pmap.c revision 16136
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.99 1996/06/05 03:31:26 dyson Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54
55/*
56 *	Manages physical address maps.
57 *
58 *	In addition to hardware address maps, this
59 *	module is called upon to provide software-use-only
60 *	maps which may or may not be stored in the same
61 *	form as hardware maps.  These pseudo-maps are
62 *	used to store intermediate results from copy
63 *	operations to and from address spaces.
64 *
65 *	Since the information managed by this module is
66 *	also stored by the logical address mapping module,
67 *	this module may throw away valid virtual-to-physical
68 *	mappings at almost any time.  However, invalidations
69 *	of virtual-to-physical mappings must be done as
70 *	requested.
71 *
72 *	In order to cope with hardware architectures which
73 *	make virtual-to-physical map invalidates expensive,
74 *	this module may delay invalidate or reduced protection
75 *	operations until such time as they are actually
76 *	necessary.  This module is given full information as
77 *	to which processors are currently using which maps,
78 *	and to when physical maps must be made correct.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/proc.h>
84#include <sys/malloc.h>
85#include <sys/msgbuf.h>
86#include <sys/queue.h>
87#include <sys/vmmeter.h>
88#include <sys/mman.h>
89
90#include <vm/vm.h>
91#include <vm/vm_param.h>
92#include <vm/vm_prot.h>
93#include <vm/lock.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_page.h>
96#include <vm/vm_map.h>
97#include <vm/vm_object.h>
98#include <vm/vm_extern.h>
99#include <vm/vm_pageout.h>
100
101#include <machine/pcb.h>
102#include <machine/cputypes.h>
103#include <machine/md_var.h>
104
105#include <i386/isa/isa.h>
106
107#define PMAP_KEEP_PDIRS
108
109#if defined(DIAGNOSTIC)
110#define PMAP_DIAGNOSTIC
111#endif
112
113static void	init_pv_entries __P((int));
114
115/*
116 * Get PDEs and PTEs for user/kernel address space
117 */
118#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
119#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
120
121#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
122#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
123#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
124#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
125#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
126
127#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
128#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
129
130/*
131 * Given a map and a machine independent protection code,
132 * convert to a vax protection code.
133 */
134#define pte_prot(m, p)	(protection_codes[p])
135static int protection_codes[8];
136
137static struct pmap kernel_pmap_store;
138pmap_t kernel_pmap;
139
140vm_offset_t avail_start;	/* PA of first available physical page */
141vm_offset_t avail_end;		/* PA of last available physical page */
142vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
143vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
144static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
145static vm_offset_t vm_first_phys;
146
147static int nkpt;
148static vm_page_t nkpg;
149vm_offset_t kernel_vm_end;
150
151extern vm_offset_t clean_sva, clean_eva;
152extern int cpu_class;
153
154#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
155
156/*
157 * Data for the pv entry allocation mechanism
158 */
159static int pv_freelistcnt;
160static pv_entry_t pv_freelist;
161static vm_offset_t pvva;
162static int npvvapg;
163
164/*
165 * All those kernel PT submaps that BSD is so fond of
166 */
167pt_entry_t *CMAP1;
168static pt_entry_t *CMAP2, *ptmmap;
169static pv_entry_t *pv_table;
170caddr_t CADDR1, ptvmmap;
171static caddr_t CADDR2;
172static pt_entry_t *msgbufmap;
173struct msgbuf *msgbufp;
174
175static void	free_pv_entry __P((pv_entry_t pv));
176static __inline unsigned * get_ptbase __P((pmap_t pmap));
177static pv_entry_t get_pv_entry __P((void));
178static void	i386_protection_init __P((void));
179static void	pmap_alloc_pv_entry __P((void));
180static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
181static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
182				      vm_offset_t pa));
183static int	pmap_is_managed __P((vm_offset_t pa));
184static void	pmap_remove_all __P((vm_offset_t pa));
185static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
186static __inline int pmap_remove_entry __P((struct pmap *pmap, pv_entry_t *pv,
187					vm_offset_t va));
188static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
189					vm_offset_t sva));
190static boolean_t
191		pmap_testbit __P((vm_offset_t pa, int bit));
192static __inline void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
193		vm_page_t mpte, vm_offset_t pa));
194
195static __inline vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
196static void pmap_remove_pte_mapping __P((vm_offset_t pa));
197static __inline int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
198static vm_page_t _pmap_allocpte __P((pmap_t pmap, vm_offset_t va, int ptepindex));
199
200#define PDSTACKMAX 16
201static vm_offset_t pdstack[PDSTACKMAX];
202static int pdstackptr;
203
204#if defined(PMAP_DIAGNOSTIC)
205
206/*
207 * This code checks for non-writeable/modified pages.
208 * This should be an invalid condition.
209 */
210static int
211pmap_nw_modified(pt_entry_t ptea) {
212	int pte;
213
214	pte = (int) ptea;
215
216	if ((pte & (PG_M|PG_RW)) == PG_M)
217		return 1;
218	else
219		return 0;
220}
221#endif
222
223/*
224 * The below are finer grained pmap_update routines.  These eliminate
225 * the gratuitious tlb flushes on non-i386 architectures.
226 */
227static __inline void
228pmap_update_1pg( vm_offset_t va) {
229#if defined(I386_CPU)
230	if (cpu_class == CPUCLASS_386)
231		pmap_update();
232	else
233#endif
234		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va));
235}
236
237static __inline void
238pmap_update_2pg( vm_offset_t va1, vm_offset_t va2) {
239#if defined(I386_CPU)
240	if (cpu_class == CPUCLASS_386) {
241		pmap_update();
242	} else
243#endif
244	{
245		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va1));
246		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va2));
247	}
248}
249
250static __inline __pure unsigned *
251get_ptbase(pmap)
252	pmap_t pmap;
253{
254	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
255
256	/* are we current address space or kernel? */
257	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
258		return (unsigned *) PTmap;
259	}
260	/* otherwise, we are alternate address space */
261	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
262		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
263		pmap_update();
264	}
265	return (unsigned *) APTmap;
266}
267
268/*
269 *	Routine:	pmap_pte
270 *	Function:
271 *		Extract the page table entry associated
272 *		with the given map/virtual_address pair.
273 */
274
275__inline unsigned * __pure
276pmap_pte(pmap, va)
277	register pmap_t pmap;
278	vm_offset_t va;
279{
280	if (pmap && *pmap_pde(pmap, va)) {
281		return get_ptbase(pmap) + i386_btop(va);
282	}
283	return (0);
284}
285
286/*
287 *	Routine:	pmap_extract
288 *	Function:
289 *		Extract the physical page address associated
290 *		with the given map/virtual_address pair.
291 */
292vm_offset_t __pure
293pmap_extract(pmap, va)
294	register pmap_t pmap;
295	vm_offset_t va;
296{
297	if (pmap && *pmap_pde(pmap, va)) {
298		unsigned *pte;
299		pte = get_ptbase(pmap) + i386_btop(va);
300		return ((*pte & PG_FRAME) | (va & PAGE_MASK));
301	}
302	return 0;
303
304}
305
306/*
307 * Add a list of wired pages to the kva
308 * this routine is only used for temporary
309 * kernel mappings that do not need to have
310 * page modification or references recorded.
311 * Note that old mappings are simply written
312 * over.  The page *must* be wired.
313 */
314void
315pmap_qenter(va, m, count)
316	vm_offset_t va;
317	vm_page_t *m;
318	int count;
319{
320	int i;
321	register unsigned *pte;
322
323	for (i = 0; i < count; i++) {
324		vm_offset_t tva = va + i * PAGE_SIZE;
325		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V;
326		unsigned opte;
327		pte = (unsigned *)vtopte(tva);
328		opte = *pte;
329		*pte = npte;
330		if (opte)
331			pmap_update_1pg(tva);
332	}
333}
334/*
335 * this routine jerks page mappings from the
336 * kernel -- it is meant only for temporary mappings.
337 */
338void
339pmap_qremove(va, count)
340	vm_offset_t va;
341	int count;
342{
343	int i;
344	register unsigned *pte;
345
346	for (i = 0; i < count; i++) {
347		pte = (unsigned *)vtopte(va);
348		*pte = 0;
349		pmap_update_1pg(va);
350		va += PAGE_SIZE;
351	}
352}
353
354/*
355 * add a wired page to the kva
356 * note that in order for the mapping to take effect -- you
357 * should do a pmap_update after doing the pmap_kenter...
