pmap.c revision 156930
150477Speter/*-
235388Smjacob * Copyright (c) 1991 Regents of the University of California.
335388Smjacob * All rights reserved.
435388Smjacob * Copyright (c) 1994 John S. Dyson
535388Smjacob * All rights reserved.
645040Smjacob * Copyright (c) 1994 David Greenman
735388Smjacob * All rights reserved.
835388Smjacob * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
945040Smjacob * All rights reserved.
1035388Smjacob *
1135388Smjacob * This code is derived from software contributed to Berkeley by
1235388Smjacob * the Systems Programming Group of the University of Utah Computer
1335388Smjacob * Science Department and William Jolitz of UUNET Technologies Inc.
1435388Smjacob *
1535388Smjacob * Redistribution and use in source and binary forms, with or without
1635388Smjacob * modification, are permitted provided that the following conditions
1735388Smjacob * are met:
1835388Smjacob * 1. Redistributions of source code must retain the above copyright
1935388Smjacob *    notice, this list of conditions and the following disclaimer.
2035388Smjacob * 2. Redistributions in binary form must reproduce the above copyright
2135388Smjacob *    notice, this list of conditions and the following disclaimer in the
2235388Smjacob *    documentation and/or other materials provided with the distribution.
2335388Smjacob * 3. All advertising materials mentioning features or use of this software
2435388Smjacob *    must display the following acknowledgement:
2535388Smjacob *	This product includes software developed by the University of
2635388Smjacob *	California, Berkeley and its contributors.
2735388Smjacob * 4. Neither the name of the University nor the names of its contributors
2835388Smjacob *    may be used to endorse or promote products derived from this software
2935388Smjacob *    without specific prior written permission.
3035388Smjacob *
3135388Smjacob * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3235388Smjacob * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3335388Smjacob * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3435388Smjacob * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3535388Smjacob * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3635388Smjacob * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3735388Smjacob * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3835388Smjacob * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3935388Smjacob * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
4035388Smjacob * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
4135388Smjacob * SUCH DAMAGE.
4235388Smjacob *
4335388Smjacob *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
4435388Smjacob */
4535388Smjacob/*-
4635388Smjacob * Copyright (c) 2003 Networks Associates Technology, Inc.
4735388Smjacob * All rights reserved.
4835388Smjacob *
4935388Smjacob * This software was developed for the FreeBSD Project by Jake Burkholder,
5035388Smjacob * Safeport Network Services, and Network Associates Laboratories, the
5135388Smjacob * Security Research Division of Network Associates, Inc. under
5235388Smjacob * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
5335388Smjacob * CHATS research program.
5435388Smjacob *
5535388Smjacob * Redistribution and use in source and binary forms, with or without
5646967Smjacob * modification, are permitted provided that the following conditions
5746967Smjacob * are met:
5846967Smjacob * 1. Redistributions of source code must retain the above copyright
5946967Smjacob *    notice, this list of conditions and the following disclaimer.
6046967Smjacob * 2. Redistributions in binary form must reproduce the above copyright
6146967Smjacob *    notice, this list of conditions and the following disclaimer in the
6246967Smjacob *    documentation and/or other materials provided with the distribution.
6346967Smjacob *
6435388Smjacob * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
6535388Smjacob * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6644819Smjacob * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6735388Smjacob * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
6844819Smjacob * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
6944819Smjacob * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
7035388Smjacob * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
7135388Smjacob * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7244819Smjacob * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7335388Smjacob * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
7435388Smjacob * SUCH DAMAGE.
7544819Smjacob */
7635388Smjacob
7735388Smjacob#include <sys/cdefs.h>
7844819Smjacob__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 156930 2006-03-21 06:46:27Z davidxu $");
7944819Smjacob
8044819Smjacob/*
8144819Smjacob *	Manages physical address maps.
8235388Smjacob *
8335388Smjacob *	In addition to hardware address maps, this
8435388Smjacob *	module is called upon to provide software-use-only
8535388Smjacob *	maps which may or may not be stored in the same
8635388Smjacob *	form as hardware maps.  These pseudo-maps are
8744819Smjacob *	used to store intermediate results from copy
8844819Smjacob *	operations to and from address spaces.
8944819Smjacob *
9044819Smjacob *	Since the information managed by this module is
9144819Smjacob *	also stored by the logical address mapping module,
9244819Smjacob *	this module may throw away valid virtual-to-physical
9344819Smjacob *	mappings at almost any time.  However, invalidations
9444819Smjacob *	of virtual-to-physical mappings must be done as
9535388Smjacob *	requested.
9635388Smjacob *
9735388Smjacob *	In order to cope with hardware architectures which
9835388Smjacob *	make virtual-to-physical map invalidates expensive,
9944819Smjacob *	this module may delay invalidate or reduced protection
10054671Smjacob *	operations until such time as they are actually
10154671Smjacob *	necessary.  This module is given full information as
10254671Smjacob *	to which processors are currently using which maps,
10354671Smjacob *	and to when physical maps must be made correct.
10454671Smjacob */
10554671Smjacob
10654671Smjacob#include "opt_cpu.h"
10754671Smjacob#include "opt_pmap.h"
10854671Smjacob#include "opt_msgbuf.h"
10954671Smjacob#include "opt_smp.h"
11054671Smjacob#include "opt_xbox.h"
11154671Smjacob
11244819Smjacob#include <sys/param.h>
11354671Smjacob#include <sys/systm.h>
11444819Smjacob#include <sys/kernel.h>
11544819Smjacob#include <sys/lock.h>
11644819Smjacob#include <sys/malloc.h>
11744819Smjacob#include <sys/mman.h>
11854671Smjacob#include <sys/msgbuf.h>
11935388Smjacob#include <sys/mutex.h>
12054671Smjacob#include <sys/proc.h>
12154671Smjacob#include <sys/sx.h>
12254671Smjacob#include <sys/vmmeter.h>
12354671Smjacob#include <sys/sched.h>
12454671Smjacob#include <sys/sysctl.h>
12554671Smjacob#ifdef SMP
12654671Smjacob#include <sys/smp.h>
12754671Smjacob#endif
12835388Smjacob
12954671Smjacob#include <vm/vm.h>
13035388Smjacob#include <vm/vm_param.h>
13154671Smjacob#include <vm/vm_kern.h>
13254671Smjacob#include <vm/vm_page.h>
13354671Smjacob#include <vm/vm_map.h>
13454671Smjacob#include <vm/vm_object.h>
13554671Smjacob#include <vm/vm_extern.h>
13654671Smjacob#include <vm/vm_pageout.h>
13754671Smjacob#include <vm/vm_pager.h>
13835388Smjacob#include <vm/uma.h>
13954671Smjacob
14054671Smjacob#include <machine/cpu.h>
14135388Smjacob#include <machine/cputypes.h>
14235388Smjacob#include <machine/md_var.h>
14335388Smjacob#include <machine/pcb.h>
14435388Smjacob#include <machine/specialreg.h>
14535388Smjacob#ifdef SMP
14635388Smjacob#include <machine/smp.h>
14735388Smjacob#endif
14835388Smjacob
14935388Smjacob#ifdef XBOX
15035388Smjacob#include <machine/xbox.h>
15135388Smjacob#endif
15235388Smjacob
15335388Smjacob#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
15435388Smjacob#define CPU_ENABLE_SSE
15535388Smjacob#endif
15635388Smjacob
15735388Smjacob#ifndef PMAP_SHPGPERPROC
15835388Smjacob#define PMAP_SHPGPERPROC 200
15935388Smjacob#endif
16035388Smjacob
16135388Smjacob#if defined(DIAGNOSTIC)
16235388Smjacob#define PMAP_DIAGNOSTIC
16335388Smjacob#endif
16435388Smjacob
16554671Smjacob#if !defined(PMAP_DIAGNOSTIC)
16654671Smjacob#define PMAP_INLINE __inline
16744819Smjacob#else
16844819Smjacob#define PMAP_INLINE
16945040Smjacob#endif
17035388Smjacob
17135388Smjacob/*
17235388Smjacob * Get PDEs and PTEs for user/kernel address space
17335388Smjacob */
17435388Smjacob#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
17535388Smjacob#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
17635388Smjacob
17735388Smjacob#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
17835388Smjacob#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
17935388Smjacob#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
18035388Smjacob#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
18135388Smjacob#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
18235388Smjacob
18335388Smjacob#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
18435388Smjacob    atomic_clear_int((u_int *)(pte), PG_W))
18535388Smjacob#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
18635388Smjacob
18735388Smjacobstruct pmap kernel_pmap_store;
18835388SmjacobLIST_HEAD(pmaplist, pmap);
18935388Smjacobstatic struct pmaplist allpmaps;
19035388Smjacobstatic struct mtx allpmaps_lock;
19135388Smjacob
19235388Smjacobvm_paddr_t avail_end;	/* PA of last available physical page */
19335388Smjacobvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
19435388Smjacobvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
19535388Smjacobint pgeflag = 0;		/* PG_G or-in */
19635388Smjacobint pseflag = 0;		/* PG_PS or-in */
19735388Smjacob
19835388Smjacobstatic int nkpt;
19946967Smjacobvm_offset_t kernel_vm_end;
20035388Smjacobextern u_int32_t KERNend;
20135388Smjacob
20235388Smjacob#ifdef PAE
20346967Smjacobstatic uma_zone_t pdptzone;
20444819Smjacob#endif
20544819Smjacob
20644819Smjacob/*
20744819Smjacob * Data for the pv entry allocation mechanism
20835388Smjacob */
20935388Smjacobstatic uma_zone_t pvzone;
21035388Smjacobstatic struct vm_object pvzone_obj;
21135388Smjacobstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
21235388Smjacob
21335388Smjacob/*
21435388Smjacob * All those kernel PT submaps that BSD is so fond of
21535388Smjacob */
21635388Smjacobstruct sysmaps {
21735388Smjacob	struct	mtx lock;
21835388Smjacob	pt_entry_t *CMAP1;
21935388Smjacob	pt_entry_t *CMAP2;
22035388Smjacob	caddr_t	CADDR1;
22135388Smjacob	caddr_t	CADDR2;
22235388Smjacob};
22335388Smjacobstatic struct sysmaps sysmaps_pcpu[MAXCPU];
22435388Smjacobpt_entry_t *CMAP1 = 0;
22552346Smjacobstatic pt_entry_t *CMAP3;
22652346Smjacobcaddr_t CADDR1 = 0, ptvmmap = 0;
22735388Smjacobstatic caddr_t CADDR3;
22862170Smjacobstruct msgbuf *msgbufp = 0;
22962170Smjacob
23062170Smjacob/*
23135388Smjacob * Crashdump maps.
23235388Smjacob */
23335388Smjacobstatic caddr_t crashdumpmap;
23435388Smjacob
23539235Sgibbs#ifdef SMP
23639235Sgibbsextern pt_entry_t *SMPpt;
23739235Sgibbs#endif
23839235Sgibbsstatic pt_entry_t *PMAP1 = 0, *PMAP2;
23939235Sgibbsstatic pt_entry_t *PADDR1 = 0, *PADDR2;
24039235Sgibbs#ifdef SMP
24135388Smjacobstatic int PMAP1cpu;
24235388Smjacobstatic int PMAP1changedcpu;
24335388SmjacobSYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
24435388Smjacob	   &PMAP1changedcpu, 0,
24535388Smjacob	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
24635388Smjacob#endif
24735388Smjacobstatic int PMAP1changed;
24835388SmjacobSYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
24935388Smjacob	   &PMAP1changed, 0,
25035388Smjacob	   "Number of times pmap_pte_quick changed PMAP1");
25135388Smjacobstatic int PMAP1unchanged;
25235388SmjacobSYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
25335388Smjacob	   &PMAP1unchanged, 0,
25435388Smjacob	   "Number of times pmap_pte_quick didn't change PMAP1");
25535388Smjacobstatic struct mtx PMAP2mutex;
25635388Smjacob
25735388Smjacobstatic PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
25835388Smjacobstatic pv_entry_t get_pv_entry(pmap_t locked_pmap);
25935388Smjacobstatic void	pmap_clear_ptes(vm_page_t m, int bit);
26035388Smjacob
26135388Smjacobstatic int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
26235388Smjacobstatic void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
26335388Smjacobstatic void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
26435388Smjacob					vm_offset_t va);
26535388Smjacobstatic void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
26635388Smjacob
26735388Smjacobstatic vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
26835388Smjacob
26935388Smjacobstatic vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
27035388Smjacobstatic int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m);
27135388Smjacobstatic pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
27235388Smjacobstatic void pmap_pte_release(pt_entry_t *pte);
27335388Smjacobstatic int pmap_unuse_pt(pmap_t, vm_offset_t);
27435388Smjacobstatic vm_offset_t pmap_kmem_choose(vm_offset_t addr);
27535388Smjacob#ifdef PAE
27635388Smjacobstatic void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
27735388Smjacob#endif
27835388Smjacob
27935388SmjacobCTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
28035388SmjacobCTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
28135388Smjacob
28235388Smjacob/*
28335388Smjacob * Move the kernel virtual free pointer to the next
28435388Smjacob * 4MB.  This is used to help improve performance
28535388Smjacob * by using a large (4MB) page for much of the kernel
28635388Smjacob * (.text, .data, .bss)
28735388Smjacob */
28835388Smjacobstatic vm_offset_t
28935388Smjacobpmap_kmem_choose(vm_offset_t addr)
29035388Smjacob{
29135388Smjacob	vm_offset_t newaddr = addr;
29235388Smjacob
29335388Smjacob#ifndef DISABLE_PSE
29435388Smjacob	if (cpu_feature & CPUID_PSE)
29535388Smjacob		newaddr = (addr + PDRMASK) & ~PDRMASK;
29635388Smjacob#endif
29735388Smjacob	return newaddr;
29835388Smjacob}
29935388Smjacob
30035388Smjacob/*
30135388Smjacob *	Bootstrap the system enough to run with virtual memory.
