pmap.c revision 166074
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 166074 2007-01-17 15:05:52Z delphij $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sx.h>
122#include <sys/vmmeter.h>
123#include <sys/sched.h>
124#include <sys/sysctl.h>
125#ifdef SMP
126#include <sys/smp.h>
127#endif
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/uma.h>
139
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149#ifdef XBOX
150#include <machine/xbox.h>
151#endif
152
153#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
154#define CPU_ENABLE_SSE
155#endif
156
157#ifndef PMAP_SHPGPERPROC
158#define PMAP_SHPGPERPROC 200
159#endif
160
161#if defined(DIAGNOSTIC)
162#define PMAP_DIAGNOSTIC
163#endif
164
165#if !defined(PMAP_DIAGNOSTIC)
166#define PMAP_INLINE __inline
167#else
168#define PMAP_INLINE
169#endif
170
171#define PV_STATS
172#ifdef PV_STATS
173#define PV_STAT(x)	do { x ; } while (0)
174#else
175#define PV_STAT(x)	do { } while (0)
176#endif
177
178/*
179 * Get PDEs and PTEs for user/kernel address space
180 */
181#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
182#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
183
184#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
185#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
186#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
187#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
188#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
189
190#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
191    atomic_clear_int((u_int *)(pte), PG_W))
192#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
193
194struct pmap kernel_pmap_store;
195LIST_HEAD(pmaplist, pmap);
196static struct pmaplist allpmaps;
197static struct mtx allpmaps_lock;
198
199vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
200vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
201int pgeflag = 0;		/* PG_G or-in */
202int pseflag = 0;		/* PG_PS or-in */
203
204static int nkpt;
205vm_offset_t kernel_vm_end;
206extern u_int32_t KERNend;
207
208#ifdef PAE
209static uma_zone_t pdptzone;
210#endif
211
212/*
213 * Data for the pv entry allocation mechanism
214 */
215static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
216static int shpgperproc = PMAP_SHPGPERPROC;
217
218struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
219int pv_maxchunks;			/* How many chunks we have KVA for */
220vm_offset_t pv_vafree;			/* freelist stored in the PTE */
221
222/*
223 * All those kernel PT submaps that BSD is so fond of
224 */
225struct sysmaps {
226	struct	mtx lock;
227	pt_entry_t *CMAP1;
228	pt_entry_t *CMAP2;
229	caddr_t	CADDR1;
230	caddr_t	CADDR2;
231};
232static struct sysmaps sysmaps_pcpu[MAXCPU];
233pt_entry_t *CMAP1 = 0;
234static pt_entry_t *CMAP3;
235caddr_t CADDR1 = 0, ptvmmap = 0;
236static caddr_t CADDR3;
237struct msgbuf *msgbufp = 0;
238
239/*
240 * Crashdump maps.
241 */
242static caddr_t crashdumpmap;
243
244#ifdef SMP
245extern pt_entry_t *SMPpt;
246#endif
247static pt_entry_t *PMAP1 = 0, *PMAP2;
248static pt_entry_t *PADDR1 = 0, *PADDR2;
249#ifdef SMP
250static int PMAP1cpu;
251static int PMAP1changedcpu;
252SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
253	   &PMAP1changedcpu, 0,
254	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
255#endif
256static int PMAP1changed;
257SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
258	   &PMAP1changed, 0,
259	   "Number of times pmap_pte_quick changed PMAP1");
260static int PMAP1unchanged;
261SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
262	   &PMAP1unchanged, 0,
263	   "Number of times pmap_pte_quick didn't change PMAP1");
264static struct mtx PMAP2mutex;
265
266static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
267static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
268
269static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
270    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
271static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
272static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
273static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
274					vm_offset_t va);
275static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
276static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
277    vm_page_t m);
278
279static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
280
281static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
282static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m);
283static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
284static void pmap_pte_release(pt_entry_t *pte);
285static int pmap_unuse_pt(pmap_t, vm_offset_t);
286static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
287#ifdef PAE
288static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
289#endif
290
291CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
292CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
293
294/*
295 * Move the kernel virtual free pointer to the next
296 * 4MB.  This is used to help improve performance
297 * by using a large (4MB) page for much of the kernel
298 * (.text, .data, .bss)
299 */
300static vm_offset_t
301pmap_kmem_choose(vm_offset_t addr)
302{
303	vm_offset_t newaddr = addr;
304
305#ifndef DISABLE_PSE
306	if (cpu_feature & CPUID_PSE)
307		newaddr = (addr + PDRMASK) & ~PDRMASK;
308#endif
309	return newaddr;
310}
311
312/*
313 *	Bootstrap the system enough to run with virtual memory.
314 *
315 *	On the i386 this is called after mapping has already been enabled
316 *	and just syncs the pmap module with what has already been done.
317 *	[We can't call it easily with mapping off since the kernel is not
318 *	mapped with PA == VA, hence we would have to relocate every address
319 *	from the linked base (virtual) address "KERNBASE" to the actual
320 *	(physical) address starting relative to 0]
321 */
322void
323pmap_bootstrap(vm_paddr_t firstaddr, vm_paddr_t loadaddr)
324{
325	vm_offset_t va;
326	pt_entry_t *pte, *unused;
327	struct sysmaps *sysmaps;
328	int i;
329
330	/*
331	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
332	 * large. It should instead be correctly calculated in locore.s and
333	 * not based on 'first' (which is a physical address, not a virtual
334	 * address, for the start of unused physical memory). The kernel
335	 * page tables are NOT double mapped and thus should not be included
336	 * in this calculation.
337	 */
338	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
339	virtual_avail = pmap_kmem_choose(virtual_avail);
340
341	virtual_end = VM_MAX_KERNEL_ADDRESS;
342
343	/*
344	 * Initialize the kernel pmap (which is statically allocated).
345	 */
346	PMAP_LOCK_INIT(kernel_pmap);
347	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
348#ifdef PAE
349	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
350#endif
351	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
352	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
353	LIST_INIT(&allpmaps);
354	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
355	mtx_lock_spin(&allpmaps_lock);
356	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
357	mtx_unlock_spin(&allpmaps_lock);
358	nkpt = NKPT;
359
360	/*
361	 * Reserve some special page table entries/VA space for temporary
362	 * mapping of pages.
363	 */
364#define	SYSMAP(c, p, v, n)	\
365	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
366
367	va = virtual_avail;
368	pte = vtopte(va);
369
370	/*
371	 * CMAP1/CMAP2 are used for zeroing and copying pages.
372	 * CMAP3 is used for the idle process page zeroing.
373	 */
374	for (i = 0; i < MAXCPU; i++) {
375		sysmaps = &sysmaps_pcpu[i];
376		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
377		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
378		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
379	}
380	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
381	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
382	*CMAP3 = 0;
383
384	/*
385	 * Crashdump maps.
386	 */
387	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
388
389	/*
390	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
391	 */
392	SYSMAP(caddr_t, unused, ptvmmap, 1)
393
394	/*
395	 * msgbufp is used to map the system message buffer.
396	 */
397	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
398
399	/*
400	 * ptemap is used for pmap_pte_quick
401	 */
402	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
403	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
404
405	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
406
407	virtual_avail = va;
408
409	*CMAP1 = 0;
410
411#ifdef XBOX
412	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
413	 * an early stadium, we cannot yet neatly map video memory ... :-(
414	 * Better fixes are very welcome! */
415	if (!arch_i386_is_xbox)
416#endif
417	for (i = 0; i < NKPT; i++)
418		PTD[i] = 0;
419
420	/* Initialize the PAT MSR if present. */
421	pmap_init_pat();
422
423	/* Turn on PG_G on kernel page(s) */
424	pmap_set_pg();
425}
426
427/*
428 * Setup the PAT MSR.
429 */
430void
431pmap_init_pat(void)
432{
433	uint64_t pat_msr;
434
435	/* Bail if this CPU doesn't implement PAT. */
436	if (!(cpu_feature & CPUID_PAT))
437		return;
438
439#ifdef PAT_WORKS
440	/*
441	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
442	 * Program 4 and 5 as WP and WC.
443	 * Leave 6 and 7 as UC and UC-.
444	 */
445	pat_msr = rdmsr(MSR_PAT);
446	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
447	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
448	    PAT_VALUE(5, PAT_WRITE_COMBINING);
449#else
450	/*
451	 * Due to some Intel errata, we can only safely use the lower 4
452	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
453	 * of UC-.
454	 *
455	 *   Intel Pentium III Processor Specification Update
456	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
457	 * or Mode C Paging)
458	 *
459	 *   Intel Pentium IV  Processor Specification Update
460	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
461	 */
462	pat_msr = rdmsr(MSR_PAT);
463	pat_msr &= ~PAT_MASK(2);
464	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
465#endif
466	wrmsr(MSR_PAT, pat_msr);
467}
468
469/*
470 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
471 */
472void
473pmap_set_pg(void)
474{
475	pd_entry_t pdir;
476	pt_entry_t *pte;
477	vm_offset_t va, endva;
478	int i;
479
480	if (pgeflag == 0)
481		return;
482
483	i = KERNLOAD/NBPDR;
484	endva = KERNBASE + KERNend;
485
486	if (pseflag) {
487		va = KERNBASE + KERNLOAD;
488		while (va  < endva) {
489			pdir = kernel_pmap->pm_pdir[KPTDI+i];
490			pdir |= pgeflag;
491			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
492			invltlb();	/* Play it safe, invltlb() every time */
493			i++;
494			va += NBPDR;
495		}
496	} else {
497		va = (vm_offset_t)btext;
498		while (va < endva) {
499			pte = vtopte(va);
500			if (*pte)
501				*pte |= pgeflag;
502			invltlb();	/* Play it safe, invltlb() every time */
503			va += PAGE_SIZE;
504		}
505	}
506}
507
508/*
509 * Initialize a vm_page's machine-dependent fields.
510 */
511void
512pmap_page_init(vm_page_t m)
513{
514
515	TAILQ_INIT(&m->md.pv_list);
516	m->md.pv_list_count = 0;
517}
518
519#ifdef PAE
520
521static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
522
523static void *
524pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
525{
526	*flags = UMA_SLAB_PRIV;
527	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
528	    1, 0));
529}
530#endif
531
532/*
533 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
534 * Requirements:
535 *  - Must deal with pages in order to ensure that none of the PG_* bits
536 *    are ever set, PG_V in particular.
537 *  - Assumes we can write to ptes without pte_store() atomic ops, even
538 *    on PAE systems.  This should be ok.
539 *  - Assumes nothing will ever test these addresses for 0 to indicate
540 *    no mapping instead of correctly checking PG_V.
541 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
542 * Because PG_V is never set, there can be no mappings to invalidate.
543 */
544static vm_offset_t
545pmap_ptelist_alloc(vm_offset_t *head)
546{
547	pt_entry_t *pte;
548	vm_offset_t va;
549
550	va = *head;
551	if (va == 0)
552		return (va);	/* Out of memory */
553	pte = vtopte(va);
554	*head = *pte;
555	if (*head & PG_V)
556		panic("pmap_ptelist_alloc: va with PG_V set!");
557	*pte = 0;
558	return (va);
559}
560
561static void
562pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
563{
564	pt_entry_t *pte;
565
566	if (va & PG_V)
567		panic("pmap_ptelist_free: freeing va with PG_V set!");
568	pte = vtopte(va);
569	*pte = *head;		/* virtual! PG_V is 0 though */
570	*head = va;
571}
572
573static void
574pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
575{
576	int i;
577	vm_offset_t va;
578
579	*head = 0;
580	for (i = npages - 1; i >= 0; i--) {
581		va = (vm_offset_t)base + i * PAGE_SIZE;
582		pmap_ptelist_free(head, va);
583	}
584}
585
586
587/*
588 *	Initialize the pmap module.
589 *	Called by vm_init, to initialize any structures that the pmap
590 *	system needs to map virtual memory.
591 */
592void
593pmap_init(void)
594{
595
596	/*
597	 * Initialize the address space (zone) for the pv entries.  Set a
598	 * high water mark so that the system can recover from excessive
599	 * numbers of pv entries.
600	 */
601	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
602	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
603	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
604	pv_entry_max = roundup(pv_entry_max, _NPCPV);
605	pv_entry_high_water = 9 * (pv_entry_max / 10);
606
607	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
608	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
609	    PAGE_SIZE * pv_maxchunks);
610	if (pv_chunkbase == NULL)
611		panic("pmap_init: not enough kvm for pv chunks");
612	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
613#ifdef PAE
614	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
615	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
616	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
617	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
618#endif
619}
620
621
622SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
623SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
624	"Max number of PV entries");
625SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
626	"Page share factor per proc");
627
628/***************************************************
629 * Low level helper routines.....
