pmap.c revision 152630
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 152630 2005-11-20 06:09:49Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/lock.h>
115#include <sys/malloc.h>
116#include <sys/mman.h>
117#include <sys/msgbuf.h>
118#include <sys/mutex.h>
119#include <sys/proc.h>
120#include <sys/sx.h>
121#include <sys/vmmeter.h>
122#include <sys/sched.h>
123#include <sys/sysctl.h>
124#ifdef SMP
125#include <sys/smp.h>
126#endif
127
128#include <vm/vm.h>
129#include <vm/vm_param.h>
130#include <vm/vm_kern.h>
131#include <vm/vm_page.h>
132#include <vm/vm_map.h>
133#include <vm/vm_object.h>
134#include <vm/vm_extern.h>
135#include <vm/vm_pageout.h>
136#include <vm/vm_pager.h>
137#include <vm/uma.h>
138
139#include <machine/cpu.h>
140#include <machine/cputypes.h>
141#include <machine/md_var.h>
142#include <machine/pcb.h>
143#include <machine/specialreg.h>
144#ifdef SMP
145#include <machine/smp.h>
146#endif
147
148#ifdef XBOX
149#include <machine/xbox.h>
150#endif
151
152#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
153#define CPU_ENABLE_SSE
154#endif
155
156#ifndef PMAP_SHPGPERPROC
157#define PMAP_SHPGPERPROC 200
158#endif
159
160#if defined(DIAGNOSTIC)
161#define PMAP_DIAGNOSTIC
162#endif
163
164#if !defined(PMAP_DIAGNOSTIC)
165#define PMAP_INLINE __inline
166#else
167#define PMAP_INLINE
168#endif
169
170/*
171 * Get PDEs and PTEs for user/kernel address space
172 */
173#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
174#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
175
176#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
177#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
178#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
179#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
180#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
181
182#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
183    atomic_clear_int((u_int *)(pte), PG_W))
184#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
185
186struct pmap kernel_pmap_store;
187LIST_HEAD(pmaplist, pmap);
188static struct pmaplist allpmaps;
189static struct mtx allpmaps_lock;
190
191vm_paddr_t avail_end;	/* PA of last available physical page */
192vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
193vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
194int pgeflag = 0;		/* PG_G or-in */
195int pseflag = 0;		/* PG_PS or-in */
196
197static int nkpt;
198vm_offset_t kernel_vm_end;
199extern u_int32_t KERNend;
200
201#ifdef PAE
202static uma_zone_t pdptzone;
203#endif
204
205/*
206 * Data for the pv entry allocation mechanism
207 */
208static uma_zone_t pvzone;
209static struct vm_object pvzone_obj;
210static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
211
212/*
213 * All those kernel PT submaps that BSD is so fond of
214 */
215struct sysmaps {
216	struct	mtx lock;
217	pt_entry_t *CMAP1;
218	pt_entry_t *CMAP2;
219	caddr_t	CADDR1;
220	caddr_t	CADDR2;
221};
222static struct sysmaps sysmaps_pcpu[MAXCPU];
223pt_entry_t *CMAP1 = 0;
224static pt_entry_t *CMAP3;
225caddr_t CADDR1 = 0, ptvmmap = 0;
226static caddr_t CADDR3;
227struct msgbuf *msgbufp = 0;
228
229/*
230 * Crashdump maps.
231 */
232static caddr_t crashdumpmap;
233
234#ifdef SMP
235extern pt_entry_t *SMPpt;
236#endif
237static pt_entry_t *PMAP1 = 0, *PMAP2;
238static pt_entry_t *PADDR1 = 0, *PADDR2;
239#ifdef SMP
240static int PMAP1cpu;
241static int PMAP1changedcpu;
242SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
243	   &PMAP1changedcpu, 0,
244	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
245#endif
246static int PMAP1changed;
247SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
248	   &PMAP1changed, 0,
249	   "Number of times pmap_pte_quick changed PMAP1");
250static int PMAP1unchanged;
251SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
252	   &PMAP1unchanged, 0,
253	   "Number of times pmap_pte_quick didn't change PMAP1");
254static struct mtx PMAP2mutex;
255
256static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
257static pv_entry_t get_pv_entry(pmap_t locked_pmap);
258static void	pmap_clear_ptes(vm_page_t m, int bit);
259
260static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
261static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
262static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
263					vm_offset_t va);
264static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
265
266static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
267
268static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
269static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m);
270static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
271static void pmap_pte_release(pt_entry_t *pte);
272static int pmap_unuse_pt(pmap_t, vm_offset_t);
273static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
274#ifdef PAE
275static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
276#endif
277
278CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
279CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
280
281/*
282 * Move the kernel virtual free pointer to the next
283 * 4MB.  This is used to help improve performance
284 * by using a large (4MB) page for much of the kernel
285 * (.text, .data, .bss)
286 */
287static vm_offset_t
288pmap_kmem_choose(vm_offset_t addr)
289{
290	vm_offset_t newaddr = addr;
291
292#ifndef DISABLE_PSE
293	if (cpu_feature & CPUID_PSE)
294		newaddr = (addr + PDRMASK) & ~PDRMASK;
295#endif
296	return newaddr;
297}
298
299/*
300 *	Bootstrap the system enough to run with virtual memory.
301 *
302 *	On the i386 this is called after mapping has already been enabled
303 *	and just syncs the pmap module with what has already been done.
304 *	[We can't call it easily with mapping off since the kernel is not
305 *	mapped with PA == VA, hence we would have to relocate every address
306 *	from the linked base (virtual) address "KERNBASE" to the actual
307 *	(physical) address starting relative to 0]
308 */
309void
310pmap_bootstrap(firstaddr, loadaddr)
311	vm_paddr_t firstaddr;
312	vm_paddr_t loadaddr;
313{
314	vm_offset_t va;
315	pt_entry_t *pte, *unused;
316	struct sysmaps *sysmaps;
317	int i;
318
319	/*
320	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
321	 * large. It should instead be correctly calculated in locore.s and
322	 * not based on 'first' (which is a physical address, not a virtual
323	 * address, for the start of unused physical memory). The kernel
324	 * page tables are NOT double mapped and thus should not be included
325	 * in this calculation.