30235388Smjacob *
30335388Smjacob *	On the i386 this is called after mapping has already been enabled
30435388Smjacob *	and just syncs the pmap module with what has already been done.
30535388Smjacob *	[We can't call it easily with mapping off since the kernel is not
30635388Smjacob *	mapped with PA == VA, hence we would have to relocate every address
30735388Smjacob *	from the linked base (virtual) address "KERNBASE" to the actual
30835388Smjacob *	(physical) address starting relative to 0]
30935388Smjacob */
31035388Smjacobvoid
31135388Smjacobpmap_bootstrap(firstaddr, loadaddr)
31235388Smjacob	vm_paddr_t firstaddr;
31335388Smjacob	vm_paddr_t loadaddr;
31435388Smjacob{
31535388Smjacob	vm_offset_t va;
31635388Smjacob	pt_entry_t *pte, *unused;
31735388Smjacob	struct sysmaps *sysmaps;
31835388Smjacob	int i;
31935388Smjacob
32035388Smjacob	/*
32135388Smjacob	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
32235388Smjacob	 * large. It should instead be correctly calculated in locore.s and
32335388Smjacob	 * not based on 'first' (which is a physical address, not a virtual
32435388Smjacob	 * address, for the start of unused physical memory). The kernel
32554671Smjacob	 * page tables are NOT double mapped and thus should not be included
32654671Smjacob	 * in this calculation.
32754671Smjacob	 */
32854671Smjacob	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
32954671Smjacob	virtual_avail = pmap_kmem_choose(virtual_avail);
33054671Smjacob
33154671Smjacob	virtual_end = VM_MAX_KERNEL_ADDRESS;
33254671Smjacob
33335388Smjacob	/*
33454671Smjacob	 * Initialize the kernel pmap (which is statically allocated).
33554671Smjacob	 */
33654671Smjacob	PMAP_LOCK_INIT(kernel_pmap);
33754671Smjacob	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
33854671Smjacob#ifdef PAE
33954671Smjacob	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
34054671Smjacob#endif
34154671Smjacob	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
34235388Smjacob	TAILQ_INIT(&kernel_pmap->pm_pvlist);
34362170Smjacob	LIST_INIT(&allpmaps);
34435388Smjacob	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
34535388Smjacob	mtx_lock_spin(&allpmaps_lock);
34635388Smjacob	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
34762170Smjacob	mtx_unlock_spin(&allpmaps_lock);
34862170Smjacob	nkpt = NKPT;
34962170Smjacob
35035388Smjacob	/*
35162170Smjacob	 * Reserve some special page table entries/VA space for temporary
35262170Smjacob	 * mapping of pages.
35335388Smjacob	 */
35435388Smjacob#define	SYSMAP(c, p, v, n)	\
35535388Smjacob	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
35654671Smjacob
35754671Smjacob	va = virtual_avail;
35854671Smjacob	pte = vtopte(va);
35954671Smjacob
36054671Smjacob	/*
36154671Smjacob	 * CMAP1/CMAP2 are used for zeroing and copying pages.
36254671Smjacob	 * CMAP3 is used for the idle process page zeroing.
36354671Smjacob	 */
36454671Smjacob	for (i = 0; i < MAXCPU; i++) {
36554671Smjacob		sysmaps = &sysmaps_pcpu[i];
36654671Smjacob		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
36754671Smjacob		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
36854671Smjacob		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
36954671Smjacob	}
37054671Smjacob	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
37154671Smjacob	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
37254671Smjacob	*CMAP3 = 0;
37354671Smjacob
37454671Smjacob	/*
37554671Smjacob	 * Crashdump maps.
37654671Smjacob	 */
37754671Smjacob	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
37854671Smjacob
37954671Smjacob	/*
38054671Smjacob	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
38154671Smjacob	 */
38254671Smjacob	SYSMAP(caddr_t, unused, ptvmmap, 1)
38354671Smjacob
38454671Smjacob	/*
38554671Smjacob	 * msgbufp is used to map the system message buffer.
38654671Smjacob	 */
38754671Smjacob	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
38854671Smjacob
38954671Smjacob	/*
39054671Smjacob	 * ptemap is used for pmap_pte_quick
39154671Smjacob	 */
39254671Smjacob	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
39354671Smjacob	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
39454671Smjacob
39535388Smjacob	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
39654671Smjacob
39754671Smjacob	virtual_avail = va;
39835388Smjacob
39954671Smjacob	*CMAP1 = 0;
40035388Smjacob
40135388Smjacob#ifdef XBOX
40235388Smjacob	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
40335388Smjacob	 * an early stadium, we cannot yet neatly map video memory ... :-(
40435388Smjacob	 * Better fixes are very welcome! */
40535388Smjacob	if (!arch_i386_is_xbox)
40635388Smjacob#endif
40735388Smjacob	for (i = 0; i < NKPT; i++)
40835388Smjacob		PTD[i] = 0;
40935388Smjacob
41035388Smjacob	/* Turn on PG_G on kernel page(s) */
41135388Smjacob	pmap_set_pg();
41235388Smjacob}
41335388Smjacob
41435388Smjacob/*
41535388Smjacob * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
41635388Smjacob */
41735388Smjacobvoid
41835388Smjacobpmap_set_pg(void)
41935388Smjacob{
42035388Smjacob	pd_entry_t pdir;
42135388Smjacob	pt_entry_t *pte;
42235388Smjacob	vm_offset_t va, endva;
42335388Smjacob	int i;
42435388Smjacob
42535388Smjacob	if (pgeflag == 0)
42635388Smjacob		return;
42735388Smjacob
42835388Smjacob	i = KERNLOAD/NBPDR;
42935388Smjacob	endva = KERNBASE + KERNend;
43035388Smjacob
43135388Smjacob	if (pseflag) {
43235388Smjacob		va = KERNBASE + KERNLOAD;
43335388Smjacob		while (va  < endva) {
43435388Smjacob			pdir = kernel_pmap->pm_pdir[KPTDI+i];
43535388Smjacob			pdir |= pgeflag;
43635388Smjacob			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
43735388Smjacob			invltlb();	/* Play it safe, invltlb() every time */
43835388Smjacob			i++;
43935388Smjacob			va += NBPDR;
44035388Smjacob		}
44135388Smjacob	} else {
44235388Smjacob		va = (vm_offset_t)btext;
44335388Smjacob		while (va < endva) {
44435388Smjacob			pte = vtopte(va);
44535388Smjacob			if (*pte)
44635388Smjacob				*pte |= pgeflag;
44735388Smjacob			invltlb();	/* Play it safe, invltlb() every time */
44835388Smjacob			va += PAGE_SIZE;
44935388Smjacob		}
45035388Smjacob	}
45135388Smjacob}
45235388Smjacob
45335388Smjacob/*
45435388Smjacob * Initialize a vm_page's machine-dependent fields.
45535388Smjacob */
45635388Smjacobvoid
45735388Smjacobpmap_page_init(vm_page_t m)
45835388Smjacob{
45935388Smjacob
46035388Smjacob	TAILQ_INIT(&m->md.pv_list);
46135388Smjacob	m->md.pv_list_count = 0;
46235388Smjacob}
46335388Smjacob
46435388Smjacob#ifdef PAE
46535388Smjacob
46635388Smjacobstatic MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
46735388Smjacob
46835388Smjacobstatic void *
46935388Smjacobpmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
47035388Smjacob{
47135388Smjacob	*flags = UMA_SLAB_PRIV;
47235388Smjacob	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
47335388Smjacob	    1, 0));
47435388Smjacob}
47535388Smjacob#endif
47635388Smjacob
47735388Smjacob/*
47835388Smjacob *	Initialize the pmap module.
47935388Smjacob *	Called by vm_init, to initialize any structures that the pmap
48035388Smjacob *	system needs to map virtual memory.
48135388Smjacob */
48235388Smjacobvoid
48335388Smjacobpmap_init(void)
48435388Smjacob{
48535388Smjacob	int shpgperproc = PMAP_SHPGPERPROC;
48635388Smjacob
48735388Smjacob	/*
48835388Smjacob	 * Initialize the address space (zone) for the pv entries.  Set a
48935388Smjacob	 * high water mark so that the system can recover from excessive
49035388Smjacob	 * numbers of pv entries.
49135388Smjacob	 */
49235388Smjacob	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
49335388Smjacob	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
49435388Smjacob	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
49535388Smjacob	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
49635388Smjacob	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
49735388Smjacob	pv_entry_high_water = 9 * (pv_entry_max / 10);
49835388Smjacob	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
49935388Smjacob
50035388Smjacob#ifdef PAE
50135388Smjacob	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
50235388Smjacob	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
50335388Smjacob	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
50435388Smjacob	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
50535388Smjacob#endif
50635388Smjacob}
50735388Smjacob
50835388Smjacob
50935388Smjacob/***************************************************
51035388Smjacob * Low level helper routines.....
51135388Smjacob ***************************************************/
51235388Smjacob
51335388Smjacob
51435388Smjacob/*
51535388Smjacob * this routine defines the region(s) of memory that should
51635388Smjacob * not be tested for the modified bit.
51735388Smjacob */
51835388Smjacobstatic PMAP_INLINE int
51935388Smjacobpmap_track_modified(vm_offset_t va)
52035388Smjacob{
52135388Smjacob	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
52235388Smjacob		return 1;
52335388Smjacob	else
52435388Smjacob		return 0;
52535388Smjacob}
52654671Smjacob
52745040Smjacob#ifdef SMP
52845040Smjacob/*
52945040Smjacob * For SMP, these functions have to use the IPI mechanism for coherence.
53045040Smjacob */
53145040Smjacobvoid
53245040Smjacobpmap_invalidate_page(pmap_t pmap, vm_offset_t va)
53345040Smjacob{
53445040Smjacob	u_int cpumask;
53545040Smjacob	u_int other_cpus;
53645040Smjacob
53745040Smjacob	if (smp_started) {
53835388Smjacob		if (!(read_eflags() & PSL_I))
53935388Smjacob			panic("%s: interrupts disabled", __func__);
54035388Smjacob		mtx_lock_spin(&smp_ipi_mtx);
54135388Smjacob	} else
54235388Smjacob		critical_enter();
54335388Smjacob	/*
54435388Smjacob	 * We need to disable interrupt preemption but MUST NOT have
54535388Smjacob	 * interrupts disabled here.
54635388Smjacob	 * XXX we may need to hold schedlock to get a coherent pm_active
54735388Smjacob	 * XXX critical sections disable interrupts again
54835388Smjacob	 */
54935388Smjacob	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
55035388Smjacob		invlpg(va);
55135388Smjacob		smp_invlpg(va);
55235388Smjacob	} else {
55335388Smjacob		cpumask = PCPU_GET(cpumask);
55435388Smjacob		other_cpus = PCPU_GET(other_cpus);
55535388Smjacob		if (pmap->pm_active & cpumask)
55635388Smjacob			invlpg(va);
55735388Smjacob		if (pmap->pm_active & other_cpus)
55835388Smjacob			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
55935388Smjacob	}
56035388Smjacob	if (smp_started)
56135388Smjacob		mtx_unlock_spin(&smp_ipi_mtx);
56235388Smjacob	else
56335388Smjacob		critical_exit();
56435388Smjacob}
56535388Smjacob
56635388Smjacobvoid
56735388Smjacobpmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
56835388Smjacob{
56943420Smjacob	u_int cpumask;
57035388Smjacob	u_int other_cpus;
57135388Smjacob	vm_offset_t addr;
57235388Smjacob
57335388Smjacob	if (smp_started) {
57435388Smjacob		if (!(read_eflags() & PSL_I))
57535388Smjacob			panic("%s: interrupts disabled", __func__);
57635388Smjacob		mtx_lock_spin(&smp_ipi_mtx);
57735388Smjacob	} else
57835388Smjacob		critical_enter();
57935388Smjacob	/*
58035388Smjacob	 * We need to disable interrupt preemption but MUST NOT have
58135388Smjacob	 * interrupts disabled here.
