pmap.c revision 15543
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.86 1996/04/22 05:23:08 dyson Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54
55/*
56 *	Manages physical address maps.
57 *
58 *	In addition to hardware address maps, this
59 *	module is called upon to provide software-use-only
60 *	maps which may or may not be stored in the same
61 *	form as hardware maps.  These pseudo-maps are
62 *	used to store intermediate results from copy
63 *	operations to and from address spaces.
64 *
65 *	Since the information managed by this module is
66 *	also stored by the logical address mapping module,
67 *	this module may throw away valid virtual-to-physical
68 *	mappings at almost any time.  However, invalidations
69 *	of virtual-to-physical mappings must be done as
70 *	requested.
71 *
72 *	In order to cope with hardware architectures which
73 *	make virtual-to-physical map invalidates expensive,
74 *	this module may delay invalidate or reduced protection
75 *	operations until such time as they are actually
76 *	necessary.  This module is given full information as
77 *	to which processors are currently using which maps,
78 *	and to when physical maps must be made correct.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/proc.h>
84#include <sys/malloc.h>
85#include <sys/msgbuf.h>
86#include <sys/queue.h>
87#include <sys/vmmeter.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_prot.h>
92#include <vm/lock.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98
99#include <machine/pcb.h>
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102
103#include <i386/isa/isa.h>
104
105#define PMAP_KEEP_PDIRS
106
107#if defined(DIAGNOSTIC)
108#define PMAP_DIAGNOSTIC
109#endif
110
111static void	init_pv_entries __P((int));
112
113/*
114 * Get PDEs and PTEs for user/kernel address space
115 */
116#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PDRSHIFT)&(NPDEPG-1)]))
117#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PDRSHIFT)&(NPDEPG-1)])
118
119#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
120
121#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
122#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
123#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
124#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
125#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
126
127#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
128#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
129
130/*
131 * Given a map and a machine independent protection code,
132 * convert to a vax protection code.
133 */
134#define pte_prot(m, p)	(protection_codes[p])
135static int protection_codes[8];
136
137static struct pmap kernel_pmap_store;
138pmap_t kernel_pmap;
139
140vm_offset_t avail_start;	/* PA of first available physical page */
141vm_offset_t avail_end;		/* PA of last available physical page */
142vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
143vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
144static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
145static vm_offset_t vm_first_phys;
146
147static int nkpt;
148
149extern vm_offset_t clean_sva, clean_eva;
150extern int cpu_class;
151
152/*
153 * All those kernel PT submaps that BSD is so fond of
154 */
155pt_entry_t *CMAP1;
156static pt_entry_t *CMAP2, *ptmmap;
157static pv_entry_t pv_table;
158caddr_t CADDR1, ptvmmap;
159static caddr_t CADDR2;
160static pt_entry_t *msgbufmap;
161struct msgbuf *msgbufp;
162
163static void	free_pv_entry __P((pv_entry_t pv));
164pt_entry_t *
165		get_ptbase __P((pmap_t pmap));
166static pv_entry_t
167		get_pv_entry __P((void));
168static void	i386_protection_init __P((void));
169static void	pmap_alloc_pv_entry __P((void));
170static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
171static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
172				      vm_offset_t pa));
173static int	pmap_is_managed __P((vm_offset_t pa));
174static void	pmap_remove_all __P((vm_offset_t pa));
175static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
176static __inline void pmap_remove_entry __P((struct pmap *pmap, pv_entry_t pv,
177					vm_offset_t va));
178static void pmap_remove_pte __P((struct pmap *pmap, pt_entry_t *ptq,
179					vm_offset_t sva));
180static vm_page_t
181		pmap_pte_vm_page __P((pmap_t pmap, vm_offset_t pt));
182static boolean_t
183		pmap_testbit __P((vm_offset_t pa, int bit));
184static void *	pmap_getpdir __P((void));
185
186
187#if defined(PMAP_DIAGNOSTIC)
188
189/*
190 * This code checks for non-writeable/modified pages.
191 * This should be an invalid condition.
192 */
193static int
194pmap_nw_modified(pt_entry_t ptea) {
195	int pte;
196
197	pte = (int) ptea;
198
199	if ((pte & (PG_M|PG_RW)) == PG_M)
200		return 1;
201	else
202		return 0;
203}
204#endif
205
206/*
207 * The below are finer grained pmap_update routines.  These eliminate
208 * the gratuitious tlb flushes on non-i386 architectures.
209 */
210static __inline void
211pmap_update_1pg( vm_offset_t va) {
212#if defined(I386_CPU)
213	if (cpu_class == CPUCLASS_386)
214		pmap_update();
215	else
216#endif
217		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va));
218}
219
220static __inline void
221pmap_update_2pg( vm_offset_t va1, vm_offset_t va2) {
222#if defined(I386_CPU)
223	if (cpu_class == CPUCLASS_386) {
224		pmap_update();
225	} else
226#endif
227	{
228		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va1));
229		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va2));
230	}
231}
232
233/*
234 *	Routine:	pmap_pte
235 *	Function:
236 *		Extract the page table entry associated
237 *		with the given map/virtual_address pair.
238 * [ what about induced faults -wfj]
239 */
240
241__inline pt_entry_t * __pure
242pmap_pte(pmap, va)
243	register pmap_t pmap;
244	vm_offset_t va;
245{
246
247	if (pmap && *pmap_pde(pmap, va)) {
248		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
249
250		/* are we current address space or kernel? */
251		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
252			return ((pt_entry_t *) vtopte(va));
253		/* otherwise, we are alternate address space */
254		else {
255			if (frame != ((int) APTDpde & PG_FRAME)) {
256				APTDpde = pmap->pm_pdir[PTDPTDI];
257				pmap_update();
258			}
259			return ((pt_entry_t *) avtopte(va));
260		}
261	}
262	return (0);
263}
264
265/*
266 *	Routine:	pmap_extract
267 *	Function:
268 *		Extract the physical page address associated
269 *		with the given map/virtual_address pair.
270 */
271
272vm_offset_t
273pmap_extract(pmap, va)
274	register pmap_t pmap;
275	vm_offset_t va;
276{
277	vm_offset_t pa;
278
279	if (pmap && *pmap_pde(pmap, va)) {
280		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
281
282		/* are we current address space or kernel? */
283		if ((pmap == kernel_pmap)
284		    || (frame == ((int) PTDpde & PG_FRAME))) {
285			pa = *(int *) vtopte(va);
286			/* otherwise, we are alternate address space */
287		} else {
288			if (frame != ((int) APTDpde & PG_FRAME)) {
289				APTDpde = pmap->pm_pdir[PTDPTDI];
290				pmap_update();
291			}
292			pa = *(int *) avtopte(va);
293		}
294		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
295	}
296	return 0;
297
298}
299
300/*
301 * determine if a page is managed (memory vs. device)
302 */
303static __inline int
304pmap_is_managed(pa)
305	vm_offset_t pa;
306{
307	int i;
308
309	if (!pmap_initialized)
310		return 0;
311
312	for (i = 0; phys_avail[i + 1]; i += 2) {
313		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
314			return 1;
315	}
316	return 0;
317}
318
319vm_page_t
320pmap_use_pt(pmap, va)
321	pmap_t pmap;
322	vm_offset_t va;
323{
324	vm_offset_t ptepa;
325	vm_page_t mpte;
326
327	if (va >= UPT_MIN_ADDRESS)
328		return NULL;
329
330	ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) & PG_FRAME;
331#if defined(PMAP_DIAGNOSTIC)
332	if (!ptepa)
333		panic("pmap_use_pt: pagetable page missing, va: 0x%x", va);
334#endif
335
336	mpte = PHYS_TO_VM_PAGE(ptepa);
337	++mpte->hold_count;
338	return mpte;
339}
340
341#if !defined(PMAP_DIAGNOSTIC)
342__inline
343#endif
344void
345pmap_unuse_pt(pmap, va, mpte)
346	pmap_t pmap;
347	vm_offset_t va;
348	vm_page_t mpte;
349{
350	if (va >= UPT_MIN_ADDRESS)
351		return;
352
353	if (mpte == NULL) {
354		vm_offset_t ptepa;
355		ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) & PG_FRAME;
356#if defined(PMAP_DIAGNOSTIC)
357		if (!ptepa)
358			panic("pmap_unuse_pt: pagetable page missing, va: 0x%x", va);
359#endif
360		mpte = PHYS_TO_VM_PAGE(ptepa);
361	}
362
363#if defined(PMAP_DIAGNOSTIC)
364	if (mpte->hold_count == 0) {
365		panic("pmap_unuse_pt: hold count < 0, va: 0x%x", va);
366	}
367#endif
368
369	vm_page_unhold(mpte);
370
371	if ((mpte->hold_count == 0) &&
372	    (mpte->wire_count == 0) &&
373	    (pmap != kernel_pmap) &&
374	    (va < KPT_MIN_ADDRESS)) {
375/*
376 * We don't free page-table-pages anymore because it can have a negative
377 * impact on perf at times.  Now we just deactivate, and it'll get cleaned
378 * up if needed...  Also, if the page ends up getting used, it will fault
379 * back into the process address space and be reactivated.