630 ***************************************************/
631
632/*
633 * Determine the appropriate bits to set in a PTE or PDE for a specified
634 * caching mode.
635 */
636static int
637pmap_cache_bits(int mode, boolean_t is_pde)
638{
639	int pat_flag, pat_index, cache_bits;
640
641	/* The PAT bit is different for PTE's and PDE's. */
642	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
643
644	/* If we don't support PAT, map extended modes to older ones. */
645	if (!(cpu_feature & CPUID_PAT)) {
646		switch (mode) {
647		case PAT_UNCACHEABLE:
648		case PAT_WRITE_THROUGH:
649		case PAT_WRITE_BACK:
650			break;
651		case PAT_UNCACHED:
652		case PAT_WRITE_COMBINING:
653		case PAT_WRITE_PROTECTED:
654			mode = PAT_UNCACHEABLE;
655			break;
656		}
657	}
658
659	/* Map the caching mode to a PAT index. */
660	switch (mode) {
661#ifdef PAT_WORKS
662	case PAT_UNCACHEABLE:
663		pat_index = 3;
664		break;
665	case PAT_WRITE_THROUGH:
666		pat_index = 1;
667		break;
668	case PAT_WRITE_BACK:
669		pat_index = 0;
670		break;
671	case PAT_UNCACHED:
672		pat_index = 2;
673		break;
674	case PAT_WRITE_COMBINING:
675		pat_index = 5;
676		break;
677	case PAT_WRITE_PROTECTED:
678		pat_index = 4;
679		break;
680#else
681	case PAT_UNCACHED:
682	case PAT_UNCACHEABLE:
683	case PAT_WRITE_PROTECTED:
684		pat_index = 3;
685		break;
686	case PAT_WRITE_THROUGH:
687		pat_index = 1;
688		break;
689	case PAT_WRITE_BACK:
690		pat_index = 0;
691		break;
692	case PAT_WRITE_COMBINING:
693		pat_index = 2;
694		break;
695#endif
696	default:
697		panic("Unknown caching mode %d\n", mode);
698	}
699
700	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
701	cache_bits = 0;
702	if (pat_index & 0x4)
703		cache_bits |= pat_flag;
704	if (pat_index & 0x2)
705		cache_bits |= PG_NC_PCD;
706	if (pat_index & 0x1)
707		cache_bits |= PG_NC_PWT;
708	return (cache_bits);
709}
710#ifdef SMP
711/*
712 * For SMP, these functions have to use the IPI mechanism for coherence.
713 */
714void
715pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
716{
717	u_int cpumask;
718	u_int other_cpus;
719
720	if (smp_started) {
721		if (!(read_eflags() & PSL_I))
722			panic("%s: interrupts disabled", __func__);
723		mtx_lock_spin(&smp_ipi_mtx);
724	} else
725		critical_enter();
726	/*
727	 * We need to disable interrupt preemption but MUST NOT have
728	 * interrupts disabled here.
729	 * XXX we may need to hold schedlock to get a coherent pm_active
730	 * XXX critical sections disable interrupts again
731	 */
732	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
733		invlpg(va);
734		smp_invlpg(va);
735	} else {
736		cpumask = PCPU_GET(cpumask);
737		other_cpus = PCPU_GET(other_cpus);
738		if (pmap->pm_active & cpumask)
739			invlpg(va);
740		if (pmap->pm_active & other_cpus)
741			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
742	}
743	if (smp_started)
744		mtx_unlock_spin(&smp_ipi_mtx);
745	else
746		critical_exit();
747}
748
749void
750pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
751{
752	u_int cpumask;
753	u_int other_cpus;
754	vm_offset_t addr;
755
756	if (smp_started) {
757		if (!(read_eflags() & PSL_I))
758			panic("%s: interrupts disabled", __func__);
759		mtx_lock_spin(&smp_ipi_mtx);
760	} else
761		critical_enter();
762	/*
763	 * We need to disable interrupt preemption but MUST NOT have
764	 * interrupts disabled here.
765	 * XXX we may need to hold schedlock to get a coherent pm_active
766	 * XXX critical sections disable interrupts again
767	 */
768	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
769		for (addr = sva; addr < eva; addr += PAGE_SIZE)
770			invlpg(addr);
771		smp_invlpg_range(sva, eva);
772	} else {
773		cpumask = PCPU_GET(cpumask);
774		other_cpus = PCPU_GET(other_cpus);
775		if (pmap->pm_active & cpumask)
776			for (addr = sva; addr < eva; addr += PAGE_SIZE)
777				invlpg(addr);
778		if (pmap->pm_active & other_cpus)
779			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
780			    sva, eva);
781	}
782	if (smp_started)
783		mtx_unlock_spin(&smp_ipi_mtx);
784	else
785		critical_exit();
786}
787
788void
789pmap_invalidate_all(pmap_t pmap)
790{
791	u_int cpumask;
792	u_int other_cpus;
793
794	if (smp_started) {
795		if (!(read_eflags() & PSL_I))
796			panic("%s: interrupts disabled", __func__);
797		mtx_lock_spin(&smp_ipi_mtx);
798	} else
799		critical_enter();
800	/*
801	 * We need to disable interrupt preemption but MUST NOT have
802	 * interrupts disabled here.
803	 * XXX we may need to hold schedlock to get a coherent pm_active
804	 * XXX critical sections disable interrupts again
805	 */
806	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
807		invltlb();
808		smp_invltlb();
809	} else {
810		cpumask = PCPU_GET(cpumask);
811		other_cpus = PCPU_GET(other_cpus);
812		if (pmap->pm_active & cpumask)
813			invltlb();
814		if (pmap->pm_active & other_cpus)
815			smp_masked_invltlb(pmap->pm_active & other_cpus);
816	}
817	if (smp_started)
818		mtx_unlock_spin(&smp_ipi_mtx);
819	else
820		critical_exit();
821}
822
823void
824pmap_invalidate_cache(void)
825{
826
827	if (smp_started) {
828		if (!(read_eflags() & PSL_I))
829			panic("%s: interrupts disabled", __func__);
830		mtx_lock_spin(&smp_ipi_mtx);
831	} else
832		critical_enter();
833	/*
834	 * We need to disable interrupt preemption but MUST NOT have
835	 * interrupts disabled here.
836	 * XXX we may need to hold schedlock to get a coherent pm_active
837	 * XXX critical sections disable interrupts again
838	 */
839	wbinvd();
840	smp_cache_flush();
841	if (smp_started)
842		mtx_unlock_spin(&smp_ipi_mtx);
843	else
844		critical_exit();
845}
846#else /* !SMP */
847/*
848 * Normal, non-SMP, 486+ invalidation functions.
849 * We inline these within pmap.c for speed.
850 */
851PMAP_INLINE void
852pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
853{
854
855	if (pmap == kernel_pmap || pmap->pm_active)
856		invlpg(va);
857}
858
859PMAP_INLINE void
860pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
861{
862	vm_offset_t addr;
863
864	if (pmap == kernel_pmap || pmap->pm_active)
865		for (addr = sva; addr < eva; addr += PAGE_SIZE)
866			invlpg(addr);
867}
868
869PMAP_INLINE void
870pmap_invalidate_all(pmap_t pmap)
871{
872
873	if (pmap == kernel_pmap || pmap->pm_active)
874		invltlb();
875}
876
877PMAP_INLINE void
878pmap_invalidate_cache(void)
879{
880
881	wbinvd();
882}
883#endif /* !SMP */
884
885/*
886 * Are we current address space or kernel?  N.B. We return FALSE when
887 * a pmap's page table is in use because a kernel thread is borrowing
888 * it.  The borrowed page table can change spontaneously, making any
889 * dependence on its continued use subject to a race condition.
890 */
891static __inline int
892pmap_is_current(pmap_t pmap)
893{
894
895	return (pmap == kernel_pmap ||
896		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
897	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
898}
899
900/*
901 * If the given pmap is not the current or kernel pmap, the returned pte must
902 * be released by passing it to pmap_pte_release().
903 */
904pt_entry_t *
905pmap_pte(pmap_t pmap, vm_offset_t va)
906{
907	pd_entry_t newpf;
908	pd_entry_t *pde;
909
910	pde = pmap_pde(pmap, va);
911	if (*pde & PG_PS)
912		return (pde);
913	if (*pde != 0) {
914		/* are we current address space or kernel? */
915		if (pmap_is_current(pmap))
916			return (vtopte(va));
917		mtx_lock(&PMAP2mutex);
918		newpf = *pde & PG_FRAME;
919		if ((*PMAP2 & PG_FRAME) != newpf) {
920			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
921			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
922		}
923		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
924	}
925	return (0);
926}
927
928/*
929 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
930 * being NULL.
931 */
932static __inline void
933pmap_pte_release(pt_entry_t *pte)
934{
935
936	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
937		mtx_unlock(&PMAP2mutex);
938}
939
940static __inline void
941invlcaddr(void *caddr)
942{
943
944	invlpg((u_int)caddr);
945}
946
947/*
948 * Super fast pmap_pte routine best used when scanning
949 * the pv lists.  This eliminates many coarse-grained
950 * invltlb calls.  Note that many of the pv list
951 * scans are across different pmaps.  It is very wasteful
952 * to do an entire invltlb for checking a single mapping.
953 *
954 * If the given pmap is not the current pmap, vm_page_queue_mtx
955 * must be held and curthread pinned to a CPU.
956 */
957static pt_entry_t *
958pmap_pte_quick(pmap_t pmap, vm_offset_t va)
959{
960	pd_entry_t newpf;
961	pd_entry_t *pde;
962
963	pde = pmap_pde(pmap, va);
964	if (*pde & PG_PS)
965		return (pde);
966	if (*pde != 0) {
967		/* are we current address space or kernel? */
968		if (pmap_is_current(pmap))
969			return (vtopte(va));
970		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
971		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
972		newpf = *pde & PG_FRAME;
973		if ((*PMAP1 & PG_FRAME) != newpf) {
974			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
975#ifdef SMP
976			PMAP1cpu = PCPU_GET(cpuid);
977#endif
978			invlcaddr(PADDR1);
979			PMAP1changed++;
980		} else
981#ifdef SMP
982		if (PMAP1cpu != PCPU_GET(cpuid)) {
983			PMAP1cpu = PCPU_GET(cpuid);
984			invlcaddr(PADDR1);
985			PMAP1changedcpu++;
986		} else
987#endif
988			PMAP1unchanged++;
989		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
990	}
991	return (0);
992}
993
994/*
995 *	Routine:	pmap_extract
996 *	Function:
997 *		Extract the physical page address associated
998 *		with the given map/virtual_address pair.
999 */
1000vm_paddr_t
1001pmap_extract(pmap_t pmap, vm_offset_t va)
1002{
1003	vm_paddr_t rtval;
1004	pt_entry_t *pte;
1005	pd_entry_t pde;
1006
1007	rtval = 0;
1008	PMAP_LOCK(pmap);
1009	pde = pmap->pm_pdir[va >> PDRSHIFT];
1010	if (pde != 0) {
1011		if ((pde & PG_PS) != 0) {
1012			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1013			PMAP_UNLOCK(pmap);
1014			return rtval;
1015		}
1016		pte = pmap_pte(pmap, va);
1017		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1018		pmap_pte_release(pte);
1019	}
1020	PMAP_UNLOCK(pmap);
1021	return (rtval);
1022}
1023
1024/*
1025 *	Routine:	pmap_extract_and_hold
1026 *	Function:
1027 *		Atomically extract and hold the physical page
1028 *		with the given pmap and virtual address pair
1029 *		if that mapping permits the given protection.
1030 */
1031vm_page_t
1032pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1033{
1034	pd_entry_t pde;
1035	pt_entry_t pte;
1036	vm_page_t m;
1037
1038	m = NULL;
1039	vm_page_lock_queues();
1040	PMAP_LOCK(pmap);
1041	pde = *pmap_pde(pmap, va);
1042	if (pde != 0) {
1043		if (pde & PG_PS) {
1044			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1045				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
1046				    (va & PDRMASK));
1047				vm_page_hold(m);
1048			}
1049		} else {
1050			sched_pin();
1051			pte = *pmap_pte_quick(pmap, va);
1052			if (pte != 0 &&
1053			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1054				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1055				vm_page_hold(m);
1056			}
1057			sched_unpin();
1058		}
1059	}
1060	vm_page_unlock_queues();
1061	PMAP_UNLOCK(pmap);
1062	return (m);
1063}
1064
1065/***************************************************
1066 * Low level mapping routines.....
1067 ***************************************************/
1068
1069/*
1070 * Add a wired page to the kva.
1071 * Note: not SMP coherent.