58235388Smjacob	 * XXX we may need to hold schedlock to get a coherent pm_active
58335388Smjacob	 * XXX critical sections disable interrupts again
58435388Smjacob	 */
58535388Smjacob	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
58635388Smjacob		for (addr = sva; addr < eva; addr += PAGE_SIZE)
58735388Smjacob			invlpg(addr);
58839235Sgibbs		smp_invlpg_range(sva, eva);
58939235Sgibbs	} else {
59039235Sgibbs		cpumask = PCPU_GET(cpumask);
59139235Sgibbs		other_cpus = PCPU_GET(other_cpus);
59235388Smjacob		if (pmap->pm_active & cpumask)
59335388Smjacob			for (addr = sva; addr < eva; addr += PAGE_SIZE)
59435388Smjacob				invlpg(addr);
59535388Smjacob		if (pmap->pm_active & other_cpus)
59635388Smjacob			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
59735388Smjacob			    sva, eva);
59835388Smjacob	}
59935388Smjacob	if (smp_started)
60035388Smjacob		mtx_unlock_spin(&smp_ipi_mtx);
60135388Smjacob	else
60235388Smjacob		critical_exit();
60335388Smjacob}
60435388Smjacob
60535388Smjacobvoid
60635388Smjacobpmap_invalidate_all(pmap_t pmap)
60735388Smjacob{
60835388Smjacob	u_int cpumask;
60935388Smjacob	u_int other_cpus;
61035388Smjacob
61135388Smjacob	if (smp_started) {
61235388Smjacob		if (!(read_eflags() & PSL_I))
61335388Smjacob			panic("%s: interrupts disabled", __func__);
61435388Smjacob		mtx_lock_spin(&smp_ipi_mtx);
61535388Smjacob	} else
61635388Smjacob		critical_enter();
61735388Smjacob	/*
61835388Smjacob	 * We need to disable interrupt preemption but MUST NOT have
61935388Smjacob	 * interrupts disabled here.
62035388Smjacob	 * XXX we may need to hold schedlock to get a coherent pm_active
62135388Smjacob	 * XXX critical sections disable interrupts again
62235388Smjacob	 */
62335388Smjacob	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
62435388Smjacob		invltlb();
62535388Smjacob		smp_invltlb();
62635388Smjacob	} else {
62735388Smjacob		cpumask = PCPU_GET(cpumask);
62839235Sgibbs		other_cpus = PCPU_GET(other_cpus);
62939235Sgibbs		if (pmap->pm_active & cpumask)
63046967Smjacob			invltlb();
63146967Smjacob		if (pmap->pm_active & other_cpus)
63246967Smjacob			smp_masked_invltlb(pmap->pm_active & other_cpus);
63346967Smjacob	}
63446967Smjacob	if (smp_started)
63546967Smjacob		mtx_unlock_spin(&smp_ipi_mtx);
63646967Smjacob	else
63739235Sgibbs		critical_exit();
63839235Sgibbs}
63939235Sgibbs#else /* !SMP */
64039235Sgibbs/*
64139235Sgibbs * Normal, non-SMP, 486+ invalidation functions.
64239235Sgibbs * We inline these within pmap.c for speed.
64339235Sgibbs */
64439235SgibbsPMAP_INLINE void
64545040Smjacobpmap_invalidate_page(pmap_t pmap, vm_offset_t va)
64639235Sgibbs{
64739235Sgibbs
64839235Sgibbs	if (pmap == kernel_pmap || pmap->pm_active)
64939235Sgibbs		invlpg(va);
65039235Sgibbs}
65139235Sgibbs
65239235SgibbsPMAP_INLINE void
65339235Sgibbspmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
65439235Sgibbs{
65539235Sgibbs	vm_offset_t addr;
65639235Sgibbs
65739235Sgibbs	if (pmap == kernel_pmap || pmap->pm_active)
65839235Sgibbs		for (addr = sva; addr < eva; addr += PAGE_SIZE)
65939235Sgibbs			invlpg(addr);
66039235Sgibbs}
66139235Sgibbs
66239235SgibbsPMAP_INLINE void
66339235Sgibbspmap_invalidate_all(pmap_t pmap)
66439235Sgibbs{
66539235Sgibbs
66639235Sgibbs	if (pmap == kernel_pmap || pmap->pm_active)
66739235Sgibbs		invltlb();
66839235Sgibbs}
66939235Sgibbs#endif /* !SMP */
67039235Sgibbs
67139235Sgibbs/*
67239235Sgibbs * Are we current address space or kernel?  N.B. We return FALSE when
67339235Sgibbs * a pmap's page table is in use because a kernel thread is borrowing
67439235Sgibbs * it.  The borrowed page table can change spontaneously, making any
67539235Sgibbs * dependence on its continued use subject to a race condition.
67639235Sgibbs */
67739235Sgibbsstatic __inline int
67839235Sgibbspmap_is_current(pmap_t pmap)
67939235Sgibbs{
68039235Sgibbs
68139235Sgibbs	return (pmap == kernel_pmap ||
68239235Sgibbs		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
68339235Sgibbs	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
68439235Sgibbs}
68539235Sgibbs
68639235Sgibbs/*
68739235Sgibbs * If the given pmap is not the current or kernel pmap, the returned pte must
68839235Sgibbs * be released by passing it to pmap_pte_release().
68939235Sgibbs */
69039235Sgibbspt_entry_t *
69139235Sgibbspmap_pte(pmap_t pmap, vm_offset_t va)
69239235Sgibbs{
69339235Sgibbs	pd_entry_t newpf;
69439235Sgibbs	pd_entry_t *pde;
69539235Sgibbs
69646967Smjacob	pde = pmap_pde(pmap, va);
69746967Smjacob	if (*pde & PG_PS)
69846967Smjacob		return (pde);
69946967Smjacob	if (*pde != 0) {
70046967Smjacob		/* are we current address space or kernel? */
70146967Smjacob		if (pmap_is_current(pmap))
70246967Smjacob			return (vtopte(va));
70346967Smjacob		mtx_lock(&PMAP2mutex);
70446967Smjacob		newpf = *pde & PG_FRAME;
70546967Smjacob		if ((*PMAP2 & PG_FRAME) != newpf) {
70646967Smjacob			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
70746967Smjacob			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
70846967Smjacob		}
70946967Smjacob		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
71061769Smjacob	}
71161769Smjacob	return (0);
71261769Smjacob}
71361769Smjacob
71461769Smjacob/*
71561769Smjacob * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
71661769Smjacob * being NULL.
71746967Smjacob */
71846967Smjacobstatic __inline void
71946967Smjacobpmap_pte_release(pt_entry_t *pte)
72046967Smjacob{
72161769Smjacob
72261769Smjacob	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
72361769Smjacob		mtx_unlock(&PMAP2mutex);
72461769Smjacob}
72561769Smjacob
72661769Smjacobstatic __inline void
72761769Smjacobinvlcaddr(void *caddr)
72861769Smjacob{
72961769Smjacob
73046967Smjacob	invlpg((u_int)caddr);
73146967Smjacob}
73246967Smjacob
73346967Smjacob/*
73446967Smjacob * Super fast pmap_pte routine best used when scanning
73546967Smjacob * the pv lists.  This eliminates many coarse-grained
73646967Smjacob * invltlb calls.  Note that many of the pv list
73746967Smjacob * scans are across different pmaps.  It is very wasteful
73846967Smjacob * to do an entire invltlb for checking a single mapping.
73946967Smjacob *
74046967Smjacob * If the given pmap is not the current pmap, vm_page_queue_mtx
74146967Smjacob * must be held and curthread pinned to a CPU.
74246967Smjacob */
74346967Smjacobstatic pt_entry_t *
74457148Smjacobpmap_pte_quick(pmap_t pmap, vm_offset_t va)
74557148Smjacob{
74646967Smjacob	pd_entry_t newpf;
74746967Smjacob	pd_entry_t *pde;
74846967Smjacob
74946967Smjacob	pde = pmap_pde(pmap, va);
75046967Smjacob	if (*pde & PG_PS)
75146967Smjacob		return (pde);
75246967Smjacob	if (*pde != 0) {
75346967Smjacob		/* are we current address space or kernel? */
75446967Smjacob		if (pmap_is_current(pmap))
75546967Smjacob			return (vtopte(va));
75646967Smjacob		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
75746967Smjacob		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
75846967Smjacob		newpf = *pde & PG_FRAME;
75946967Smjacob		if ((*PMAP1 & PG_FRAME) != newpf) {
76046967Smjacob			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
76146967Smjacob#ifdef SMP
76246967Smjacob			PMAP1cpu = PCPU_GET(cpuid);
76346967Smjacob#endif
76446967Smjacob			invlcaddr(PADDR1);
76546967Smjacob			PMAP1changed++;
76646967Smjacob		} else
76746967Smjacob#ifdef SMP
76846967Smjacob		if (PMAP1cpu != PCPU_GET(cpuid)) {
76946967Smjacob			PMAP1cpu = PCPU_GET(cpuid);
77046967Smjacob			invlcaddr(PADDR1);
77146967Smjacob			PMAP1changedcpu++;
77246967Smjacob		} else
77346967Smjacob#endif
77446967Smjacob			PMAP1unchanged++;
77546967Smjacob		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
77646967Smjacob	}
77746967Smjacob	return (0);
77846967Smjacob}
77946967Smjacob
78046967Smjacob/*
78146967Smjacob *	Routine:	pmap_extract
78246967Smjacob *	Function:
78346967Smjacob *		Extract the physical page address associated
78446967Smjacob *		with the given map/virtual_address pair.
78546967Smjacob */
78646967Smjacobvm_paddr_t
78746967Smjacobpmap_extract(pmap_t pmap, vm_offset_t va)
78846967Smjacob{
78946967Smjacob	vm_paddr_t rtval;
79046967Smjacob	pt_entry_t *pte;
79146967Smjacob	pd_entry_t pde;
79246967Smjacob
79346967Smjacob	rtval = 0;
79446967Smjacob	PMAP_LOCK(pmap);
79546967Smjacob	pde = pmap->pm_pdir[va >> PDRSHIFT];
79646967Smjacob	if (pde != 0) {
79746967Smjacob		if ((pde & PG_PS) != 0) {
79846967Smjacob			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
79946967Smjacob			PMAP_UNLOCK(pmap);
80046967Smjacob			return rtval;
80146967Smjacob		}
80246967Smjacob		pte = pmap_pte(pmap, va);
80346967Smjacob		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
80457148Smjacob		pmap_pte_release(pte);
80557148Smjacob	}
80657148Smjacob	PMAP_UNLOCK(pmap);
80757148Smjacob	return (rtval);
80857148Smjacob}
80957148Smjacob
81057148Smjacob/*
81157148Smjacob *	Routine:	pmap_extract_and_hold
81257148Smjacob *	Function:
81357148Smjacob *		Atomically extract and hold the physical page
81457148Smjacob *		with the given pmap and virtual address pair
81557148Smjacob *		if that mapping permits the given protection.
81657148Smjacob */
81757148Smjacobvm_page_t
81857148Smjacobpmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
81957148Smjacob{
82057148Smjacob	pd_entry_t pde;
82157148Smjacob	pt_entry_t pte;
82257148Smjacob	vm_page_t m;
82357148Smjacob
82457148Smjacob	m = NULL;
82557148Smjacob	vm_page_lock_queues();
82657148Smjacob	PMAP_LOCK(pmap);
82757148Smjacob	pde = *pmap_pde(pmap, va);
82857148Smjacob	if (pde != 0) {
82957148Smjacob		if (pde & PG_PS) {
83057148Smjacob			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
83157148Smjacob				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
83257148Smjacob				    (va & PDRMASK));
83357148Smjacob				vm_page_hold(m);
83457148Smjacob			}
83557148Smjacob		} else {
83657148Smjacob			sched_pin();
83757148Smjacob			pte = *pmap_pte_quick(pmap, va);
83857148Smjacob			if (pte != 0 &&
83957148Smjacob			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
84057148Smjacob				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
84157148Smjacob				vm_page_hold(m);
84257148Smjacob			}
84357148Smjacob			sched_unpin();
84457148Smjacob		}
84557148Smjacob	}
84657148Smjacob	vm_page_unlock_queues();
84757148Smjacob	PMAP_UNLOCK(pmap);
84857148Smjacob	return (m);
84957148Smjacob}
85057148Smjacob
85157148Smjacob/***************************************************
85257148Smjacob * Low level mapping routines.....
85357148Smjacob ***************************************************/
85457148Smjacob
85557148Smjacob/*
85657148Smjacob * Add a wired page to the kva.
85757148Smjacob * Note: not SMP coherent.
85857148Smjacob */
85957148SmjacobPMAP_INLINE void
86057148Smjacobpmap_kenter(vm_offset_t va, vm_paddr_t pa)
86157148Smjacob{
86257148Smjacob	pt_entry_t *pte;
86357148Smjacob
86457148Smjacob	pte = vtopte(va);
86557148Smjacob	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
86657148Smjacob}
86757148Smjacob
86857148Smjacob/*
86957148Smjacob * Remove a page from the kernel pagetables.
87057148Smjacob * Note: not SMP coherent.
87157148Smjacob */
87257148SmjacobPMAP_INLINE void
87357148Smjacobpmap_kremove(vm_offset_t va)
87457148Smjacob{
87557148Smjacob	pt_entry_t *pte;
87657148Smjacob
87757148Smjacob	pte = vtopte(va);
87846967Smjacob	pte_clear(pte);
87939235Sgibbs}
88039235Sgibbs
88139235Sgibbs/*
88239235Sgibbs *	Used to map a range of physical addresses into kernel
88339235Sgibbs *	virtual address space.
88439235Sgibbs *
88539235Sgibbs *	The value passed in '*virt' is a suggested virtual address for
88639235Sgibbs *	the mapping. Architectures which can support a direct-mapped
88739235Sgibbs *	physical to virtual region can return the appropriate address
88839235Sgibbs *	within that region, leaving '*virt' unchanged. Other
88939235Sgibbs *	architectures should map the pages starting at '*virt' and
89039235Sgibbs *	update '*virt' with the first usable address after the mapped
89143792Smjacob *	region.