380 */
381#if defined(PMAP_FREE_OLD_PTES)
382		pmap_page_protect(VM_PAGE_TO_PHYS(mpte), VM_PROT_NONE);
383		vm_page_free(mpte);
384#else
385		mpte->dirty = 0;
386		vm_page_deactivate(mpte);
387#endif
388	}
389}
390
391/*
392 *	Bootstrap the system enough to run with virtual memory.
393 *
394 *	On the i386 this is called after mapping has already been enabled
395 *	and just syncs the pmap module with what has already been done.
396 *	[We can't call it easily with mapping off since the kernel is not
397 *	mapped with PA == VA, hence we would have to relocate every address
398 *	from the linked base (virtual) address "KERNBASE" to the actual
399 *	(physical) address starting relative to 0]
400 */
401void
402pmap_bootstrap(firstaddr, loadaddr)
403	vm_offset_t firstaddr;
404	vm_offset_t loadaddr;
405{
406	vm_offset_t va;
407	pt_entry_t *pte;
408
409	avail_start = firstaddr;
410
411	/*
412	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
413	 * large. It should instead be correctly calculated in locore.s and
414	 * not based on 'first' (which is a physical address, not a virtual
415	 * address, for the start of unused physical memory). The kernel
416	 * page tables are NOT double mapped and thus should not be included
417	 * in this calculation.
418	 */
419	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
420	virtual_end = VM_MAX_KERNEL_ADDRESS;
421
422	/*
423	 * Initialize protection array.
424	 */
425	i386_protection_init();
426
427	/*
428	 * The kernel's pmap is statically allocated so we don't have to use
429	 * pmap_create, which is unlikely to work correctly at this part of
430	 * the boot sequence (XXX and which no longer exists).
431	 */
432	kernel_pmap = &kernel_pmap_store;
433
434	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
435
436	kernel_pmap->pm_count = 1;
437	nkpt = NKPT;
438
439	/*
440	 * Reserve some special page table entries/VA space for temporary
441	 * mapping of pages.
442	 */
443#define	SYSMAP(c, p, v, n)	\
444	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
445
446	va = virtual_avail;
447	pte = pmap_pte(kernel_pmap, va);
448
449	/*
450	 * CMAP1/CMAP2 are used for zeroing and copying pages.
451	 */
452	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
453	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
454
455	/*
456	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
457	 */
458	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
459
460	/*
461	 * msgbufmap is used to map the system message buffer.
462	 */
463	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
464
465	virtual_avail = va;
466
467	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
468	pmap_update();
469}
470
471/*
472 *	Initialize the pmap module.
473 *	Called by vm_init, to initialize any structures that the pmap
474 *	system needs to map virtual memory.
475 *	pmap_init has been enhanced to support in a fairly consistant
476 *	way, discontiguous physical memory.
477 */
478void
479pmap_init(phys_start, phys_end)
480	vm_offset_t phys_start, phys_end;
481{
482	vm_offset_t addr;
483	vm_size_t npg, s;
484	int i;
485
486	/*
487	 * calculate the number of pv_entries needed
488	 */
489	vm_first_phys = phys_avail[0];
490	for (i = 0; phys_avail[i + 1]; i += 2);
491	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
492
493	/*
494	 * Allocate memory for random pmap data structures.  Includes the
495	 * pv_head_table.
496	 */
497	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
498	s = round_page(s);
499	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
500	pv_table = (pv_entry_t) addr;
501
502	/*
503	 * init the pv free list
504	 */
505	init_pv_entries(npg);
506	/*
507	 * Now it is safe to enable pv_table recording.
508	 */
509	pmap_initialized = TRUE;
510}
511
512/*
513 *	Used to map a range of physical addresses into kernel
514 *	virtual address space.
515 *
516 *	For now, VM is already on, we only need to map the
517 *	specified memory.
518 */
519vm_offset_t
520pmap_map(virt, start, end, prot)
521	vm_offset_t virt;
522	vm_offset_t start;
523	vm_offset_t end;
524	int prot;
525{
526	while (start < end) {
527		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
528		virt += PAGE_SIZE;
529		start += PAGE_SIZE;
530	}
531	return (virt);
532}
533
534#if defined(PMAP_KEEP_PDIRS)
535int nfreepdir;
536caddr_t *pdirlist;
537#define NFREEPDIR 3
538
539static void *
540pmap_getpdir() {
541	caddr_t *pdir;
542	if (pdirlist) {
543		--nfreepdir;
544		pdir = pdirlist;
545		pdirlist = (caddr_t *) *pdir;
546		*pdir = 0;
547#if 0 /* Not needed anymore */
548		bzero( (caddr_t) pdir, PAGE_SIZE);
549#endif
550	} else {
551		pdir = (caddr_t *) kmem_alloc(kernel_map, PAGE_SIZE);
552	}
553
554	return (void *) pdir;
555}
556
557static void
558pmap_freepdir(void *pdir) {
559	if (nfreepdir > NFREEPDIR) {
560		kmem_free(kernel_map, (vm_offset_t) pdir, PAGE_SIZE);
561	} else {
562		int i;
563		pt_entry_t *s;
564		s = (pt_entry_t *) pdir;
565
566		/*
567		 * remove wired in kernel mappings
568		 */
569		bzero(s + KPTDI, nkpt * PTESIZE);
570		s[APTDPTDI] = 0;
571		s[PTDPTDI] = 0;
572
573#if defined(PMAP_DIAGNOSTIC)
574		for(i=0;i<PAGE_SIZE/4;i++,s++) {
575			if (*s) {
576				printf("pmap_freepdir: index %d not zero: %lx\n", i, *s);
577			}
578		}
579#endif
580		* (caddr_t *) pdir = (caddr_t) pdirlist;
581		pdirlist = (caddr_t *) pdir;
582		++nfreepdir;
583	}
584}
585#endif
586
587/*
588 * Initialize a preallocated and zeroed pmap structure,
589 * such as one in a vmspace structure.
590 */
591void
592pmap_pinit(pmap)
593	register struct pmap *pmap;
594{
595	/*
596	 * No need to allocate page table space yet but we do need a valid
597	 * page directory table.