358 */
359__inline void
360pmap_kenter(va, pa)
361	vm_offset_t va;
362	register vm_offset_t pa;
363{
364	register unsigned *pte;
365	unsigned npte, opte;
366
367	npte = pa | PG_RW | PG_V;
368	pte = (unsigned *)vtopte(va);
369	opte = *pte;
370	*pte = npte;
371	if (opte)
372		pmap_update_1pg(va);
373}
374
375/*
376 * remove a page from the kernel pagetables
377 */
378__inline void
379pmap_kremove(va)
380	vm_offset_t va;
381{
382	register unsigned *pte;
383
384	pte = (unsigned *)vtopte(va);
385	*pte = 0;
386	pmap_update_1pg(va);
387}
388
389/*
390 * determine if a page is managed (memory vs. device)
391 */
392static __inline __pure int
393pmap_is_managed(pa)
394	vm_offset_t pa;
395{
396	int i;
397
398	if (!pmap_initialized)
399		return 0;
400
401	for (i = 0; phys_avail[i + 1]; i += 2) {
402		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
403			return 1;
404	}
405	return 0;
406}
407
408/*
409 * This routine unholds page table pages, and if the hold count
410 * drops to zero, then it decrements the wire count.
411 */
412static __inline int
413pmap_unwire_pte_hold(vm_page_t m) {
414	vm_page_unhold(m);
415	if (m->hold_count == 0) {
416		--m->wire_count;
417		if (m->wire_count == 0) {
418			--cnt.v_wire_count;
419			m->dirty = 0;
420			vm_page_deactivate(m);
421		}
422		return 1;
423	}
424	return 0;
425}
426
427#if !defined(PMAP_DIAGNOSTIC)
428__inline
429#endif
430int
431pmap_unuse_pt(pmap, va, mpte)
432	pmap_t pmap;
433	vm_offset_t va;
434	vm_page_t mpte;
435{
436	if (va >= UPT_MIN_ADDRESS)
437		return 0;
438
439	if (mpte == NULL) {
440		vm_offset_t ptepa;
441		ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) /* & PG_FRAME */;
442#if defined(PMAP_DIAGNOSTIC)
443		if (!ptepa)
444			panic("pmap_unuse_pt: pagetable page missing, va: 0x%x", va);
445#endif
446		mpte = PHYS_TO_VM_PAGE(ptepa);
447	}
448
449#if defined(PMAP_DIAGNOSTIC)
450	if (mpte->hold_count == 0) {
451		panic("pmap_unuse_pt: hold count < 0, va: 0x%x", va);
452	}
453#endif
454
455/*
456 * We don't free page-table-pages anymore because it can have a negative
457 * impact on perf at times.  Now we just deactivate, and it'll get cleaned
458 * up if needed...  Also, if the page ends up getting used, it will be
459 * brought back into the process address space by pmap_allocpte and be
460 * reactivated.
461 */
462	return pmap_unwire_pte_hold(mpte);
463}
464
465/*
466 *	Bootstrap the system enough to run with virtual memory.
467 *
468 *	On the i386 this is called after mapping has already been enabled
469 *	and just syncs the pmap module with what has already been done.
470 *	[We can't call it easily with mapping off since the kernel is not
471 *	mapped with PA == VA, hence we would have to relocate every address
472 *	from the linked base (virtual) address "KERNBASE" to the actual
473 *	(physical) address starting relative to 0]
474 */
475void
476pmap_bootstrap(firstaddr, loadaddr)
477	vm_offset_t firstaddr;
478	vm_offset_t loadaddr;
479{
480	vm_offset_t va;
481	pt_entry_t *pte;
482
483	avail_start = firstaddr;
484
485	/*
486	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
487	 * large. It should instead be correctly calculated in locore.s and
488	 * not based on 'first' (which is a physical address, not a virtual
489	 * address, for the start of unused physical memory). The kernel
490	 * page tables are NOT double mapped and thus should not be included
491	 * in this calculation.
492	 */
493	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
494	virtual_end = VM_MAX_KERNEL_ADDRESS;
495
496	/*
497	 * Initialize protection array.
498	 */
499	i386_protection_init();
500
501	/*
502	 * The kernel's pmap is statically allocated so we don't have to use
503	 * pmap_create, which is unlikely to work correctly at this part of
504	 * the boot sequence (XXX and which no longer exists).
505	 */
506	kernel_pmap = &kernel_pmap_store;
507
508	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
509
510	kernel_pmap->pm_count = 1;
511	nkpt = NKPT;
512
513	/*
514	 * Reserve some special page table entries/VA space for temporary
515	 * mapping of pages.
516	 */
517#define	SYSMAP(c, p, v, n)	\
518	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
519
520	va = virtual_avail;
521	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
522
523	/*
524	 * CMAP1/CMAP2 are used for zeroing and copying pages.
525	 */
526	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
527	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
528
529	/*
530	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
531	 */
532	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
533
534	/*
535	 * msgbufmap is used to map the system message buffer.
536	 */
537	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
538
539	virtual_avail = va;
540
541	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
542	pmap_update();
543
544}
545
546/*
547 *	Initialize the pmap module.
548 *	Called by vm_init, to initialize any structures that the pmap
549 *	system needs to map virtual memory.
550 *	pmap_init has been enhanced to support in a fairly consistant
551 *	way, discontiguous physical memory.
552 */
553void
554pmap_init(phys_start, phys_end)
555	vm_offset_t phys_start, phys_end;
556{
557	vm_offset_t addr;
558	vm_size_t npg, s;
559	int i;
560
561	/*
562	 * calculate the number of pv_entries needed
563	 */
564	vm_first_phys = phys_avail[0];
565	for (i = 0; phys_avail[i + 1]; i += 2);
566	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
567
568	/*
569	 * Allocate memory for random pmap data structures.  Includes the
570	 * pv_head_table.
571	 */
572	s = (vm_size_t) (sizeof(struct pv_entry *) * npg);
573	s = round_page(s);
574	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
575	pv_table = (pv_entry_t *) addr;
576
577	/*
578	 * init the pv free list
579	 */
580	init_pv_entries(npg);
581	/*
582	 * Now it is safe to enable pv_table recording.
583	 */
584	pmap_initialized = TRUE;
585}
586
587/*
588 *	Used to map a range of physical addresses into kernel
589 *	virtual address space.
590 *
591 *	For now, VM is already on, we only need to map the
592 *	specified memory.
593 */
594vm_offset_t
595pmap_map(virt, start, end, prot)
596	vm_offset_t virt;
597	vm_offset_t start;
598	vm_offset_t end;
599	int prot;
600{
601	while (start < end) {
602		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
603		virt += PAGE_SIZE;
604		start += PAGE_SIZE;
605	}
606	return (virt);
607}
608
609/*
610 * Initialize a preallocated and zeroed pmap structure,
611 * such as one in a vmspace structure.
612 */
613void
614pmap_pinit(pmap)
615	register struct pmap *pmap;
616{
617	vm_page_t ptdpg;
618	/*
619	 * No need to allocate page table space yet but we do need a valid
620	 * page directory table.
621	 */
622
623	if (pdstackptr > 0) {
624		--pdstackptr;
625		pmap->pm_pdir =
626			(pd_entry_t *)pdstack[pdstackptr];
627	} else {
628		pmap->pm_pdir =
629			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
630	}
631
632	/*
633	 * allocate object for the ptes
634	 */
635	pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
636
637	/*
638	 * allocate the page directory page
639	 */
640retry:
641	ptdpg = vm_page_alloc( pmap->pm_pteobj, PTDPTDI, VM_ALLOC_ZERO);
642	if (ptdpg == NULL) {
643		VM_WAIT;
644		goto retry;
645	}
646	vm_page_wire(ptdpg);
647	ptdpg->flags &= ~(PG_MAPPED|PG_BUSY);	/* not mapped normally */
648	ptdpg->valid = VM_PAGE_BITS_ALL;
649
650	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
651	if ((ptdpg->flags & PG_ZERO) == 0)
652		bzero(pmap->pm_pdir, PAGE_SIZE);
653
654	/* wire in kernel global address entries */
655	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
656
657	/* install self-referential address mapping entry */
658	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
659		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
660
661	pmap->pm_count = 1;
662}
663
664static int
665pmap_release_free_page(pmap, p)
666	struct pmap *pmap;
667	vm_page_t p;
668{
669	int s;
670	/*
671	 * This code optimizes the case of freeing non-busy
672	 * page-table pages.  Those pages are zero now, and
673	 * might as well be placed directly into the zero queue.
674	 */
675	s = splvm();
676	if (p->flags & PG_BUSY) {
677		p->flags |= PG_WANTED;
678		tsleep(p, PVM, "pmaprl", 0);
679		splx(s);
680		return 0;
681	}
682
683	pmap_remove_pte_mapping(VM_PAGE_TO_PHYS(p));
684
685	if (p->hold_count)  {
686#if defined(PMAP_DIAGNOSTIC)
687		panic("pmap_release: freeing held page table page");
688#endif
689		/*
690		 * HACK ALERT!!!
691		 * If this failure happens, we must clear the page, because
692		 * there is likely a mapping still valid.  This condition
693		 * is an error, but at least this zero operation will mitigate
694		 * some Sig-11's or crashes, because this page is thought
695		 * to be zero.  This is a robustness fix, and not meant to
696		 * be a long term work-around.