89239235Sgibbs */
89339235Sgibbsvm_offset_t
89439235Sgibbspmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
89539235Sgibbs{
89639235Sgibbs	vm_offset_t va, sva;
89739235Sgibbs
89860218Smjacob	va = sva = *virt;
89939235Sgibbs	while (start < end) {
90039235Sgibbs		pmap_kenter(va, start);
90139235Sgibbs		va += PAGE_SIZE;
90239235Sgibbs		start += PAGE_SIZE;
90339235Sgibbs	}
90439235Sgibbs	pmap_invalidate_range(kernel_pmap, sva, va);
90539235Sgibbs	*virt = va;
90639235Sgibbs	return (sva);
90760218Smjacob}
90841518Smjacob
90939235Sgibbs
91060218Smjacob/*
91160218Smjacob * Add a list of wired pages to the kva
91260218Smjacob * this routine is only used for temporary
91360218Smjacob * kernel mappings that do not need to have
91460218Smjacob * page modification or references recorded.
91560218Smjacob * Note that old mappings are simply written
91660218Smjacob * over.  The page *must* be wired.
91760218Smjacob * Note: SMP coherent.  Uses a ranged shootdown IPI.
91860218Smjacob */
91960218Smjacobvoid
92043792Smjacobpmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
92139235Sgibbs{
92239235Sgibbs	vm_offset_t va;
92339235Sgibbs
92439235Sgibbs	va = sva;
92539235Sgibbs	while (count-- > 0) {
92639235Sgibbs		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
92739235Sgibbs		va += PAGE_SIZE;
92845040Smjacob		m++;
92939235Sgibbs	}
93039235Sgibbs	pmap_invalidate_range(kernel_pmap, sva, va);
93139235Sgibbs}
93239235Sgibbs
93339235Sgibbs/*
93439235Sgibbs * This routine tears out page mappings from the
93539235Sgibbs * kernel -- it is meant only for temporary mappings.
93639235Sgibbs * Note: SMP coherent.  Uses a ranged shootdown IPI.
93743792Smjacob */
93839235Sgibbsvoid
93939235Sgibbspmap_qremove(vm_offset_t sva, int count)
94035388Smjacob{
941	vm_offset_t va;
942
943	va = sva;
944	while (count-- > 0) {
945		pmap_kremove(va);
946		va += PAGE_SIZE;
947	}
948	pmap_invalidate_range(kernel_pmap, sva, va);
949}
950
951/***************************************************
952 * Page table page management routines.....
953 ***************************************************/
954
955/*
956 * This routine unholds page table pages, and if the hold count
957 * drops to zero, then it decrements the wire count.
958 */
959static PMAP_INLINE int
960pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
961{
962
963	--m->wire_count;
964	if (m->wire_count == 0)
965		return _pmap_unwire_pte_hold(pmap, m);
966	else
967		return 0;
968}
969
970static int
971_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
972{
973	vm_offset_t pteva;
974
975	/*
976	 * unmap the page table page
977	 */
978	pmap->pm_pdir[m->pindex] = 0;
979	--pmap->pm_stats.resident_count;
980
981	/*
982	 * Do an invltlb to make the invalidated mapping
983	 * take effect immediately.
984	 */
985	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
986	pmap_invalidate_page(pmap, pteva);
987
988	vm_page_free_zero(m);
989	atomic_subtract_int(&cnt.v_wire_count, 1);
990	return 1;
991}
992
993/*
994 * After removing a page table entry, this routine is used to
995 * conditionally free the page, and manage the hold/wire counts.
996 */
997static int
998pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
999{
1000	pd_entry_t ptepde;
1001	vm_page_t mpte;
1002
1003	if (va >= VM_MAXUSER_ADDRESS)
1004		return 0;
1005	ptepde = *pmap_pde(pmap, va);
1006	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1007	return pmap_unwire_pte_hold(pmap, mpte);
1008}
1009
1010void
1011pmap_pinit0(pmap)
1012	struct pmap *pmap;
1013{
1014
1015	PMAP_LOCK_INIT(pmap);
1016	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1017#ifdef PAE
1018	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1019#endif
1020	pmap->pm_active = 0;
1021	PCPU_SET(curpmap, pmap);
1022	TAILQ_INIT(&pmap->pm_pvlist);
1023	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1024	mtx_lock_spin(&allpmaps_lock);
1025	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1026	mtx_unlock_spin(&allpmaps_lock);
1027}
1028
1029/*
1030 * Initialize a preallocated and zeroed pmap structure,
1031 * such as one in a vmspace structure.
1032 */
1033void
1034pmap_pinit(pmap)
1035	register struct pmap *pmap;
1036{
1037	vm_page_t m, ptdpg[NPGPTD];
1038	vm_paddr_t pa;
1039	static int color;
1040	int i;
1041
1042	PMAP_LOCK_INIT(pmap);
1043
1044	/*
1045	 * No need to allocate page table space yet but we do need a valid
1046	 * page directory table.
1047	 */
1048	if (pmap->pm_pdir == NULL) {
1049		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1050		    NBPTD);
1051#ifdef PAE
1052		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1053		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1054		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1055		    ("pmap_pinit: pdpt misaligned"));
1056		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1057		    ("pmap_pinit: pdpt above 4g"));
1058#endif
1059	}
1060
1061	/*
1062	 * allocate the page directory page(s)
1063	 */
1064	for (i = 0; i < NPGPTD;) {
1065		m = vm_page_alloc(NULL, color++,
1066		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1067		    VM_ALLOC_ZERO);
1068		if (m == NULL)
1069			VM_WAIT;
1070		else {
1071			ptdpg[i++] = m;
1072		}
1073	}
1074
1075	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1076
1077	for (i = 0; i < NPGPTD; i++) {
1078		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1079			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1080	}
1081
1082	mtx_lock_spin(&allpmaps_lock);
1083	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1084	mtx_unlock_spin(&allpmaps_lock);
1085	/* Wire in kernel global address entries. */
1086	/* XXX copies current process, does not fill in MPPTDI */
1087	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1088#ifdef SMP
1089	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1090#endif
1091
1092	/* install self-referential address mapping entry(s) */
1093	for (i = 0; i < NPGPTD; i++) {
1094		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1095		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1096#ifdef PAE
1097		pmap->pm_pdpt[i] = pa | PG_V;
1098#endif
1099	}
1100
1101	pmap->pm_active = 0;
1102	TAILQ_INIT(&pmap->pm_pvlist);
1103	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1104}
1105
1106/*
1107 * this routine is called if the page table page is not
1108 * mapped correctly.
1109 */
1110static vm_page_t
1111_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1112{
1113	vm_paddr_t ptepa;
1114	vm_page_t m;
1115
1116	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1117	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1118	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1119
1120	/*
1121	 * Allocate a page table page.
1122	 */
1123	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1124	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1125		if (flags & M_WAITOK) {
1126			PMAP_UNLOCK(pmap);
1127			vm_page_unlock_queues();
1128			VM_WAIT;
1129			vm_page_lock_queues();
1130			PMAP_LOCK(pmap);
1131		}
1132
1133		/*
1134		 * Indicate the need to retry.  While waiting, the page table
1135		 * page may have been allocated.
1136		 */
1137		return (NULL);
1138	}
1139	if ((m->flags & PG_ZERO) == 0)
1140		pmap_zero_page(m);
1141
1142	/*
1143	 * Map the pagetable page into the process address space, if
1144	 * it isn't already there.
1145	 */
1146
1147	pmap->pm_stats.resident_count++;
1148
1149	ptepa = VM_PAGE_TO_PHYS(m);
1150	pmap->pm_pdir[ptepindex] =
1151		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1152
1153	return m;
1154}
1155
1156static vm_page_t
1157pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1158{
1159	unsigned ptepindex;
1160	pd_entry_t ptepa;
1161	vm_page_t m;
1162
1163	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1164	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1165	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1166
1167	/*
1168	 * Calculate pagetable page index
1169	 */
1170	ptepindex = va >> PDRSHIFT;
1171retry:
1172	/*
1173	 * Get the page directory entry
1174	 */
1175	ptepa = pmap->pm_pdir[ptepindex];
1176
1177	/*
1178	 * This supports switching from a 4MB page to a
1179	 * normal 4K page.
1180	 */
1181	if (ptepa & PG_PS) {
1182		pmap->pm_pdir[ptepindex] = 0;
1183		ptepa = 0;
1184		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1185		pmap_invalidate_all(kernel_pmap);
1186	}
1187
1188	/*
1189	 * If the page table page is mapped, we just increment the
1190	 * hold count, and activate it.
1191	 */
1192	if (ptepa) {
1193		m = PHYS_TO_VM_PAGE(ptepa);
1194		m->wire_count++;
1195	} else {
1196		/*
1197		 * Here if the pte page isn't mapped, or if it has
1198		 * been deallocated.
1199		 */
1200		m = _pmap_allocpte(pmap, ptepindex, flags);
1201		if (m == NULL && (flags & M_WAITOK))
1202			goto retry;
1203	}
1204	return (m);
1205}
1206
1207
1208/***************************************************
1209* Pmap allocation/deallocation routines.
1210 ***************************************************/
1211
1212#ifdef SMP
1213/*
1214 * Deal with a SMP shootdown of other users of the pmap that we are
1215 * trying to dispose of.  This can be a bit hairy.
1216 */
1217static u_int *lazymask;
1218static u_int lazyptd;
1219static volatile u_int lazywait;
1220
1221void pmap_lazyfix_action(void);
1222
1223void
1224pmap_lazyfix_action(void)
1225{
1226	u_int mymask = PCPU_GET(cpumask);
1227
1228#ifdef COUNT_IPIS
1229	*ipi_lazypmap_counts[PCPU_GET(cpuid)]++;
1230#endif
1231	if (rcr3() == lazyptd)
1232		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1233	atomic_clear_int(lazymask, mymask);
1234	atomic_store_rel_int(&lazywait, 1);
1235}
1236
1237static void
1238pmap_lazyfix_self(u_int mymask)
1239{
1240
1241	if (rcr3() == lazyptd)
1242		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1243	atomic_clear_int(lazymask, mymask);
1244}
1245
1246
1247static void
1248pmap_lazyfix(pmap_t pmap)
1249{
1250	u_int mymask;
1251	u_int mask;
1252	register u_int spins;
1253
1254	while ((mask = pmap->pm_active) != 0) {
1255		spins = 50000000;
1256		mask = mask & -mask;	/* Find least significant set bit */
1257		mtx_lock_spin(&smp_ipi_mtx);
1258#ifdef PAE
1259		lazyptd = vtophys(pmap->pm_pdpt);
1260#else
1261		lazyptd = vtophys(pmap->pm_pdir);
1262#endif
1263		mymask = PCPU_GET(cpumask);
1264		if (mask == mymask) {
1265			lazymask = &pmap->pm_active;
1266			pmap_lazyfix_self(mymask);
1267		} else {
1268			atomic_store_rel_int((u_int *)&lazymask,
1269			    (u_int)&pmap->pm_active);
1270			atomic_store_rel_int(&lazywait, 0);
1271			ipi_selected(mask, IPI_LAZYPMAP);
1272			while (lazywait == 0) {
1273				ia32_pause();
1274				if (--spins == 0)
1275					break;
1276			}
1277		}
1278		mtx_unlock_spin(&smp_ipi_mtx);
1279		if (spins == 0)
1280			printf("pmap_lazyfix: spun for 50000000\n");
1281	}
1282}
1283
1284#else	/* SMP */
1285
1286/*
1287 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1288 * unlikely to have to even execute this code, including the fact
1289 * that the cleanup is deferred until the parent does a wait(2), which
1290 * means that another userland process has run.
1291 */
1292static void
1293pmap_lazyfix(pmap_t pmap)
1294{
1295	u_int cr3;
1296
1297	cr3 = vtophys(pmap->pm_pdir);
1298	if (cr3 == rcr3()) {
1299		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1300		pmap->pm_active &= ~(PCPU_GET(cpumask));
1301	}
1302}
1303#endif	/* SMP */
1304
1305/*
1306 * Release any resources held by the given physical map.
1307 * Called when a pmap initialized by pmap_pinit is being released.
1308 * Should only be called if the map contains no valid mappings.