326	 */
327	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
328	virtual_avail = pmap_kmem_choose(virtual_avail);
329
330	virtual_end = VM_MAX_KERNEL_ADDRESS;
331
332	/*
333	 * Initialize the kernel pmap (which is statically allocated).
334	 */
335	PMAP_LOCK_INIT(kernel_pmap);
336	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
337#ifdef PAE
338	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
339#endif
340	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
341	TAILQ_INIT(&kernel_pmap->pm_pvlist);
342	LIST_INIT(&allpmaps);
343	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
344	mtx_lock_spin(&allpmaps_lock);
345	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
346	mtx_unlock_spin(&allpmaps_lock);
347	nkpt = NKPT;
348
349	/*
350	 * Reserve some special page table entries/VA space for temporary
351	 * mapping of pages.
352	 */
353#define	SYSMAP(c, p, v, n)	\
354	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
355
356	va = virtual_avail;
357	pte = vtopte(va);
358
359	/*
360	 * CMAP1/CMAP2 are used for zeroing and copying pages.
361	 * CMAP3 is used for the idle process page zeroing.
362	 */
363	for (i = 0; i < MAXCPU; i++) {
364		sysmaps = &sysmaps_pcpu[i];
365		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
366		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
367		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
368	}
369	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
370	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
371	*CMAP3 = 0;
372
373	/*
374	 * Crashdump maps.
375	 */
376	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
377
378	/*
379	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
380	 */
381	SYSMAP(caddr_t, unused, ptvmmap, 1)
382
383	/*
384	 * msgbufp is used to map the system message buffer.
385	 */
386	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
387
388	/*
389	 * ptemap is used for pmap_pte_quick
390	 */
391	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
392	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
393
394	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
395
396	virtual_avail = va;
397
398	*CMAP1 = 0;
399
400#ifdef XBOX
401	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
402	 * an early stadium, we cannot yet neatly map video memory ... :-(
403	 * Better fixes are very welcome! */
404	if (!arch_i386_is_xbox)
405#endif
406	for (i = 0; i < NKPT; i++)
407		PTD[i] = 0;
408
409	/* Turn on PG_G on kernel page(s) */
410	pmap_set_pg();
411}
412
413/*
414 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
415 */
416void
417pmap_set_pg(void)
418{
419	pd_entry_t pdir;
420	pt_entry_t *pte;
421	vm_offset_t va, endva;
422	int i;
423
424	if (pgeflag == 0)
425		return;
426
427	i = KERNLOAD/NBPDR;
428	endva = KERNBASE + KERNend;
429
430	if (pseflag) {
431		va = KERNBASE + KERNLOAD;
432		while (va  < endva) {
433			pdir = kernel_pmap->pm_pdir[KPTDI+i];
434			pdir |= pgeflag;
435			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
436			invltlb();	/* Play it safe, invltlb() every time */
437			i++;
438			va += NBPDR;
439		}
440	} else {
441		va = (vm_offset_t)btext;
442		while (va < endva) {
443			pte = vtopte(va);
444			if (*pte)
445				*pte |= pgeflag;
446			invltlb();	/* Play it safe, invltlb() every time */
447			va += PAGE_SIZE;
448		}
449	}
450}
451
452/*
453 * Initialize a vm_page's machine-dependent fields.
454 */
455void
456pmap_page_init(vm_page_t m)
457{
458
459	TAILQ_INIT(&m->md.pv_list);
460	m->md.pv_list_count = 0;
461}
462
463#ifdef PAE
464
465static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
466
467static void *
468pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
469{
470	*flags = UMA_SLAB_PRIV;
471	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
472	    1, 0));
473}
474#endif
475
476/*
477 *	Initialize the pmap module.
478 *	Called by vm_init, to initialize any structures that the pmap
479 *	system needs to map virtual memory.
480 */
481void
482pmap_init(void)
483{
484	int shpgperproc = PMAP_SHPGPERPROC;
485
486	/*
487	 * Initialize the address space (zone) for the pv entries.  Set a
488	 * high water mark so that the system can recover from excessive
489	 * numbers of pv entries.
490	 */
491	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
492	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
493	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
494	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
495	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
496	pv_entry_high_water = 9 * (pv_entry_max / 10);
497	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
498
499#ifdef PAE
500	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
501	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
502	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
503	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
504#endif
505}
506
507
508/***************************************************
509 * Low level helper routines.....
510 ***************************************************/
511
512
513/*
514 * this routine defines the region(s) of memory that should
515 * not be tested for the modified bit.
516 */
517static PMAP_INLINE int
518pmap_track_modified(vm_offset_t va)
519{
520	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
521		return 1;
522	else
523		return 0;
524}
525
526#ifdef SMP
527/*
528 * For SMP, these functions have to use the IPI mechanism for coherence.
529 */
530void
531pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
532{
533	u_int cpumask;
534	u_int other_cpus;
535
536	if (smp_started) {
537		if (!(read_eflags() & PSL_I))
538			panic("%s: interrupts disabled", __func__);
539		mtx_lock_spin(&smp_ipi_mtx);
540	} else
541		critical_enter();
542	/*
543	 * We need to disable interrupt preemption but MUST NOT have
544	 * interrupts disabled here.
545	 * XXX we may need to hold schedlock to get a coherent pm_active
546	 * XXX critical sections disable interrupts again
547	 */
548	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
549		invlpg(va);
550		smp_invlpg(va);
551	} else {
552		cpumask = PCPU_GET(cpumask);
553		other_cpus = PCPU_GET(other_cpus);
554		if (pmap->pm_active & cpumask)
555			invlpg(va);
556		if (pmap->pm_active & other_cpus)
557			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
558	}
559	if (smp_started)
560		mtx_unlock_spin(&smp_ipi_mtx);
561	else
562		critical_exit();
563}
564
565void
566pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
567{
568	u_int cpumask;
569	u_int other_cpus;
570	vm_offset_t addr;
571
572	if (smp_started) {
573		if (!(read_eflags() & PSL_I))
574			panic("%s: interrupts disabled", __func__);
575		mtx_lock_spin(&smp_ipi_mtx);
576	} else
577		critical_enter();
578	/*
579	 * We need to disable interrupt preemption but MUST NOT have
580	 * interrupts disabled here.
