pmap.c revision 16324
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.103 1996/06/12 05:02:52 gpalmer Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54
55/*
56 *	Manages physical address maps.
57 *
58 *	In addition to hardware address maps, this
59 *	module is called upon to provide software-use-only
60 *	maps which may or may not be stored in the same
61 *	form as hardware maps.  These pseudo-maps are
62 *	used to store intermediate results from copy
63 *	operations to and from address spaces.
64 *
65 *	Since the information managed by this module is
66 *	also stored by the logical address mapping module,
67 *	this module may throw away valid virtual-to-physical
68 *	mappings at almost any time.  However, invalidations
69 *	of virtual-to-physical mappings must be done as
70 *	requested.
71 *
72 *	In order to cope with hardware architectures which
73 *	make virtual-to-physical map invalidates expensive,
74 *	this module may delay invalidate or reduced protection
75 *	operations until such time as they are actually
76 *	necessary.  This module is given full information as
77 *	to which processors are currently using which maps,
78 *	and to when physical maps must be made correct.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/proc.h>
84#include <sys/malloc.h>
85#include <sys/msgbuf.h>
86#include <sys/queue.h>
87#include <sys/vmmeter.h>
88#include <sys/mman.h>
89
90#include <vm/vm.h>
91#include <vm/vm_param.h>
92#include <vm/vm_prot.h>
93#include <vm/lock.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_page.h>
96#include <vm/vm_map.h>
97#include <vm/vm_object.h>
98#include <vm/vm_extern.h>
99#include <vm/vm_pageout.h>
100
101#include <machine/pcb.h>
102#include <machine/cputypes.h>
103#include <machine/md_var.h>
104
105#include <i386/isa/isa.h>
106
107#define PMAP_KEEP_PDIRS
108
109#if defined(DIAGNOSTIC)
110#define PMAP_DIAGNOSTIC
111#endif
112
113static void	init_pv_entries __P((int));
114
115/*
116 * Get PDEs and PTEs for user/kernel address space
117 */
118#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
119#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
120
121#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
122#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
123#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
124#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
125#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
126
127#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
128#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
129
130/*
131 * Given a map and a machine independent protection code,
132 * convert to a vax protection code.
133 */
134#define pte_prot(m, p)	(protection_codes[p])
135static int protection_codes[8];
136
137static struct pmap kernel_pmap_store;
138pmap_t kernel_pmap;
139
140vm_offset_t avail_start;	/* PA of first available physical page */
141vm_offset_t avail_end;		/* PA of last available physical page */
142vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
143vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
144static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
145static vm_offset_t vm_first_phys;
146
147static int nkpt;
148static vm_page_t nkpg;
149vm_offset_t kernel_vm_end;
150
151extern vm_offset_t clean_sva, clean_eva;
152extern int cpu_class;
153
154#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
155
156/*
157 * Data for the pv entry allocation mechanism
158 */
159static int pv_freelistcnt;
160static pv_entry_t pv_freelist;
161static vm_offset_t pvva;
162static int npvvapg;
163
164/*
165 * All those kernel PT submaps that BSD is so fond of
166 */
167pt_entry_t *CMAP1;
168static pt_entry_t *CMAP2, *ptmmap;
169static pv_entry_t *pv_table;
170caddr_t CADDR1, ptvmmap;
171static caddr_t CADDR2;
172static pt_entry_t *msgbufmap;
173struct msgbuf *msgbufp;
174
175static void	free_pv_entry __P((pv_entry_t pv));
176static __inline unsigned * get_ptbase __P((pmap_t pmap));
177static pv_entry_t get_pv_entry __P((void));
178static void	i386_protection_init __P((void));
179static void	pmap_alloc_pv_entry __P((void));
180static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
181static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
182				      vm_offset_t pa));
183static int	pmap_is_managed __P((vm_offset_t pa));
184static void	pmap_remove_all __P((vm_offset_t pa));
185static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
186static __inline int pmap_remove_entry __P((struct pmap *pmap, pv_entry_t *pv,
187					vm_offset_t va));
188static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
189					vm_offset_t sva));
190static boolean_t
191		pmap_testbit __P((vm_offset_t pa, int bit));
192static __inline void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
193		vm_page_t mpte, vm_offset_t pa));
194
195static __inline vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
196static void pmap_remove_pte_mapping __P((vm_offset_t pa));
197static __inline int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
198static vm_page_t _pmap_allocpte __P((pmap_t pmap, vm_offset_t va, int ptepindex));
199
200#define PDSTACKMAX 16
201static vm_offset_t pdstack[PDSTACKMAX];
202static int pdstackptr;
203
204#if defined(PMAP_DIAGNOSTIC)
205
206/*
207 * This code checks for non-writeable/modified pages.
208 * This should be an invalid condition.
209 */
210static int
211pmap_nw_modified(pt_entry_t ptea) {
212	int pte;
213
214	pte = (int) ptea;
215
216	if ((pte & (PG_M|PG_RW)) == PG_M)
217		return 1;
218	else
219		return 0;
220}
221#endif
222
223/*
224 * The below are finer grained pmap_update routines.  These eliminate
225 * the gratuitious tlb flushes on non-i386 architectures.
226 */
227static __inline void
228pmap_update_1pg( vm_offset_t va) {
229#if defined(I386_CPU)
230	if (cpu_class == CPUCLASS_386)
231		pmap_update();
232	else
233#endif
234		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va));
235}
236
237static __inline void
238pmap_update_2pg( vm_offset_t va1, vm_offset_t va2) {
239#if defined(I386_CPU)
240	if (cpu_class == CPUCLASS_386) {
241		pmap_update();
242	} else
243#endif
244	{
245		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va1));
246		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va2));
247	}
248}
249
250static __inline __pure unsigned *
251get_ptbase(pmap)
252	pmap_t pmap;
253{
254	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
255
256	/* are we current address space or kernel? */
257	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
258		return (unsigned *) PTmap;
259	}
260	/* otherwise, we are alternate address space */
261	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
262		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
263		pmap_update();
264	}
265	return (unsigned *) APTmap;
266}
267
268/*
269 *	Routine:	pmap_pte
270 *	Function:
271 *		Extract the page table entry associated
272 *		with the given map/virtual_address pair.
273 */
274
275__inline unsigned * __pure
276pmap_pte(pmap, va)
277	register pmap_t pmap;
278	vm_offset_t va;
279{
280	if (pmap && *pmap_pde(pmap, va)) {
281		return get_ptbase(pmap) + i386_btop(va);
282	}
283	return (0);
284}
285
286/*
287 *	Routine:	pmap_extract
288 *	Function:
289 *		Extract the physical page address associated
290 *		with the given map/virtual_address pair.
291 */
292vm_offset_t __pure
293pmap_extract(pmap, va)
294	register pmap_t pmap;
295	vm_offset_t va;
296{
297	if (pmap && *pmap_pde(pmap, va)) {
298		unsigned *pte;
299		pte = get_ptbase(pmap) + i386_btop(va);
300		return ((*pte & PG_FRAME) | (va & PAGE_MASK));
301	}
302	return 0;
303
304}
305
306/*
307 * Add a list of wired pages to the kva
308 * this routine is only used for temporary
309 * kernel mappings that do not need to have
310 * page modification or references recorded.
311 * Note that old mappings are simply written
312 * over.  The page *must* be wired.
313 */
314void
315pmap_qenter(va, m, count)
316	vm_offset_t va;
317	vm_page_t *m;
318	int count;
319{
320	int i;
321	register unsigned *pte;
322
323	for (i = 0; i < count; i++) {
324		vm_offset_t tva = va + i * PAGE_SIZE;
325		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V;
326		unsigned opte;
327		pte = (unsigned *)vtopte(tva);
328		opte = *pte;
329		*pte = npte;
330		if (opte)
331			pmap_update_1pg(tva);
332	}
333}
334/*
335 * this routine jerks page mappings from the
336 * kernel -- it is meant only for temporary mappings.
337 */
338void
339pmap_qremove(va, count)
340	vm_offset_t va;
341	int count;
342{
343	int i;
344	register unsigned *pte;
345
346	for (i = 0; i < count; i++) {
347		pte = (unsigned *)vtopte(va);
348		*pte = 0;
349		pmap_update_1pg(va);
350		va += PAGE_SIZE;
351	}
352}
353
354/*
355 * add a wired page to the kva
356 * note that in order for the mapping to take effect -- you
357 * should do a pmap_update after doing the pmap_kenter...