1309 */
1310void
1311pmap_release(pmap_t pmap)
1312{
1313	vm_page_t m, ptdpg[NPGPTD];
1314	int i;
1315
1316	KASSERT(pmap->pm_stats.resident_count == 0,
1317	    ("pmap_release: pmap resident count %ld != 0",
1318	    pmap->pm_stats.resident_count));
1319
1320	pmap_lazyfix(pmap);
1321	mtx_lock_spin(&allpmaps_lock);
1322	LIST_REMOVE(pmap, pm_list);
1323	mtx_unlock_spin(&allpmaps_lock);
1324
1325	for (i = 0; i < NPGPTD; i++)
1326		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1327
1328	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1329	    sizeof(*pmap->pm_pdir));
1330#ifdef SMP
1331	pmap->pm_pdir[MPPTDI] = 0;
1332#endif
1333
1334	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1335
1336	vm_page_lock_queues();
1337	for (i = 0; i < NPGPTD; i++) {
1338		m = ptdpg[i];
1339#ifdef PAE
1340		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1341		    ("pmap_release: got wrong ptd page"));
1342#endif
1343		m->wire_count--;
1344		atomic_subtract_int(&cnt.v_wire_count, 1);
1345		vm_page_free_zero(m);
1346	}
1347	vm_page_unlock_queues();
1348	PMAP_LOCK_DESTROY(pmap);
1349}
1350
1351static int
1352kvm_size(SYSCTL_HANDLER_ARGS)
1353{
1354	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1355
1356	return sysctl_handle_long(oidp, &ksize, 0, req);
1357}
1358SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1359    0, 0, kvm_size, "IU", "Size of KVM");
1360
1361static int
1362kvm_free(SYSCTL_HANDLER_ARGS)
1363{
1364	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1365
1366	return sysctl_handle_long(oidp, &kfree, 0, req);
1367}
1368SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1369    0, 0, kvm_free, "IU", "Amount of KVM free");
1370
1371/*
1372 * grow the number of kernel page table entries, if needed
1373 */
1374void
1375pmap_growkernel(vm_offset_t addr)
1376{
1377	struct pmap *pmap;
1378	vm_paddr_t ptppaddr;
1379	vm_page_t nkpg;
1380	pd_entry_t newpdir;
1381	pt_entry_t *pde;
1382
1383	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1384	if (kernel_vm_end == 0) {
1385		kernel_vm_end = KERNBASE;
1386		nkpt = 0;
1387		while (pdir_pde(PTD, kernel_vm_end)) {
1388			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1389			nkpt++;
1390			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1391				kernel_vm_end = kernel_map->max_offset;
1392				break;
1393			}
1394		}
1395	}
1396	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1397	if (addr - 1 >= kernel_map->max_offset)
1398		addr = kernel_map->max_offset;
1399	while (kernel_vm_end < addr) {
1400		if (pdir_pde(PTD, kernel_vm_end)) {
1401			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1402			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1403				kernel_vm_end = kernel_map->max_offset;
1404				break;
1405			}
1406			continue;
1407		}
1408
1409		/*
1410		 * This index is bogus, but out of the way
1411		 */
1412		nkpg = vm_page_alloc(NULL, nkpt,
1413		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1414		if (!nkpg)
1415			panic("pmap_growkernel: no memory to grow kernel");
1416
1417		nkpt++;
1418
1419		pmap_zero_page(nkpg);
1420		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1421		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1422		pdir_pde(PTD, kernel_vm_end) = newpdir;
1423
1424		mtx_lock_spin(&allpmaps_lock);
1425		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1426			pde = pmap_pde(pmap, kernel_vm_end);
1427			pde_store(pde, newpdir);
1428		}
1429		mtx_unlock_spin(&allpmaps_lock);
1430		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1431		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1432			kernel_vm_end = kernel_map->max_offset;
1433			break;
1434		}
1435	}
1436}
1437
1438
1439/***************************************************
1440 * page management routines.
1441 ***************************************************/
1442
1443/*
1444 * free the pv_entry back to the free list
1445 */
1446static PMAP_INLINE void
1447free_pv_entry(pv_entry_t pv)
1448{
1449	pv_entry_count--;
1450	uma_zfree(pvzone, pv);
1451}
1452
1453/*
1454 * get a new pv_entry, allocating a block from the system
1455 * when needed.
1456 */
1457static pv_entry_t
1458get_pv_entry(pmap_t locked_pmap)
1459{
1460	static const struct timeval printinterval = { 60, 0 };
1461	static struct timeval lastprint;
1462	struct vpgqueues *vpq;
1463	pmap_t pmap;
1464	pt_entry_t *pte, tpte;
1465	pv_entry_t allocated_pv, next_pv, pv;
1466	vm_offset_t va;
1467	vm_page_t m;
1468
1469	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1470	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1471	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1472	if (allocated_pv != NULL) {
1473		pv_entry_count++;
1474		if (pv_entry_count > pv_entry_high_water)
1475			pagedaemon_wakeup();
1476		else
1477			return (allocated_pv);
1478	}
1479
1480	/*
1481	 * Reclaim pv entries: At first, destroy mappings to inactive
1482	 * pages.  After that, if a pv entry is still needed, destroy
1483	 * mappings to active pages.
1484	 */
1485	if (ratecheck(&lastprint, &printinterval))
1486		printf("Approaching the limit on PV entries, "
1487		    "increase the vm.pmap.shpgperproc tunable.\n");
1488	vpq = &vm_page_queues[PQ_INACTIVE];
1489retry:
1490	sched_pin();
1491	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1492		if (m->hold_count || m->busy || (m->flags & PG_BUSY))
1493			continue;
1494		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1495			va = pv->pv_va;
1496			pmap = pv->pv_pmap;
1497			/* Avoid deadlock and lock recursion. */
1498			if (pmap > locked_pmap)
1499				PMAP_LOCK(pmap);
1500			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1501				continue;
1502			pmap->pm_stats.resident_count--;
1503			pte = pmap_pte_quick(pmap, va);
1504			tpte = pte_load_clear(pte);
1505			KASSERT((tpte & PG_W) == 0,
1506			    ("get_pv_entry: wired pte %#jx", (uintmax_t)tpte));
1507			if (tpte & PG_A)
1508				vm_page_flag_set(m, PG_REFERENCED);
1509			if (tpte & PG_M) {
1510				KASSERT((tpte & PG_RW),
1511	("get_pv_entry: modified page not writable: va: %#x, pte: %#jx",
1512				    va, (uintmax_t)tpte));
1513				if (pmap_track_modified(va))
1514					vm_page_dirty(m);
1515			}
1516			pmap_invalidate_page(pmap, va);
1517			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1518			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1519			if (TAILQ_EMPTY(&m->md.pv_list))
1520				vm_page_flag_clear(m, PG_WRITEABLE);
1521			m->md.pv_list_count--;
1522			pmap_unuse_pt(pmap, va);
1523			if (pmap != locked_pmap)
1524				PMAP_UNLOCK(pmap);
1525			if (allocated_pv == NULL)
1526				allocated_pv = pv;
1527			else
1528				free_pv_entry(pv);
1529		}
1530	}
1531	sched_unpin();
1532	if (allocated_pv == NULL) {
1533		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1534			vpq = &vm_page_queues[PQ_ACTIVE];
1535			goto retry;
1536		}
1537		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1538	}
1539	return (allocated_pv);
1540}
1541
1542static void
1543pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1544{
1545	pv_entry_t pv;
1546
1547	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1548	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1549	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1550		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1551			if (pmap == pv->pv_pmap && va == pv->pv_va)
1552				break;
1553		}
1554	} else {
1555		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1556			if (va == pv->pv_va)
1557				break;
1558		}
1559	}
1560	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1561	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1562	m->md.pv_list_count--;
1563	if (TAILQ_EMPTY(&m->md.pv_list))
1564		vm_page_flag_clear(m, PG_WRITEABLE);
1565	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1566	free_pv_entry(pv);
1567}
1568
1569/*
1570 * Create a pv entry for page at pa for
1571 * (pmap, va).
1572 */
1573static void
1574pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1575{
1576	pv_entry_t pv;
1577
1578	pv = get_pv_entry(pmap);
1579	pv->pv_va = va;
1580	pv->pv_pmap = pmap;
1581
1582	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1583	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1584	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1585	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1586	m->md.pv_list_count++;
1587}
1588
1589/*
1590 * pmap_remove_pte: do the things to unmap a page in a process
1591 */
1592static int
1593pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1594{
1595	pt_entry_t oldpte;
1596	vm_page_t m;
1597
1598	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1599	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1600	oldpte = pte_load_clear(ptq);
1601	if (oldpte & PG_W)
1602		pmap->pm_stats.wired_count -= 1;
1603	/*
1604	 * Machines that don't support invlpg, also don't support
1605	 * PG_G.
1606	 */
1607	if (oldpte & PG_G)
1608		pmap_invalidate_page(kernel_pmap, va);
1609	pmap->pm_stats.resident_count -= 1;
1610	if (oldpte & PG_MANAGED) {
1611		m = PHYS_TO_VM_PAGE(oldpte);
1612		if (oldpte & PG_M) {
1613			KASSERT((oldpte & PG_RW),
1614	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1615			    va, (uintmax_t)oldpte));
1616			if (pmap_track_modified(va))
1617				vm_page_dirty(m);
1618		}
1619		if (oldpte & PG_A)
1620			vm_page_flag_set(m, PG_REFERENCED);
1621		pmap_remove_entry(pmap, m, va);
1622	}
1623	return (pmap_unuse_pt(pmap, va));
1624}
1625
1626/*
1627 * Remove a single page from a process address space
1628 */
1629static void
1630pmap_remove_page(pmap_t pmap, vm_offset_t va)
1631{
1632	pt_entry_t *pte;
1633
1634	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1635	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1636	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1637	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1638		return;
1639	pmap_remove_pte(pmap, pte, va);
1640	pmap_invalidate_page(pmap, va);
1641}
1642
1643/*
1644 *	Remove the given range of addresses from the specified map.
1645 *
1646 *	It is assumed that the start and end are properly
1647 *	rounded to the page size.
1648 */
1649void
1650pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1651{
1652	vm_offset_t pdnxt;
1653	pd_entry_t ptpaddr;
1654	pt_entry_t *pte;
1655	int anyvalid;
1656
1657	/*
1658	 * Perform an unsynchronized read.  This is, however, safe.
1659	 */
1660	if (pmap->pm_stats.resident_count == 0)
1661		return;
1662
1663	anyvalid = 0;
1664
1665	vm_page_lock_queues();
1666	sched_pin();
1667	PMAP_LOCK(pmap);
1668
1669	/*
1670	 * special handling of removing one page.  a very
1671	 * common operation and easy to short circuit some
1672	 * code.
1673	 */
1674	if ((sva + PAGE_SIZE == eva) &&
1675	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1676		pmap_remove_page(pmap, sva);
1677		goto out;
1678	}
1679
1680	for (; sva < eva; sva = pdnxt) {
1681		unsigned pdirindex;
1682
1683		/*
1684		 * Calculate index for next page table.
1685		 */
1686		pdnxt = (sva + NBPDR) & ~PDRMASK;
1687		if (pmap->pm_stats.resident_count == 0)
1688			break;
1689
1690		pdirindex = sva >> PDRSHIFT;
1691		ptpaddr = pmap->pm_pdir[pdirindex];
1692
1693		/*
1694		 * Weed out invalid mappings. Note: we assume that the page
1695		 * directory table is always allocated, and in kernel virtual.
1696		 */
1697		if (ptpaddr == 0)
1698			continue;
1699
1700		/*
1701		 * Check for large page.
1702		 */
1703		if ((ptpaddr & PG_PS) != 0) {
1704			pmap->pm_pdir[pdirindex] = 0;
1705			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1706			anyvalid = 1;
1707			continue;
1708		}
1709
1710		/*
1711		 * Limit our scan to either the end of the va represented
1712		 * by the current page table page, or to the end of the
1713		 * range being removed.
1714		 */
1715		if (pdnxt > eva)
1716			pdnxt = eva;
1717
1718		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1719		    sva += PAGE_SIZE) {
1720			if (*pte == 0)
1721				continue;
1722			anyvalid = 1;
1723			if (pmap_remove_pte(pmap, pte, sva))
1724				break;
1725		}
1726	}
1727out:
1728	sched_unpin();
1729	vm_page_unlock_queues();
1730	if (anyvalid)
1731		pmap_invalidate_all(pmap);
1732	PMAP_UNLOCK(pmap);
1733}
1734
1735/*
1736 *	Routine:	pmap_remove_all
1737 *	Function:
1738 *		Removes this physical page from
1739 *		all physical maps in which it resides.
1740 *		Reflects back modify bits to the pager.
1741 *
1742 *	Notes:
1743 *		Original versions of this routine were very
1744 *		inefficient because they iteratively called
1745 *		pmap_remove (slow...)
1746 */
1747
1748void
1749pmap_remove_all(vm_page_t m)
1750{
1751	register pv_entry_t pv;
1752	pt_entry_t *pte, tpte;
1753
1754#if defined(PMAP_DIAGNOSTIC)
1755	/*
1756	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1757	 */
1758	if (m->flags & PG_FICTITIOUS) {
1759		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1760		    VM_PAGE_TO_PHYS(m));
1761	}
1762#endif
1763	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1764	sched_pin();
1765	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1766		PMAP_LOCK(pv->pv_pmap);
1767		pv->pv_pmap->pm_stats.resident_count--;
1768		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1769		tpte = pte_load_clear(pte);
1770		if (tpte & PG_W)
1771			pv->pv_pmap->pm_stats.wired_count--;
1772		if (tpte & PG_A)
1773			vm_page_flag_set(m, PG_REFERENCED);
1774
1775		/*
1776		 * Update the vm_page_t clean and reference bits.
1777		 */
1778		if (tpte & PG_M) {
1779			KASSERT((tpte & PG_RW),
1780	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
1781			    pv->pv_va, (uintmax_t)tpte));
1782			if (pmap_track_modified(pv->pv_va))
1783				vm_page_dirty(m);
1784		}
1785		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1786		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1787		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1788		m->md.pv_list_count--;
1789		pmap_unuse_pt(pv->pv_pmap, pv->pv_va);
1790		PMAP_UNLOCK(pv->pv_pmap);
1791		free_pv_entry(pv);
1792	}
1793	vm_page_flag_clear(m, PG_WRITEABLE);
1794	sched_unpin();
1795}
1796
1797/*
1798 *	Set the physical protection on the
1799 *	specified range of this map as requested.
