pmap.c revision 158226
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 158226 2006-05-01 19:57:00Z peter $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sx.h>
122#include <sys/vmmeter.h>
123#include <sys/sched.h>
124#include <sys/sysctl.h>
125#ifdef SMP
126#include <sys/smp.h>
127#endif
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/uma.h>
139
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149#ifdef XBOX
150#include <machine/xbox.h>
151#endif
152
153#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
154#define CPU_ENABLE_SSE
155#endif
156
157#ifndef PMAP_SHPGPERPROC
158#define PMAP_SHPGPERPROC 200
159#endif
160
161#if defined(DIAGNOSTIC)
162#define PMAP_DIAGNOSTIC
163#endif
164
165#if !defined(PMAP_DIAGNOSTIC)
166#define PMAP_INLINE __inline
167#else
168#define PMAP_INLINE
169#endif
170
171#define PV_STATS
172#ifdef PV_STATS
173#define PV_STAT(x)	do { x ; } while (0)
174#else
175#define PV_STAT(x)	do { } while (0)
176#endif
177
178/*
179 * Get PDEs and PTEs for user/kernel address space
180 */
181#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
182#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
183
184#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
185#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
186#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
187#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
188#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
189
190#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
191    atomic_clear_int((u_int *)(pte), PG_W))
192#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
193
194struct pmap kernel_pmap_store;
195LIST_HEAD(pmaplist, pmap);
196static struct pmaplist allpmaps;
197static struct mtx allpmaps_lock;
198
199vm_paddr_t avail_end;	/* PA of last available physical page */
200vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
201vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
202int pgeflag = 0;		/* PG_G or-in */
203int pseflag = 0;		/* PG_PS or-in */
204
205static int nkpt;
206vm_offset_t kernel_vm_end;
207extern u_int32_t KERNend;
208
209#ifdef PAE
210static uma_zone_t pdptzone;
211#endif
212
213/*
214 * Data for the pv entry allocation mechanism
215 */
216static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
217static int shpgperproc = PMAP_SHPGPERPROC;
218
219TAILQ_HEAD(,pv_chunk) pv_freechunks;	/* Freelist of chunk pages */
220struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
221int pv_maxchunks;			/* How many chunks we have KVA for */
222int pv_nextindex;			/* Where to map the next page */
223
224/*
225 * All those kernel PT submaps that BSD is so fond of
226 */
227struct sysmaps {
228	struct	mtx lock;
229	pt_entry_t *CMAP1;
230	pt_entry_t *CMAP2;
231	caddr_t	CADDR1;
232	caddr_t	CADDR2;
233};
234static struct sysmaps sysmaps_pcpu[MAXCPU];
235pt_entry_t *CMAP1 = 0;
236static pt_entry_t *CMAP3;
237caddr_t CADDR1 = 0, ptvmmap = 0;
238static caddr_t CADDR3;
239struct msgbuf *msgbufp = 0;
240
241/*
242 * Crashdump maps.
243 */
244static caddr_t crashdumpmap;
245
246#ifdef SMP
247extern pt_entry_t *SMPpt;
248#endif
249static pt_entry_t *PMAP1 = 0, *PMAP2;
250static pt_entry_t *PADDR1 = 0, *PADDR2;
251#ifdef SMP
252static int PMAP1cpu;
253static int PMAP1changedcpu;
254SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
255	   &PMAP1changedcpu, 0,
256	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
257#endif
258static int PMAP1changed;
259SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
260	   &PMAP1changed, 0,
261	   "Number of times pmap_pte_quick changed PMAP1");
262static int PMAP1unchanged;
263SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
264	   &PMAP1unchanged, 0,
265	   "Number of times pmap_pte_quick didn't change PMAP1");
266static struct mtx PMAP2mutex;
267
268static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
269static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
270static void	pmap_clear_ptes(vm_page_t m, int bit);
271
272static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
273static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
274static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
275					vm_offset_t va);
276static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
277static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
278    vm_page_t m);
279
280static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
281
282static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
283static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m);
284static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
285static void pmap_pte_release(pt_entry_t *pte);
286static int pmap_unuse_pt(pmap_t, vm_offset_t);
287static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
288#ifdef PAE
289static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
290#endif
291
292CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
293CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
294
295/*
296 * Move the kernel virtual free pointer to the next
297 * 4MB.  This is used to help improve performance
298 * by using a large (4MB) page for much of the kernel
299 * (.text, .data, .bss)
300 */
301static vm_offset_t
302pmap_kmem_choose(vm_offset_t addr)
303{
304	vm_offset_t newaddr = addr;
305
306#ifndef DISABLE_PSE
307	if (cpu_feature & CPUID_PSE)
308		newaddr = (addr + PDRMASK) & ~PDRMASK;
309#endif
310	return newaddr;
311}
312
313/*
314 *	Bootstrap the system enough to run with virtual memory.
315 *
316 *	On the i386 this is called after mapping has already been enabled
317 *	and just syncs the pmap module with what has already been done.
318 *	[We can't call it easily with mapping off since the kernel is not
319 *	mapped with PA == VA, hence we would have to relocate every address
320 *	from the linked base (virtual) address "KERNBASE" to the actual
321 *	(physical) address starting relative to 0]
322 */
323void
324pmap_bootstrap(firstaddr, loadaddr)
325	vm_paddr_t firstaddr;
326	vm_paddr_t loadaddr;
327{
328	vm_offset_t va;
329	pt_entry_t *pte, *unused;
330	struct sysmaps *sysmaps;
331	int i;
332
333	/*
334	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
335	 * large. It should instead be correctly calculated in locore.s and
336	 * not based on 'first' (which is a physical address, not a virtual
337	 * address, for the start of unused physical memory). The kernel
338	 * page tables are NOT double mapped and thus should not be included
339	 * in this calculation.
340	 */
341	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
342	virtual_avail = pmap_kmem_choose(virtual_avail);
343
344	virtual_end = VM_MAX_KERNEL_ADDRESS;
345
346	/*
347	 * Initialize the kernel pmap (which is statically allocated).
348	 */
349	PMAP_LOCK_INIT(kernel_pmap);
350	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
351#ifdef PAE
352	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
353#endif
354	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
355	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
356	LIST_INIT(&allpmaps);
357	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
358	mtx_lock_spin(&allpmaps_lock);
359	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
360	mtx_unlock_spin(&allpmaps_lock);
361	nkpt = NKPT;
362
363	/*
364	 * Reserve some special page table entries/VA space for temporary
365	 * mapping of pages.
366	 */
367#define	SYSMAP(c, p, v, n)	\
368	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
369
370	va = virtual_avail;
371	pte = vtopte(va);
372
373	/*
374	 * CMAP1/CMAP2 are used for zeroing and copying pages.
375	 * CMAP3 is used for the idle process page zeroing.
376	 */
377	for (i = 0; i < MAXCPU; i++) {
378		sysmaps = &sysmaps_pcpu[i];
379		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
380		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
381		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
382	}
383	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
384	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
385	*CMAP3 = 0;
386
387	/*
388	 * Crashdump maps.
389	 */
390	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
391
392	/*
393	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
394	 */
395	SYSMAP(caddr_t, unused, ptvmmap, 1)
396
397	/*
398	 * msgbufp is used to map the system message buffer.
399	 */
400	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
401
402	/*
403	 * ptemap is used for pmap_pte_quick
404	 */
405	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
406	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
407
408	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
409
410	virtual_avail = va;
411
412	*CMAP1 = 0;
413
414#ifdef XBOX
415	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
416	 * an early stadium, we cannot yet neatly map video memory ... :-(
417	 * Better fixes are very welcome! */
418	if (!arch_i386_is_xbox)
419#endif
420	for (i = 0; i < NKPT; i++)
421		PTD[i] = 0;
422
423	/* Turn on PG_G on kernel page(s) */
424	pmap_set_pg();
425}
426
427/*
428 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
429 */
430void
431pmap_set_pg(void)
432{
433	pd_entry_t pdir;
434	pt_entry_t *pte;
435	vm_offset_t va, endva;
436	int i;
437
438	if (pgeflag == 0)
439		return;
440
441	i = KERNLOAD/NBPDR;
442	endva = KERNBASE + KERNend;
443
444	if (pseflag) {
445		va = KERNBASE + KERNLOAD;
446		while (va  < endva) {
447			pdir = kernel_pmap->pm_pdir[KPTDI+i];
448			pdir |= pgeflag;
449			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
450			invltlb();	/* Play it safe, invltlb() every time */
451			i++;
452			va += NBPDR;
453		}
454	} else {
455		va = (vm_offset_t)btext;
456		while (va < endva) {
457			pte = vtopte(va);
458			if (*pte)
459				*pte |= pgeflag;
460			invltlb();	/* Play it safe, invltlb() every time */
461			va += PAGE_SIZE;
462		}
463	}
464}
465
466/*
467 * Initialize a vm_page's machine-dependent fields.
468 */
469void
470pmap_page_init(vm_page_t m)
471{
472
473	TAILQ_INIT(&m->md.pv_list);
474	m->md.pv_list_count = 0;
475}
476
477#ifdef PAE
478
479static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
480
481static void *
482pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
483{
484	*flags = UMA_SLAB_PRIV;
485	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
486	    1, 0));
487}
488#endif
489
490/*
491 *	Initialize the pmap module.
492 *	Called by vm_init, to initialize any structures that the pmap
493 *	system needs to map virtual memory.
494 */
495void
496pmap_init(void)
497{
498
499	TAILQ_INIT(&pv_freechunks);
500	/*
501	 * Initialize the address space (zone) for the pv entries.  Set a
502	 * high water mark so that the system can recover from excessive
503	 * numbers of pv entries.
504	 */
505	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
506	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
507	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
508	pv_entry_max = roundup(pv_entry_max, _NPCPV);
509	pv_entry_high_water = 9 * (pv_entry_max / 10);
510
511	pv_maxchunks = pv_entry_max / _NPCPV;
512	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
513	    PAGE_SIZE * pv_maxchunks);
514	if (pv_chunkbase == NULL)
515		panic("pmap_init: not enough kvm for pv chunks");
516	pv_nextindex = 0;
517#ifdef PAE
518	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
519	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
520	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
521	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
522#endif
523}
524
525
526SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
527SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
528	"Max number of PV entries");
529SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
530	"Page share factor per proc");
531
532/***************************************************
533 * Low level helper routines.....
534 ***************************************************/
535
536#ifdef SMP
537/*
538 * For SMP, these functions have to use the IPI mechanism for coherence.
539 */
540void
541pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
542{
543	u_int cpumask;
544	u_int other_cpus;
545
546	if (smp_started) {
547		if (!(read_eflags() & PSL_I))
548			panic("%s: interrupts disabled", __func__);
549		mtx_lock_spin(&smp_ipi_mtx);
550	} else
551		critical_enter();
552	/*
553	 * We need to disable interrupt preemption but MUST NOT have
554	 * interrupts disabled here.
555	 * XXX we may need to hold schedlock to get a coherent pm_active
556	 * XXX critical sections disable interrupts again
557	 */
558	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
559		invlpg(va);
560		smp_invlpg(va);
561	} else {
562		cpumask = PCPU_GET(cpumask);
563		other_cpus = PCPU_GET(other_cpus);
564		if (pmap->pm_active & cpumask)
565			invlpg(va);
566		if (pmap->pm_active & other_cpus)
567			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
568	}
569	if (smp_started)
570		mtx_unlock_spin(&smp_ipi_mtx);
571	else
572		critical_exit();
573}
574
575void
576pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
577{
578	u_int cpumask;
579	u_int other_cpus;
580	vm_offset_t addr;
581
582	if (smp_started) {
583		if (!(read_eflags() & PSL_I))
584			panic("%s: interrupts disabled", __func__);
585		mtx_lock_spin(&smp_ipi_mtx);
586	} else
587		critical_enter();
588	/*
589	 * We need to disable interrupt preemption but MUST NOT have
590	 * interrupts disabled here.