358 */
359__inline void
360pmap_kenter(va, pa)
361	vm_offset_t va;
362	register vm_offset_t pa;
363{
364	register unsigned *pte;
365	unsigned npte, opte;
366
367	npte = pa | PG_RW | PG_V;
368	pte = (unsigned *)vtopte(va);
369	opte = *pte;
370	*pte = npte;
371	if (opte)
372		pmap_update_1pg(va);
373}
374
375/*
376 * remove a page from the kernel pagetables
377 */
378__inline void
379pmap_kremove(va)
380	vm_offset_t va;
381{
382	register unsigned *pte;
383
384	pte = (unsigned *)vtopte(va);
385	*pte = 0;
386	pmap_update_1pg(va);
387}
388
389/*
390 * determine if a page is managed (memory vs. device)
391 */
392static __inline __pure int
393pmap_is_managed(pa)
394	vm_offset_t pa;
395{
396	int i;
397
398	if (!pmap_initialized)
399		return 0;
400
401	for (i = 0; phys_avail[i + 1]; i += 2) {
402		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
403			return 1;
404	}
405	return 0;
406}
407
408/*
409 * This routine unholds page table pages, and if the hold count
410 * drops to zero, then it decrements the wire count.
411 */
412static __inline int
413pmap_unwire_pte_hold(vm_page_t m) {
414	vm_page_unhold(m);
415	if (m->hold_count == 0) {
416		--m->wire_count;
417		if (m->wire_count == 0) {
418			--cnt.v_wire_count;
419			m->dirty = 0;
420			vm_page_deactivate(m);
421			return 1;
422		}
423	}
424	return 0;
425}
426
427#if !defined(PMAP_DIAGNOSTIC)
428__inline
429#endif
430int
431pmap_unuse_pt(pmap, va, mpte)
432	pmap_t pmap;
433	vm_offset_t va;
434	vm_page_t mpte;
435{
436	if (va >= UPT_MIN_ADDRESS)
437		return 0;
438
439	if (mpte == NULL) {
440		vm_offset_t ptepa;
441		ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) /* & PG_FRAME */;
442#if defined(PMAP_DIAGNOSTIC)
443		if (!ptepa)
444			panic("pmap_unuse_pt: pagetable page missing, va: 0x%x", va);
445#endif
446		mpte = PHYS_TO_VM_PAGE(ptepa);
447	}
448
449#if defined(PMAP_DIAGNOSTIC)
450	if (mpte->hold_count == 0) {
451		panic("pmap_unuse_pt: hold count < 0, va: 0x%x", va);
452	}
453#endif
454
455/*
456 * We don't free page-table-pages anymore because it can have a negative
457 * impact on perf at times.  Now we just deactivate, and it'll get cleaned
458 * up if needed...  Also, if the page ends up getting used, it will be
459 * brought back into the process address space by pmap_allocpte and be
460 * reactivated.
461 */
462	return pmap_unwire_pte_hold(mpte);
463}
464
465/*
466 *	Bootstrap the system enough to run with virtual memory.
467 *
468 *	On the i386 this is called after mapping has already been enabled
469 *	and just syncs the pmap module with what has already been done.
470 *	[We can't call it easily with mapping off since the kernel is not
471 *	mapped with PA == VA, hence we would have to relocate every address
472 *	from the linked base (virtual) address "KERNBASE" to the actual
473 *	(physical) address starting relative to 0]
474 */
475void
476pmap_bootstrap(firstaddr, loadaddr)
477	vm_offset_t firstaddr;
478	vm_offset_t loadaddr;
479{
480	vm_offset_t va;
481	pt_entry_t *pte;
482
483	avail_start = firstaddr;
484
485	/*
486	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
487	 * large. It should instead be correctly calculated in locore.s and
488	 * not based on 'first' (which is a physical address, not a virtual
489	 * address, for the start of unused physical memory). The kernel
490	 * page tables are NOT double mapped and thus should not be included
491	 * in this calculation.
492	 */
493	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
494	virtual_end = VM_MAX_KERNEL_ADDRESS;
495
496	/*
497	 * Initialize protection array.
498	 */
499	i386_protection_init();
500
501	/*
502	 * The kernel's pmap is statically allocated so we don't have to use
503	 * pmap_create, which is unlikely to work correctly at this part of
504	 * the boot sequence (XXX and which no longer exists).
505	 */
506	kernel_pmap = &kernel_pmap_store;
507
508	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
509
510	kernel_pmap->pm_count = 1;
511	nkpt = NKPT;
512
513	/*
514	 * Reserve some special page table entries/VA space for temporary
515	 * mapping of pages.
516	 */
517#define	SYSMAP(c, p, v, n)	\
518	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
519
520	va = virtual_avail;
521	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
522
523	/*
524	 * CMAP1/CMAP2 are used for zeroing and copying pages.
525	 */
526	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
527	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
528
529	/*
530	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
531	 */
532	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
533
534	/*
535	 * msgbufmap is used to map the system message buffer.
536	 */
537	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
538
539	virtual_avail = va;
540
541	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
542	pmap_update();
543
544}
545
546/*
547 *	Initialize the pmap module.
548 *	Called by vm_init, to initialize any structures that the pmap
549 *	system needs to map virtual memory.
550 *	pmap_init has been enhanced to support in a fairly consistant
551 *	way, discontiguous physical memory.
552 */
553void
554pmap_init(phys_start, phys_end)
555	vm_offset_t phys_start, phys_end;
556{
557	vm_offset_t addr;
558	vm_size_t npg, s;
559	int i;
560
561	/*
562	 * calculate the number of pv_entries needed
563	 */
564	vm_first_phys = phys_avail[0];
565	for (i = 0; phys_avail[i + 1]; i += 2);
566	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
567
568	/*
569	 * Allocate memory for random pmap data structures.  Includes the
570	 * pv_head_table.
571	 */
572	s = (vm_size_t) (sizeof(struct pv_entry *) * npg);
573	s = round_page(s);
574	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
575	pv_table = (pv_entry_t *) addr;
576
577	/*
578	 * init the pv free list
579	 */
580	init_pv_entries(npg);
581	/*
582	 * Now it is safe to enable pv_table recording.
583	 */
584	pmap_initialized = TRUE;
585}
586
587/*
588 *	Used to map a range of physical addresses into kernel
589 *	virtual address space.
590 *
591 *	For now, VM is already on, we only need to map the
592 *	specified memory.
593 */
594vm_offset_t
595pmap_map(virt, start, end, prot)
596	vm_offset_t virt;
597	vm_offset_t start;
598	vm_offset_t end;
599	int prot;
600{
601	while (start < end) {
602		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
603		virt += PAGE_SIZE;
604		start += PAGE_SIZE;
605	}
606	return (virt);
607}
608
609/*
610 * Initialize a preallocated and zeroed pmap structure,
611 * such as one in a vmspace structure.
612 */
613void
614pmap_pinit(pmap)
615	register struct pmap *pmap;
616{
617	vm_page_t ptdpg;
618	/*
619	 * No need to allocate page table space yet but we do need a valid
620	 * page directory table.
621	 */
622
623	if (pdstackptr > 0) {
624		--pdstackptr;
625		pmap->pm_pdir =
626			(pd_entry_t *)pdstack[pdstackptr];
627	} else {
628		pmap->pm_pdir =
629			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
630	}
631
632	/*
633	 * allocate object for the ptes
634	 */
635	pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
636
637	/*
638	 * allocate the page directory page
639	 */
640retry:
641	ptdpg = vm_page_alloc( pmap->pm_pteobj, PTDPTDI, VM_ALLOC_ZERO);
642	if (ptdpg == NULL) {
643		VM_WAIT;
644		goto retry;
645	}
646	vm_page_wire(ptdpg);
647	ptdpg->flags &= ~(PG_MAPPED|PG_BUSY);	/* not mapped normally */
648	ptdpg->valid = VM_PAGE_BITS_ALL;
649
650	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
651	if ((ptdpg->flags & PG_ZERO) == 0)
652		bzero(pmap->pm_pdir, PAGE_SIZE);
653
654	/* wire in kernel global address entries */
655	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
656
657	/* install self-referential address mapping entry */
658	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
659		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
660
661	pmap->pm_count = 1;
662}
663
664static int
665pmap_release_free_page(pmap, p)
666	struct pmap *pmap;
667	vm_page_t p;
668{
669	int s;
670	/*
671	 * This code optimizes the case of freeing non-busy
672	 * page-table pages.  Those pages are zero now, and
673	 * might as well be placed directly into the zero queue.
674	 */
675	s = splvm();
676	if (p->flags & PG_BUSY) {
677		p->flags |= PG_WANTED;
678		tsleep(p, PVM, "pmaprl", 0);
679		splx(s);
680		return 0;
681	}
682
683	pmap_remove_pte_mapping(VM_PAGE_TO_PHYS(p));
684
685	if (p->hold_count)  {
686#if defined(PMAP_DIAGNOSTIC)
687		panic("pmap_release: freeing held page table page");
688#endif
689		/*
690		 * HACK ALERT!!!
691		 * If this failure happens, we must clear the page, because
692		 * there is likely a mapping still valid.  This condition
693		 * is an error, but at least this zero operation will mitigate
694		 * some Sig-11's or crashes, because this page is thought
695		 * to be zero.  This is a robustness fix, and not meant to
696		 * be a long term work-around.