697		 */
698		pmap_zero_page(VM_PAGE_TO_PHYS(p));
699	}
700	/*
701	 * Page directory pages need to have the kernel
702	 * stuff cleared, so they can go into the zero queue also.
703	 */
704	if (p->pindex == PTDPTDI) {
705		unsigned *pde = (unsigned *) pmap->pm_pdir;
706		bzero(pde + KPTDI, nkpt * PTESIZE);
707		pde[APTDPTDI] = 0;
708		pde[PTDPTDI] = 0;
709		pmap_kremove((vm_offset_t) pmap->pm_pdir);
710	}
711
712	vm_page_free_zero(p);
713	splx(s);
714	return 1;
715}
716
717/*
718 * Release any resources held by the given physical map.
719 * Called when a pmap initialized by pmap_pinit is being released.
720 * Should only be called if the map contains no valid mappings.
721 */
722void
723pmap_release(pmap)
724	register struct pmap *pmap;
725{
726	vm_page_t p,n,ptdpg;
727	vm_object_t object = pmap->pm_pteobj;
728	int s;
729
730	if (object->ref_count != 1)
731		panic("pmap_release: pteobj reference count != 1");
732
733	/*
734	 * Wait until any (bogus) paging activity on this object is
735	 * complete.
736	 */
737	s = splvm();
738	while (object->paging_in_progress) {
739		object->flags |= OBJ_PIPWNT;
740		tsleep(object,PVM,"pmrlob",0);
741	}
742	splx(s);
743
744	ptdpg = NULL;
745retry:
746	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
747		n = TAILQ_NEXT(p, listq);
748		if (p->pindex == PTDPTDI) {
749			ptdpg = p;
750			continue;
751		}
752		if ((p->flags & PG_BUSY) || p->busy)
753			continue;
754		if (!pmap_release_free_page(pmap, p))
755			goto retry;
756	}
757	if (ptdpg == NULL)
758		panic("pmap_release: missing page table directory page");
759
760	pmap_release_free_page(pmap, ptdpg);
761
762	vm_object_deallocate(object);
763	if (pdstackptr < PDSTACKMAX) {
764		pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
765		++pdstackptr;
766	} else {
767		kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
768	}
769}
770
771/*
772 * grow the number of kernel page table entries, if needed
773 */
774
775void
776pmap_growkernel(vm_offset_t addr)
777{
778	struct proc *p;
779	struct pmap *pmap;
780	int s;
781
782	s = splhigh();
783	if (kernel_vm_end == 0) {
784		kernel_vm_end = KERNBASE;
785		nkpt = 0;
786		while (pdir_pde(PTD, kernel_vm_end)) {
787			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
788			++nkpt;
789		}
790	}
791	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
792	while (kernel_vm_end < addr) {
793		if (pdir_pde(PTD, kernel_vm_end)) {
794			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
795			continue;
796		}
797		++nkpt;
798		if (!nkpg) {
799			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
800			if (!nkpg)
801				panic("pmap_growkernel: no memory to grow kernel");
802			vm_page_wire(nkpg);
803			vm_page_remove(nkpg);
804			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
805		}
806		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW);
807		nkpg = NULL;
808
809		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
810			if (p->p_vmspace) {
811				pmap = &p->p_vmspace->vm_pmap;
812				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
813			}
814		}
815		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
816		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
817	}
818	splx(s);
819}
820
821/*
822 *	Retire the given physical map from service.
823 *	Should only be called if the map contains
824 *	no valid mappings.
825 */
826void
827pmap_destroy(pmap)
828	register pmap_t pmap;
829{
830	int count;
831
832	if (pmap == NULL)
833		return;
834
835	count = --pmap->pm_count;
836	if (count == 0) {
837		pmap_release(pmap);
838		free((caddr_t) pmap, M_VMPMAP);
839	}
840}
841
842/*
843 *	Add a reference to the specified pmap.
844 */
845void
846pmap_reference(pmap)
847	pmap_t pmap;
848{
849	if (pmap != NULL) {
850		pmap->pm_count++;
851	}
852}
853
854/*
855 * free the pv_entry back to the free list
856 */
857static __inline void
858free_pv_entry(pv)
859	pv_entry_t pv;
860{
861	++pv_freelistcnt;
862	pv->pv_next = pv_freelist;
863	pv_freelist = pv;
864}
865
866/*
867 * get a new pv_entry, allocating a block from the system
868 * when needed.
869 * the memory allocation is performed bypassing the malloc code
870 * because of the possibility of allocations at interrupt time.
871 */
872static __inline pv_entry_t
873get_pv_entry()
874{
875	pv_entry_t tmp;
876
877	/*
878	 * get more pv_entry pages if needed
879	 */
880	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
881		pmap_alloc_pv_entry();
882	}
883	/*
884	 * get a pv_entry off of the free list
885	 */
886	--pv_freelistcnt;
887	tmp = pv_freelist;
888	pv_freelist = tmp->pv_next;
889	return tmp;
890}
891
892/*
893 * This *strange* allocation routine eliminates the possibility of a malloc
894 * failure (*FATAL*) for a pv_entry_t data structure.
895 * also -- this code is MUCH MUCH faster than the malloc equiv...
896 * We really need to do the slab allocator thingie here.
897 */
898static void
899pmap_alloc_pv_entry()
900{
901	/*
902	 * do we have any pre-allocated map-pages left?
903	 */
904	if (npvvapg) {
905		vm_page_t m;
906
907		/*
908		 * allocate a physical page out of the vm system
909		 */
910		m = vm_page_alloc(kernel_object,
911		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
912		    VM_ALLOC_INTERRUPT);
913		if (m) {
914			int newentries;
915			int i;
916			pv_entry_t entry;
917
918			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
919			/*
920			 * wire the page
921			 */
922			vm_page_wire(m);
923			m->flags &= ~PG_BUSY;
924			/*
925			 * let the kernel see it
926			 */
927			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
928
929			entry = (pv_entry_t) pvva;
930			/*
931			 * update the allocation pointers
932			 */
933			pvva += PAGE_SIZE;
934			--npvvapg;
935
936			/*
937			 * free the entries into the free list
938			 */
939			for (i = 0; i < newentries; i++) {
940				free_pv_entry(entry);
941				entry++;
942			}
943		}
944	}
945	if (!pv_freelist)
946		panic("get_pv_entry: cannot get a pv_entry_t");
947}
948
949/*
950 * init the pv_entry allocation system
951 */
952#define PVSPERPAGE 64
953void
954init_pv_entries(npg)
955	int npg;
956{
957	/*
958	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
959	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
960	 * this is too small.)
961	 */
962	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
963		+ PAGE_SIZE - 1) / PAGE_SIZE;
964	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
965	/*
966	 * get the first batch of entries
967	 */
968	pmap_alloc_pv_entry();
969}
970
971/*
972 * If it is the first entry on the list, it is actually
973 * in the header and we must copy the following entry up
974 * to the header.  Otherwise we must search the list for
975 * the entry.  In either case we free the now unused entry.
976 */
977static __inline int
978pmap_remove_entry(pmap, ppv, va)
979	struct pmap *pmap;
980	pv_entry_t *ppv;
981	vm_offset_t va;
982{
983	pv_entry_t npv;
984	int s;
985
986	s = splvm();
987	for (npv = *ppv; npv; (ppv = &npv->pv_next, npv = *ppv)) {
988		if (pmap == npv->pv_pmap && va == npv->pv_va) {
989			int rtval = pmap_unuse_pt(pmap, va, npv->pv_ptem);
990			*ppv = npv->pv_next;
991			free_pv_entry(npv);
992			splx(s);
993			return rtval;
994		}
995	}
996	splx(s);
997	return 0;
998}
999
1000/*
1001 * pmap_remove_pte: do the things to unmap a page in a process
1002 */
1003static
1004#if !defined(PMAP_DIAGNOSTIC)
1005__inline
1006#endif
1007int
1008pmap_remove_pte(pmap, ptq, va)
1009	struct pmap *pmap;
1010	unsigned *ptq;
1011	vm_offset_t va;
1012{
1013	unsigned oldpte;
1014	pv_entry_t *ppv;
1015	int rtval;
1016
1017	oldpte = *ptq;
1018	*ptq = 0;
1019	if (oldpte & PG_W)
1020		pmap->pm_stats.wired_count -= 1;
1021	pmap->pm_stats.resident_count -= 1;
1022	if (oldpte & PG_MANAGED) {
1023		if (oldpte & PG_M) {
1024#if defined(PMAP_DIAGNOSTIC)
1025			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1026				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1027			}
1028#endif
1029
1030			if (va < clean_sva || va >= clean_eva) {
1031				if ((va < UPT_MIN_ADDRESS) || (va >= UPT_MAX_ADDRESS))
1032					PHYS_TO_VM_PAGE(oldpte)->dirty = VM_PAGE_BITS_ALL;
1033			}
1034		}
1035		ppv = pa_to_pvh(oldpte);
1036		rtval = pmap_remove_entry(pmap, ppv, va);
1037#if defined(notyet)
1038		if (*ppv == NULL) {
1039			PHYS_TO_VM_PAGE(oldpte)->flags &= ~PG_MAPPED;
1040		}
1041#endif
1042		return rtval;
1043	} else {
1044		return pmap_unuse_pt(pmap, va, NULL);
1045	}
1046
1047	return 0;
1048}
1049
1050/*
1051 * Remove a single page from a process address space
1052 */
1053static __inline void
1054pmap_remove_page(pmap, va)
1055	struct pmap *pmap;
1056	register vm_offset_t va;
1057{
1058	register unsigned *ptq;
1059
1060	/*
1061	 * if there is no pte for this address, just skip it!!!
