pmap.c revision 153141
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 153141 2005-12-05 22:25:41Z jhb $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sx.h>
122#include <sys/vmmeter.h>
123#include <sys/sched.h>
124#include <sys/sysctl.h>
125#ifdef SMP
126#include <sys/smp.h>
127#endif
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/uma.h>
139
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149#ifdef XBOX
150#include <machine/xbox.h>
151#endif
152
153#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
154#define CPU_ENABLE_SSE
155#endif
156
157#ifndef PMAP_SHPGPERPROC
158#define PMAP_SHPGPERPROC 200
159#endif
160
161#if defined(DIAGNOSTIC)
162#define PMAP_DIAGNOSTIC
163#endif
164
165#if !defined(PMAP_DIAGNOSTIC)
166#define PMAP_INLINE __inline
167#else
168#define PMAP_INLINE
169#endif
170
171/*
172 * Get PDEs and PTEs for user/kernel address space
173 */
174#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
175#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
176
177#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
178#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
179#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
180#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
181#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
182
183#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
184    atomic_clear_int((u_int *)(pte), PG_W))
185#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
186
187struct pmap kernel_pmap_store;
188LIST_HEAD(pmaplist, pmap);
189static struct pmaplist allpmaps;
190static struct mtx allpmaps_lock;
191
192vm_paddr_t avail_end;	/* PA of last available physical page */
193vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
194vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
195int pgeflag = 0;		/* PG_G or-in */
196int pseflag = 0;		/* PG_PS or-in */
197
198static int nkpt;
199vm_offset_t kernel_vm_end;
200extern u_int32_t KERNend;
201
202#ifdef PAE
203static uma_zone_t pdptzone;
204#endif
205
206/*
207 * Data for the pv entry allocation mechanism
208 */
209static uma_zone_t pvzone;
210static struct vm_object pvzone_obj;
211static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
212
213/*
214 * All those kernel PT submaps that BSD is so fond of
215 */
216struct sysmaps {
217	struct	mtx lock;
218	pt_entry_t *CMAP1;
219	pt_entry_t *CMAP2;
220	caddr_t	CADDR1;
221	caddr_t	CADDR2;
222};
223static struct sysmaps sysmaps_pcpu[MAXCPU];
224pt_entry_t *CMAP1 = 0;
225static pt_entry_t *CMAP3;
226caddr_t CADDR1 = 0, ptvmmap = 0;
227static caddr_t CADDR3;
228struct msgbuf *msgbufp = 0;
229
230/*
231 * Crashdump maps.
232 */
233static caddr_t crashdumpmap;
234
235#ifdef SMP
236extern pt_entry_t *SMPpt;
237#endif
238static pt_entry_t *PMAP1 = 0, *PMAP2;
239static pt_entry_t *PADDR1 = 0, *PADDR2;
240#ifdef SMP
241static int PMAP1cpu;
242static int PMAP1changedcpu;
243SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
244	   &PMAP1changedcpu, 0,
245	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
246#endif
247static int PMAP1changed;
248SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
249	   &PMAP1changed, 0,
250	   "Number of times pmap_pte_quick changed PMAP1");
251static int PMAP1unchanged;
252SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
253	   &PMAP1unchanged, 0,
254	   "Number of times pmap_pte_quick didn't change PMAP1");
255static struct mtx PMAP2mutex;
256
257static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
258static pv_entry_t get_pv_entry(pmap_t locked_pmap);
259static void	pmap_clear_ptes(vm_page_t m, int bit);
260
261static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
262static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
263static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
264					vm_offset_t va);
265static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
266
267static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
268
269static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
270static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m);
271static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
272static void pmap_pte_release(pt_entry_t *pte);
273static int pmap_unuse_pt(pmap_t, vm_offset_t);
274static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
275#ifdef PAE
276static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
277#endif
278
279CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
280CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
281
282/*
283 * Move the kernel virtual free pointer to the next
284 * 4MB.  This is used to help improve performance
285 * by using a large (4MB) page for much of the kernel
286 * (.text, .data, .bss)
287 */
288static vm_offset_t
289pmap_kmem_choose(vm_offset_t addr)
290{
291	vm_offset_t newaddr = addr;
292
293#ifndef DISABLE_PSE
294	if (cpu_feature & CPUID_PSE)
295		newaddr = (addr + PDRMASK) & ~PDRMASK;
296#endif
297	return newaddr;
298}
299
300/*
301 *	Bootstrap the system enough to run with virtual memory.
302 *
303 *	On the i386 this is called after mapping has already been enabled
304 *	and just syncs the pmap module with what has already been done.
305 *	[We can't call it easily with mapping off since the kernel is not
306 *	mapped with PA == VA, hence we would have to relocate every address
307 *	from the linked base (virtual) address "KERNBASE" to the actual
308 *	(physical) address starting relative to 0]
309 */
310void
311pmap_bootstrap(firstaddr, loadaddr)
312	vm_paddr_t firstaddr;
313	vm_paddr_t loadaddr;
314{
315	vm_offset_t va;
316	pt_entry_t *pte, *unused;
317	struct sysmaps *sysmaps;
318	int i;
319
320	/*
321	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
322	 * large. It should instead be correctly calculated in locore.s and
323	 * not based on 'first' (which is a physical address, not a virtual
324	 * address, for the start of unused physical memory). The kernel
325	 * page tables are NOT double mapped and thus should not be included
326	 * in this calculation.
327	 */
328	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
329	virtual_avail = pmap_kmem_choose(virtual_avail);
330
331	virtual_end = VM_MAX_KERNEL_ADDRESS;
332
333	/*
334	 * Initialize the kernel pmap (which is statically allocated).
335	 */
336	PMAP_LOCK_INIT(kernel_pmap);
337	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
338#ifdef PAE
339	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
340#endif
341	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
342	TAILQ_INIT(&kernel_pmap->pm_pvlist);
343	LIST_INIT(&allpmaps);
344	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
345	mtx_lock_spin(&allpmaps_lock);
346	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
347	mtx_unlock_spin(&allpmaps_lock);
348	nkpt = NKPT;
349
350	/*
351	 * Reserve some special page table entries/VA space for temporary
352	 * mapping of pages.
353	 */
354#define	SYSMAP(c, p, v, n)	\
355	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
356
357	va = virtual_avail;
358	pte = vtopte(va);
359
360	/*
361	 * CMAP1/CMAP2 are used for zeroing and copying pages.
362	 * CMAP3 is used for the idle process page zeroing.
363	 */
364	for (i = 0; i < MAXCPU; i++) {
365		sysmaps = &sysmaps_pcpu[i];
366		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
367		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
368		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
369	}
370	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
371	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
372	*CMAP3 = 0;
373
374	/*
375	 * Crashdump maps.
376	 */
377	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
378
379	/*
380	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
381	 */
382	SYSMAP(caddr_t, unused, ptvmmap, 1)
383
384	/*
385	 * msgbufp is used to map the system message buffer.
386	 */
387	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
388
389	/*
390	 * ptemap is used for pmap_pte_quick
391	 */
392	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
393	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
394
395	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
396
397	virtual_avail = va;
398
399	*CMAP1 = 0;
400
401#ifdef XBOX
402	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
403	 * an early stadium, we cannot yet neatly map video memory ... :-(
404	 * Better fixes are very welcome! */
405	if (!arch_i386_is_xbox)
406#endif
407	for (i = 0; i < NKPT; i++)
408		PTD[i] = 0;
409
410	/* Turn on PG_G on kernel page(s) */
411	pmap_set_pg();
412}
413
414/*
415 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
416 */
417void
418pmap_set_pg(void)
419{
420	pd_entry_t pdir;
421	pt_entry_t *pte;
422	vm_offset_t va, endva;
423	int i;
424
425	if (pgeflag == 0)
426		return;
427
428	i = KERNLOAD/NBPDR;
429	endva = KERNBASE + KERNend;
430
431	if (pseflag) {
432		va = KERNBASE + KERNLOAD;
433		while (va  < endva) {
434			pdir = kernel_pmap->pm_pdir[KPTDI+i];
435			pdir |= pgeflag;
436			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
437			invltlb();	/* Play it safe, invltlb() every time */
438			i++;
439			va += NBPDR;
440		}
441	} else {
442		va = (vm_offset_t)btext;
443		while (va < endva) {
444			pte = vtopte(va);
445			if (*pte)
446				*pte |= pgeflag;
447			invltlb();	/* Play it safe, invltlb() every time */
448			va += PAGE_SIZE;
449		}
450	}
451}
452
453/*
454 * Initialize a vm_page's machine-dependent fields.
455 */
456void
457pmap_page_init(vm_page_t m)
458{
459
460	TAILQ_INIT(&m->md.pv_list);
461	m->md.pv_list_count = 0;
462}
463
464#ifdef PAE
465
466static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
467
468static void *
469pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
470{
471	*flags = UMA_SLAB_PRIV;
472	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
473	    1, 0));
474}
475#endif
476
477/*
478 *	Initialize the pmap module.
479 *	Called by vm_init, to initialize any structures that the pmap
480 *	system needs to map virtual memory.
481 */
482void
483pmap_init(void)
484{
485	int shpgperproc = PMAP_SHPGPERPROC;
486
487	/*
488	 * Initialize the address space (zone) for the pv entries.  Set a
489	 * high water mark so that the system can recover from excessive
490	 * numbers of pv entries.
491	 */
492	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
493	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
494	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
495	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
496	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
497	pv_entry_high_water = 9 * (pv_entry_max / 10);
498	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
499
500#ifdef PAE
501	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
502	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
503	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
504	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
505#endif
506}
507
508
509/***************************************************
510 * Low level helper routines.....
511 ***************************************************/
512
513
514/*
515 * this routine defines the region(s) of memory that should
516 * not be tested for the modified bit.
517 */
518static PMAP_INLINE int
519pmap_track_modified(vm_offset_t va)
520{
521	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
522		return 1;
523	else
524		return 0;
525}
526
527#ifdef SMP
528/*
529 * For SMP, these functions have to use the IPI mechanism for coherence.
530 */
531void
532pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
533{
534	u_int cpumask;
535	u_int other_cpus;
536
537	if (smp_started) {
538		if (!(read_eflags() & PSL_I))
539			panic("%s: interrupts disabled", __func__);
540		mtx_lock_spin(&smp_ipi_mtx);
541	} else
542		critical_enter();
543	/*
544	 * We need to disable interrupt preemption but MUST NOT have
545	 * interrupts disabled here.