1800 */
1801void
1802pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1803{
1804	vm_offset_t pdnxt;
1805	pd_entry_t ptpaddr;
1806	pt_entry_t *pte;
1807	int anychanged;
1808
1809	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1810		pmap_remove(pmap, sva, eva);
1811		return;
1812	}
1813
1814	if (prot & VM_PROT_WRITE)
1815		return;
1816
1817	anychanged = 0;
1818
1819	vm_page_lock_queues();
1820	sched_pin();
1821	PMAP_LOCK(pmap);
1822	for (; sva < eva; sva = pdnxt) {
1823		unsigned obits, pbits, pdirindex;
1824
1825		pdnxt = (sva + NBPDR) & ~PDRMASK;
1826
1827		pdirindex = sva >> PDRSHIFT;
1828		ptpaddr = pmap->pm_pdir[pdirindex];
1829
1830		/*
1831		 * Weed out invalid mappings. Note: we assume that the page
1832		 * directory table is always allocated, and in kernel virtual.
1833		 */
1834		if (ptpaddr == 0)
1835			continue;
1836
1837		/*
1838		 * Check for large page.
1839		 */
1840		if ((ptpaddr & PG_PS) != 0) {
1841			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1842			anychanged = 1;
1843			continue;
1844		}
1845
1846		if (pdnxt > eva)
1847			pdnxt = eva;
1848
1849		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1850		    sva += PAGE_SIZE) {
1851			vm_page_t m;
1852
1853retry:
1854			/*
1855			 * Regardless of whether a pte is 32 or 64 bits in
1856			 * size, PG_RW, PG_A, and PG_M are among the least
1857			 * significant 32 bits.
1858			 */
1859			obits = pbits = *(u_int *)pte;
1860			if (pbits & PG_MANAGED) {
1861				m = NULL;
1862				if (pbits & PG_A) {
1863					m = PHYS_TO_VM_PAGE(*pte);
1864					vm_page_flag_set(m, PG_REFERENCED);
1865					pbits &= ~PG_A;
1866				}
1867				if ((pbits & PG_M) != 0 &&
1868				    pmap_track_modified(sva)) {
1869					if (m == NULL)
1870						m = PHYS_TO_VM_PAGE(*pte);
1871					vm_page_dirty(m);
1872				}
1873			}
1874
1875			pbits &= ~(PG_RW | PG_M);
1876
1877			if (pbits != obits) {
1878				if (!atomic_cmpset_int((u_int *)pte, obits,
1879				    pbits))
1880					goto retry;
1881				if (obits & PG_G)
1882					pmap_invalidate_page(pmap, sva);
1883				else
1884					anychanged = 1;
1885			}
1886		}
1887	}
1888	sched_unpin();
1889	vm_page_unlock_queues();
1890	if (anychanged)
1891		pmap_invalidate_all(pmap);
1892	PMAP_UNLOCK(pmap);
1893}
1894
1895/*
1896 *	Insert the given physical page (p) at
1897 *	the specified virtual address (v) in the
1898 *	target physical map with the protection requested.
1899 *
1900 *	If specified, the page will be wired down, meaning
1901 *	that the related pte can not be reclaimed.
1902 *
1903 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1904 *	or lose information.  That is, this routine must actually
1905 *	insert this page into the given map NOW.
1906 */
1907void
1908pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1909	   boolean_t wired)
1910{
1911	vm_paddr_t pa;
1912	register pt_entry_t *pte;
1913	vm_paddr_t opa;
1914	pt_entry_t origpte, newpte;
1915	vm_page_t mpte, om;
1916	boolean_t invlva;
1917
1918	va &= PG_FRAME;
1919#ifdef PMAP_DIAGNOSTIC
1920	if (va > VM_MAX_KERNEL_ADDRESS)
1921		panic("pmap_enter: toobig");
1922	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1923		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1924#endif
1925
1926	mpte = NULL;
1927
1928	vm_page_lock_queues();
1929	PMAP_LOCK(pmap);
1930	sched_pin();
1931
1932	/*
1933	 * In the case that a page table page is not
1934	 * resident, we are creating it here.
1935	 */
1936	if (va < VM_MAXUSER_ADDRESS) {
1937		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1938	}
1939#if 0 && defined(PMAP_DIAGNOSTIC)
1940	else {
1941		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1942		origpte = *pdeaddr;
1943		if ((origpte & PG_V) == 0) {
1944			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1945				pmap->pm_pdir[PTDPTDI], origpte, va);
1946		}
1947	}
1948#endif
1949
1950	pte = pmap_pte_quick(pmap, va);
1951
1952	/*
1953	 * Page Directory table entry not valid, we need a new PT page
1954	 */
1955	if (pte == NULL) {
1956		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1957			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1958	}
1959
1960	pa = VM_PAGE_TO_PHYS(m);
1961	om = NULL;
1962	origpte = *pte;
1963	opa = origpte & PG_FRAME;
1964
1965	if (origpte & PG_PS) {
1966		/*
1967		 * Yes, I know this will truncate upper address bits for PAE,
1968		 * but I'm actually more interested in the lower bits
1969		 */
1970		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1971		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1972		panic("pmap_enter: attempted pmap_enter on 4MB page");
1973	}
1974
1975	/*
1976	 * Mapping has not changed, must be protection or wiring change.
1977	 */
1978	if (origpte && (opa == pa)) {
1979		/*
1980		 * Wiring change, just update stats. We don't worry about
1981		 * wiring PT pages as they remain resident as long as there
1982		 * are valid mappings in them. Hence, if a user page is wired,
1983		 * the PT page will be also.
1984		 */
1985		if (wired && ((origpte & PG_W) == 0))
1986			pmap->pm_stats.wired_count++;
1987		else if (!wired && (origpte & PG_W))
1988			pmap->pm_stats.wired_count--;
1989
1990		/*
1991		 * Remove extra pte reference
1992		 */
1993		if (mpte)
1994			mpte->wire_count--;
1995
1996		/*
1997		 * We might be turning off write access to the page,
1998		 * so we go ahead and sense modify status.
1999		 */
2000		if (origpte & PG_MANAGED) {
2001			om = m;
2002			pa |= PG_MANAGED;
2003		}
2004		goto validate;
2005	}
2006	/*
2007	 * Mapping has changed, invalidate old range and fall through to
2008	 * handle validating new mapping.
2009	 */
2010	if (opa) {
2011		if (origpte & PG_W)
2012			pmap->pm_stats.wired_count--;
2013		if (origpte & PG_MANAGED) {
2014			om = PHYS_TO_VM_PAGE(opa);
2015			pmap_remove_entry(pmap, om, va);
2016		}
2017		if (mpte != NULL) {
2018			mpte->wire_count--;
2019			KASSERT(mpte->wire_count > 0,
2020			    ("pmap_enter: missing reference to page table page,"
2021			     " va: 0x%x", va));
2022		}
2023	} else
2024		pmap->pm_stats.resident_count++;
2025
2026	/*
2027	 * Enter on the PV list if part of our managed memory.
2028	 */
2029	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2030		pmap_insert_entry(pmap, va, m);
2031		pa |= PG_MANAGED;
2032	}
2033
2034	/*
2035	 * Increment counters
2036	 */
2037	if (wired)
2038		pmap->pm_stats.wired_count++;
2039
2040validate:
2041	/*
2042	 * Now validate mapping with desired protection/wiring.
2043	 */
2044	newpte = (pt_entry_t)(pa | PG_V);
2045	if ((prot & VM_PROT_WRITE) != 0)
2046		newpte |= PG_RW;
2047	if (wired)
2048		newpte |= PG_W;
2049	if (va < VM_MAXUSER_ADDRESS)
2050		newpte |= PG_U;
2051	if (pmap == kernel_pmap)
2052		newpte |= pgeflag;
2053
2054	/*
2055	 * if the mapping or permission bits are different, we need
2056	 * to update the pte.
2057	 */
2058	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2059		if (origpte & PG_V) {
2060			invlva = FALSE;
2061			origpte = pte_load_store(pte, newpte | PG_A);
2062			if (origpte & PG_A) {
2063				if (origpte & PG_MANAGED)
2064					vm_page_flag_set(om, PG_REFERENCED);
2065				if (opa != VM_PAGE_TO_PHYS(m))
2066					invlva = TRUE;
2067			}
2068			if (origpte & PG_M) {
2069				KASSERT((origpte & PG_RW),
2070	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2071				    va, (uintmax_t)origpte));
2072				if ((origpte & PG_MANAGED) &&
2073				    pmap_track_modified(va))
2074					vm_page_dirty(om);
2075				if ((prot & VM_PROT_WRITE) == 0)
2076					invlva = TRUE;
2077			}
2078			if (invlva)
2079				pmap_invalidate_page(pmap, va);
2080		} else
2081			pte_store(pte, newpte | PG_A);
2082	}
2083	sched_unpin();
2084	vm_page_unlock_queues();
2085	PMAP_UNLOCK(pmap);
2086}
2087
2088/*
2089 * this code makes some *MAJOR* assumptions:
2090 * 1. Current pmap & pmap exists.
2091 * 2. Not wired.
2092 * 3. Read access.
2093 * 4. No page table pages.
2094 * but is *MUCH* faster than pmap_enter...
2095 */
2096
2097vm_page_t
2098pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2099    vm_page_t mpte)
2100{
2101	pt_entry_t *pte;
2102	vm_paddr_t pa;
2103
2104	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2105	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2106	PMAP_LOCK(pmap);
2107
2108	/*
2109	 * In the case that a page table page is not
2110	 * resident, we are creating it here.
2111	 */
2112	if (va < VM_MAXUSER_ADDRESS) {
2113		unsigned ptepindex;
2114		pd_entry_t ptepa;
2115
2116		/*
2117		 * Calculate pagetable page index
2118		 */
2119		ptepindex = va >> PDRSHIFT;
2120		if (mpte && (mpte->pindex == ptepindex)) {
2121			mpte->wire_count++;
2122		} else {
2123retry:
2124			/*
2125			 * Get the page directory entry
2126			 */
2127			ptepa = pmap->pm_pdir[ptepindex];
2128
2129			/*
2130			 * If the page table page is mapped, we just increment
2131			 * the hold count, and activate it.
2132			 */
2133			if (ptepa) {
2134				if (ptepa & PG_PS)
2135					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2136				mpte = PHYS_TO_VM_PAGE(ptepa);
2137				mpte->wire_count++;
2138			} else {
2139				mpte = _pmap_allocpte(pmap, ptepindex,
2140				    M_NOWAIT);
2141				if (mpte == NULL) {
2142					PMAP_UNLOCK(pmap);
2143					vm_page_busy(m);
2144					vm_page_unlock_queues();
2145					VM_OBJECT_UNLOCK(m->object);
2146					VM_WAIT;
2147					VM_OBJECT_LOCK(m->object);
2148					vm_page_lock_queues();
2149					vm_page_wakeup(m);
2150					PMAP_LOCK(pmap);
2151					goto retry;
2152				}
2153			}
2154		}
2155	} else {
2156		mpte = NULL;
2157	}
2158
2159	/*
2160	 * This call to vtopte makes the assumption that we are
2161	 * entering the page into the current pmap.  In order to support
2162	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2163	 * But that isn't as quick as vtopte.
2164	 */
2165	pte = vtopte(va);
2166	if (*pte) {
2167		if (mpte != NULL) {
2168			pmap_unwire_pte_hold(pmap, mpte);
2169			mpte = NULL;
2170		}
2171		goto out;
2172	}
2173
2174	/*
2175	 * Enter on the PV list if part of our managed memory. Note that we
2176	 * raise IPL while manipulating pv_table since pmap_enter can be
2177	 * called at interrupt time.
2178	 */
2179	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2180		pmap_insert_entry(pmap, va, m);
2181
2182	/*
2183	 * Increment counters
2184	 */
2185	pmap->pm_stats.resident_count++;
2186
2187	pa = VM_PAGE_TO_PHYS(m);
2188
2189	/*
2190	 * Now validate mapping with RO protection
2191	 */
2192	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2193		pte_store(pte, pa | PG_V | PG_U);
2194	else
2195		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2196out:
2197	PMAP_UNLOCK(pmap);
2198	return mpte;
2199}
2200
2201/*
2202 * Make a temporary mapping for a physical address.  This is only intended
2203 * to be used for panic dumps.
2204 */
2205void *
2206pmap_kenter_temporary(vm_paddr_t pa, int i)
2207{
2208	vm_offset_t va;
2209
2210	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2211	pmap_kenter(va, pa);
2212	invlpg(va);
2213	return ((void *)crashdumpmap);
2214}
2215
2216/*
2217 * This code maps large physical mmap regions into the
2218 * processor address space.  Note that some shortcuts
2219 * are taken, but the code works.