697		 */
698		pmap_zero_page(VM_PAGE_TO_PHYS(p));
699	}
700	/*
701	 * Page directory pages need to have the kernel
702	 * stuff cleared, so they can go into the zero queue also.
703	 */
704	if (p->pindex == PTDPTDI) {
705		unsigned *pde = (unsigned *) pmap->pm_pdir;
706		bzero(pde + KPTDI, nkpt * PTESIZE);
707		pde[APTDPTDI] = 0;
708		pde[PTDPTDI] = 0;
709		pmap_kremove((vm_offset_t) pmap->pm_pdir);
710	}
711
712	vm_page_free_zero(p);
713	splx(s);
714	return 1;
715}
716
717/*
718 * Release any resources held by the given physical map.
719 * Called when a pmap initialized by pmap_pinit is being released.
720 * Should only be called if the map contains no valid mappings.
721 */
722void
723pmap_release(pmap)
724	register struct pmap *pmap;
725{
726	vm_page_t p,n,ptdpg;
727	vm_object_t object = pmap->pm_pteobj;
728
729	if (object->ref_count != 1)
730		panic("pmap_release: pteobj reference count != 1");
731
732	ptdpg = NULL;
733retry:
734	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
735		n = TAILQ_NEXT(p, listq);
736		if (p->pindex == PTDPTDI) {
737			ptdpg = p;
738			continue;
739		}
740		if (!pmap_release_free_page(pmap, p))
741			goto retry;
742	}
743	if (ptdpg == NULL)
744		panic("pmap_release: missing page table directory page");
745
746	if (!pmap_release_free_page(pmap, ptdpg))
747		goto retry;
748
749	vm_object_deallocate(object);
750	if (pdstackptr < PDSTACKMAX) {
751		pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
752		++pdstackptr;
753	} else {
754		kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
755	}
756}
757
758/*
759 * grow the number of kernel page table entries, if needed
760 */
761
762void
763pmap_growkernel(vm_offset_t addr)
764{
765	struct proc *p;
766	struct pmap *pmap;
767	int s;
768
769	s = splhigh();
770	if (kernel_vm_end == 0) {
771		kernel_vm_end = KERNBASE;
772		nkpt = 0;
773		while (pdir_pde(PTD, kernel_vm_end)) {
774			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
775			++nkpt;
776		}
777	}
778	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
779	while (kernel_vm_end < addr) {
780		if (pdir_pde(PTD, kernel_vm_end)) {
781			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
782			continue;
783		}
784		++nkpt;
785		if (!nkpg) {
786			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
787			if (!nkpg)
788				panic("pmap_growkernel: no memory to grow kernel");
789			vm_page_wire(nkpg);
790			vm_page_remove(nkpg);
791			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
792		}
793		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW);
794		nkpg = NULL;
795
796		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
797			if (p->p_vmspace) {
798				pmap = &p->p_vmspace->vm_pmap;
799				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
800			}
801		}
802		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
803		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
804	}
805	splx(s);
806}
807
808/*
809 *	Retire the given physical map from service.
810 *	Should only be called if the map contains
811 *	no valid mappings.
812 */
813void
814pmap_destroy(pmap)
815	register pmap_t pmap;
816{
817	int count;
818
819	if (pmap == NULL)
820		return;
821
822	count = --pmap->pm_count;
823	if (count == 0) {
824		pmap_release(pmap);
825		free((caddr_t) pmap, M_VMPMAP);
826	}
827}
828
829/*
830 *	Add a reference to the specified pmap.
831 */
832void
833pmap_reference(pmap)
834	pmap_t pmap;
835{
836	if (pmap != NULL) {
837		pmap->pm_count++;
838	}
839}
840
841/*
842 * free the pv_entry back to the free list
843 */
844static __inline void
845free_pv_entry(pv)
846	pv_entry_t pv;
847{
848	++pv_freelistcnt;
849	pv->pv_next = pv_freelist;
850	pv_freelist = pv;
851}
852
853/*
854 * get a new pv_entry, allocating a block from the system
855 * when needed.
856 * the memory allocation is performed bypassing the malloc code
857 * because of the possibility of allocations at interrupt time.
858 */
859static __inline pv_entry_t
860get_pv_entry()
861{
862	pv_entry_t tmp;
863
864	/*
865	 * get more pv_entry pages if needed
866	 */
867	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
868		pmap_alloc_pv_entry();
869	}
870	/*
871	 * get a pv_entry off of the free list
872	 */
873	--pv_freelistcnt;
874	tmp = pv_freelist;
875	pv_freelist = tmp->pv_next;
876	return tmp;
877}
878
879/*
880 * This *strange* allocation routine eliminates the possibility of a malloc
881 * failure (*FATAL*) for a pv_entry_t data structure.
882 * also -- this code is MUCH MUCH faster than the malloc equiv...
883 * We really need to do the slab allocator thingie here.
884 */
885static void
886pmap_alloc_pv_entry()
887{
888	/*
889	 * do we have any pre-allocated map-pages left?
890	 */
891	if (npvvapg) {
892		vm_page_t m;
893
894		/*
895		 * allocate a physical page out of the vm system
896		 */
897		m = vm_page_alloc(kernel_object,
898		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
899		    VM_ALLOC_INTERRUPT);
900		if (m) {
901			int newentries;
902			int i;
903			pv_entry_t entry;
904
905			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
906			/*
907			 * wire the page
908			 */
909			vm_page_wire(m);
910			m->flags &= ~PG_BUSY;
911			/*
912			 * let the kernel see it
913			 */
914			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
915
916			entry = (pv_entry_t) pvva;
917			/*
918			 * update the allocation pointers
919			 */
920			pvva += PAGE_SIZE;
921			--npvvapg;
922
923			/*
924			 * free the entries into the free list
925			 */
926			for (i = 0; i < newentries; i++) {
927				free_pv_entry(entry);
928				entry++;
929			}
930		}
931	}
932	if (!pv_freelist)
933		panic("get_pv_entry: cannot get a pv_entry_t");
934}
935
936/*
937 * init the pv_entry allocation system
938 */
939#define PVSPERPAGE 64
940void
941init_pv_entries(npg)
942	int npg;
943{
944	/*
945	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
946	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
947	 * this is too small.)
948	 */
949	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
950		+ PAGE_SIZE - 1) / PAGE_SIZE;
951	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
952	/*
953	 * get the first batch of entries
954	 */
955	pmap_alloc_pv_entry();
956}
957
958/*
959 * If it is the first entry on the list, it is actually
960 * in the header and we must copy the following entry up
961 * to the header.  Otherwise we must search the list for
962 * the entry.  In either case we free the now unused entry.
963 */
964static __inline int
965pmap_remove_entry(pmap, ppv, va)
966	struct pmap *pmap;
967	pv_entry_t *ppv;
968	vm_offset_t va;
969{
970	pv_entry_t npv;
971	int s;
972
973	s = splvm();
974	for (npv = *ppv; npv; (ppv = &npv->pv_next, npv = *ppv)) {
975		if (pmap == npv->pv_pmap && va == npv->pv_va) {
976			int rtval = pmap_unuse_pt(pmap, va, npv->pv_ptem);
977			*ppv = npv->pv_next;
978			free_pv_entry(npv);
979			splx(s);
980			return rtval;
981		}
982	}
983	splx(s);
984	return 0;
985}
986
987/*
988 * pmap_remove_pte: do the things to unmap a page in a process
989 */
990static
991#if !defined(PMAP_DIAGNOSTIC)
992__inline
993#endif
994int
995pmap_remove_pte(pmap, ptq, va)
996	struct pmap *pmap;
997	unsigned *ptq;
998	vm_offset_t va;
999{
1000	unsigned oldpte;
1001	pv_entry_t *ppv;
1002	int rtval;
1003
1004	oldpte = *ptq;
1005	*ptq = 0;
1006	if (oldpte & PG_W)
1007		pmap->pm_stats.wired_count -= 1;
1008	pmap->pm_stats.resident_count -= 1;
1009	if (oldpte & PG_MANAGED) {
1010		if (oldpte & PG_M) {
1011#if defined(PMAP_DIAGNOSTIC)
1012			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1013				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1014			}
1015#endif
1016
1017			if (va < clean_sva || va >= clean_eva) {
1018				if ((va < UPT_MIN_ADDRESS) || (va >= UPT_MAX_ADDRESS))
1019					PHYS_TO_VM_PAGE(oldpte)->dirty = VM_PAGE_BITS_ALL;
1020			}
1021		}
1022		ppv = pa_to_pvh(oldpte);
1023		rtval = pmap_remove_entry(pmap, ppv, va);
1024#if defined(notyet)
1025		if (*ppv == NULL) {
1026			PHYS_TO_VM_PAGE(oldpte)->flags &= ~PG_MAPPED;
1027		}
1028#endif
1029		return rtval;
1030	} else {
1031		return pmap_unuse_pt(pmap, va, NULL);
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * Remove a single page from a process address space
1039 */
1040static __inline void
1041pmap_remove_page(pmap, va)
1042	struct pmap *pmap;
1043	register vm_offset_t va;
1044{
1045	register unsigned *ptq;
1046
1047	/*
1048	 * if there is no pte for this address, just skip it!!!