546	 * XXX we may need to hold schedlock to get a coherent pm_active
547	 * XXX critical sections disable interrupts again
548	 */
549	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
550		invlpg(va);
551		smp_invlpg(va);
552	} else {
553		cpumask = PCPU_GET(cpumask);
554		other_cpus = PCPU_GET(other_cpus);
555		if (pmap->pm_active & cpumask)
556			invlpg(va);
557		if (pmap->pm_active & other_cpus)
558			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
559	}
560	if (smp_started)
561		mtx_unlock_spin(&smp_ipi_mtx);
562	else
563		critical_exit();
564}
565
566void
567pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
568{
569	u_int cpumask;
570	u_int other_cpus;
571	vm_offset_t addr;
572
573	if (smp_started) {
574		if (!(read_eflags() & PSL_I))
575			panic("%s: interrupts disabled", __func__);
576		mtx_lock_spin(&smp_ipi_mtx);
577	} else
578		critical_enter();
579	/*
580	 * We need to disable interrupt preemption but MUST NOT have
581	 * interrupts disabled here.
582	 * XXX we may need to hold schedlock to get a coherent pm_active
583	 * XXX critical sections disable interrupts again
584	 */
585	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
586		for (addr = sva; addr < eva; addr += PAGE_SIZE)
587			invlpg(addr);
588		smp_invlpg_range(sva, eva);
589	} else {
590		cpumask = PCPU_GET(cpumask);
591		other_cpus = PCPU_GET(other_cpus);
592		if (pmap->pm_active & cpumask)
593			for (addr = sva; addr < eva; addr += PAGE_SIZE)
594				invlpg(addr);
595		if (pmap->pm_active & other_cpus)
596			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
597			    sva, eva);
598	}
599	if (smp_started)
600		mtx_unlock_spin(&smp_ipi_mtx);
601	else
602		critical_exit();
603}
604
605void
606pmap_invalidate_all(pmap_t pmap)
607{
608	u_int cpumask;
609	u_int other_cpus;
610
611	if (smp_started) {
612		if (!(read_eflags() & PSL_I))
613			panic("%s: interrupts disabled", __func__);
614		mtx_lock_spin(&smp_ipi_mtx);
615	} else
616		critical_enter();
617	/*
618	 * We need to disable interrupt preemption but MUST NOT have
619	 * interrupts disabled here.
620	 * XXX we may need to hold schedlock to get a coherent pm_active
621	 * XXX critical sections disable interrupts again
622	 */
623	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
624		invltlb();
625		smp_invltlb();
626	} else {
627		cpumask = PCPU_GET(cpumask);
628		other_cpus = PCPU_GET(other_cpus);
629		if (pmap->pm_active & cpumask)
630			invltlb();
631		if (pmap->pm_active & other_cpus)
632			smp_masked_invltlb(pmap->pm_active & other_cpus);
633	}
634	if (smp_started)
635		mtx_unlock_spin(&smp_ipi_mtx);
636	else
637		critical_exit();
638}
639#else /* !SMP */
640/*
641 * Normal, non-SMP, 486+ invalidation functions.
642 * We inline these within pmap.c for speed.
643 */
644PMAP_INLINE void
645pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
646{
647
648	if (pmap == kernel_pmap || pmap->pm_active)
649		invlpg(va);
650}
651
652PMAP_INLINE void
653pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
654{
655	vm_offset_t addr;
656
657	if (pmap == kernel_pmap || pmap->pm_active)
658		for (addr = sva; addr < eva; addr += PAGE_SIZE)
659			invlpg(addr);
660}
661
662PMAP_INLINE void
663pmap_invalidate_all(pmap_t pmap)
664{
665
666	if (pmap == kernel_pmap || pmap->pm_active)
667		invltlb();
668}
669#endif /* !SMP */
670
671/*
672 * Are we current address space or kernel?  N.B. We return FALSE when
673 * a pmap's page table is in use because a kernel thread is borrowing
674 * it.  The borrowed page table can change spontaneously, making any
675 * dependence on its continued use subject to a race condition.
676 */
677static __inline int
678pmap_is_current(pmap_t pmap)
679{
680
681	return (pmap == kernel_pmap ||
682		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
683	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
684}
685
686/*
687 * If the given pmap is not the current or kernel pmap, the returned pte must
688 * be released by passing it to pmap_pte_release().
689 */
690pt_entry_t *
691pmap_pte(pmap_t pmap, vm_offset_t va)
692{
693	pd_entry_t newpf;
694	pd_entry_t *pde;
695
696	pde = pmap_pde(pmap, va);
697	if (*pde & PG_PS)
698		return (pde);
699	if (*pde != 0) {
700		/* are we current address space or kernel? */
701		if (pmap_is_current(pmap))
702			return (vtopte(va));
703		mtx_lock(&PMAP2mutex);
704		newpf = *pde & PG_FRAME;
705		if ((*PMAP2 & PG_FRAME) != newpf) {
706			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
707			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
708		}
709		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
710	}
711	return (0);
712}
713
714/*
715 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
716 * being NULL.
717 */
718static __inline void
719pmap_pte_release(pt_entry_t *pte)
720{
721
722	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
723		mtx_unlock(&PMAP2mutex);
724}
725
726static __inline void
727invlcaddr(void *caddr)
728{
729
730	invlpg((u_int)caddr);
731}
732
733/*
734 * Super fast pmap_pte routine best used when scanning
735 * the pv lists.  This eliminates many coarse-grained
736 * invltlb calls.  Note that many of the pv list
737 * scans are across different pmaps.  It is very wasteful
738 * to do an entire invltlb for checking a single mapping.
739 *
740 * If the given pmap is not the current pmap, vm_page_queue_mtx
741 * must be held and curthread pinned to a CPU.
742 */
743static pt_entry_t *
744pmap_pte_quick(pmap_t pmap, vm_offset_t va)
745{
746	pd_entry_t newpf;
747	pd_entry_t *pde;
748
749	pde = pmap_pde(pmap, va);
750	if (*pde & PG_PS)
751		return (pde);
752	if (*pde != 0) {
753		/* are we current address space or kernel? */
754		if (pmap_is_current(pmap))
755			return (vtopte(va));
756		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
757		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
758		newpf = *pde & PG_FRAME;
759		if ((*PMAP1 & PG_FRAME) != newpf) {
760			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
761#ifdef SMP
762			PMAP1cpu = PCPU_GET(cpuid);
763#endif
764			invlcaddr(PADDR1);
765			PMAP1changed++;
766		} else
767#ifdef SMP
768		if (PMAP1cpu != PCPU_GET(cpuid)) {
769			PMAP1cpu = PCPU_GET(cpuid);
770			invlcaddr(PADDR1);
771			PMAP1changedcpu++;
772		} else
773#endif
774			PMAP1unchanged++;
775		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
776	}
777	return (0);
778}
779
780/*
781 *	Routine:	pmap_extract
782 *	Function:
783 *		Extract the physical page address associated
784 *		with the given map/virtual_address pair.
785 */
786vm_paddr_t
787pmap_extract(pmap_t pmap, vm_offset_t va)
788{
789	vm_paddr_t rtval;
790	pt_entry_t *pte;
791	pd_entry_t pde;
792
793	rtval = 0;
794	PMAP_LOCK(pmap);
795	pde = pmap->pm_pdir[va >> PDRSHIFT];
796	if (pde != 0) {
797		if ((pde & PG_PS) != 0) {
798			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
799			PMAP_UNLOCK(pmap);
800			return rtval;
801		}
802		pte = pmap_pte(pmap, va);
803		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
804		pmap_pte_release(pte);
805	}
806	PMAP_UNLOCK(pmap);
807	return (rtval);
808}
809
810/*
811 *	Routine:	pmap_extract_and_hold
812 *	Function:
813 *		Atomically extract and hold the physical page
814 *		with the given pmap and virtual address pair
815 *		if that mapping permits the given protection.
816 */
817vm_page_t
818pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
819{
820	pd_entry_t pde;
821	pt_entry_t pte;
822	vm_page_t m;
823
824	m = NULL;
825	vm_page_lock_queues();
826	PMAP_LOCK(pmap);
827	pde = *pmap_pde(pmap, va);
828	if (pde != 0) {
829		if (pde & PG_PS) {
830			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
831				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
832				    (va & PDRMASK));
833				vm_page_hold(m);
834			}
835		} else {
836			sched_pin();
837			pte = *pmap_pte_quick(pmap, va);
838			if (pte != 0 &&
839			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
840				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
841				vm_page_hold(m);
842			}
843			sched_unpin();
844		}
845	}
846	vm_page_unlock_queues();
847	PMAP_UNLOCK(pmap);
848	return (m);
849}
850
851/***************************************************
852 * Low level mapping routines.....
853 ***************************************************/
854
855/*
856 * Add a wired page to the kva.
857 * Note: not SMP coherent.
858 */
859PMAP_INLINE void
860pmap_kenter(vm_offset_t va, vm_paddr_t pa)
861{
862	pt_entry_t *pte;
863
864	pte = vtopte(va);
865	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
866}
867
868/*
869 * Remove a page from the kernel pagetables.
870 * Note: not SMP coherent.
871 */
872PMAP_INLINE void
873pmap_kremove(vm_offset_t va)
874{
875	pt_entry_t *pte;
876
877	pte = vtopte(va);
878	pte_clear(pte);
879}
880
881/*
882 *	Used to map a range of physical addresses into kernel
883 *	virtual address space.
884 *
885 *	The value passed in '*virt' is a suggested virtual address for
886 *	the mapping. Architectures which can support a direct-mapped
887 *	physical to virtual region can return the appropriate address
888 *	within that region, leaving '*virt' unchanged. Other
889 *	architectures should map the pages starting at '*virt' and
890 *	update '*virt' with the first usable address after the mapped
891 *	region.
892 */
893vm_offset_t
894pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
895{
896	vm_offset_t va, sva;
897
898	va = sva = *virt;
899	while (start < end) {
900		pmap_kenter(va, start);
901		va += PAGE_SIZE;
902		start += PAGE_SIZE;
903	}
904	pmap_invalidate_range(kernel_pmap, sva, va);
905	*virt = va;
906	return (sva);
907}
908
909
910/*
911 * Add a list of wired pages to the kva
912 * this routine is only used for temporary
913 * kernel mappings that do not need to have
914 * page modification or references recorded.
915 * Note that old mappings are simply written
916 * over.  The page *must* be wired.
917 * Note: SMP coherent.  Uses a ranged shootdown IPI.
918 */
919void
920pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
921{
922	vm_offset_t va;
923
924	va = sva;
925	while (count-- > 0) {
926		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
927		va += PAGE_SIZE;
928		m++;
929	}
930	pmap_invalidate_range(kernel_pmap, sva, va);
931}
932
933/*
934 * This routine tears out page mappings from the
935 * kernel -- it is meant only for temporary mappings.
936 * Note: SMP coherent.  Uses a ranged shootdown IPI.
937 */
938void
939pmap_qremove(vm_offset_t sva, int count)
940{
941	vm_offset_t va;
942
943	va = sva;
944	while (count-- > 0) {
945		pmap_kremove(va);
946		va += PAGE_SIZE;
947	}
948	pmap_invalidate_range(kernel_pmap, sva, va);
949}
950
951/***************************************************
952 * Page table page management routines.....