581	 * XXX we may need to hold schedlock to get a coherent pm_active
582	 * XXX critical sections disable interrupts again
583	 */
584	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
585		for (addr = sva; addr < eva; addr += PAGE_SIZE)
586			invlpg(addr);
587		smp_invlpg_range(sva, eva);
588	} else {
589		cpumask = PCPU_GET(cpumask);
590		other_cpus = PCPU_GET(other_cpus);
591		if (pmap->pm_active & cpumask)
592			for (addr = sva; addr < eva; addr += PAGE_SIZE)
593				invlpg(addr);
594		if (pmap->pm_active & other_cpus)
595			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
596			    sva, eva);
597	}
598	if (smp_started)
599		mtx_unlock_spin(&smp_ipi_mtx);
600	else
601		critical_exit();
602}
603
604void
605pmap_invalidate_all(pmap_t pmap)
606{
607	u_int cpumask;
608	u_int other_cpus;
609
610	if (smp_started) {
611		if (!(read_eflags() & PSL_I))
612			panic("%s: interrupts disabled", __func__);
613		mtx_lock_spin(&smp_ipi_mtx);
614	} else
615		critical_enter();
616	/*
617	 * We need to disable interrupt preemption but MUST NOT have
618	 * interrupts disabled here.
619	 * XXX we may need to hold schedlock to get a coherent pm_active
620	 * XXX critical sections disable interrupts again
621	 */
622	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
623		invltlb();
624		smp_invltlb();
625	} else {
626		cpumask = PCPU_GET(cpumask);
627		other_cpus = PCPU_GET(other_cpus);
628		if (pmap->pm_active & cpumask)
629			invltlb();
630		if (pmap->pm_active & other_cpus)
631			smp_masked_invltlb(pmap->pm_active & other_cpus);
632	}
633	if (smp_started)
634		mtx_unlock_spin(&smp_ipi_mtx);
635	else
636		critical_exit();
637}
638#else /* !SMP */
639/*
640 * Normal, non-SMP, 486+ invalidation functions.
641 * We inline these within pmap.c for speed.
642 */
643PMAP_INLINE void
644pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
645{
646
647	if (pmap == kernel_pmap || pmap->pm_active)
648		invlpg(va);
649}
650
651PMAP_INLINE void
652pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
653{
654	vm_offset_t addr;
655
656	if (pmap == kernel_pmap || pmap->pm_active)
657		for (addr = sva; addr < eva; addr += PAGE_SIZE)
658			invlpg(addr);
659}
660
661PMAP_INLINE void
662pmap_invalidate_all(pmap_t pmap)
663{
664
665	if (pmap == kernel_pmap || pmap->pm_active)
666		invltlb();
667}
668#endif /* !SMP */
669
670/*
671 * Are we current address space or kernel?  N.B. We return FALSE when
672 * a pmap's page table is in use because a kernel thread is borrowing
673 * it.  The borrowed page table can change spontaneously, making any
674 * dependence on its continued use subject to a race condition.
675 */
676static __inline int
677pmap_is_current(pmap_t pmap)
678{
679
680	return (pmap == kernel_pmap ||
681		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
682	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
683}
684
685/*
686 * If the given pmap is not the current or kernel pmap, the returned pte must
687 * be released by passing it to pmap_pte_release().
688 */
689pt_entry_t *
690pmap_pte(pmap_t pmap, vm_offset_t va)
691{
692	pd_entry_t newpf;
693	pd_entry_t *pde;
694
695	pde = pmap_pde(pmap, va);
696	if (*pde & PG_PS)
697		return (pde);
698	if (*pde != 0) {
699		/* are we current address space or kernel? */
700		if (pmap_is_current(pmap))
701			return (vtopte(va));
702		mtx_lock(&PMAP2mutex);
703		newpf = *pde & PG_FRAME;
704		if ((*PMAP2 & PG_FRAME) != newpf) {
705			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
706			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
707		}
708		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
709	}
710	return (0);
711}
712
713/*
714 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
715 * being NULL.
716 */
717static __inline void
718pmap_pte_release(pt_entry_t *pte)
719{
720
721	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
722		mtx_unlock(&PMAP2mutex);
723}
724
725static __inline void
726invlcaddr(void *caddr)
727{
728
729	invlpg((u_int)caddr);
730}
731
732/*
733 * Super fast pmap_pte routine best used when scanning
734 * the pv lists.  This eliminates many coarse-grained
735 * invltlb calls.  Note that many of the pv list
736 * scans are across different pmaps.  It is very wasteful
737 * to do an entire invltlb for checking a single mapping.
738 *
739 * If the given pmap is not the current pmap, vm_page_queue_mtx
740 * must be held and curthread pinned to a CPU.
741 */
742static pt_entry_t *
743pmap_pte_quick(pmap_t pmap, vm_offset_t va)
744{
745	pd_entry_t newpf;
746	pd_entry_t *pde;
747
748	pde = pmap_pde(pmap, va);
749	if (*pde & PG_PS)
750		return (pde);
751	if (*pde != 0) {
752		/* are we current address space or kernel? */
753		if (pmap_is_current(pmap))
754			return (vtopte(va));
755		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
756		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
757		newpf = *pde & PG_FRAME;
758		if ((*PMAP1 & PG_FRAME) != newpf) {
759			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
760#ifdef SMP
761			PMAP1cpu = PCPU_GET(cpuid);
762#endif
763			invlcaddr(PADDR1);
764			PMAP1changed++;
765		} else
766#ifdef SMP
767		if (PMAP1cpu != PCPU_GET(cpuid)) {
768			PMAP1cpu = PCPU_GET(cpuid);
769			invlcaddr(PADDR1);
770			PMAP1changedcpu++;
771		} else
772#endif
773			PMAP1unchanged++;
774		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
775	}
776	return (0);
777}
778
779/*
780 *	Routine:	pmap_extract
781 *	Function:
782 *		Extract the physical page address associated
783 *		with the given map/virtual_address pair.
