask;
1429	u_int spins;
1430
1431	while ((mask = pmap->pm_active) != 0) {
1432		spins = 50000000;
1433		mask = mask & -mask;	/* Find least significant set bit */
1434		mtx_lock_spin(&smp_ipi_mtx);
1435#ifdef PAE
1436		lazyptd = vtophys(pmap->pm_pdpt);
1437#else
1438		lazyptd = vtophys(pmap->pm_pdir);
1439#endif
1440		mymask = PCPU_GET(cpumask);
1441		if (mask == mymask) {
1442			lazymask = &pmap->pm_active;
1443			pmap_lazyfix_self(mymask);
1444		} else {
1445			atomic_store_rel_int((u_int *)&lazymask,
1446			    (u_int)&pmap->pm_active);
1447			atomic_store_rel_int(&lazywait, 0);
1448			ipi_selected(mask, IPI_LAZYPMAP);
1449			while (lazywait == 0) {
1450				ia32_pause();
1451				if (--spins == 0)
1452					break;
1453			}
1454		}
1455		mtx_unlock_spin(&smp_ipi_mtx);
1456		if (spins == 0)
1457			printf("pmap_lazyfix: spun for 50000000\n");
1458	}
1459}
1460
1461#else	/* SMP */
1462
1463/*
1464 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1465 * unlikely to have to even execute this code, including the fact
1466 * that the cleanup is deferred until the parent does a wait(2), which
1467 * means that another userland process has run.
1468 */
1469static void
1470pmap_lazyfix(pmap_t pmap)
1471{
1472	u_int cr3;
1473
1474	cr3 = vtophys(pmap->pm_pdir);
1475	if (cr3 == rcr3()) {
1476		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1477		pmap->pm_active &= ~(PCPU_GET(cpumask));
1478	}
1479}
1480#endif	/* SMP */
1481
1482/*
1483 * Release any resources held by the given physical map.
1484 * Called when a pmap initialized by pmap_pinit is being released.
1485 * Should only be called if the map contains no valid mappings.
1486 */
1487void
1488pmap_release(pmap_t pmap)
1489{
1490	vm_page_t m, ptdpg[NPGPTD];
1491	int i;
1492
1493	KASSERT(pmap->pm_stats.resident_count == 0,
1494	    ("pmap_release: pmap resident count %ld != 0",
1495	    pmap->pm_stats.resident_count));
1496
1497	pmap_lazyfix(pmap);
1498	mtx_lock_spin(&allpmaps_lock);
1499	LIST_REMOVE(pmap, pm_list);
1500	mtx_unlock_spin(&allpmaps_lock);
1501
1502	for (i = 0; i < NPGPTD; i++)
1503		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1504
1505	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1506	    sizeof(*pmap->pm_pdir));
1507#ifdef SMP
1508	pmap->pm_pdir[MPPTDI] = 0;
1509#endif
1510
1511	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1512
1513	for (i = 0; i < NPGPTD; i++) {
1514		m = ptdpg[i];
1515#ifdef PAE
1516		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1517		    ("pmap_release: got wrong ptd page"));
1518#endif
1519		m->wire_count--;
1520		atomic_subtract_int(&cnt.v_wire_count, 1);
1521		vm_page_free_zero(m);
1522	}
1523	PMAP_LOCK_DESTROY(pmap);
1524}
1525
1526static int
1527kvm_size(SYSCTL_HANDLER_ARGS)
1528{
1529	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1530
1531	return sysctl_handle_long(oidp, &ksize, 0, req);
1532}
1533SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1534    0, 0, kvm_size, "IU", "Size of KVM");
1535
1536static int
1537kvm_free(SYSCTL_HANDLER_ARGS)
1538{
1539	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1540
1541	return sysctl_handle_long(oidp, &kfree, 0, req);
1542}
1543SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1544    0, 0, kvm_free, "IU", "Amount of KVM free");
1545
1546/*
1547 * grow the number of kernel page table entries, if needed
1548 */
1549void
1550pmap_growkernel(vm_offset_t addr)
1551{
1552	struct pmap *pmap;
1553	vm_paddr_t ptppaddr;
1554	vm_page_t nkpg;
1555	pd_entry_t newpdir;
1556	pt_entry_t *pde;
1557
1558	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1559	if (kernel_vm_end == 0) {
1560		kernel_vm_end = KERNBASE;
1561		nkpt = 0;
1562		while (pdir_pde(PTD, kernel_vm_end)) {
1563			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1564			nkpt++;
1565			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1566				kernel_vm_end = kernel_map->max_offset;
1567				break;
1568			}
1569		}
1570	}
1571	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1572	if (addr - 1 >= kernel_map->max_offset)
1573		addr = kernel_map->max_offset;
1574	while (kernel_vm_end < addr) {
1575		if (pdir_pde(PTD, kernel_vm_end)) {
1576			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1577			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1578				kernel_vm_end = kernel_map->max_offset;
1579				break;
1580			}
1581			continue;
1582		}
1583
1584		/*
1585		 * This index is bogus, but out of the way
1586		 */
1587		nkpg = vm_page_alloc(NULL, nkpt,
1588		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1589		if (!nkpg)
1590			panic("pmap_growkernel: no memory to grow kernel");
1591
1592		nkpt++;
1593
1594		pmap_zero_page(nkpg);
1595		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1596		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1597		pdir_pde(PTD, kernel_vm_end) = newpdir;
1598
1599		mtx_lock_spin(&allpmaps_lock);
1600		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1601			pde = pmap_pde(pmap, kernel_vm_end);
1602			pde_store(pde, newpdir);
1603		}
1604		mtx_unlock_spin(&allpmaps_lock);
1605		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1606		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1607			kernel_vm_end = kernel_map->max_offset;
1608			break;
1609		}
1610	}
1611}
1612
1613
1614/***************************************************
1615 * page management routines.
1616 ***************************************************/
1617
1618CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1619CTASSERT(_NPCM == 11);
1620
1621static __inline struct pv_chunk *
1622pv_to_chunk(pv_entry_t pv)
1623{
1624
1625	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1626}
1627
1628#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1629
1630#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1631#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1632
1633static uint32_t pc_freemask[11] = {
1634	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1635	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1636	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1637	PC_FREE0_9, PC_FREE10
1638};
1639
1640SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1641	"Current number of pv entries");
1642
1643#ifdef PV_STATS
1644static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1645
1646SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1647	"Current number of pv entry chunks");
1648SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1649	"Current number of pv entry chunks allocated");
1650SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1651	"Current number of pv entry chunks frees");
1652SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1653	"Number of times tried to get a chunk page but failed.");
1654
1655static long pv_entry_frees, pv_entry_allocs;
1656static int pv_entry_spare;
1657
1658SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1659	"Current number of pv entry frees");
1660SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1661	"Current number of pv entry allocs");
1662SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1663	"Current number of spare pv entries");
1664
1665static int pmap_collect_inactive, pmap_collect_active;
1666
1667SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1668	"Current number times pmap_collect called on inactive queue");
1669SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1670	"Current number times pmap_collect called on active queue");
1671#endif
1672
1673/*
1674 * We are in a serious low memory condition.  Resort to
1675 * drastic measures to free some pages so we can allocate
1676 * another pv entry chunk.  This is normally called to
1677 * unmap inactive pages, and if necessary, active pages.