591	 * XXX we may need to hold schedlock to get a coherent pm_active
592	 * XXX critical sections disable interrupts again
593	 */
594	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
595		for (addr = sva; addr < eva; addr += PAGE_SIZE)
596			invlpg(addr);
597		smp_invlpg_range(sva, eva);
598	} else {
599		cpumask = PCPU_GET(cpumask);
600		other_cpus = PCPU_GET(other_cpus);
601		if (pmap->pm_active & cpumask)
602			for (addr = sva; addr < eva; addr += PAGE_SIZE)
603				invlpg(addr);
604		if (pmap->pm_active & other_cpus)
605			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
606			    sva, eva);
607	}
608	if (smp_started)
609		mtx_unlock_spin(&smp_ipi_mtx);
610	else
611		critical_exit();
612}
613
614void
615pmap_invalidate_all(pmap_t pmap)
616{
617	u_int cpumask;
618	u_int other_cpus;
619
620	if (smp_started) {
621		if (!(read_eflags() & PSL_I))
622			panic("%s: interrupts disabled", __func__);
623		mtx_lock_spin(&smp_ipi_mtx);
624	} else
625		critical_enter();
626	/*
627	 * We need to disable interrupt preemption but MUST NOT have
628	 * interrupts disabled here.
629	 * XXX we may need to hold schedlock to get a coherent pm_active
630	 * XXX critical sections disable interrupts again
631	 */
632	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
633		invltlb();
634		smp_invltlb();
635	} else {
636		cpumask = PCPU_GET(cpumask);
637		other_cpus = PCPU_GET(other_cpus);
638		if (pmap->pm_active & cpumask)
639			invltlb();
640		if (pmap->pm_active & other_cpus)
641			smp_masked_invltlb(pmap->pm_active & other_cpus);
642	}
643	if (smp_started)
644		mtx_unlock_spin(&smp_ipi_mtx);
645	else
646		critical_exit();
647}
648#else /* !SMP */
649/*
650 * Normal, non-SMP, 486+ invalidation functions.
651 * We inline these within pmap.c for speed.
652 */
653PMAP_INLINE void
654pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
655{
656
657	if (pmap == kernel_pmap || pmap->pm_active)
658		invlpg(va);
659}
660
661PMAP_INLINE void
662pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
663{
664	vm_offset_t addr;
665
666	if (pmap == kernel_pmap || pmap->pm_active)
667		for (addr = sva; addr < eva; addr += PAGE_SIZE)
668			invlpg(addr);
669}
670
671PMAP_INLINE void
672pmap_invalidate_all(pmap_t pmap)
673{
674
675	if (pmap == kernel_pmap || pmap->pm_active)
676		invltlb();
677}
678#endif /* !SMP */
679
680/*
681 * Are we current address space or kernel?  N.B. We return FALSE when
682 * a pmap's page table is in use because a kernel thread is borrowing
683 * it.  The borrowed page table can change spontaneously, making any
684 * dependence on its continued use subject to a race condition.
685 */
686static __inline int
687pmap_is_current(pmap_t pmap)
688{
689
690	return (pmap == kernel_pmap ||
691		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
692	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
693}
694
695/*
696 * If the given pmap is not the current or kernel pmap, the returned pte must
697 * be released by passing it to pmap_pte_release().
698 */
699pt_entry_t *
700pmap_pte(pmap_t pmap, vm_offset_t va)
701{
702	pd_entry_t newpf;
703	pd_entry_t *pde;
704
705	pde = pmap_pde(pmap, va);
706	if (*pde & PG_PS)
707		return (pde);
708	if (*pde != 0) {
709		/* are we current address space or kernel? */
710		if (pmap_is_current(pmap))
711			return (vtopte(va));
712		mtx_lock(&PMAP2mutex);
713		newpf = *pde & PG_FRAME;
714		if ((*PMAP2 & PG_FRAME) != newpf) {
715			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
716			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
717		}
718		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
719	}
720	return (0);
721}
722
723/*
724 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
725 * being NULL.
726 */
727static __inline void
728pmap_pte_release(pt_entry_t *pte)
729{
730
731	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
732		mtx_unlock(&PMAP2mutex);
733}
734
735static __inline void
736invlcaddr(void *caddr)
737{
738
739	invlpg((u_int)caddr);
740}
741
742/*
743 * Super fast pmap_pte routine best used when scanning
744 * the pv lists.  This eliminates many coarse-grained
745 * invltlb calls.  Note that many of the pv list
746 * scans are across different pmaps.  It is very wasteful
747 * to do an entire invltlb for checking a single mapping.
748 *
749 * If the given pmap is not the current pmap, vm_page_queue_mtx
750 * must be held and curthread pinned to a CPU.
751 */
752static pt_entry_t *
753pmap_pte_quick(pmap_t pmap, vm_offset_t va)
754{
755	pd_entry_t newpf;
756	pd_entry_t *pde;
757
758	pde = pmap_pde(pmap, va);
759	if (*pde & PG_PS)
760		return (pde);
761	if (*pde != 0) {
762		/* are we current address space or kernel? */
763		if (pmap_is_current(pmap))
764			return (vtopte(va));
765		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
766		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
767		newpf = *pde & PG_FRAME;
768		if ((*PMAP1 & PG_FRAME) != newpf) {
769			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
770#ifdef SMP
771			PMAP1cpu = PCPU_GET(cpuid);
772#endif
773			invlcaddr(PADDR1);
774			PMAP1changed++;
775		} else
776#ifdef SMP
777		if (PMAP1cpu != PCPU_GET(cpuid)) {
778			PMAP1cpu = PCPU_GET(cpuid);
779			invlcaddr(PADDR1);
780			PMAP1changedcpu++;
781		} else
782#endif
783			PMAP1unchanged++;
784		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
785	}
786	return (0);
787}
788
789/*
790 *	Routine:	pmap_extract
791 *	Function:
792 *		Extract the physical page address associated
793 *		with the given map/virtual_address pair.
794 */
795vm_paddr_t
796pmap_extract(pmap_t pmap, vm_offset_t va)
797{
798	vm_paddr_t rtval;
799	pt_entry_t *pte;
800	pd_entry_t pde;
801
802	rtval = 0;
803	PMAP_LOCK(pmap);
804	pde = pmap->pm_pdir[va >> PDRSHIFT];
805	if (pde != 0) {
806		if ((pde & PG_PS) != 0) {
807			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
808			PMAP_UNLOCK(pmap);
809			return rtval;
810		}
811		pte = pmap_pte(pmap, va);
812		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
813		pmap_pte_release(pte);
814	}
815	PMAP_UNLOCK(pmap);
816	return (rtval);
817}
818
819/*
820 *	Routine:	pmap_extract_and_hold
821 *	Function:
822 *		Atomically extract and hold the physical page
823 *		with the given pmap and virtual address pair
824 *		if that mapping permits the given protection.
825 */
826vm_page_t
827pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
828{
829	pd_entry_t pde;
830	pt_entry_t pte;
831	vm_page_t m;
832
833	m = NULL;
834	vm_page_lock_queues();
835	PMAP_LOCK(pmap);
836	pde = *pmap_pde(pmap, va);
837	if (pde != 0) {
838		if (pde & PG_PS) {
839			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
840				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
841				    (va & PDRMASK));
842				vm_page_hold(m);
843			}
844		} else {
845			sched_pin();
846			pte = *pmap_pte_quick(pmap, va);
847			if (pte != 0 &&
848			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
849				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
850				vm_page_hold(m);
851			}
852			sched_unpin();
853		}
854	}
855	vm_page_unlock_queues();
856	PMAP_UNLOCK(pmap);
857	return (m);
858}
859
860/***************************************************
861 * Low level mapping routines.....
862 ***************************************************/
863
864/*
865 * Add a wired page to the kva.
866 * Note: not SMP coherent.
867 */
868PMAP_INLINE void
869pmap_kenter(vm_offset_t va, vm_paddr_t pa)
870{
871	pt_entry_t *pte;
872
873	pte = vtopte(va);
874	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
875}
876
877/*
878 * Remove a page from the kernel pagetables.
879 * Note: not SMP coherent.
880 */
881PMAP_INLINE void
882pmap_kremove(vm_offset_t va)
883{
884	pt_entry_t *pte;
885
886	pte = vtopte(va);
887	pte_clear(pte);
888}
889
890/*
891 *	Used to map a range of physical addresses into kernel
892 *	virtual address space.
893 *
894 *	The value passed in '*virt' is a suggested virtual address for
895 *	the mapping. Architectures which can support a direct-mapped
896 *	physical to virtual region can return the appropriate address
897 *	within that region, leaving '*virt' unchanged. Other
898 *	architectures should map the pages starting at '*virt' and
899 *	update '*virt' with the first usable address after the mapped
900 *	region.
901 */
902vm_offset_t
903pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
904{
905	vm_offset_t va, sva;
906
907	va = sva = *virt;
908	while (start < end) {
909		pmap_kenter(va, start);
910		va += PAGE_SIZE;
911		start += PAGE_SIZE;
912	}
913	pmap_invalidate_range(kernel_pmap, sva, va);
914	*virt = va;
915	return (sva);
916}
917
918
919/*
920 * Add a list of wired pages to the kva
921 * this routine is only used for temporary
922 * kernel mappings that do not need to have
923 * page modification or references recorded.
924 * Note that old mappings are simply written
925 * over.  The page *must* be wired.
926 * Note: SMP coherent.  Uses a ranged shootdown IPI.
927 */
928void
929pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
930{
931	vm_offset_t va;
932
933	va = sva;
934	while (count-- > 0) {
935		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
936		va += PAGE_SIZE;
937		m++;
938	}
939	pmap_invalidate_range(kernel_pmap, sva, va);
940}
941
942/*
943 * This routine tears out page mappings from the
944 * kernel -- it is meant only for temporary mappings.
945 * Note: SMP coherent.  Uses a ranged shootdown IPI.
946 */
947void
948pmap_qremove(vm_offset_t sva, int count)
949{
950	vm_offset_t va;
951
952	va = sva;
953	while (count-- > 0) {
954		pmap_kremove(va);
955		va += PAGE_SIZE;
956	}
957	pmap_invalidate_range(kernel_pmap, sva, va);
958}
959
960/***************************************************
961 * Page table page management routines.....
962 ***************************************************/
963
964/*
965 * This routine unholds page table pages, and if the hold count
966 * drops to zero, then it decrements the wire count.
967 */
968static PMAP_INLINE int
969pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
970{
971
972	--m->wire_count;
973	if (m->wire_count == 0)
974		return _pmap_unwire_pte_hold(pmap, m);
975	else
976		return 0;
977}
978
979static int
980_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
981{
982	vm_offset_t pteva;
983
984	/*
985	 * unmap the page table page
986	 */
987	pmap->pm_pdir[m->pindex] = 0;
988	--pmap->pm_stats.resident_count;
989
990	/*
991	 * Do an invltlb to make the invalidated mapping
992	 * take effect immediately.
993	 */
994	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
995	pmap_invalidate_page(pmap, pteva);
996
997	vm_page_free_zero(m);
998	atomic_subtract_int(&cnt.v_wire_count, 1);
999	return 1;
1000}
1001
1002/*
1003 * After removing a page table entry, this routine is used to
1004 * conditionally free the page, and manage the hold/wire counts.