1072 */
1073PMAP_INLINE void
1074pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1075{
1076	pt_entry_t *pte;
1077
1078	pte = vtopte(va);
1079	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1080}
1081
1082PMAP_INLINE void
1083pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1084{
1085	pt_entry_t *pte;
1086
1087	pte = vtopte(va);
1088	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1089}
1090
1091/*
1092 * Remove a page from the kernel pagetables.
1093 * Note: not SMP coherent.
1094 */
1095PMAP_INLINE void
1096pmap_kremove(vm_offset_t va)
1097{
1098	pt_entry_t *pte;
1099
1100	pte = vtopte(va);
1101	pte_clear(pte);
1102}
1103
1104/*
1105 *	Used to map a range of physical addresses into kernel
1106 *	virtual address space.
1107 *
1108 *	The value passed in '*virt' is a suggested virtual address for
1109 *	the mapping. Architectures which can support a direct-mapped
1110 *	physical to virtual region can return the appropriate address
1111 *	within that region, leaving '*virt' unchanged. Other
1112 *	architectures should map the pages starting at '*virt' and
1113 *	update '*virt' with the first usable address after the mapped
1114 *	region.
1115 */
1116vm_offset_t
1117pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1118{
1119	vm_offset_t va, sva;
1120
1121	va = sva = *virt;
1122	while (start < end) {
1123		pmap_kenter(va, start);
1124		va += PAGE_SIZE;
1125		start += PAGE_SIZE;
1126	}
1127	pmap_invalidate_range(kernel_pmap, sva, va);
1128	*virt = va;
1129	return (sva);
1130}
1131
1132
1133/*
1134 * Add a list of wired pages to the kva
1135 * this routine is only used for temporary
1136 * kernel mappings that do not need to have
1137 * page modification or references recorded.
1138 * Note that old mappings are simply written
1139 * over.  The page *must* be wired.
1140 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1141 */
1142void
1143pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1144{
1145	pt_entry_t *endpte, oldpte, *pte;
1146
1147	oldpte = 0;
1148	pte = vtopte(sva);
1149	endpte = pte + count;
1150	while (pte < endpte) {
1151		oldpte |= *pte;
1152		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1153		pte++;
1154		ma++;
1155	}
1156	if ((oldpte & PG_V) != 0)
1157		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1158		    PAGE_SIZE);
1159}
1160
1161/*
1162 * This routine tears out page mappings from the
1163 * kernel -- it is meant only for temporary mappings.
1164 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1165 */
1166void
1167pmap_qremove(vm_offset_t sva, int count)
1168{
1169	vm_offset_t va;
1170
1171	va = sva;
1172	while (count-- > 0) {
1173		pmap_kremove(va);
1174		va += PAGE_SIZE;
1175	}
1176	pmap_invalidate_range(kernel_pmap, sva, va);
1177}
1178
1179/***************************************************
1180 * Page table page management routines.....
1181 ***************************************************/
1182
1183/*
1184 * This routine unholds page table pages, and if the hold count
1185 * drops to zero, then it decrements the wire count.
1186 */
1187static PMAP_INLINE int
1188pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1189{
1190
1191	--m->wire_count;
1192	if (m->wire_count == 0)
1193		return _pmap_unwire_pte_hold(pmap, m);
1194	else
1195		return 0;
1196}
1197
1198static int
1199_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1200{
1201	vm_offset_t pteva;
1202
1203	/*
1204	 * unmap the page table page
1205	 */
1206	pmap->pm_pdir[m->pindex] = 0;
1207	--pmap->pm_stats.resident_count;
1208
1209	/*
1210	 * Do an invltlb to make the invalidated mapping
1211	 * take effect immediately.
1212	 */
1213	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1214	pmap_invalidate_page(pmap, pteva);
1215
1216	vm_page_free_zero(m);
1217	atomic_subtract_int(&cnt.v_wire_count, 1);
1218	return 1;
1219}
1220
1221/*
1222 * After removing a page table entry, this routine is used to
1223 * conditionally free the page, and manage the hold/wire counts.
1224 */
1225static int
1226pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
1227{
1228	pd_entry_t ptepde;
1229	vm_page_t mpte;
1230
1231	if (va >= VM_MAXUSER_ADDRESS)
1232		return 0;
1233	ptepde = *pmap_pde(pmap, va);
1234	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1235	return pmap_unwire_pte_hold(pmap, mpte);
1236}
1237
1238void
1239pmap_pinit0(pmap_t pmap)
1240{
1241
1242	PMAP_LOCK_INIT(pmap);
1243	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1244#ifdef PAE
1245	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1246#endif
1247	pmap->pm_active = 0;
1248	PCPU_SET(curpmap, pmap);
1249	TAILQ_INIT(&pmap->pm_pvchunk);
1250	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1251	mtx_lock_spin(&allpmaps_lock);
1252	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1253	mtx_unlock_spin(&allpmaps_lock);
1254}
1255
1256/*
1257 * Initialize a preallocated and zeroed pmap structure,
1258 * such as one in a vmspace structure.
1259 */
1260void
1261pmap_pinit(pmap_t pmap)
1262{
1263	vm_page_t m, ptdpg[NPGPTD];
1264	vm_paddr_t pa;
1265	static int color;
1266	int i;
1267
1268	PMAP_LOCK_INIT(pmap);
1269
1270	/*
1271	 * No need to allocate page table space yet but we do need a valid
1272	 * page directory table.
1273	 */
1274	if (pmap->pm_pdir == NULL) {
1275		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1276		    NBPTD);
1277#ifdef PAE
1278		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1279		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1280		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1281		    ("pmap_pinit: pdpt misaligned"));
1282		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1283		    ("pmap_pinit: pdpt above 4g"));
1284#endif
1285	}
1286
1287	/*
1288	 * allocate the page directory page(s)
1289	 */
1290	for (i = 0; i < NPGPTD;) {
1291		m = vm_page_alloc(NULL, color++,
1292		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1293		    VM_ALLOC_ZERO);
1294		if (m == NULL)
1295			VM_WAIT;
1296		else {
1297			ptdpg[i++] = m;
1298		}
1299	}
1300
1301	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1302
1303	for (i = 0; i < NPGPTD; i++) {
1304		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1305			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1306	}
1307
1308	mtx_lock_spin(&allpmaps_lock);
1309	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1310	mtx_unlock_spin(&allpmaps_lock);
1311	/* Wire in kernel global address entries. */
1312	/* XXX copies current process, does not fill in MPPTDI */
1313	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1314#ifdef SMP
1315	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1316#endif
1317
1318	/* install self-referential address mapping entry(s) */
1319	for (i = 0; i < NPGPTD; i++) {
1320		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1321		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1322#ifdef PAE
1323		pmap->pm_pdpt[i] = pa | PG_V;
1324#endif
1325	}
1326
1327	pmap->pm_active = 0;
1328	TAILQ_INIT(&pmap->pm_pvchunk);
1329	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1330}
1331
1332/*
1333 * this routine is called if the page table page is not
1334 * mapped correctly.
1335 */
1336static vm_page_t
1337_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1338{
1339	vm_paddr_t ptepa;
1340	vm_page_t m;
1341
1342	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1343	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1344	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1345
1346	/*
1347	 * Allocate a page table page.
1348	 */
1349	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1350	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1351		if (flags & M_WAITOK) {
1352			PMAP_UNLOCK(pmap);
1353			vm_page_unlock_queues();
1354			VM_WAIT;
1355			vm_page_lock_queues();
1356			PMAP_LOCK(pmap);
1357		}
1358
1359		/*
1360		 * Indicate the need to retry.  While waiting, the page table
1361		 * page may have been allocated.
1362		 */
1363		return (NULL);
1364	}
1365	if ((m->flags & PG_ZERO) == 0)
1366		pmap_zero_page(m);
1367
1368	/*
1369	 * Map the pagetable page into the process address space, if
1370	 * it isn't already there.
1371	 */
1372
1373	pmap->pm_stats.resident_count++;
1374
1375	ptepa = VM_PAGE_TO_PHYS(m);
1376	pmap->pm_pdir[ptepindex] =
1377		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1378
1379	return m;
1380}
1381
1382static vm_page_t
1383pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1384{
1385	unsigned ptepindex;
1386	pd_entry_t ptepa;
1387	vm_page_t m;
1388
1389	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1390	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1391	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1392
1393	/*
1394	 * Calculate pagetable page index
1395	 */
1396	ptepindex = va >> PDRSHIFT;
1397retry:
1398	/*
1399	 * Get the page directory entry
1400	 */
1401	ptepa = pmap->pm_pdir[ptepindex];
1402
1403	/*
1404	 * This supports switching from a 4MB page to a
1405	 * normal 4K page.
1406	 */
1407	if (ptepa & PG_PS) {
1408		pmap->pm_pdir[ptepindex] = 0;
1409		ptepa = 0;
1410		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1411		pmap_invalidate_all(kernel_pmap);
1412	}
1413
1414	/*
1415	 * If the page table page is mapped, we just increment the
1416	 * hold count, and activate it.
1417	 */
1418	if (ptepa) {
1419		m = PHYS_TO_VM_PAGE(ptepa);
1420		m->wire_count++;
1421	} else {
1422		/*
1423		 * Here if the pte page isn't mapped, or if it has
1424		 * been deallocated.
1425		 */
1426		m = _pmap_allocpte(pmap, ptepindex, flags);
1427		if (m == NULL && (flags & M_WAITOK))
1428			goto retry;
1429	}
1430	return (m);
1431}
1432
1433
1434/***************************************************
1435* Pmap allocation/deallocation routines.
1436 ***************************************************/
1437
1438#ifdef SMP
1439/*
1440 * Deal with a SMP shootdown of other users of the pmap that we are
1441 * trying to dispose of.  This can be a bit hairy.
1442 */
1443static u_int *lazymask;
1444static u_int lazyptd;
1445static volatile u_int lazywait;
1446
1447void pmap_lazyfix_action(void);
1448
1449void
1450pmap_lazyfix_action(void)
1451{
1452	u_int mymask = PCPU_GET(cpumask);
1453
1454#ifdef COUNT_IPIS
1455	*ipi_lazypmap_counts[PCPU_GET(cpuid)]++;
1456#endif
1457	if (rcr3() == lazyptd)
1458		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1459	atomic_clear_int(lazymask, mymask);
1460	atomic_store_rel_int(&lazywait, 1);
1461}
1462
1463static void
1464pmap_lazyfix_self(u_int mymask)
1465{
1466
1467	if (rcr3() == lazyptd)
1468		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1469	atomic_clear_int(lazymask, mymask);
1470}
1471
1472
1473static void
1474pmap_lazyfix(pmap_t pmap)
1475{
1476	u_int mymask;
1477	u_int mask;
1478	u_int spins;
1479
1480	while ((mask = pmap->pm_active) != 0) {
1481		spins = 50000000;
1482		mask = mask & -mask;	/* Find least significant set bit */
1483		mtx_lock_spin(&smp_ipi_mtx);
1484#ifdef PAE
1485		lazyptd = vtophys(pmap->pm_pdpt);
1486#else
1487		lazyptd = vtophys(pmap->pm_pdir);
1488#endif
1489		mymask = PCPU_GET(cpumask);
1490		if (mask == mymask) {
1491			lazymask = &pmap->pm_active;
1492			pmap_lazyfix_self(mymask);
1493		} else {
1494			atomic_store_rel_int((u_int *)&lazymask,
1495			    (u_int)&pmap->pm_active);
1496			atomic_store_rel_int(&lazywait, 0);
1497			ipi_selected(mask, IPI_LAZYPMAP);
1498			while (lazywait == 0) {
1499				ia32_pause();
1500				if (--spins == 0)
1501					break;
1502			}
1503		}
1504		mtx_unlock_spin(&smp_ipi_mtx);
1505		if (spins == 0)
1506			printf("pmap_lazyfix: spun for 50000000\n");
1507	}
1508}
1509
1510#else	/* SMP */
1511
1512/*
1513 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1514 * unlikely to have to even execute this code, including the fact
1515 * that the cleanup is deferred until the parent does a wait(2), which
1516 * means that another userland process has run.
1517 */
1518static void
1519pmap_lazyfix(pmap_t pmap)
1520{
1521	u_int cr3;
1522
1523	cr3 = vtophys(pmap->pm_pdir);
1524	if (cr3 == rcr3()) {
1525		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1526		pmap->pm_active &= ~(PCPU_GET(cpumask));
1527	}
1528}
1529#endif	/* SMP */
1530
1531/*
1532 * Release any resources held by the given physical map.
1533 * Called when a pmap initialized by pmap_pinit is being released.
1534 * Should only be called if the map contains no valid mappings.