1678 */
1679static void
1680pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1681{
1682	pmap_t pmap;
1683	pt_entry_t *pte, tpte;
1684	pv_entry_t next_pv, pv;
1685	vm_offset_t va;
1686	vm_page_t m;
1687
1688	sched_pin();
1689	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1690		if (m->hold_count || m->busy)
1691			continue;
1692		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1693			va = pv->pv_va;
1694			pmap = PV_PMAP(pv);
1695			/* Avoid deadlock and lock recursion. */
1696			if (pmap > locked_pmap)
1697				PMAP_LOCK(pmap);
1698			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1699				continue;
1700			pmap->pm_stats.resident_count--;
1701			pte = pmap_pte_quick(pmap, va);
1702			tpte = pte_load_clear(pte);
1703			KASSERT((tpte & PG_W) == 0,
1704			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1705			if (tpte & PG_A)
1706				vm_page_flag_set(m, PG_REFERENCED);
1707			if (tpte & PG_M) {
1708				KASSERT((tpte & PG_RW),
1709	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
1710				    va, (uintmax_t)tpte));
1711				vm_page_dirty(m);
1712			}
1713			pmap_invalidate_page(pmap, va);
1714			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1715			if (TAILQ_EMPTY(&m->md.pv_list))
1716				vm_page_flag_clear(m, PG_WRITEABLE);
1717			m->md.pv_list_count--;
1718			pmap_unuse_pt(pmap, va);
1719			free_pv_entry(pmap, pv);
1720			if (pmap != locked_pmap)
1721				PMAP_UNLOCK(pmap);
1722		}
1723	}
1724	sched_unpin();
1725}
1726
1727
1728/*
1729 * free the pv_entry back to the free list
1730 */
1731static void
1732free_pv_entry(pmap_t pmap, pv_entry_t pv)
1733{
1734	vm_page_t m;
1735	struct pv_chunk *pc;
1736	int idx, field, bit;
1737
1738	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1739	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1740	PV_STAT(pv_entry_frees++);
1741	PV_STAT(pv_entry_spare++);
1742	pv_entry_count--;
1743	pc = pv_to_chunk(pv);
1744	idx = pv - &pc->pc_pventry[0];
1745	field = idx / 32;
1746	bit = idx % 32;
1747	pc->pc_map[field] |= 1ul << bit;
1748	/* move to head of list */
1749	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1750	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1751	for (idx = 0; idx < _NPCM; idx++)
1752		if (pc->pc_map[idx] != pc_freemask[idx])
1753			return;
1754	PV_STAT(pv_entry_spare -= _NPCPV);
1755	PV_STAT(pc_chunk_count--);
1756	PV_STAT(pc_chunk_frees++);
1757	/* entire chunk is free, return it */
1758	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1759	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1760	pmap_qremove((vm_offset_t)pc, 1);
1761	vm_page_unwire(m, 0);
1762	vm_page_free(m);
1763	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1764}
1765
1766/*
1767 * get a new pv_entry, allocating a block from the system
1768 * when needed.
1769 */
1770static pv_entry_t
1771get_pv_entry(pmap_t pmap, int try)
1772{
1773	static const struct timeval printinterval = { 60, 0 };
1774	static struct timeval lastprint;
1775	static vm_pindex_t colour;
1776	int bit, field, page_req;
1777	pv_entry_t pv;
1778	struct pv_chunk *pc;
1779	vm_page_t m;
1780
1781	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1782	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1783	PV_STAT(pv_entry_allocs++);
1784	pv_entry_count++;
1785	if (pv_entry_count > pv_entry_high_water)
1786		pagedaemon_wakeup();
1787	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1788	if (pc != NULL) {
1789		for (field = 0; field < _NPCM; field++) {
1790			if (pc->pc_map[field]) {
1791				bit = bsfl(pc->pc_map[field]);
1792				break;
1793			}
1794		}
1795		if (field < _NPCM) {
1796			pv = &pc->pc_pventry[field * 32 + bit];
1797			pc->pc_map[field] &= ~(1ul << bit);
1798			/* If this was the last item, move it to tail */
1799			for (field = 0; field < _NPCM; field++)
1800				if (pc->pc_map[field] != 0) {
1801					PV_STAT(pv_entry_spare--);
1802					return (pv);	/* not full, return */
1803				}
1804			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1805			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1806			PV_STAT(pv_entry_spare--);
1807			return (pv);
1808		}
1809	}
1810	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
1811	page_req = try ? VM_ALLOC_NORMAL : VM_ALLOC_SYSTEM;
1812	m = vm_page_alloc(NULL, colour, page_req |
1813	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
1814	if (m == NULL || pc == NULL) {
1815		if (try) {
1816			pv_entry_count--;
1817			PV_STAT(pc_chunk_tryfail++);
1818			if (m) {
1819				vm_page_lock_queues();
1820				vm_page_unwire(m, 0);
1821				vm_page_free(m);
1822				vm_page_unlock_queues();
1823			}
1824			if (pc)
1825				pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1826			return (NULL);
1827		}
1828		/*
1829		 * Reclaim pv entries: At first, destroy mappings to
1830		 * inactive pages.  After that, if a pv chunk entry
1831		 * is still needed, destroy mappings to active pages.
1832		 */
1833		if (ratecheck(&lastprint, &printinterval))
1834			printf("Approaching the limit on PV entries, "
1835			    "consider increasing tunables "
1836			    "vm.pmap.shpgperproc or "
1837			    "vm.pmap.pv_entry_max\n");
1838		PV_STAT(pmap_collect_inactive++);
1839		pmap_collect(pmap, &vm_page_queues[PQ_INACTIVE]);
1840		if (m == NULL)
1841			m = vm_page_alloc(NULL, colour, VM_ALLOC_SYSTEM |
1842			    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
1843		if (pc == NULL)
1844			pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
1845		if (m == NULL || pc == NULL) {
1846			PV_STAT(pmap_collect_active++);
1847			pmap_collect(pmap, &vm_page_queues[PQ_ACTIVE]);
1848			if (m == NULL)
1849				m = vm_page_alloc(NULL, colour,
1850				    VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
1851				    VM_ALLOC_WIRED);
1852			if (pc == NULL)
1853				pc = (struct pv_chunk *)
1854				    pmap_ptelist_alloc(&pv_vafree);
1855			if (m == NULL || pc == NULL)
1856				panic("get_pv_entry: increase vm.pmap.shpgperproc");
1857		}
1858	}
1859	PV_STAT(pc_chunk_count++);
1860	PV_STAT(pc_chunk_allocs++);
1861	colour++;
1862	pmap_qenter((vm_offset_t)pc, &m, 1);
1863	pc->pc_pmap = pmap;
1864	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1865	for (field = 1; field < _NPCM; field++)
1866		pc->pc_map[field] = pc_freemask[field];
1867	pv = &pc->pc_pventry[0];
1868	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1869	PV_STAT(pv_entry_spare += _NPCPV - 1);
1870	return (pv);
1871}
1872
1873static void
1874pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1875{
1876	pv_entry_t pv;
1877
1878	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1879	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1880	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1881		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
1882			break;
1883	}
1884	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1885	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1886	m->md.pv_list_count--;
1887	if (TAILQ_EMPTY(&m->md.pv_list))
1888		vm_page_flag_clear(m, PG_WRITEABLE);
1889	free_pv_entry(pmap, pv);
1890}
1891
1892/*
1893 * Create a pv entry for page at pa for
1894 * (pmap, va).
1895 */
1896static void
1897pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1898{
1899	pv_entry_t pv;
1900
1901	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1902	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1903	pv = get_pv_entry(pmap, FALSE);
1904	pv->pv_va = va;
1905	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1906	m->md.pv_list_count++;
1907}
1908
1909/*
1910 * Conditionally create a pv entry.
1911 */
1912static boolean_t
1913pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1914{
1915	pv_entry_t pv;
1916
1917	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1918	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1919	if (pv_entry_count < pv_entry_high_water &&
1920	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
1921		pv->pv_va = va;
1922		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1923		m->md.pv_list_count++;
1924		return (TRUE);
1925	} else
1926		return (FALSE);
1927}
1928
1929/*
1930 * pmap_remove_pte: do the things to unmap a page in a process
1931 */
1932static int
1933pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1934{
1935	pt_entry_t oldpte;
1936	vm_page_t m;
1937
1938	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1939	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1940	oldpte = pte_load_clear(ptq);
1941	if (oldpte & PG_W)
1942		pmap->pm_stats.wired_count -= 1;
1943	/*
1944	 * Machines that don't support invlpg, also don't support
1945	 * PG_G.
1946	 */
1947	if (oldpte & PG_G)
1948		pmap_invalidate_page(kernel_pmap, va);
1949	pmap->pm_stats.resident_count -= 1;
1950	if (oldpte & PG_MANAGED) {
1951		m = PHYS_TO_VM_PAGE(oldpte);
1952		if (oldpte & PG_M) {
1953			KASSERT((oldpte & PG_RW),
1954	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1955			    va, (uintmax_t)oldpte));
1956			vm_page_dirty(m);
1957		}
1958		if (oldpte & PG_A)
1959			vm_page_flag_set(m, PG_REFERENCED);
1960		pmap_remove_entry(pmap, m, va);
1961	}
1962	return (pmap_unuse_pt(pmap, va));
1963}
1964
1965/*
1966 * Remove a single page from a process address space
1967 */
1968static void
1969pmap_remove_page(pmap_t pmap, vm_offset_t va)
1970{
1971	pt_entry_t *pte;
1972
1973	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1974	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1975	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1976	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1977		return;
1978	pmap_remove_pte(pmap, pte, va);
1979	pmap_invalidate_page(pmap, va);
1980}
1981
1982/*
1983 *	Remove the given range of addresses from the specified map.