1005 */
1006static int
1007pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
1008{
1009	pd_entry_t ptepde;
1010	vm_page_t mpte;
1011
1012	if (va >= VM_MAXUSER_ADDRESS)
1013		return 0;
1014	ptepde = *pmap_pde(pmap, va);
1015	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1016	return pmap_unwire_pte_hold(pmap, mpte);
1017}
1018
1019void
1020pmap_pinit0(pmap)
1021	struct pmap *pmap;
1022{
1023
1024	PMAP_LOCK_INIT(pmap);
1025	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1026#ifdef PAE
1027	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1028#endif
1029	pmap->pm_active = 0;
1030	PCPU_SET(curpmap, pmap);
1031	TAILQ_INIT(&pmap->pm_pvchunk);
1032	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1033	mtx_lock_spin(&allpmaps_lock);
1034	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1035	mtx_unlock_spin(&allpmaps_lock);
1036}
1037
1038/*
1039 * Initialize a preallocated and zeroed pmap structure,
1040 * such as one in a vmspace structure.
1041 */
1042void
1043pmap_pinit(pmap)
1044	register struct pmap *pmap;
1045{
1046	vm_page_t m, ptdpg[NPGPTD];
1047	vm_paddr_t pa;
1048	static int color;
1049	int i;
1050
1051	PMAP_LOCK_INIT(pmap);
1052
1053	/*
1054	 * No need to allocate page table space yet but we do need a valid
1055	 * page directory table.
1056	 */
1057	if (pmap->pm_pdir == NULL) {
1058		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1059		    NBPTD);
1060#ifdef PAE
1061		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1062		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1063		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1064		    ("pmap_pinit: pdpt misaligned"));
1065		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1066		    ("pmap_pinit: pdpt above 4g"));
1067#endif
1068	}
1069
1070	/*
1071	 * allocate the page directory page(s)
1072	 */
1073	for (i = 0; i < NPGPTD;) {
1074		m = vm_page_alloc(NULL, color++,
1075		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1076		    VM_ALLOC_ZERO);
1077		if (m == NULL)
1078			VM_WAIT;
1079		else {
1080			ptdpg[i++] = m;
1081		}
1082	}
1083
1084	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1085
1086	for (i = 0; i < NPGPTD; i++) {
1087		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1088			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1089	}
1090
1091	mtx_lock_spin(&allpmaps_lock);
1092	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1093	mtx_unlock_spin(&allpmaps_lock);
1094	/* Wire in kernel global address entries. */
1095	/* XXX copies current process, does not fill in MPPTDI */
1096	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1097#ifdef SMP
1098	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1099#endif
1100
1101	/* install self-referential address mapping entry(s) */
1102	for (i = 0; i < NPGPTD; i++) {
1103		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1104		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1105#ifdef PAE
1106		pmap->pm_pdpt[i] = pa | PG_V;
1107#endif
1108	}
1109
1110	pmap->pm_active = 0;
1111	TAILQ_INIT(&pmap->pm_pvchunk);
1112	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1113}
1114
1115/*
1116 * this routine is called if the page table page is not
1117 * mapped correctly.
1118 */
1119static vm_page_t
1120_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1121{
1122	vm_paddr_t ptepa;
1123	vm_page_t m;
1124
1125	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1126	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1127	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1128
1129	/*
1130	 * Allocate a page table page.
1131	 */
1132	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1133	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1134		if (flags & M_WAITOK) {
1135			PMAP_UNLOCK(pmap);
1136			vm_page_unlock_queues();
1137			VM_WAIT;
1138			vm_page_lock_queues();
1139			PMAP_LOCK(pmap);
1140		}
1141
1142		/*
1143		 * Indicate the need to retry.  While waiting, the page table
1144		 * page may have been allocated.
1145		 */
1146		return (NULL);
1147	}
1148	if ((m->flags & PG_ZERO) == 0)
1149		pmap_zero_page(m);
1150
1151	/*
1152	 * Map the pagetable page into the process address space, if
1153	 * it isn't already there.
1154	 */
1155
1156	pmap->pm_stats.resident_count++;
1157
1158	ptepa = VM_PAGE_TO_PHYS(m);
1159	pmap->pm_pdir[ptepindex] =
1160		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1161
1162	return m;
1163}
1164
1165static vm_page_t
1166pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1167{
1168	unsigned ptepindex;
1169	pd_entry_t ptepa;
1170	vm_page_t m;
1171
1172	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1173	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1174	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1175
1176	/*
1177	 * Calculate pagetable page index
1178	 */
1179	ptepindex = va >> PDRSHIFT;
1180retry:
1181	/*
1182	 * Get the page directory entry
1183	 */
1184	ptepa = pmap->pm_pdir[ptepindex];
1185
1186	/*
1187	 * This supports switching from a 4MB page to a
1188	 * normal 4K page.
1189	 */
1190	if (ptepa & PG_PS) {
1191		pmap->pm_pdir[ptepindex] = 0;
1192		ptepa = 0;
1193		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1194		pmap_invalidate_all(kernel_pmap);
1195	}
1196
1197	/*
1198	 * If the page table page is mapped, we just increment the
1199	 * hold count, and activate it.
1200	 */
1201	if (ptepa) {
1202		m = PHYS_TO_VM_PAGE(ptepa);
1203		m->wire_count++;
1204	} else {
1205		/*
1206		 * Here if the pte page isn't mapped, or if it has
1207		 * been deallocated.
1208		 */
1209		m = _pmap_allocpte(pmap, ptepindex, flags);
1210		if (m == NULL && (flags & M_WAITOK))
1211			goto retry;
1212	}
1213	return (m);
1214}
1215
1216
1217/***************************************************
1218* Pmap allocation/deallocation routines.
1219 ***************************************************/
1220
1221#ifdef SMP
1222/*
1223 * Deal with a SMP shootdown of other users of the pmap that we are
1224 * trying to dispose of.  This can be a bit hairy.
1225 */
1226static u_int *lazymask;
1227static u_int lazyptd;
1228static volatile u_int lazywait;
1229
1230void pmap_lazyfix_action(void);
1231
1232void
1233pmap_lazyfix_action(void)
1234{
1235	u_int mymask = PCPU_GET(cpumask);
1236
1237#ifdef COUNT_IPIS
1238	*ipi_lazypmap_counts[PCPU_GET(cpuid)]++;
1239#endif
1240	if (rcr3() == lazyptd)
1241		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1242	atomic_clear_int(lazymask, mymask);
1243	atomic_store_rel_int(&lazywait, 1);
1244}
1245
1246static void
1247pmap_lazyfix_self(u_int mymask)
1248{
1249
1250	if (rcr3() == lazyptd)
1251		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1252	atomic_clear_int(lazymask, mymask);
1253}
1254
1255
1256static void
1257pmap_lazyfix(pmap_t pmap)
1258{
1259	u_int mymask;
1260	u_int mask;
1261	register u_int spins;
1262
1263	while ((mask = pmap->pm_active) != 0) {
1264		spins = 50000000;
1265		mask = mask & -mask;	/* Find least significant set bit */
1266		mtx_lock_spin(&smp_ipi_mtx);
1267#ifdef PAE
1268		lazyptd = vtophys(pmap->pm_pdpt);
1269#else
1270		lazyptd = vtophys(pmap->pm_pdir);
1271#endif
1272		mymask = PCPU_GET(cpumask);
1273		if (mask == mymask) {
1274			lazymask = &pmap->pm_active;
1275			pmap_lazyfix_self(mymask);
1276		} else {
1277			atomic_store_rel_int((u_int *)&lazymask,
1278			    (u_int)&pmap->pm_active);
1279			atomic_store_rel_int(&lazywait, 0);
1280			ipi_selected(mask, IPI_LAZYPMAP);
1281			while (lazywait == 0) {
1282				ia32_pause();
1283				if (--spins == 0)
1284					break;
1285			}
1286		}
1287		mtx_unlock_spin(&smp_ipi_mtx);
1288		if (spins == 0)
1289			printf("pmap_lazyfix: spun for 50000000\n");
1290	}
1291}
1292
1293#else	/* SMP */
1294
1295/*
1296 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1297 * unlikely to have to even execute this code, including the fact
1298 * that the cleanup is deferred until the parent does a wait(2), which
1299 * means that another userland process has run.
1300 */
1301static void
1302pmap_lazyfix(pmap_t pmap)
1303{
1304	u_int cr3;
1305
1306	cr3 = vtophys(pmap->pm_pdir);
1307	if (cr3 == rcr3()) {
1308		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1309		pmap->pm_active &= ~(PCPU_GET(cpumask));
1310	}
1311}
1312#endif	/* SMP */
1313
1314/*
1315 * Release any resources held by the given physical map.
1316 * Called when a pmap initialized by pmap_pinit is being released.
1317 * Should only be called if the map contains no valid mappings.
1318 */
1319void
1320pmap_release(pmap_t pmap)
1321{
1322	vm_page_t m, ptdpg[NPGPTD];
1323	int i;
1324
1325	KASSERT(pmap->pm_stats.resident_count == 0,
1326	    ("pmap_release: pmap resident count %ld != 0",
1327	    pmap->pm_stats.resident_count));
1328
1329	pmap_lazyfix(pmap);
1330	mtx_lock_spin(&allpmaps_lock);
1331	LIST_REMOVE(pmap, pm_list);
1332	mtx_unlock_spin(&allpmaps_lock);
1333
1334	for (i = 0; i < NPGPTD; i++)
1335		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1336
1337	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1338	    sizeof(*pmap->pm_pdir));
1339#ifdef SMP
1340	pmap->pm_pdir[MPPTDI] = 0;
1341#endif
1342
1343	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1344
1345	vm_page_lock_queues();
1346	for (i = 0; i < NPGPTD; i++) {
1347		m = ptdpg[i];
1348#ifdef PAE
1349		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1350		    ("pmap_release: got wrong ptd page"));
1351#endif
1352		m->wire_count--;
1353		atomic_subtract_int(&cnt.v_wire_count, 1);
1354		vm_page_free_zero(m);
1355	}
1356	vm_page_unlock_queues();
1357	PMAP_LOCK_DESTROY(pmap);
1358}
1359
1360static int
1361kvm_size(SYSCTL_HANDLER_ARGS)
1362{
1363	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1364
1365	return sysctl_handle_long(oidp, &ksize, 0, req);
1366}
1367SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1368    0, 0, kvm_size, "IU", "Size of KVM");
1369
1370static int
1371kvm_free(SYSCTL_HANDLER_ARGS)
1372{
1373	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1374
1375	return sysctl_handle_long(oidp, &kfree, 0, req);
1376}
1377SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1378    0, 0, kvm_free, "IU", "Amount of KVM free");
1379
1380/*
1381 * grow the number of kernel page table entries, if needed
1382 */
1383void
1384pmap_growkernel(vm_offset_t addr)
1385{
1386	struct pmap *pmap;
1387	vm_paddr_t ptppaddr;
1388	vm_page_t nkpg;
1389	pd_entry_t newpdir;
1390	pt_entry_t *pde;
1391
1392	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1393	if (kernel_vm_end == 0) {
1394		kernel_vm_end = KERNBASE;
1395		nkpt = 0;
1396		while (pdir_pde(PTD, kernel_vm_end)) {
1397			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1398			nkpt++;
1399			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1400				kernel_vm_end = kernel_map->max_offset;
1401				break;
1402			}
1403		}
1404	}
1405	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1406	if (addr - 1 >= kernel_map->max_offset)
1407		addr = kernel_map->max_offset;
1408	while (kernel_vm_end < addr) {
1409		if (pdir_pde(PTD, kernel_vm_end)) {
1410			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1411			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1412				kernel_vm_end = kernel_map->max_offset;
1413				break;
1414			}
1415			continue;
1416		}
1417
1418		/*
1419		 * This index is bogus, but out of the way
1420		 */
1421		nkpg = vm_page_alloc(NULL, nkpt,
1422		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1423		if (!nkpg)
1424			panic("pmap_growkernel: no memory to grow kernel");
1425
1426		nkpt++;
1427
1428		pmap_zero_page(nkpg);
1429		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1430		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1431		pdir_pde(PTD, kernel_vm_end) = newpdir;
1432
1433		mtx_lock_spin(&allpmaps_lock);
1434		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1435			pde = pmap_pde(pmap, kernel_vm_end);
1436			pde_store(pde, newpdir);
1437		}
1438		mtx_unlock_spin(&allpmaps_lock);
1439		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1440		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1441			kernel_vm_end = kernel_map->max_offset;
1442			break;
1443		}
1444	}
1445}
1446
1447
1448/***************************************************
1449 * page management routines.