953 ***************************************************/
954
955/*
956 * This routine unholds page table pages, and if the hold count
957 * drops to zero, then it decrements the wire count.
958 */
959static PMAP_INLINE int
960pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
961{
962
963	--m->wire_count;
964	if (m->wire_count == 0)
965		return _pmap_unwire_pte_hold(pmap, m);
966	else
967		return 0;
968}
969
970static int
971_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
972{
973	vm_offset_t pteva;
974
975	/*
976	 * unmap the page table page
977	 */
978	pmap->pm_pdir[m->pindex] = 0;
979	--pmap->pm_stats.resident_count;
980
981	/*
982	 * Do an invltlb to make the invalidated mapping
983	 * take effect immediately.
984	 */
985	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
986	pmap_invalidate_page(pmap, pteva);
987
988	vm_page_free_zero(m);
989	atomic_subtract_int(&cnt.v_wire_count, 1);
990	return 1;
991}
992
993/*
994 * After removing a page table entry, this routine is used to
995 * conditionally free the page, and manage the hold/wire counts.
996 */
997static int
998pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
999{
1000	pd_entry_t ptepde;
1001	vm_page_t mpte;
1002
1003	if (va >= VM_MAXUSER_ADDRESS)
1004		return 0;
1005	ptepde = *pmap_pde(pmap, va);
1006	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1007	return pmap_unwire_pte_hold(pmap, mpte);
1008}
1009
1010void
1011pmap_pinit0(pmap)
1012	struct pmap *pmap;
1013{
1014
1015	PMAP_LOCK_INIT(pmap);
1016	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1017#ifdef PAE
1018	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1019#endif
1020	pmap->pm_active = 0;
1021	PCPU_SET(curpmap, pmap);
1022	TAILQ_INIT(&pmap->pm_pvlist);
1023	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1024	mtx_lock_spin(&allpmaps_lock);
1025	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1026	mtx_unlock_spin(&allpmaps_lock);
1027}
1028
1029/*
1030 * Initialize a preallocated and zeroed pmap structure,
1031 * such as one in a vmspace structure.
1032 */
1033void
1034pmap_pinit(pmap)
1035	register struct pmap *pmap;
1036{
1037	vm_page_t m, ptdpg[NPGPTD];
1038	vm_paddr_t pa;
1039	static int color;
1040	int i;
1041
1042	PMAP_LOCK_INIT(pmap);
1043
1044	/*
1045	 * No need to allocate page table space yet but we do need a valid
1046	 * page directory table.
1047	 */
1048	if (pmap->pm_pdir == NULL) {
1049		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1050		    NBPTD);
1051#ifdef PAE
1052		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1053		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1054		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1055		    ("pmap_pinit: pdpt misaligned"));
1056		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1057		    ("pmap_pinit: pdpt above 4g"));
1058#endif
1059	}
1060
1061	/*
1062	 * allocate the page directory page(s)
1063	 */
1064	for (i = 0; i < NPGPTD;) {
1065		m = vm_page_alloc(NULL, color++,
1066		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1067		    VM_ALLOC_ZERO);
1068		if (m == NULL)
1069			VM_WAIT;
1070		else {
1071			ptdpg[i++] = m;
1072		}
1073	}
1074
1075	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1076
1077	for (i = 0; i < NPGPTD; i++) {
1078		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1079			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1080	}
1081
1082	mtx_lock_spin(&allpmaps_lock);
1083	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1084	mtx_unlock_spin(&allpmaps_lock);
1085	/* Wire in kernel global address entries. */
1086	/* XXX copies current process, does not fill in MPPTDI */
1087	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1088#ifdef SMP
1089	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1090#endif
1091
1092	/* install self-referential address mapping entry(s) */
1093	for (i = 0; i < NPGPTD; i++) {
1094		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1095		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1096#ifdef PAE
1097		pmap->pm_pdpt[i] = pa | PG_V;
1098#endif
1099	}
1100
1101	pmap->pm_active = 0;
1102	TAILQ_INIT(&pmap->pm_pvlist);
1103	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1104}
1105
1106/*
1107 * this routine is called if the page table page is not
1108 * mapped correctly.
1109 */
1110static vm_page_t
1111_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1112{
1113	vm_paddr_t ptepa;
1114	vm_page_t m;
1115
1116	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1117	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1118	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1119
1120	/*
1121	 * Allocate a page table page.
1122	 */
1123	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1124	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1125		if (flags & M_WAITOK) {
1126			PMAP_UNLOCK(pmap);
1127			vm_page_unlock_queues();
1128			VM_WAIT;
1129			vm_page_lock_queues();
1130			PMAP_LOCK(pmap);
1131		}
1132
1133		/*
1134		 * Indicate the need to retry.  While waiting, the page table
1135		 * page may have been allocated.
1136		 */
1137		return (NULL);
1138	}
1139	if ((m->flags & PG_ZERO) == 0)
1140		pmap_zero_page(m);
1141
1142	/*
1143	 * Map the pagetable page into the process address space, if
1144	 * it isn't already there.
1145	 */
1146
1147	pmap->pm_stats.resident_count++;
1148
1149	ptepa = VM_PAGE_TO_PHYS(m);
1150	pmap->pm_pdir[ptepindex] =
1151		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1152
1153	return m;
1154}
1155
1156static vm_page_t
1157pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1158{
1159	unsigned ptepindex;
1160	pd_entry_t ptepa;
1161	vm_page_t m;
1162
1163	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1164	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1165	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1166
1167	/*
1168	 * Calculate pagetable page index
1169	 */
1170	ptepindex = va >> PDRSHIFT;
1171retry:
1172	/*
1173	 * Get the page directory entry
1174	 */
1175	ptepa = pmap->pm_pdir[ptepindex];
1176
1177	/*
1178	 * This supports switching from a 4MB page to a
1179	 * normal 4K page.
1180	 */
1181	if (ptepa & PG_PS) {
1182		pmap->pm_pdir[ptepindex] = 0;
1183		ptepa = 0;
1184		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1185		pmap_invalidate_all(kernel_pmap);
1186	}
1187
1188	/*
1189	 * If the page table page is mapped, we just increment the
1190	 * hold count, and activate it.
1191	 */
1192	if (ptepa) {
1193		m = PHYS_TO_VM_PAGE(ptepa);
1194		m->wire_count++;
1195	} else {
1196		/*
1197		 * Here if the pte page isn't mapped, or if it has
1198		 * been deallocated.
1199		 */
1200		m = _pmap_allocpte(pmap, ptepindex, flags);
1201		if (m == NULL && (flags & M_WAITOK))
1202			goto retry;
1203	}
1204	return (m);
1205}
1206
1207
1208/***************************************************
1209* Pmap allocation/deallocation routines.
1210 ***************************************************/
1211
1212#ifdef SMP
1213/*
1214 * Deal with a SMP shootdown of other users of the pmap that we are
1215 * trying to dispose of.  This can be a bit hairy.
1216 */
1217static u_int *lazymask;
1218static u_int lazyptd;
1219static volatile u_int lazywait;
1220
1221void pmap_lazyfix_action(void);
1222
1223void
1224pmap_lazyfix_action(void)
1225{
1226	u_int mymask = PCPU_GET(cpumask);
1227
1228#ifdef COUNT_IPIS
1229	*ipi_lazypmap_counts[PCPU_GET(cpuid)]++;
1230#endif
1231	if (rcr3() == lazyptd)
1232		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1233	atomic_clear_int(lazymask, mymask);
1234	atomic_store_rel_int(&lazywait, 1);
1235}
1236
1237static void
1238pmap_lazyfix_self(u_int mymask)
1239{
1240
1241	if (rcr3() == lazyptd)
1242		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1243	atomic_clear_int(lazymask, mymask);
1244}
1245
1246
1247static void
1248pmap_lazyfix(pmap_t pmap)
1249{
1250	u_int mymask;
1251	u_int mask;
1252	register u_int spins;
1253
1254	while ((mask = pmap->pm_active) != 0) {
1255		spins = 50000000;
1256		mask = mask & -mask;	/* Find least significant set bit */
1257		mtx_lock_spin(&smp_ipi_mtx);
1258#ifdef PAE
1259		lazyptd = vtophys(pmap->pm_pdpt);
1260#else
1261		lazyptd = vtophys(pmap->pm_pdir);
1262#endif
1263		mymask = PCPU_GET(cpumask);
1264		if (mask == mymask) {
1265			lazymask = &pmap->pm_active;
1266			pmap_lazyfix_self(mymask);
1267		} else {
1268			atomic_store_rel_int((u_int *)&lazymask,
1269			    (u_int)&pmap->pm_active);
1270			atomic_store_rel_int(&lazywait, 0);
1271			ipi_selected(mask, IPI_LAZYPMAP);
1272			while (lazywait == 0) {
1273				ia32_pause();
1274				if (--spins == 0)
1275					break;
1276			}
1277		}
1278		mtx_unlock_spin(&smp_ipi_mtx);
1279		if (spins == 0)
1280			printf("pmap_lazyfix: spun for 50000000\n");
1281	}
1282}
1283
1284#else	/* SMP */
1285
1286/*
1287 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1288 * unlikely to have to even execute this code, including the fact
1289 * that the cleanup is deferred until the parent does a wait(2), which
1290 * means that another userland process has run.
1291 */
1292static void
1293pmap_lazyfix(pmap_t pmap)
1294{
1295	u_int cr3;
1296
1297	cr3 = vtophys(pmap->pm_pdir);
1298	if (cr3 == rcr3()) {
1299		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1300		pmap->pm_active &= ~(PCPU_GET(cpumask));
1301	}
1302}
1303#endif	/* SMP */
1304
1305/*
1306 * Release any resources held by the given physical map.
1307 * Called when a pmap initialized by pmap_pinit is being released.
1308 * Should only be called if the map contains no valid mappings.