1984 *
1985 *	It is assumed that the start and end are properly
1986 *	rounded to the page size.
1987 */
1988void
1989pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1990{
1991	vm_offset_t pdnxt;
1992	pd_entry_t ptpaddr;
1993	pt_entry_t *pte;
1994	int anyvalid;
1995
1996	/*
1997	 * Perform an unsynchronized read.  This is, however, safe.
1998	 */
1999	if (pmap->pm_stats.resident_count == 0)
2000		return;
2001
2002	anyvalid = 0;
2003
2004	vm_page_lock_queues();
2005	sched_pin();
2006	PMAP_LOCK(pmap);
2007
2008	/*
2009	 * special handling of removing one page.  a very
2010	 * common operation and easy to short circuit some
2011	 * code.
2012	 */
2013	if ((sva + PAGE_SIZE == eva) &&
2014	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2015		pmap_remove_page(pmap, sva);
2016		goto out;
2017	}
2018
2019	for (; sva < eva; sva = pdnxt) {
2020		unsigned pdirindex;
2021
2022		/*
2023		 * Calculate index for next page table.
2024		 */
2025		pdnxt = (sva + NBPDR) & ~PDRMASK;
2026		if (pmap->pm_stats.resident_count == 0)
2027			break;
2028
2029		pdirindex = sva >> PDRSHIFT;
2030		ptpaddr = pmap->pm_pdir[pdirindex];
2031
2032		/*
2033		 * Weed out invalid mappings. Note: we assume that the page
2034		 * directory table is always allocated, and in kernel virtual.
2035		 */
2036		if (ptpaddr == 0)
2037			continue;
2038
2039		/*
2040		 * Check for large page.
2041		 */
2042		if ((ptpaddr & PG_PS) != 0) {
2043			pmap->pm_pdir[pdirindex] = 0;
2044			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2045			anyvalid = 1;
2046			continue;
2047		}
2048
2049		/*
2050		 * Limit our scan to either the end of the va represented
2051		 * by the current page table page, or to the end of the
2052		 * range being removed.
2053		 */
2054		if (pdnxt > eva)
2055			pdnxt = eva;
2056
2057		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2058		    sva += PAGE_SIZE) {
2059			if (*pte == 0)
2060				continue;
2061
2062			/*
2063			 * The TLB entry for a PG_G mapping is invalidated
2064			 * by pmap_remove_pte().
2065			 */
2066			if ((*pte & PG_G) == 0)
2067				anyvalid = 1;
2068			if (pmap_remove_pte(pmap, pte, sva))
2069				break;
2070		}
2071	}
2072out:
2073	sched_unpin();
2074	vm_page_unlock_queues();
2075	if (anyvalid)
2076		pmap_invalidate_all(pmap);
2077	PMAP_UNLOCK(pmap);
2078}
2079
2080/*
2081 *	Routine:	pmap_remove_all
2082 *	Function:
2083 *		Removes this physical page from
2084 *		all physical maps in which it resides.
2085 *		Reflects back modify bits to the pager.
2086 *
2087 *	Notes:
2088 *		Original versions of this routine were very
2089 *		inefficient because they iteratively called
2090 *		pmap_remove (slow...)
2091 */
2092
2093void
2094pmap_remove_all(vm_page_t m)
2095{
2096	pv_entry_t pv;
2097	pmap_t pmap;
2098	pt_entry_t *pte, tpte;
2099
2100#if defined(PMAP_DIAGNOSTIC)
2101	/*
2102	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2103	 */
2104	if (m->flags & PG_FICTITIOUS) {
2105		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
2106		    VM_PAGE_TO_PHYS(m));
2107	}
2108#endif
2109	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2110	sched_pin();
2111	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2112		pmap = PV_PMAP(pv);
2113		PMAP_LOCK(pmap);
2114		pmap->pm_stats.resident_count--;
2115		pte = pmap_pte_quick(pmap, pv->pv_va);
2116		tpte = pte_load_clear(pte);
2117		if (tpte & PG_W)
2118			pmap->pm_stats.wired_count--;
2119		if (tpte & PG_A)
2120			vm_page_flag_set(m, PG_REFERENCED);
2121
2122		/*
2123		 * Update the vm_page_t clean and reference bits.
2124		 */
2125		if (tpte & PG_M) {
2126			KASSERT((tpte & PG_RW),
2127	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2128			    pv->pv_va, (uintmax_t)tpte));
2129			vm_page_dirty(m);
2130		}
2131		pmap_invalidate_page(pmap, pv->pv_va);
2132		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2133		m->md.pv_list_count--;
2134		pmap_unuse_pt(pmap, pv->pv_va);
2135		free_pv_entry(pmap, pv);
2136		PMAP_UNLOCK(pmap);
2137	}
2138	vm_page_flag_clear(m, PG_WRITEABLE);
2139	sched_unpin();
2140}
2141
2142/*
2143 *	Set the physical protection on the
2144 *	specified range of this map as requested.
2145 */
2146void
2147pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2148{
2149	vm_offset_t pdnxt;
2150	pd_entry_t ptpaddr;
2151	pt_entry_t *pte;
2152	int anychanged;
2153
2154	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2155		pmap_remove(pmap, sva, eva);
2156		return;
2157	}
2158
2159	if (prot & VM_PROT_WRITE)
2160		return;
2161
2162	anychanged = 0;
2163
2164	vm_page_lock_queues();
2165	sched_pin();
2166	PMAP_LOCK(pmap);
2167	for (; sva < eva; sva = pdnxt) {
2168		unsigned obits, pbits, pdirindex;
2169
2170		pdnxt = (sva + NBPDR) & ~PDRMASK;
2171
2172		pdirindex = sva >> PDRSHIFT;
2173		ptpaddr = pmap->pm_pdir[pdirindex];
2174
2175		/*
2176		 * Weed out invalid mappings. Note: we assume that the page
2177		 * directory table is always allocated, and in kernel virtual.
2178		 */
2179		if (ptpaddr == 0)
2180			continue;
2181
2182		/*
2183		 * Check for large page.
2184		 */
2185		if ((ptpaddr & PG_PS) != 0) {
2186			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2187			anychanged = 1;
2188			continue;
2189		}
2190
2191		if (pdnxt > eva)
2192			pdnxt = eva;
2193
2194		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2195		    sva += PAGE_SIZE) {
2196			vm_page_t m;
2197
2198retry:
2199			/*
2200			 * Regardless of whether a pte is 32 or 64 bits in
2201			 * size, PG_RW, PG_A, and PG_M are among the least
2202			 * significant 32 bits.
2203			 */
2204			obits = pbits = *(u_int *)pte;
2205			if (pbits & PG_MANAGED) {
2206				m = NULL;
2207				if (pbits & PG_A) {
2208					m = PHYS_TO_VM_PAGE(*pte);
2209					vm_page_flag_set(m, PG_REFERENCED);
2210					pbits &= ~PG_A;
2211				}
2212				if ((pbits & PG_M) != 0) {
2213					if (m == NULL)
2214						m = PHYS_TO_VM_PAGE(*pte);
2215					vm_page_dirty(m);
2216				}
2217			}
2218
2219			pbits &= ~(PG_RW | PG_M);
2220
2221			if (pbits != obits) {
2222				if (!atomic_cmpset_int((u_int *)pte, obits,
2223				    pbits))
2224					goto retry;
2225				if (obits & PG_G)
2226					pmap_invalidate_page(pmap, sva);
2227				else
2228					anychanged = 1;
2229			}
2230		}
2231	}
2232	sched_unpin();
2233	vm_page_unlock_queues();
2234	if (anychanged)
2235		pmap_invalidate_all(pmap);
2236	PMAP_UNLOCK(pmap);
2237}
2238
2239/*
2240 *	Insert the given physical page (p) at
2241 *	the specified virtual address (v) in the
2242 *	target physical map with the protection requested.