598	 */
599
600#if defined(PMAP_KEEP_PDIRS)
601	pmap->pm_pdir = pmap_getpdir();
602#else
603	pmap->pm_pdir = (pd_entry_t *) kmem_alloc(kernel_map, PAGE_SIZE);
604#endif
605
606	/* wire in kernel global address entries */
607	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
608
609	/* install self-referential address mapping entry */
610	*(int *) (pmap->pm_pdir + PTDPTDI) =
611	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
612
613	pmap->pm_count = 1;
614}
615
616/*
617 * grow the number of kernel page table entries, if needed
618 */
619
620static vm_page_t nkpg;
621vm_offset_t kernel_vm_end;
622
623void
624pmap_growkernel(vm_offset_t addr)
625{
626	struct proc *p;
627	struct pmap *pmap;
628	int s;
629
630	s = splhigh();
631	if (kernel_vm_end == 0) {
632		kernel_vm_end = KERNBASE;
633		nkpt = 0;
634		while (pdir_pde(PTD, kernel_vm_end)) {
635			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
636			++nkpt;
637		}
638	}
639	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
640	while (kernel_vm_end < addr) {
641		if (pdir_pde(PTD, kernel_vm_end)) {
642			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
643			continue;
644		}
645		++nkpt;
646		if (!nkpg) {
647			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
648			if (!nkpg)
649				panic("pmap_growkernel: no memory to grow kernel");
650			vm_page_wire(nkpg);
651			vm_page_remove(nkpg);
652			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
653		}
654		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
655		nkpg = NULL;
656
657		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
658			if (p->p_vmspace) {
659				pmap = &p->p_vmspace->vm_pmap;
660				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
661			}
662		}
663		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
664		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
665	}
666	splx(s);
667}
668
669/*
670 *	Retire the given physical map from service.
671 *	Should only be called if the map contains
672 *	no valid mappings.
673 */
674void
675pmap_destroy(pmap)
676	register pmap_t pmap;
677{
678	int count;
679
680	if (pmap == NULL)
681		return;
682
683	count = --pmap->pm_count;
684	if (count == 0) {
685		pmap_release(pmap);
686		free((caddr_t) pmap, M_VMPMAP);
687	}
688}
689
690/*
691 * Release any resources held by the given physical map.
692 * Called when a pmap initialized by pmap_pinit is being released.
693 * Should only be called if the map contains no valid mappings.
694 */
695void
696pmap_release(pmap)
697	register struct pmap *pmap;
698{
699#if defined(PMAP_KEEP_PDIRS)
700	pmap_freepdir( (void *)pmap->pm_pdir);
701#else
702	kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
703#endif
704}
705
706/*
707 *	Add a reference to the specified pmap.
708 */
709void
710pmap_reference(pmap)
711	pmap_t pmap;
712{
713	if (pmap != NULL) {
714		pmap->pm_count++;
715	}
716}
717
718#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
719
720/*
721 * Data for the pv entry allocation mechanism
722 */
723static int pv_freelistcnt;
724static pv_entry_t pv_freelist;
725static vm_offset_t pvva;
726static int npvvapg;
727
728/*
729 * free the pv_entry back to the free list
730 */
731static __inline void
732free_pv_entry(pv)
733	pv_entry_t pv;
734{
735	if (!pv)
736		return;
737	++pv_freelistcnt;
738	pv->pv_next = pv_freelist;
739	pv_freelist = pv;
740}
741
742/*
743 * get a new pv_entry, allocating a block from the system
744 * when needed.
745 * the memory allocation is performed bypassing the malloc code
746 * because of the possibility of allocations at interrupt time.
747 */
748static __inline pv_entry_t
749get_pv_entry()
750{
751	pv_entry_t tmp;
752
753	/*
754	 * get more pv_entry pages if needed
755	 */
756	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
757		pmap_alloc_pv_entry();
758	}
759	/*
760	 * get a pv_entry off of the free list
761	 */
762	--pv_freelistcnt;
763	tmp = pv_freelist;
764	pv_freelist = tmp->pv_next;
765	return tmp;
766}
767
768/*
769 * this *strange* allocation routine *statistically* eliminates the
770 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
771 * also -- this code is MUCH MUCH faster than the malloc equiv...
772 */
773static void
774pmap_alloc_pv_entry()
775{
776	/*
777	 * do we have any pre-allocated map-pages left?
778	 */
779	if (npvvapg) {
780		vm_page_t m;
781
782		/*
783		 * we do this to keep recursion away
784		 */
785		pv_freelistcnt += PV_FREELIST_MIN;
786		/*
787		 * allocate a physical page out of the vm system
788		 */
789		m = vm_page_alloc(kernel_object,
790		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
791		    VM_ALLOC_INTERRUPT);
792		if (m) {
793			int newentries;
794			int i;
795			pv_entry_t entry;
796
797			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
798			/*
799			 * wire the page
800			 */
801			vm_page_wire(m);
802			m->flags &= ~PG_BUSY;
803			/*
804			 * let the kernel see it
805			 */
806			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
807
808			entry = (pv_entry_t) pvva;
809			/*
810			 * update the allocation pointers
811			 */
812			pvva += PAGE_SIZE;
813			--npvvapg;
814
815			/*
816			 * free the entries into the free list
817			 */
818			for (i = 0; i < newentries; i++) {
819				free_pv_entry(entry);
820				entry++;
821			}
822		}
823		pv_freelistcnt -= PV_FREELIST_MIN;
824	}
825	if (!pv_freelist)
826		panic("get_pv_entry: cannot get a pv_entry_t");
827}
828
829
830
831/*
832 * init the pv_entry allocation system
833 */
834#define PVSPERPAGE 64
835void
836init_pv_entries(npg)
837	int npg;
838{
839	/*
840	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
841	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
842	 * this is too small.)
843	 */
844	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
845		+ PAGE_SIZE - 1) / PAGE_SIZE;
846	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
847	/*
848	 * get the first batch of entries
849	 */
850	free_pv_entry(get_pv_entry());
851}
852
853__inline pt_entry_t *
854get_ptbase(pmap)
855	pmap_t pmap;
856{
857	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
858
859	/* are we current address space or kernel? */
860	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
861		return PTmap;
862	}
863	/* otherwise, we are alternate address space */
864	if (frame != ((int) APTDpde & PG_FRAME)) {
865		APTDpde = pmap->pm_pdir[PTDPTDI];
866		pmap_update();
867	}
868	return APTmap;
869}
870
871/*
872 * If it is the first entry on the list, it is actually
873 * in the header and we must copy the following entry up
874 * to the header.  Otherwise we must search the list for
875 * the entry.  In either case we free the now unused entry.
876 */
877static __inline void
878pmap_remove_entry(pmap, pv, va)
879	struct pmap *pmap;
880	pv_entry_t pv;
881	vm_offset_t va;
882{
883	pv_entry_t npv;
884	int s;
885	s = splhigh();
886	if (pmap == pv->pv_pmap && va == pv->pv_va) {
887		pmap_unuse_pt(pmap, va, pv->pv_ptem);
888		npv = pv->pv_next;
889		if (npv) {
890			*pv = *npv;
891			free_pv_entry(npv);
892		} else {
893			pv->pv_pmap = NULL;
894		}
895	} else {
896		for (npv = pv->pv_next; npv; (pv = npv, npv = pv->pv_next)) {
897			if (pmap == npv->pv_pmap && va == npv->pv_va) {
898				pmap_unuse_pt(pmap, va, npv->pv_ptem);
899				pv->pv_next = npv->pv_next;
900				free_pv_entry(npv);
901				break;
902			}
903		}
904	}
905	splx(s);
906}
907
908/*
909 * pmap_remove_pte: do the things to unmap a page in a process
910 */
911static void
912pmap_remove_pte(pmap, ptq, sva)
913	struct pmap *pmap;
914	pt_entry_t *ptq;
915	vm_offset_t sva;
916{
917	pt_entry_t oldpte;
918	vm_offset_t pa;
919	pv_entry_t pv;
920
921	oldpte = *ptq;
922	if (((int)oldpte) & PG_W)
923		pmap->pm_stats.wired_count--;
924	pmap->pm_stats.resident_count--;
925
926	pa = ((vm_offset_t)oldpte) & PG_FRAME;
927	if (pmap_is_managed(pa)) {
928		if ((int) oldpte & PG_M) {
929#if defined(PMAP_DIAGNOSTIC)
930			if (pmap_nw_modified(oldpte)) {
931				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", sva, (int) oldpte);
932			}
933#endif
934
935			if (sva < USRSTACK + (UPAGES * PAGE_SIZE) ||
936			    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
937				PHYS_TO_VM_PAGE(pa)->dirty = VM_PAGE_BITS_ALL;
938			}
939		}
940		pv = pa_to_pvh(pa);
941		pmap_remove_entry(pmap, pv, sva);
942	} else {
943		pmap_unuse_pt(pmap, sva, NULL);
944	}
945
946	*ptq = 0;
947	return;
948}
949
950/*
951 * Remove a single page from a process address space
952 */
953static __inline void
954pmap_remove_page(pmap, va)
955	struct pmap *pmap;
956	register vm_offset_t va;
957{
958	register pt_entry_t *ptbase, *ptq;
959	/*
960	 * if there is no pte for this address, just skip it!!!