784 */
785vm_paddr_t
786pmap_extract(pmap_t pmap, vm_offset_t va)
787{
788	vm_paddr_t rtval;
789	pt_entry_t *pte;
790	pd_entry_t pde;
791
792	rtval = 0;
793	PMAP_LOCK(pmap);
794	pde = pmap->pm_pdir[va >> PDRSHIFT];
795	if (pde != 0) {
796		if ((pde & PG_PS) != 0) {
797			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
798			PMAP_UNLOCK(pmap);
799			return rtval;
800		}
801		pte = pmap_pte(pmap, va);
802		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
803		pmap_pte_release(pte);
804	}
805	PMAP_UNLOCK(pmap);
806	return (rtval);
807}
808
809/*
810 *	Routine:	pmap_extract_and_hold
811 *	Function:
812 *		Atomically extract and hold the physical page
813 *		with the given pmap and virtual address pair
814 *		if that mapping permits the given protection.
815 */
816vm_page_t
817pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
818{
819	pd_entry_t pde;
820	pt_entry_t pte;
821	vm_page_t m;
822
823	m = NULL;
824	vm_page_lock_queues();
825	PMAP_LOCK(pmap);
826	pde = *pmap_pde(pmap, va);
827	if (pde != 0) {
828		if (pde & PG_PS) {
829			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
830				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
831				    (va & PDRMASK));
832				vm_page_hold(m);
833			}
834		} else {
835			sched_pin();
836			pte = *pmap_pte_quick(pmap, va);
837			if (pte != 0 &&
838			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
839				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
840				vm_page_hold(m);
841			}
842			sched_unpin();
843		}
844	}
845	vm_page_unlock_queues();
846	PMAP_UNLOCK(pmap);
847	return (m);
848}
849
850/***************************************************
851 * Low level mapping routines.....
852 ***************************************************/
853
854/*
855 * Add a wired page to the kva.
856 * Note: not SMP coherent.
857 */
858PMAP_INLINE void
859pmap_kenter(vm_offset_t va, vm_paddr_t pa)
860{
861	pt_entry_t *pte;
862
863	pte = vtopte(va);
864	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
865}
866
867/*
868 * Remove a page from the kernel pagetables.
869 * Note: not SMP coherent.
870 */
871PMAP_INLINE void
872pmap_kremove(vm_offset_t va)
873{
874	pt_entry_t *pte;
875
876	pte = vtopte(va);
877	pte_clear(pte);
878}
879
880/*
881 *	Used to map a range of physical addresses into kernel
882 *	virtual address space.
883 *
884 *	The value passed in '*virt' is a suggested virtual address for
885 *	the mapping. Architectures which can support a direct-mapped
886 *	physical to virtual region can return the appropriate address
887 *	within that region, leaving '*virt' unchanged. Other
888 *	architectures should map the pages starting at '*virt' and
889 *	update '*virt' with the first usable address after the mapped
890 *	region.
891 */
892vm_offset_t
893pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
894{
895	vm_offset_t va, sva;
896
897	va = sva = *virt;
898	while (start < end) {
899		pmap_kenter(va, start);
900		va += PAGE_SIZE;
901		start += PAGE_SIZE;
902	}
903	pmap_invalidate_range(kernel_pmap, sva, va);
904	*virt = va;
905	return (sva);
906}
907
908
909/*
910 * Add a list of wired pages to the kva
911 * this routine is only used for temporary
912 * kernel mappings that do not need to have
913 * page modification or references recorded.
914 * Note that old mappings are simply written
915 * over.  The page *must* be wired.
916 * Note: SMP coherent.  Uses a ranged shootdown IPI.
917 */
918void
919pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
920{
921	vm_offset_t va;
922
923	va = sva;
924	while (count-- > 0) {
925		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
926		va += PAGE_SIZE;
927		m++;
928	}
929	pmap_invalidate_range(kernel_pmap, sva, va);
930}
931
932/*
933 * This routine tears out page mappings from the
934 * kernel -- it is meant only for temporary mappings.
935 * Note: SMP coherent.  Uses a ranged shootdown IPI.
936 */
937void
938pmap_qremove(vm_offset_t sva, int count)
939{
940	vm_offset_t va;
941
942	va = sva;
943	while (count-- > 0) {
944		pmap_kremove(va);
945		va += PAGE_SIZE;
946	}
947	pmap_invalidate_range(kernel_pmap, sva, va);
948}
949
950/***************************************************
951 * Page table page management routines.....
952 ***************************************************/
953
954/*
955 * This routine unholds page table pages, and if the hold count
956 * drops to zero, then it decrements the wire count.
957 */
958static PMAP_INLINE int
959pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
960{
961
962	--m->wire_count;
963	if (m->wire_count == 0)
964		return _pmap_unwire_pte_hold(pmap, m);
965	else
966		return 0;
967}
968
969static int
970_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
971{
972	vm_offset_t pteva;
973
974	/*
975	 * unmap the page table page
976	 */
977	pmap->pm_pdir[m->pindex] = 0;
978	--pmap->pm_stats.resident_count;
979
980	/*
981	 * Do an invltlb to make the invalidated mapping
982	 * take effect immediately.
983	 */
984	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
985	pmap_invalidate_page(pmap, pteva);
986
987	vm_page_free_zero(m);
988	atomic_subtract_int(&cnt.v_wire_count, 1);
989	return 1;
990}
991
992/*
993 * After removing a page table entry, this routine is used to
994 * conditionally free the page, and manage the hold/wire counts.
995 */
996static int
997pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
998{
999	pd_entry_t ptepde;
1000	vm_page_t mpte;
1001
1002	if (va >= VM_MAXUSER_ADDRESS)
1003		return 0;
1004	ptepde = *pmap_pde(pmap, va);
1005	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1006	return pmap_unwire_pte_hold(pmap, mpte);
1007}
1008
1009void
1010pmap_pinit0(pmap)
1011	struct pmap *pmap;
1012{
1013
1014	PMAP_LOCK_INIT(pmap);
1015	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1016#ifdef PAE
1017	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1018#endif
1019	pmap->pm_active = 0;
1020	PCPU_SET(curpmap, pmap);
1021	TAILQ_INIT(&pmap->pm_pvlist);
1022	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1023	mtx_lock_spin(&allpmaps_lock);
1024	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1025	mtx_unlock_spin(&allpmaps_lock);
1026}
1027
1028/*
1029 * Initialize a preallocated and zeroed pmap structure,
1030 * such as one in a vmspace structure.