1062	 */
1063	if (*pmap_pde(pmap, va) == 0) {
1064		return;
1065	}
1066
1067	/*
1068	 * get a local va for mappings for this pmap.
1069	 */
1070	ptq = get_ptbase(pmap) + i386_btop(va);
1071	if (*ptq) {
1072		(void) pmap_remove_pte(pmap, ptq, va);
1073		pmap_update_1pg(va);
1074	}
1075	return;
1076}
1077
1078/*
1079 *	Remove the given range of addresses from the specified map.
1080 *
1081 *	It is assumed that the start and end are properly
1082 *	rounded to the page size.
1083 */
1084void
1085pmap_remove(pmap, sva, eva)
1086	struct pmap *pmap;
1087	register vm_offset_t sva;
1088	register vm_offset_t eva;
1089{
1090	register unsigned *ptbase;
1091	vm_offset_t pdnxt;
1092	vm_offset_t ptpaddr;
1093	vm_offset_t sindex, eindex;
1094	vm_page_t mpte;
1095	int anyvalid;
1096
1097	if (pmap == NULL)
1098		return;
1099
1100	/*
1101	 * special handling of removing one page.  a very
1102	 * common operation and easy to short circuit some
1103	 * code.
1104	 */
1105	if ((sva + PAGE_SIZE) == eva) {
1106		pmap_remove_page(pmap, sva);
1107		return;
1108	}
1109
1110	anyvalid = 0;
1111
1112	/*
1113	 * Get a local virtual address for the mappings that are being
1114	 * worked with.
1115	 */
1116	ptbase = get_ptbase(pmap);
1117
1118	sindex = i386_btop(sva);
1119	eindex = i386_btop(eva);
1120
1121	for (; sindex < eindex; sindex = pdnxt) {
1122
1123		/*
1124		 * Calculate index for next page table.
1125		 */
1126		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1127		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1128
1129		/*
1130		 * Weed out invalid mappings. Note: we assume that the page
1131		 * directory table is always allocated, and in kernel virtual.
1132		 */
1133		if (ptpaddr == 0)
1134			continue;
1135
1136		if (sindex < i386_btop(UPT_MIN_ADDRESS)) {
1137		/*
1138		 * get the vm_page_t for the page table page
1139		 */
1140			mpte = PHYS_TO_VM_PAGE(ptpaddr);
1141
1142		/*
1143		 * if the pte isn't wired, just skip it.
1144		 */
1145			if (mpte->wire_count == 0)
1146				continue;
1147		}
1148
1149		/*
1150		 * Limit our scan to either the end of the va represented
1151		 * by the current page table page, or to the end of the
1152		 * range being removed.
1153		 */
1154		if (pdnxt > eindex) {
1155			pdnxt = eindex;
1156		}
1157
1158		for ( ;sindex != pdnxt; sindex++) {
1159			vm_offset_t va;
1160			if (ptbase[sindex] == 0) {
1161				continue;
1162			}
1163			va = i386_ptob(sindex);
1164			anyvalid = 1;
1165			if (pmap_remove_pte(pmap,
1166				ptbase + sindex, va))
1167				break;
1168		}
1169	}
1170
1171	if (anyvalid) {
1172		pmap_update();
1173	}
1174}
1175
1176
1177void
1178pmap_remove_pte_mapping(pa)
1179	vm_offset_t pa;
1180{
1181	register pv_entry_t pv, *ppv, npv;
1182	register unsigned *pte;
1183	vm_offset_t va;
1184	int anyvalid = 0;
1185
1186	ppv = pa_to_pvh(pa);
1187
1188	for (pv = *ppv; pv; pv=pv->pv_next) {
1189		unsigned tpte;
1190		struct pmap *pmap;
1191
1192		anyvalid = 1;
1193		pmap = pv->pv_pmap;
1194		pte = get_ptbase(pmap) + i386_btop(pv->pv_va);
1195		if (tpte = *pte) {
1196			pmap->pm_stats.resident_count--;
1197			*pte = 0;
1198			if (tpte & PG_W)
1199				pmap->pm_stats.wired_count--;
1200		}
1201	}
1202
1203	if (anyvalid) {
1204		for (pv = *ppv; pv; pv = npv) {
1205			npv = pv->pv_next;
1206			free_pv_entry(pv);
1207		}
1208		*ppv = NULL;
1209	}
1210}
1211
1212/*
1213 *	Routine:	pmap_remove_all
1214 *	Function:
1215 *		Removes this physical page from
1216 *		all physical maps in which it resides.
1217 *		Reflects back modify bits to the pager.
1218 *
1219 *	Notes:
1220 *		Original versions of this routine were very
1221 *		inefficient because they iteratively called
1222 *		pmap_remove (slow...)
1223 */
1224static __inline void
1225pmap_remove_all(pa)
1226	vm_offset_t pa;
1227{
1228	register pv_entry_t pv, *ppv, npv;
1229	register unsigned *pte, *ptbase;
1230	vm_offset_t va;
1231	vm_page_t m;
1232	int s;
1233
1234#if defined(PMAP_DIAGNOSTIC)
1235	/*
1236	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1237	 * pages!
1238	 */
1239	if (!pmap_is_managed(pa)) {
1240		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1241	}
1242#endif
1243
1244	m = PHYS_TO_VM_PAGE(pa);
1245	ppv = pa_to_pvh(pa);
1246
1247	s = splvm();
1248	for (pv = *ppv; pv; pv=pv->pv_next) {
1249		int tpte;
1250		struct pmap *pmap;
1251
1252		pmap = pv->pv_pmap;
1253		ptbase = get_ptbase(pmap);
1254		va = pv->pv_va;
1255		if (*pmap_pde(pmap, va) == 0)
1256			continue;
1257		pte = ptbase + i386_btop(va);
1258		if (tpte = ((int) *pte)) {
1259			pmap->pm_stats.resident_count--;
1260			*pte = 0;
1261			if (tpte & PG_W)
1262				pmap->pm_stats.wired_count--;
1263			/*
1264			 * Update the vm_page_t clean and reference bits.
1265			 */
1266			if (tpte & PG_M) {
1267#if defined(PMAP_DIAGNOSTIC)
1268				if (pmap_nw_modified((pt_entry_t) tpte)) {
1269					printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, tpte);
1270				}
1271#endif
1272				if ((va >= UPT_MIN_ADDRESS) &&
1273					(va < UPT_MAX_ADDRESS))
1274					continue;
1275
1276				if (va < clean_sva || va >= clean_eva) {
1277					m->dirty = VM_PAGE_BITS_ALL;
1278				}
1279			}
1280		}
1281	}
1282
1283	for (pv = *ppv; pv; pv = npv) {
1284		npv = pv->pv_next;
1285		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1286		free_pv_entry(pv);
1287	}
1288	*ppv = NULL;
1289
1290	splx(s);
1291}
1292
1293/*
1294 *	Set the physical protection on the
1295 *	specified range of this map as requested.
1296 */
1297void
1298pmap_protect(pmap, sva, eva, prot)
1299	register pmap_t pmap;
1300	vm_offset_t sva, eva;
1301	vm_prot_t prot;
1302{
1303	register unsigned *pte;
1304	register vm_offset_t va;
1305	register unsigned *ptbase;
1306	vm_offset_t pdnxt;
1307	vm_offset_t ptpaddr;
1308	vm_offset_t sindex, eindex;
1309	vm_page_t mpte;
1310	int anyvalid;
1311
1312
1313	if (pmap == NULL)
1314		return;
1315
1316	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1317		pmap_remove(pmap, sva, eva);
1318		return;
1319	}
1320	if (prot & VM_PROT_WRITE)
1321		return;
1322
1323	anyvalid = 0;
1324
1325	ptbase = get_ptbase(pmap);
1326
1327	sindex = i386_btop(sva);
1328	eindex = i386_btop(eva);
1329
1330	for (; sindex < eindex; sindex = pdnxt) {
1331
1332		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1333		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1334
1335		/*
1336		 * Weed out invalid mappings. Note: we assume that the page
1337		 * directory table is always allocated, and in kernel virtual.