961	 */
962	if (*pmap_pde(pmap, va) == 0)
963		return;
964	/*
965	 * get a local va for mappings for this pmap.
966	 */
967	ptbase = get_ptbase(pmap);
968	ptq = ptbase + i386_btop(va);
969	if (*ptq) {
970		pmap_remove_pte(pmap, ptq, va);
971		pmap_update_1pg(va);
972	}
973	return;
974}
975
976/*
977 *	Remove the given range of addresses from the specified map.
978 *
979 *	It is assumed that the start and end are properly
980 *	rounded to the page size.
981 */
982void
983pmap_remove(pmap, sva, eva)
984	struct pmap *pmap;
985	register vm_offset_t sva;
986	register vm_offset_t eva;
987{
988	register pt_entry_t *ptbase;
989	vm_offset_t va;
990	vm_offset_t pdnxt;
991	vm_offset_t ptpaddr;
992	vm_offset_t sindex, eindex;
993	vm_page_t mpte;
994
995	if (pmap == NULL)
996		return;
997
998	/*
999	 * special handling of removing one page.  a very
1000	 * common operation and easy to short circuit some
1001	 * code.
1002	 */
1003	if ((sva + PAGE_SIZE) == eva) {
1004		pmap_remove_page(pmap, sva);
1005		return;
1006	}
1007
1008	/*
1009	 * Get a local virtual address for the mappings that are being
1010	 * worked with.
1011	 */
1012	ptbase = get_ptbase(pmap);
1013
1014	sindex = i386_btop(sva);
1015	eindex = i386_btop(eva);
1016
1017	for (; sindex < eindex; sindex = pdnxt) {
1018
1019		/*
1020		 * Calculate index for next page table.
1021		 */
1022		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1023		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1024
1025		/*
1026		 * Weed out invalid mappings. Note: we assume that the page
1027		 * directory table is always allocated, and in kernel virtual.
1028		 */
1029		if (ptpaddr == 0)
1030			continue;
1031
1032		/*
1033		 * get the vm_page_t for the page table page
1034		 */
1035		mpte = PHYS_TO_VM_PAGE(ptpaddr);
1036
1037		/*
1038		 * if the pte isn't wired or held, just skip it.
1039		 */
1040		if ((mpte->hold_count == 0) && (mpte->wire_count == 0))
1041			continue;
1042
1043		/*
1044		 * Limit our scan to either the end of the va represented
1045		 * by the current page table page, or to the end of the
1046		 * range being removed.
1047		 */
1048		if (pdnxt > eindex) {
1049			pdnxt = eindex;
1050		}
1051
1052		for ( ;sindex != pdnxt; sindex++) {
1053			if (ptbase[sindex] == 0)
1054				continue;
1055			pmap_remove_pte(pmap, ptbase + sindex, i386_ptob(sindex));
1056			if (mpte->hold_count == 0 && mpte->wire_count == 0)
1057				break;
1058		}
1059	}
1060	pmap_update();
1061}
1062
1063/*
1064 *	Routine:	pmap_remove_all
1065 *	Function:
1066 *		Removes this physical page from
1067 *		all physical maps in which it resides.
1068 *		Reflects back modify bits to the pager.
1069 *
1070 *	Notes:
1071 *		Original versions of this routine were very
1072 *		inefficient because they iteratively called
1073 *		pmap_remove (slow...)
1074 */
1075static void
1076pmap_remove_all(pa)
1077	vm_offset_t pa;
1078{
1079	register pv_entry_t pv, opv, npv;
1080	register pt_entry_t *pte, *ptbase;
1081	vm_offset_t va;
1082	struct pmap *pmap;
1083	vm_page_t m;
1084	int s;
1085	int anyvalid = 0;
1086
1087#if defined(PMAP_DIAGNOSTIC)
1088	/*
1089	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1090	 * pages!
1091	 */
1092	if (!pmap_is_managed(pa)) {
1093		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1094	}
1095#endif
1096
1097	pa = pa & PG_FRAME;
1098	opv = pa_to_pvh(pa);
1099	if (opv->pv_pmap == NULL)
1100		return;
1101
1102	m = PHYS_TO_VM_PAGE(pa);
1103	s = splhigh();
1104	pv = opv;
1105	while (pv && ((pmap = pv->pv_pmap) != NULL)) {
1106		int tpte;
1107		ptbase = get_ptbase(pmap);
1108		va = pv->pv_va;
1109		pte = ptbase + i386_btop(va);
1110		if (tpte = ((int) *pte)) {
1111			*pte = 0;
1112			if (tpte & PG_W)
1113				pmap->pm_stats.wired_count--;
1114			pmap->pm_stats.resident_count--;
1115			anyvalid = 1;
1116
1117			/*
1118			 * Update the vm_page_t clean and reference bits.
1119			 */
1120			if ((tpte & PG_M) != 0) {
1121#if defined(PMAP_DIAGNOSTIC)
1122				if (pmap_nw_modified((pt_entry_t) tpte)) {
1123					printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, tpte);
1124				}
1125#endif
1126				if (va < USRSTACK + (UPAGES * PAGE_SIZE) ||
1127				    (va >= KERNBASE && (va < clean_sva || va >= clean_eva))) {
1128					m->dirty = VM_PAGE_BITS_ALL;
1129				}
1130			}
1131		}
1132		pv = pv->pv_next;
1133	}
1134
1135	if (opv->pv_pmap != NULL) {
1136		pmap_unuse_pt(opv->pv_pmap, opv->pv_va, opv->pv_ptem);
1137		for (pv = opv->pv_next; pv; pv = npv) {
1138			npv = pv->pv_next;
1139			pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1140			free_pv_entry(pv);
1141		}
1142	}
1143
1144	opv->pv_pmap = NULL;
1145	opv->pv_next = NULL;
1146
1147	splx(s);
1148	if (anyvalid)
1149		pmap_update();
1150}
1151
1152
1153/*
1154 *	Set the physical protection on the
1155 *	specified range of this map as requested.
1156 */
1157void
1158pmap_protect(pmap, sva, eva, prot)
1159	register pmap_t pmap;
1160	vm_offset_t sva, eva;
1161	vm_prot_t prot;
1162{
1163	register pt_entry_t *pte;
1164	register vm_offset_t va;
1165	register pt_entry_t *ptbase;
1166	vm_offset_t pdnxt;
1167	vm_offset_t ptpaddr;
1168	vm_offset_t sindex, eindex;
1169	vm_page_t mpte;
1170	int anychanged;
1171
1172
1173	if (pmap == NULL)
1174		return;
1175
1176	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1177		pmap_remove(pmap, sva, eva);
1178		return;
1179	}
1180	if (prot & VM_PROT_WRITE)
1181		return;
1182
1183	anychanged = 0;
1184
1185	ptbase = get_ptbase(pmap);
1186
1187	sindex = i386_btop(sva);
1188	eindex = i386_btop(eva);
1189
1190	for (; sindex < eindex; sindex = pdnxt) {
1191		int pprot;
1192		int pbits;
1193
1194		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1195		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1196
1197		/*
1198		 * Weed out invalid mappings. Note: we assume that the page
1199		 * directory table is always allocated, and in kernel virtual.