1450 ***************************************************/
1451
1452CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1453CTASSERT(_NPCM == 11);
1454
1455static __inline struct pv_chunk *
1456pv_to_chunk(pv_entry_t pv)
1457{
1458
1459	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1460}
1461
1462#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1463
1464#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1465#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1466
1467static uint64_t pc_freemask[11] = {
1468	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1469	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1470	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1471	PC_FREE0_9, PC_FREE10
1472};
1473
1474SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1475	"Current number of pv entries");
1476
1477#ifdef PV_STATS
1478static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1479static int pc_chunk_spare;
1480
1481SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1482	"Current number of pv entry chunks");
1483SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1484	"Current number of pv entry chunks allocated");
1485SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1486	"Current number of pv entry chunks frees");
1487SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1488	"Number of times tried to get a chunk page but failed.");
1489SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_spare, CTLFLAG_RD, &pc_chunk_spare, 0,
1490	"Current number of spare pv entry chunks allocated");
1491
1492static long pv_entry_frees, pv_entry_allocs;
1493static int pv_entry_spare;
1494
1495SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1496	"Current number of pv entry frees");
1497SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1498	"Current number of pv entry allocs");
1499SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1500	"Current number of spare pv entries");
1501
1502static int pmap_collect_inactive, pmap_collect_active;
1503
1504SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1505	"Current number times pmap_collect called on inactive queue");
1506SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1507	"Current number times pmap_collect called on active queue");
1508#endif
1509
1510/*
1511 * We are in a serious low memory condition.  Resort to
1512 * drastic measures to free some pages so we can allocate
1513 * another pv entry chunk.  This is normally called to
1514 * unmap inactive pages, and if necessary, active pages.
1515 */
1516static void
1517pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1518{
1519	pmap_t pmap;
1520	pt_entry_t *pte, tpte;
1521	pv_entry_t next_pv, pv;
1522	vm_offset_t va;
1523	vm_page_t m;
1524
1525	sched_pin();
1526	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1527		if (m->hold_count || m->busy || (m->flags & PG_BUSY))
1528			continue;
1529		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1530			va = pv->pv_va;
1531			pmap = PV_PMAP(pv);
1532			/* Avoid deadlock and lock recursion. */
1533			if (pmap > locked_pmap)
1534				PMAP_LOCK(pmap);
1535			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1536				continue;
1537			pmap->pm_stats.resident_count--;
1538			pte = pmap_pte_quick(pmap, va);
1539			tpte = pte_load_clear(pte);
1540			KASSERT((tpte & PG_W) == 0,
1541			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1542			if (tpte & PG_A)
1543				vm_page_flag_set(m, PG_REFERENCED);
1544			if (tpte & PG_M) {
1545				KASSERT((tpte & PG_RW),
1546	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
1547				    va, (uintmax_t)tpte));
1548				vm_page_dirty(m);
1549			}
1550			pmap_invalidate_page(pmap, va);
1551			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1552			if (TAILQ_EMPTY(&m->md.pv_list))
1553				vm_page_flag_clear(m, PG_WRITEABLE);
1554			m->md.pv_list_count--;
1555			pmap_unuse_pt(pmap, va);
1556			if (pmap != locked_pmap)
1557				PMAP_UNLOCK(pmap);
1558			free_pv_entry(locked_pmap, pv);
1559		}
1560	}
1561	sched_unpin();
1562}
1563
1564
1565/*
1566 * free the pv_entry back to the free list
1567 */
1568static void
1569free_pv_entry(pmap_t pmap, pv_entry_t pv)
1570{
1571	struct pv_chunk *pc;
1572	int idx, field, bit;
1573
1574	PV_STAT(pv_entry_frees++);
1575	PV_STAT(pv_entry_spare++);
1576	pv_entry_count--;
1577	pc = pv_to_chunk(pv);
1578	idx = pv - &pc->pc_pventry[0];
1579	field = idx / 32;
1580	bit = idx % 32;
1581	pc->pc_map[field] |= 1ul << bit;
1582	/* move to head of list */
1583	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1584	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1585	for (idx = 0; idx < _NPCM; idx++)
1586		if (pc->pc_map[idx] != pc_freemask[idx])
1587			return;
1588	PV_STAT(pv_entry_spare -= _NPCPV);
1589	PV_STAT(pc_chunk_count--);
1590	PV_STAT(pc_chunk_frees++);
1591	/* entire chunk is free, return it to freelist */
1592	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1593	TAILQ_INSERT_HEAD(&pv_freechunks, pc, pc_list);
1594	PV_STAT(pc_chunk_spare++);
1595}
1596
1597/*
1598 * get a new pv_entry, allocating a block from the system
1599 * when needed.
1600 */
1601static pv_entry_t
1602get_pv_entry(pmap_t pmap, int try)
1603{
1604	static const struct timeval printinterval = { 60, 0 };
1605	static struct timeval lastprint;
1606	static vm_pindex_t colour;
1607	int bit, field;
1608	pv_entry_t pv;
1609	struct pv_chunk *pc;
1610	vm_page_t m;
1611
1612	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1613	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1614	PV_STAT(pv_entry_allocs++);
1615	pv_entry_count++;
1616	if (pv_entry_count > pv_entry_high_water)
1617		pagedaemon_wakeup();
1618	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1619	if (pc != NULL) {
1620		for (field = 0; field < _NPCM; field++) {
1621			if (pc->pc_map[field]) {
1622				bit = bsfl(pc->pc_map[field]);
1623				break;
1624			}
1625		}
1626		if (field < _NPCM) {
1627			pv = &pc->pc_pventry[field * 32 + bit];
1628			pc->pc_map[field] &= ~(1ul << bit);
1629			/* If this was the last item, move it to tail */
1630			for (field = 0; field < _NPCM; field++)
1631				if (pc->pc_map[field] != 0) {
1632					PV_STAT(pv_entry_spare--);
1633					return (pv);	/* not full, return */
1634				}
1635			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1636			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1637			PV_STAT(pv_entry_spare--);
1638			return (pv);
1639		}
1640	}
1641	/* See if we have a preallocated chunk */
1642	pc = TAILQ_FIRST(&pv_freechunks);
1643	if (pc) {
1644		/* Take a preallocated one from the freelist */
1645		TAILQ_REMOVE(&pv_freechunks, pc, pc_list);
1646		PV_STAT(pc_chunk_spare--);
1647	} else {
1648		/* No free items, allocate another chunk */
1649		m = vm_page_alloc(NULL, colour, VM_ALLOC_SYSTEM |
1650		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
1651		if (m == NULL) {
1652			if (try) {
1653				pv_entry_count--;
1654				PV_STAT(pc_chunk_tryfail++);
1655				return (NULL);
1656			}
1657			/*
1658			 * Reclaim pv entries: At first, destroy mappings to
1659			 * inactive pages.  After that, if a pv chunk entry
1660			 * is still needed, destroy mappings to active pages.
1661			 */
1662			if (ratecheck(&lastprint, &printinterval))
1663				printf("Approaching the limit on PV entries, "
1664				    "consider increasing tunables "
1665				    "vm.pmap.shpgperproc or "
1666				    "vm.pmap.pv_entry_max\n");
1667			PV_STAT(pmap_collect_inactive++);
1668			pmap_collect(pmap, &vm_page_queues[PQ_INACTIVE]);
1669			m = vm_page_alloc(NULL, colour, VM_ALLOC_SYSTEM |
1670			    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
1671			if (m == NULL) {
1672				PV_STAT(pmap_collect_active++);
1673				pmap_collect(pmap, &vm_page_queues[PQ_ACTIVE]);
1674				m = vm_page_alloc(NULL, colour,
1675				    VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
1676				    VM_ALLOC_WIRED);
1677				if (m == NULL)
1678					panic("get_pv_entry: increase vm.pmap.shpgperproc");
1679			}
1680		}
1681		colour++;
1682		pc = pv_chunkbase + pv_nextindex;	/* Scaled */
1683		pv_nextindex++;
1684		pmap_qenter((vm_offset_t)pc, &m, 1);
1685	}
1686	PV_STAT(pc_chunk_count++);
1687	PV_STAT(pc_chunk_allocs++);
1688	pc->pc_pmap = pmap;
1689	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1690	for (field = 1; field < _NPCM; field++)
1691		pc->pc_map[field] = pc_freemask[field];
1692	pv = &pc->pc_pventry[0];
1693	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1694	PV_STAT(pv_entry_spare += _NPCPV - 1);
1695	return (pv);
1696}
1697
1698static void
1699pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1700{
1701	pv_entry_t pv;
1702
1703	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1704	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1705	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1706		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
1707			break;
1708	}
1709	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1710	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1711	m->md.pv_list_count--;
1712	if (TAILQ_EMPTY(&m->md.pv_list))
1713		vm_page_flag_clear(m, PG_WRITEABLE);
1714	free_pv_entry(pmap, pv);
1715}
1716
1717/*
1718 * Create a pv entry for page at pa for
1719 * (pmap, va).
1720 */
1721static void
1722pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1723{
1724	pv_entry_t pv;
1725
1726	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1727	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1728	pv = get_pv_entry(pmap, FALSE);
1729	pv->pv_va = va;
1730	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1731	m->md.pv_list_count++;
1732}
1733
1734/*
1735 * Conditionally create a pv entry.
1736 */
1737static boolean_t
1738pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1739{
1740	pv_entry_t pv;
1741
1742	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1743	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1744	if (pv_entry_count < pv_entry_high_water &&
1745	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
1746		pv->pv_va = va;
1747		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1748		m->md.pv_list_count++;
1749		return (TRUE);
1750	} else
1751		return (FALSE);
1752}
1753
1754/*
1755 * pmap_remove_pte: do the things to unmap a page in a process
1756 */
1757static int
1758pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1759{
1760	pt_entry_t oldpte;
1761	vm_page_t m;
1762
1763	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1764	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1765	oldpte = pte_load_clear(ptq);
1766	if (oldpte & PG_W)
1767		pmap->pm_stats.wired_count -= 1;
1768	/*
1769	 * Machines that don't support invlpg, also don't support
1770	 * PG_G.