1338		 */
1339		if (ptpaddr == 0)
1340			continue;
1341
1342		/*
1343		 * Don't look at kernel page table pages
1344		 */
1345		if (sindex < i386_btop(UPT_MIN_ADDRESS)) {
1346			mpte = PHYS_TO_VM_PAGE(ptpaddr);
1347
1348			if (mpte->wire_count == 0)
1349				continue;
1350		}
1351
1352		if (pdnxt > eindex) {
1353			pdnxt = eindex;
1354		}
1355
1356		for (; sindex != pdnxt; sindex++) {
1357
1358			unsigned pbits = ptbase[sindex];
1359
1360			if (pbits & PG_RW) {
1361				if (pbits & PG_M) {
1362					vm_page_t m = PHYS_TO_VM_PAGE(pbits);
1363					m->dirty = VM_PAGE_BITS_ALL;
1364				}
1365				ptbase[sindex] = pbits & ~(PG_M|PG_RW);
1366				anyvalid = 1;
1367			}
1368		}
1369	}
1370	if (anyvalid)
1371		pmap_update();
1372}
1373
1374/*
1375 * Create a pv entry for page at pa for
1376 * (pmap, va).
1377 */
1378static __inline void
1379pmap_insert_entry(pmap, va, mpte, pa)
1380	pmap_t pmap;
1381	vm_offset_t va;
1382	vm_page_t mpte;
1383	vm_offset_t pa;
1384{
1385
1386	int s;
1387	pv_entry_t *ppv, pv;
1388
1389	s = splvm();
1390	pv = get_pv_entry();
1391	pv->pv_va = va;
1392	pv->pv_pmap = pmap;
1393	pv->pv_ptem = mpte;
1394
1395	ppv = pa_to_pvh(pa);
1396	if (*ppv)
1397		pv->pv_next = *ppv;
1398	else
1399		pv->pv_next = NULL;
1400	*ppv = pv;
1401	splx(s);
1402}
1403
1404/*
1405 * this routine is called if the page table page is not
1406 * mapped correctly.
1407 */
1408static vm_page_t
1409_pmap_allocpte(pmap, va, ptepindex)
1410	pmap_t	pmap;
1411	vm_offset_t va;
1412	int ptepindex;
1413{
1414	vm_offset_t pteva, ptepa;
1415	vm_page_t m;
1416	int s;
1417
1418	/*
1419	 * Find or fabricate a new pagetable page
1420	 */
1421retry:
1422	m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
1423	if (m == NULL) {
1424		m = vm_page_alloc(pmap->pm_pteobj, ptepindex, VM_ALLOC_ZERO);
1425		if (m == NULL) {
1426			VM_WAIT;
1427			goto retry;
1428		}
1429		if ((m->flags & PG_ZERO) == 0)
1430			pmap_zero_page(VM_PAGE_TO_PHYS(m));
1431		m->flags &= ~(PG_ZERO|PG_BUSY);
1432		m->valid = VM_PAGE_BITS_ALL;
1433	} else {
1434		if ((m->flags & PG_BUSY) || m->busy) {
1435			m->flags |= PG_WANTED;
1436			tsleep(m, PVM, "ptewai", 0);
1437			goto retry;
1438		}
1439	}
1440
1441	/*
1442	 * mark the object writeable
1443	 */
1444	pmap->pm_pteobj->flags |= OBJ_WRITEABLE;
1445
1446	if (m->hold_count == 0) {
1447		s = splvm();
1448		vm_page_unqueue(m);
1449		splx(s);
1450		++m->wire_count;
1451		++cnt.v_wire_count;
1452	}
1453
1454	/*
1455	 * Increment the hold count for the page table page
1456	 * (denoting a new mapping.)
1457	 */
1458	++m->hold_count;
1459
1460	/*
1461	 * Map the pagetable page into the process address space, if
1462	 * it isn't already there.
1463	 */
1464	pteva = ((vm_offset_t) vtopte(va)) & PG_FRAME;
1465	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1466	if (ptepa == 0) {
1467		pv_entry_t pv, *ppv;
1468
1469		pmap->pm_stats.resident_count++;
1470
1471		s = splvm();
1472		pv = get_pv_entry();
1473
1474		pv->pv_va = pteva;
1475		pv->pv_pmap = pmap;
1476		pv->pv_next = NULL;
1477		pv->pv_ptem = NULL;
1478
1479		ptepa = VM_PAGE_TO_PHYS(m);
1480		ppv = pa_to_pvh(ptepa);
1481#if defined(PMAP_DIAGNOSTIC)
1482		if (*ppv)
1483			panic("pmap_allocpte: page is already mapped");
1484#endif
1485		*ppv = pv;
1486		splx(s);
1487		pmap_update_1pg(pteva);
1488	} else {
1489#if defined(PMAP_DIAGNOSTIC)
1490		if (VM_PAGE_TO_PHYS(m) != (ptepa & PG_FRAME))
1491			panic("pmap_allocpte: mismatch");
1492#endif
1493	}
1494	pmap->pm_pdir[ptepindex] =
1495		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_MANAGED);
1496	m->flags |= PG_MAPPED;
1497	return m;
1498}
1499
1500static __inline vm_page_t
1501pmap_allocpte(pmap, va)
1502	pmap_t	pmap;
1503	vm_offset_t va;
1504{
1505	int ptepindex;
1506	vm_offset_t ptepa;
1507	vm_page_t m;
1508
1509	/*
1510	 * Calculate pagetable page index
1511	 */
1512	ptepindex = va >> PDRSHIFT;
1513
1514	/*
1515	 * Get the page directory entry
1516	 */
1517	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1518
1519	/*
1520	 * If the page table page is mapped, we just increment the
1521	 * hold count, and activate it.
1522	 */
1523	if ((ptepa & (PG_RW|PG_U|PG_V)) == (PG_RW|PG_U|PG_V)) {
1524		m = PHYS_TO_VM_PAGE(ptepa);
1525		if (m->hold_count == 0) {
1526			int s = splvm();
1527			vm_page_unqueue(m);
1528			splx(s);
1529			++m->wire_count;
1530			++cnt.v_wire_count;
1531		}
1532		++m->hold_count;
1533		return m;
1534	}
1535	return _pmap_allocpte(pmap, va, ptepindex);
1536}
1537
1538/*
1539 *	Insert the given physical page (p) at
1540 *	the specified virtual address (v) in the
1541 *	target physical map with the protection requested.
1542 *
1543 *	If specified, the page will be wired down, meaning
1544 *	that the related pte can not be reclaimed.
1545 *
1546 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1547 *	or lose information.  That is, this routine must actually
1548 *	insert this page into the given map NOW.
1549 */
1550void
1551pmap_enter(pmap, va, pa, prot, wired)
1552	register pmap_t pmap;
1553	vm_offset_t va;
1554	register vm_offset_t pa;
1555	vm_prot_t prot;
1556	boolean_t wired;
1557{
1558	register unsigned *pte;
1559	vm_offset_t opa;
1560	vm_offset_t origpte, newpte;
1561	vm_page_t mpte;
1562
1563	if (pmap == NULL)
1564		return;
1565
1566	va &= PG_FRAME;
1567	if (va > VM_MAX_KERNEL_ADDRESS)
1568		panic("pmap_enter: toobig");
1569
1570	mpte = NULL;
1571	/*
1572	 * In the case that a page table page is not
1573	 * resident, we are creating it here.
1574	 */
1575	if (va < UPT_MIN_ADDRESS)
1576		mpte = pmap_allocpte(pmap, va);
1577
1578	pte = pmap_pte(pmap, va);
1579	/*
1580	 * Page Directory table entry not valid, we need a new PT page
1581	 */
1582	if (pte == NULL) {
1583		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1584			pmap->pm_pdir[PTDPTDI], va);
1585		panic("invalid kernel page directory");
1586	}
1587
1588	origpte = *(vm_offset_t *)pte;
1589	pa &= PG_FRAME;
1590	opa = origpte & PG_FRAME;
1591
1592	/*
1593	 * Mapping has not changed, must be protection or wiring change.
1594	 */
1595	if (opa == pa) {
1596		/*
1597		 * Wiring change, just update stats. We don't worry about
1598		 * wiring PT pages as they remain resident as long as there
1599		 * are valid mappings in them. Hence, if a user page is wired,
1600		 * the PT page will be also.
1601		 */
1602		if (wired && ((origpte & PG_W) == 0))
1603			pmap->pm_stats.wired_count++;
1604		else if (!wired && (origpte & PG_W))
1605			pmap->pm_stats.wired_count--;
1606
1607#if defined(PMAP_DIAGNOSTIC)
1608		if (pmap_nw_modified((pt_entry_t) origpte)) {
1609			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1610		}
1611#endif
1612
1613		/*
1614		 * We might be turning off write access to the page,
1615		 * so we go ahead and sense modify status.