1309 */
1310void
1311pmap_release(pmap_t pmap)
1312{
1313	vm_page_t m, ptdpg[NPGPTD];
1314	int i;
1315
1316	KASSERT(pmap->pm_stats.resident_count == 0,
1317	    ("pmap_release: pmap resident count %ld != 0",
1318	    pmap->pm_stats.resident_count));
1319
1320	pmap_lazyfix(pmap);
1321	mtx_lock_spin(&allpmaps_lock);
1322	LIST_REMOVE(pmap, pm_list);
1323	mtx_unlock_spin(&allpmaps_lock);
1324
1325	for (i = 0; i < NPGPTD; i++)
1326		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1327
1328	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1329	    sizeof(*pmap->pm_pdir));
1330#ifdef SMP
1331	pmap->pm_pdir[MPPTDI] = 0;
1332#endif
1333
1334	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1335
1336	vm_page_lock_queues();
1337	for (i = 0; i < NPGPTD; i++) {
1338		m = ptdpg[i];
1339#ifdef PAE
1340		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1341		    ("pmap_release: got wrong ptd page"));
1342#endif
1343		m->wire_count--;
1344		atomic_subtract_int(&cnt.v_wire_count, 1);
1345		vm_page_free_zero(m);
1346	}
1347	vm_page_unlock_queues();
1348	PMAP_LOCK_DESTROY(pmap);
1349}
1350
1351static int
1352kvm_size(SYSCTL_HANDLER_ARGS)
1353{
1354	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1355
1356	return sysctl_handle_long(oidp, &ksize, 0, req);
1357}
1358SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1359    0, 0, kvm_size, "IU", "Size of KVM");
1360
1361static int
1362kvm_free(SYSCTL_HANDLER_ARGS)
1363{
1364	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1365
1366	return sysctl_handle_long(oidp, &kfree, 0, req);
1367}
1368SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1369    0, 0, kvm_free, "IU", "Amount of KVM free");
1370
1371/*
1372 * grow the number of kernel page table entries, if needed
1373 */
1374void
1375pmap_growkernel(vm_offset_t addr)
1376{
1377	struct pmap *pmap;
1378	vm_paddr_t ptppaddr;
1379	vm_page_t nkpg;
1380	pd_entry_t newpdir;
1381	pt_entry_t *pde;
1382
1383	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1384	if (kernel_vm_end == 0) {
1385		kernel_vm_end = KERNBASE;
1386		nkpt = 0;
1387		while (pdir_pde(PTD, kernel_vm_end)) {
1388			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1389			nkpt++;
1390		}
1391	}
1392	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1393	while (kernel_vm_end < addr) {
1394		if (pdir_pde(PTD, kernel_vm_end)) {
1395			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1396			continue;
1397		}
1398
1399		/*
1400		 * This index is bogus, but out of the way
1401		 */
1402		nkpg = vm_page_alloc(NULL, nkpt,
1403		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1404		if (!nkpg)
1405			panic("pmap_growkernel: no memory to grow kernel");
1406
1407		nkpt++;
1408
1409		pmap_zero_page(nkpg);
1410		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1411		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1412		pdir_pde(PTD, kernel_vm_end) = newpdir;
1413
1414		mtx_lock_spin(&allpmaps_lock);
1415		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1416			pde = pmap_pde(pmap, kernel_vm_end);
1417			pde_store(pde, newpdir);
1418		}
1419		mtx_unlock_spin(&allpmaps_lock);
1420		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1421	}
1422}
1423
1424
1425/***************************************************
1426 * page management routines.
1427 ***************************************************/
1428
1429/*
1430 * free the pv_entry back to the free list
1431 */
1432static PMAP_INLINE void
1433free_pv_entry(pv_entry_t pv)
1434{
1435	pv_entry_count--;
1436	uma_zfree(pvzone, pv);
1437}
1438
1439/*
1440 * get a new pv_entry, allocating a block from the system
1441 * when needed.
1442 */
1443static pv_entry_t
1444get_pv_entry(pmap_t locked_pmap)
1445{
1446	static const struct timeval printinterval = { 60, 0 };
1447	static struct timeval lastprint;
1448	struct vpgqueues *vpq;
1449	pmap_t pmap;
1450	pt_entry_t *pte, tpte;
1451	pv_entry_t allocated_pv, next_pv, pv;
1452	vm_offset_t va;
1453	vm_page_t m;
1454
1455	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1456	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1457	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1458	if (allocated_pv != NULL) {
1459		pv_entry_count++;
1460		if (pv_entry_count > pv_entry_high_water)
1461			pagedaemon_wakeup();
1462		else
1463			return (allocated_pv);
1464	}
1465
1466	/*
1467	 * Reclaim pv entries: At first, destroy mappings to inactive
1468	 * pages.  After that, if a pv entry is still needed, destroy
1469	 * mappings to active pages.
1470	 */
1471	if (ratecheck(&lastprint, &printinterval))
1472		printf("Approaching the limit on PV entries, "
1473		    "increase the vm.pmap.shpgperproc tunable.\n");
1474	vpq = &vm_page_queues[PQ_INACTIVE];
1475retry:
1476	sched_pin();
1477	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1478		if (m->hold_count || m->busy || (m->flags & PG_BUSY))
1479			continue;
1480		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1481			va = pv->pv_va;
1482			pmap = pv->pv_pmap;
1483			/* Avoid deadlock and lock recursion. */
1484			if (pmap > locked_pmap)
1485				PMAP_LOCK(pmap);
1486			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1487				continue;
1488			pmap->pm_stats.resident_count--;
1489			pte = pmap_pte_quick(pmap, va);
1490			tpte = pte_load_clear(pte);
1491			KASSERT((tpte & PG_W) == 0,
1492			    ("get_pv_entry: wired pte %#jx", (uintmax_t)tpte));
1493			if (tpte & PG_A)
1494				vm_page_flag_set(m, PG_REFERENCED);
1495			if (tpte & PG_M) {
1496				KASSERT((tpte & PG_RW),
1497	("get_pv_entry: modified page not writable: va: %#x, pte: %#jx",
1498				    va, (uintmax_t)tpte));
1499				if (pmap_track_modified(va))
1500					vm_page_dirty(m);
1501			}
1502			pmap_invalidate_page(pmap, va);
1503			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1504			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1505			if (TAILQ_EMPTY(&m->md.pv_list))
1506				vm_page_flag_clear(m, PG_WRITEABLE);
1507			m->md.pv_list_count--;
1508			pmap_unuse_pt(pmap, va);
1509			if (pmap != locked_pmap)
1510				PMAP_UNLOCK(pmap);
1511			if (allocated_pv == NULL)
1512				allocated_pv = pv;
1513			else
1514				free_pv_entry(pv);
1515		}
1516	}
1517	sched_unpin();
1518	if (allocated_pv == NULL) {
1519		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1520			vpq = &vm_page_queues[PQ_ACTIVE];
1521			goto retry;
1522		}
1523		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1524	}
1525	return (allocated_pv);
1526}
1527
1528static void
1529pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1530{
1531	pv_entry_t pv;
1532
1533	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1534	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1535	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1536		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1537			if (pmap == pv->pv_pmap && va == pv->pv_va)
1538				break;
1539		}
1540	} else {
1541		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1542			if (va == pv->pv_va)
1543				break;
1544		}
1545	}
1546	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1547	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1548	m->md.pv_list_count--;
1549	if (TAILQ_EMPTY(&m->md.pv_list))
1550		vm_page_flag_clear(m, PG_WRITEABLE);
1551	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1552	free_pv_entry(pv);
1553}
1554
1555/*
1556 * Create a pv entry for page at pa for
1557 * (pmap, va).
1558 */
1559static void
1560pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1561{
1562	pv_entry_t pv;
1563
1564	pv = get_pv_entry(pmap);
1565	pv->pv_va = va;
1566	pv->pv_pmap = pmap;
1567
1568	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1569	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1570	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1571	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1572	m->md.pv_list_count++;
1573}
1574
1575/*
1576 * pmap_remove_pte: do the things to unmap a page in a process
1577 */
1578static int
1579pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1580{
1581	pt_entry_t oldpte;
1582	vm_page_t m;
1583
1584	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1585	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1586	oldpte = pte_load_clear(ptq);
1587	if (oldpte & PG_W)
1588		pmap->pm_stats.wired_count -= 1;
1589	/*
1590	 * Machines that don't support invlpg, also don't support
1591	 * PG_G.
1592	 */
1593	if (oldpte & PG_G)
1594		pmap_invalidate_page(kernel_pmap, va);
1595	pmap->pm_stats.resident_count -= 1;
1596	if (oldpte & PG_MANAGED) {
1597		m = PHYS_TO_VM_PAGE(oldpte);
1598		if (oldpte & PG_M) {
1599			KASSERT((oldpte & PG_RW),
1600	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1601			    va, (uintmax_t)oldpte));
1602			if (pmap_track_modified(va))
1603				vm_page_dirty(m);
1604		}
1605		if (oldpte & PG_A)
1606			vm_page_flag_set(m, PG_REFERENCED);
1607		pmap_remove_entry(pmap, m, va);
1608	}
1609	return (pmap_unuse_pt(pmap, va));
1610}
1611
1612/*
1613 * Remove a single page from a process address space
1614 */
1615static void
1616pmap_remove_page(pmap_t pmap, vm_offset_t va)
1617{
1618	pt_entry_t *pte;
1619
1620	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1621	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1622	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1623	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1624		return;
1625	pmap_remove_pte(pmap, pte, va);
1626	pmap_invalidate_page(pmap, va);
1627}
1628
1629/*
1630 *	Remove the given range of addresses from the specified map.
1631 *
1632 *	It is assumed that the start and end are properly
1633 *	rounded to the page size.
1634 */
1635void
1636pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1637{
1638	vm_offset_t pdnxt;
1639	pd_entry_t ptpaddr;
1640	pt_entry_t *pte;
1641	int anyvalid;
1642
1643	/*
1644	 * Perform an unsynchronized read.  This is, however, safe.
1645	 */
1646	if (pmap->pm_stats.resident_count == 0)
1647		return;
1648
1649	anyvalid = 0;
1650
1651	vm_page_lock_queues();
1652	sched_pin();
1653	PMAP_LOCK(pmap);
1654
1655	/*
1656	 * special handling of removing one page.  a very
1657	 * common operation and easy to short circuit some
1658	 * code.
1659	 */
1660	if ((sva + PAGE_SIZE == eva) &&
1661	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1662		pmap_remove_page(pmap, sva);
1663		goto out;
1664	}
1665
1666	for (; sva < eva; sva = pdnxt) {
1667		unsigned pdirindex;
1668
1669		/*
1670		 * Calculate index for next page table.
1671		 */
1672		pdnxt = (sva + NBPDR) & ~PDRMASK;
1673		if (pmap->pm_stats.resident_count == 0)
1674			break;
1675
1676		pdirindex = sva >> PDRSHIFT;
1677		ptpaddr = pmap->pm_pdir[pdirindex];
1678
1679		/*
1680		 * Weed out invalid mappings. Note: we assume that the page
1681		 * directory table is always allocated, and in kernel virtual.
1682		 */
1683		if (ptpaddr == 0)
1684			continue;
1685
1686		/*
1687		 * Check for large page.
1688		 */
1689		if ((ptpaddr & PG_PS) != 0) {
1690			pmap->pm_pdir[pdirindex] = 0;
1691			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1692			anyvalid = 1;
1693			continue;
1694		}
1695
1696		/*
1697		 * Limit our scan to either the end of the va represented
1698		 * by the current page table page, or to the end of the
1699		 * range being removed.