1771	 */
1772	if (oldpte & PG_G)
1773		pmap_invalidate_page(kernel_pmap, va);
1774	pmap->pm_stats.resident_count -= 1;
1775	if (oldpte & PG_MANAGED) {
1776		m = PHYS_TO_VM_PAGE(oldpte);
1777		if (oldpte & PG_M) {
1778			KASSERT((oldpte & PG_RW),
1779	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1780			    va, (uintmax_t)oldpte));
1781			vm_page_dirty(m);
1782		}
1783		if (oldpte & PG_A)
1784			vm_page_flag_set(m, PG_REFERENCED);
1785		pmap_remove_entry(pmap, m, va);
1786	}
1787	return (pmap_unuse_pt(pmap, va));
1788}
1789
1790/*
1791 * Remove a single page from a process address space
1792 */
1793static void
1794pmap_remove_page(pmap_t pmap, vm_offset_t va)
1795{
1796	pt_entry_t *pte;
1797
1798	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1799	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1800	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1801	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1802		return;
1803	pmap_remove_pte(pmap, pte, va);
1804	pmap_invalidate_page(pmap, va);
1805}
1806
1807/*
1808 *	Remove the given range of addresses from the specified map.
1809 *
1810 *	It is assumed that the start and end are properly
1811 *	rounded to the page size.
1812 */
1813void
1814pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1815{
1816	vm_offset_t pdnxt;
1817	pd_entry_t ptpaddr;
1818	pt_entry_t *pte;
1819	int anyvalid;
1820
1821	/*
1822	 * Perform an unsynchronized read.  This is, however, safe.
1823	 */
1824	if (pmap->pm_stats.resident_count == 0)
1825		return;
1826
1827	anyvalid = 0;
1828
1829	vm_page_lock_queues();
1830	sched_pin();
1831	PMAP_LOCK(pmap);
1832
1833	/*
1834	 * special handling of removing one page.  a very
1835	 * common operation and easy to short circuit some
1836	 * code.
1837	 */
1838	if ((sva + PAGE_SIZE == eva) &&
1839	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1840		pmap_remove_page(pmap, sva);
1841		goto out;
1842	}
1843
1844	for (; sva < eva; sva = pdnxt) {
1845		unsigned pdirindex;
1846
1847		/*
1848		 * Calculate index for next page table.
1849		 */
1850		pdnxt = (sva + NBPDR) & ~PDRMASK;
1851		if (pmap->pm_stats.resident_count == 0)
1852			break;
1853
1854		pdirindex = sva >> PDRSHIFT;
1855		ptpaddr = pmap->pm_pdir[pdirindex];
1856
1857		/*
1858		 * Weed out invalid mappings. Note: we assume that the page
1859		 * directory table is always allocated, and in kernel virtual.
1860		 */
1861		if (ptpaddr == 0)
1862			continue;
1863
1864		/*
1865		 * Check for large page.
1866		 */
1867		if ((ptpaddr & PG_PS) != 0) {
1868			pmap->pm_pdir[pdirindex] = 0;
1869			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1870			anyvalid = 1;
1871			continue;
1872		}
1873
1874		/*
1875		 * Limit our scan to either the end of the va represented
1876		 * by the current page table page, or to the end of the
1877		 * range being removed.
1878		 */
1879		if (pdnxt > eva)
1880			pdnxt = eva;
1881
1882		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1883		    sva += PAGE_SIZE) {
1884			if (*pte == 0)
1885				continue;
1886
1887			/*
1888			 * The TLB entry for a PG_G mapping is invalidated
1889			 * by pmap_remove_pte().
1890			 */
1891			if ((*pte & PG_G) == 0)
1892				anyvalid = 1;
1893			if (pmap_remove_pte(pmap, pte, sva))
1894				break;
1895		}
1896	}
1897out:
1898	sched_unpin();
1899	vm_page_unlock_queues();
1900	if (anyvalid)
1901		pmap_invalidate_all(pmap);
1902	PMAP_UNLOCK(pmap);
1903}
1904
1905/*
1906 *	Routine:	pmap_remove_all
1907 *	Function:
1908 *		Removes this physical page from
1909 *		all physical maps in which it resides.
1910 *		Reflects back modify bits to the pager.
1911 *
1912 *	Notes:
1913 *		Original versions of this routine were very
1914 *		inefficient because they iteratively called
1915 *		pmap_remove (slow...)
1916 */
1917
1918void
1919pmap_remove_all(vm_page_t m)
1920{
1921	register pv_entry_t pv;
1922	pmap_t pmap;
1923	pt_entry_t *pte, tpte;
1924
1925#if defined(PMAP_DIAGNOSTIC)
1926	/*
1927	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1928	 */
1929	if (m->flags & PG_FICTITIOUS) {
1930		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1931		    VM_PAGE_TO_PHYS(m));
1932	}
1933#endif
1934	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1935	sched_pin();
1936	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1937		pmap = PV_PMAP(pv);
1938		PMAP_LOCK(pmap);
1939		pmap->pm_stats.resident_count--;
1940		pte = pmap_pte_quick(pmap, pv->pv_va);
1941		tpte = pte_load_clear(pte);
1942		if (tpte & PG_W)
1943			pmap->pm_stats.wired_count--;
1944		if (tpte & PG_A)
1945			vm_page_flag_set(m, PG_REFERENCED);
1946
1947		/*
1948		 * Update the vm_page_t clean and reference bits.
1949		 */
1950		if (tpte & PG_M) {
1951			KASSERT((tpte & PG_RW),
1952	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
1953			    pv->pv_va, (uintmax_t)tpte));
1954			vm_page_dirty(m);
1955		}
1956		pmap_invalidate_page(pmap, pv->pv_va);
1957		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1958		m->md.pv_list_count--;
1959		pmap_unuse_pt(pmap, pv->pv_va);
1960		PMAP_UNLOCK(pmap);
1961		free_pv_entry(pmap, pv);
1962	}
1963	vm_page_flag_clear(m, PG_WRITEABLE);
1964	sched_unpin();
1965}
1966
1967/*
1968 *	Set the physical protection on the
1969 *	specified range of this map as requested.
1970 */
1971void
1972pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1973{
1974	vm_offset_t pdnxt;
1975	pd_entry_t ptpaddr;
1976	pt_entry_t *pte;
1977	int anychanged;
1978
1979	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1980		pmap_remove(pmap, sva, eva);
1981		return;
1982	}
1983
1984	if (prot & VM_PROT_WRITE)
1985		return;
1986
1987	anychanged = 0;
1988
1989	vm_page_lock_queues();
1990	sched_pin();
1991	PMAP_LOCK(pmap);
1992	for (; sva < eva; sva = pdnxt) {
1993		unsigned obits, pbits, pdirindex;
1994
1995		pdnxt = (sva + NBPDR) & ~PDRMASK;
1996
1997		pdirindex = sva >> PDRSHIFT;
1998		ptpaddr = pmap->pm_pdir[pdirindex];
1999
2000		/*
2001		 * Weed out invalid mappings. Note: we assume that the page
2002		 * directory table is always allocated, and in kernel virtual.
2003		 */
2004		if (ptpaddr == 0)
2005			continue;
2006
2007		/*
2008		 * Check for large page.
2009		 */
2010		if ((ptpaddr & PG_PS) != 0) {
2011			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2012			anychanged = 1;
2013			continue;
2014		}
2015
2016		if (pdnxt > eva)
2017			pdnxt = eva;
2018
2019		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2020		    sva += PAGE_SIZE) {
2021			vm_page_t m;
2022
2023retry:
2024			/*
2025			 * Regardless of whether a pte is 32 or 64 bits in
2026			 * size, PG_RW, PG_A, and PG_M are among the least
2027			 * significant 32 bits.
2028			 */
2029			obits = pbits = *(u_int *)pte;
2030			if (pbits & PG_MANAGED) {
2031				m = NULL;
2032				if (pbits & PG_A) {
2033					m = PHYS_TO_VM_PAGE(*pte);
2034					vm_page_flag_set(m, PG_REFERENCED);
2035					pbits &= ~PG_A;
2036				}
2037				if ((pbits & PG_M) != 0) {
2038					if (m == NULL)
2039						m = PHYS_TO_VM_PAGE(*pte);
2040					vm_page_dirty(m);
2041				}
2042			}
2043
2044			pbits &= ~(PG_RW | PG_M);
2045
2046			if (pbits != obits) {
2047				if (!atomic_cmpset_int((u_int *)pte, obits,
2048				    pbits))
2049					goto retry;
2050				if (obits & PG_G)
2051					pmap_invalidate_page(pmap, sva);
2052				else
2053					anychanged = 1;
2054			}
2055		}
2056	}
2057	sched_unpin();
2058	vm_page_unlock_queues();
2059	if (anychanged)
2060		pmap_invalidate_all(pmap);
2061	PMAP_UNLOCK(pmap);
2062}
2063
2064/*
2065 *	Insert the given physical page (p) at
2066 *	the specified virtual address (v) in the
2067 *	target physical map with the protection requested.
2068 *
2069 *	If specified, the page will be wired down, meaning
2070 *	that the related pte can not be reclaimed.
2071 *
2072 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2073 *	or lose information.  That is, this routine must actually
2074 *	insert this page into the given map NOW.
2075 */
2076void
2077pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2078	   boolean_t wired)
2079{
2080	vm_paddr_t pa;
2081	pd_entry_t *pde;
2082	register pt_entry_t *pte;
2083	vm_paddr_t opa;
2084	pt_entry_t origpte, newpte;
2085	vm_page_t mpte, om;
2086	boolean_t invlva;
2087
2088	va &= PG_FRAME;
2089#ifdef PMAP_DIAGNOSTIC
2090	if (va > VM_MAX_KERNEL_ADDRESS)
2091		panic("pmap_enter: toobig");
2092	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2093		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2094#endif
2095
2096	mpte = NULL;
2097
2098	vm_page_lock_queues();
2099	PMAP_LOCK(pmap);
2100	sched_pin();
2101
2102	/*
2103	 * In the case that a page table page is not
2104	 * resident, we are creating it here.
2105	 */
2106	if (va < VM_MAXUSER_ADDRESS) {
2107		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2108	}
2109#if 0 && defined(PMAP_DIAGNOSTIC)
2110	else {
2111		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2112		origpte = *pdeaddr;
2113		if ((origpte & PG_V) == 0) {
2114			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2115				pmap->pm_pdir[PTDPTDI], origpte, va);
2116		}
2117	}
2118#endif
2119
2120	pde = pmap_pde(pmap, va);
2121	if ((*pde & PG_PS) != 0)
2122		panic("pmap_enter: attempted pmap_enter on 4MB page");
2123	pte = pmap_pte_quick(pmap, va);
2124
2125	/*
2126	 * Page Directory table entry not valid, we need a new PT page
2127	 */
2128	if (pte == NULL) {
2129		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2130			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
2131	}
2132
2133	pa = VM_PAGE_TO_PHYS(m);
2134	om = NULL;
2135	origpte = *pte;
2136	opa = origpte & PG_FRAME;
2137
2138	/*
2139	 * Mapping has not changed, must be protection or wiring change.
2140	 */
2141	if (origpte && (opa == pa)) {
2142		/*
2143		 * Wiring change, just update stats. We don't worry about
2144		 * wiring PT pages as they remain resident as long as there
2145		 * are valid mappings in them. Hence, if a user page is wired,
2146		 * the PT page will be also.
2147		 */
2148		if (wired && ((origpte & PG_W) == 0))
2149			pmap->pm_stats.wired_count++;
2150		else if (!wired && (origpte & PG_W))
2151			pmap->pm_stats.wired_count--;
2152
2153		/*
2154		 * Remove extra pte reference
2155		 */
2156		if (mpte)
2157			mpte->wire_count--;
2158
2159		/*
2160		 * We might be turning off write access to the page,
2161		 * so we go ahead and sense modify status.
2162		 */
2163		if (origpte & PG_MANAGED) {
2164			om = m;
2165			pa |= PG_MANAGED;
2166		}
2167		goto validate;
2168	}
2169	/*
2170	 * Mapping has changed, invalidate old range and fall through to
2171	 * handle validating new mapping.