1200		 */
1201		if (ptpaddr == 0)
1202			continue;
1203
1204		mpte = PHYS_TO_VM_PAGE(ptpaddr);
1205
1206		if ((mpte->hold_count == 0) && (mpte->wire_count == 0))
1207			continue;
1208
1209		if (pdnxt > eindex) {
1210			pdnxt = eindex;
1211		}
1212
1213		for (; sindex != pdnxt; sindex++) {
1214			if (ptbase[sindex] == 0)
1215				continue;
1216			pte = ptbase + sindex;
1217			pbits = *(int *)pte;
1218			if (pbits & PG_RW) {
1219				if (pbits & PG_M) {
1220					vm_page_t m;
1221					vm_offset_t pa = pbits & PG_FRAME;
1222					m = PHYS_TO_VM_PAGE(pa);
1223					m->dirty = VM_PAGE_BITS_ALL;
1224				}
1225				*(int *)pte &= ~(PG_M|PG_RW);
1226				anychanged=1;
1227			}
1228		}
1229	}
1230	if (anychanged)
1231		pmap_update();
1232}
1233
1234/*
1235 *	Insert the given physical page (p) at
1236 *	the specified virtual address (v) in the
1237 *	target physical map with the protection requested.
1238 *
1239 *	If specified, the page will be wired down, meaning
1240 *	that the related pte can not be reclaimed.
1241 *
1242 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1243 *	or lose information.  That is, this routine must actually
1244 *	insert this page into the given map NOW.
1245 */
1246void
1247pmap_enter(pmap, va, pa, prot, wired)
1248	register pmap_t pmap;
1249	vm_offset_t va;
1250	register vm_offset_t pa;
1251	vm_prot_t prot;
1252	boolean_t wired;
1253{
1254	register pt_entry_t *pte;
1255	vm_offset_t opa;
1256	register pv_entry_t pv, npv;
1257	int ptevalid;
1258	vm_offset_t origpte, newpte;
1259
1260	if (pmap == NULL)
1261		return;
1262
1263	pv = NULL;
1264
1265	va = va & PG_FRAME;
1266	if (va > VM_MAX_KERNEL_ADDRESS)
1267		panic("pmap_enter: toobig");
1268
1269	/*
1270	 * In the case that a page table page is not
1271	 * resident, we are creating it here.
1272	 */
1273	if ((va < VM_MIN_KERNEL_ADDRESS) &&
1274		(curproc != NULL) &&
1275		(pmap->pm_map->pmap == pmap)) {
1276		vm_offset_t v;
1277
1278		v = (vm_offset_t) vtopte(va);
1279		/* Fault the pte only if needed: */
1280		if (*((int *)vtopte(v)) == 0)
1281			(void) vm_fault(pmap->pm_map,
1282				trunc_page(v), VM_PROT_WRITE, FALSE);
1283	}
1284
1285	/*
1286	 * Page Directory table entry not valid, we need a new PT page
1287	 */
1288	pte = pmap_pte(pmap, va);
1289	if (pte == NULL) {
1290		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1291			pmap->pm_pdir[PTDPTDI], va);
1292		panic("invalid kernel page directory");
1293	}
1294
1295	origpte = *(vm_offset_t *)pte;
1296	opa = origpte & PG_FRAME;
1297
1298	pa = pa & PG_FRAME;
1299
1300	/*
1301	 * Mapping has not changed, must be protection or wiring change.
1302	 */
1303	if (opa == pa) {
1304		/*
1305		 * Wiring change, just update stats. We don't worry about
1306		 * wiring PT pages as they remain resident as long as there
1307		 * are valid mappings in them. Hence, if a user page is wired,
1308		 * the PT page will be also.
1309		 */
1310		if (wired && ((origpte & PG_W) == 0))
1311			pmap->pm_stats.wired_count++;
1312		else if (!wired && (origpte & PG_W))
1313			pmap->pm_stats.wired_count--;
1314
1315#if defined(PMAP_DIAGNOSTIC)
1316		if (pmap_nw_modified((pt_entry_t) origpte)) {
1317			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1318		}
1319#endif
1320
1321		/*
1322		 * We might be turning off write access to the page,
1323		 * so we go ahead and sense modify status.
1324		 */
1325		if (origpte & PG_M) {
1326			vm_page_t m;
1327			m = PHYS_TO_VM_PAGE(pa);
1328			m->dirty = VM_PAGE_BITS_ALL;
1329		}
1330		goto validate;
1331	}
1332	/*
1333	 * Mapping has changed, invalidate old range and fall through to
1334	 * handle validating new mapping.
1335	 */
1336	if (opa) {
1337		pmap_remove_page(pmap, va);
1338		opa = 0;
1339		origpte = 0;
1340	}
1341	/*
1342	 * Enter on the PV list if part of our managed memory Note that we
1343	 * raise IPL while manipulating pv_table since pmap_enter can be
1344	 * called at interrupt time.
1345	 */
1346	if (pmap_is_managed(pa)) {
1347		int s;
1348
1349		pv = pa_to_pvh(pa);
1350		s = splhigh();
1351		/*
1352		 * No entries yet, use header as the first entry
1353		 */
1354		if (pv->pv_pmap == NULL) {
1355			pv->pv_va = va;
1356			pv->pv_pmap = pmap;
1357			pv->pv_next = NULL;
1358			pv->pv_ptem = NULL;
1359		}
1360		/*
1361		 * There is at least one other VA mapping this page. Place
1362		 * this entry after the header.
1363		 */
1364		else {
1365			npv = get_pv_entry();
1366			npv->pv_va = va;
1367			npv->pv_pmap = pmap;
1368			npv->pv_next = pv->pv_next;
1369			pv->pv_next = npv;
1370			pv = npv;
1371			pv->pv_ptem = NULL;
1372		}
1373		splx(s);
1374	}
1375
1376	/*
1377	 * Increment counters
1378	 */
1379	pmap->pm_stats.resident_count++;
1380	if (wired)
1381		pmap->pm_stats.wired_count++;
1382
1383validate:
1384	/*
1385	 * Now validate mapping with desired protection/wiring.
1386	 */
1387	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1388
1389	if (wired)
1390		newpte |= PG_W;
1391	if (va < UPT_MIN_ADDRESS)
1392		newpte |= PG_u;
1393	else if (va < UPT_MAX_ADDRESS)
1394		newpte |= PG_u | PG_RW;
1395
1396	/*
1397	 * if the mapping or permission bits are different, we need
1398	 * to update the pte.
1399	 */
1400	if ((origpte & ~(PG_M|PG_U)) != newpte) {
1401		*pte = (pt_entry_t) newpte;
1402		if (origpte)
1403			pmap_update_1pg(va);
1404	}
1405
1406	if (origpte == 0) {
1407		vm_page_t mpte;
1408		mpte = pmap_use_pt(pmap, va);
1409		if (pv)
1410			pv->pv_ptem = mpte;
1411	}
1412}
1413
1414/*
1415 * Add a list of wired pages to the kva
1416 * this routine is only used for temporary
1417 * kernel mappings that do not need to have
1418 * page modification or references recorded.
1419 * Note that old mappings are simply written
1420 * over.  The page *must* be wired.
1421 */
1422void
1423pmap_qenter(va, m, count)
1424	vm_offset_t va;
1425	vm_page_t *m;
1426	int count;
1427{
1428	int i;
1429	int anyvalid = 0;
1430	register pt_entry_t *pte;
1431
1432	for (i = 0; i < count; i++) {
1433		vm_offset_t tva = va + i * PAGE_SIZE;
1434		pt_entry_t npte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V));
1435		pt_entry_t opte;
1436		pte = vtopte(tva);
1437		opte = *pte;
1438		*pte = npte;
1439		if (opte) pmap_update_1pg(tva);
1440	}
1441}
1442/*
1443 * this routine jerks page mappings from the
1444 * kernel -- it is meant only for temporary mappings.