1616		 */
1617		if (origpte & PG_MANAGED) {
1618			vm_page_t m;
1619			if (origpte & PG_M) {
1620				m = PHYS_TO_VM_PAGE(pa);
1621				m->dirty = VM_PAGE_BITS_ALL;
1622			}
1623			pa |= PG_MANAGED;
1624		}
1625
1626		if (mpte)
1627			--mpte->hold_count;
1628
1629		goto validate;
1630	}
1631	/*
1632	 * Mapping has changed, invalidate old range and fall through to
1633	 * handle validating new mapping.
1634	 */
1635	if (opa)
1636		(void) pmap_remove_pte(pmap, pte, va);
1637
1638	/*
1639	 * Enter on the PV list if part of our managed memory Note that we
1640	 * raise IPL while manipulating pv_table since pmap_enter can be
1641	 * called at interrupt time.
1642	 */
1643	if (pmap_is_managed(pa)) {
1644		pmap_insert_entry(pmap, va, mpte, pa);
1645		pa |= PG_MANAGED;
1646	}
1647
1648	/*
1649	 * Increment counters
1650	 */
1651	pmap->pm_stats.resident_count++;
1652	if (wired)
1653		pmap->pm_stats.wired_count++;
1654
1655validate:
1656	/*
1657	 * Now validate mapping with desired protection/wiring.
1658	 */
1659	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1660
1661	if (wired)
1662		newpte |= PG_W;
1663	if (va < UPT_MIN_ADDRESS)
1664		newpte |= PG_U;
1665
1666	/*
1667	 * if the mapping or permission bits are different, we need
1668	 * to update the pte.
1669	 */
1670	if ((origpte & ~(PG_M|PG_A)) != newpte) {
1671		*pte = newpte;
1672		if (origpte)
1673			pmap_update_1pg(va);
1674	}
1675}
1676
1677/*
1678 * this code makes some *MAJOR* assumptions:
1679 * 1. Current pmap & pmap exists.
1680 * 2. Not wired.
1681 * 3. Read access.
1682 * 4. No page table pages.
1683 * 5. Tlbflush is deferred to calling procedure.
1684 * 6. Page IS managed.
1685 * but is *MUCH* faster than pmap_enter...
1686 */
1687
1688static void
1689pmap_enter_quick(pmap, va, pa)
1690	register pmap_t pmap;
1691	vm_offset_t va;
1692	register vm_offset_t pa;
1693{
1694	register unsigned *pte;
1695	vm_page_t mpte;
1696
1697	mpte = NULL;
1698	/*
1699	 * In the case that a page table page is not
1700	 * resident, we are creating it here.
1701	 */
1702	if (va < UPT_MIN_ADDRESS)
1703		mpte = pmap_allocpte(pmap, va);
1704
1705	pte = (unsigned *)vtopte(va);
1706	if (*pte)
1707		(void) pmap_remove_pte(pmap, pte, va);
1708
1709	/*
1710	 * Enter on the PV list if part of our managed memory Note that we
1711	 * raise IPL while manipulating pv_table since pmap_enter can be
1712	 * called at interrupt time.
1713	 */
1714	pmap_insert_entry(pmap, va, mpte, pa);
1715
1716	/*
1717	 * Increment counters
1718	 */
1719	pmap->pm_stats.resident_count++;
1720
1721	/*
1722	 * Now validate mapping with RO protection
1723	 */
1724	*pte = pa | PG_V | PG_U | PG_MANAGED;
1725
1726	return;
1727}
1728
1729#define MAX_INIT_PT (96)
1730/*
1731 * pmap_object_init_pt preloads the ptes for a given object
1732 * into the specified pmap.  This eliminates the blast of soft
1733 * faults on process startup and immediately after an mmap.
1734 */
1735void
1736pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
1737	pmap_t pmap;
1738	vm_offset_t addr;
1739	vm_object_t object;
1740	vm_pindex_t pindex;
1741	vm_size_t size;
1742	int limit;
1743{
1744	vm_offset_t tmpidx;
1745	int psize;
1746	vm_page_t p;
1747	int objpgs;
1748
1749	psize = (size >> PAGE_SHIFT);
1750
1751	if (!pmap || (object->type != OBJT_VNODE) ||
1752		(limit && (psize > MAX_INIT_PT) &&
1753			(object->resident_page_count > MAX_INIT_PT))) {
1754		return;
1755	}
1756
1757	/*
1758	 * if we are processing a major portion of the object, then scan the
1759	 * entire thing.
1760	 */
1761	if (psize > (object->size >> 2)) {
1762		objpgs = psize;
1763
1764		for (p = TAILQ_FIRST(&object->memq);
1765		    ((objpgs > 0) && (p != NULL));
1766		    p = TAILQ_NEXT(p, listq)) {
1767
1768			tmpidx = p->pindex;
1769			if (tmpidx < pindex) {
1770				continue;
1771			}
1772			tmpidx -= pindex;
1773			if (tmpidx >= psize) {
1774				continue;
1775			}
1776			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1777			    (p->busy == 0) &&
1778			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1779				if (p->queue == PQ_CACHE)
1780					vm_page_deactivate(p);
1781				p->flags |= PG_BUSY;
1782				pmap_enter_quick(pmap,
1783					addr + (tmpidx << PAGE_SHIFT),
1784					VM_PAGE_TO_PHYS(p));
1785				p->flags |= PG_MAPPED;
1786				PAGE_WAKEUP(p);
1787			}
1788			objpgs -= 1;
1789		}
1790	} else {
1791		/*
1792		 * else lookup the pages one-by-one.
1793		 */
1794		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1795			p = vm_page_lookup(object, tmpidx + pindex);
1796			if (p &&
1797			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1798			    (p->busy == 0) &&
1799			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1800				p->flags |= PG_BUSY;
1801				pmap_enter_quick(pmap,
1802					addr + (tmpidx << PAGE_SHIFT),
1803					VM_PAGE_TO_PHYS(p));
1804				p->flags |= PG_MAPPED;
1805				PAGE_WAKEUP(p);
1806			}
1807		}
1808	}
1809	return;
1810}
1811
1812/*
1813 * pmap_prefault provides a quick way of clustering
1814 * pagefaults into a processes address space.  It is a "cousin"
1815 * of pmap_object_init_pt, except it runs at page fault time instead
1816 * of mmap time.
1817 */
1818#define PFBAK 2
1819#define PFFOR 2
1820#define PAGEORDER_SIZE (PFBAK+PFFOR)
1821
1822static int pmap_prefault_pageorder[] = {
1823	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
1824};
1825
1826void
1827pmap_prefault(pmap, addra, entry, object)
1828	pmap_t pmap;
1829	vm_offset_t addra;
1830	vm_map_entry_t entry;
1831	vm_object_t object;
1832{
1833	int i;
1834	vm_offset_t starta;
1835	vm_offset_t addr;
1836	vm_pindex_t pindex;
1837	vm_page_t m;
1838
1839	if (entry->object.vm_object != object)
1840		return;
1841
1842	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
1843		return;
1844
1845	starta = addra - PFBAK * PAGE_SIZE;
1846	if (starta < entry->start) {
1847		starta = entry->start;
1848	} else if (starta > addra) {
1849		starta = 0;
1850	}
1851
1852	for (i = 0; i < PAGEORDER_SIZE; i++) {
1853		vm_object_t lobject;
1854		unsigned *pte;
1855
1856		addr = addra + pmap_prefault_pageorder[i];
1857		if (addr < starta || addr >= entry->end)
1858			continue;
1859
1860		if ((*pmap_pde(pmap, addr)) == NULL)
1861			continue;
1862
1863		pte = (unsigned *) vtopte(addr);
1864		if (*pte)
1865			continue;
1866
1867		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1868		lobject = object;
1869		for (m = vm_page_lookup(lobject, pindex);
1870		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1871		    lobject = lobject->backing_object) {
1872			if (lobject->backing_object_offset & PAGE_MASK)
1873				break;
1874			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1875			m = vm_page_lookup(lobject->backing_object, pindex);
1876		}
1877
1878		/*
1879		 * give-up when a page is not in memory
1880		 */
1881		if (m == NULL)
1882			break;
1883
1884		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1885		    (m->busy == 0) &&
1886		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1887
1888			if (m->queue == PQ_CACHE) {
1889				vm_page_deactivate(m);
1890			}
1891			m->flags |= PG_BUSY;
1892			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1893			m->flags |= PG_MAPPED;
1894			PAGE_WAKEUP(m);
1895		}
1896	}
1897}
1898
1899/*
1900 *	Routine:	pmap_change_wiring
1901 *	Function:	Change the wiring attribute for a map/virtual-address
1902 *			pair.
1903 *	In/out conditions:
1904 *			The mapping must already exist in the pmap.
1905 */
1906void
1907pmap_change_wiring(pmap, va, wired)
1908	register pmap_t pmap;
1909	vm_offset_t va;
1910	boolean_t wired;
1911{
1912	register unsigned *pte;
1913
1914	if (pmap == NULL)
1915		return;
1916
1917	pte = pmap_pte(pmap, va);
1918
1919	if (wired && !pmap_pte_w(pte))
1920		pmap->pm_stats.wired_count++;
1921	else if (!wired && pmap_pte_w(pte))
1922		pmap->pm_stats.wired_count--;
1923
1924	/*
1925	 * Wiring is not a hardware characteristic so there is no need to
1926	 * invalidate TLB.