1535 */
1536void
1537pmap_release(pmap_t pmap)
1538{
1539	vm_page_t m, ptdpg[NPGPTD];
1540	int i;
1541
1542	KASSERT(pmap->pm_stats.resident_count == 0,
1543	    ("pmap_release: pmap resident count %ld != 0",
1544	    pmap->pm_stats.resident_count));
1545
1546	pmap_lazyfix(pmap);
1547	mtx_lock_spin(&allpmaps_lock);
1548	LIST_REMOVE(pmap, pm_list);
1549	mtx_unlock_spin(&allpmaps_lock);
1550
1551	for (i = 0; i < NPGPTD; i++)
1552		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1553
1554	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1555	    sizeof(*pmap->pm_pdir));
1556#ifdef SMP
1557	pmap->pm_pdir[MPPTDI] = 0;
1558#endif
1559
1560	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1561
1562	vm_page_lock_queues();
1563	for (i = 0; i < NPGPTD; i++) {
1564		m = ptdpg[i];
1565#ifdef PAE
1566		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1567		    ("pmap_release: got wrong ptd page"));
1568#endif
1569		m->wire_count--;
1570		atomic_subtract_int(&cnt.v_wire_count, 1);
1571		vm_page_free_zero(m);
1572	}
1573	vm_page_unlock_queues();
1574	PMAP_LOCK_DESTROY(pmap);
1575}
1576
1577static int
1578kvm_size(SYSCTL_HANDLER_ARGS)
1579{
1580	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1581
1582	return sysctl_handle_long(oidp, &ksize, 0, req);
1583}
1584SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1585    0, 0, kvm_size, "IU", "Size of KVM");
1586
1587static int
1588kvm_free(SYSCTL_HANDLER_ARGS)
1589{
1590	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1591
1592	return sysctl_handle_long(oidp, &kfree, 0, req);
1593}
1594SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1595    0, 0, kvm_free, "IU", "Amount of KVM free");
1596
1597/*
1598 * grow the number of kernel page table entries, if needed
1599 */
1600void
1601pmap_growkernel(vm_offset_t addr)
1602{
1603	struct pmap *pmap;
1604	vm_paddr_t ptppaddr;
1605	vm_page_t nkpg;
1606	pd_entry_t newpdir;
1607	pt_entry_t *pde;
1608
1609	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1610	if (kernel_vm_end == 0) {
1611		kernel_vm_end = KERNBASE;
1612		nkpt = 0;
1613		while (pdir_pde(PTD, kernel_vm_end)) {
1614			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1615			nkpt++;
1616			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1617				kernel_vm_end = kernel_map->max_offset;
1618				break;
1619			}
1620		}
1621	}
1622	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1623	if (addr - 1 >= kernel_map->max_offset)
1624		addr = kernel_map->max_offset;
1625	while (kernel_vm_end < addr) {
1626		if (pdir_pde(PTD, kernel_vm_end)) {
1627			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1628			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1629				kernel_vm_end = kernel_map->max_offset;
1630				break;
1631			}
1632			continue;
1633		}
1634
1635		/*
1636		 * This index is bogus, but out of the way
1637		 */
1638		nkpg = vm_page_alloc(NULL, nkpt,
1639		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1640		if (!nkpg)
1641			panic("pmap_growkernel: no memory to grow kernel");
1642
1643		nkpt++;
1644
1645		pmap_zero_page(nkpg);
1646		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1647		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1648		pdir_pde(PTD, kernel_vm_end) = newpdir;
1649
1650		mtx_lock_spin(&allpmaps_lock);
1651		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1652			pde = pmap_pde(pmap, kernel_vm_end);
1653			pde_store(pde, newpdir);
1654		}
1655		mtx_unlock_spin(&allpmaps_lock);
1656		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1657		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1658			kernel_vm_end = kernel_map->max_offset;
1659			break;
1660		}
1661	}
1662}
1663
1664
1665/***************************************************
1666 * page management routines.
1667 ***************************************************/
1668
1669CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1670CTASSERT(_NPCM == 11);
1671
1672static __inline struct pv_chunk *
1673pv_to_chunk(pv_entry_t pv)
1674{
1675
1676	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1677}
1678
1679#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1680
1681#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1682#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1683
1684static uint32_t pc_freemask[11] = {
1685	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1686	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1687	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1688	PC_FREE0_9, PC_FREE10
1689};
1690
1691SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1692	"Current number of pv entries");
1693
1694#ifdef PV_STATS
1695static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1696
1697SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1698	"Current number of pv entry chunks");
1699SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1700	"Current number of pv entry chunks allocated");
1701SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1702	"Current number of pv entry chunks frees");
1703SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1704	"Number of times tried to get a chunk page but failed.");
1705
1706static long pv_entry_frees, pv_entry_allocs;
1707static int pv_entry_spare;
1708
1709SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1710	"Current number of pv entry frees");
1711SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1712	"Current number of pv entry allocs");
1713SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1714	"Current number of spare pv entries");
1715
1716static int pmap_collect_inactive, pmap_collect_active;
1717
1718SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1719	"Current number times pmap_collect called on inactive queue");
1720SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1721	"Current number times pmap_collect called on active queue");
1722#endif
1723
1724/*
1725 * We are in a serious low memory condition.  Resort to
1726 * drastic measures to free some pages so we can allocate
1727 * another pv entry chunk.  This is normally called to
1728 * unmap inactive pages, and if necessary, active pages.
1729 */
1730static void
1731pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1732{
1733	pmap_t pmap;
1734	pt_entry_t *pte, tpte;
1735	pv_entry_t next_pv, pv;
1736	vm_offset_t va;
1737	vm_page_t m;
1738
1739	sched_pin();
1740	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1741		if (m->hold_count || m->busy)
1742			continue;
1743		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1744			va = pv->pv_va;
1745			pmap = PV_PMAP(pv);
1746			/* Avoid deadlock and lock recursion. */
1747			if (pmap > locked_pmap)
1748				PMAP_LOCK(pmap);
1749			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1750				continue;
1751			pmap->pm_stats.resident_count--;
1752			pte = pmap_pte_quick(pmap, va);
1753			tpte = pte_load_clear(pte);
1754			KASSERT((tpte & PG_W) == 0,
1755			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1756			if (tpte & PG_A)
1757				vm_page_flag_set(m, PG_REFERENCED);
1758			if (tpte & PG_M) {
1759				KASSERT((tpte & PG_RW),
1760	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
1761				    va, (uintmax_t)tpte));
1762				vm_page_dirty(m);
1763			}
1764			pmap_invalidate_page(pmap, va);
1765			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1766			if (TAILQ_EMPTY(&m->md.pv_list))
1767				vm_page_flag_clear(m, PG_WRITEABLE);
1768			m->md.pv_list_count--;
1769			pmap_unuse_pt(pmap, va);
1770			free_pv_entry(pmap, pv);
1771			if (pmap != locked_pmap)
1772				PMAP_UNLOCK(pmap);
1773		}
1774	}
1775	sched_unpin();
1776}
1777
1778
1779/*
1780 * free the pv_entry back to the free list
1781 */
1782static void
1783free_pv_entry(pmap_t pmap, pv_entry_t pv)
1784{
1785	vm_page_t m;
1786	struct pv_chunk *pc;
1787	int idx, field, bit;
1788
1789	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1790	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1791	PV_STAT(pv_entry_frees++);
1792	PV_STAT(pv_entry_spare++);
1793	pv_entry_count--;
1794	pc = pv_to_chunk(pv);
1795	idx = pv - &pc->pc_pventry[0];
1796	field = idx / 32;
1797	bit = idx % 32;
1798	pc->pc_map[field] |= 1ul << bit;
1799	/* move to head of list */
1800	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1801	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1802	for (idx = 0; idx < _NPCM; idx++)
1803		if (pc->pc_map[idx] != pc_freemask[idx])
1804			return;
1805	PV_STAT(pv_entry_spare -= _NPCPV);
1806	PV_STAT(pc_chunk_count--);
1807	PV_STAT(pc_chunk_frees++);
1808	/* entire chunk is free, return it */
1809	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1810	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1811	pmap_qremove((vm_offset_t)pc, 1);
1812	vm_page_unwire(m, 0);
1813	vm_page_free(m);
1814	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1815}
1816
1817/*
1818 * get a new pv_entry, allocating a block from the system
1819 * when needed.
1820 */
1821static pv_entry_t
1822get_pv_entry(pmap_t pmap, int try)
1823{
1824	static const struct timeval printinterval = { 60, 0 };
1825	static struct timeval lastprint;
1826	static vm_pindex_t colour;
1827	int bit, field, page_req;
1828	pv_entry_t pv;
1829	struct pv_chunk *pc;
1830	vm_page_t m;
1831
1832	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1833	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1834	PV_STAT(pv_entry_allocs++);
1835	pv_entry_count++;
1836	if (pv_entry_count > pv_entry_high_water)
1837		pagedaemon_wakeup();
1838	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1839	if (pc != NULL) {
1840		for (field = 0; field < _NPCM; field++) {
1841			if (pc->pc_map[field]) {
1842				bit = bsfl(pc->pc_map[field]);
1843				break;
1844			}
1845		}
1846		if (field < _NPCM) {
1847			pv = &pc->pc_pventry[field * 32 + bit];
1848			pc->pc_map[field] &= ~(1ul << bit);
1849			/* If this was the last item, move it to tail */
1850			for (field = 0; field < _NPCM; field++)
1851				if (pc->pc_map[field] != 0) {
1852					PV_STAT(pv_entry_spare--);
1853					return (pv);	/* not full, return */
1854				}
1855			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1856			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1857			PV_STAT(pv_entry_spare--);
1858			return (pv);
1859		}
1860	}
1861	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
1862	page_req = try ? VM_ALLOC_NORMAL : VM_ALLOC_SYSTEM;
1863	m = vm_page_alloc(NULL, colour, page_req |
1864	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
1865	if (m == NULL || pc == NULL) {
1866		if (try) {
1867			pv_entry_count--;
1868			PV_STAT(pc_chunk_tryfail++);
1869			if (m) {
1870				vm_page_lock_queues();
1871				vm_page_unwire(m, 0);
1872				vm_page_free(m);
1873				vm_page_unlock_queues();
1874			}
1875			if (pc)
1876				pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1877			return (NULL);
1878		}
1879		/*
1880		 * Reclaim pv entries: At first, destroy mappings to
1881		 * inactive pages.  After that, if a pv chunk entry
1882		 * is still needed, destroy mappings to active pages.
1883		 */
1884		if (ratecheck(&lastprint, &printinterval))
1885			printf("Approaching the limit on PV entries, "
1886			    "consider increasing tunables "
1887			    "vm.pmap.shpgperproc or "
1888			    "vm.pmap.pv_entry_max\n");
1889		PV_STAT(pmap_collect_inactive++);
1890		pmap_collect(pmap, &vm_page_queues[PQ_INACTIVE]);
1891		if (m == NULL)
1892			m = vm_page_alloc(NULL, colour, VM_ALLOC_SYSTEM |
1893			    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
1894		if (pc == NULL)
1895			pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
1896		if (m == NULL || pc == NULL) {
1897			PV_STAT(pmap_collect_active++);
1898			pmap_collect(pmap, &vm_page_queues[PQ_ACTIVE]);
1899			if (m == NULL)
1900				m = vm_page_alloc(NULL, colour,
1901				    VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
1902				    VM_ALLOC_WIRED);
1903			if (pc == NULL)
1904				pc = (struct pv_chunk *)
1905				    pmap_ptelist_alloc(&pv_vafree);
1906			if (m == NULL || pc == NULL)
1907				panic("get_pv_entry: increase vm.pmap.shpgperproc");
1908		}
1909	}
1910	PV_STAT(pc_chunk_count++);
1911	PV_STAT(pc_chunk_allocs++);
1912	colour++;
1913	pmap_qenter((vm_offset_t)pc, &m, 1);
1914	pc->pc_pmap = pmap;
1915	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1916	for (field = 1; field < _NPCM; field++)
1917		pc->pc_map[field] = pc_freemask[field];
1918	pv = &pc->pc_pventry[0];
1919	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1920	PV_STAT(pv_entry_spare += _NPCPV - 1);
1921	return (pv);
1922}
1923
1924static void
1925pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1926{
1927	pv_entry_t pv;
1928
1929	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1930	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1931	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1932		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
1933			break;
1934	}
1935	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1936	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1937	m->md.pv_list_count--;
1938	if (TAILQ_EMPTY(&m->md.pv_list))
1939		vm_page_flag_clear(m, PG_WRITEABLE);
1940	free_pv_entry(pmap, pv);
1941}
1942
1943/*
1944 * Create a pv entry for page at pa for
1945 * (pmap, va).
1946 */
1947static void
1948pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1949{
1950	pv_entry_t pv;
1951
1952	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1953	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1954	pv = get_pv_entry(pmap, FALSE);
1955	pv->pv_va = va;
1956	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1957	m->md.pv_list_count++;
1958}
1959
1960/*
1961 * Conditionally create a pv entry.