1700		 */
1701		if (pdnxt > eva)
1702			pdnxt = eva;
1703
1704		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1705		    sva += PAGE_SIZE) {
1706			if (*pte == 0)
1707				continue;
1708			anyvalid = 1;
1709			if (pmap_remove_pte(pmap, pte, sva))
1710				break;
1711		}
1712	}
1713out:
1714	sched_unpin();
1715	vm_page_unlock_queues();
1716	if (anyvalid)
1717		pmap_invalidate_all(pmap);
1718	PMAP_UNLOCK(pmap);
1719}
1720
1721/*
1722 *	Routine:	pmap_remove_all
1723 *	Function:
1724 *		Removes this physical page from
1725 *		all physical maps in which it resides.
1726 *		Reflects back modify bits to the pager.
1727 *
1728 *	Notes:
1729 *		Original versions of this routine were very
1730 *		inefficient because they iteratively called
1731 *		pmap_remove (slow...)
1732 */
1733
1734void
1735pmap_remove_all(vm_page_t m)
1736{
1737	register pv_entry_t pv;
1738	pt_entry_t *pte, tpte;
1739
1740#if defined(PMAP_DIAGNOSTIC)
1741	/*
1742	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1743	 */
1744	if (m->flags & PG_FICTITIOUS) {
1745		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1746		    VM_PAGE_TO_PHYS(m));
1747	}
1748#endif
1749	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1750	sched_pin();
1751	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1752		PMAP_LOCK(pv->pv_pmap);
1753		pv->pv_pmap->pm_stats.resident_count--;
1754		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1755		tpte = pte_load_clear(pte);
1756		if (tpte & PG_W)
1757			pv->pv_pmap->pm_stats.wired_count--;
1758		if (tpte & PG_A)
1759			vm_page_flag_set(m, PG_REFERENCED);
1760
1761		/*
1762		 * Update the vm_page_t clean and reference bits.
1763		 */
1764		if (tpte & PG_M) {
1765			KASSERT((tpte & PG_RW),
1766	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
1767			    pv->pv_va, (uintmax_t)tpte));
1768			if (pmap_track_modified(pv->pv_va))
1769				vm_page_dirty(m);
1770		}
1771		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1772		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1773		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1774		m->md.pv_list_count--;
1775		pmap_unuse_pt(pv->pv_pmap, pv->pv_va);
1776		PMAP_UNLOCK(pv->pv_pmap);
1777		free_pv_entry(pv);
1778	}
1779	vm_page_flag_clear(m, PG_WRITEABLE);
1780	sched_unpin();
1781}
1782
1783/*
1784 *	Set the physical protection on the
1785 *	specified range of this map as requested.
1786 */
1787void
1788pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1789{
1790	vm_offset_t pdnxt;
1791	pd_entry_t ptpaddr;
1792	pt_entry_t *pte;
1793	int anychanged;
1794
1795	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1796		pmap_remove(pmap, sva, eva);
1797		return;
1798	}
1799
1800	if (prot & VM_PROT_WRITE)
1801		return;
1802
1803	anychanged = 0;
1804
1805	vm_page_lock_queues();
1806	sched_pin();
1807	PMAP_LOCK(pmap);
1808	for (; sva < eva; sva = pdnxt) {
1809		unsigned obits, pbits, pdirindex;
1810
1811		pdnxt = (sva + NBPDR) & ~PDRMASK;
1812
1813		pdirindex = sva >> PDRSHIFT;
1814		ptpaddr = pmap->pm_pdir[pdirindex];
1815
1816		/*
1817		 * Weed out invalid mappings. Note: we assume that the page
1818		 * directory table is always allocated, and in kernel virtual.
1819		 */
1820		if (ptpaddr == 0)
1821			continue;
1822
1823		/*
1824		 * Check for large page.
1825		 */
1826		if ((ptpaddr & PG_PS) != 0) {
1827			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1828			anychanged = 1;
1829			continue;
1830		}
1831
1832		if (pdnxt > eva)
1833			pdnxt = eva;
1834
1835		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1836		    sva += PAGE_SIZE) {
1837			vm_page_t m;
1838
1839retry:
1840			/*
1841			 * Regardless of whether a pte is 32 or 64 bits in
1842			 * size, PG_RW, PG_A, and PG_M are among the least
1843			 * significant 32 bits.
1844			 */
1845			obits = pbits = *(u_int *)pte;
1846			if (pbits & PG_MANAGED) {
1847				m = NULL;
1848				if (pbits & PG_A) {
1849					m = PHYS_TO_VM_PAGE(*pte);
1850					vm_page_flag_set(m, PG_REFERENCED);
1851					pbits &= ~PG_A;
1852				}
1853				if ((pbits & PG_M) != 0 &&
1854				    pmap_track_modified(sva)) {
1855					if (m == NULL)
1856						m = PHYS_TO_VM_PAGE(*pte);
1857					vm_page_dirty(m);
1858				}
1859			}
1860
1861			pbits &= ~(PG_RW | PG_M);
1862
1863			if (pbits != obits) {
1864				if (!atomic_cmpset_int((u_int *)pte, obits,
1865				    pbits))
1866					goto retry;
1867				if (obits & PG_G)
1868					pmap_invalidate_page(pmap, sva);
1869				else
1870					anychanged = 1;
1871			}
1872		}
1873	}
1874	sched_unpin();
1875	vm_page_unlock_queues();
1876	if (anychanged)
1877		pmap_invalidate_all(pmap);
1878	PMAP_UNLOCK(pmap);
1879}
1880
1881/*
1882 *	Insert the given physical page (p) at
1883 *	the specified virtual address (v) in the
1884 *	target physical map with the protection requested.
1885 *
1886 *	If specified, the page will be wired down, meaning
1887 *	that the related pte can not be reclaimed.
1888 *
1889 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1890 *	or lose information.  That is, this routine must actually
1891 *	insert this page into the given map NOW.
1892 */
1893void
1894pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1895	   boolean_t wired)
1896{
1897	vm_paddr_t pa;
1898	register pt_entry_t *pte;
1899	vm_paddr_t opa;
1900	pt_entry_t origpte, newpte;
1901	vm_page_t mpte, om;
1902	boolean_t invlva;
1903
1904	va &= PG_FRAME;
1905#ifdef PMAP_DIAGNOSTIC
1906	if (va > VM_MAX_KERNEL_ADDRESS)
1907		panic("pmap_enter: toobig");
1908	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1909		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1910#endif
1911
1912	mpte = NULL;
1913
1914	vm_page_lock_queues();
1915	PMAP_LOCK(pmap);
1916	sched_pin();
1917
1918	/*
1919	 * In the case that a page table page is not
1920	 * resident, we are creating it here.
1921	 */
1922	if (va < VM_MAXUSER_ADDRESS) {
1923		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1924	}
1925#if 0 && defined(PMAP_DIAGNOSTIC)
1926	else {
1927		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1928		origpte = *pdeaddr;
1929		if ((origpte & PG_V) == 0) {
1930			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1931				pmap->pm_pdir[PTDPTDI], origpte, va);
1932		}
1933	}
1934#endif
1935
1936	pte = pmap_pte_quick(pmap, va);
1937
1938	/*
1939	 * Page Directory table entry not valid, we need a new PT page
1940	 */
1941	if (pte == NULL) {
1942		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1943			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1944	}
1945
1946	pa = VM_PAGE_TO_PHYS(m);
1947	om = NULL;
1948	origpte = *pte;
1949	opa = origpte & PG_FRAME;
1950
1951	if (origpte & PG_PS) {
1952		/*
1953		 * Yes, I know this will truncate upper address bits for PAE,
1954		 * but I'm actually more interested in the lower bits
1955		 */
1956		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1957		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1958		panic("pmap_enter: attempted pmap_enter on 4MB page");
1959	}
1960
1961	/*
1962	 * Mapping has not changed, must be protection or wiring change.
1963	 */
1964	if (origpte && (opa == pa)) {
1965		/*
1966		 * Wiring change, just update stats. We don't worry about
1967		 * wiring PT pages as they remain resident as long as there
1968		 * are valid mappings in them. Hence, if a user page is wired,
1969		 * the PT page will be also.
1970		 */
1971		if (wired && ((origpte & PG_W) == 0))
1972			pmap->pm_stats.wired_count++;
1973		else if (!wired && (origpte & PG_W))
1974			pmap->pm_stats.wired_count--;
1975
1976		/*
1977		 * Remove extra pte reference
1978		 */
1979		if (mpte)
1980			mpte->wire_count--;
1981
1982		/*
1983		 * We might be turning off write access to the page,
1984		 * so we go ahead and sense modify status.
1985		 */
1986		if (origpte & PG_MANAGED) {
1987			om = m;
1988			pa |= PG_MANAGED;
1989		}
1990		goto validate;
1991	}
1992	/*
1993	 * Mapping has changed, invalidate old range and fall through to
1994	 * handle validating new mapping.
1995	 */
1996	if (opa) {
1997		if (origpte & PG_W)
1998			pmap->pm_stats.wired_count--;
1999		if (origpte & PG_MANAGED) {
2000			om = PHYS_TO_VM_PAGE(opa);
2001			pmap_remove_entry(pmap, om, va);
2002		}
2003		if (mpte != NULL) {
2004			mpte->wire_count--;
2005			KASSERT(mpte->wire_count > 0,
2006			    ("pmap_enter: missing reference to page table page,"
2007			     " va: 0x%x", va));
2008		}
2009	} else
2010		pmap->pm_stats.resident_count++;
2011
2012	/*
2013	 * Enter on the PV list if part of our managed memory.
2014	 */
2015	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2016		pmap_insert_entry(pmap, va, m);
2017		pa |= PG_MANAGED;
2018	}
2019
2020	/*
2021	 * Increment counters
2022	 */
2023	if (wired)
2024		pmap->pm_stats.wired_count++;
2025
2026validate:
2027	/*
2028	 * Now validate mapping with desired protection/wiring.
2029	 */
2030	newpte = (pt_entry_t)(pa | PG_V);
2031	if ((prot & VM_PROT_WRITE) != 0)
2032		newpte |= PG_RW;
2033	if (wired)
2034		newpte |= PG_W;
2035	if (va < VM_MAXUSER_ADDRESS)
2036		newpte |= PG_U;
2037	if (pmap == kernel_pmap)
2038		newpte |= pgeflag;
2039
2040	/*
2041	 * if the mapping or permission bits are different, we need
2042	 * to update the pte.
2043	 */
2044	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2045		if (origpte & PG_V) {
2046			invlva = FALSE;
2047			origpte = pte_load_store(pte, newpte | PG_A);
2048			if (origpte & PG_A) {
2049				if (origpte & PG_MANAGED)
2050					vm_page_flag_set(om, PG_REFERENCED);
2051				if (opa != VM_PAGE_TO_PHYS(m))
2052					invlva = TRUE;
2053			}
2054			if (origpte & PG_M) {
2055				KASSERT((origpte & PG_RW),
2056	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2057				    va, (uintmax_t)origpte));
2058				if ((origpte & PG_MANAGED) &&
2059				    pmap_track_modified(va))
2060					vm_page_dirty(om);
2061				if ((prot & VM_PROT_WRITE) == 0)
2062					invlva = TRUE;
2063			}
2064			if (invlva)
2065				pmap_invalidate_page(pmap, va);
2066		} else
2067			pte_store(pte, newpte | PG_A);
2068	}
2069	sched_unpin();
2070	vm_page_unlock_queues();
2071	PMAP_UNLOCK(pmap);
2072}
2073
2074/*
2075 * this code makes some *MAJOR* assumptions:
2076 * 1. Current pmap & pmap exists.