1049	 */
1050	if (*pmap_pde(pmap, va) == 0) {
1051		return;
1052	}
1053
1054	/*
1055	 * get a local va for mappings for this pmap.
1056	 */
1057	ptq = get_ptbase(pmap) + i386_btop(va);
1058	if (*ptq) {
1059		(void) pmap_remove_pte(pmap, ptq, va);
1060		pmap_update_1pg(va);
1061	}
1062	return;
1063}
1064
1065/*
1066 *	Remove the given range of addresses from the specified map.
1067 *
1068 *	It is assumed that the start and end are properly
1069 *	rounded to the page size.
1070 */
1071void
1072pmap_remove(pmap, sva, eva)
1073	struct pmap *pmap;
1074	register vm_offset_t sva;
1075	register vm_offset_t eva;
1076{
1077	register unsigned *ptbase;
1078	vm_offset_t pdnxt;
1079	vm_offset_t ptpaddr;
1080	vm_offset_t sindex, eindex;
1081	vm_page_t mpte;
1082	int anyvalid;
1083
1084	if (pmap == NULL)
1085		return;
1086
1087	/*
1088	 * special handling of removing one page.  a very
1089	 * common operation and easy to short circuit some
1090	 * code.
1091	 */
1092	if ((sva + PAGE_SIZE) == eva) {
1093		pmap_remove_page(pmap, sva);
1094		return;
1095	}
1096
1097	anyvalid = 0;
1098
1099	/*
1100	 * Get a local virtual address for the mappings that are being
1101	 * worked with.
1102	 */
1103	ptbase = get_ptbase(pmap);
1104
1105	sindex = i386_btop(sva);
1106	eindex = i386_btop(eva);
1107
1108	for (; sindex < eindex; sindex = pdnxt) {
1109
1110		/*
1111		 * Calculate index for next page table.
1112		 */
1113		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1114		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1115
1116		/*
1117		 * Weed out invalid mappings. Note: we assume that the page
1118		 * directory table is always allocated, and in kernel virtual.
1119		 */
1120		if (ptpaddr == 0)
1121			continue;
1122
1123		if (sindex < i386_btop(UPT_MIN_ADDRESS)) {
1124		/*
1125		 * get the vm_page_t for the page table page
1126		 */
1127			mpte = PHYS_TO_VM_PAGE(ptpaddr);
1128
1129		/*
1130		 * if the pte isn't wired, just skip it.
1131		 */
1132			if (mpte->wire_count == 0)
1133				continue;
1134		}
1135
1136		/*
1137		 * Limit our scan to either the end of the va represented
1138		 * by the current page table page, or to the end of the
1139		 * range being removed.
1140		 */
1141		if (pdnxt > eindex) {
1142			pdnxt = eindex;
1143		}
1144
1145		for ( ;sindex != pdnxt; sindex++) {
1146			vm_offset_t va;
1147			if (ptbase[sindex] == 0) {
1148				continue;
1149			}
1150			va = i386_ptob(sindex);
1151			anyvalid = 1;
1152			if (pmap_remove_pte(pmap,
1153				ptbase + sindex, va))
1154				break;
1155		}
1156	}
1157
1158	if (anyvalid) {
1159		pmap_update();
1160	}
1161}
1162
1163/*
1164 * Remove pte mapping, don't do everything that we would do
1165 * for normal pages because many things aren't necessary (like
1166 * pmap_update())...
1167 */
1168void
1169pmap_remove_pte_mapping(pa)
1170	vm_offset_t pa;
1171{
1172	register pv_entry_t pv, *ppv, npv;
1173	register unsigned *pte;
1174
1175	ppv = pa_to_pvh(pa);
1176
1177	for (pv = *ppv; pv; pv=pv->pv_next) {
1178		unsigned tpte;
1179		struct pmap *pmap;
1180
1181		pmap = pv->pv_pmap;
1182		pte = get_ptbase(pmap) + i386_btop(pv->pv_va);
1183		if (tpte = *pte) {
1184			pmap->pm_stats.resident_count--;
1185			*pte = 0;
1186			if (tpte & PG_W)
1187				pmap->pm_stats.wired_count--;
1188		}
1189	}
1190
1191	for (pv = *ppv; pv; pv = npv) {
1192		npv = pv->pv_next;
1193		free_pv_entry(pv);
1194	}
1195	*ppv = NULL;
1196}
1197
1198/*
1199 *	Routine:	pmap_remove_all
1200 *	Function:
1201 *		Removes this physical page from
1202 *		all physical maps in which it resides.
1203 *		Reflects back modify bits to the pager.
1204 *
1205 *	Notes:
1206 *		Original versions of this routine were very
1207 *		inefficient because they iteratively called
1208 *		pmap_remove (slow...)
1209 */
1210static void
1211pmap_remove_all(pa)
1212	vm_offset_t pa;
1213{
1214	register pv_entry_t pv, *ppv, npv;
1215	register unsigned *pte, *ptbase;
1216	vm_offset_t va;
1217	vm_page_t m;
1218	int s;
1219
1220#if defined(PMAP_DIAGNOSTIC)
1221	/*
1222	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1223	 * pages!
1224	 */
1225	if (!pmap_is_managed(pa)) {
1226		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1227	}
1228#endif
1229
1230	m = PHYS_TO_VM_PAGE(pa);
1231	ppv = pa_to_pvh(pa);
1232
1233	s = splvm();
1234	for (pv = *ppv; pv; pv=pv->pv_next) {
1235		int tpte;
1236		struct pmap *pmap;
1237
1238		pmap = pv->pv_pmap;
1239		ptbase = get_ptbase(pmap);
1240		va = pv->pv_va;
1241		if (*pmap_pde(pmap, va) == 0)
1242			continue;
1243		pte = ptbase + i386_btop(va);
1244		if (tpte = ((int) *pte)) {
1245			pmap->pm_stats.resident_count--;
1246			*pte = 0;
1247			if (tpte & PG_W)
1248				pmap->pm_stats.wired_count--;
1249			/*
1250			 * Update the vm_page_t clean and reference bits.
1251			 */
1252			if (tpte & PG_M) {
1253#if defined(PMAP_DIAGNOSTIC)
1254				if (pmap_nw_modified((pt_entry_t) tpte)) {
1255					printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, tpte);
1256				}
1257#endif
1258				if ((va >= UPT_MIN_ADDRESS) &&
1259					(va < UPT_MAX_ADDRESS))
1260					continue;
1261
1262				if (va < clean_sva || va >= clean_eva) {
1263					m->dirty = VM_PAGE_BITS_ALL;
1264				}
1265			}
1266		}
1267	}
1268
1269	for (pv = *ppv; pv; pv = npv) {
1270		npv = pv->pv_next;
1271		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1272		free_pv_entry(pv);
1273	}
1274	*ppv = NULL;
1275
1276	splx(s);
1277}
1278
1279/*
1280 *	Set the physical protection on the
1281 *	specified range of this map as requested.
1282 */
1283void
1284pmap_protect(pmap, sva, eva, prot)
1285	register pmap_t pmap;
1286	vm_offset_t sva, eva;
1287	vm_prot_t prot;
1288{
1289	register unsigned *ptbase;
1290	vm_offset_t pdnxt;
1291	vm_offset_t ptpaddr;
1292	vm_offset_t sindex, eindex;
1293	vm_page_t mpte;
1294	int anyvalid;
1295
1296
1297	if (pmap == NULL)
1298		return;
1299
1300	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1301		pmap_remove(pmap, sva, eva);
1302		return;
1303	}
1304	if (prot & VM_PROT_WRITE)
1305		return;
1306
1307	anyvalid = 0;
1308
1309	ptbase = get_ptbase(pmap);
1310
1311	sindex = i386_btop(sva);
1312	eindex = i386_btop(eva);
1313
1314	for (; sindex < eindex; sindex = pdnxt) {
1315
1316		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1317		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1318
1319		/*
1320		 * Weed out invalid mappings. Note: we assume that the page
1321		 * directory table is always allocated, and in kernel virtual.