2243 *
2244 *	If specified, the page will be wired down, meaning
2245 *	that the related pte can not be reclaimed.
2246 *
2247 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2248 *	or lose information.  That is, this routine must actually
2249 *	insert this page into the given map NOW.
2250 */
2251void
2252pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2253	   boolean_t wired)
2254{
2255	vm_paddr_t pa;
2256	pd_entry_t *pde;
2257	pt_entry_t *pte;
2258	vm_paddr_t opa;
2259	pt_entry_t origpte, newpte;
2260	vm_page_t mpte, om;
2261	boolean_t invlva;
2262
2263	va &= PG_FRAME;
2264#ifdef PMAP_DIAGNOSTIC
2265	if (va > VM_MAX_KERNEL_ADDRESS)
2266		panic("pmap_enter: toobig");
2267	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2268		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2269#endif
2270
2271	mpte = NULL;
2272
2273	vm_page_lock_queues();
2274	PMAP_LOCK(pmap);
2275	sched_pin();
2276
2277	/*
2278	 * In the case that a page table page is not
2279	 * resident, we are creating it here.
2280	 */
2281	if (va < VM_MAXUSER_ADDRESS) {
2282		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2283	}
2284#if 0 && defined(PMAP_DIAGNOSTIC)
2285	else {
2286		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2287		origpte = *pdeaddr;
2288		if ((origpte & PG_V) == 0) {
2289			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2290				pmap->pm_pdir[PTDPTDI], origpte, va);
2291		}
2292	}
2293#endif
2294
2295	pde = pmap_pde(pmap, va);
2296	if ((*pde & PG_PS) != 0)
2297		panic("pmap_enter: attempted pmap_enter on 4MB page");
2298	pte = pmap_pte_quick(pmap, va);
2299
2300	/*
2301	 * Page Directory table entry not valid, we need a new PT page
2302	 */
2303	if (pte == NULL) {
2304		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2305			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
2306	}
2307
2308	pa = VM_PAGE_TO_PHYS(m);
2309	om = NULL;
2310	origpte = *pte;
2311	opa = origpte & PG_FRAME;
2312
2313	/*
2314	 * Mapping has not changed, must be protection or wiring change.
2315	 */
2316	if (origpte && (opa == pa)) {
2317		/*
2318		 * Wiring change, just update stats. We don't worry about
2319		 * wiring PT pages as they remain resident as long as there
2320		 * are valid mappings in them. Hence, if a user page is wired,
2321		 * the PT page will be also.
2322		 */
2323		if (wired && ((origpte & PG_W) == 0))
2324			pmap->pm_stats.wired_count++;
2325		else if (!wired && (origpte & PG_W))
2326			pmap->pm_stats.wired_count--;
2327
2328		/*
2329		 * Remove extra pte reference
2330		 */
2331		if (mpte)
2332			mpte->wire_count--;
2333
2334		/*
2335		 * We might be turning off write access to the page,
2336		 * so we go ahead and sense modify status.
2337		 */
2338		if (origpte & PG_MANAGED) {
2339			om = m;
2340			pa |= PG_MANAGED;
2341		}
2342		goto validate;
2343	}
2344	/*
2345	 * Mapping has changed, invalidate old range and fall through to
2346	 * handle validating new mapping.
2347	 */
2348	if (opa) {
2349		if (origpte & PG_W)
2350			pmap->pm_stats.wired_count--;
2351		if (origpte & PG_MANAGED) {
2352			om = PHYS_TO_VM_PAGE(opa);
2353			pmap_remove_entry(pmap, om, va);
2354		}
2355		if (mpte != NULL) {
2356			mpte->wire_count--;
2357			KASSERT(mpte->wire_count > 0,
2358			    ("pmap_enter: missing reference to page table page,"
2359			     " va: 0x%x", va));
2360		}
2361	} else
2362		pmap->pm_stats.resident_count++;
2363
2364	/*
2365	 * Enter on the PV list if part of our managed memory.
2366	 */
2367	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2368		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2369		    ("pmap_enter: managed mapping within the clean submap"));
2370		pmap_insert_entry(pmap, va, m);
2371		pa |= PG_MANAGED;
2372	}
2373
2374	/*
2375	 * Increment counters
2376	 */
2377	if (wired)
2378		pmap->pm_stats.wired_count++;
2379
2380validate:
2381	/*
2382	 * Now validate mapping with desired protection/wiring.
2383	 */
2384	newpte = (pt_entry_t)(pa | PG_V);
2385	if ((prot & VM_PROT_WRITE) != 0) {
2386		newpte |= PG_RW;
2387		vm_page_flag_set(m, PG_WRITEABLE);
2388	}
2389	if (wired)
2390		newpte |= PG_W;
2391	if (va < VM_MAXUSER_ADDRESS)
2392		newpte |= PG_U;
2393	if (pmap == kernel_pmap)
2394		newpte |= pgeflag;
2395
2396	/*
2397	 * if the mapping or permission bits are different, we need
2398	 * to update the pte.
2399	 */
2400	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2401		if (origpte & PG_V) {
2402			invlva = FALSE;
2403			origpte = pte_load_store(pte, newpte | PG_A);
2404			if (origpte & PG_A) {
2405				if (origpte & PG_MANAGED)
2406					vm_page_flag_set(om, PG_REFERENCED);
2407				if (opa != VM_PAGE_TO_PHYS(m))
2408					invlva = TRUE;
2409			}
2410			if (origpte & PG_M) {
2411				KASSERT((origpte & PG_RW),
2412	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2413				    va, (uintmax_t)origpte));
2414				if ((origpte & PG_MANAGED) != 0)
2415					vm_page_dirty(om);
2416				if ((prot & VM_PROT_WRITE) == 0)
2417					invlva = TRUE;
2418			}
2419			if (invlva)
2420				pmap_invalidate_page(pmap, va);
2421		} else
2422			pte_store(pte, newpte | PG_A);
2423	}
2424	sched_unpin();
2425	vm_page_unlock_queues();
2426	PMAP_UNLOCK(pmap);
2427}
2428
2429/*
2430 * Maps a sequence of resident pages belonging to the same object.
2431 * The sequence begins with the given page m_start.  This page is
2432 * mapped at the given virtual address start.  Each subsequent page is
2433 * mapped at a virtual address that is offset from start by the same
2434 * amount as the page is offset from m_start within the object.  The
2435 * last page in the sequence is the page with the largest offset from
2436 * m_start that can be mapped at a virtual address less than the given
2437 * virtual address end.  Not every virtual page between start and end
2438 * is mapped; only those for which a resident page exists with the
2439 * corresponding offset from m_start are mapped.
2440 */
2441void
2442pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2443    vm_page_t m_start, vm_prot_t prot)
2444{
2445	vm_page_t m, mpte;
2446	vm_pindex_t diff, psize;
2447
2448	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2449	psize = atop(end - start);
2450	mpte = NULL;
2451	m = m_start;
2452	PMAP_LOCK(pmap);
2453	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2454		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2455		    prot, mpte);
2456		m = TAILQ_NEXT(m, listq);
2457	}
2458 	PMAP_UNLOCK(pmap);
2459}
2460
2461/*
2462 * this code makes some *MAJOR* assumptions:
2463 * 1. Current pmap & pmap exists.
2464 * 2. Not wired.
2465 * 3. Read access.
2466 * 4. No page table pages.
2467 * but is *MUCH* faster than pmap_enter...
2468 */
2469
2470void
2471pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2472{
2473
2474	PMAP_LOCK(pmap);
2475	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2476	PMAP_UNLOCK(pmap);
2477}
2478
2479static vm_page_t
2480pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2481    vm_prot_t prot, vm_page_t mpte)
2482{
2483	pt_entry_t *pte;
2484	vm_paddr_t pa;
2485
2486	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2487	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2488	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2489	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2490	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2491
2492	/*
2493	 * In the case that a page table page is not
2494	 * resident, we are creating it here.
2495	 */
2496	if (va < VM_MAXUSER_ADDRESS) {
2497		unsigned ptepindex;
2498		pd_entry_t ptepa;
2499
2500		/*
2501		 * Calculate pagetable page index
2502		 */
2503		ptepindex = va >> PDRSHIFT;
2504		if (mpte && (mpte->pindex == ptepindex)) {
2505			mpte->wire_count++;
2506		} else {
2507			/*
2508			 * Get the page directory entry
2509			 */
2510			ptepa = pmap->pm_pdir[ptepindex];
2511
2512			/*
2513			 * If the page table page is mapped, we just increment
2514			 * the hold count, and activate it.