1962 */
1963static boolean_t
1964pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1965{
1966	pv_entry_t pv;
1967
1968	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1969	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1970	if (pv_entry_count < pv_entry_high_water &&
1971	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
1972		pv->pv_va = va;
1973		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1974		m->md.pv_list_count++;
1975		return (TRUE);
1976	} else
1977		return (FALSE);
1978}
1979
1980/*
1981 * pmap_remove_pte: do the things to unmap a page in a process
1982 */
1983static int
1984pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1985{
1986	pt_entry_t oldpte;
1987	vm_page_t m;
1988
1989	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1990	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1991	oldpte = pte_load_clear(ptq);
1992	if (oldpte & PG_W)
1993		pmap->pm_stats.wired_count -= 1;
1994	/*
1995	 * Machines that don't support invlpg, also don't support
1996	 * PG_G.
1997	 */
1998	if (oldpte & PG_G)
1999		pmap_invalidate_page(kernel_pmap, va);
2000	pmap->pm_stats.resident_count -= 1;
2001	if (oldpte & PG_MANAGED) {
2002		m = PHYS_TO_VM_PAGE(oldpte);
2003		if (oldpte & PG_M) {
2004			KASSERT((oldpte & PG_RW),
2005	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
2006			    va, (uintmax_t)oldpte));
2007			vm_page_dirty(m);
2008		}
2009		if (oldpte & PG_A)
2010			vm_page_flag_set(m, PG_REFERENCED);
2011		pmap_remove_entry(pmap, m, va);
2012	}
2013	return (pmap_unuse_pt(pmap, va));
2014}
2015
2016/*
2017 * Remove a single page from a process address space
2018 */
2019static void
2020pmap_remove_page(pmap_t pmap, vm_offset_t va)
2021{
2022	pt_entry_t *pte;
2023
2024	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2025	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2026	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2027	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2028		return;
2029	pmap_remove_pte(pmap, pte, va);
2030	pmap_invalidate_page(pmap, va);
2031}
2032
2033/*
2034 *	Remove the given range of addresses from the specified map.
2035 *
2036 *	It is assumed that the start and end are properly
2037 *	rounded to the page size.
2038 */
2039void
2040pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2041{
2042	vm_offset_t pdnxt;
2043	pd_entry_t ptpaddr;
2044	pt_entry_t *pte;
2045	int anyvalid;
2046
2047	/*
2048	 * Perform an unsynchronized read.  This is, however, safe.
2049	 */
2050	if (pmap->pm_stats.resident_count == 0)
2051		return;
2052
2053	anyvalid = 0;
2054
2055	vm_page_lock_queues();
2056	sched_pin();
2057	PMAP_LOCK(pmap);
2058
2059	/*
2060	 * special handling of removing one page.  a very
2061	 * common operation and easy to short circuit some
2062	 * code.
2063	 */
2064	if ((sva + PAGE_SIZE == eva) &&
2065	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2066		pmap_remove_page(pmap, sva);
2067		goto out;
2068	}
2069
2070	for (; sva < eva; sva = pdnxt) {
2071		unsigned pdirindex;
2072
2073		/*
2074		 * Calculate index for next page table.
2075		 */
2076		pdnxt = (sva + NBPDR) & ~PDRMASK;
2077		if (pmap->pm_stats.resident_count == 0)
2078			break;
2079
2080		pdirindex = sva >> PDRSHIFT;
2081		ptpaddr = pmap->pm_pdir[pdirindex];
2082
2083		/*
2084		 * Weed out invalid mappings. Note: we assume that the page
2085		 * directory table is always allocated, and in kernel virtual.
2086		 */
2087		if (ptpaddr == 0)
2088			continue;
2089
2090		/*
2091		 * Check for large page.
2092		 */
2093		if ((ptpaddr & PG_PS) != 0) {
2094			pmap->pm_pdir[pdirindex] = 0;
2095			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2096			anyvalid = 1;
2097			continue;
2098		}
2099
2100		/*
2101		 * Limit our scan to either the end of the va represented
2102		 * by the current page table page, or to the end of the
2103		 * range being removed.
2104		 */
2105		if (pdnxt > eva)
2106			pdnxt = eva;
2107
2108		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2109		    sva += PAGE_SIZE) {
2110			if (*pte == 0)
2111				continue;
2112
2113			/*
2114			 * The TLB entry for a PG_G mapping is invalidated
2115			 * by pmap_remove_pte().
2116			 */
2117			if ((*pte & PG_G) == 0)
2118				anyvalid = 1;
2119			if (pmap_remove_pte(pmap, pte, sva))
2120				break;
2121		}
2122	}
2123out:
2124	sched_unpin();
2125	vm_page_unlock_queues();
2126	if (anyvalid)
2127		pmap_invalidate_all(pmap);
2128	PMAP_UNLOCK(pmap);
2129}
2130
2131/*
2132 *	Routine:	pmap_remove_all
2133 *	Function:
2134 *		Removes this physical page from
2135 *		all physical maps in which it resides.
2136 *		Reflects back modify bits to the pager.
2137 *
2138 *	Notes:
2139 *		Original versions of this routine were very
2140 *		inefficient because they iteratively called
2141 *		pmap_remove (slow...)
2142 */
2143
2144void
2145pmap_remove_all(vm_page_t m)
2146{
2147	pv_entry_t pv;
2148	pmap_t pmap;
2149	pt_entry_t *pte, tpte;
2150
2151#if defined(PMAP_DIAGNOSTIC)
2152	/*
2153	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2154	 */
2155	if (m->flags & PG_FICTITIOUS) {
2156		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
2157		    VM_PAGE_TO_PHYS(m));
2158	}
2159#endif
2160	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2161	sched_pin();
2162	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2163		pmap = PV_PMAP(pv);
2164		PMAP_LOCK(pmap);
2165		pmap->pm_stats.resident_count--;
2166		pte = pmap_pte_quick(pmap, pv->pv_va);
2167		tpte = pte_load_clear(pte);
2168		if (tpte & PG_W)
2169			pmap->pm_stats.wired_count--;
2170		if (tpte & PG_A)
2171			vm_page_flag_set(m, PG_REFERENCED);
2172
2173		/*
2174		 * Update the vm_page_t clean and reference bits.
2175		 */
2176		if (tpte & PG_M) {
2177			KASSERT((tpte & PG_RW),
2178	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2179			    pv->pv_va, (uintmax_t)tpte));
2180			vm_page_dirty(m);
2181		}
2182		pmap_invalidate_page(pmap, pv->pv_va);
2183		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2184		m->md.pv_list_count--;
2185		pmap_unuse_pt(pmap, pv->pv_va);
2186		free_pv_entry(pmap, pv);
2187		PMAP_UNLOCK(pmap);
2188	}
2189	vm_page_flag_clear(m, PG_WRITEABLE);
2190	sched_unpin();
2191}
2192
2193/*
2194 *	Set the physical protection on the
2195 *	specified range of this map as requested.
2196 */
2197void
2198pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2199{
2200	vm_offset_t pdnxt;
2201	pd_entry_t ptpaddr;
2202	pt_entry_t *pte;
2203	int anychanged;
2204
2205	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2206		pmap_remove(pmap, sva, eva);
2207		return;
2208	}
2209
2210	if (prot & VM_PROT_WRITE)
2211		return;
2212
2213	anychanged = 0;
2214
2215	vm_page_lock_queues();
2216	sched_pin();
2217	PMAP_LOCK(pmap);
2218	for (; sva < eva; sva = pdnxt) {
2219		unsigned obits, pbits, pdirindex;
2220
2221		pdnxt = (sva + NBPDR) & ~PDRMASK;
2222
2223		pdirindex = sva >> PDRSHIFT;
2224		ptpaddr = pmap->pm_pdir[pdirindex];
2225
2226		/*
2227		 * Weed out invalid mappings. Note: we assume that the page
2228		 * directory table is always allocated, and in kernel virtual.
2229		 */
2230		if (ptpaddr == 0)
2231			continue;
2232
2233		/*
2234		 * Check for large page.
2235		 */
2236		if ((ptpaddr & PG_PS) != 0) {
2237			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2238			anychanged = 1;
2239			continue;
2240		}
2241
2242		if (pdnxt > eva)
2243			pdnxt = eva;
2244
2245		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2246		    sva += PAGE_SIZE) {
2247			vm_page_t m;
2248
2249retry:
2250			/*
2251			 * Regardless of whether a pte is 32 or 64 bits in
2252			 * size, PG_RW, PG_A, and PG_M are among the least
2253			 * significant 32 bits.
2254			 */
2255			obits = pbits = *(u_int *)pte;
2256			if (pbits & PG_MANAGED) {
2257				m = NULL;
2258				if (pbits & PG_A) {
2259					m = PHYS_TO_VM_PAGE(*pte);
2260					vm_page_flag_set(m, PG_REFERENCED);
2261					pbits &= ~PG_A;
2262				}
2263				if ((pbits & PG_M) != 0) {
2264					if (m == NULL)
2265						m = PHYS_TO_VM_PAGE(*pte);
2266					vm_page_dirty(m);
2267				}
2268			}
2269
2270			pbits &= ~(PG_RW | PG_M);
2271
2272			if (pbits != obits) {
2273				if (!atomic_cmpset_int((u_int *)pte, obits,
2274				    pbits))
2275					goto retry;
2276				if (obits & PG_G)
2277					pmap_invalidate_page(pmap, sva);
2278				else
2279					anychanged = 1;
2280			}
2281		}
2282	}
2283	sched_unpin();
2284	vm_page_unlock_queues();
2285	if (anychanged)
2286		pmap_invalidate_all(pmap);
2287	PMAP_UNLOCK(pmap);
2288}
2289
2290/*
2291 *	Insert the given physical page (p) at
2292 *	the specified virtual address (v) in the
2293 *	target physical map with the protection requested.
2294 *
2295 *	If specified, the page will be wired down, meaning
2296 *	that the related pte can not be reclaimed.
2297 *
2298 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2299 *	or lose information.  That is, this routine must actually
2300 *	insert this page into the given map NOW.
2301 */
2302void
2303pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2304	   boolean_t wired)
2305{
2306	vm_paddr_t pa;
2307	pd_entry_t *pde;
2308	pt_entry_t *pte;
2309	vm_paddr_t opa;
2310	pt_entry_t origpte, newpte;
2311	vm_page_t mpte, om;
2312	boolean_t invlva;
2313
2314	va &= PG_FRAME;
2315#ifdef PMAP_DIAGNOSTIC
2316	if (va > VM_MAX_KERNEL_ADDRESS)
2317		panic("pmap_enter: toobig");
2318	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2319		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2320#endif
2321
2322	mpte = NULL;
2323
2324	vm_page_lock_queues();
2325	PMAP_LOCK(pmap);
2326	sched_pin();
2327
2328	/*
2329	 * In the case that a page table page is not
2330	 * resident, we are creating it here.
2331	 */
2332	if (va < VM_MAXUSER_ADDRESS) {
2333		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2334	}
2335#if 0 && defined(PMAP_DIAGNOSTIC)
2336	else {
2337		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2338		origpte = *pdeaddr;
2339		if ((origpte & PG_V) == 0) {
2340			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2341				pmap->pm_pdir[PTDPTDI], origpte, va);
2342		}
2343	}
2344#endif
2345
2346	pde = pmap_pde(pmap, va);
2347	if ((*pde & PG_PS) != 0)
2348		panic("pmap_enter: attempted pmap_enter on 4MB page");
2349	pte = pmap_pte_quick(pmap, va);
2350
2351	/*
2352	 * Page Directory table entry not valid, we need a new PT page
2353	 */
2354	if (pte == NULL) {
2355		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2356			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
2357	}
2358
2359	pa = VM_PAGE_TO_PHYS(m);
2360	om = NULL;
2361	origpte = *pte;
2362	opa = origpte & PG_FRAME;
2363
2364	/*
2365	 * Mapping has not changed, must be protection or wiring change.
2366	 */
2367	if (origpte && (opa == pa)) {
2368		/*
2369		 * Wiring change, just update stats. We don't worry about
2370		 * wiring PT pages as they remain resident as long as there
2371		 * are valid mappings in them. Hence, if a user page is wired,
2372		 * the PT page will be also.
2373		 */
2374		if (wired && ((origpte & PG_W) == 0))
2375			pmap->pm_stats.wired_count++;
2376		else if (!wired && (origpte & PG_W))
2377			pmap->pm_stats.wired_count--;
2378
2379		/*
2380		 * Remove extra pte reference
2381		 */
2382		if (mpte)
2383			mpte->wire_count--;
2384
2385		/*
2386		 * We might be turning off write access to the page,
2387		 * so we go ahead and sense modify status.