1322		 */
1323		if (ptpaddr == 0)
1324			continue;
1325
1326		/*
1327		 * Don't look at kernel page table pages
1328		 */
1329		if (sindex < i386_btop(UPT_MIN_ADDRESS)) {
1330			mpte = PHYS_TO_VM_PAGE(ptpaddr);
1331
1332			if (mpte->wire_count == 0)
1333				continue;
1334		}
1335
1336		if (pdnxt > eindex) {
1337			pdnxt = eindex;
1338		}
1339
1340		for (; sindex != pdnxt; sindex++) {
1341
1342			unsigned pbits = ptbase[sindex];
1343
1344			if (pbits & PG_RW) {
1345				if (pbits & PG_M) {
1346					vm_page_t m = PHYS_TO_VM_PAGE(pbits);
1347					m->dirty = VM_PAGE_BITS_ALL;
1348				}
1349				ptbase[sindex] = pbits & ~(PG_M|PG_RW);
1350				anyvalid = 1;
1351			}
1352		}
1353	}
1354	if (anyvalid)
1355		pmap_update();
1356}
1357
1358/*
1359 * Create a pv entry for page at pa for
1360 * (pmap, va).
1361 */
1362static __inline void
1363pmap_insert_entry(pmap, va, mpte, pa)
1364	pmap_t pmap;
1365	vm_offset_t va;
1366	vm_page_t mpte;
1367	vm_offset_t pa;
1368{
1369
1370	int s;
1371	pv_entry_t *ppv, pv;
1372
1373	s = splvm();
1374	pv = get_pv_entry();
1375	pv->pv_va = va;
1376	pv->pv_pmap = pmap;
1377	pv->pv_ptem = mpte;
1378
1379	ppv = pa_to_pvh(pa);
1380	if (*ppv)
1381		pv->pv_next = *ppv;
1382	else
1383		pv->pv_next = NULL;
1384	*ppv = pv;
1385	splx(s);
1386}
1387
1388/*
1389 * this routine is called if the page table page is not
1390 * mapped correctly.
1391 */
1392static vm_page_t
1393_pmap_allocpte(pmap, va, ptepindex)
1394	pmap_t	pmap;
1395	vm_offset_t va;
1396	int ptepindex;
1397{
1398	vm_offset_t pteva, ptepa;
1399	vm_page_t m;
1400	int s;
1401
1402	/*
1403	 * Find or fabricate a new pagetable page
1404	 */
1405retry:
1406	m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
1407	if (m == NULL) {
1408		m = vm_page_alloc(pmap->pm_pteobj, ptepindex, VM_ALLOC_ZERO);
1409		if (m == NULL) {
1410			VM_WAIT;
1411			goto retry;
1412		}
1413		if ((m->flags & PG_ZERO) == 0)
1414			pmap_zero_page(VM_PAGE_TO_PHYS(m));
1415		m->flags &= ~(PG_ZERO|PG_BUSY);
1416		m->valid = VM_PAGE_BITS_ALL;
1417	} else {
1418		if ((m->flags & PG_BUSY) || m->busy) {
1419			m->flags |= PG_WANTED;
1420			tsleep(m, PVM, "ptewai", 0);
1421			goto retry;
1422		}
1423	}
1424
1425	/*
1426	 * mark the object writeable
1427	 */
1428	pmap->pm_pteobj->flags |= OBJ_WRITEABLE;
1429
1430	if (m->hold_count == 0) {
1431		s = splvm();
1432		vm_page_unqueue(m);
1433		splx(s);
1434		if (m->wire_count == 0)
1435			++cnt.v_wire_count;
1436		++m->wire_count;
1437	}
1438
1439	/*
1440	 * Increment the hold count for the page table page
1441	 * (denoting a new mapping.)
1442	 */
1443	++m->hold_count;
1444
1445	/*
1446	 * Map the pagetable page into the process address space, if
1447	 * it isn't already there.
1448	 */
1449	pteva = ((vm_offset_t) vtopte(va)) & PG_FRAME;
1450	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1451	if (ptepa == 0) {
1452		pv_entry_t pv, *ppv;
1453
1454		pmap->pm_stats.resident_count++;
1455
1456		s = splvm();
1457		pv = get_pv_entry();
1458
1459		pv->pv_va = pteva;
1460		pv->pv_pmap = pmap;
1461		pv->pv_next = NULL;
1462		pv->pv_ptem = NULL;
1463
1464		ptepa = VM_PAGE_TO_PHYS(m);
1465		ppv = pa_to_pvh(ptepa);
1466#if defined(PMAP_DIAGNOSTIC)
1467		if (*ppv)
1468			panic("pmap_allocpte: page is already mapped");
1469#endif
1470		*ppv = pv;
1471		splx(s);
1472		pmap_update_1pg(pteva);
1473	} else {
1474#if defined(PMAP_DIAGNOSTIC)
1475		if (VM_PAGE_TO_PHYS(m) != (ptepa & PG_FRAME))
1476			panic("pmap_allocpte: mismatch");
1477#endif
1478	}
1479	pmap->pm_pdir[ptepindex] =
1480		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_MANAGED);
1481	m->flags |= PG_MAPPED;
1482	return m;
1483}
1484
1485static __inline vm_page_t
1486pmap_allocpte(pmap, va)
1487	pmap_t	pmap;
1488	vm_offset_t va;
1489{
1490	int ptepindex;
1491	vm_offset_t ptepa;
1492	vm_page_t m;
1493
1494	/*
1495	 * Calculate pagetable page index
1496	 */
1497	ptepindex = va >> PDRSHIFT;
1498
1499	/*
1500	 * Get the page directory entry
1501	 */
1502	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1503
1504	/*
1505	 * If the page table page is mapped, we just increment the
1506	 * hold count, and activate it.
1507	 */
1508	if ((ptepa & (PG_RW|PG_U|PG_V)) == (PG_RW|PG_U|PG_V)) {
1509		m = PHYS_TO_VM_PAGE(ptepa);
1510		if (m->hold_count == 0) {
1511			int s = splvm();
1512			vm_page_unqueue(m);
1513			splx(s);
1514			if (m->wire_count == 0)
1515				++cnt.v_wire_count;
1516			++m->wire_count;
1517		}
1518		++m->hold_count;
1519		return m;
1520	}
1521	return _pmap_allocpte(pmap, va, ptepindex);
1522}
1523
1524/*
1525 *	Insert the given physical page (p) at
1526 *	the specified virtual address (v) in the
1527 *	target physical map with the protection requested.
1528 *
1529 *	If specified, the page will be wired down, meaning
1530 *	that the related pte can not be reclaimed.
1531 *
1532 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1533 *	or lose information.  That is, this routine must actually
1534 *	insert this page into the given map NOW.
1535 */
1536void
1537pmap_enter(pmap, va, pa, prot, wired)
1538	register pmap_t pmap;
1539	vm_offset_t va;
1540	register vm_offset_t pa;
1541	vm_prot_t prot;
1542	boolean_t wired;
1543{
1544	register unsigned *pte;
1545	vm_offset_t opa;
1546	vm_offset_t origpte, newpte;
1547	vm_page_t mpte;
1548
1549	if (pmap == NULL)
1550		return;
1551
1552	va &= PG_FRAME;
1553	if (va > VM_MAX_KERNEL_ADDRESS)
1554		panic("pmap_enter: toobig");
1555
1556	mpte = NULL;
1557	/*
1558	 * In the case that a page table page is not
1559	 * resident, we are creating it here.
1560	 */
1561	if (va < UPT_MIN_ADDRESS)
1562		mpte = pmap_allocpte(pmap, va);
1563
1564	pte = pmap_pte(pmap, va);
1565	/*
1566	 * Page Directory table entry not valid, we need a new PT page
1567	 */
1568	if (pte == NULL) {
1569		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1570			pmap->pm_pdir[PTDPTDI], va);
1571		panic("invalid kernel page directory");
1572	}
1573
1574	origpte = *(vm_offset_t *)pte;
1575	pa &= PG_FRAME;
1576	opa = origpte & PG_FRAME;
1577
1578	/*
1579	 * Mapping has not changed, must be protection or wiring change.
1580	 */
1581	if (opa == pa) {
1582		/*
1583		 * Wiring change, just update stats. We don't worry about
1584		 * wiring PT pages as they remain resident as long as there
1585		 * are valid mappings in them. Hence, if a user page is wired,
1586		 * the PT page will be also.
1587		 */
1588		if (wired && ((origpte & PG_W) == 0))
1589			pmap->pm_stats.wired_count++;
1590		else if (!wired && (origpte & PG_W))
1591			pmap->pm_stats.wired_count--;
1592
1593#if defined(PMAP_DIAGNOSTIC)
1594		if (pmap_nw_modified((pt_entry_t) origpte)) {
1595			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1596		}
1597#endif
1598
1599		/*
1600		 * We might be turning off write access to the page,
1601		 * so we go ahead and sense modify status.
1602		 */
1603		if (origpte & PG_MANAGED) {
1604			vm_page_t m;
1605			if (origpte & PG_M) {
1606				m = PHYS_TO_VM_PAGE(pa);
1607				m->dirty = VM_PAGE_BITS_ALL;
1608			}
1609			pa |= PG_MANAGED;
1610		}
1611
1612		if (mpte)
1613			--mpte->hold_count;
1614
1615		goto validate;
1616	}
1617	/*
1618	 * Mapping has changed, invalidate old range and fall through to
1619	 * handle validating new mapping.