2220 */
2221void
2222pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2223		    vm_object_t object, vm_pindex_t pindex,
2224		    vm_size_t size)
2225{
2226	vm_page_t p;
2227
2228	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2229	KASSERT(object->type == OBJT_DEVICE,
2230	    ("pmap_object_init_pt: non-device object"));
2231	if (pseflag &&
2232	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2233		int i;
2234		vm_page_t m[1];
2235		unsigned int ptepindex;
2236		int npdes;
2237		pd_entry_t ptepa;
2238
2239		PMAP_LOCK(pmap);
2240		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2241			goto out;
2242		PMAP_UNLOCK(pmap);
2243retry:
2244		p = vm_page_lookup(object, pindex);
2245		if (p != NULL) {
2246			vm_page_lock_queues();
2247			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2248				goto retry;
2249		} else {
2250			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2251			if (p == NULL)
2252				return;
2253			m[0] = p;
2254
2255			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2256				vm_page_lock_queues();
2257				vm_page_free(p);
2258				vm_page_unlock_queues();
2259				return;
2260			}
2261
2262			p = vm_page_lookup(object, pindex);
2263			vm_page_lock_queues();
2264			vm_page_wakeup(p);
2265		}
2266		vm_page_unlock_queues();
2267
2268		ptepa = VM_PAGE_TO_PHYS(p);
2269		if (ptepa & (NBPDR - 1))
2270			return;
2271
2272		p->valid = VM_PAGE_BITS_ALL;
2273
2274		PMAP_LOCK(pmap);
2275		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2276		npdes = size >> PDRSHIFT;
2277		for(i = 0; i < npdes; i++) {
2278			pde_store(&pmap->pm_pdir[ptepindex],
2279			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2280			ptepa += NBPDR;
2281			ptepindex += 1;
2282		}
2283		pmap_invalidate_all(pmap);
2284out:
2285		PMAP_UNLOCK(pmap);
2286	}
2287}
2288
2289/*
2290 *	Routine:	pmap_change_wiring
2291 *	Function:	Change the wiring attribute for a map/virtual-address
2292 *			pair.
2293 *	In/out conditions:
2294 *			The mapping must already exist in the pmap.
2295 */
2296void
2297pmap_change_wiring(pmap, va, wired)
2298	register pmap_t pmap;
2299	vm_offset_t va;
2300	boolean_t wired;
2301{
2302	register pt_entry_t *pte;
2303
2304	PMAP_LOCK(pmap);
2305	pte = pmap_pte(pmap, va);
2306
2307	if (wired && !pmap_pte_w(pte))
2308		pmap->pm_stats.wired_count++;
2309	else if (!wired && pmap_pte_w(pte))
2310		pmap->pm_stats.wired_count--;
2311
2312	/*
2313	 * Wiring is not a hardware characteristic so there is no need to
2314	 * invalidate TLB.
2315	 */
2316	pmap_pte_set_w(pte, wired);
2317	pmap_pte_release(pte);
2318	PMAP_UNLOCK(pmap);
2319}
2320
2321
2322
2323/*
2324 *	Copy the range specified by src_addr/len
2325 *	from the source map to the range dst_addr/len
2326 *	in the destination map.
2327 *
2328 *	This routine is only advisory and need not do anything.
2329 */
2330
2331void
2332pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2333	  vm_offset_t src_addr)
2334{
2335	vm_offset_t addr;
2336	vm_offset_t end_addr = src_addr + len;
2337	vm_offset_t pdnxt;
2338	vm_page_t m;
2339
2340	if (dst_addr != src_addr)
2341		return;
2342
2343	if (!pmap_is_current(src_pmap))
2344		return;
2345
2346	vm_page_lock_queues();
2347	if (dst_pmap < src_pmap) {
2348		PMAP_LOCK(dst_pmap);
2349		PMAP_LOCK(src_pmap);
2350	} else {
2351		PMAP_LOCK(src_pmap);
2352		PMAP_LOCK(dst_pmap);
2353	}
2354	sched_pin();
2355	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2356		pt_entry_t *src_pte, *dst_pte;
2357		vm_page_t dstmpte, srcmpte;
2358		pd_entry_t srcptepaddr;
2359		unsigned ptepindex;
2360
2361		if (addr >= UPT_MIN_ADDRESS)
2362			panic("pmap_copy: invalid to pmap_copy page tables");
2363
2364		/*
2365		 * Don't let optional prefaulting of pages make us go
2366		 * way below the low water mark of free pages or way
2367		 * above high water mark of used pv entries.
2368		 */
2369		if (cnt.v_free_count < cnt.v_free_reserved ||
2370		    pv_entry_count > pv_entry_high_water)
2371			break;
2372
2373		pdnxt = (addr + NBPDR) & ~PDRMASK;
2374		ptepindex = addr >> PDRSHIFT;
2375
2376		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2377		if (srcptepaddr == 0)
2378			continue;
2379
2380		if (srcptepaddr & PG_PS) {
2381			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2382				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2383				dst_pmap->pm_stats.resident_count +=
2384				    NBPDR / PAGE_SIZE;
2385			}
2386			continue;
2387		}
2388
2389		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2390		if (srcmpte->wire_count == 0)
2391			panic("pmap_copy: source page table page is unused");
2392
2393		if (pdnxt > end_addr)
2394			pdnxt = end_addr;
2395
2396		src_pte = vtopte(addr);
2397		while (addr < pdnxt) {
2398			pt_entry_t ptetemp;
2399			ptetemp = *src_pte;
2400			/*
2401			 * we only virtual copy managed pages
2402			 */
2403			if ((ptetemp & PG_MANAGED) != 0) {
2404				/*
2405				 * We have to check after allocpte for the
2406				 * pte still being around...  allocpte can
2407				 * block.
2408				 */
2409				dstmpte = pmap_allocpte(dst_pmap, addr,
2410				    M_NOWAIT);
2411				if (dstmpte == NULL)
2412					break;
2413				dst_pte = pmap_pte_quick(dst_pmap, addr);
2414				if (*dst_pte == 0) {
2415					/*
2416					 * Clear the modified and
2417					 * accessed (referenced) bits
2418					 * during the copy.
2419					 */
2420					m = PHYS_TO_VM_PAGE(ptetemp);
2421					*dst_pte = ptetemp & ~(PG_M | PG_A);
2422					dst_pmap->pm_stats.resident_count++;
2423					pmap_insert_entry(dst_pmap, addr, m);
2424	 			} else
2425					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2426				if (dstmpte->wire_count >= srcmpte->wire_count)
2427					break;
2428			}
2429			addr += PAGE_SIZE;
2430			src_pte++;
2431		}
2432	}
2433	sched_unpin();
2434	vm_page_unlock_queues();
2435	PMAP_UNLOCK(src_pmap);
2436	PMAP_UNLOCK(dst_pmap);
2437}
2438
2439static __inline void
2440pagezero(void *page)
2441{
2442#if defined(I686_CPU)
2443	if (cpu_class == CPUCLASS_686) {
2444#if defined(CPU_ENABLE_SSE)
2445		if (cpu_feature & CPUID_SSE2)
2446			sse2_pagezero(page);
2447		else
2448#endif
2449			i686_pagezero(page);
2450	} else
2451#endif
2452		bzero(page, PAGE_SIZE);
2453}
2454
2455/*
2456 *	pmap_zero_page zeros the specified hardware page by mapping
2457 *	the page into KVM and using bzero to clear its contents.
2458 */
2459void
2460pmap_zero_page(vm_page_t m)
2461{
2462	struct sysmaps *sysmaps;
2463
2464	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2465	mtx_lock(&sysmaps->lock);
2466	if (*sysmaps->CMAP2)
2467		panic("pmap_zero_page: CMAP2 busy");
2468	sched_pin();
2469	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2470	invlcaddr(sysmaps->CADDR2);
2471	pagezero(sysmaps->CADDR2);
2472	*sysmaps->CMAP2 = 0;
2473	sched_unpin();
2474	mtx_unlock(&sysmaps->lock);
2475}
2476
2477/*
2478 *	pmap_zero_page_area zeros the specified hardware page by mapping
2479 *	the page into KVM and using bzero to clear its contents.
2480 *
2481 *	off and size may not cover an area beyond a single hardware page.
2482 */
2483void
2484pmap_zero_page_area(vm_page_t m, int off, int size)
2485{
2486	struct sysmaps *sysmaps;
2487
2488	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2489	mtx_lock(&sysmaps->lock);
2490	if (*sysmaps->CMAP2)
2491		panic("pmap_zero_page: CMAP2 busy");
2492	sched_pin();
2493	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2494	invlcaddr(sysmaps->CADDR2);
2495	if (off == 0 && size == PAGE_SIZE)
2496		pagezero(sysmaps->CADDR2);
2497	else
2498		bzero((char *)sysmaps->CADDR2 + off, size);
2499	*sysmaps->CMAP2 = 0;
2500	sched_unpin();
2501	mtx_unlock(&sysmaps->lock);
2502}
2503
2504/*
2505 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2506 *	the page into KVM and using bzero to clear its contents.  This
2507 *	is intended to be called from the vm_pagezero process only and
2508 *	outside of Giant.
2509 */
2510void
2511pmap_zero_page_idle(vm_page_t m)
2512{
2513
2514	if (*CMAP3)
2515		panic("pmap_zero_page: CMAP3 busy");
2516	sched_pin();
2517	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2518	invlcaddr(CADDR3);
2519	pagezero(CADDR3);
2520	*CMAP3 = 0;
2521	sched_unpin();
2522}
2523
2524/*
2525 *	pmap_copy_page copies the specified (machine independent)
2526 *	page by mapping the page into virtual memory and using
2527 *	bcopy to copy the page, one machine dependent page at a
2528 *	time.
2529 */
2530void
2531pmap_copy_page(vm_page_t src, vm_page_t dst)
2532{
2533	struct sysmaps *sysmaps;
2534
2535	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2536	mtx_lock(&sysmaps->lock);
2537	if (*sysmaps->CMAP1)
2538		panic("pmap_copy_page: CMAP1 busy");
2539	if (*sysmaps->CMAP2)
2540		panic("pmap_copy_page: CMAP2 busy");
2541	sched_pin();
2542	invlpg((u_int)sysmaps->CADDR1);
2543	invlpg((u_int)sysmaps->CADDR2);
2544	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2545	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2546	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2547	*sysmaps->CMAP1 = 0;
2548	*sysmaps->CMAP2 = 0;
2549	sched_unpin();
2550	mtx_unlock(&sysmaps->lock);
2551}
2552
2553/*
2554 * Returns true if the pmap's pv is one of the first
2555 * 16 pvs linked to from this page.  This count may
2556 * be changed upwards or downwards in the future; it
2557 * is only necessary that true be returned for a small
2558 * subset of pmaps for proper page aging.
2559 */
2560boolean_t
2561pmap_page_exists_quick(pmap, m)
2562	pmap_t pmap;
2563	vm_page_t m;
2564{
2565	pv_entry_t pv;
2566	int loops = 0;
2567
2568	if (m->flags & PG_FICTITIOUS)
2569		return FALSE;
2570
2571	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2572	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2573		if (pv->pv_pmap == pmap) {
2574			return TRUE;
2575		}
2576		loops++;
2577		if (loops >= 16)
2578			break;
2579	}
2580	return (FALSE);
2581}
2582
2583#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2584/*
2585 * Remove all pages from specified address space
2586 * this aids process exit speeds.  Also, this code
2587 * is special cased for current process only, but
2588 * can have the more generic (and slightly slower)
2589 * mode enabled.  This is much faster than pmap_remove
2590 * in the case of running down an entire address space.
2591 */
2592void
2593pmap_remove_pages(pmap, sva, eva)
2594	pmap_t pmap;
2595	vm_offset_t sva, eva;
2596{
2597	pt_entry_t *pte, tpte;
2598	vm_page_t m;
2599	pv_entry_t pv, npv;
2600
2601#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2602	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2603		printf("warning: pmap_remove_pages called with non-current pmap\n");
2604		return;
2605	}
2606#endif
2607	vm_page_lock_queues();
2608	PMAP_LOCK(pmap);
2609	sched_pin();
2610	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2611
2612		if (pv->pv_va >= eva || pv->pv_va < sva) {
2613			npv = TAILQ_NEXT(pv, pv_plist);
2614			continue;
2615		}
2616
2617#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2618		pte = vtopte(pv->pv_va);
2619#else
2620		pte = pmap_pte_quick(pmap, pv->pv_va);
2621#endif
2622		tpte = *pte;
2623
2624		if (tpte == 0) {
2625			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2626							pte, pv->pv_va);
2627			panic("bad pte");
2628		}
2629
2630/*
2631 * We cannot remove wired pages from a process' mapping at this time
2632 */
2633		if (tpte & PG_W) {
2634			npv = TAILQ_NEXT(pv, pv_plist);
2635			continue;
2636		}
2637
2638		m = PHYS_TO_VM_PAGE(tpte);
2639		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2640		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2641		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2642
2643		KASSERT(m < &vm_page_array[vm_page_array_size],
2644			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2645
2646		pmap->pm_stats.resident_count--;
2647
2648		pte_clear(pte);
2649
2650		/*
2651		 * Update the vm_page_t clean and reference bits.
2652		 */
2653		if (tpte & PG_M) {
2654			vm_page_dirty(m);
2655		}
2656
2657		npv = TAILQ_NEXT(pv, pv_plist);
2658		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2659
2660		m->md.pv_list_count--;
2661		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2662		if (TAILQ_EMPTY(&m->md.pv_list))
2663			vm_page_flag_clear(m, PG_WRITEABLE);
2664
2665		pmap_unuse_pt(pmap, pv->pv_va);
2666		free_pv_entry(pv);
2667	}
2668	sched_unpin();
2669	pmap_invalidate_all(pmap);
2670	PMAP_UNLOCK(pmap);
2671	vm_page_unlock_queues();
2672}
2673
2674/*
2675 *	pmap_is_modified:
2676 *
2677 *	Return whether or not the specified physical page was modified
2678 *	in any physical maps.