1031 */
1032void
1033pmap_pinit(pmap)
1034	register struct pmap *pmap;
1035{
1036	vm_page_t m, ptdpg[NPGPTD];
1037	vm_paddr_t pa;
1038	static int color;
1039	int i;
1040
1041	PMAP_LOCK_INIT(pmap);
1042
1043	/*
1044	 * No need to allocate page table space yet but we do need a valid
1045	 * page directory table.
1046	 */
1047	if (pmap->pm_pdir == NULL) {
1048		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1049		    NBPTD);
1050#ifdef PAE
1051		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1052		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1053		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1054		    ("pmap_pinit: pdpt misaligned"));
1055		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1056		    ("pmap_pinit: pdpt above 4g"));
1057#endif
1058	}
1059
1060	/*
1061	 * allocate the page directory page(s)
1062	 */
1063	for (i = 0; i < NPGPTD;) {
1064		m = vm_page_alloc(NULL, color++,
1065		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1066		    VM_ALLOC_ZERO);
1067		if (m == NULL)
1068			VM_WAIT;
1069		else {
1070			ptdpg[i++] = m;
1071		}
1072	}
1073
1074	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1075
1076	for (i = 0; i < NPGPTD; i++) {
1077		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1078			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1079	}
1080
1081	mtx_lock_spin(&allpmaps_lock);
1082	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1083	mtx_unlock_spin(&allpmaps_lock);
1084	/* Wire in kernel global address entries. */
1085	/* XXX copies current process, does not fill in MPPTDI */
1086	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1087#ifdef SMP
1088	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1089#endif
1090
1091	/* install self-referential address mapping entry(s) */
1092	for (i = 0; i < NPGPTD; i++) {
1093		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1094		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1095#ifdef PAE
1096		pmap->pm_pdpt[i] = pa | PG_V;
1097#endif
1098	}
1099
1100	pmap->pm_active = 0;
1101	TAILQ_INIT(&pmap->pm_pvlist);
1102	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1103}
1104
1105/*
1106 * this routine is called if the page table page is not
1107 * mapped correctly.
1108 */
1109static vm_page_t
1110_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1111{
1112	vm_paddr_t ptepa;
1113	vm_page_t m;
1114
1115	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1116	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1117	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1118
1119	/*
1120	 * Allocate a page table page.
1121	 */
1122	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1123	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1124		if (flags & M_WAITOK) {
1125			PMAP_UNLOCK(pmap);
1126			vm_page_unlock_queues();
1127			VM_WAIT;
1128			vm_page_lock_queues();
1129			PMAP_LOCK(pmap);
1130		}
1131
1132		/*
1133		 * Indicate the need to retry.  While waiting, the page table
1134		 * page may have been allocated.
1135		 */
1136		return (NULL);
1137	}
1138	if ((m->flags & PG_ZERO) == 0)
1139		pmap_zero_page(m);
1140
1141	/*
1142	 * Map the pagetable page into the process address space, if
1143	 * it isn't already there.
1144	 */
1145
1146	pmap->pm_stats.resident_count++;
1147
1148	ptepa = VM_PAGE_TO_PHYS(m);
1149	pmap->pm_pdir[ptepindex] =
1150		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1151
1152	return m;
1153}
1154
1155static vm_page_t
1156pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1157{
1158	unsigned ptepindex;
1159	pd_entry_t ptepa;
1160	vm_page_t m;
1161
1162	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1163	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1164	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1165
1166	/*
1167	 * Calculate pagetable page index
1168	 */
1169	ptepindex = va >> PDRSHIFT;
1170retry:
1171	/*
1172	 * Get the page directory entry
1173	 */
1174	ptepa = pmap->pm_pdir[ptepindex];
1175
1176	/*
1177	 * This supports switching from a 4MB page to a
1178	 * normal 4K page.
1179	 */
1180	if (ptepa & PG_PS) {
1181		pmap->pm_pdir[ptepindex] = 0;
1182		ptepa = 0;
1183		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1184		pmap_invalidate_all(kernel_pmap);
1185	}
1186
1187	/*
1188	 * If the page table page is mapped, we just increment the
1189	 * hold count, and activate it.
1190	 */
1191	if (ptepa) {
1192		m = PHYS_TO_VM_PAGE(ptepa);
1193		m->wire_count++;
1194	} else {
1195		/*
1196		 * Here if the pte page isn't mapped, or if it has
1197		 * been deallocated.
1198		 */
1199		m = _pmap_allocpte(pmap, ptepindex, flags);
1200		if (m == NULL && (flags & M_WAITOK))
1201			goto retry;
1202	}
1203	return (m);
1204}
1205
1206
1207/***************************************************
1208* Pmap allocation/deallocation routines.
1209 ***************************************************/
1210
1211#ifdef SMP
1212/*
1213 * Deal with a SMP shootdown of other users of the pmap that we are
1214 * trying to dispose of.  This can be a bit hairy.