1620	 */
1621	if (opa)
1622		(void) pmap_remove_pte(pmap, pte, va);
1623
1624	/*
1625	 * Enter on the PV list if part of our managed memory Note that we
1626	 * raise IPL while manipulating pv_table since pmap_enter can be
1627	 * called at interrupt time.
1628	 */
1629	if (pmap_is_managed(pa)) {
1630		pmap_insert_entry(pmap, va, mpte, pa);
1631		pa |= PG_MANAGED;
1632	}
1633
1634	/*
1635	 * Increment counters
1636	 */
1637	pmap->pm_stats.resident_count++;
1638	if (wired)
1639		pmap->pm_stats.wired_count++;
1640
1641validate:
1642	/*
1643	 * Now validate mapping with desired protection/wiring.
1644	 */
1645	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1646
1647	if (wired)
1648		newpte |= PG_W;
1649	if (va < UPT_MIN_ADDRESS)
1650		newpte |= PG_U;
1651
1652	/*
1653	 * if the mapping or permission bits are different, we need
1654	 * to update the pte.
1655	 */
1656	if ((origpte & ~(PG_M|PG_A)) != newpte) {
1657		*pte = newpte;
1658		if (origpte)
1659			pmap_update_1pg(va);
1660	}
1661}
1662
1663/*
1664 * this code makes some *MAJOR* assumptions:
1665 * 1. Current pmap & pmap exists.
1666 * 2. Not wired.
1667 * 3. Read access.
1668 * 4. No page table pages.
1669 * 5. Tlbflush is deferred to calling procedure.
1670 * 6. Page IS managed.
1671 * but is *MUCH* faster than pmap_enter...
1672 */
1673
1674static void
1675pmap_enter_quick(pmap, va, pa)
1676	register pmap_t pmap;
1677	vm_offset_t va;
1678	register vm_offset_t pa;
1679{
1680	register unsigned *pte;
1681	vm_page_t mpte;
1682
1683	mpte = NULL;
1684	/*
1685	 * In the case that a page table page is not
1686	 * resident, we are creating it here.
1687	 */
1688	if (va < UPT_MIN_ADDRESS)
1689		mpte = pmap_allocpte(pmap, va);
1690
1691	pte = (unsigned *)vtopte(va);
1692	if (*pte)
1693		(void) pmap_remove_pte(pmap, pte, va);
1694
1695	/*
1696	 * Enter on the PV list if part of our managed memory Note that we
1697	 * raise IPL while manipulating pv_table since pmap_enter can be
1698	 * called at interrupt time.
1699	 */
1700	pmap_insert_entry(pmap, va, mpte, pa);
1701
1702	/*
1703	 * Increment counters
1704	 */
1705	pmap->pm_stats.resident_count++;
1706
1707	/*
1708	 * Now validate mapping with RO protection
1709	 */
1710	*pte = pa | PG_V | PG_U | PG_MANAGED;
1711
1712	return;
1713}
1714
1715#define MAX_INIT_PT (96)
1716/*
1717 * pmap_object_init_pt preloads the ptes for a given object
1718 * into the specified pmap.  This eliminates the blast of soft
1719 * faults on process startup and immediately after an mmap.
1720 */
1721void
1722pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
1723	pmap_t pmap;
1724	vm_offset_t addr;
1725	vm_object_t object;
1726	vm_pindex_t pindex;
1727	vm_size_t size;
1728	int limit;
1729{
1730	vm_offset_t tmpidx;
1731	int psize;
1732	vm_page_t p;
1733	int objpgs;
1734
1735	psize = (size >> PAGE_SHIFT);
1736
1737	if (!pmap || (object->type != OBJT_VNODE) ||
1738		(limit && (psize > MAX_INIT_PT) &&
1739			(object->resident_page_count > MAX_INIT_PT))) {
1740		return;
1741	}
1742
1743	/*
1744	 * if we are processing a major portion of the object, then scan the
1745	 * entire thing.
1746	 */
1747	if (psize > (object->size >> 2)) {
1748		objpgs = psize;
1749
1750		for (p = TAILQ_FIRST(&object->memq);
1751		    ((objpgs > 0) && (p != NULL));
1752		    p = TAILQ_NEXT(p, listq)) {
1753
1754			tmpidx = p->pindex;
1755			if (tmpidx < pindex) {
1756				continue;
1757			}
1758			tmpidx -= pindex;
1759			if (tmpidx >= psize) {
1760				continue;
1761			}
1762			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1763			    (p->busy == 0) &&
1764			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1765				if (p->queue == PQ_CACHE)
1766					vm_page_deactivate(p);
1767				p->flags |= PG_BUSY;
1768				pmap_enter_quick(pmap,
1769					addr + (tmpidx << PAGE_SHIFT),
1770					VM_PAGE_TO_PHYS(p));
1771				p->flags |= PG_MAPPED;
1772				PAGE_WAKEUP(p);
1773			}
1774			objpgs -= 1;
1775		}
1776	} else {
1777		/*
1778		 * else lookup the pages one-by-one.
1779		 */
1780		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1781			p = vm_page_lookup(object, tmpidx + pindex);
1782			if (p &&
1783			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1784			    (p->busy == 0) &&
1785			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1786				if (p->queue == PQ_CACHE)
1787					vm_page_deactivate(p);
1788				p->flags |= PG_BUSY;
1789				pmap_enter_quick(pmap,
1790					addr + (tmpidx << PAGE_SHIFT),
1791					VM_PAGE_TO_PHYS(p));
1792				p->flags |= PG_MAPPED;
1793				PAGE_WAKEUP(p);
1794			}
1795		}
1796	}
1797	return;
1798}
1799
1800/*
1801 * pmap_prefault provides a quick way of clustering
1802 * pagefaults into a processes address space.  It is a "cousin"
1803 * of pmap_object_init_pt, except it runs at page fault time instead
1804 * of mmap time.
1805 */
1806#define PFBAK 2
1807#define PFFOR 2
1808#define PAGEORDER_SIZE (PFBAK+PFFOR)
1809
1810static int pmap_prefault_pageorder[] = {
1811	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
1812};
1813
1814void
1815pmap_prefault(pmap, addra, entry, object)
1816	pmap_t pmap;
1817	vm_offset_t addra;
1818	vm_map_entry_t entry;
1819	vm_object_t object;
1820{
1821	int i;
1822	vm_offset_t starta;
1823	vm_offset_t addr;
1824	vm_pindex_t pindex;
1825	vm_page_t m;
1826
1827	if (entry->object.vm_object != object)
1828		return;
1829
1830	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
1831		return;
1832
1833	starta = addra - PFBAK * PAGE_SIZE;
1834	if (starta < entry->start) {
1835		starta = entry->start;
1836	} else if (starta > addra) {
1837		starta = 0;
1838	}
1839
1840	for (i = 0; i < PAGEORDER_SIZE; i++) {
1841		vm_object_t lobject;
1842		unsigned *pte;
1843
1844		addr = addra + pmap_prefault_pageorder[i];
1845		if (addr < starta || addr >= entry->end)
1846			continue;
1847
1848		if ((*pmap_pde(pmap, addr)) == NULL)
1849			continue;
1850
1851		pte = (unsigned *) vtopte(addr);
1852		if (*pte)
1853			continue;
1854
1855		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1856		lobject = object;
1857		for (m = vm_page_lookup(lobject, pindex);
1858		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1859		    lobject = lobject->backing_object) {
1860			if (lobject->backing_object_offset & PAGE_MASK)
1861				break;
1862			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1863			m = vm_page_lookup(lobject->backing_object, pindex);
1864		}
1865
1866		/*
1867		 * give-up when a page is not in memory
1868		 */
1869		if (m == NULL)
1870			break;
1871
1872		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1873		    (m->busy == 0) &&
1874		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1875
1876			if (m->queue == PQ_CACHE) {
1877				vm_page_deactivate(m);
1878			}
1879			m->flags |= PG_BUSY;
1880			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1881			m->flags |= PG_MAPPED;
1882			PAGE_WAKEUP(m);
1883		}
1884	}
1885}
1886
1887/*
1888 *	Routine:	pmap_change_wiring
1889 *	Function:	Change the wiring attribute for a map/virtual-address
1890 *			pair.
1891 *	In/out conditions:
1892 *			The mapping must already exist in the pmap.
1893 */
1894void
1895pmap_change_wiring(pmap, va, wired)
1896	register pmap_t pmap;
1897	vm_offset_t va;
1898	boolean_t wired;
1899{
1900	register unsigned *pte;
1901
1902	if (pmap == NULL)
1903		return;
1904
1905	pte = pmap_pte(pmap, va);
1906
1907	if (wired && !pmap_pte_w(pte))
1908		pmap->pm_stats.wired_count++;
1909	else if (!wired && pmap_pte_w(pte))
1910		pmap->pm_stats.wired_count--;
1911
1912	/*
1913	 * Wiring is not a hardware characteristic so there is no need to
1914	 * invalidate TLB.