2515			 */
2516			if (ptepa) {
2517				if (ptepa & PG_PS)
2518					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2519				mpte = PHYS_TO_VM_PAGE(ptepa);
2520				mpte->wire_count++;
2521			} else {
2522				mpte = _pmap_allocpte(pmap, ptepindex,
2523				    M_NOWAIT);
2524				if (mpte == NULL)
2525					return (mpte);
2526			}
2527		}
2528	} else {
2529		mpte = NULL;
2530	}
2531
2532	/*
2533	 * This call to vtopte makes the assumption that we are
2534	 * entering the page into the current pmap.  In order to support
2535	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2536	 * But that isn't as quick as vtopte.
2537	 */
2538	pte = vtopte(va);
2539	if (*pte) {
2540		if (mpte != NULL) {
2541			pmap_unwire_pte_hold(pmap, mpte);
2542			mpte = NULL;
2543		}
2544		return (mpte);
2545	}
2546
2547	/*
2548	 * Enter on the PV list if part of our managed memory.
2549	 */
2550	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2551	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2552		if (mpte != NULL) {
2553			pmap_unwire_pte_hold(pmap, mpte);
2554			mpte = NULL;
2555		}
2556		return (mpte);
2557	}
2558
2559	/*
2560	 * Increment counters
2561	 */
2562	pmap->pm_stats.resident_count++;
2563
2564	pa = VM_PAGE_TO_PHYS(m);
2565
2566	/*
2567	 * Now validate mapping with RO protection
2568	 */
2569	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2570		pte_store(pte, pa | PG_V | PG_U);
2571	else
2572		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2573	return mpte;
2574}
2575
2576/*
2577 * Make a temporary mapping for a physical address.  This is only intended
2578 * to be used for panic dumps.
2579 */
2580void *
2581pmap_kenter_temporary(vm_paddr_t pa, int i)
2582{
2583	vm_offset_t va;
2584
2585	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2586	pmap_kenter(va, pa);
2587	invlpg(va);
2588	return ((void *)crashdumpmap);
2589}
2590
2591/*
2592 * This code maps large physical mmap regions into the
2593 * processor address space.  Note that some shortcuts
2594 * are taken, but the code works.
2595 */
2596void
2597pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2598		    vm_object_t object, vm_pindex_t pindex,
2599		    vm_size_t size)
2600{
2601	vm_page_t p;
2602
2603	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2604	KASSERT(object->type == OBJT_DEVICE,
2605	    ("pmap_object_init_pt: non-device object"));
2606	if (pseflag &&
2607	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2608		int i;
2609		vm_page_t m[1];
2610		unsigned int ptepindex;
2611		int npdes;
2612		pd_entry_t ptepa;
2613
2614		PMAP_LOCK(pmap);
2615		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2616			goto out;
2617		PMAP_UNLOCK(pmap);
2618retry:
2619		p = vm_page_lookup(object, pindex);
2620		if (p != NULL) {
2621			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2622				goto retry;
2623		} else {
2624			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2625			if (p == NULL)
2626				return;
2627			m[0] = p;
2628
2629			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2630				vm_page_lock_queues();
2631				vm_page_free(p);
2632				vm_page_unlock_queues();
2633				return;
2634			}
2635
2636			p = vm_page_lookup(object, pindex);
2637			vm_page_lock_queues();
2638			vm_page_wakeup(p);
2639			vm_page_unlock_queues();
2640		}
2641
2642		ptepa = VM_PAGE_TO_PHYS(p);
2643		if (ptepa & (NBPDR - 1))
2644			return;
2645
2646		p->valid = VM_PAGE_BITS_ALL;
2647
2648		PMAP_LOCK(pmap);
2649		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2650		npdes = size >> PDRSHIFT;
2651		for(i = 0; i < npdes; i++) {
2652			pde_store(&pmap->pm_pdir[ptepindex],
2653			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2654			ptepa += NBPDR;
2655			ptepindex += 1;
2656		}
2657		pmap_invalidate_all(pmap);
2658out:
2659		PMAP_UNLOCK(pmap);
2660	}
2661}
2662
2663/*
2664 *	Routine:	pmap_change_wiring
2665 *	Function:	Change the wiring attribute for a map/virtual-address
2666 *			pair.
2667 *	In/out conditions:
2668 *			The mapping must already exist in the pmap.
2669 */
2670void
2671pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2672{
2673	pt_entry_t *pte;
2674
2675	PMAP_LOCK(pmap);
2676	pte = pmap_pte(pmap, va);
2677
2678	if (wired && !pmap_pte_w(pte))
2679		pmap->pm_stats.wired_count++;
2680	else if (!wired && pmap_pte_w(pte))
2681		pmap->pm_stats.wired_count--;
2682
2683	/*
2684	 * Wiring is not a hardware characteristic so there is no need to
2685	 * invalidate TLB.
2686	 */
2687	pmap_pte_set_w(pte, wired);
2688	pmap_pte_release(pte);
2689	PMAP_UNLOCK(pmap);
2690}
2691
2692
2693
2694/*
2695 *	Copy the range specified by src_addr/len
2696 *	from the source map to the range dst_addr/len
2697 *	in the destination map.
2698 *
2699 *	This routine is only advisory and need not do anything.
2700 */
2701
2702void
2703pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2704	  vm_offset_t src_addr)
2705{
2706	vm_offset_t addr;
2707	vm_offset_t end_addr = src_addr + len;
2708	vm_offset_t pdnxt;
2709
2710	if (dst_addr != src_addr)
2711		return;
2712
2713	if (!pmap_is_current(src_pmap))
2714		return;
2715
2716	vm_page_lock_queues();
2717	if (dst_pmap < src_pmap) {
2718		PMAP_LOCK(dst_pmap);
2719		PMAP_LOCK(src_pmap);
2720	} else {
2721		PMAP_LOCK(src_pmap);
2722		PMAP_LOCK(dst_pmap);
2723	}
2724	sched_pin();
2725	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2726		pt_entry_t *src_pte, *dst_pte;
2727		vm_page_t dstmpte, srcmpte;
2728		pd_entry_t srcptepaddr;
2729		unsigned ptepindex;
2730
2731		if (addr >= UPT_MIN_ADDRESS)
2732			panic("pmap_copy: invalid to pmap_copy page tables");
2733
2734		pdnxt = (addr + NBPDR) & ~PDRMASK;
2735		ptepindex = addr >> PDRSHIFT;
2736
2737		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2738		if (srcptepaddr == 0)
2739			continue;
2740
2741		if (srcptepaddr & PG_PS) {
2742			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2743				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
2744				    ~PG_W;
2745				dst_pmap->pm_stats.resident_count +=
2746				    NBPDR / PAGE_SIZE;
2747			}
2748			continue;
2749		}
2750
2751		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2752		if (srcmpte->wire_count == 0)
2753			panic("pmap_copy: source page table page is unused");
2754
2755		if (pdnxt > end_addr)
2756			pdnxt = end_addr;
2757
2758		src_pte = vtopte(addr);
2759		while (addr < pdnxt) {
2760			pt_entry_t ptetemp;
2761			ptetemp = *src_pte;
2762			/*
2763			 * we only virtual copy managed pages
2764			 */
2765			if ((ptetemp & PG_MANAGED) != 0) {
2766				dstmpte = pmap_allocpte(dst_pmap, addr,
2767				    M_NOWAIT);
2768				if (dstmpte == NULL)
2769					break;
2770				dst_pte = pmap_pte_quick(dst_pmap, addr);
2771				if (*dst_pte == 0 &&
2772				    pmap_try_insert_pv_entry(dst_pmap, addr,
2773				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
2774					/*
2775					 * Clear the wired, modified, and
2776					 * accessed (referenced) bits
2777					 * during the copy.