1215 */
1216static u_int *lazymask;
1217static u_int lazyptd;
1218static volatile u_int lazywait;
1219
1220void pmap_lazyfix_action(void);
1221
1222void
1223pmap_lazyfix_action(void)
1224{
1225	u_int mymask = PCPU_GET(cpumask);
1226
1227	if (rcr3() == lazyptd)
1228		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1229	atomic_clear_int(lazymask, mymask);
1230	atomic_store_rel_int(&lazywait, 1);
1231}
1232
1233static void
1234pmap_lazyfix_self(u_int mymask)
1235{
1236
1237	if (rcr3() == lazyptd)
1238		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1239	atomic_clear_int(lazymask, mymask);
1240}
1241
1242
1243static void
1244pmap_lazyfix(pmap_t pmap)
1245{
1246	u_int mymask;
1247	u_int mask;
1248	register u_int spins;
1249
1250	while ((mask = pmap->pm_active) != 0) {
1251		spins = 50000000;
1252		mask = mask & -mask;	/* Find least significant set bit */
1253		mtx_lock_spin(&smp_ipi_mtx);
1254#ifdef PAE
1255		lazyptd = vtophys(pmap->pm_pdpt);
1256#else
1257		lazyptd = vtophys(pmap->pm_pdir);
1258#endif
1259		mymask = PCPU_GET(cpumask);
1260		if (mask == mymask) {
1261			lazymask = &pmap->pm_active;
1262			pmap_lazyfix_self(mymask);
1263		} else {
1264			atomic_store_rel_int((u_int *)&lazymask,
1265			    (u_int)&pmap->pm_active);
1266			atomic_store_rel_int(&lazywait, 0);
1267			ipi_selected(mask, IPI_LAZYPMAP);
1268			while (lazywait == 0) {
1269				ia32_pause();
1270				if (--spins == 0)
1271					break;
1272			}
1273		}
1274		mtx_unlock_spin(&smp_ipi_mtx);
1275		if (spins == 0)
1276			printf("pmap_lazyfix: spun for 50000000\n");
1277	}
1278}
1279
1280#else	/* SMP */
1281
1282/*
1283 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1284 * unlikely to have to even execute this code, including the fact
1285 * that the cleanup is deferred until the parent does a wait(2), which
1286 * means that another userland process has run.
1287 */
1288static void
1289pmap_lazyfix(pmap_t pmap)
1290{
1291	u_int cr3;
1292
1293	cr3 = vtophys(pmap->pm_pdir);
1294	if (cr3 == rcr3()) {
1295		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1296		pmap->pm_active &= ~(PCPU_GET(cpumask));
1297	}
1298}
1299#endif	/* SMP */
1300
1301/*
1302 * Release any resources held by the given physical map.
1303 * Called when a pmap initialized by pmap_pinit is being released.
1304 * Should only be called if the map contains no valid mappings.
1305 */
1306void
1307pmap_release(pmap_t pmap)
1308{
1309	vm_page_t m, ptdpg[NPGPTD];
1310	int i;
1311
1312	KASSERT(pmap->pm_stats.resident_count == 0,
1313	    ("pmap_release: pmap resident count %ld != 0",
1314	    pmap->pm_stats.resident_count));
1315
1316	pmap_lazyfix(pmap);
1317	mtx_lock_spin(&allpmaps_lock);
1318	LIST_REMOVE(pmap, pm_list);
1319	mtx_unlock_spin(&allpmaps_lock);
1320
1321	for (i = 0; i < NPGPTD; i++)
1322		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1323
1324	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1325	    sizeof(*pmap->pm_pdir));
1326#ifdef SMP
1327	pmap->pm_pdir[MPPTDI] = 0;
1328#endif
1329
1330	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1331
1332	vm_page_lock_queues();
1333	for (i = 0; i < NPGPTD; i++) {
1334		m = ptdpg[i];
1335#ifdef PAE
1336		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1337		    ("pmap_release: got wrong ptd page"));
1338#endif
1339		m->wire_count--;
1340		atomic_subtract_int(&cnt.v_wire_count, 1);
1341		vm_page_free_zero(m);
1342	}
1343	vm_page_unlock_queues();
1344	PMAP_LOCK_DESTROY(pmap);
1345}
1346
1347static int
1348kvm_size(SYSCTL_HANDLER_ARGS)
1349{
1350	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1351
1352	return sysctl_handle_long(oidp, &ksize, 0, req);
1353}
1354SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1355    0, 0, kvm_size, "IU", "Size of KVM");
1356
1357static int
1358kvm_free(SYSCTL_HANDLER_ARGS)
1359{
1360	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1361
1362	return sysctl_handle_long(oidp, &kfree, 0, req);
1363}
1364SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1365    0, 0, kvm_free, "IU", "Amount of KVM free");
1366
1367/*
1368 * grow the number of kernel page table entries, if needed
1369 */
1370void
1371pmap_growkernel(vm_offset_t addr)
1372{
1373	struct pmap *pmap;
1374	vm_paddr_t ptppaddr;
1375	vm_page_t nkpg;
1376	pd_entry_t newpdir;
1377	pt_entry_t *pde;
1378
1379	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1380	if (kernel_vm_end == 0) {
1381		kernel_vm_end = KERNBASE;
1382		nkpt = 0;
1383		while (pdir_pde(PTD, kernel_vm_end)) {
1384			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1385			nkpt++;
1386		}
1387	}
1388	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1389	while (kernel_vm_end < addr) {
1390		if (pdir_pde(PTD, kernel_vm_end)) {
1391			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1392			continue;
1393		}
1394
1395		/*
1396		 * This index is bogus, but out of the way
1397		 */
1398		nkpg = vm_page_alloc(NULL, nkpt,
1399		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1400		if (!nkpg)
1401			panic("pmap_growkernel: no memory to grow kernel");
1402
1403		nkpt++;
1404
1405		pmap_zero_page(nkpg);
1406		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1407		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1408		pdir_pde(PTD, kernel_vm_end) = newpdir;
1409
1410		mtx_lock_spin(&allpmaps_lock);
1411		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1412			pde = pmap_pde(pmap, kernel_vm_end);
1413			pde_store(pde, newpdir);
1414		}
1415		mtx_unlock_spin(&allpmaps_lock);
1416		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1417	}
1418}
1419
1420
1421/***************************************************
1422 * page management routines.
1423 ***************************************************/
1424
1425/*
1426 * free the pv_entry back to the free list
1427 */
1428static PMAP_INLINE void
1429free_pv_entry(pv_entry_t pv)
1430{
1431	pv_entry_count--;
1432	uma_zfree(pvzone, pv);
1433}
1434
1435/*
1436 * get a new pv_entry, allocating a block from the system
1437 * when needed.
1438 */
1439static pv_entry_t
1440get_pv_entry(pmap_t locked_pmap)
1441{
1442	static const struct timeval printinterval = { 60, 0 };
1443	static struct timeval lastprint;
1444	struct vpgqueues *vpq;
1445	pmap_t pmap;
1446	pt_entry_t *pte, tpte;
1447	pv_entry_t allocated_pv, next_pv, pv;
1448	vm_offset_t va;
1449	vm_page_t m;
1450
1451	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1452	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1453	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1454	if (allocated_pv != NULL) {
1455		pv_entry_count++;
1456		if (pv_entry_count > pv_entry_high_water)
1457			pagedaemon_wakeup();
1458		else
1459			return (allocated_pv);
1460	}
1461
1462	/*
1463	 * Reclaim pv entries: At first, destroy mappings to inactive
1464	 * pages.  After that, if a pv entry is still needed, destroy
1465	 * mappings to active pages.