2388		 */
2389		if (origpte & PG_MANAGED) {
2390			om = m;
2391			pa |= PG_MANAGED;
2392		}
2393		goto validate;
2394	}
2395	/*
2396	 * Mapping has changed, invalidate old range and fall through to
2397	 * handle validating new mapping.
2398	 */
2399	if (opa) {
2400		if (origpte & PG_W)
2401			pmap->pm_stats.wired_count--;
2402		if (origpte & PG_MANAGED) {
2403			om = PHYS_TO_VM_PAGE(opa);
2404			pmap_remove_entry(pmap, om, va);
2405		}
2406		if (mpte != NULL) {
2407			mpte->wire_count--;
2408			KASSERT(mpte->wire_count > 0,
2409			    ("pmap_enter: missing reference to page table page,"
2410			     " va: 0x%x", va));
2411		}
2412	} else
2413		pmap->pm_stats.resident_count++;
2414
2415	/*
2416	 * Enter on the PV list if part of our managed memory.
2417	 */
2418	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2419		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2420		    ("pmap_enter: managed mapping within the clean submap"));
2421		pmap_insert_entry(pmap, va, m);
2422		pa |= PG_MANAGED;
2423	}
2424
2425	/*
2426	 * Increment counters
2427	 */
2428	if (wired)
2429		pmap->pm_stats.wired_count++;
2430
2431validate:
2432	/*
2433	 * Now validate mapping with desired protection/wiring.
2434	 */
2435	newpte = (pt_entry_t)(pa | PG_V);
2436	if ((prot & VM_PROT_WRITE) != 0) {
2437		newpte |= PG_RW;
2438		vm_page_flag_set(m, PG_WRITEABLE);
2439	}
2440	if (wired)
2441		newpte |= PG_W;
2442	if (va < VM_MAXUSER_ADDRESS)
2443		newpte |= PG_U;
2444	if (pmap == kernel_pmap)
2445		newpte |= pgeflag;
2446
2447	/*
2448	 * if the mapping or permission bits are different, we need
2449	 * to update the pte.
2450	 */
2451	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2452		if (origpte & PG_V) {
2453			invlva = FALSE;
2454			origpte = pte_load_store(pte, newpte | PG_A);
2455			if (origpte & PG_A) {
2456				if (origpte & PG_MANAGED)
2457					vm_page_flag_set(om, PG_REFERENCED);
2458				if (opa != VM_PAGE_TO_PHYS(m))
2459					invlva = TRUE;
2460			}
2461			if (origpte & PG_M) {
2462				KASSERT((origpte & PG_RW),
2463	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2464				    va, (uintmax_t)origpte));
2465				if ((origpte & PG_MANAGED) != 0)
2466					vm_page_dirty(om);
2467				if ((prot & VM_PROT_WRITE) == 0)
2468					invlva = TRUE;
2469			}
2470			if (invlva)
2471				pmap_invalidate_page(pmap, va);
2472		} else
2473			pte_store(pte, newpte | PG_A);
2474	}
2475	sched_unpin();
2476	vm_page_unlock_queues();
2477	PMAP_UNLOCK(pmap);
2478}
2479
2480/*
2481 * Maps a sequence of resident pages belonging to the same object.
2482 * The sequence begins with the given page m_start.  This page is
2483 * mapped at the given virtual address start.  Each subsequent page is
2484 * mapped at a virtual address that is offset from start by the same
2485 * amount as the page is offset from m_start within the object.  The
2486 * last page in the sequence is the page with the largest offset from
2487 * m_start that can be mapped at a virtual address less than the given
2488 * virtual address end.  Not every virtual page between start and end
2489 * is mapped; only those for which a resident page exists with the
2490 * corresponding offset from m_start are mapped.
2491 */
2492void
2493pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2494    vm_page_t m_start, vm_prot_t prot)
2495{
2496	vm_page_t m, mpte;
2497	vm_pindex_t diff, psize;
2498
2499	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2500	psize = atop(end - start);
2501	mpte = NULL;
2502	m = m_start;
2503	PMAP_LOCK(pmap);
2504	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2505		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2506		    prot, mpte);
2507		m = TAILQ_NEXT(m, listq);
2508	}
2509 	PMAP_UNLOCK(pmap);
2510}
2511
2512/*
2513 * this code makes some *MAJOR* assumptions:
2514 * 1. Current pmap & pmap exists.
2515 * 2. Not wired.
2516 * 3. Read access.
2517 * 4. No page table pages.
2518 * but is *MUCH* faster than pmap_enter...
2519 */
2520
2521void
2522pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2523{
2524
2525	PMAP_LOCK(pmap);
2526	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2527	PMAP_UNLOCK(pmap);
2528}
2529
2530static vm_page_t
2531pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2532    vm_prot_t prot, vm_page_t mpte)
2533{
2534	pt_entry_t *pte;
2535	vm_paddr_t pa;
2536
2537	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2538	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2539	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2540	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2541	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2542
2543	/*
2544	 * In the case that a page table page is not
2545	 * resident, we are creating it here.
2546	 */
2547	if (va < VM_MAXUSER_ADDRESS) {
2548		unsigned ptepindex;
2549		pd_entry_t ptepa;
2550
2551		/*
2552		 * Calculate pagetable page index
2553		 */
2554		ptepindex = va >> PDRSHIFT;
2555		if (mpte && (mpte->pindex == ptepindex)) {
2556			mpte->wire_count++;
2557		} else {
2558			/*
2559			 * Get the page directory entry
2560			 */
2561			ptepa = pmap->pm_pdir[ptepindex];
2562
2563			/*
2564			 * If the page table page is mapped, we just increment
2565			 * the hold count, and activate it.
2566			 */
2567			if (ptepa) {
2568				if (ptepa & PG_PS)
2569					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2570				mpte = PHYS_TO_VM_PAGE(ptepa);
2571				mpte->wire_count++;
2572			} else {
2573				mpte = _pmap_allocpte(pmap, ptepindex,
2574				    M_NOWAIT);
2575				if (mpte == NULL)
2576					return (mpte);
2577			}
2578		}
2579	} else {
2580		mpte = NULL;
2581	}
2582
2583	/*
2584	 * This call to vtopte makes the assumption that we are
2585	 * entering the page into the current pmap.  In order to support
2586	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2587	 * But that isn't as quick as vtopte.
2588	 */
2589	pte = vtopte(va);
2590	if (*pte) {
2591		if (mpte != NULL) {
2592			pmap_unwire_pte_hold(pmap, mpte);
2593			mpte = NULL;
2594		}
2595		return (mpte);
2596	}
2597
2598	/*
2599	 * Enter on the PV list if part of our managed memory.
2600	 */
2601	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2602	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2603		if (mpte != NULL) {
2604			pmap_unwire_pte_hold(pmap, mpte);
2605			mpte = NULL;
2606		}
2607		return (mpte);
2608	}
2609
2610	/*
2611	 * Increment counters
2612	 */
2613	pmap->pm_stats.resident_count++;
2614
2615	pa = VM_PAGE_TO_PHYS(m);
2616
2617	/*
2618	 * Now validate mapping with RO protection
2619	 */
2620	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2621		pte_store(pte, pa | PG_V | PG_U);
2622	else
2623		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2624	return mpte;
2625}
2626
2627/*
2628 * Make a temporary mapping for a physical address.  This is only intended
2629 * to be used for panic dumps.
2630 */
2631void *
2632pmap_kenter_temporary(vm_paddr_t pa, int i)
2633{
2634	vm_offset_t va;
2635
2636	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2637	pmap_kenter(va, pa);
2638	invlpg(va);
2639	return ((void *)crashdumpmap);
2640}
2641
2642/*
2643 * This code maps large physical mmap regions into the
2644 * processor address space.  Note that some shortcuts
2645 * are taken, but the code works.
2646 */
2647void
2648pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2649		    vm_object_t object, vm_pindex_t pindex,
2650		    vm_size_t size)
2651{
2652	vm_page_t p;
2653
2654	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2655	KASSERT(object->type == OBJT_DEVICE,
2656	    ("pmap_object_init_pt: non-device object"));
2657	if (pseflag &&
2658	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2659		int i;
2660		vm_page_t m[1];
2661		unsigned int ptepindex;
2662		int npdes;
2663		pd_entry_t ptepa;
2664
2665		PMAP_LOCK(pmap);
2666		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2667			goto out;
2668		PMAP_UNLOCK(pmap);
2669retry:
2670		p = vm_page_lookup(object, pindex);
2671		if (p != NULL) {
2672			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2673				goto retry;
2674		} else {
2675			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2676			if (p == NULL)
2677				return;
2678			m[0] = p;
2679
2680			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2681				vm_page_lock_queues();
2682				vm_page_free(p);
2683				vm_page_unlock_queues();
2684				return;
2685			}
2686
2687			p = vm_page_lookup(object, pindex);
2688			vm_page_lock_queues();
2689			vm_page_wakeup(p);
2690			vm_page_unlock_queues();
2691		}
2692
2693		ptepa = VM_PAGE_TO_PHYS(p);
2694		if (ptepa & (NBPDR - 1))
2695			return;
2696
2697		p->valid = VM_PAGE_BITS_ALL;
2698
2699		PMAP_LOCK(pmap);
2700		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2701		npdes = size >> PDRSHIFT;
2702		for(i = 0; i < npdes; i++) {
2703			pde_store(&pmap->pm_pdir[ptepindex],
2704			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2705			ptepa += NBPDR;
2706			ptepindex += 1;
2707		}
2708		pmap_invalidate_all(pmap);
2709out:
2710		PMAP_UNLOCK(pmap);
2711	}
2712}
2713
2714/*
2715 *	Routine:	pmap_change_wiring
2716 *	Function:	Change the wiring attribute for a map/virtual-address
2717 *			pair.
2718 *	In/out conditions:
2719 *			The mapping must already exist in the pmap.
2720 */
2721void
2722pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2723{
2724	pt_entry_t *pte;
2725
2726	PMAP_LOCK(pmap);
2727	pte = pmap_pte(pmap, va);
2728
2729	if (wired && !pmap_pte_w(pte))
2730		pmap->pm_stats.wired_count++;
2731	else if (!wired && pmap_pte_w(pte))
2732		pmap->pm_stats.wired_count--;
2733
2734	/*
2735	 * Wiring is not a hardware characteristic so there is no need to
2736	 * invalidate TLB.
2737	 */
2738	pmap_pte_set_w(pte, wired);
2739	pmap_pte_release(pte);
2740	PMAP_UNLOCK(pmap);
2741}
2742
2743
2744
2745/*
2746 *	Copy the range specified by src_addr/len
2747 *	from the source map to the range dst_addr/len
2748 *	in the destination map.
2749 *
2750 *	This routine is only advisory and need not do anything.
2751 */
2752
2753void
2754pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2755	  vm_offset_t src_addr)
2756{
2757	vm_offset_t addr;
2758	vm_offset_t end_addr = src_addr + len;
2759	vm_offset_t pdnxt;
2760
2761	if (dst_addr != src_addr)
2762		return;
2763
2764	if (!pmap_is_current(src_pmap))
2765		return;
2766
2767	vm_page_lock_queues();
2768	if (dst_pmap < src_pmap) {
2769		PMAP_LOCK(dst_pmap);
2770		PMAP_LOCK(src_pmap);
2771	} else {
2772		PMAP_LOCK(src_pmap);
2773		PMAP_LOCK(dst_pmap);
2774	}
2775	sched_pin();
2776	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2777		pt_entry_t *src_pte, *dst_pte;
2778		vm_page_t dstmpte, srcmpte;
2779		pd_entry_t srcptepaddr;
2780		unsigned ptepindex;
2781
2782		if (addr >= UPT_MIN_ADDRESS)
2783			panic("pmap_copy: invalid to pmap_copy page tables");
2784
2785		pdnxt = (addr + NBPDR) & ~PDRMASK;
2786		ptepindex = addr >> PDRSHIFT;
2787
2788		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2789		if (srcptepaddr == 0)
2790			continue;
2791
2792		if (srcptepaddr & PG_PS) {
2793			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2794				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
2795				    ~PG_W;
2796				dst_pmap->pm_stats.resident_count +=
2797				    NBPDR / PAGE_SIZE;
2798			}
2799			continue;
2800		}
2801
2802		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2803		if (srcmpte->wire_count == 0)
2804			panic("pmap_copy: source page table page is unused");
2805
2806		if (pdnxt > end_addr)
2807			pdnxt = end_addr;
2808
2809		src_pte = vtopte(addr);
2810		while (addr < pdnxt) {
2811			pt_entry_t ptetemp;
2812			ptetemp = *src_pte;
2813			/*
2814			 * we only virtual copy managed pages
2815			 */
2816			if ((ptetemp & PG_MANAGED) != 0) {
2817				dstmpte = pmap_allocpte(dst_pmap, addr,
2818				    M_NOWAIT);
2819				if (dstmpte == NULL)
2820					break;
2821				dst_pte = pmap_pte_quick(dst_pmap, addr);
2822				if (*dst_pte == 0 &&
2823				    pmap_try_insert_pv_entry(dst_pmap, addr,
2824				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
2825					/*
2826					 * Clear the wired, modified, and
2827					 * accessed (referenced) bits
2828					 * during the copy.