1915	 */
1916	pmap_pte_set_w(pte, wired);
1917}
1918
1919
1920
1921/*
1922 *	Copy the range specified by src_addr/len
1923 *	from the source map to the range dst_addr/len
1924 *	in the destination map.
1925 *
1926 *	This routine is only advisory and need not do anything.
1927 */
1928void
1929pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1930	pmap_t dst_pmap, src_pmap;
1931	vm_offset_t dst_addr;
1932	vm_size_t len;
1933	vm_offset_t src_addr;
1934{
1935	vm_offset_t addr;
1936	vm_offset_t end_addr = src_addr + len;
1937	vm_offset_t pdnxt;
1938	unsigned src_frame, dst_frame;
1939
1940	if (dst_addr != src_addr)
1941		return;
1942
1943	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
1944	if (src_frame != (((unsigned) PTDpde) & PG_FRAME))
1945		return;
1946
1947	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
1948	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
1949		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
1950		pmap_update();
1951	}
1952
1953	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
1954		unsigned *src_pte, *dst_pte;
1955		vm_page_t dstmpte, srcmpte;
1956		vm_offset_t srcptepaddr;
1957
1958		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
1959		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[addr >> PDRSHIFT];
1960		if (srcptepaddr == 0) {
1961			continue;
1962		}
1963
1964		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
1965		if (srcmpte->hold_count == 0)
1966			continue;
1967
1968		if (pdnxt > end_addr)
1969			pdnxt = end_addr;
1970
1971		src_pte = (unsigned *) vtopte(addr);
1972		dst_pte = (unsigned *) avtopte(addr);
1973		while (addr < pdnxt) {
1974			unsigned ptetemp;
1975			ptetemp = *src_pte;
1976			/*
1977			 * we only virtual copy managed pages
1978			 */
1979			if ((ptetemp & PG_MANAGED) != 0) {
1980				/*
1981				 * We have to check after allocpte for the
1982				 * pte still being around...  allocpte can
1983				 * block.
1984				 */
1985				dstmpte = pmap_allocpte(dst_pmap, addr);
1986				if (ptetemp = *src_pte) {
1987					/*
1988					 * Simply clear the modified and accessed (referenced)
1989					 * bits.
1990					 */
1991					*dst_pte = ptetemp & ~(PG_M|PG_A);
1992					dst_pmap->pm_stats.resident_count++;
1993					pmap_insert_entry(dst_pmap, addr, dstmpte,
1994						(ptetemp & PG_FRAME));
1995	 			} else {
1996					pmap_unwire_pte_hold(dstmpte);
1997				}
1998				if (dstmpte->hold_count >= srcmpte->hold_count)
1999					break;
2000			}
2001			addr += PAGE_SIZE;
2002			++src_pte;
2003			++dst_pte;
2004		}
2005	}
2006}
2007
2008/*
2009 *	Routine:	pmap_kernel
2010 *	Function:
2011 *		Returns the physical map handle for the kernel.
2012 */
2013pmap_t
2014pmap_kernel()
2015{
2016	return (kernel_pmap);
2017}
2018
2019/*
2020 *	pmap_zero_page zeros the specified (machine independent)
2021 *	page by mapping the page into virtual memory and using
2022 *	bzero to clear its contents, one machine dependent page
2023 *	at a time.
2024 */
2025void
2026pmap_zero_page(phys)
2027	vm_offset_t phys;
2028{
2029	if (*(int *) CMAP2)
2030		panic("pmap_zero_page: CMAP busy");
2031
2032	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
2033	bzero(CADDR2, PAGE_SIZE);
2034	*(int *) CMAP2 = 0;
2035	pmap_update_1pg((vm_offset_t) CADDR2);
2036}
2037
2038/*
2039 *	pmap_copy_page copies the specified (machine independent)
2040 *	page by mapping the page into virtual memory and using
2041 *	bcopy to copy the page, one machine dependent page at a
2042 *	time.
2043 */
2044void
2045pmap_copy_page(src, dst)
2046	vm_offset_t src;
2047	vm_offset_t dst;
2048{
2049	if (*(int *) CMAP1 || *(int *) CMAP2)
2050		panic("pmap_copy_page: CMAP busy");
2051
2052	*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
2053	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
2054
2055#if __GNUC__ > 1
2056	memcpy(CADDR2, CADDR1, PAGE_SIZE);
2057#else
2058	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2059#endif
2060	*(int *) CMAP1 = 0;
2061	*(int *) CMAP2 = 0;
2062	pmap_update_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
2063}
2064
2065
2066/*
2067 *	Routine:	pmap_pageable
2068 *	Function:
2069 *		Make the specified pages (by pmap, offset)
2070 *		pageable (or not) as requested.
2071 *
2072 *		A page which is not pageable may not take
2073 *		a fault; therefore, its page table entry
2074 *		must remain valid for the duration.
2075 *
2076 *		This routine is merely advisory; pmap_enter
2077 *		will specify that these pages are to be wired
2078 *		down (or not) as appropriate.
2079 */
2080void
2081pmap_pageable(pmap, sva, eva, pageable)
2082	pmap_t pmap;
2083	vm_offset_t sva, eva;
2084	boolean_t pageable;
2085{
2086}
2087
2088/*
2089 * this routine returns true if a physical page resides
2090 * in the given pmap.
2091 */
2092boolean_t
2093pmap_page_exists(pmap, pa)
2094	pmap_t pmap;
2095	vm_offset_t pa;
2096{
2097	register pv_entry_t *ppv, pv;
2098	int s;
2099
2100	if (!pmap_is_managed(pa))
2101		return FALSE;
2102
2103	s = splvm();
2104
2105	ppv = pa_to_pvh(pa);
2106	/*
2107	 * Not found, check current mappings returning immediately if found.
2108	 */
2109	for (pv = *ppv; pv; pv = pv->pv_next) {
2110		if (pv->pv_pmap == pmap) {
2111			splx(s);
2112			return TRUE;
2113		}
2114	}
2115	splx(s);
2116	return (FALSE);
2117}
2118
2119/*
2120 * pmap_testbit tests bits in pte's
2121 * note that the testbit/changebit routines are inline,
2122 * and a lot of things compile-time evaluate.
2123 */
2124static __inline boolean_t
2125pmap_testbit(pa, bit)
2126	register vm_offset_t pa;
2127	int bit;
2128{
2129	register pv_entry_t *ppv, pv;
2130	unsigned *pte;
2131	int s;
2132
2133	if (!pmap_is_managed(pa))
2134		return FALSE;
2135
2136	s = splvm();
2137
2138	ppv = pa_to_pvh(pa);
2139	/*
2140	 * Not found, check current mappings returning immediately if found.
2141	 */
2142	for (pv = *ppv ;pv; pv = pv->pv_next) {
2143		/*
2144		 * if the bit being tested is the modified bit, then
2145		 * mark UPAGES as always modified, and ptes as never
2146		 * modified.
2147		 */
2148		if (bit & (PG_A|PG_M)) {
2149			if ((pv->pv_va >= UPT_MIN_ADDRESS) &&
2150				(pv->pv_va < UPT_MAX_ADDRESS)) {
2151				continue;
2152			}
2153			if ((pv->pv_va >= clean_sva) &&
2154				(pv->pv_va < clean_eva)) {
2155				continue;
2156			}
2157		}
2158		if (!pv->pv_pmap) {
2159#if defined(PMAP_DIAGNOSTIC)
2160			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2161#endif
2162			continue;
2163		}
2164		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2165		if (pte == NULL)
2166			continue;
2167		if ((int) *pte & bit) {
2168			splx(s);
2169			return TRUE;
2170		}
2171	}
2172	splx(s);
2173	return (FALSE);
2174}
2175
2176/*
2177 * this routine is used to modify bits in ptes
2178 */
2179static __inline void
2180pmap_changebit(pa, bit, setem)
2181	vm_offset_t pa;
2182	int bit;
2183	boolean_t setem;
2184{
2185	register pv_entry_t pv, *ppv;
2186	register unsigned *pte;
2187	vm_offset_t va;
2188	int changed;
2189	int s;
2190
2191	if (!pmap_is_managed(pa))
2192		return;
2193
2194	s = splvm();
2195
2196	changed = 0;
2197	ppv = pa_to_pvh(pa);
2198	/*
2199	 * Loop over all current mappings setting/clearing as appropos If
2200	 * setting RO do we need to clear the VAC?