2778					 */
2779					*dst_pte = ptetemp & ~(PG_W | PG_M |
2780					    PG_A);
2781					dst_pmap->pm_stats.resident_count++;
2782	 			} else
2783					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2784				if (dstmpte->wire_count >= srcmpte->wire_count)
2785					break;
2786			}
2787			addr += PAGE_SIZE;
2788			src_pte++;
2789		}
2790	}
2791	sched_unpin();
2792	vm_page_unlock_queues();
2793	PMAP_UNLOCK(src_pmap);
2794	PMAP_UNLOCK(dst_pmap);
2795}
2796
2797static __inline void
2798pagezero(void *page)
2799{
2800#if defined(I686_CPU)
2801	if (cpu_class == CPUCLASS_686) {
2802#if defined(CPU_ENABLE_SSE)
2803		if (cpu_feature & CPUID_SSE2)
2804			sse2_pagezero(page);
2805		else
2806#endif
2807			i686_pagezero(page);
2808	} else
2809#endif
2810		bzero(page, PAGE_SIZE);
2811}
2812
2813/*
2814 *	pmap_zero_page zeros the specified hardware page by mapping
2815 *	the page into KVM and using bzero to clear its contents.
2816 */
2817void
2818pmap_zero_page(vm_page_t m)
2819{
2820	struct sysmaps *sysmaps;
2821
2822	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2823	mtx_lock(&sysmaps->lock);
2824	if (*sysmaps->CMAP2)
2825		panic("pmap_zero_page: CMAP2 busy");
2826	sched_pin();
2827	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2828	invlcaddr(sysmaps->CADDR2);
2829	pagezero(sysmaps->CADDR2);
2830	*sysmaps->CMAP2 = 0;
2831	sched_unpin();
2832	mtx_unlock(&sysmaps->lock);
2833}
2834
2835/*
2836 *	pmap_zero_page_area zeros the specified hardware page by mapping
2837 *	the page into KVM and using bzero to clear its contents.
2838 *
2839 *	off and size may not cover an area beyond a single hardware page.
2840 */
2841void
2842pmap_zero_page_area(vm_page_t m, int off, int size)
2843{
2844	struct sysmaps *sysmaps;
2845
2846	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2847	mtx_lock(&sysmaps->lock);
2848	if (*sysmaps->CMAP2)
2849		panic("pmap_zero_page: CMAP2 busy");
2850	sched_pin();
2851	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2852	invlcaddr(sysmaps->CADDR2);
2853	if (off == 0 && size == PAGE_SIZE)
2854		pagezero(sysmaps->CADDR2);
2855	else
2856		bzero((char *)sysmaps->CADDR2 + off, size);
2857	*sysmaps->CMAP2 = 0;
2858	sched_unpin();
2859	mtx_unlock(&sysmaps->lock);
2860}
2861
2862/*
2863 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2864 *	the page into KVM and using bzero to clear its contents.  This
2865 *	is intended to be called from the vm_pagezero process only and
2866 *	outside of Giant.
2867 */
2868void
2869pmap_zero_page_idle(vm_page_t m)
2870{
2871
2872	if (*CMAP3)
2873		panic("pmap_zero_page: CMAP3 busy");
2874	sched_pin();
2875	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2876	invlcaddr(CADDR3);
2877	pagezero(CADDR3);
2878	*CMAP3 = 0;
2879	sched_unpin();
2880}
2881
2882/*
2883 *	pmap_copy_page copies the specified (machine independent)
2884 *	page by mapping the page into virtual memory and using
2885 *	bcopy to copy the page, one machine dependent page at a
2886 *	time.
2887 */
2888void
2889pmap_copy_page(vm_page_t src, vm_page_t dst)
2890{
2891	struct sysmaps *sysmaps;
2892
2893	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2894	mtx_lock(&sysmaps->lock);
2895	if (*sysmaps->CMAP1)
2896		panic("pmap_copy_page: CMAP1 busy");
2897	if (*sysmaps->CMAP2)
2898		panic("pmap_copy_page: CMAP2 busy");
2899	sched_pin();
2900	invlpg((u_int)sysmaps->CADDR1);
2901	invlpg((u_int)sysmaps->CADDR2);
2902	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2903	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2904	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2905	*sysmaps->CMAP1 = 0;
2906	*sysmaps->CMAP2 = 0;
2907	sched_unpin();
2908	mtx_unlock(&sysmaps->lock);
2909}
2910
2911/*
2912 * Returns true if the pmap's pv is one of the first
2913 * 16 pvs linked to from this page.  This count may
2914 * be changed upwards or downwards in the future; it
2915 * is only necessary that true be returned for a small
2916 * subset of pmaps for proper page aging.
2917 */
2918boolean_t
2919pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2920{
2921	pv_entry_t pv;
2922	int loops = 0;
2923
2924	if (m->flags & PG_FICTITIOUS)
2925		return FALSE;
2926
2927	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2928	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2929		if (PV_PMAP(pv) == pmap) {
2930			return TRUE;
2931		}
2932		loops++;
2933		if (loops >= 16)
2934			break;
2935	}
2936	return (FALSE);
2937}
2938
2939/*
2940 * Remove all pages from specified address space
2941 * this aids process exit speeds.  Also, this code
2942 * is special cased for current process only, but
2943 * can have the more generic (and slightly slower)
2944 * mode enabled.  This is much faster than pmap_remove
2945 * in the case of running down an entire address space.
2946 */
2947void
2948pmap_remove_pages(pmap_t pmap)
2949{
2950	pt_entry_t *pte, tpte;
2951	vm_page_t m;
2952	pv_entry_t pv;
2953	struct pv_chunk *pc, *npc;
2954	int field, idx;
2955	int32_t bit;
2956	uint32_t inuse, bitmask;
2957	int allfree;
2958
2959	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2960		printf("warning: pmap_remove_pages called with non-current pmap\n");
2961		return;
2962	}
2963	vm_page_lock_queues();
2964	PMAP_LOCK(pmap);
2965	sched_pin();
2966	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2967		allfree = 1;
2968		for (field = 0; field < _NPCM; field++) {
2969			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
2970			while (inuse != 0) {
2971				bit = bsfl(inuse);
2972				bitmask = 1UL << bit;
2973				idx = field * 32 + bit;
2974				pv = &pc->pc_pventry[idx];
2975				inuse &= ~bitmask;
2976
2977				pte = vtopte(pv->pv_va);
2978				tpte = *pte;
2979
2980				if (tpte == 0) {
2981					printf(
2982					    "TPTE at %p  IS ZERO @ VA %08x\n",
2983					    pte, pv->pv_va);
2984					panic("bad pte");
2985				}
2986
2987/*
2988 * We cannot remove wired pages from a process' mapping at this time
2989 */
2990				if (tpte & PG_W) {
2991					allfree = 0;
2992					continue;
2993				}
2994
2995				m = PHYS_TO_VM_PAGE(tpte);
2996				KASSERT(m->phys_addr == (tpte & PG_FRAME),
2997				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2998				    m, (uintmax_t)m->phys_addr,
2999				    (uintmax_t)tpte));
3000
3001				KASSERT(m < &vm_page_array[vm_page_array_size],
3002					("pmap_remove_pages: bad tpte %#jx",
3003					(uintmax_t)tpte));
3004
3005				pmap->pm_stats.resident_count--;
3006
3007				pte_clear(pte);
3008
3009				/*
3010				 * Update the vm_page_t clean/reference bits.
3011				 */
3012				if (tpte & PG_M)
3013					vm_page_dirty(m);
3014
3015				/* Mark free */
3016				PV_STAT(pv_entry_frees++);
3017				PV_STAT(pv_entry_spare++);
3018				pv_entry_count--;
3019				pc->pc_map[field] |= bitmask;
3020				m->md.pv_list_count--;
3021				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3022				if (TAILQ_EMPTY(&m->md.pv_list))
3023					vm_page_flag_clear(m, PG_WRITEABLE);
3024
3025				pmap_unuse_pt(pmap, pv->pv_va);
3026			}
3027		}
3028		if (allfree) {
3029			PV_STAT(pv_entry_spare -= _NPCPV);
3030			PV_STAT(pc_chunk_count--);
3031			PV_STAT(pc_chunk_frees++);
3032			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3033			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3034			pmap_qremove((vm_offset_t)pc, 1);
3035			vm_page_unwire(m, 0);
3036			vm_page_free(m);
3037			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3038		}
3039	}
3040	sched_unpin();
3041	vm_page_unlock_queues();
3042	pmap_invalidate_all(pmap);
3043	PMAP_UNLOCK(pmap);
3044}
3045
3046/*
3047 *	pmap_is_modified:
3048 *
3049 *	Return whether or not the specified physical page was modified
3050 *	in any physical maps.