1466	 */
1467	if (ratecheck(&lastprint, &printinterval))
1468		printf("Approaching the limit on PV entries, "
1469		    "increase the vm.pmap.shpgperproc tunable.\n");
1470	vpq = &vm_page_queues[PQ_INACTIVE];
1471retry:
1472	sched_pin();
1473	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1474		if (m->hold_count || m->busy || (m->flags & PG_BUSY))
1475			continue;
1476		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1477			va = pv->pv_va;
1478			pmap = pv->pv_pmap;
1479			/* Avoid deadlock and lock recursion. */
1480			if (pmap > locked_pmap)
1481				PMAP_LOCK(pmap);
1482			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1483				continue;
1484			pmap->pm_stats.resident_count--;
1485			pte = pmap_pte_quick(pmap, va);
1486			tpte = pte_load_clear(pte);
1487			KASSERT((tpte & PG_W) == 0,
1488			    ("get_pv_entry: wired pte %#jx", (uintmax_t)tpte));
1489			if (tpte & PG_A)
1490				vm_page_flag_set(m, PG_REFERENCED);
1491			if (tpte & PG_M) {
1492				KASSERT((tpte & PG_RW),
1493	("get_pv_entry: modified page not writable: va: %#x, pte: %#jx",
1494				    va, (uintmax_t)tpte));
1495				if (pmap_track_modified(va))
1496					vm_page_dirty(m);
1497			}
1498			pmap_invalidate_page(pmap, va);
1499			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1500			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1501			if (TAILQ_EMPTY(&m->md.pv_list))
1502				vm_page_flag_clear(m, PG_WRITEABLE);
1503			m->md.pv_list_count--;
1504			pmap_unuse_pt(pmap, va);
1505			if (pmap != locked_pmap)
1506				PMAP_UNLOCK(pmap);
1507			if (allocated_pv == NULL)
1508				allocated_pv = pv;
1509			else
1510				free_pv_entry(pv);
1511		}
1512	}
1513	sched_unpin();
1514	if (allocated_pv == NULL) {
1515		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1516			vpq = &vm_page_queues[PQ_ACTIVE];
1517			goto retry;
1518		}
1519		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1520	}
1521	return (allocated_pv);
1522}
1523
1524static void
1525pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1526{
1527	pv_entry_t pv;
1528
1529	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1530	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1531	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1532		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1533			if (pmap == pv->pv_pmap && va == pv->pv_va)
1534				break;
1535		}
1536	} else {
1537		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1538			if (va == pv->pv_va)
1539				break;
1540		}
1541	}
1542	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1543	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1544	m->md.pv_list_count--;
1545	if (TAILQ_EMPTY(&m->md.pv_list))
1546		vm_page_flag_clear(m, PG_WRITEABLE);
1547	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1548	free_pv_entry(pv);
1549}
1550
1551/*
1552 * Create a pv entry for page at pa for
1553 * (pmap, va).
1554 */
1555static void
1556pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1557{
1558	pv_entry_t pv;
1559
1560	pv = get_pv_entry(pmap);
1561	pv->pv_va = va;
1562	pv->pv_pmap = pmap;
1563
1564	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1565	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1566	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1567	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1568	m->md.pv_list_count++;
1569}
1570
1571/*
1572 * pmap_remove_pte: do the things to unmap a page in a process
1573 */
1574static int
1575pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1576{
1577	pt_entry_t oldpte;
1578	vm_page_t m;
1579
1580	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1581	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1582	oldpte = pte_load_clear(ptq);
1583	if (oldpte & PG_W)
1584		pmap->pm_stats.wired_count -= 1;
1585	/*
1586	 * Machines that don't support invlpg, also don't support
1587	 * PG_G.
1588	 */
1589	if (oldpte & PG_G)
1590		pmap_invalidate_page(kernel_pmap, va);
1591	pmap->pm_stats.resident_count -= 1;
1592	if (oldpte & PG_MANAGED) {
1593		m = PHYS_TO_VM_PAGE(oldpte);
1594		if (oldpte & PG_M) {
1595			KASSERT((oldpte & PG_RW),
1596	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1597			    va, (uintmax_t)oldpte));
1598			if (pmap_track_modified(va))
1599				vm_page_dirty(m);
1600		}
1601		if (oldpte & PG_A)
1602			vm_page_flag_set(m, PG_REFERENCED);
1603		pmap_remove_entry(pmap, m, va);
1604	}
1605	return (pmap_unuse_pt(pmap, va));
1606}
1607
1608/*
1609 * Remove a single page from a process address space
1610 */
1611static void
1612pmap_remove_page(pmap_t pmap, vm_offset_t va)
1613{
1614	pt_entry_t *pte;
1615
1616	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1617	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1618	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1619	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1620		return;
1621	pmap_remove_pte(pmap, pte, va);
1622	pmap_invalidate_page(pmap, va);
1623}
1624
1625/*
1626 *	Remove the given range of addresses from the specified map.
1627 *
1628 *	It is assumed that the start and end are properly
1629 *	rounded to the page size.
1630 */
1631void
1632pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1633{
1634	vm_offset_t pdnxt;
1635	pd_entry_t ptpaddr;
1636	pt_entry_t *pte;
1637	int anyvalid;
1638
1639	/*
1640	 * Perform an unsynchronized read.  This is, however, safe.
1641	 */
1642	if (pmap->pm_stats.resident_count == 0)
1643		return;
1644
1645	anyvalid = 0;
1646
1647	vm_page_lock_queues();
1648	sched_pin();
1649	PMAP_LOCK(pmap);
1650
1651	/*
1652	 * special handling of removing one page.  a very
1653	 * common operation and easy to short circuit some
1654	 * code.
1655	 */
1656	if ((sva + PAGE_SIZE == eva) &&
1657	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1658		pmap_remove_page(pmap, sva);
1659		goto out;
1660	}
1661
1662	for (; sva < eva; sva = pdnxt) {
1663		unsigned pdirindex;
1664
1665		/*
1666		 * Calculate index for next page table.