2201	 */
2202	for ( pv = *ppv; pv; pv = pv->pv_next) {
2203		va = pv->pv_va;
2204
2205		/*
2206		 * don't write protect pager mappings
2207		 */
2208		if (!setem && (bit == PG_RW)) {
2209			if (va >= clean_sva && va < clean_eva)
2210				continue;
2211		}
2212		if (!pv->pv_pmap) {
2213#if defined(PMAP_DIAGNOSTIC)
2214			printf("Null pmap (cb) at va: 0x%lx\n", va);
2215#endif
2216			continue;
2217		}
2218
2219		pte = pmap_pte(pv->pv_pmap, va);
2220		if (pte == NULL)
2221			continue;
2222		if (setem) {
2223			*(int *)pte |= bit;
2224			changed = 1;
2225		} else {
2226			vm_offset_t pbits = *(vm_offset_t *)pte;
2227			if (pbits & bit)
2228				changed = 1;
2229			if (bit == PG_RW) {
2230				if (pbits & PG_M) {
2231					vm_page_t m;
2232					vm_offset_t pa = pbits & PG_FRAME;
2233					m = PHYS_TO_VM_PAGE(pa);
2234					m->dirty = VM_PAGE_BITS_ALL;
2235				}
2236				*(int *)pte = pbits & ~(PG_M|PG_RW);
2237			} else {
2238				*(int *)pte = pbits & ~bit;
2239			}
2240		}
2241	}
2242	splx(s);
2243	if (changed)
2244		pmap_update();
2245}
2246
2247/*
2248 *      pmap_page_protect:
2249 *
2250 *      Lower the permission for all mappings to a given page.
2251 */
2252void
2253pmap_page_protect(phys, prot)
2254	vm_offset_t phys;
2255	vm_prot_t prot;
2256{
2257	if ((prot & VM_PROT_WRITE) == 0) {
2258		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
2259			pmap_changebit(phys, PG_RW, FALSE);
2260		else {
2261			pmap_remove_all(phys);
2262			pmap_update();
2263		}
2264	}
2265}
2266
2267vm_offset_t
2268pmap_phys_address(ppn)
2269	int ppn;
2270{
2271	return (i386_ptob(ppn));
2272}
2273
2274/*
2275 *	pmap_is_referenced:
2276 *
2277 *	Return whether or not the specified physical page was referenced
2278 *	by any physical maps.
2279 */
2280boolean_t
2281pmap_is_referenced(vm_offset_t pa)
2282{
2283	return pmap_testbit((pa), PG_A);
2284}
2285
2286/*
2287 *	pmap_is_modified:
2288 *
2289 *	Return whether or not the specified physical page was modified
2290 *	in any physical maps.
2291 */
2292boolean_t
2293pmap_is_modified(vm_offset_t pa)
2294{
2295	return pmap_testbit((pa), PG_M);
2296}
2297
2298/*
2299 *	Clear the modify bits on the specified physical page.
2300 */
2301void
2302pmap_clear_modify(vm_offset_t pa)
2303{
2304	pmap_changebit((pa), PG_M, FALSE);
2305}
2306
2307/*
2308 *	pmap_clear_reference:
2309 *
2310 *	Clear the reference bit on the specified physical page.
2311 */
2312void
2313pmap_clear_reference(vm_offset_t pa)
2314{
2315	pmap_changebit((pa), PG_A, FALSE);
2316}
2317
2318/*
2319 * Miscellaneous support routines follow
2320 */
2321
2322static void
2323i386_protection_init()
2324{
2325	register int *kp, prot;
2326
2327	kp = protection_codes;
2328	for (prot = 0; prot < 8; prot++) {
2329		switch (prot) {
2330		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2331			/*
2332			 * Read access is also 0. There isn't any execute bit,
2333			 * so just make it readable.
2334			 */
2335		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2336		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2337		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2338			*kp++ = 0;
2339			break;
2340		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2341		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2342		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2343		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2344			*kp++ = PG_RW;
2345			break;
2346		}
2347	}
2348}
2349
2350/*
2351 * Map a set of physical memory pages into the kernel virtual
2352 * address space. Return a pointer to where it is mapped. This
2353 * routine is intended to be used for mapping device memory,
2354 * NOT real memory. The non-cacheable bits are set on each
2355 * mapped page.
2356 */
2357void *
2358pmap_mapdev(pa, size)
2359	vm_offset_t pa;
2360	vm_size_t size;
2361{
2362	vm_offset_t va, tmpva;
2363	unsigned *pte;
2364
2365	size = roundup(size, PAGE_SIZE);
2366
2367	va = kmem_alloc_pageable(kernel_map, size);
2368	if (!va)
2369		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2370
2371	pa = pa & PG_FRAME;
2372	for (tmpva = va; size > 0;) {
2373		pte = (unsigned *)vtopte(tmpva);
2374		*pte = pa | PG_RW | PG_V | PG_N;
2375		size -= PAGE_SIZE;
2376		tmpva += PAGE_SIZE;
2377		pa += PAGE_SIZE;
2378	}
2379	pmap_update();
2380
2381	return ((void *) va);
2382}
2383
2384int
2385pmap_mincore(pmap, addr)
2386	pmap_t pmap;
2387	vm_offset_t addr;
2388{
2389
2390	unsigned *ptep, pte;
2391	int val = 0;
2392
2393	ptep = pmap_pte(pmap, addr);
2394	if (ptep == 0) {
2395		return 0;
2396	}
2397
2398	if ((pte = *ptep)) {
2399		vm_offset_t pa;
2400		val = MINCORE_INCORE;
2401		pa = pte & PG_FRAME;
2402
2403		/*
2404		 * Modified by us
2405		 */
2406		if (pte & PG_M)
2407			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2408		/*
2409		 * Modified by someone
2410		 */
2411		else if (PHYS_TO_VM_PAGE(pa)->dirty ||
2412			pmap_is_modified(pa))
2413			val |= MINCORE_MODIFIED_OTHER;
2414		/*
2415		 * Referenced by us
2416		 */
2417		if (pte & PG_U)
2418			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2419
2420		/*
2421		 * Referenced by someone
2422		 */
2423		else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
2424			pmap_is_referenced(pa))
2425			val |= MINCORE_REFERENCED_OTHER;
2426	}
2427	return val;
2428}
2429
2430#if defined(PMAP_DEBUG)
2431pmap_pid_dump(int pid) {
2432	pmap_t pmap;
2433	struct proc *p;
2434	int npte = 0;
2435	int index;
2436	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
2437		if (p->p_pid != pid)
2438			continue;
2439
2440		if (p->p_vmspace) {
2441			int i,j;
2442			index = 0;
2443			pmap = &p->p_vmspace->vm_pmap;
2444			for(i=0;i<1024;i++) {
2445				pd_entry_t *pde;
2446				unsigned *pte;
2447				unsigned base = i << PDRSHIFT;
2448
2449				pde = &pmap->pm_pdir[i];
2450				if (pde && pmap_pde_v(pde)) {
2451					for(j=0;j<1024;j++) {
2452						unsigned va = base + (j << PAGE_SHIFT);
2453						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2454							if (index) {
2455								index = 0;
2456								printf("\n");
2457							}
2458							return npte;
2459						}
2460						pte = pmap_pte( pmap, va);
2461						if (pte && pmap_pte_v(pte)) {
2462							vm_offset_t pa;
2463							vm_page_t m;
2464							pa = *(int *)pte;
2465							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2466							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2467								va, pa, m->hold_count, m->wire_count, m->flags);
2468							npte++;
2469							index++;
2470							if (index >= 2) {
2471								index = 0;
2472								printf("\n");
2473							} else {
2474								printf(" ");
2475							}
2476						}
2477					}
2478				}
2479			}
2480		}
2481	}
2482	return npte;
2483}
2484#endif
2485
2486#if defined(DEBUG)
2487
2488static void	pads __P((pmap_t pm));
2489static void	pmap_pvdump __P((vm_offset_t pa));
2490
2491/* print address space of pmap*/
2492static void
2493pads(pm)
2494	pmap_t pm;
2495{
2496	unsigned va, i, j;
2497	unsigned *ptep;
2498
2499	if (pm == kernel_pmap)
2500		return;
2501	for (i = 0; i < 1024; i++)
2502		if (pm->pm_pdir[i])
2503			for (j = 0; j < 1024; j++) {
2504				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
2505				if (pm == kernel_pmap && va < KERNBASE)
2506					continue;
2507				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2508					continue;
2509				ptep = pmap_pte(pm, va);
2510				if (pmap_pte_v(ptep))
2511					printf("%x:%x ", va, *(int *) ptep);
2512			};
2513
2514}
2515
2516static void
2517pmap_pvdump(pa)
2518	vm_offset_t pa;
2519{
2520	register pv_entry_t pv;
2521
2522	printf("pa %x", pa);
2523	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2524#ifdef used_to_be
2525		printf(" -> pmap %x, va %x, flags %x",
2526		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2527#endif
2528		printf(" -> pmap %x, va %x",
2529		    pv->pv_pmap, pv->pv_va);
2530		pads(pv->pv_pmap);
2531	}
2532	printf(" ");
2533}
2534#endif
2535