2077 * 2. Not wired.
2078 * 3. Read access.
2079 * 4. No page table pages.
2080 * but is *MUCH* faster than pmap_enter...
2081 */
2082
2083vm_page_t
2084pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2085    vm_page_t mpte)
2086{
2087	pt_entry_t *pte;
2088	vm_paddr_t pa;
2089
2090	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2091	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2092	PMAP_LOCK(pmap);
2093
2094	/*
2095	 * In the case that a page table page is not
2096	 * resident, we are creating it here.
2097	 */
2098	if (va < VM_MAXUSER_ADDRESS) {
2099		unsigned ptepindex;
2100		pd_entry_t ptepa;
2101
2102		/*
2103		 * Calculate pagetable page index
2104		 */
2105		ptepindex = va >> PDRSHIFT;
2106		if (mpte && (mpte->pindex == ptepindex)) {
2107			mpte->wire_count++;
2108		} else {
2109retry:
2110			/*
2111			 * Get the page directory entry
2112			 */
2113			ptepa = pmap->pm_pdir[ptepindex];
2114
2115			/*
2116			 * If the page table page is mapped, we just increment
2117			 * the hold count, and activate it.
2118			 */
2119			if (ptepa) {
2120				if (ptepa & PG_PS)
2121					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2122				mpte = PHYS_TO_VM_PAGE(ptepa);
2123				mpte->wire_count++;
2124			} else {
2125				mpte = _pmap_allocpte(pmap, ptepindex,
2126				    M_NOWAIT);
2127				if (mpte == NULL) {
2128					PMAP_UNLOCK(pmap);
2129					vm_page_busy(m);
2130					vm_page_unlock_queues();
2131					VM_OBJECT_UNLOCK(m->object);
2132					VM_WAIT;
2133					VM_OBJECT_LOCK(m->object);
2134					vm_page_lock_queues();
2135					vm_page_wakeup(m);
2136					PMAP_LOCK(pmap);
2137					goto retry;
2138				}
2139			}
2140		}
2141	} else {
2142		mpte = NULL;
2143	}
2144
2145	/*
2146	 * This call to vtopte makes the assumption that we are
2147	 * entering the page into the current pmap.  In order to support
2148	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2149	 * But that isn't as quick as vtopte.
2150	 */
2151	pte = vtopte(va);
2152	if (*pte) {
2153		if (mpte != NULL) {
2154			pmap_unwire_pte_hold(pmap, mpte);
2155			mpte = NULL;
2156		}
2157		goto out;
2158	}
2159
2160	/*
2161	 * Enter on the PV list if part of our managed memory. Note that we
2162	 * raise IPL while manipulating pv_table since pmap_enter can be
2163	 * called at interrupt time.
2164	 */
2165	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2166		pmap_insert_entry(pmap, va, m);
2167
2168	/*
2169	 * Increment counters
2170	 */
2171	pmap->pm_stats.resident_count++;
2172
2173	pa = VM_PAGE_TO_PHYS(m);
2174
2175	/*
2176	 * Now validate mapping with RO protection
2177	 */
2178	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2179		pte_store(pte, pa | PG_V | PG_U);
2180	else
2181		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2182out:
2183	PMAP_UNLOCK(pmap);
2184	return mpte;
2185}
2186
2187/*
2188 * Make a temporary mapping for a physical address.  This is only intended
2189 * to be used for panic dumps.
2190 */
2191void *
2192pmap_kenter_temporary(vm_paddr_t pa, int i)
2193{
2194	vm_offset_t va;
2195
2196	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2197	pmap_kenter(va, pa);
2198	invlpg(va);
2199	return ((void *)crashdumpmap);
2200}
2201
2202/*
2203 * This code maps large physical mmap regions into the
2204 * processor address space.  Note that some shortcuts
2205 * are taken, but the code works.
2206 */
2207void
2208pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2209		    vm_object_t object, vm_pindex_t pindex,
2210		    vm_size_t size)
2211{
2212	vm_page_t p;
2213
2214	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2215	KASSERT(object->type == OBJT_DEVICE,
2216	    ("pmap_object_init_pt: non-device object"));
2217	if (pseflag &&
2218	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2219		int i;
2220		vm_page_t m[1];
2221		unsigned int ptepindex;
2222		int npdes;
2223		pd_entry_t ptepa;
2224
2225		PMAP_LOCK(pmap);
2226		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2227			goto out;
2228		PMAP_UNLOCK(pmap);
2229retry:
2230		p = vm_page_lookup(object, pindex);
2231		if (p != NULL) {
2232			vm_page_lock_queues();
2233			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2234				goto retry;
2235		} else {
2236			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2237			if (p == NULL)
2238				return;
2239			m[0] = p;
2240
2241			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2242				vm_page_lock_queues();
2243				vm_page_free(p);
2244				vm_page_unlock_queues();
2245				return;
2246			}
2247
2248			p = vm_page_lookup(object, pindex);
2249			vm_page_lock_queues();
2250			vm_page_wakeup(p);
2251		}
2252		vm_page_unlock_queues();
2253
2254		ptepa = VM_PAGE_TO_PHYS(p);
2255		if (ptepa & (NBPDR - 1))
2256			return;
2257
2258		p->valid = VM_PAGE_BITS_ALL;
2259
2260		PMAP_LOCK(pmap);
2261		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2262		npdes = size >> PDRSHIFT;
2263		for(i = 0; i < npdes; i++) {
2264			pde_store(&pmap->pm_pdir[ptepindex],
2265			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2266			ptepa += NBPDR;
2267			ptepindex += 1;
2268		}
2269		pmap_invalidate_all(pmap);
2270out:
2271		PMAP_UNLOCK(pmap);
2272	}
2273}
2274
2275/*
2276 *	Routine:	pmap_change_wiring
2277 *	Function:	Change the wiring attribute for a map/virtual-address
2278 *			pair.
2279 *	In/out conditions:
2280 *			The mapping must already exist in the pmap.
2281 */
2282void
2283pmap_change_wiring(pmap, va, wired)
2284	register pmap_t pmap;
2285	vm_offset_t va;
2286	boolean_t wired;
2287{
2288	register pt_entry_t *pte;
2289
2290	PMAP_LOCK(pmap);
2291	pte = pmap_pte(pmap, va);
2292
2293	if (wired && !pmap_pte_w(pte))
2294		pmap->pm_stats.wired_count++;
2295	else if (!wired && pmap_pte_w(pte))
2296		pmap->pm_stats.wired_count--;
2297
2298	/*
2299	 * Wiring is not a hardware characteristic so there is no need to
2300	 * invalidate TLB.
2301	 */
2302	pmap_pte_set_w(pte, wired);
2303	pmap_pte_release(pte);
2304	PMAP_UNLOCK(pmap);
2305}
2306
2307
2308
2309/*
2310 *	Copy the range specified by src_addr/len
2311 *	from the source map to the range dst_addr/len
2312 *	in the destination map.
2313 *
2314 *	This routine is only advisory and need not do anything.
2315 */
2316
2317void
2318pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2319	  vm_offset_t src_addr)
2320{
2321	vm_offset_t addr;
2322	vm_offset_t end_addr = src_addr + len;
2323	vm_offset_t pdnxt;
2324	vm_page_t m;
2325
2326	if (dst_addr != src_addr)
2327		return;
2328
2329	if (!pmap_is_current(src_pmap))
2330		return;
2331
2332	vm_page_lock_queues();
2333	if (dst_pmap < src_pmap) {
2334		PMAP_LOCK(dst_pmap);
2335		PMAP_LOCK(src_pmap);
2336	} else {
2337		PMAP_LOCK(src_pmap);
2338		PMAP_LOCK(dst_pmap);
2339	}
2340	sched_pin();
2341	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2342		pt_entry_t *src_pte, *dst_pte;
2343		vm_page_t dstmpte, srcmpte;
2344		pd_entry_t srcptepaddr;
2345		unsigned ptepindex;
2346
2347		if (addr >= UPT_MIN_ADDRESS)
2348			panic("pmap_copy: invalid to pmap_copy page tables");
2349
2350		/*
2351		 * Don't let optional prefaulting of pages make us go
2352		 * way below the low water mark of free pages or way
2353		 * above high water mark of used pv entries.
2354		 */
2355		if (cnt.v_free_count < cnt.v_free_reserved ||
2356		    pv_entry_count > pv_entry_high_water)
2357			break;
2358
2359		pdnxt = (addr + NBPDR) & ~PDRMASK;
2360		ptepindex = addr >> PDRSHIFT;
2361
2362		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2363		if (srcptepaddr == 0)
2364			continue;
2365
2366		if (srcptepaddr & PG_PS) {
2367			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2368				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2369				dst_pmap->pm_stats.resident_count +=
2370				    NBPDR / PAGE_SIZE;
2371			}
2372			continue;
2373		}
2374
2375		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2376		if (srcmpte->wire_count == 0)
2377			panic("pmap_copy: source page table page is unused");
2378
2379		if (pdnxt > end_addr)
2380			pdnxt = end_addr;
2381
2382		src_pte = vtopte(addr);
2383		while (addr < pdnxt) {
2384			pt_entry_t ptetemp;
2385			ptetemp = *src_pte;
2386			/*
2387			 * we only virtual copy managed pages
2388			 */
2389			if ((ptetemp & PG_MANAGED) != 0) {
2390				/*
2391				 * We have to check after allocpte for the
2392				 * pte still being around...  allocpte can
2393				 * block.
2394				 */
2395				dstmpte = pmap_allocpte(dst_pmap, addr,
2396				    M_NOWAIT);
2397				if (dstmpte == NULL)
2398					break;
2399				dst_pte = pmap_pte_quick(dst_pmap, addr);
2400				if (*dst_pte == 0) {
2401					/*
2402					 * Clear the modified and
2403					 * accessed (referenced) bits
2404					 * during the copy.