2172	 */
2173	if (opa) {
2174		if (origpte & PG_W)
2175			pmap->pm_stats.wired_count--;
2176		if (origpte & PG_MANAGED) {
2177			om = PHYS_TO_VM_PAGE(opa);
2178			pmap_remove_entry(pmap, om, va);
2179		}
2180		if (mpte != NULL) {
2181			mpte->wire_count--;
2182			KASSERT(mpte->wire_count > 0,
2183			    ("pmap_enter: missing reference to page table page,"
2184			     " va: 0x%x", va));
2185		}
2186	} else
2187		pmap->pm_stats.resident_count++;
2188
2189	/*
2190	 * Enter on the PV list if part of our managed memory.
2191	 */
2192	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2193		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2194		    ("pmap_enter: managed mapping within the clean submap"));
2195		pmap_insert_entry(pmap, va, m);
2196		pa |= PG_MANAGED;
2197	}
2198
2199	/*
2200	 * Increment counters
2201	 */
2202	if (wired)
2203		pmap->pm_stats.wired_count++;
2204
2205validate:
2206	/*
2207	 * Now validate mapping with desired protection/wiring.
2208	 */
2209	newpte = (pt_entry_t)(pa | PG_V);
2210	if ((prot & VM_PROT_WRITE) != 0)
2211		newpte |= PG_RW;
2212	if (wired)
2213		newpte |= PG_W;
2214	if (va < VM_MAXUSER_ADDRESS)
2215		newpte |= PG_U;
2216	if (pmap == kernel_pmap)
2217		newpte |= pgeflag;
2218
2219	/*
2220	 * if the mapping or permission bits are different, we need
2221	 * to update the pte.
2222	 */
2223	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2224		if (origpte & PG_V) {
2225			invlva = FALSE;
2226			origpte = pte_load_store(pte, newpte | PG_A);
2227			if (origpte & PG_A) {
2228				if (origpte & PG_MANAGED)
2229					vm_page_flag_set(om, PG_REFERENCED);
2230				if (opa != VM_PAGE_TO_PHYS(m))
2231					invlva = TRUE;
2232			}
2233			if (origpte & PG_M) {
2234				KASSERT((origpte & PG_RW),
2235	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2236				    va, (uintmax_t)origpte));
2237				if ((origpte & PG_MANAGED) != 0)
2238					vm_page_dirty(om);
2239				if ((prot & VM_PROT_WRITE) == 0)
2240					invlva = TRUE;
2241			}
2242			if (invlva)
2243				pmap_invalidate_page(pmap, va);
2244		} else
2245			pte_store(pte, newpte | PG_A);
2246	}
2247	sched_unpin();
2248	vm_page_unlock_queues();
2249	PMAP_UNLOCK(pmap);
2250}
2251
2252/*
2253 * this code makes some *MAJOR* assumptions:
2254 * 1. Current pmap & pmap exists.
2255 * 2. Not wired.
2256 * 3. Read access.
2257 * 4. No page table pages.
2258 * but is *MUCH* faster than pmap_enter...
2259 */
2260
2261vm_page_t
2262pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2263    vm_page_t mpte)
2264{
2265	pt_entry_t *pte;
2266	vm_paddr_t pa;
2267
2268	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2269	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2270	    ("pmap_enter_quick: managed mapping within the clean submap"));
2271	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2272	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2273	PMAP_LOCK(pmap);
2274
2275	/*
2276	 * In the case that a page table page is not
2277	 * resident, we are creating it here.
2278	 */
2279	if (va < VM_MAXUSER_ADDRESS) {
2280		unsigned ptepindex;
2281		pd_entry_t ptepa;
2282
2283		/*
2284		 * Calculate pagetable page index
2285		 */
2286		ptepindex = va >> PDRSHIFT;
2287		if (mpte && (mpte->pindex == ptepindex)) {
2288			mpte->wire_count++;
2289		} else {
2290retry:
2291			/*
2292			 * Get the page directory entry
2293			 */
2294			ptepa = pmap->pm_pdir[ptepindex];
2295
2296			/*
2297			 * If the page table page is mapped, we just increment
2298			 * the hold count, and activate it.
2299			 */
2300			if (ptepa) {
2301				if (ptepa & PG_PS)
2302					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2303				mpte = PHYS_TO_VM_PAGE(ptepa);
2304				mpte->wire_count++;
2305			} else {
2306				mpte = _pmap_allocpte(pmap, ptepindex,
2307				    M_NOWAIT);
2308				if (mpte == NULL) {
2309					PMAP_UNLOCK(pmap);
2310					vm_page_busy(m);
2311					vm_page_unlock_queues();
2312					VM_OBJECT_UNLOCK(m->object);
2313					VM_WAIT;
2314					VM_OBJECT_LOCK(m->object);
2315					vm_page_lock_queues();
2316					vm_page_wakeup(m);
2317					PMAP_LOCK(pmap);
2318					goto retry;
2319				}
2320			}
2321		}
2322	} else {
2323		mpte = NULL;
2324	}
2325
2326	/*
2327	 * This call to vtopte makes the assumption that we are
2328	 * entering the page into the current pmap.  In order to support
2329	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2330	 * But that isn't as quick as vtopte.
2331	 */
2332	pte = vtopte(va);
2333	if (*pte) {
2334		if (mpte != NULL) {
2335			pmap_unwire_pte_hold(pmap, mpte);
2336			mpte = NULL;
2337		}
2338		goto out;
2339	}
2340
2341	/*
2342	 * Enter on the PV list if part of our managed memory. Note that we
2343	 * raise IPL while manipulating pv_table since pmap_enter can be
2344	 * called at interrupt time.
2345	 */
2346	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2347		pmap_insert_entry(pmap, va, m);
2348
2349	/*
2350	 * Increment counters
2351	 */
2352	pmap->pm_stats.resident_count++;
2353
2354	pa = VM_PAGE_TO_PHYS(m);
2355
2356	/*
2357	 * Now validate mapping with RO protection
2358	 */
2359	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2360		pte_store(pte, pa | PG_V | PG_U);
2361	else
2362		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2363out:
2364	PMAP_UNLOCK(pmap);
2365	return mpte;
2366}
2367
2368/*
2369 * Make a temporary mapping for a physical address.  This is only intended
2370 * to be used for panic dumps.
2371 */
2372void *
2373pmap_kenter_temporary(vm_paddr_t pa, int i)
2374{
2375	vm_offset_t va;
2376
2377	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2378	pmap_kenter(va, pa);
2379	invlpg(va);
2380	return ((void *)crashdumpmap);
2381}
2382
2383/*
2384 * This code maps large physical mmap regions into the
2385 * processor address space.  Note that some shortcuts
2386 * are taken, but the code works.
2387 */
2388void
2389pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2390		    vm_object_t object, vm_pindex_t pindex,
2391		    vm_size_t size)
2392{
2393	vm_page_t p;
2394
2395	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2396	KASSERT(object->type == OBJT_DEVICE,
2397	    ("pmap_object_init_pt: non-device object"));
2398	if (pseflag &&
2399	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2400		int i;
2401		vm_page_t m[1];
2402		unsigned int ptepindex;
2403		int npdes;
2404		pd_entry_t ptepa;
2405
2406		PMAP_LOCK(pmap);
2407		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2408			goto out;
2409		PMAP_UNLOCK(pmap);
2410retry:
2411		p = vm_page_lookup(object, pindex);
2412		if (p != NULL) {
2413			vm_page_lock_queues();
2414			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2415				goto retry;
2416		} else {
2417			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2418			if (p == NULL)
2419				return;
2420			m[0] = p;
2421
2422			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2423				vm_page_lock_queues();
2424				vm_page_free(p);
2425				vm_page_unlock_queues();
2426				return;
2427			}
2428
2429			p = vm_page_lookup(object, pindex);
2430			vm_page_lock_queues();
2431			vm_page_wakeup(p);
2432		}
2433		vm_page_unlock_queues();
2434
2435		ptepa = VM_PAGE_TO_PHYS(p);
2436		if (ptepa & (NBPDR - 1))
2437			return;
2438
2439		p->valid = VM_PAGE_BITS_ALL;
2440
2441		PMAP_LOCK(pmap);
2442		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2443		npdes = size >> PDRSHIFT;
2444		for(i = 0; i < npdes; i++) {
2445			pde_store(&pmap->pm_pdir[ptepindex],
2446			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2447			ptepa += NBPDR;
2448			ptepindex += 1;
2449		}
2450		pmap_invalidate_all(pmap);
2451out:
2452		PMAP_UNLOCK(pmap);
2453	}
2454}
2455
2456/*
2457 *	Routine:	pmap_change_wiring
2458 *	Function:	Change the wiring attribute for a map/virtual-address
2459 *			pair.
2460 *	In/out conditions:
2461 *			The mapping must already exist in the pmap.
2462 */
2463void
2464pmap_change_wiring(pmap, va, wired)
2465	register pmap_t pmap;
2466	vm_offset_t va;
2467	boolean_t wired;
2468{
2469	register pt_entry_t *pte;
2470
2471	PMAP_LOCK(pmap);
2472	pte = pmap_pte(pmap, va);
2473
2474	if (wired && !pmap_pte_w(pte))
2475		pmap->pm_stats.wired_count++;
2476	else if (!wired && pmap_pte_w(pte))
2477		pmap->pm_stats.wired_count--;
2478
2479	/*
2480	 * Wiring is not a hardware characteristic so there is no need to
2481	 * invalidate TLB.
2482	 */
2483	pmap_pte_set_w(pte, wired);
2484	pmap_pte_release(pte);
2485	PMAP_UNLOCK(pmap);
2486}
2487
2488
2489
2490/*
2491 *	Copy the range specified by src_addr/len
2492 *	from the source map to the range dst_addr/len
2493 *	in the destination map.
2494 *
2495 *	This routine is only advisory and need not do anything.
2496 */
2497
2498void
2499pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2500	  vm_offset_t src_addr)
2501{
2502	vm_offset_t addr;
2503	vm_offset_t end_addr = src_addr + len;
2504	vm_offset_t pdnxt;
2505
2506	if (dst_addr != src_addr)
2507		return;
2508
2509	if (!pmap_is_current(src_pmap))
2510		return;
2511
2512	vm_page_lock_queues();
2513	if (dst_pmap < src_pmap) {
2514		PMAP_LOCK(dst_pmap);
2515		PMAP_LOCK(src_pmap);
2516	} else {
2517		PMAP_LOCK(src_pmap);
2518		PMAP_LOCK(dst_pmap);
2519	}
2520	sched_pin();
2521	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2522		pt_entry_t *src_pte, *dst_pte;
2523		vm_page_t dstmpte, srcmpte;
2524		pd_entry_t srcptepaddr;
2525		unsigned ptepindex;
2526
2527		if (addr >= UPT_MIN_ADDRESS)
2528			panic("pmap_copy: invalid to pmap_copy page tables");
2529
2530		pdnxt = (addr + NBPDR) & ~PDRMASK;
2531		ptepindex = addr >> PDRSHIFT;
2532
2533		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2534		if (srcptepaddr == 0)
2535			continue;
2536
2537		if (srcptepaddr & PG_PS) {
2538			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2539				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2540				dst_pmap->pm_stats.resident_count +=
2541				    NBPDR / PAGE_SIZE;
2542			}
2543			continue;
2544		}
2545
2546		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2547		if (srcmpte->wire_count == 0)
2548			panic("pmap_copy: source page table page is unused");
2549
2550		if (pdnxt > end_addr)
2551			pdnxt = end_addr;
2552
2553		src_pte = vtopte(addr);
2554		while (addr < pdnxt) {
2555			pt_entry_t ptetemp;
2556			ptetemp = *src_pte;
2557			/*
2558			 * we only virtual copy managed pages
2559			 */
2560			if ((ptetemp & PG_MANAGED) != 0) {
2561				/*
2562				 * We have to check after allocpte for the
2563				 * pte still being around...  allocpte can
2564				 * block.