2829					 */
2830					*dst_pte = ptetemp & ~(PG_W | PG_M |
2831					    PG_A);
2832					dst_pmap->pm_stats.resident_count++;
2833	 			} else
2834					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2835				if (dstmpte->wire_count >= srcmpte->wire_count)
2836					break;
2837			}
2838			addr += PAGE_SIZE;
2839			src_pte++;
2840		}
2841	}
2842	sched_unpin();
2843	vm_page_unlock_queues();
2844	PMAP_UNLOCK(src_pmap);
2845	PMAP_UNLOCK(dst_pmap);
2846}
2847
2848static __inline void
2849pagezero(void *page)
2850{
2851#if defined(I686_CPU)
2852	if (cpu_class == CPUCLASS_686) {
2853#if defined(CPU_ENABLE_SSE)
2854		if (cpu_feature & CPUID_SSE2)
2855			sse2_pagezero(page);
2856		else
2857#endif
2858			i686_pagezero(page);
2859	} else
2860#endif
2861		bzero(page, PAGE_SIZE);
2862}
2863
2864/*
2865 *	pmap_zero_page zeros the specified hardware page by mapping
2866 *	the page into KVM and using bzero to clear its contents.
2867 */
2868void
2869pmap_zero_page(vm_page_t m)
2870{
2871	struct sysmaps *sysmaps;
2872
2873	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2874	mtx_lock(&sysmaps->lock);
2875	if (*sysmaps->CMAP2)
2876		panic("pmap_zero_page: CMAP2 busy");
2877	sched_pin();
2878	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2879	invlcaddr(sysmaps->CADDR2);
2880	pagezero(sysmaps->CADDR2);
2881	*sysmaps->CMAP2 = 0;
2882	sched_unpin();
2883	mtx_unlock(&sysmaps->lock);
2884}
2885
2886/*
2887 *	pmap_zero_page_area zeros the specified hardware page by mapping
2888 *	the page into KVM and using bzero to clear its contents.
2889 *
2890 *	off and size may not cover an area beyond a single hardware page.
2891 */
2892void
2893pmap_zero_page_area(vm_page_t m, int off, int size)
2894{
2895	struct sysmaps *sysmaps;
2896
2897	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2898	mtx_lock(&sysmaps->lock);
2899	if (*sysmaps->CMAP2)
2900		panic("pmap_zero_page: CMAP2 busy");
2901	sched_pin();
2902	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2903	invlcaddr(sysmaps->CADDR2);
2904	if (off == 0 && size == PAGE_SIZE)
2905		pagezero(sysmaps->CADDR2);
2906	else
2907		bzero((char *)sysmaps->CADDR2 + off, size);
2908	*sysmaps->CMAP2 = 0;
2909	sched_unpin();
2910	mtx_unlock(&sysmaps->lock);
2911}
2912
2913/*
2914 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2915 *	the page into KVM and using bzero to clear its contents.  This
2916 *	is intended to be called from the vm_pagezero process only and
2917 *	outside of Giant.
2918 */
2919void
2920pmap_zero_page_idle(vm_page_t m)
2921{
2922
2923	if (*CMAP3)
2924		panic("pmap_zero_page: CMAP3 busy");
2925	sched_pin();
2926	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2927	invlcaddr(CADDR3);
2928	pagezero(CADDR3);
2929	*CMAP3 = 0;
2930	sched_unpin();
2931}
2932
2933/*
2934 *	pmap_copy_page copies the specified (machine independent)
2935 *	page by mapping the page into virtual memory and using
2936 *	bcopy to copy the page, one machine dependent page at a
2937 *	time.
2938 */
2939void
2940pmap_copy_page(vm_page_t src, vm_page_t dst)
2941{
2942	struct sysmaps *sysmaps;
2943
2944	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2945	mtx_lock(&sysmaps->lock);
2946	if (*sysmaps->CMAP1)
2947		panic("pmap_copy_page: CMAP1 busy");
2948	if (*sysmaps->CMAP2)
2949		panic("pmap_copy_page: CMAP2 busy");
2950	sched_pin();
2951	invlpg((u_int)sysmaps->CADDR1);
2952	invlpg((u_int)sysmaps->CADDR2);
2953	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2954	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2955	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2956	*sysmaps->CMAP1 = 0;
2957	*sysmaps->CMAP2 = 0;
2958	sched_unpin();
2959	mtx_unlock(&sysmaps->lock);
2960}
2961
2962/*
2963 * Returns true if the pmap's pv is one of the first
2964 * 16 pvs linked to from this page.  This count may
2965 * be changed upwards or downwards in the future; it
2966 * is only necessary that true be returned for a small
2967 * subset of pmaps for proper page aging.
2968 */
2969boolean_t
2970pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2971{
2972	pv_entry_t pv;
2973	int loops = 0;
2974
2975	if (m->flags & PG_FICTITIOUS)
2976		return FALSE;
2977
2978	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2979	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2980		if (PV_PMAP(pv) == pmap) {
2981			return TRUE;
2982		}
2983		loops++;
2984		if (loops >= 16)
2985			break;
2986	}
2987	return (FALSE);
2988}
2989
2990/*
2991 * Remove all pages from specified address space
2992 * this aids process exit speeds.  Also, this code
2993 * is special cased for current process only, but
2994 * can have the more generic (and slightly slower)
2995 * mode enabled.  This is much faster than pmap_remove
2996 * in the case of running down an entire address space.
2997 */
2998void
2999pmap_remove_pages(pmap_t pmap)
3000{
3001	pt_entry_t *pte, tpte;
3002	vm_page_t m;
3003	pv_entry_t pv;
3004	struct pv_chunk *pc, *npc;
3005	int field, idx;
3006	int32_t bit;
3007	uint32_t inuse, bitmask;
3008	int allfree;
3009
3010	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3011		printf("warning: pmap_remove_pages called with non-current pmap\n");
3012		return;
3013	}
3014	vm_page_lock_queues();
3015	PMAP_LOCK(pmap);
3016	sched_pin();
3017	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3018		allfree = 1;
3019		for (field = 0; field < _NPCM; field++) {
3020			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3021			while (inuse != 0) {
3022				bit = bsfl(inuse);
3023				bitmask = 1UL << bit;
3024				idx = field * 32 + bit;
3025				pv = &pc->pc_pventry[idx];
3026				inuse &= ~bitmask;
3027
3028				pte = vtopte(pv->pv_va);
3029				tpte = *pte;
3030
3031				if (tpte == 0) {
3032					printf(
3033					    "TPTE at %p  IS ZERO @ VA %08x\n",
3034					    pte, pv->pv_va);
3035					panic("bad pte");
3036				}
3037
3038/*
3039 * We cannot remove wired pages from a process' mapping at this time
3040 */
3041				if (tpte & PG_W) {
3042					allfree = 0;
3043					continue;
3044				}
3045
3046				m = PHYS_TO_VM_PAGE(tpte);
3047				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3048				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3049				    m, (uintmax_t)m->phys_addr,
3050				    (uintmax_t)tpte));
3051
3052				KASSERT(m < &vm_page_array[vm_page_array_size],
3053					("pmap_remove_pages: bad tpte %#jx",
3054					(uintmax_t)tpte));
3055
3056				pmap->pm_stats.resident_count--;
3057
3058				pte_clear(pte);
3059
3060				/*
3061				 * Update the vm_page_t clean/reference bits.
3062				 */
3063				if (tpte & PG_M)
3064					vm_page_dirty(m);
3065
3066				/* Mark free */
3067				PV_STAT(pv_entry_frees++);
3068				PV_STAT(pv_entry_spare++);
3069				pv_entry_count--;
3070				pc->pc_map[field] |= bitmask;
3071				m->md.pv_list_count--;
3072				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3073				if (TAILQ_EMPTY(&m->md.pv_list))
3074					vm_page_flag_clear(m, PG_WRITEABLE);
3075
3076				pmap_unuse_pt(pmap, pv->pv_va);
3077			}
3078		}
3079		if (allfree) {
3080			PV_STAT(pv_entry_spare -= _NPCPV);
3081			PV_STAT(pc_chunk_count--);
3082			PV_STAT(pc_chunk_frees++);
3083			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3084			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3085			pmap_qremove((vm_offset_t)pc, 1);
3086			vm_page_unwire(m, 0);
3087			vm_page_free(m);
3088			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3089		}
3090	}
3091	sched_unpin();
3092	vm_page_unlock_queues();
3093	pmap_invalidate_all(pmap);
3094	PMAP_UNLOCK(pmap);
3095}
3096
3097/*
3098 *	pmap_is_modified:
3099 *
3100 *	Return whether or not the specified physical page was modified
3101 *	in any physical maps.
3102 */
3103boolean_t
3104pmap_is_modified(vm_page_t m)
3105{
3106	pv_entry_t pv;
3107	pt_entry_t *pte;
3108	pmap_t pmap;
3109	boolean_t rv;
3110
3111	rv = FALSE;
3112	if (m->flags & PG_FICTITIOUS)
3113		return (rv);
3114
3115	sched_pin();
3116	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3117	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3118		pmap = PV_PMAP(pv);
3119		PMAP_LOCK(pmap);
3120		pte = pmap_pte_quick(pmap, pv->pv_va);
3121		rv = (*pte & PG_M) != 0;
3122		PMAP_UNLOCK(pmap);
3123		if (rv)
3124			break;
3125	}
3126	sched_unpin();
3127	return (rv);
3128}
3129
3130/*
3131 *	pmap_is_prefaultable:
3132 *
3133 *	Return whether or not the specified virtual address is elgible
3134 *	for prefault.
3135 */
3136boolean_t
3137pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3138{
3139	pt_entry_t *pte;
3140	boolean_t rv;
3141
3142	rv = FALSE;
3143	PMAP_LOCK(pmap);
3144	if (*pmap_pde(pmap, addr)) {
3145		pte = vtopte(addr);
3146		rv = *pte == 0;
3147	}
3148	PMAP_UNLOCK(pmap);
3149	return (rv);
3150}
3151
3152/*
3153 * Clear the write and modified bits in each of the given page's mappings.
3154 */
3155void
3156pmap_remove_write(vm_page_t m)
3157{
3158	pv_entry_t pv;
3159	pmap_t pmap;
3160	pt_entry_t oldpte, *pte;
3161
3162	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3163	if ((m->flags & PG_FICTITIOUS) != 0 ||
3164	    (m->flags & PG_WRITEABLE) == 0)
3165		return;
3166	sched_pin();
3167	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3168		pmap = PV_PMAP(pv);
3169		PMAP_LOCK(pmap);
3170		pte = pmap_pte_quick(pmap, pv->pv_va);
3171retry:
3172		oldpte = *pte;
3173		if ((oldpte & PG_RW) != 0) {
3174			/*
3175			 * Regardless of whether a pte is 32 or 64 bits
3176			 * in size, PG_RW and PG_M are among the least
3177			 * significant 32 bits.
3178			 */
3179			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3180			    oldpte & ~(PG_RW | PG_M)))
3181				goto retry;
3182			if ((oldpte & PG_M) != 0)
3183				vm_page_dirty(m);
3184			pmap_invalidate_page(pmap, pv->pv_va);
3185		}
3186		PMAP_UNLOCK(pmap);
3187	}
3188	vm_page_flag_clear(m, PG_WRITEABLE);
3189	sched_unpin();
3190}
3191
3192/*
3193 *	pmap_ts_referenced:
3194 *
3195 *	Return a count of reference bits for a page, clearing those bits.
3196 *	It is not necessary for every reference bit to be cleared, but it
3197 *	is necessary that 0 only be returned when there are truly no
3198 *	reference bits set.
3199 *
3200 *	XXX: The exact number of bits to check and clear is a matter that
3201 *	should be tested and standardized at some point in the future for
3202 *	optimal aging of shared pages.