3051 */
3052boolean_t
3053pmap_is_modified(vm_page_t m)
3054{
3055	pv_entry_t pv;
3056	pt_entry_t *pte;
3057	pmap_t pmap;
3058	boolean_t rv;
3059
3060	rv = FALSE;
3061	if (m->flags & PG_FICTITIOUS)
3062		return (rv);
3063
3064	sched_pin();
3065	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3066	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3067		pmap = PV_PMAP(pv);
3068		PMAP_LOCK(pmap);
3069		pte = pmap_pte_quick(pmap, pv->pv_va);
3070		rv = (*pte & PG_M) != 0;
3071		PMAP_UNLOCK(pmap);
3072		if (rv)
3073			break;
3074	}
3075	sched_unpin();
3076	return (rv);
3077}
3078
3079/*
3080 *	pmap_is_prefaultable:
3081 *
3082 *	Return whether or not the specified virtual address is elgible
3083 *	for prefault.
3084 */
3085boolean_t
3086pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3087{
3088	pt_entry_t *pte;
3089	boolean_t rv;
3090
3091	rv = FALSE;
3092	PMAP_LOCK(pmap);
3093	if (*pmap_pde(pmap, addr)) {
3094		pte = vtopte(addr);
3095		rv = *pte == 0;
3096	}
3097	PMAP_UNLOCK(pmap);
3098	return (rv);
3099}
3100
3101/*
3102 * Clear the write and modified bits in each of the given page's mappings.
3103 */
3104void
3105pmap_remove_write(vm_page_t m)
3106{
3107	pv_entry_t pv;
3108	pmap_t pmap;
3109	pt_entry_t oldpte, *pte;
3110
3111	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3112	if ((m->flags & PG_FICTITIOUS) != 0 ||
3113	    (m->flags & PG_WRITEABLE) == 0)
3114		return;
3115	sched_pin();
3116	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3117		pmap = PV_PMAP(pv);
3118		PMAP_LOCK(pmap);
3119		pte = pmap_pte_quick(pmap, pv->pv_va);
3120retry:
3121		oldpte = *pte;
3122		if ((oldpte & PG_RW) != 0) {
3123			/*
3124			 * Regardless of whether a pte is 32 or 64 bits
3125			 * in size, PG_RW and PG_M are among the least
3126			 * significant 32 bits.
3127			 */
3128			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3129			    oldpte & ~(PG_RW | PG_M)))
3130				goto retry;
3131			if ((oldpte & PG_M) != 0)
3132				vm_page_dirty(m);
3133			pmap_invalidate_page(pmap, pv->pv_va);
3134		}
3135		PMAP_UNLOCK(pmap);
3136	}
3137	vm_page_flag_clear(m, PG_WRITEABLE);
3138	sched_unpin();
3139}
3140
3141/*
3142 *	pmap_ts_referenced:
3143 *
3144 *	Return a count of reference bits for a page, clearing those bits.
3145 *	It is not necessary for every reference bit to be cleared, but it
3146 *	is necessary that 0 only be returned when there are truly no
3147 *	reference bits set.
3148 *
3149 *	XXX: The exact number of bits to check and clear is a matter that
3150 *	should be tested and standardized at some point in the future for
3151 *	optimal aging of shared pages.
3152 */
3153int
3154pmap_ts_referenced(vm_page_t m)
3155{
3156	pv_entry_t pv, pvf, pvn;
3157	pmap_t pmap;
3158	pt_entry_t *pte;
3159	int rtval = 0;
3160
3161	if (m->flags & PG_FICTITIOUS)
3162		return (rtval);
3163	sched_pin();
3164	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3165	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3166		pvf = pv;
3167		do {
3168			pvn = TAILQ_NEXT(pv, pv_list);
3169			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3170			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3171			pmap = PV_PMAP(pv);
3172			PMAP_LOCK(pmap);
3173			pte = pmap_pte_quick(pmap, pv->pv_va);
3174			if ((*pte & PG_A) != 0) {
3175				atomic_clear_int((u_int *)pte, PG_A);
3176				pmap_invalidate_page(pmap, pv->pv_va);
3177				rtval++;
3178				if (rtval > 4)
3179					pvn = NULL;
3180			}
3181			PMAP_UNLOCK(pmap);
3182		} while ((pv = pvn) != NULL && pv != pvf);
3183	}
3184	sched_unpin();
3185	return (rtval);
3186}
3187
3188/*
3189 *	Clear the modify bits on the specified physical page.
3190 */
3191void
3192pmap_clear_modify(vm_page_t m)
3193{
3194	pv_entry_t pv;
3195	pmap_t pmap;
3196	pt_entry_t *pte;
3197
3198	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3199	if ((m->flags & PG_FICTITIOUS) != 0)
3200		return;
3201	sched_pin();
3202	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3203		pmap = PV_PMAP(pv);
3204		PMAP_LOCK(pmap);
3205		pte = pmap_pte_quick(pmap, pv->pv_va);
3206		if ((*pte & PG_M) != 0) {
3207			/*
3208			 * Regardless of whether a pte is 32 or 64 bits
3209			 * in size, PG_M is among the least significant
3210			 * 32 bits.
3211			 */
3212			atomic_clear_int((u_int *)pte, PG_M);
3213			pmap_invalidate_page(pmap, pv->pv_va);
3214		}
3215		PMAP_UNLOCK(pmap);
3216	}
3217	sched_unpin();
3218}
3219
3220/*
3221 *	pmap_clear_reference:
3222 *
3223 *	Clear the reference bit on the specified physical page.
3224 */
3225void
3226pmap_clear_reference(vm_page_t m)
3227{
3228	pv_entry_t pv;
3229	pmap_t pmap;
3230	pt_entry_t *pte;
3231
3232	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3233	if ((m->flags & PG_FICTITIOUS) != 0)
3234		return;
3235	sched_pin();
3236	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3237		pmap = PV_PMAP(pv);
3238		PMAP_LOCK(pmap);
3239		pte = pmap_pte_quick(pmap, pv->pv_va);
3240		if ((*pte & PG_A) != 0) {
3241			/*
3242			 * Regardless of whether a pte is 32 or 64 bits
3243			 * in size, PG_A is among the least significant
3244			 * 32 bits.
3245			 */
3246			atomic_clear_int((u_int *)pte, PG_A);
3247			pmap_invalidate_page(pmap, pv->pv_va);
3248		}
3249		PMAP_UNLOCK(pmap);
3250	}
3251	sched_unpin();
3252}
3253
3254/*
3255 * Miscellaneous support routines follow
3256 */
3257
3258/*
3259 * Map a set of physical memory pages into the kernel virtual
3260 * address space. Return a pointer to where it is mapped. This
3261 * routine is intended to be used for mapping device memory,
3262 * NOT real memory.
3263 */
3264void *
3265pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3266{
3267	vm_offset_t va, tmpva, offset;
3268
3269	offset = pa & PAGE_MASK;
3270	size = roundup(offset + size, PAGE_SIZE);
3271	pa = pa & PG_FRAME;
3272
3273	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3274		va = KERNBASE + pa;
3275	else
3276		va = kmem_alloc_nofault(kernel_map, size);
3277	if (!va)
3278		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3279
3280	for (tmpva = va; size > 0; ) {
3281		pmap_kenter_attr(tmpva, pa, mode);
3282		size -= PAGE_SIZE;
3283		tmpva += PAGE_SIZE;
3284		pa += PAGE_SIZE;
3285	}
3286	pmap_invalidate_range(kernel_pmap, va, tmpva);
3287	pmap_invalidate_cache();
3288	return ((void *)(va + offset));
3289}
3290
3291void *
3292pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3293{
3294
3295	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3296}
3297
3298void *
3299pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3300{
3301
3302	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3303}
3304
3305void
3306pmap_unmapdev(vm_offset_t va, vm_size_t size)
3307{
3308	vm_offset_t base, offset, tmpva;
3309
3310	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3311		return;
3312	base = va & PG_FRAME;
3313	offset = va & PAGE_MASK;
3314	size = roundup(offset + size, PAGE_SIZE);
3315	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3316		pmap_kremove(tmpva);
3317	pmap_invalidate_range(kernel_pmap, va, tmpva);
3318	kmem_free(kernel_map, base, size);
3319}
3320
3321int
3322pmap_change_attr(va, size, mode)
3323	vm_offset_t va;
3324	vm_size_t size;
3325	int mode;
3326{
3327	vm_offset_t base, offset, tmpva;
3328	pt_entry_t *pte;
3329	u_int opte, npte;
3330	pd_entry_t *pde;
3331
3332	base = va & PG_FRAME;
3333	offset = va & PAGE_MASK;
3334	size = roundup(offset + size, PAGE_SIZE);
3335
3336	/* Only supported on kernel virtual addresses. */
3337	if (base <= VM_MAXUSER_ADDRESS)
3338		return (EINVAL);
3339
3340	/* 4MB pages and pages that aren't mapped aren't supported. */
3341	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3342		pde = pmap_pde(kernel_pmap, tmpva);
3343		if (*pde & PG_PS)
3344			return (EINVAL);
3345		if (*pde == 0)
3346			return (EINVAL);
3347		pte = vtopte(va);
3348		if (*pte == 0)
3349			return (EINVAL);
3350	}
3351
3352	/*
3353	 * Ok, all the pages exist and are 4k, so run through them updating
3354	 * their cache mode.