2565				 */
2566				dstmpte = pmap_allocpte(dst_pmap, addr,
2567				    M_NOWAIT);
2568				if (dstmpte == NULL)
2569					break;
2570				dst_pte = pmap_pte_quick(dst_pmap, addr);
2571				if (*dst_pte == 0 &&
2572				    pmap_try_insert_pv_entry(dst_pmap, addr,
2573				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
2574					/*
2575					 * Clear the modified and
2576					 * accessed (referenced) bits
2577					 * during the copy.
2578					 */
2579					*dst_pte = ptetemp & ~(PG_M | PG_A);
2580					dst_pmap->pm_stats.resident_count++;
2581	 			} else
2582					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2583				if (dstmpte->wire_count >= srcmpte->wire_count)
2584					break;
2585			}
2586			addr += PAGE_SIZE;
2587			src_pte++;
2588		}
2589	}
2590	sched_unpin();
2591	vm_page_unlock_queues();
2592	PMAP_UNLOCK(src_pmap);
2593	PMAP_UNLOCK(dst_pmap);
2594}
2595
2596static __inline void
2597pagezero(void *page)
2598{
2599#if defined(I686_CPU)
2600	if (cpu_class == CPUCLASS_686) {
2601#if defined(CPU_ENABLE_SSE)
2602		if (cpu_feature & CPUID_SSE2)
2603			sse2_pagezero(page);
2604		else
2605#endif
2606			i686_pagezero(page);
2607	} else
2608#endif
2609		bzero(page, PAGE_SIZE);
2610}
2611
2612/*
2613 *	pmap_zero_page zeros the specified hardware page by mapping
2614 *	the page into KVM and using bzero to clear its contents.
2615 */
2616void
2617pmap_zero_page(vm_page_t m)
2618{
2619	struct sysmaps *sysmaps;
2620
2621	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2622	mtx_lock(&sysmaps->lock);
2623	if (*sysmaps->CMAP2)
2624		panic("pmap_zero_page: CMAP2 busy");
2625	sched_pin();
2626	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2627	invlcaddr(sysmaps->CADDR2);
2628	pagezero(sysmaps->CADDR2);
2629	*sysmaps->CMAP2 = 0;
2630	sched_unpin();
2631	mtx_unlock(&sysmaps->lock);
2632}
2633
2634/*
2635 *	pmap_zero_page_area zeros the specified hardware page by mapping
2636 *	the page into KVM and using bzero to clear its contents.
2637 *
2638 *	off and size may not cover an area beyond a single hardware page.
2639 */
2640void
2641pmap_zero_page_area(vm_page_t m, int off, int size)
2642{
2643	struct sysmaps *sysmaps;
2644
2645	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2646	mtx_lock(&sysmaps->lock);
2647	if (*sysmaps->CMAP2)
2648		panic("pmap_zero_page: CMAP2 busy");
2649	sched_pin();
2650	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2651	invlcaddr(sysmaps->CADDR2);
2652	if (off == 0 && size == PAGE_SIZE)
2653		pagezero(sysmaps->CADDR2);
2654	else
2655		bzero((char *)sysmaps->CADDR2 + off, size);
2656	*sysmaps->CMAP2 = 0;
2657	sched_unpin();
2658	mtx_unlock(&sysmaps->lock);
2659}
2660
2661/*
2662 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2663 *	the page into KVM and using bzero to clear its contents.  This
2664 *	is intended to be called from the vm_pagezero process only and
2665 *	outside of Giant.
2666 */
2667void
2668pmap_zero_page_idle(vm_page_t m)
2669{
2670
2671	if (*CMAP3)
2672		panic("pmap_zero_page: CMAP3 busy");
2673	sched_pin();
2674	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2675	invlcaddr(CADDR3);
2676	pagezero(CADDR3);
2677	*CMAP3 = 0;
2678	sched_unpin();
2679}
2680
2681/*
2682 *	pmap_copy_page copies the specified (machine independent)
2683 *	page by mapping the page into virtual memory and using
2684 *	bcopy to copy the page, one machine dependent page at a
2685 *	time.
2686 */
2687void
2688pmap_copy_page(vm_page_t src, vm_page_t dst)
2689{
2690	struct sysmaps *sysmaps;
2691
2692	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2693	mtx_lock(&sysmaps->lock);
2694	if (*sysmaps->CMAP1)
2695		panic("pmap_copy_page: CMAP1 busy");
2696	if (*sysmaps->CMAP2)
2697		panic("pmap_copy_page: CMAP2 busy");
2698	sched_pin();
2699	invlpg((u_int)sysmaps->CADDR1);
2700	invlpg((u_int)sysmaps->CADDR2);
2701	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2702	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2703	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2704	*sysmaps->CMAP1 = 0;
2705	*sysmaps->CMAP2 = 0;
2706	sched_unpin();
2707	mtx_unlock(&sysmaps->lock);
2708}
2709
2710/*
2711 * Returns true if the pmap's pv is one of the first
2712 * 16 pvs linked to from this page.  This count may
2713 * be changed upwards or downwards in the future; it
2714 * is only necessary that true be returned for a small
2715 * subset of pmaps for proper page aging.
2716 */
2717boolean_t
2718pmap_page_exists_quick(pmap, m)
2719	pmap_t pmap;
2720	vm_page_t m;
2721{
2722	pv_entry_t pv;
2723	int loops = 0;
2724
2725	if (m->flags & PG_FICTITIOUS)
2726		return FALSE;
2727
2728	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2729	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2730		if (PV_PMAP(pv) == pmap) {
2731			return TRUE;
2732		}
2733		loops++;
2734		if (loops >= 16)
2735			break;
2736	}
2737	return (FALSE);
2738}
2739
2740/*
2741 * Remove all pages from specified address space
2742 * this aids process exit speeds.  Also, this code
2743 * is special cased for current process only, but
2744 * can have the more generic (and slightly slower)
2745 * mode enabled.  This is much faster than pmap_remove
2746 * in the case of running down an entire address space.
2747 */
2748void
2749pmap_remove_pages(pmap_t pmap)
2750{
2751	pt_entry_t *pte, tpte;
2752	vm_page_t m;
2753	pv_entry_t pv;
2754	struct pv_chunk *pc, *npc;
2755	int field, idx;
2756	int32_t bit;
2757	uint32_t inuse, bitmask;
2758	int allfree;
2759
2760	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2761		printf("warning: pmap_remove_pages called with non-current pmap\n");
2762		return;
2763	}
2764	vm_page_lock_queues();
2765	PMAP_LOCK(pmap);
2766	sched_pin();
2767	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2768		allfree = 1;
2769		for (field = 0; field < _NPCM; field++) {
2770			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
2771			while (inuse != 0) {
2772				bit = bsfl(inuse);
2773				bitmask = 1UL << bit;
2774				idx = field * 32 + bit;
2775				pv = &pc->pc_pventry[idx];
2776				inuse &= ~bitmask;
2777
2778				pte = vtopte(pv->pv_va);
2779				tpte = *pte;
2780
2781				if (tpte == 0) {
2782					printf(
2783					    "TPTE at %p  IS ZERO @ VA %08x\n",
2784					    pte, pv->pv_va);
2785					panic("bad pte");
2786				}
2787
2788/*
2789 * We cannot remove wired pages from a process' mapping at this time
2790 */
2791				if (tpte & PG_W) {
2792					allfree = 0;
2793					continue;
2794				}
2795
2796				m = PHYS_TO_VM_PAGE(tpte);
2797				KASSERT(m->phys_addr == (tpte & PG_FRAME),
2798				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2799				    m, (uintmax_t)m->phys_addr,
2800				    (uintmax_t)tpte));
2801
2802				KASSERT(m < &vm_page_array[vm_page_array_size],
2803					("pmap_remove_pages: bad tpte %#jx",
2804					(uintmax_t)tpte));
2805
2806				pmap->pm_stats.resident_count--;
2807
2808				pte_clear(pte);
2809
2810				/*
2811				 * Update the vm_page_t clean/reference bits.
2812				 */
2813				if (tpte & PG_M)
2814					vm_page_dirty(m);
2815
2816				/* Mark free */
2817				PV_STAT(pv_entry_frees++);
2818				PV_STAT(pv_entry_spare++);
2819				pv_entry_count--;
2820				pc->pc_map[field] |= bitmask;
2821				m->md.pv_list_count--;
2822				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2823				if (TAILQ_EMPTY(&m->md.pv_list))
2824					vm_page_flag_clear(m, PG_WRITEABLE);
2825
2826				pmap_unuse_pt(pmap, pv->pv_va);
2827			}
2828		}
2829		if (allfree) {
2830			PV_STAT(pv_entry_spare -= _NPCPV);
2831			PV_STAT(pc_chunk_count--);
2832			PV_STAT(pc_chunk_frees++);
2833			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2834			/* Return to freelist */
2835			TAILQ_INSERT_HEAD(&pv_freechunks, pc, pc_list);
2836			PV_STAT(pc_chunk_spare++);
2837		}
2838	}
2839	sched_unpin();
2840	pmap_invalidate_all(pmap);
2841	PMAP_UNLOCK(pmap);
2842	vm_page_unlock_queues();
2843}
2844
2845/*
2846 *	pmap_is_modified:
2847 *
2848 *	Return whether or not the specified physical page was modified
2849 *	in any physical maps.
2850 */
2851boolean_t
2852pmap_is_modified(vm_page_t m)
2853{
2854	pv_entry_t pv;
2855	pt_entry_t *pte;
2856	pmap_t pmap;
2857	boolean_t rv;
2858
2859	rv = FALSE;
2860	if (m->flags & PG_FICTITIOUS)
2861		return (rv);
2862
2863	sched_pin();
2864	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2865	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2866		pmap = PV_PMAP(pv);
2867		PMAP_LOCK(pmap);
2868		pte = pmap_pte_quick(pmap, pv->pv_va);
2869		rv = (*pte & PG_M) != 0;
2870		PMAP_UNLOCK(pmap);
2871		if (rv)
2872			break;
2873	}
2874	sched_unpin();
2875	return (rv);
2876}
2877
2878/*
2879 *	pmap_is_prefaultable:
2880 *
2881 *	Return whether or not the specified virtual address is elgible
2882 *	for prefault.
2883 */
2884boolean_t
2885pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2886{
2887	pt_entry_t *pte;
2888	boolean_t rv;
2889
2890	rv = FALSE;
2891	PMAP_LOCK(pmap);
2892	if (*pmap_pde(pmap, addr)) {
2893		pte = vtopte(addr);
2894		rv = *pte == 0;
2895	}
2896	PMAP_UNLOCK(pmap);
2897	return (rv);
2898}
2899
2900/*
2901 *	Clear the given bit in each of the given page's ptes.  The bit is
2902 *	expressed as a 32-bit mask.  Consequently, if the pte is 64 bits in
2903 *	size, only a bit within the least significant 32 can be cleared.
2904 */
2905static __inline void
2906pmap_clear_ptes(vm_page_t m, int bit)
2907{
2908	register pv_entry_t pv;
2909	pmap_t pmap;
2910	pt_entry_t pbits, *pte;
2911
2912	if ((m->flags & PG_FICTITIOUS) ||
2913	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2914		return;
2915
2916	sched_pin();
2917	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2918	/*
2919	 * Loop over all current mappings setting/clearing as appropos If
2920	 * setting RO do we need to clear the VAC?