1927	 */
1928	pmap_pte_set_w(pte, wired);
1929}
1930
1931
1932
1933/*
1934 *	Copy the range specified by src_addr/len
1935 *	from the source map to the range dst_addr/len
1936 *	in the destination map.
1937 *
1938 *	This routine is only advisory and need not do anything.
1939 */
1940void
1941pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1942	pmap_t dst_pmap, src_pmap;
1943	vm_offset_t dst_addr;
1944	vm_size_t len;
1945	vm_offset_t src_addr;
1946{
1947	vm_offset_t addr;
1948	vm_offset_t end_addr = src_addr + len;
1949	vm_offset_t pdnxt;
1950	unsigned src_frame, dst_frame;
1951
1952	if (dst_addr != src_addr)
1953		return;
1954
1955	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
1956	if (src_frame != (((unsigned) PTDpde) & PG_FRAME))
1957		return;
1958
1959	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
1960	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
1961		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
1962		pmap_update();
1963	}
1964
1965	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
1966		unsigned *src_pte, *dst_pte;
1967		vm_page_t dstmpte, srcmpte;
1968		vm_offset_t srcptepaddr;
1969
1970		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
1971		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[addr >> PDRSHIFT];
1972		if (srcptepaddr == 0) {
1973			continue;
1974		}
1975
1976		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
1977		if (srcmpte->hold_count == 0)
1978			continue;
1979
1980		if (pdnxt > end_addr)
1981			pdnxt = end_addr;
1982
1983		src_pte = (unsigned *) vtopte(addr);
1984		dst_pte = (unsigned *) avtopte(addr);
1985		while (addr < pdnxt) {
1986			unsigned ptetemp;
1987			ptetemp = *src_pte;
1988			/*
1989			 * we only virtual copy managed pages
1990			 */
1991			if ((ptetemp & PG_MANAGED) != 0) {
1992				/*
1993				 * We have to check after allocpte for the
1994				 * pte still being around...  allocpte can
1995				 * block.
1996				 */
1997				dstmpte = pmap_allocpte(dst_pmap, addr);
1998				if (ptetemp = *src_pte) {
1999					/*
2000					 * Simply clear the modified and accessed (referenced)
2001					 * bits.
2002					 */
2003					*dst_pte = ptetemp & ~(PG_M|PG_A);
2004					dst_pmap->pm_stats.resident_count++;
2005					pmap_insert_entry(dst_pmap, addr, dstmpte,
2006						(ptetemp & PG_FRAME));
2007	 			} else {
2008					pmap_unwire_pte_hold(dstmpte);
2009				}
2010				if (dstmpte->hold_count >= srcmpte->hold_count)
2011					break;
2012			}
2013			addr += PAGE_SIZE;
2014			++src_pte;
2015			++dst_pte;
2016		}
2017	}
2018}
2019
2020/*
2021 *	Routine:	pmap_kernel
2022 *	Function:
2023 *		Returns the physical map handle for the kernel.
2024 */
2025pmap_t
2026pmap_kernel()
2027{
2028	return (kernel_pmap);
2029}
2030
2031/*
2032 *	pmap_zero_page zeros the specified (machine independent)
2033 *	page by mapping the page into virtual memory and using
2034 *	bzero to clear its contents, one machine dependent page
2035 *	at a time.
2036 */
2037void
2038pmap_zero_page(phys)
2039	vm_offset_t phys;
2040{
2041	if (*(int *) CMAP2)
2042		panic("pmap_zero_page: CMAP busy");
2043
2044	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
2045	bzero(CADDR2, PAGE_SIZE);
2046	*(int *) CMAP2 = 0;
2047	pmap_update_1pg((vm_offset_t) CADDR2);
2048}
2049
2050/*
2051 *	pmap_copy_page copies the specified (machine independent)
2052 *	page by mapping the page into virtual memory and using
2053 *	bcopy to copy the page, one machine dependent page at a
2054 *	time.
2055 */
2056void
2057pmap_copy_page(src, dst)
2058	vm_offset_t src;
2059	vm_offset_t dst;
2060{
2061	if (*(int *) CMAP1 || *(int *) CMAP2)
2062		panic("pmap_copy_page: CMAP busy");
2063
2064	*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
2065	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
2066
2067#if __GNUC__ > 1
2068	memcpy(CADDR2, CADDR1, PAGE_SIZE);
2069#else
2070	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2071#endif
2072	*(int *) CMAP1 = 0;
2073	*(int *) CMAP2 = 0;
2074	pmap_update_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
2075}
2076
2077
2078/*
2079 *	Routine:	pmap_pageable
2080 *	Function:
2081 *		Make the specified pages (by pmap, offset)
2082 *		pageable (or not) as requested.
2083 *
2084 *		A page which is not pageable may not take
2085 *		a fault; therefore, its page table entry
2086 *		must remain valid for the duration.
2087 *
2088 *		This routine is merely advisory; pmap_enter
2089 *		will specify that these pages are to be wired
2090 *		down (or not) as appropriate.
2091 */
2092void
2093pmap_pageable(pmap, sva, eva, pageable)
2094	pmap_t pmap;
2095	vm_offset_t sva, eva;
2096	boolean_t pageable;
2097{
2098}
2099
2100/*
2101 * this routine returns true if a physical page resides
2102 * in the given pmap.
2103 */
2104boolean_t
2105pmap_page_exists(pmap, pa)
2106	pmap_t pmap;
2107	vm_offset_t pa;
2108{
2109	register pv_entry_t *ppv, pv;
2110	int s;
2111
2112	if (!pmap_is_managed(pa))
2113		return FALSE;
2114
2115	s = splvm();
2116
2117	ppv = pa_to_pvh(pa);
2118	/*
2119	 * Not found, check current mappings returning immediately if found.
2120	 */
2121	for (pv = *ppv; pv; pv = pv->pv_next) {
2122		if (pv->pv_pmap == pmap) {
2123			splx(s);
2124			return TRUE;
2125		}
2126	}
2127	splx(s);
2128	return (FALSE);
2129}
2130
2131/*
2132 * pmap_testbit tests bits in pte's
2133 * note that the testbit/changebit routines are inline,
2134 * and a lot of things compile-time evaluate.
2135 */
2136static __inline boolean_t
2137pmap_testbit(pa, bit)
2138	register vm_offset_t pa;
2139	int bit;
2140{
2141	register pv_entry_t *ppv, pv;
2142	unsigned *pte;
2143	int s;
2144
2145	if (!pmap_is_managed(pa))
2146		return FALSE;
2147
2148	s = splvm();
2149
2150	ppv = pa_to_pvh(pa);
2151	/*
2152	 * Not found, check current mappings returning immediately if found.
2153	 */
2154	for (pv = *ppv ;pv; pv = pv->pv_next) {
2155		/*
2156		 * if the bit being tested is the modified bit, then
2157		 * mark UPAGES as always modified, and ptes as never
2158		 * modified.
2159		 */
2160		if (bit & (PG_A|PG_M)) {
2161			if ((pv->pv_va >= UPT_MIN_ADDRESS) &&
2162				(pv->pv_va < UPT_MAX_ADDRESS)) {
2163				continue;
2164			}
2165			if ((pv->pv_va >= clean_sva) &&
2166				(pv->pv_va < clean_eva)) {
2167				continue;
2168			}
2169		}
2170		if (!pv->pv_pmap) {
2171#if defined(PMAP_DIAGNOSTIC)
2172			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2173#endif
2174			continue;
2175		}
2176		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2177		if (pte == NULL)
2178			continue;
2179		if ((int) *pte & bit) {
2180			splx(s);
2181			return TRUE;
2182		}
2183	}
2184	splx(s);
2185	return (FALSE);
2186}
2187
2188/*
2189 * this routine is used to modify bits in ptes
2190 */
2191static __inline void
2192pmap_changebit(pa, bit, setem)
2193	vm_offset_t pa;
2194	int bit;
2195	boolean_t setem;
2196{
2197	register pv_entry_t pv, *ppv;
2198	register unsigned *pte;
2199	vm_offset_t va;
2200	int changed;
2201	int s;
2202
2203	if (!pmap_is_managed(pa))
2204		return;
2205
2206	s = splvm();
2207
2208	changed = 0;
2209	ppv = pa_to_pvh(pa);
2210	/*
2211	 * Loop over all current mappings setting/clearing as appropos If
2212	 * setting RO do we need to clear the VAC?