3355	 */
3356	for (tmpva = base; size > 0; ) {
3357		pte = vtopte(tmpva);
3358
3359		/*
3360		 * The cache mode bits are all in the low 32-bits of the
3361		 * PTE, so we can just spin on updating the low 32-bits.
3362		 */
3363		do {
3364			opte = *(u_int *)pte;
3365			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
3366			npte |= pmap_cache_bits(mode, 0);
3367		} while (npte != opte &&
3368		    !atomic_cmpset_int((u_int *)pte, opte, npte));
3369		tmpva += PAGE_SIZE;
3370		size -= PAGE_SIZE;
3371	}
3372
3373	/*
3374	 * Flush CPU caches to make sure any data isn't cached that shouldn't
3375	 * be, etc.
3376	 */
3377	pmap_invalidate_range(kernel_pmap, base, tmpva);
3378	pmap_invalidate_cache();
3379	return (0);
3380}
3381
3382/*
3383 * perform the pmap work for mincore
3384 */
3385int
3386pmap_mincore(pmap_t pmap, vm_offset_t addr)
3387{
3388	pt_entry_t *ptep, pte;
3389	vm_page_t m;
3390	int val = 0;
3391
3392	PMAP_LOCK(pmap);
3393	ptep = pmap_pte(pmap, addr);
3394	pte = (ptep != NULL) ? *ptep : 0;
3395	pmap_pte_release(ptep);
3396	PMAP_UNLOCK(pmap);
3397
3398	if (pte != 0) {
3399		vm_paddr_t pa;
3400
3401		val = MINCORE_INCORE;
3402		if ((pte & PG_MANAGED) == 0)
3403			return val;
3404
3405		pa = pte & PG_FRAME;
3406
3407		m = PHYS_TO_VM_PAGE(pa);
3408
3409		/*
3410		 * Modified by us
3411		 */
3412		if (pte & PG_M)
3413			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3414		else {
3415			/*
3416			 * Modified by someone else
3417			 */
3418			vm_page_lock_queues();
3419			if (m->dirty || pmap_is_modified(m))
3420				val |= MINCORE_MODIFIED_OTHER;
3421			vm_page_unlock_queues();
3422		}
3423		/*
3424		 * Referenced by us
3425		 */
3426		if (pte & PG_A)
3427			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3428		else {
3429			/*
3430			 * Referenced by someone else
3431			 */
3432			vm_page_lock_queues();
3433			if ((m->flags & PG_REFERENCED) ||
3434			    pmap_ts_referenced(m)) {
3435				val |= MINCORE_REFERENCED_OTHER;
3436				vm_page_flag_set(m, PG_REFERENCED);
3437			}
3438			vm_page_unlock_queues();
3439		}
3440	}
3441	return val;
3442}
3443
3444void
3445pmap_activate(struct thread *td)
3446{
3447	pmap_t	pmap, oldpmap;
3448	u_int32_t  cr3;
3449
3450	critical_enter();
3451	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3452	oldpmap = PCPU_GET(curpmap);
3453#if defined(SMP)
3454	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3455	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3456#else
3457	oldpmap->pm_active &= ~1;
3458	pmap->pm_active |= 1;
3459#endif
3460#ifdef PAE
3461	cr3 = vtophys(pmap->pm_pdpt);
3462#else
3463	cr3 = vtophys(pmap->pm_pdir);
3464#endif
3465	/*
3466	 * pmap_activate is for the current thread on the current cpu
3467	 */
3468	td->td_pcb->pcb_cr3 = cr3;
3469	load_cr3(cr3);
3470	PCPU_SET(curpmap, pmap);
3471	critical_exit();
3472}
3473
3474vm_offset_t
3475pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3476{
3477
3478	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3479		return addr;
3480	}
3481
3482	addr = (addr + PDRMASK) & ~PDRMASK;
3483	return addr;
3484}
3485
3486
3487#if defined(PMAP_DEBUG)
3488pmap_pid_dump(int pid)
3489{
3490	pmap_t pmap;
3491	struct proc *p;
3492	int npte = 0;
3493	int index;
3494
3495	sx_slock(&allproc_lock);
3496	FOREACH_PROC_IN_SYSTEM(p) {
3497		if (p->p_pid != pid)
3498			continue;
3499
3500		if (p->p_vmspace) {
3501			int i,j;
3502			index = 0;
3503			pmap = vmspace_pmap(p->p_vmspace);
3504			for (i = 0; i < NPDEPTD; i++) {
3505				pd_entry_t *pde;
3506				pt_entry_t *pte;
3507				vm_offset_t base = i << PDRSHIFT;
3508
3509				pde = &pmap->pm_pdir[i];
3510				if (pde && pmap_pde_v(pde)) {
3511					for (j = 0; j < NPTEPG; j++) {
3512						vm_offset_t va = base + (j << PAGE_SHIFT);
3513						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3514							if (index) {
3515								index = 0;
3516								printf("\n");
3517							}
3518							sx_sunlock(&allproc_lock);
3519							return npte;
3520						}
3521						pte = pmap_pte(pmap, va);
3522						if (pte && pmap_pte_v(pte)) {
3523							pt_entry_t pa;
3524							vm_page_t m;
3525							pa = *pte;
3526							m = PHYS_TO_VM_PAGE(pa);
3527							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3528								va, pa, m->hold_count, m->wire_count, m->flags);
3529							npte++;
3530							index++;
3531							if (index >= 2) {
3532								index = 0;
3533								printf("\n");
3534							} else {
3535								printf(" ");
3536							}
3537						}
3538					}
3539				}
3540			}
3541		}
3542	}
3543	sx_sunlock(&allproc_lock);
3544	return npte;
3545}
3546#endif
3547
3548#if defined(DEBUG)
3549
3550static void	pads(pmap_t pm);
3551void		pmap_pvdump(vm_offset_t pa);
3552
3553/* print address space of pmap*/
3554static void
3555pads(pmap_t pm)
3556{
3557	int i, j;
3558	vm_paddr_t va;
3559	pt_entry_t *ptep;
3560
3561	if (pm == kernel_pmap)
3562		return;
3563	for (i = 0; i < NPDEPTD; i++)
3564		if (pm->pm_pdir[i])
3565			for (j = 0; j < NPTEPG; j++) {
3566				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3567				if (pm == kernel_pmap && va < KERNBASE)
3568					continue;
3569				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3570					continue;
3571				ptep = pmap_pte(pm, va);
3572				if (pmap_pte_v(ptep))
3573					printf("%x:%x ", va, *ptep);
3574			};
3575
3576}
3577
3578void
3579pmap_pvdump(vm_paddr_t pa)
3580{
3581	pv_entry_t pv;
3582	pmap_t pmap;
3583	vm_page_t m;
3584
3585	printf("pa %x", pa);
3586	m = PHYS_TO_VM_PAGE(pa);
3587	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3588		pmap = PV_PMAP(pv);
3589		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
3590		pads(pmap);
3591	}
3592	printf(" ");
3593}
3594#endif
3595