2405					 */
2406					m = PHYS_TO_VM_PAGE(ptetemp);
2407					*dst_pte = ptetemp & ~(PG_M | PG_A);
2408					dst_pmap->pm_stats.resident_count++;
2409					pmap_insert_entry(dst_pmap, addr, m);
2410	 			} else
2411					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2412				if (dstmpte->wire_count >= srcmpte->wire_count)
2413					break;
2414			}
2415			addr += PAGE_SIZE;
2416			src_pte++;
2417		}
2418	}
2419	sched_unpin();
2420	vm_page_unlock_queues();
2421	PMAP_UNLOCK(src_pmap);
2422	PMAP_UNLOCK(dst_pmap);
2423}
2424
2425static __inline void
2426pagezero(void *page)
2427{
2428#if defined(I686_CPU)
2429	if (cpu_class == CPUCLASS_686) {
2430#if defined(CPU_ENABLE_SSE)
2431		if (cpu_feature & CPUID_SSE2)
2432			sse2_pagezero(page);
2433		else
2434#endif
2435			i686_pagezero(page);
2436	} else
2437#endif
2438		bzero(page, PAGE_SIZE);
2439}
2440
2441/*
2442 *	pmap_zero_page zeros the specified hardware page by mapping
2443 *	the page into KVM and using bzero to clear its contents.
2444 */
2445void
2446pmap_zero_page(vm_page_t m)
2447{
2448	struct sysmaps *sysmaps;
2449
2450	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2451	mtx_lock(&sysmaps->lock);
2452	if (*sysmaps->CMAP2)
2453		panic("pmap_zero_page: CMAP2 busy");
2454	sched_pin();
2455	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2456	invlcaddr(sysmaps->CADDR2);
2457	pagezero(sysmaps->CADDR2);
2458	*sysmaps->CMAP2 = 0;
2459	sched_unpin();
2460	mtx_unlock(&sysmaps->lock);
2461}
2462
2463/*
2464 *	pmap_zero_page_area zeros the specified hardware page by mapping
2465 *	the page into KVM and using bzero to clear its contents.
2466 *
2467 *	off and size may not cover an area beyond a single hardware page.
2468 */
2469void
2470pmap_zero_page_area(vm_page_t m, int off, int size)
2471{
2472	struct sysmaps *sysmaps;
2473
2474	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2475	mtx_lock(&sysmaps->lock);
2476	if (*sysmaps->CMAP2)
2477		panic("pmap_zero_page: CMAP2 busy");
2478	sched_pin();
2479	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2480	invlcaddr(sysmaps->CADDR2);
2481	if (off == 0 && size == PAGE_SIZE)
2482		pagezero(sysmaps->CADDR2);
2483	else
2484		bzero((char *)sysmaps->CADDR2 + off, size);
2485	*sysmaps->CMAP2 = 0;
2486	sched_unpin();
2487	mtx_unlock(&sysmaps->lock);
2488}
2489
2490/*
2491 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2492 *	the page into KVM and using bzero to clear its contents.  This
2493 *	is intended to be called from the vm_pagezero process only and
2494 *	outside of Giant.
2495 */
2496void
2497pmap_zero_page_idle(vm_page_t m)
2498{
2499
2500	if (*CMAP3)
2501		panic("pmap_zero_page: CMAP3 busy");
2502	sched_pin();
2503	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2504	invlcaddr(CADDR3);
2505	pagezero(CADDR3);
2506	*CMAP3 = 0;
2507	sched_unpin();
2508}
2509
2510/*
2511 *	pmap_copy_page copies the specified (machine independent)
2512 *	page by mapping the page into virtual memory and using
2513 *	bcopy to copy the page, one machine dependent page at a
2514 *	time.
2515 */
2516void
2517pmap_copy_page(vm_page_t src, vm_page_t dst)
2518{
2519	struct sysmaps *sysmaps;
2520
2521	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2522	mtx_lock(&sysmaps->lock);
2523	if (*sysmaps->CMAP1)
2524		panic("pmap_copy_page: CMAP1 busy");
2525	if (*sysmaps->CMAP2)
2526		panic("pmap_copy_page: CMAP2 busy");
2527	sched_pin();
2528	invlpg((u_int)sysmaps->CADDR1);
2529	invlpg((u_int)sysmaps->CADDR2);
2530	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2531	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2532	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2533	*sysmaps->CMAP1 = 0;
2534	*sysmaps->CMAP2 = 0;
2535	sched_unpin();
2536	mtx_unlock(&sysmaps->lock);
2537}
2538
2539/*
2540 * Returns true if the pmap's pv is one of the first
2541 * 16 pvs linked to from this page.  This count may
2542 * be changed upwards or downwards in the future; it
2543 * is only necessary that true be returned for a small
2544 * subset of pmaps for proper page aging.
2545 */
2546boolean_t
2547pmap_page_exists_quick(pmap, m)
2548	pmap_t pmap;
2549	vm_page_t m;
2550{
2551	pv_entry_t pv;
2552	int loops = 0;
2553
2554	if (m->flags & PG_FICTITIOUS)
2555		return FALSE;
2556
2557	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2558	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2559		if (pv->pv_pmap == pmap) {
2560			return TRUE;
2561		}
2562		loops++;
2563		if (loops >= 16)
2564			break;
2565	}
2566	return (FALSE);
2567}
2568
2569#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2570/*
2571 * Remove all pages from specified address space
2572 * this aids process exit speeds.  Also, this code
2573 * is special cased for current process only, but
2574 * can have the more generic (and slightly slower)
2575 * mode enabled.  This is much faster than pmap_remove
2576 * in the case of running down an entire address space.
2577 */
2578void
2579pmap_remove_pages(pmap, sva, eva)
2580	pmap_t pmap;
2581	vm_offset_t sva, eva;
2582{
2583	pt_entry_t *pte, tpte;
2584	vm_page_t m;
2585	pv_entry_t pv, npv;
2586
2587#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2588	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2589		printf("warning: pmap_remove_pages called with non-current pmap\n");
2590		return;
2591	}
2592#endif
2593	vm_page_lock_queues();
2594	PMAP_LOCK(pmap);
2595	sched_pin();
2596	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2597
2598		if (pv->pv_va >= eva || pv->pv_va < sva) {
2599			npv = TAILQ_NEXT(pv, pv_plist);
2600			continue;
2601		}
2602
2603#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2604		pte = vtopte(pv->pv_va);
2605#else
2606		pte = pmap_pte_quick(pmap, pv->pv_va);
2607#endif
2608		tpte = *pte;
2609
2610		if (tpte == 0) {
2611			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2612							pte, pv->pv_va);
2613			panic("bad pte");
2614		}
2615
2616/*
2617 * We cannot remove wired pages from a process' mapping at this time
2618 */
2619		if (tpte & PG_W) {
2620			npv = TAILQ_NEXT(pv, pv_plist);
2621			continue;
2622		}
2623
2624		m = PHYS_TO_VM_PAGE(tpte);
2625		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2626		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2627		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2628
2629		KASSERT(m < &vm_page_array[vm_page_array_size],
2630			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2631
2632		pmap->pm_stats.resident_count--;
2633
2634		pte_clear(pte);
2635
2636		/*
2637		 * Update the vm_page_t clean and reference bits.
2638		 */
2639		if (tpte & PG_M) {
2640			vm_page_dirty(m);
2641		}
2642
2643		npv = TAILQ_NEXT(pv, pv_plist);
2644		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2645
2646		m->md.pv_list_count--;
2647		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2648		if (TAILQ_EMPTY(&m->md.pv_list))
2649			vm_page_flag_clear(m, PG_WRITEABLE);
2650
2651		pmap_unuse_pt(pmap, pv->pv_va);
2652		free_pv_entry(pv);
2653	}
2654	sched_unpin();
2655	pmap_invalidate_all(pmap);
2656	PMAP_UNLOCK(pmap);
2657	vm_page_unlock_queues();
2658}
2659
2660/*
2661 *	pmap_is_modified:
2662 *
2663 *	Return whether or not the specified physical page was modified
2664 *	in any physical maps.
2665 */
2666boolean_t
2667pmap_is_modified(vm_page_t m)
2668{
2669	pv_entry_t pv;
2670	pt_entry_t *pte;
2671	boolean_t rv;
2672
2673	rv = FALSE;
2674	if (m->flags & PG_FICTITIOUS)
2675		return (rv);
2676
2677	sched_pin();
2678	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2679	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2680		/*
2681		 * if the bit being tested is the modified bit, then
2682		 * mark clean_map and ptes as never
2683		 * modified.
2684		 */
2685		if (!pmap_track_modified(pv->pv_va))
2686			continue;
2687		PMAP_LOCK(pv->pv_pmap);
2688		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2689		rv = (*pte & PG_M) != 0;
2690		PMAP_UNLOCK(pv->pv_pmap);
2691		if (rv)
2692			break;
2693	}
2694	sched_unpin();
2695	return (rv);
2696}
2697
2698/*
2699 *	pmap_is_prefaultable:
2700 *
2701 *	Return whether or not the specified virtual address is elgible
2702 *	for prefault.
2703 */
2704boolean_t
2705pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2706{
2707	pt_entry_t *pte;
2708	boolean_t rv;
2709
2710	rv = FALSE;
2711	PMAP_LOCK(pmap);
2712	if (*pmap_pde(pmap, addr)) {
2713		pte = vtopte(addr);
2714		rv = *pte == 0;
2715	}
2716	PMAP_UNLOCK(pmap);
2717	return (rv);
2718}
2719
2720/*
2721 *	Clear the given bit in each of the given page's ptes.  The bit is
2722 *	expressed as a 32-bit mask.  Consequently, if the pte is 64 bits in
2723 *	size, only a bit within the least significant 32 can be cleared.
2724 */
2725static __inline void
2726pmap_clear_ptes(vm_page_t m, int bit)
2727{
2728	register pv_entry_t pv;
2729	pt_entry_t pbits, *pte;
2730
2731	if ((m->flags & PG_FICTITIOUS) ||
2732	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2733		return;
2734
2735	sched_pin();
2736	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2737	/*
2738	 * Loop over all current mappings setting/clearing as appropos If
2739	 * setting RO do we need to clear the VAC?
2740	 */
2741	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2742		/*
2743		 * don't write protect pager mappings
2744		 */
2745		if (bit == PG_RW) {
2746			if (!pmap_track_modified(pv->pv_va))
2747				continue;
2748		}
2749
2750		PMAP_LOCK(pv->pv_pmap);
2751		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2752retry:
2753		pbits = *pte;
2754		if (pbits & bit) {
2755			if (bit == PG_RW) {
2756				/*
2757				 * Regardless of whether a pte is 32 or 64 bits
2758				 * in size, PG_RW and PG_M are among the least
2759				 * significant 32 bits.
2760				 */
2761				if (!atomic_cmpset_int((u_int *)pte, pbits,
2762				    pbits & ~(PG_RW | PG_M)))
2763					goto retry;
2764				if (pbits & PG_M) {
2765					vm_page_dirty(m);
2766				}
2767			} else {
2768				atomic_clear_int((u_int *)pte, bit);
2769			}
2770			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2771		}
2772		PMAP_UNLOCK(pv->pv_pmap);
2773	}
2774	if (bit == PG_RW)
2775		vm_page_flag_clear(m, PG_WRITEABLE);
2776	sched_unpin();
2777}
2778
2779/*
2780 *      pmap_page_protect:
2781 *
2782 *      Lower the permission for all mappings to a given page.