2213	 */
2214	for ( pv = *ppv; pv; pv = pv->pv_next) {
2215		va = pv->pv_va;
2216
2217		/*
2218		 * don't write protect pager mappings
2219		 */
2220		if (!setem && (bit == PG_RW)) {
2221			if (va >= clean_sva && va < clean_eva)
2222				continue;
2223		}
2224		if (!pv->pv_pmap) {
2225#if defined(PMAP_DIAGNOSTIC)
2226			printf("Null pmap (cb) at va: 0x%lx\n", va);
2227#endif
2228			continue;
2229		}
2230
2231		pte = pmap_pte(pv->pv_pmap, va);
2232		if (pte == NULL)
2233			continue;
2234		if (setem) {
2235			*(int *)pte |= bit;
2236			changed = 1;
2237		} else {
2238			vm_offset_t pbits = *(vm_offset_t *)pte;
2239			if (pbits & bit)
2240				changed = 1;
2241			if (bit == PG_RW) {
2242				if (pbits & PG_M) {
2243					vm_page_t m;
2244					vm_offset_t pa = pbits & PG_FRAME;
2245					m = PHYS_TO_VM_PAGE(pa);
2246					m->dirty = VM_PAGE_BITS_ALL;
2247				}
2248				*(int *)pte = pbits & ~(PG_M|PG_RW);
2249			} else {
2250				*(int *)pte = pbits & ~bit;
2251			}
2252		}
2253	}
2254	splx(s);
2255	if (changed)
2256		pmap_update();
2257}
2258
2259/*
2260 *      pmap_page_protect:
2261 *
2262 *      Lower the permission for all mappings to a given page.
2263 */
2264void
2265pmap_page_protect(phys, prot)
2266	vm_offset_t phys;
2267	vm_prot_t prot;
2268{
2269	if ((prot & VM_PROT_WRITE) == 0) {
2270		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
2271			pmap_changebit(phys, PG_RW, FALSE);
2272		else {
2273			pmap_remove_all(phys);
2274			pmap_update();
2275		}
2276	}
2277}
2278
2279vm_offset_t
2280pmap_phys_address(ppn)
2281	int ppn;
2282{
2283	return (i386_ptob(ppn));
2284}
2285
2286/*
2287 *	pmap_is_referenced:
2288 *
2289 *	Return whether or not the specified physical page was referenced
2290 *	by any physical maps.
2291 */
2292boolean_t
2293pmap_is_referenced(vm_offset_t pa)
2294{
2295	return pmap_testbit((pa), PG_A);
2296}
2297
2298/*
2299 *	pmap_is_modified:
2300 *
2301 *	Return whether or not the specified physical page was modified
2302 *	in any physical maps.
2303 */
2304boolean_t
2305pmap_is_modified(vm_offset_t pa)
2306{
2307	return pmap_testbit((pa), PG_M);
2308}
2309
2310/*
2311 *	Clear the modify bits on the specified physical page.
2312 */
2313void
2314pmap_clear_modify(vm_offset_t pa)
2315{
2316	pmap_changebit((pa), PG_M, FALSE);
2317}
2318
2319/*
2320 *	pmap_clear_reference:
2321 *
2322 *	Clear the reference bit on the specified physical page.
2323 */
2324void
2325pmap_clear_reference(vm_offset_t pa)
2326{
2327	pmap_changebit((pa), PG_A, FALSE);
2328}
2329
2330/*
2331 * Miscellaneous support routines follow
2332 */
2333
2334static void
2335i386_protection_init()
2336{
2337	register int *kp, prot;
2338
2339	kp = protection_codes;
2340	for (prot = 0; prot < 8; prot++) {
2341		switch (prot) {
2342		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2343			/*
2344			 * Read access is also 0. There isn't any execute bit,
2345			 * so just make it readable.
2346			 */
2347		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2348		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2349		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2350			*kp++ = 0;
2351			break;
2352		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2353		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2354		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2355		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2356			*kp++ = PG_RW;
2357			break;
2358		}
2359	}
2360}
2361
2362/*
2363 * Map a set of physical memory pages into the kernel virtual
2364 * address space. Return a pointer to where it is mapped. This
2365 * routine is intended to be used for mapping device memory,
2366 * NOT real memory. The non-cacheable bits are set on each
2367 * mapped page.
2368 */
2369void *
2370pmap_mapdev(pa, size)
2371	vm_offset_t pa;
2372	vm_size_t size;
2373{
2374	vm_offset_t va, tmpva;
2375	unsigned *pte;
2376
2377	size = roundup(size, PAGE_SIZE);
2378
2379	va = kmem_alloc_pageable(kernel_map, size);
2380	if (!va)
2381		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2382
2383	pa = pa & PG_FRAME;
2384	for (tmpva = va; size > 0;) {
2385		pte = (unsigned *)vtopte(tmpva);
2386		*pte = pa | PG_RW | PG_V | PG_N;
2387		size -= PAGE_SIZE;
2388		tmpva += PAGE_SIZE;
2389		pa += PAGE_SIZE;
2390	}
2391	pmap_update();
2392
2393	return ((void *) va);
2394}
2395
2396int
2397pmap_mincore(pmap, addr)
2398	pmap_t pmap;
2399	vm_offset_t addr;
2400{
2401
2402	unsigned *ptep, pte;
2403	int val = 0;
2404
2405	ptep = pmap_pte(pmap, addr);
2406	if (ptep == 0) {
2407		return 0;
2408	}
2409
2410	if ((pte = *ptep)) {
2411		vm_offset_t pa;
2412		val = MINCORE_INCORE;
2413		pa = pte & PG_FRAME;
2414
2415		/*
2416		 * Modified by us
2417		 */
2418		if (pte & PG_M)
2419			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2420		/*
2421		 * Modified by someone
2422		 */
2423		else if (PHYS_TO_VM_PAGE(pa)->dirty ||
2424			pmap_is_modified(pa))
2425			val |= MINCORE_MODIFIED_OTHER;
2426		/*
2427		 * Referenced by us
2428		 */
2429		if (pte & PG_U)
2430			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2431
2432		/*
2433		 * Referenced by someone
2434		 */
2435		else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
2436			pmap_is_referenced(pa))
2437			val |= MINCORE_REFERENCED_OTHER;
2438	}
2439	return val;
2440}
2441
2442#if defined(PMAP_DEBUG)
2443pmap_pid_dump(int pid) {
2444	pmap_t pmap;
2445	struct proc *p;
2446	int npte = 0;
2447	int index;
2448	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
2449		if (p->p_pid != pid)
2450			continue;
2451
2452		if (p->p_vmspace) {
2453			int i,j;
2454			index = 0;
2455			pmap = &p->p_vmspace->vm_pmap;
2456			for(i=0;i<1024;i++) {
2457				pd_entry_t *pde;
2458				unsigned *pte;
2459				unsigned base = i << PDRSHIFT;
2460
2461				pde = &pmap->pm_pdir[i];
2462				if (pde && pmap_pde_v(pde)) {
2463					for(j=0;j<1024;j++) {
2464						unsigned va = base + (j << PAGE_SHIFT);
2465						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2466							if (index) {
2467								index = 0;
2468								printf("\n");
2469							}
2470							return npte;
2471						}
2472						pte = pmap_pte( pmap, va);
2473						if (pte && pmap_pte_v(pte)) {
2474							vm_offset_t pa;
2475							vm_page_t m;
2476							pa = *(int *)pte;
2477							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2478							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2479								va, pa, m->hold_count, m->wire_count, m->flags);
2480							npte++;
2481							index++;
2482							if (index >= 2) {
2483								index = 0;
2484								printf("\n");
2485							} else {
2486								printf(" ");
2487							}
2488						}
2489					}
2490				}
2491			}
2492		}
2493	}
2494	return npte;
2495}
2496#endif
2497
2498#if defined(DEBUG)
2499
2500static void	pads __P((pmap_t pm));
2501static void	pmap_pvdump __P((vm_offset_t pa));
2502
2503/* print address space of pmap*/
2504static void
2505pads(pm)
2506	pmap_t pm;
2507{
2508	unsigned va, i, j;
2509	unsigned *ptep;
2510
2511	if (pm == kernel_pmap)
2512		return;
2513	for (i = 0; i < 1024; i++)
2514		if (pm->pm_pdir[i])
2515			for (j = 0; j < 1024; j++) {
2516				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
2517				if (pm == kernel_pmap && va < KERNBASE)
2518					continue;
2519				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2520					continue;
2521				ptep = pmap_pte(pm, va);
2522				if (pmap_pte_v(ptep))
2523					printf("%x:%x ", va, *(int *) ptep);
2524			};
2525
2526}
2527
2528static void
2529pmap_pvdump(pa)
2530	vm_offset_t pa;
2531{
2532	register pv_entry_t pv;
2533
2534	printf("pa %x", pa);
2535	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2536#ifdef used_to_be
2537		printf(" -> pmap %x, va %x, flags %x",
2538		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2539#endif
2540		printf(" -> pmap %x, va %x",
2541		    pv->pv_pmap, pv->pv_va);
2542		pads(pv->pv_pmap);
2543	}
2544	printf(" ");
2545}
2546#endif
2547