2921	 */
2922	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2923		pmap = PV_PMAP(pv);
2924		PMAP_LOCK(pmap);
2925		pte = pmap_pte_quick(pmap, pv->pv_va);
2926retry:
2927		pbits = *pte;
2928		if (pbits & bit) {
2929			if (bit == PG_RW) {
2930				/*
2931				 * Regardless of whether a pte is 32 or 64 bits
2932				 * in size, PG_RW and PG_M are among the least
2933				 * significant 32 bits.
2934				 */
2935				if (!atomic_cmpset_int((u_int *)pte, pbits,
2936				    pbits & ~(PG_RW | PG_M)))
2937					goto retry;
2938				if (pbits & PG_M) {
2939					vm_page_dirty(m);
2940				}
2941			} else {
2942				atomic_clear_int((u_int *)pte, bit);
2943			}
2944			pmap_invalidate_page(pmap, pv->pv_va);
2945		}
2946		PMAP_UNLOCK(pmap);
2947	}
2948	if (bit == PG_RW)
2949		vm_page_flag_clear(m, PG_WRITEABLE);
2950	sched_unpin();
2951}
2952
2953/*
2954 *      pmap_page_protect:
2955 *
2956 *      Lower the permission for all mappings to a given page.
2957 */
2958void
2959pmap_page_protect(vm_page_t m, vm_prot_t prot)
2960{
2961	if ((prot & VM_PROT_WRITE) == 0) {
2962		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2963			pmap_clear_ptes(m, PG_RW);
2964		} else {
2965			pmap_remove_all(m);
2966		}
2967	}
2968}
2969
2970/*
2971 *	pmap_ts_referenced:
2972 *
2973 *	Return a count of reference bits for a page, clearing those bits.
2974 *	It is not necessary for every reference bit to be cleared, but it
2975 *	is necessary that 0 only be returned when there are truly no
2976 *	reference bits set.
2977 *
2978 *	XXX: The exact number of bits to check and clear is a matter that
2979 *	should be tested and standardized at some point in the future for
2980 *	optimal aging of shared pages.
2981 */
2982int
2983pmap_ts_referenced(vm_page_t m)
2984{
2985	register pv_entry_t pv, pvf, pvn;
2986	pmap_t pmap;
2987	pt_entry_t *pte;
2988	pt_entry_t v;
2989	int rtval = 0;
2990
2991	if (m->flags & PG_FICTITIOUS)
2992		return (rtval);
2993
2994	sched_pin();
2995	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2996	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2997
2998		pvf = pv;
2999
3000		do {
3001			pvn = TAILQ_NEXT(pv, pv_list);
3002
3003			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3004
3005			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3006
3007			pmap = PV_PMAP(pv);
3008			PMAP_LOCK(pmap);
3009			pte = pmap_pte_quick(pmap, pv->pv_va);
3010
3011			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
3012				atomic_clear_int((u_int *)pte, PG_A);
3013				pmap_invalidate_page(pmap, pv->pv_va);
3014
3015				rtval++;
3016				if (rtval > 4) {
3017					PMAP_UNLOCK(pmap);
3018					break;
3019				}
3020			}
3021			PMAP_UNLOCK(pmap);
3022		} while ((pv = pvn) != NULL && pv != pvf);
3023	}
3024	sched_unpin();
3025
3026	return (rtval);
3027}
3028
3029/*
3030 *	Clear the modify bits on the specified physical page.
3031 */
3032void
3033pmap_clear_modify(vm_page_t m)
3034{
3035	pmap_clear_ptes(m, PG_M);
3036}
3037
3038/*
3039 *	pmap_clear_reference:
3040 *
3041 *	Clear the reference bit on the specified physical page.
3042 */
3043void
3044pmap_clear_reference(vm_page_t m)
3045{
3046	pmap_clear_ptes(m, PG_A);
3047}
3048
3049/*
3050 * Miscellaneous support routines follow
3051 */
3052
3053/*
3054 * Map a set of physical memory pages into the kernel virtual
3055 * address space. Return a pointer to where it is mapped. This
3056 * routine is intended to be used for mapping device memory,
3057 * NOT real memory.
3058 */
3059void *
3060pmap_mapdev(pa, size)
3061	vm_paddr_t pa;
3062	vm_size_t size;
3063{
3064	vm_offset_t va, tmpva, offset;
3065
3066	offset = pa & PAGE_MASK;
3067	size = roundup(offset + size, PAGE_SIZE);
3068	pa = pa & PG_FRAME;
3069
3070	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3071		va = KERNBASE + pa;
3072	else
3073		va = kmem_alloc_nofault(kernel_map, size);
3074	if (!va)
3075		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3076
3077	for (tmpva = va; size > 0; ) {
3078		pmap_kenter(tmpva, pa);
3079		size -= PAGE_SIZE;
3080		tmpva += PAGE_SIZE;
3081		pa += PAGE_SIZE;
3082	}
3083	pmap_invalidate_range(kernel_pmap, va, tmpva);
3084	return ((void *)(va + offset));
3085}
3086
3087void
3088pmap_unmapdev(va, size)
3089	vm_offset_t va;
3090	vm_size_t size;
3091{
3092	vm_offset_t base, offset, tmpva;
3093
3094	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3095		return;
3096	base = va & PG_FRAME;
3097	offset = va & PAGE_MASK;
3098	size = roundup(offset + size, PAGE_SIZE);
3099	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3100		pmap_kremove(tmpva);
3101	pmap_invalidate_range(kernel_pmap, va, tmpva);
3102	kmem_free(kernel_map, base, size);
3103}
3104
3105/*
3106 * perform the pmap work for mincore
3107 */
3108int
3109pmap_mincore(pmap, addr)
3110	pmap_t pmap;
3111	vm_offset_t addr;
3112{
3113	pt_entry_t *ptep, pte;
3114	vm_page_t m;
3115	int val = 0;
3116
3117	PMAP_LOCK(pmap);
3118	ptep = pmap_pte(pmap, addr);
3119	pte = (ptep != NULL) ? *ptep : 0;
3120	pmap_pte_release(ptep);
3121	PMAP_UNLOCK(pmap);
3122
3123	if (pte != 0) {
3124		vm_paddr_t pa;
3125
3126		val = MINCORE_INCORE;
3127		if ((pte & PG_MANAGED) == 0)
3128			return val;
3129
3130		pa = pte & PG_FRAME;
3131
3132		m = PHYS_TO_VM_PAGE(pa);
3133
3134		/*
3135		 * Modified by us
3136		 */
3137		if (pte & PG_M)
3138			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3139		else {
3140			/*
3141			 * Modified by someone else
3142			 */
3143			vm_page_lock_queues();
3144			if (m->dirty || pmap_is_modified(m))
3145				val |= MINCORE_MODIFIED_OTHER;
3146			vm_page_unlock_queues();
3147		}
3148		/*
3149		 * Referenced by us
3150		 */
3151		if (pte & PG_A)
3152			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3153		else {
3154			/*
3155			 * Referenced by someone else
3156			 */
3157			vm_page_lock_queues();
3158			if ((m->flags & PG_REFERENCED) ||
3159			    pmap_ts_referenced(m)) {
3160				val |= MINCORE_REFERENCED_OTHER;
3161				vm_page_flag_set(m, PG_REFERENCED);
3162			}
3163			vm_page_unlock_queues();
3164		}
3165	}
3166	return val;
3167}
3168
3169void
3170pmap_activate(struct thread *td)
3171{
3172	pmap_t	pmap, oldpmap;
3173	u_int32_t  cr3;
3174
3175	critical_enter();
3176	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3177	oldpmap = PCPU_GET(curpmap);
3178#if defined(SMP)
3179	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3180	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3181#else
3182	oldpmap->pm_active &= ~1;
3183	pmap->pm_active |= 1;
3184#endif
3185#ifdef PAE
3186	cr3 = vtophys(pmap->pm_pdpt);
3187#else
3188	cr3 = vtophys(pmap->pm_pdir);
3189#endif
3190	/*
3191	 * pmap_activate is for the current thread on the current cpu
3192	 */
3193	td->td_pcb->pcb_cr3 = cr3;
3194	load_cr3(cr3);
3195	PCPU_SET(curpmap, pmap);
3196	critical_exit();
3197}
3198
3199vm_offset_t
3200pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3201{
3202
3203	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3204		return addr;
3205	}
3206
3207	addr = (addr + PDRMASK) & ~PDRMASK;
3208	return addr;
3209}
3210
3211
3212#if defined(PMAP_DEBUG)
3213pmap_pid_dump(int pid)
3214{
3215	pmap_t pmap;
3216	struct proc *p;
3217	int npte = 0;
3218	int index;
3219
3220	sx_slock(&allproc_lock);
3221	LIST_FOREACH(p, &allproc, p_list) {
3222		if (p->p_pid != pid)
3223			continue;
3224
3225		if (p->p_vmspace) {
3226			int i,j;
3227			index = 0;
3228			pmap = vmspace_pmap(p->p_vmspace);
3229			for (i = 0; i < NPDEPTD; i++) {
3230				pd_entry_t *pde;
3231				pt_entry_t *pte;
3232				vm_offset_t base = i << PDRSHIFT;
3233
3234				pde = &pmap->pm_pdir[i];
3235				if (pde && pmap_pde_v(pde)) {
3236					for (j = 0; j < NPTEPG; j++) {
3237						vm_offset_t va = base + (j << PAGE_SHIFT);
3238						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3239							if (index) {
3240								index = 0;
3241								printf("\n");
3242							}
3243							sx_sunlock(&allproc_lock);
3244							return npte;
3245						}
3246						pte = pmap_pte(pmap, va);
3247						if (pte && pmap_pte_v(pte)) {
3248							pt_entry_t pa;
3249							vm_page_t m;
3250							pa = *pte;
3251							m = PHYS_TO_VM_PAGE(pa);
3252							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3253								va, pa, m->hold_count, m->wire_count, m->flags);
3254							npte++;
3255							index++;
3256							if (index >= 2) {
3257								index = 0;
3258								printf("\n");
3259							} else {
3260								printf(" ");
3261							}
3262						}
3263					}
3264				}
3265			}
3266		}
3267	}
3268	sx_sunlock(&allproc_lock);
3269	return npte;
3270}
3271#endif
3272
3273#if defined(DEBUG)
3274
3275static void	pads(pmap_t pm);
3276void		pmap_pvdump(vm_offset_t pa);
3277
3278/* print address space of pmap*/
3279static void
3280pads(pm)
3281	pmap_t pm;
3282{
3283	int i, j;
3284	vm_paddr_t va;
3285	pt_entry_t *ptep;
3286
3287	if (pm == kernel_pmap)
3288		return;
3289	for (i = 0; i < NPDEPTD; i++)
3290		if (pm->pm_pdir[i])
3291			for (j = 0; j < NPTEPG; j++) {
3292				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3293				if (pm == kernel_pmap && va < KERNBASE)
3294					continue;
3295				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3296					continue;
3297				ptep = pmap_pte(pm, va);
3298				if (pmap_pte_v(ptep))
3299					printf("%x:%x ", va, *ptep);
3300			};
3301
3302}
3303
3304void
3305pmap_pvdump(pa)
3306	vm_paddr_t pa;
3307{
3308	pv_entry_t pv;
3309	pmap_t pmap;
3310	vm_page_t m;
3311
3312	printf("pa %x", pa);
3313	m = PHYS_TO_VM_PAGE(pa);
3314	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3315		pmap = PV_PMAP(pv);
3316		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
3317		pads(pmap);
3318	}
3319	printf(" ");
3320}
3321#endif
3322