2783 */
2784void
2785pmap_page_protect(vm_page_t m, vm_prot_t prot)
2786{
2787	if ((prot & VM_PROT_WRITE) == 0) {
2788		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2789			pmap_clear_ptes(m, PG_RW);
2790		} else {
2791			pmap_remove_all(m);
2792		}
2793	}
2794}
2795
2796/*
2797 *	pmap_ts_referenced:
2798 *
2799 *	Return a count of reference bits for a page, clearing those bits.
2800 *	It is not necessary for every reference bit to be cleared, but it
2801 *	is necessary that 0 only be returned when there are truly no
2802 *	reference bits set.
2803 *
2804 *	XXX: The exact number of bits to check and clear is a matter that
2805 *	should be tested and standardized at some point in the future for
2806 *	optimal aging of shared pages.
2807 */
2808int
2809pmap_ts_referenced(vm_page_t m)
2810{
2811	register pv_entry_t pv, pvf, pvn;
2812	pt_entry_t *pte;
2813	pt_entry_t v;
2814	int rtval = 0;
2815
2816	if (m->flags & PG_FICTITIOUS)
2817		return (rtval);
2818
2819	sched_pin();
2820	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2821	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2822
2823		pvf = pv;
2824
2825		do {
2826			pvn = TAILQ_NEXT(pv, pv_list);
2827
2828			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2829
2830			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2831
2832			if (!pmap_track_modified(pv->pv_va))
2833				continue;
2834
2835			PMAP_LOCK(pv->pv_pmap);
2836			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2837
2838			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2839				atomic_clear_int((u_int *)pte, PG_A);
2840				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2841
2842				rtval++;
2843				if (rtval > 4) {
2844					PMAP_UNLOCK(pv->pv_pmap);
2845					break;
2846				}
2847			}
2848			PMAP_UNLOCK(pv->pv_pmap);
2849		} while ((pv = pvn) != NULL && pv != pvf);
2850	}
2851	sched_unpin();
2852
2853	return (rtval);
2854}
2855
2856/*
2857 *	Clear the modify bits on the specified physical page.
2858 */
2859void
2860pmap_clear_modify(vm_page_t m)
2861{
2862	pmap_clear_ptes(m, PG_M);
2863}
2864
2865/*
2866 *	pmap_clear_reference:
2867 *
2868 *	Clear the reference bit on the specified physical page.
2869 */
2870void
2871pmap_clear_reference(vm_page_t m)
2872{
2873	pmap_clear_ptes(m, PG_A);
2874}
2875
2876/*
2877 * Miscellaneous support routines follow
2878 */
2879
2880/*
2881 * Map a set of physical memory pages into the kernel virtual
2882 * address space. Return a pointer to where it is mapped. This
2883 * routine is intended to be used for mapping device memory,
2884 * NOT real memory.
2885 */
2886void *
2887pmap_mapdev(pa, size)
2888	vm_paddr_t pa;
2889	vm_size_t size;
2890{
2891	vm_offset_t va, tmpva, offset;
2892
2893	offset = pa & PAGE_MASK;
2894	size = roundup(offset + size, PAGE_SIZE);
2895	pa = pa & PG_FRAME;
2896
2897	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2898		va = KERNBASE + pa;
2899	else
2900		va = kmem_alloc_nofault(kernel_map, size);
2901	if (!va)
2902		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2903
2904	for (tmpva = va; size > 0; ) {
2905		pmap_kenter(tmpva, pa);
2906		size -= PAGE_SIZE;
2907		tmpva += PAGE_SIZE;
2908		pa += PAGE_SIZE;
2909	}
2910	pmap_invalidate_range(kernel_pmap, va, tmpva);
2911	return ((void *)(va + offset));
2912}
2913
2914void
2915pmap_unmapdev(va, size)
2916	vm_offset_t va;
2917	vm_size_t size;
2918{
2919	vm_offset_t base, offset, tmpva;
2920
2921	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2922		return;
2923	base = va & PG_FRAME;
2924	offset = va & PAGE_MASK;
2925	size = roundup(offset + size, PAGE_SIZE);
2926	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2927		pmap_kremove(tmpva);
2928	pmap_invalidate_range(kernel_pmap, va, tmpva);
2929	kmem_free(kernel_map, base, size);
2930}
2931
2932/*
2933 * perform the pmap work for mincore
2934 */
2935int
2936pmap_mincore(pmap, addr)
2937	pmap_t pmap;
2938	vm_offset_t addr;
2939{
2940	pt_entry_t *ptep, pte;
2941	vm_page_t m;
2942	int val = 0;
2943
2944	PMAP_LOCK(pmap);
2945	ptep = pmap_pte(pmap, addr);
2946	pte = (ptep != NULL) ? *ptep : 0;
2947	pmap_pte_release(ptep);
2948	PMAP_UNLOCK(pmap);
2949
2950	if (pte != 0) {
2951		vm_paddr_t pa;
2952
2953		val = MINCORE_INCORE;
2954		if ((pte & PG_MANAGED) == 0)
2955			return val;
2956
2957		pa = pte & PG_FRAME;
2958
2959		m = PHYS_TO_VM_PAGE(pa);
2960
2961		/*
2962		 * Modified by us
2963		 */
2964		if (pte & PG_M)
2965			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2966		else {
2967			/*
2968			 * Modified by someone else
2969			 */
2970			vm_page_lock_queues();
2971			if (m->dirty || pmap_is_modified(m))
2972				val |= MINCORE_MODIFIED_OTHER;
2973			vm_page_unlock_queues();
2974		}
2975		/*
2976		 * Referenced by us
2977		 */
2978		if (pte & PG_A)
2979			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2980		else {
2981			/*
2982			 * Referenced by someone else
2983			 */
2984			vm_page_lock_queues();
2985			if ((m->flags & PG_REFERENCED) ||
2986			    pmap_ts_referenced(m)) {
2987				val |= MINCORE_REFERENCED_OTHER;
2988				vm_page_flag_set(m, PG_REFERENCED);
2989			}
2990			vm_page_unlock_queues();
2991		}
2992	}
2993	return val;
2994}
2995
2996void
2997pmap_activate(struct thread *td)
2998{
2999	struct proc *p = td->td_proc;
3000	pmap_t	pmap, oldpmap;
3001	u_int32_t  cr3;
3002
3003	critical_enter();
3004	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3005	oldpmap = PCPU_GET(curpmap);
3006#if defined(SMP)
3007	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3008	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3009#else
3010	oldpmap->pm_active &= ~1;
3011	pmap->pm_active |= 1;
3012#endif
3013#ifdef PAE
3014	cr3 = vtophys(pmap->pm_pdpt);
3015#else
3016	cr3 = vtophys(pmap->pm_pdir);
3017#endif
3018	/* XXXKSE this is wrong.
3019	 * pmap_activate is for the current thread on the current cpu
3020	 */
3021	if (p->p_flag & P_SA) {
3022		/* Make sure all other cr3 entries are updated. */
3023		/* what if they are running?  XXXKSE (maybe abort them) */
3024		FOREACH_THREAD_IN_PROC(p, td) {
3025			td->td_pcb->pcb_cr3 = cr3;
3026		}
3027	} else {
3028		td->td_pcb->pcb_cr3 = cr3;
3029	}
3030	load_cr3(cr3);
3031	PCPU_SET(curpmap, pmap);
3032	critical_exit();
3033}
3034
3035vm_offset_t
3036pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3037{
3038
3039	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3040		return addr;
3041	}
3042
3043	addr = (addr + PDRMASK) & ~PDRMASK;
3044	return addr;
3045}
3046
3047
3048#if defined(PMAP_DEBUG)
3049pmap_pid_dump(int pid)
3050{
3051	pmap_t pmap;
3052	struct proc *p;
3053	int npte = 0;
3054	int index;
3055
3056	sx_slock(&allproc_lock);
3057	LIST_FOREACH(p, &allproc, p_list) {
3058		if (p->p_pid != pid)
3059			continue;
3060
3061		if (p->p_vmspace) {
3062			int i,j;
3063			index = 0;
3064			pmap = vmspace_pmap(p->p_vmspace);
3065			for (i = 0; i < NPDEPTD; i++) {
3066				pd_entry_t *pde;
3067				pt_entry_t *pte;
3068				vm_offset_t base = i << PDRSHIFT;
3069
3070				pde = &pmap->pm_pdir[i];
3071				if (pde && pmap_pde_v(pde)) {
3072					for (j = 0; j < NPTEPG; j++) {
3073						vm_offset_t va = base + (j << PAGE_SHIFT);
3074						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3075							if (index) {
3076								index = 0;
3077								printf("\n");
3078							}
3079							sx_sunlock(&allproc_lock);
3080							return npte;
3081						}
3082						pte = pmap_pte(pmap, va);
3083						if (pte && pmap_pte_v(pte)) {
3084							pt_entry_t pa;
3085							vm_page_t m;
3086							pa = *pte;
3087							m = PHYS_TO_VM_PAGE(pa);
3088							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3089								va, pa, m->hold_count, m->wire_count, m->flags);
3090							npte++;
3091							index++;
3092							if (index >= 2) {
3093								index = 0;
3094								printf("\n");
3095							} else {
3096								printf(" ");
3097							}
3098						}
3099					}
3100				}
3101			}
3102		}
3103	}
3104	sx_sunlock(&allproc_lock);
3105	return npte;
3106}
3107#endif
3108
3109#if defined(DEBUG)
3110
3111static void	pads(pmap_t pm);
3112void		pmap_pvdump(vm_offset_t pa);
3113
3114/* print address space of pmap*/
3115static void
3116pads(pm)
3117	pmap_t pm;
3118{
3119	int i, j;
3120	vm_paddr_t va;
3121	pt_entry_t *ptep;
3122
3123	if (pm == kernel_pmap)
3124		return;
3125	for (i = 0; i < NPDEPTD; i++)
3126		if (pm->pm_pdir[i])
3127			for (j = 0; j < NPTEPG; j++) {
3128				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3129				if (pm == kernel_pmap && va < KERNBASE)
3130					continue;
3131				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3132					continue;
3133				ptep = pmap_pte(pm, va);
3134				if (pmap_pte_v(ptep))
3135					printf("%x:%x ", va, *ptep);
3136			};
3137
3138}
3139
3140void
3141pmap_pvdump(pa)
3142	vm_paddr_t pa;
3143{
3144	pv_entry_t pv;
3145	vm_page_t m;
3146
3147	printf("pa %x", pa);
3148	m = PHYS_TO_VM_PAGE(pa);
3149	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3150		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3151		pads(pv->pv_pmap);
3152	}
3153	printf(" ");
3154}
3155#endif
3156