1445 */
1446void
1447pmap_qremove(va, count)
1448	vm_offset_t va;
1449	int count;
1450{
1451	int i;
1452	register pt_entry_t *pte;
1453
1454	for (i = 0; i < count; i++) {
1455		vm_offset_t tva = va + i * PAGE_SIZE;
1456		pte = vtopte(tva);
1457		*pte = 0;
1458		pmap_update_1pg(tva);
1459	}
1460}
1461
1462/*
1463 * add a wired page to the kva
1464 * note that in order for the mapping to take effect -- you
1465 * should do a pmap_update after doing the pmap_kenter...
1466 */
1467void
1468pmap_kenter(va, pa)
1469	vm_offset_t va;
1470	register vm_offset_t pa;
1471{
1472	register pt_entry_t *pte;
1473	pt_entry_t npte, opte;
1474
1475	npte = (pt_entry_t) ((int) (pa | PG_RW | PG_V));
1476	pte = vtopte(va);
1477	opte = *pte;
1478	*pte = npte;
1479	if (opte) pmap_update_1pg(va);
1480}
1481
1482/*
1483 * remove a page from the kernel pagetables
1484 */
1485void
1486pmap_kremove(va)
1487	vm_offset_t va;
1488{
1489	register pt_entry_t *pte;
1490
1491	pte = vtopte(va);
1492	*pte = (pt_entry_t) 0;
1493	pmap_update_1pg(va);
1494}
1495
1496/*
1497 * this code makes some *MAJOR* assumptions:
1498 * 1. Current pmap & pmap exists.
1499 * 2. Not wired.
1500 * 3. Read access.
1501 * 4. No page table pages.
1502 * 5. Tlbflush is deferred to calling procedure.
1503 * 6. Page IS managed.
1504 * but is *MUCH* faster than pmap_enter...
1505 */
1506
1507static void
1508pmap_enter_quick(pmap, va, pa)
1509	register pmap_t pmap;
1510	vm_offset_t va;
1511	register vm_offset_t pa;
1512{
1513	register pt_entry_t *pte;
1514	register pv_entry_t pv, npv;
1515	int s;
1516
1517	/*
1518	 * Enter on the PV list if part of our managed memory Note that we
1519	 * raise IPL while manipulating pv_table since pmap_enter can be
1520	 * called at interrupt time.
1521	 */
1522
1523	pte = vtopte(va);
1524	/* a fault on the page table might occur here */
1525	if (*pte) {
1526		pmap_remove_page(pmap, va);
1527	}
1528
1529	pv = pa_to_pvh(pa);
1530	s = splhigh();
1531	/*
1532	 * No entries yet, use header as the first entry
1533	 */
1534	if (pv->pv_pmap == NULL) {
1535		pv->pv_pmap = pmap;
1536		pv->pv_va = va;
1537		pv->pv_next = NULL;
1538	}
1539	/*
1540	 * There is at least one other VA mapping this page. Place this entry
1541	 * after the header.
1542	 */
1543	else {
1544		npv = get_pv_entry();
1545		npv->pv_va = va;
1546		npv->pv_pmap = pmap;
1547		npv->pv_next = pv->pv_next;
1548		pv->pv_next = npv;
1549		pv = npv;
1550	}
1551	splx(s);
1552	pv->pv_ptem = pmap_use_pt(pmap, va);
1553
1554	/*
1555	 * Increment counters
1556	 */
1557	pmap->pm_stats.resident_count++;
1558
1559	/*
1560	 * Now validate mapping with RO protection
1561	 */
1562	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1563
1564	return;
1565}
1566
1567#define MAX_INIT_PT (96)
1568/*
1569 * pmap_object_init_pt preloads the ptes for a given object
1570 * into the specified pmap.  This eliminates the blast of soft
1571 * faults on process startup and immediately after an mmap.
1572 */
1573void
1574pmap_object_init_pt(pmap, addr, object, pindex, size)
1575	pmap_t pmap;
1576	vm_offset_t addr;
1577	vm_object_t object;
1578	vm_pindex_t pindex;
1579	vm_size_t size;
1580{
1581	vm_offset_t tmpidx;
1582	int psize;
1583	vm_page_t p;
1584	int objpgs;
1585
1586	psize = (size >> PAGE_SHIFT);
1587
1588	if (!pmap || (object->type != OBJT_VNODE) ||
1589		((psize > MAX_INIT_PT) &&
1590			(object->resident_page_count > MAX_INIT_PT))) {
1591		return;
1592	}
1593
1594	/*
1595	 * remove any already used mappings
1596	 */
1597	pmap_remove( pmap, trunc_page(addr), round_page(addr + size));
1598
1599	/*
1600	 * if we are processing a major portion of the object, then scan the
1601	 * entire thing.
1602	 */
1603	if (psize > (object->size >> 2)) {
1604		objpgs = psize;
1605
1606		for (p = object->memq.tqh_first;
1607		    ((objpgs > 0) && (p != NULL));
1608		    p = p->listq.tqe_next) {
1609
1610			tmpidx = p->pindex;
1611			if (tmpidx < pindex) {
1612				continue;
1613			}
1614			tmpidx -= pindex;
1615			if (tmpidx >= psize) {
1616				continue;
1617			}
1618			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1619			    (p->busy == 0) &&
1620			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1621				if (p->queue == PQ_CACHE)
1622					vm_page_deactivate(p);
1623				vm_page_hold(p);
1624				p->flags |= PG_MAPPED;
1625				pmap_enter_quick(pmap,
1626					addr + (tmpidx << PAGE_SHIFT),
1627					VM_PAGE_TO_PHYS(p));
1628				vm_page_unhold(p);
1629			}
1630			objpgs -= 1;
1631		}
1632	} else {
1633		/*
1634		 * else lookup the pages one-by-one.
1635		 */
1636		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1637			p = vm_page_lookup(object, tmpidx + pindex);
1638			if (p && (p->busy == 0) &&
1639			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1640			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1641				if (p->queue == PQ_CACHE)
1642					vm_page_deactivate(p);
1643				vm_page_hold(p);
1644				p->flags |= PG_MAPPED;
1645				pmap_enter_quick(pmap,
1646					addr + (tmpidx << PAGE_SHIFT),
1647					VM_PAGE_TO_PHYS(p));
1648				vm_page_unhold(p);
1649			}
1650		}
1651	}
1652	return;
1653}
1654
1655/*
1656 * pmap_prefault provides a quick way of clustering
1657 * pagefaults into a processes address space.  It is a "cousin"
1658 * of pmap_object_init_pt, except it runs at page fault time instead
1659 * of mmap time.
1660 */
1661#define PFBAK 2
1662#define PFFOR 2
1663#define PAGEORDER_SIZE (PFBAK+PFFOR)
1664
1665static int pmap_prefault_pageorder[] = {
1666	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
1667};
1668
1669void
1670pmap_prefault(pmap, addra, entry, object)
1671	pmap_t pmap;
1672	vm_offset_t addra;
1673	vm_map_entry_t entry;
1674	vm_object_t object;
1675{
1676	int i;
1677	vm_offset_t starta;
1678	vm_offset_t addr;
1679	vm_pindex_t pindex;
1680	vm_page_t m;
1681	int pageorder_index;
1682
1683	if (entry->object.vm_object != object)
1684		return;
1685
1686	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
1687		return;
1688
1689	starta = addra - PFBAK * PAGE_SIZE;
1690	if (starta < entry->start) {
1691		starta = entry->start;
1692	} else if (starta > addra) {
1693		starta = 0;
1694	}
1695
1696	for (i = 0; i < PAGEORDER_SIZE; i++) {
1697		vm_object_t lobject;
1698		pt_entry_t *pte;
1699
1700		addr = addra + pmap_prefault_pageorder[i];
1701		if (addr < starta || addr >= entry->end)
1702			continue;
1703
1704		pte = vtopte(addr);
1705		if (*pte)
1706			continue;
1707
1708		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1709		lobject = object;
1710		for (m = vm_page_lookup(lobject, pindex);
1711		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1712		    lobject = lobject->backing_object) {
1713			if (lobject->backing_object_offset & PAGE_MASK)
1714				break;
1715			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1716			m = vm_page_lookup(lobject->backing_object, pindex);
1717		}
1718
1719		/*
1720		 * give-up when a page is not in memory
1721		 */
1722		if (m == NULL)
1723			break;
1724
1725		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1726		    (m->busy == 0) &&
1727		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1728
1729			if (m->queue == PQ_CACHE) {
1730				if ((cnt.v_free_count + cnt.v_cache_count) <
1731					cnt.v_free_min)
1732					break;
1733				vm_page_deactivate(m);
1734			}
1735			vm_page_hold(m);
1736			m->flags |= PG_MAPPED;
1737			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1738			vm_page_unhold(m);
1739
1740		}
1741	}
1742}
1743
1744/*
1745 *	Routine:	pmap_change_wiring
1746 *	Function:	Change the wiring attribute for a map/virtual-address
1747 *			pair.