3203 */
3204int
3205pmap_ts_referenced(vm_page_t m)
3206{
3207	pv_entry_t pv, pvf, pvn;
3208	pmap_t pmap;
3209	pt_entry_t *pte;
3210	int rtval = 0;
3211
3212	if (m->flags & PG_FICTITIOUS)
3213		return (rtval);
3214	sched_pin();
3215	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3216	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3217		pvf = pv;
3218		do {
3219			pvn = TAILQ_NEXT(pv, pv_list);
3220			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3221			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3222			pmap = PV_PMAP(pv);
3223			PMAP_LOCK(pmap);
3224			pte = pmap_pte_quick(pmap, pv->pv_va);
3225			if ((*pte & PG_A) != 0) {
3226				atomic_clear_int((u_int *)pte, PG_A);
3227				pmap_invalidate_page(pmap, pv->pv_va);
3228				rtval++;
3229				if (rtval > 4)
3230					pvn = NULL;
3231			}
3232			PMAP_UNLOCK(pmap);
3233		} while ((pv = pvn) != NULL && pv != pvf);
3234	}
3235	sched_unpin();
3236	return (rtval);
3237}
3238
3239/*
3240 *	Clear the modify bits on the specified physical page.
3241 */
3242void
3243pmap_clear_modify(vm_page_t m)
3244{
3245	pv_entry_t pv;
3246	pmap_t pmap;
3247	pt_entry_t *pte;
3248
3249	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3250	if ((m->flags & PG_FICTITIOUS) != 0)
3251		return;
3252	sched_pin();
3253	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3254		pmap = PV_PMAP(pv);
3255		PMAP_LOCK(pmap);
3256		pte = pmap_pte_quick(pmap, pv->pv_va);
3257		if ((*pte & PG_M) != 0) {
3258			/*
3259			 * Regardless of whether a pte is 32 or 64 bits
3260			 * in size, PG_M is among the least significant
3261			 * 32 bits.
3262			 */
3263			atomic_clear_int((u_int *)pte, PG_M);
3264			pmap_invalidate_page(pmap, pv->pv_va);
3265		}
3266		PMAP_UNLOCK(pmap);
3267	}
3268	sched_unpin();
3269}
3270
3271/*
3272 *	pmap_clear_reference:
3273 *
3274 *	Clear the reference bit on the specified physical page.
3275 */
3276void
3277pmap_clear_reference(vm_page_t m)
3278{
3279	pv_entry_t pv;
3280	pmap_t pmap;
3281	pt_entry_t *pte;
3282
3283	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3284	if ((m->flags & PG_FICTITIOUS) != 0)
3285		return;
3286	sched_pin();
3287	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3288		pmap = PV_PMAP(pv);
3289		PMAP_LOCK(pmap);
3290		pte = pmap_pte_quick(pmap, pv->pv_va);
3291		if ((*pte & PG_A) != 0) {
3292			/*
3293			 * Regardless of whether a pte is 32 or 64 bits
3294			 * in size, PG_A is among the least significant
3295			 * 32 bits.
3296			 */
3297			atomic_clear_int((u_int *)pte, PG_A);
3298			pmap_invalidate_page(pmap, pv->pv_va);
3299		}
3300		PMAP_UNLOCK(pmap);
3301	}
3302	sched_unpin();
3303}
3304
3305/*
3306 * Miscellaneous support routines follow
3307 */
3308
3309/*
3310 * Map a set of physical memory pages into the kernel virtual
3311 * address space. Return a pointer to where it is mapped. This
3312 * routine is intended to be used for mapping device memory,
3313 * NOT real memory.
3314 */
3315void *
3316pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3317{
3318	vm_offset_t va, tmpva, offset;
3319
3320	offset = pa & PAGE_MASK;
3321	size = roundup(offset + size, PAGE_SIZE);
3322	pa = pa & PG_FRAME;
3323
3324	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3325		va = KERNBASE + pa;
3326	else
3327		va = kmem_alloc_nofault(kernel_map, size);
3328	if (!va)
3329		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3330
3331	for (tmpva = va; size > 0; ) {
3332		pmap_kenter_attr(tmpva, pa, mode);
3333		size -= PAGE_SIZE;
3334		tmpva += PAGE_SIZE;
3335		pa += PAGE_SIZE;
3336	}
3337	pmap_invalidate_range(kernel_pmap, va, tmpva);
3338	pmap_invalidate_cache();
3339	return ((void *)(va + offset));
3340}
3341
3342void *
3343pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3344{
3345
3346	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3347}
3348
3349void *
3350pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3351{
3352
3353	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3354}
3355
3356void
3357pmap_unmapdev(vm_offset_t va, vm_size_t size)
3358{
3359	vm_offset_t base, offset, tmpva;
3360
3361	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3362		return;
3363	base = va & PG_FRAME;
3364	offset = va & PAGE_MASK;
3365	size = roundup(offset + size, PAGE_SIZE);
3366	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3367		pmap_kremove(tmpva);
3368	pmap_invalidate_range(kernel_pmap, va, tmpva);
3369	kmem_free(kernel_map, base, size);
3370}
3371
3372int
3373pmap_change_attr(va, size, mode)
3374	vm_offset_t va;
3375	vm_size_t size;
3376	int mode;
3377{
3378	vm_offset_t base, offset, tmpva;
3379	pt_entry_t *pte;
3380	u_int opte, npte;
3381	pd_entry_t *pde;
3382
3383	base = va & PG_FRAME;
3384	offset = va & PAGE_MASK;
3385	size = roundup(offset + size, PAGE_SIZE);
3386
3387	/* Only supported on kernel virtual addresses. */
3388	if (base <= VM_MAXUSER_ADDRESS)
3389		return (EINVAL);
3390
3391	/* 4MB pages and pages that aren't mapped aren't supported. */
3392	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3393		pde = pmap_pde(kernel_pmap, tmpva);
3394		if (*pde & PG_PS)
3395			return (EINVAL);
3396		if (*pde == 0)
3397			return (EINVAL);
3398		pte = vtopte(va);
3399		if (*pte == 0)
3400			return (EINVAL);
3401	}
3402
3403	/*
3404	 * Ok, all the pages exist and are 4k, so run through them updating
3405	 * their cache mode.
3406	 */
3407	for (tmpva = base; size > 0; ) {
3408		pte = vtopte(tmpva);
3409
3410		/*
3411		 * The cache mode bits are all in the low 32-bits of the
3412		 * PTE, so we can just spin on updating the low 32-bits.
3413		 */
3414		do {
3415			opte = *(u_int *)pte;
3416			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
3417			npte |= pmap_cache_bits(mode, 0);
3418		} while (npte != opte &&
3419		    !atomic_cmpset_int((u_int *)pte, opte, npte));
3420		tmpva += PAGE_SIZE;
3421		size -= PAGE_SIZE;
3422	}
3423
3424	/*
3425	 * Flush CPU caches to make sure any data isn't cached that shouldn't
3426	 * be, etc.
3427	 */
3428	pmap_invalidate_range(kernel_pmap, base, tmpva);
3429	pmap_invalidate_cache();
3430	return (0);
3431}
3432
3433/*
3434 * perform the pmap work for mincore
3435 */
3436int
3437pmap_mincore(pmap_t pmap, vm_offset_t addr)
3438{
3439	pt_entry_t *ptep, pte;
3440	vm_page_t m;
3441	int val = 0;
3442
3443	PMAP_LOCK(pmap);
3444	ptep = pmap_pte(pmap, addr);
3445	pte = (ptep != NULL) ? *ptep : 0;
3446	pmap_pte_release(ptep);
3447	PMAP_UNLOCK(pmap);
3448
3449	if (pte != 0) {
3450		vm_paddr_t pa;
3451
3452		val = MINCORE_INCORE;
3453		if ((pte & PG_MANAGED) == 0)
3454			return val;
3455
3456		pa = pte & PG_FRAME;
3457
3458		m = PHYS_TO_VM_PAGE(pa);
3459
3460		/*
3461		 * Modified by us
3462		 */
3463		if (pte & PG_M)
3464			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3465		else {
3466			/*
3467			 * Modified by someone else
3468			 */
3469			vm_page_lock_queues();
3470			if (m->dirty || pmap_is_modified(m))
3471				val |= MINCORE_MODIFIED_OTHER;
3472			vm_page_unlock_queues();
3473		}
3474		/*
3475		 * Referenced by us
3476		 */
3477		if (pte & PG_A)
3478			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3479		else {
3480			/*
3481			 * Referenced by someone else
3482			 */
3483			vm_page_lock_queues();
3484			if ((m->flags & PG_REFERENCED) ||
3485			    pmap_ts_referenced(m)) {
3486				val |= MINCORE_REFERENCED_OTHER;
3487				vm_page_flag_set(m, PG_REFERENCED);
3488			}
3489			vm_page_unlock_queues();
3490		}
3491	}
3492	return val;
3493}
3494
3495void
3496pmap_activate(struct thread *td)
3497{
3498	pmap_t	pmap, oldpmap;
3499	u_int32_t  cr3;
3500
3501	critical_enter();
3502	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3503	oldpmap = PCPU_GET(curpmap);
3504#if defined(SMP)
3505	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3506	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3507#else
3508	oldpmap->pm_active &= ~1;
3509	pmap->pm_active |= 1;
3510#endif
3511#ifdef PAE
3512	cr3 = vtophys(pmap->pm_pdpt);
3513#else
3514	cr3 = vtophys(pmap->pm_pdir);
3515#endif
3516	/*
3517	 * pmap_activate is for the current thread on the current cpu
3518	 */
3519	td->td_pcb->pcb_cr3 = cr3;
3520	load_cr3(cr3);
3521	PCPU_SET(curpmap, pmap);
3522	critical_exit();
3523}
3524
3525vm_offset_t
3526pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3527{
3528
3529	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3530		return addr;
3531	}
3532
3533	addr = (addr + PDRMASK) & ~PDRMASK;
3534	return addr;
3535}
3536
3537
3538#if defined(PMAP_DEBUG)
3539pmap_pid_dump(int pid)
3540{
3541	pmap_t pmap;
3542	struct proc *p;
3543	int npte = 0;
3544	int index;
3545
3546	sx_slock(&allproc_lock);
3547	FOREACH_PROC_IN_SYSTEM(p) {
3548		if (p->p_pid != pid)
3549			continue;
3550
3551		if (p->p_vmspace) {
3552			int i,j;
3553			index = 0;
3554			pmap = vmspace_pmap(p->p_vmspace);
3555			for (i = 0; i < NPDEPTD; i++) {
3556				pd_entry_t *pde;
3557				pt_entry_t *pte;
3558				vm_offset_t base = i << PDRSHIFT;
3559
3560				pde = &pmap->pm_pdir[i];
3561				if (pde && pmap_pde_v(pde)) {
3562					for (j = 0; j < NPTEPG; j++) {
3563						vm_offset_t va = base + (j << PAGE_SHIFT);
3564						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3565							if (index) {
3566								index = 0;
3567								printf("\n");
3568							}
3569							sx_sunlock(&allproc_lock);
3570							return npte;
3571						}
3572						pte = pmap_pte(pmap, va);
3573						if (pte && pmap_pte_v(pte)) {
3574							pt_entry_t pa;
3575							vm_page_t m;
3576							pa = *pte;
3577							m = PHYS_TO_VM_PAGE(pa);
3578							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3579								va, pa, m->hold_count, m->wire_count, m->flags);
3580							npte++;
3581							index++;
3582							if (index >= 2) {
3583								index = 0;
3584								printf("\n");
3585							} else {
3586								printf(" ");
3587							}
3588						}
3589					}
3590				}
3591			}
3592		}
3593	}
3594	sx_sunlock(&allproc_lock);
3595	return npte;
3596}
3597#endif
3598
3599#if defined(DEBUG)
3600
3601static void	pads(pmap_t pm);
3602void		pmap_pvdump(vm_offset_t pa);
3603
3604/* print address space of pmap*/
3605static void
3606pads(pmap_t pm)
3607{
3608	int i, j;
3609	vm_paddr_t va;
3610	pt_entry_t *ptep;
3611
3612	if (pm == kernel_pmap)
3613		return;
3614	for (i = 0; i < NPDEPTD; i++)
3615		if (pm->pm_pdir[i])
3616			for (j = 0; j < NPTEPG; j++) {
3617				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3618				if (pm == kernel_pmap && va < KERNBASE)
3619					continue;
3620				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3621					continue;
3622				ptep = pmap_pte(pm, va);
3623				if (pmap_pte_v(ptep))
3624					printf("%x:%x ", va, *ptep);
3625			};
3626
3627}
3628
3629void
3630pmap_pvdump(vm_paddr_t pa)
3631{
3632	pv_entry_t pv;
3633	pmap_t pmap;
3634	vm_page_t m;
3635
3636	printf("pa %x", pa);
3637	m = PHYS_TO_VM_PAGE(pa);
3638	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3639		pmap = PV_PMAP(pv);
3640		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
3641		pads(pmap);
3642	}
3643	printf(" ");
3644}
3645#endif
3646