2679 */
2680boolean_t
2681pmap_is_modified(vm_page_t m)
2682{
2683	pv_entry_t pv;
2684	pt_entry_t *pte;
2685	boolean_t rv;
2686
2687	rv = FALSE;
2688	if (m->flags & PG_FICTITIOUS)
2689		return (rv);
2690
2691	sched_pin();
2692	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2693	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2694		/*
2695		 * if the bit being tested is the modified bit, then
2696		 * mark clean_map and ptes as never
2697		 * modified.
2698		 */
2699		if (!pmap_track_modified(pv->pv_va))
2700			continue;
2701		PMAP_LOCK(pv->pv_pmap);
2702		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2703		rv = (*pte & PG_M) != 0;
2704		PMAP_UNLOCK(pv->pv_pmap);
2705		if (rv)
2706			break;
2707	}
2708	sched_unpin();
2709	return (rv);
2710}
2711
2712/*
2713 *	pmap_is_prefaultable:
2714 *
2715 *	Return whether or not the specified virtual address is elgible
2716 *	for prefault.
2717 */
2718boolean_t
2719pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2720{
2721	pt_entry_t *pte;
2722	boolean_t rv;
2723
2724	rv = FALSE;
2725	PMAP_LOCK(pmap);
2726	if (*pmap_pde(pmap, addr)) {
2727		pte = vtopte(addr);
2728		rv = *pte == 0;
2729	}
2730	PMAP_UNLOCK(pmap);
2731	return (rv);
2732}
2733
2734/*
2735 *	Clear the given bit in each of the given page's ptes.  The bit is
2736 *	expressed as a 32-bit mask.  Consequently, if the pte is 64 bits in
2737 *	size, only a bit within the least significant 32 can be cleared.
2738 */
2739static __inline void
2740pmap_clear_ptes(vm_page_t m, int bit)
2741{
2742	register pv_entry_t pv;
2743	pt_entry_t pbits, *pte;
2744
2745	if ((m->flags & PG_FICTITIOUS) ||
2746	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2747		return;
2748
2749	sched_pin();
2750	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2751	/*
2752	 * Loop over all current mappings setting/clearing as appropos If
2753	 * setting RO do we need to clear the VAC?
2754	 */
2755	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2756		/*
2757		 * don't write protect pager mappings
2758		 */
2759		if (bit == PG_RW) {
2760			if (!pmap_track_modified(pv->pv_va))
2761				continue;
2762		}
2763
2764		PMAP_LOCK(pv->pv_pmap);
2765		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2766retry:
2767		pbits = *pte;
2768		if (pbits & bit) {
2769			if (bit == PG_RW) {
2770				/*
2771				 * Regardless of whether a pte is 32 or 64 bits
2772				 * in size, PG_RW and PG_M are among the least
2773				 * significant 32 bits.
2774				 */
2775				if (!atomic_cmpset_int((u_int *)pte, pbits,
2776				    pbits & ~(PG_RW | PG_M)))
2777					goto retry;
2778				if (pbits & PG_M) {
2779					vm_page_dirty(m);
2780				}
2781			} else {
2782				atomic_clear_int((u_int *)pte, bit);
2783			}
2784			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2785		}
2786		PMAP_UNLOCK(pv->pv_pmap);
2787	}
2788	if (bit == PG_RW)
2789		vm_page_flag_clear(m, PG_WRITEABLE);
2790	sched_unpin();
2791}
2792
2793/*
2794 *      pmap_page_protect:
2795 *
2796 *      Lower the permission for all mappings to a given page.
2797 */
2798void
2799pmap_page_protect(vm_page_t m, vm_prot_t prot)
2800{
2801	if ((prot & VM_PROT_WRITE) == 0) {
2802		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2803			pmap_clear_ptes(m, PG_RW);
2804		} else {
2805			pmap_remove_all(m);
2806		}
2807	}
2808}
2809
2810/*
2811 *	pmap_ts_referenced:
2812 *
2813 *	Return a count of reference bits for a page, clearing those bits.
2814 *	It is not necessary for every reference bit to be cleared, but it
2815 *	is necessary that 0 only be returned when there are truly no
2816 *	reference bits set.
2817 *
2818 *	XXX: The exact number of bits to check and clear is a matter that
2819 *	should be tested and standardized at some point in the future for
2820 *	optimal aging of shared pages.
2821 */
2822int
2823pmap_ts_referenced(vm_page_t m)
2824{
2825	register pv_entry_t pv, pvf, pvn;
2826	pt_entry_t *pte;
2827	pt_entry_t v;
2828	int rtval = 0;
2829
2830	if (m->flags & PG_FICTITIOUS)
2831		return (rtval);
2832
2833	sched_pin();
2834	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2835	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2836
2837		pvf = pv;
2838
2839		do {
2840			pvn = TAILQ_NEXT(pv, pv_list);
2841
2842			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2843
2844			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2845
2846			if (!pmap_track_modified(pv->pv_va))
2847				continue;
2848
2849			PMAP_LOCK(pv->pv_pmap);
2850			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2851
2852			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2853				atomic_clear_int((u_int *)pte, PG_A);
2854				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2855
2856				rtval++;
2857				if (rtval > 4) {
2858					PMAP_UNLOCK(pv->pv_pmap);
2859					break;
2860				}
2861			}
2862			PMAP_UNLOCK(pv->pv_pmap);
2863		} while ((pv = pvn) != NULL && pv != pvf);
2864	}
2865	sched_unpin();
2866
2867	return (rtval);
2868}
2869
2870/*
2871 *	Clear the modify bits on the specified physical page.
2872 */
2873void
2874pmap_clear_modify(vm_page_t m)
2875{
2876	pmap_clear_ptes(m, PG_M);
2877}
2878
2879/*
2880 *	pmap_clear_reference:
2881 *
2882 *	Clear the reference bit on the specified physical page.
2883 */
2884void
2885pmap_clear_reference(vm_page_t m)
2886{
2887	pmap_clear_ptes(m, PG_A);
2888}
2889
2890/*
2891 * Miscellaneous support routines follow
2892 */
2893
2894/*
2895 * Map a set of physical memory pages into the kernel virtual
2896 * address space. Return a pointer to where it is mapped. This
2897 * routine is intended to be used for mapping device memory,
2898 * NOT real memory.
2899 */
2900void *
2901pmap_mapdev(pa, size)
2902	vm_paddr_t pa;
2903	vm_size_t size;
2904{
2905	vm_offset_t va, tmpva, offset;
2906
2907	offset = pa & PAGE_MASK;
2908	size = roundup(offset + size, PAGE_SIZE);
2909	pa = pa & PG_FRAME;
2910
2911	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2912		va = KERNBASE + pa;
2913	else
2914		va = kmem_alloc_nofault(kernel_map, size);
2915	if (!va)
2916		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2917
2918	for (tmpva = va; size > 0; ) {
2919		pmap_kenter(tmpva, pa);
2920		size -= PAGE_SIZE;
2921		tmpva += PAGE_SIZE;
2922		pa += PAGE_SIZE;
2923	}
2924	pmap_invalidate_range(kernel_pmap, va, tmpva);
2925	return ((void *)(va + offset));
2926}
2927
2928void
2929pmap_unmapdev(va, size)
2930	vm_offset_t va;
2931	vm_size_t size;
2932{
2933	vm_offset_t base, offset, tmpva;
2934
2935	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2936		return;
2937	base = va & PG_FRAME;
2938	offset = va & PAGE_MASK;
2939	size = roundup(offset + size, PAGE_SIZE);
2940	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2941		pmap_kremove(tmpva);
2942	pmap_invalidate_range(kernel_pmap, va, tmpva);
2943	kmem_free(kernel_map, base, size);
2944}
2945
2946/*
2947 * perform the pmap work for mincore
2948 */
2949int
2950pmap_mincore(pmap, addr)
2951	pmap_t pmap;
2952	vm_offset_t addr;
2953{
2954	pt_entry_t *ptep, pte;
2955	vm_page_t m;
2956	int val = 0;
2957
2958	PMAP_LOCK(pmap);
2959	ptep = pmap_pte(pmap, addr);
2960	pte = (ptep != NULL) ? *ptep : 0;
2961	pmap_pte_release(ptep);
2962	PMAP_UNLOCK(pmap);
2963
2964	if (pte != 0) {
2965		vm_paddr_t pa;
2966
2967		val = MINCORE_INCORE;
2968		if ((pte & PG_MANAGED) == 0)
2969			return val;
2970
2971		pa = pte & PG_FRAME;
2972
2973		m = PHYS_TO_VM_PAGE(pa);
2974
2975		/*
2976		 * Modified by us
2977		 */
2978		if (pte & PG_M)
2979			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2980		else {
2981			/*
2982			 * Modified by someone else
2983			 */
2984			vm_page_lock_queues();
2985			if (m->dirty || pmap_is_modified(m))
2986				val |= MINCORE_MODIFIED_OTHER;
2987			vm_page_unlock_queues();
2988		}
2989		/*
2990		 * Referenced by us
2991		 */
2992		if (pte & PG_A)
2993			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2994		else {
2995			/*
2996			 * Referenced by someone else
2997			 */
2998			vm_page_lock_queues();
2999			if ((m->flags & PG_REFERENCED) ||
3000			    pmap_ts_referenced(m)) {
3001				val |= MINCORE_REFERENCED_OTHER;
3002				vm_page_flag_set(m, PG_REFERENCED);
3003			}
3004			vm_page_unlock_queues();
3005		}
3006	}
3007	return val;
3008}
3009
3010void
3011pmap_activate(struct thread *td)
3012{
3013	pmap_t	pmap, oldpmap;
3014	u_int32_t  cr3;
3015
3016	critical_enter();
3017	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3018	oldpmap = PCPU_GET(curpmap);
3019#if defined(SMP)
3020	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3021	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3022#else
3023	oldpmap->pm_active &= ~1;
3024	pmap->pm_active |= 1;
3025#endif
3026#ifdef PAE
3027	cr3 = vtophys(pmap->pm_pdpt);
3028#else
3029	cr3 = vtophys(pmap->pm_pdir);
3030#endif
3031	/*
3032	 * pmap_activate is for the current thread on the current cpu
3033	 */
3034	td->td_pcb->pcb_cr3 = cr3;
3035	load_cr3(cr3);
3036	PCPU_SET(curpmap, pmap);
3037	critical_exit();
3038}
3039
3040vm_offset_t
3041pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3042{
3043
3044	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3045		return addr;
3046	}
3047
3048	addr = (addr + PDRMASK) & ~PDRMASK;
3049	return addr;
3050}
3051
3052
3053#if defined(PMAP_DEBUG)
3054pmap_pid_dump(int pid)
3055{
3056	pmap_t pmap;
3057	struct proc *p;
3058	int npte = 0;
3059	int index;
3060
3061	sx_slock(&allproc_lock);
3062	LIST_FOREACH(p, &allproc, p_list) {
3063		if (p->p_pid != pid)
3064			continue;
3065
3066		if (p->p_vmspace) {
3067			int i,j;
3068			index = 0;
3069			pmap = vmspace_pmap(p->p_vmspace);
3070			for (i = 0; i < NPDEPTD; i++) {
3071				pd_entry_t *pde;
3072				pt_entry_t *pte;
3073				vm_offset_t base = i << PDRSHIFT;
3074
3075				pde = &pmap->pm_pdir[i];
3076				if (pde && pmap_pde_v(pde)) {
3077					for (j = 0; j < NPTEPG; j++) {
3078						vm_offset_t va = base + (j << PAGE_SHIFT);
3079						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3080							if (index) {
3081								index = 0;
3082								printf("\n");
3083							}
3084							sx_sunlock(&allproc_lock);
3085							return npte;
3086						}
3087						pte = pmap_pte(pmap, va);
3088						if (pte && pmap_pte_v(pte)) {
3089							pt_entry_t pa;
3090							vm_page_t m;
3091							pa = *pte;
3092							m = PHYS_TO_VM_PAGE(pa);
3093							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3094								va, pa, m->hold_count, m->wire_count, m->flags);
3095							npte++;
3096							index++;
3097							if (index >= 2) {
3098								index = 0;
3099								printf("\n");
3100							} else {
3101								printf(" ");
3102							}
3103						}
3104					}
3105				}
3106			}
3107		}
3108	}
3109	sx_sunlock(&allproc_lock);
3110	return npte;
3111}
3112#endif
3113
3114#if defined(DEBUG)
3115
3116static void	pads(pmap_t pm);
3117void		pmap_pvdump(vm_offset_t pa);
3118
3119/* print address space of pmap*/
3120static void
3121pads(pm)
3122	pmap_t pm;
3123{
3124	int i, j;
3125	vm_paddr_t va;
3126	pt_entry_t *ptep;
3127
3128	if (pm == kernel_pmap)
3129		return;
3130	for (i = 0; i < NPDEPTD; i++)
3131		if (pm->pm_pdir[i])
3132			for (j = 0; j < NPTEPG; j++) {
3133				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3134				if (pm == kernel_pmap && va < KERNBASE)
3135					continue;
3136				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3137					continue;
3138				ptep = pmap_pte(pm, va);
3139				if (pmap_pte_v(ptep))
3140					printf("%x:%x ", va, *ptep);
3141			};
3142
3143}
3144
3145void
3146pmap_pvdump(pa)
3147	vm_paddr_t pa;
3148{
3149	pv_entry_t pv;
3150	vm_page_t m;
3151
3152	printf("pa %x", pa);
3153	m = PHYS_TO_VM_PAGE(pa);
3154	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3155		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3156		pads(pv->pv_pmap);
3157	}
3158	printf(" ");
3159}
3160#endif
3161