1748 *	In/out conditions:
1749 *			The mapping must already exist in the pmap.
1750 */
1751void
1752pmap_change_wiring(pmap, va, wired)
1753	register pmap_t pmap;
1754	vm_offset_t va;
1755	boolean_t wired;
1756{
1757	register pt_entry_t *pte;
1758
1759	if (pmap == NULL)
1760		return;
1761
1762	pte = pmap_pte(pmap, va);
1763
1764	if (wired && !pmap_pte_w(pte))
1765		pmap->pm_stats.wired_count++;
1766	else if (!wired && pmap_pte_w(pte))
1767		pmap->pm_stats.wired_count--;
1768
1769	/*
1770	 * Wiring is not a hardware characteristic so there is no need to
1771	 * invalidate TLB.
1772	 */
1773	pmap_pte_set_w(pte, wired);
1774}
1775
1776
1777
1778/*
1779 *	Copy the range specified by src_addr/len
1780 *	from the source map to the range dst_addr/len
1781 *	in the destination map.
1782 *
1783 *	This routine is only advisory and need not do anything.
1784 */
1785void
1786pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1787	pmap_t dst_pmap, src_pmap;
1788	vm_offset_t dst_addr;
1789	vm_size_t len;
1790	vm_offset_t src_addr;
1791{
1792}
1793
1794/*
1795 *	Routine:	pmap_kernel
1796 *	Function:
1797 *		Returns the physical map handle for the kernel.
1798 */
1799pmap_t
1800pmap_kernel()
1801{
1802	return (kernel_pmap);
1803}
1804
1805/*
1806 *	pmap_zero_page zeros the specified (machine independent)
1807 *	page by mapping the page into virtual memory and using
1808 *	bzero to clear its contents, one machine dependent page
1809 *	at a time.
1810 */
1811void
1812pmap_zero_page(phys)
1813	vm_offset_t phys;
1814{
1815	if (*(int *) CMAP2)
1816		panic("pmap_zero_page: CMAP busy");
1817
1818	*(int *) CMAP2 = PG_V | PG_KW | (phys & PG_FRAME);
1819	bzero(CADDR2, PAGE_SIZE);
1820
1821	*(int *) CMAP2 = 0;
1822	pmap_update_1pg((vm_offset_t) CADDR2);
1823}
1824
1825/*
1826 *	pmap_copy_page copies the specified (machine independent)
1827 *	page by mapping the page into virtual memory and using
1828 *	bcopy to copy the page, one machine dependent page at a
1829 *	time.
1830 */
1831void
1832pmap_copy_page(src, dst)
1833	vm_offset_t src;
1834	vm_offset_t dst;
1835{
1836	if (*(int *) CMAP1 || *(int *) CMAP2)
1837		panic("pmap_copy_page: CMAP busy");
1838
1839	*(int *) CMAP1 = PG_V | PG_KW | (src & PG_FRAME);
1840	*(int *) CMAP2 = PG_V | PG_KW | (dst & PG_FRAME);
1841
1842#if __GNUC__ > 1
1843	memcpy(CADDR2, CADDR1, PAGE_SIZE);
1844#else
1845	bcopy(CADDR1, CADDR2, PAGE_SIZE);
1846#endif
1847	*(int *) CMAP1 = 0;
1848	*(int *) CMAP2 = 0;
1849	pmap_update_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
1850}
1851
1852
1853/*
1854 *	Routine:	pmap_pageable
1855 *	Function:
1856 *		Make the specified pages (by pmap, offset)
1857 *		pageable (or not) as requested.
1858 *
1859 *		A page which is not pageable may not take
1860 *		a fault; therefore, its page table entry
1861 *		must remain valid for the duration.
1862 *
1863 *		This routine is merely advisory; pmap_enter
1864 *		will specify that these pages are to be wired
1865 *		down (or not) as appropriate.
1866 */
1867void
1868pmap_pageable(pmap, sva, eva, pageable)
1869	pmap_t pmap;
1870	vm_offset_t sva, eva;
1871	boolean_t pageable;
1872{
1873}
1874
1875/*
1876 * this routine returns true if a physical page resides
1877 * in the given pmap.
1878 */
1879boolean_t
1880pmap_page_exists(pmap, pa)
1881	pmap_t pmap;
1882	vm_offset_t pa;
1883{
1884	register pv_entry_t pv;
1885	int s;
1886
1887	if (!pmap_is_managed(pa))
1888		return FALSE;
1889
1890	pv = pa_to_pvh(pa);
1891	s = splhigh();
1892
1893	/*
1894	 * Not found, check current mappings returning immediately if found.
1895	 */
1896	if (pv->pv_pmap != NULL) {
1897		for (; pv; pv = pv->pv_next) {
1898			if (pv->pv_pmap == pmap) {
1899				splx(s);
1900				return TRUE;
1901			}
1902		}
1903	}
1904	splx(s);
1905	return (FALSE);
1906}
1907
1908/*
1909 * pmap_testbit tests bits in pte's
1910 * note that the testbit/changebit routines are inline,
1911 * and a lot of things compile-time evaluate.
1912 */
1913static __inline boolean_t
1914pmap_testbit(pa, bit)
1915	register vm_offset_t pa;
1916	int bit;
1917{
1918	register pv_entry_t pv;
1919	pt_entry_t *pte;
1920	int s;
1921
1922	if (!pmap_is_managed(pa))
1923		return FALSE;
1924
1925	pv = pa_to_pvh(pa);
1926	s = splhigh();
1927
1928	/*
1929	 * Not found, check current mappings returning immediately if found.
1930	 */
1931	if (pv->pv_pmap != NULL) {
1932		for (; pv; pv = pv->pv_next) {
1933			/*
1934			 * if the bit being tested is the modified bit, then
1935			 * mark UPAGES as always modified, and ptes as never
1936			 * modified.
1937			 */
1938			if (bit & (PG_U|PG_M)) {
1939				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
1940					continue;
1941				}
1942			}
1943			if (!pv->pv_pmap) {
1944#if defined(PMAP_DIAGNOSTIC)
1945				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
1946#endif
1947				continue;
1948			}
1949			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1950			if ((int) *pte & bit) {
1951				splx(s);
1952				return TRUE;
1953			}
1954		}
1955	}
1956	splx(s);
1957	return (FALSE);
1958}
1959
1960/*
1961 * this routine is used to modify bits in ptes
1962 */
1963static __inline void
1964pmap_changebit(pa, bit, setem)
1965	vm_offset_t pa;
1966	int bit;
1967	boolean_t setem;
1968{
1969	register pv_entry_t pv;
1970	register pt_entry_t *pte, npte;
1971	vm_offset_t va;
1972	int changed;
1973	int s;
1974
1975	if (!pmap_is_managed(pa))
1976		return;
1977
1978	pv = pa_to_pvh(pa);
1979	s = splhigh();
1980
1981	/*
1982	 * Loop over all current mappings setting/clearing as appropos If
1983	 * setting RO do we need to clear the VAC?
1984	 */
1985	if (pv->pv_pmap != NULL) {
1986		for (; pv; pv = pv->pv_next) {
1987			va = pv->pv_va;
1988
1989			/*
1990			 * don't write protect pager mappings
1991			 */
1992			if (!setem && (bit == PG_RW)) {
1993				if (va >= clean_sva && va < clean_eva)
1994					continue;
1995			}
1996			if (!pv->pv_pmap) {
1997#if defined(PMAP_DIAGNOSTIC)
1998				printf("Null pmap (cb) at va: 0x%lx\n", va);
1999#endif
2000				continue;
2001			}
2002
2003			pte = pmap_pte(pv->pv_pmap, va);
2004			if (setem) {
2005				*(int *)pte |= bit;
2006			} else {
2007				if (bit == PG_RW) {
2008					vm_offset_t pbits = *(vm_offset_t *)pte;
2009					if (pbits & PG_M) {
2010						vm_page_t m;
2011						vm_offset_t pa = pbits & PG_FRAME;
2012						m = PHYS_TO_VM_PAGE(pa);
2013						m->dirty = VM_PAGE_BITS_ALL;
2014					}
2015					*(int *)pte &= ~(PG_M|PG_RW);
2016				} else {
2017					*(int *)pte &= ~bit;
2018				}
2019			}
2020		}
2021	}
2022	splx(s);
2023	pmap_update();
2024}
2025
2026/*
2027 *      pmap_page_protect:
2028 *
2029 *      Lower the permission for all mappings to a given page.
2030 */
2031void
2032pmap_page_protect(phys, prot)
2033	vm_offset_t phys;
2034	vm_prot_t prot;
2035{
2036	if ((prot & VM_PROT_WRITE) == 0) {
2037		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
2038			pmap_changebit(phys, PG_RW, FALSE);
2039		else
2040			pmap_remove_all(phys);
2041	}
2042}
2043
2044vm_offset_t
2045pmap_phys_address(ppn)
2046	int ppn;
2047{
2048	return (i386_ptob(ppn));
2049}
2050
2051/*
2052 *	pmap_is_referenced:
2053 *
2054 *	Return whether or not the specified physical page was referenced
2055 *	by any physical maps.
2056 */
2057boolean_t
2058pmap_is_referenced(vm_offset_t pa)
2059{
2060	return pmap_testbit((pa), PG_U);
2061}
2062
2063/*
2064 *	pmap_is_modified:
2065 *
2066 *	Return whether or not the specified physical page was modified
2067 *	in any physical maps.
2068 */
2069boolean_t
2070pmap_is_modified(vm_offset_t pa)
2071{
2072	return pmap_testbit((pa), PG_M);
2073}
2074
2075/*
2076 *	Clear the modify bits on the specified physical page.
2077 */
2078void
2079pmap_clear_modify(vm_offset_t pa)
2080{
2081	pmap_changebit((pa), PG_M, FALSE);
2082}
2083
2084/*
2085 *	pmap_clear_reference:
2086 *
2087 *	Clear the reference bit on the specified physical page.
2088 */
2089void
2090pmap_clear_reference(vm_offset_t pa)
2091{
2092	pmap_changebit((pa), PG_U, FALSE);
2093}
2094
2095/*
2096 * Miscellaneous support routines follow
2097 */
2098
2099static void
2100i386_protection_init()
2101{
2102	register int *kp, prot;
2103
2104	kp = protection_codes;
2105	for (prot = 0; prot < 8; prot++) {
2106		switch (prot) {
2107		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2108			/*
2109			 * Read access is also 0. There isn't any execute bit,
2110			 * so just make it readable.
2111			 */
2112		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2113		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2114		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2115			*kp++ = 0;
2116			break;
2117		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2118		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2119		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2120		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2121			*kp++ = PG_RW;
2122			break;
2123		}
2124	}
2125}
2126
2127/*
2128 * Map a set of physical memory pages into the kernel virtual
2129 * address space. Return a pointer to where it is mapped. This
2130 * routine is intended to be used for mapping device memory,
2131 * NOT real memory. The non-cacheable bits are set on each
2132 * mapped page.
2133 */
2134void *
2135pmap_mapdev(pa, size)
2136	vm_offset_t pa;
2137	vm_size_t size;
2138{
2139	vm_offset_t va, tmpva;
2140	pt_entry_t *pte;
2141
2142	size = roundup(size, PAGE_SIZE);
2143
2144	va = kmem_alloc_pageable(kernel_map, size);
2145	if (!va)
2146		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2147
2148	pa = pa & PG_FRAME;
2149	for (tmpva = va; size > 0;) {
2150		pte = vtopte(tmpva);
2151		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
2152		size -= PAGE_SIZE;
2153		tmpva += PAGE_SIZE;
2154		pa += PAGE_SIZE;
2155	}
2156	pmap_update();
2157
2158	return ((void *) va);
2159}
2160
2161#if defined(PMAP_DEBUG)
2162pmap_pid_dump(int pid) {
2163	pmap_t pmap;
2164	struct proc *p;
2165	int npte = 0;
2166	int index;
2167	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
2168		if (p->p_pid != pid)
2169			continue;
2170
2171		if (p->p_vmspace) {
2172			int i,j;
2173			index = 0;
2174			pmap = &p->p_vmspace->vm_pmap;
2175			for(i=0;i<1024;i++) {
2176				pd_entry_t *pde;
2177				pt_entry_t *pte;
2178				unsigned base = i << PD_SHIFT;
2179
2180				pde = &pmap->pm_pdir[i];
2181				if (pde && pmap_pde_v(pde)) {
2182					for(j=0;j<1024;j++) {
2183						unsigned va = base + (j << PAGE_SHIFT);
2184						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2185							if (index) {
2186								index = 0;
2187								printf("\n");
2188							}
2189							return npte;
2190						}
2191						pte = pmap_pte( pmap, va);
2192						if (pte && pmap_pte_v(pte)) {
2193							vm_offset_t pa;
2194							vm_page_t m;
2195							pa = *(int *)pte;
2196							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2197							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2198								va, pa, m->hold_count, m->wire_count, m->flags);
2199							npte++;
2200							index++;
2201							if (index >= 2) {
2202								index = 0;
2203								printf("\n");
2204							} else {
2205								printf(" ");
2206							}
2207						}
2208					}
2209				}
2210			}
2211		}
2212	}
2213	return npte;
2214}
2215#endif
2216
2217#if defined(DEBUG)
2218
2219static void	pads __P((pmap_t pm));
2220static void	pmap_pvdump __P((vm_offset_t pa));
2221
2222/* print address space of pmap*/
2223static void
2224pads(pm)
2225	pmap_t pm;
2226{
2227	unsigned va, i, j;
2228	pt_entry_t *ptep;
2229
2230	if (pm == kernel_pmap)
2231		return;
2232	for (i = 0; i < 1024; i++)
2233		if (pm->pm_pdir[i])
2234			for (j = 0; j < 1024; j++) {
2235				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
2236				if (pm == kernel_pmap && va < KERNBASE)
2237					continue;
2238				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2239					continue;
2240				ptep = pmap_pte(pm, va);
2241				if (pmap_pte_v(ptep))
2242					printf("%x:%x ", va, *(int *) ptep);
2243			};
2244
2245}
2246
2247static void
2248pmap_pvdump(pa)
2249	vm_offset_t pa;
2250{
2251	register pv_entry_t pv;
2252
2253	printf("pa %x", pa);
2254	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2255#ifdef used_to_be
2256		printf(" -> pmap %x, va %x, flags %x",
2257		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2258#endif
2259		printf(" -> pmap %x, va %x",
2260		    pv->pv_pmap, pv->pv_va);
2261		pads(pv->pv_pmap);
2262	}
2263	printf(" ");
2264}
2265#endif
2266