1667		 */
1668		pdnxt = (sva + NBPDR) & ~PDRMASK;
1669		if (pmap->pm_stats.resident_count == 0)
1670			break;
1671
1672		pdirindex = sva >> PDRSHIFT;
1673		ptpaddr = pmap->pm_pdir[pdirindex];
1674
1675		/*
1676		 * Weed out invalid mappings. Note: we assume that the page
1677		 * directory table is always allocated, and in kernel virtual.
1678		 */
1679		if (ptpaddr == 0)
1680			continue;
1681
1682		/*
1683		 * Check for large page.
1684		 */
1685		if ((ptpaddr & PG_PS) != 0) {
1686			pmap->pm_pdir[pdirindex] = 0;
1687			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1688			anyvalid = 1;
1689			continue;
1690		}
1691
1692		/*
1693		 * Limit our scan to either the end of the va represented
1694		 * by the current page table page, or to the end of the
1695		 * range being removed.
1696		 */
1697		if (pdnxt > eva)
1698			pdnxt = eva;
1699
1700		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1701		    sva += PAGE_SIZE) {
1702			if (*pte == 0)
1703				continue;
1704			anyvalid = 1;
1705			if (pmap_remove_pte(pmap, pte, sva))
1706				break;
1707		}
1708	}
1709out:
1710	sched_unpin();
1711	vm_page_unlock_queues();
1712	if (anyvalid)
1713		pmap_invalidate_all(pmap);
1714	PMAP_UNLOCK(pmap);
1715}
1716
1717/*
1718 *	Routine:	pmap_remove_all
1719 *	Function:
1720 *		Removes this physical page from
1721 *		all physical maps in which it resides.
1722 *		Reflects back modify bits to the pager.
1723 *
1724 *	Notes:
1725 *		Original versions of this routine were very
1726 *		inefficient because they iteratively called
1727 *		pmap_remove (slow...)
1728 */
1729
1730void
1731pmap_remove_all(vm_page_t m)
1732{
1733	register pv_entry_t pv;
1734	pt_entry_t *pte, tpte;
1735
1736#if defined(PMAP_DIAGNOSTIC)
1737	/*
1738	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1739	 */
1740	if (m->flags & PG_FICTITIOUS) {
1741		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1742		    VM_PAGE_TO_PHYS(m));
1743	}
1744#endif
1745	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1746	sched_pin();
1747	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1748		PMAP_LOCK(pv->pv_pmap);
1749		pv->pv_pmap->pm_stats.resident_count--;
1750		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1751		tpte = pte_load_clear(pte);
1752		if (tpte & PG_W)
1753			pv->pv_pmap->pm_stats.wired_count--;
1754		if (tpte & PG_A)
1755			vm_page_flag_set(m, PG_REFERENCED);
1756
1757		/*
1758		 * Update the vm_page_t clean and reference bits.
1759		 */
1760		if (tpte & PG_M) {
1761			KASSERT((tpte & PG_RW),
1762	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
1763			    pv->pv_va, (uintmax_t)tpte));
1764			if (pmap_track_modified(pv->pv_va))
1765				vm_page_dirty(m);
1766		}
1767		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1768		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1769		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1770		m->md.pv_list_count--;
1771		pmap_unuse_pt(pv->pv_pmap, pv->pv_va);
1772		PMAP_UNLOCK(pv->pv_pmap);
1773		free_pv_entry(pv);
1774	}
1775	vm_page_flag_clear(m, PG_WRITEABLE);
1776	sched_unpin();
1777}
1778
1779/*
1780 *	Set the physical protection on the
1781 *	specified range of this map as requested.
1782 */
1783void
1784pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1785{
1786	vm_offset_t pdnxt;
1787	pd_entry_t ptpaddr;
1788	pt_entry_t *pte;
1789	int anychanged;
1790
1791	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1792		pmap_remove(pmap, sva, eva);
1793		return;
1794	}
1795
1796	if (prot & VM_PROT_WRITE)
1797		return;
1798
1799	anychanged = 0;
1800
1801	vm_page_lock_queues();
1802	sched_pin();
1803	PMAP_LOCK(pmap);
1804	for (; sva < eva; sva = pdnxt) {
1805		unsigned obits, pbits, pdirindex;
1806
1807		pdnxt = (sva + NBPDR) & ~PDRMASK;
1808
1809		pdirindex = sva >> PDRSHIFT;
1810		ptpaddr = pmap->pm_pdir[pdirindex];
1811
1812		/*
1813		 * Weed out invalid mappings. Note: we assume that the page
1814		 * directory table is always allocated, and in kernel virtual.
1815		 */
1816		if (ptpaddr == 0)
1817			continue;
1818
1819		/*
1820		 * Check for large page.
1821		 */
1822		if ((ptpaddr & PG_PS) != 0) {
1823			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1824			anychanged = 1;
1825			continue;
1826		}
1827
1828		if (pdnxt > eva)
1829			pdnxt = eva;
1830
1831		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1832		    sva += PAGE_SIZE) {
1833			vm_page_t m;
1834
1835retry:
1836			/*
1837			 * Regardless of whether a pte is 32 or 64 bits in
1838			 * size, PG_RW, PG_A, and PG_M are among the least
1839			 * significant 32 bits.
1840			 */
1841			obits = pbits = *(u_int *)pte;
1842			if (pbits & PG_MANAGED) {
1843				m = NULL;
1844				if (pbits & PG_A) {
1845					m = PHYS_TO_VM_PAGE(*pte);
1846					vm_page_flag_set(m, PG_REFERENCED);
1847					pbits &= ~PG_A;
1848				}
1849				if ((pbits & PG_M) != 0 &&
1850				    pmap_track_modified(sva)) {
1851					if (m == NULL)
1852						m = PHYS_TO_VM_PAGE(*pte);
1853					vm_page_dirty(m);
1854				}
1855			}
1856
1857			pbits &= ~(PG_RW | PG_M);
1858
1859			if (pbits != obits) {
1860				if (!atomic_cmpset_int((u_int *)pte, obits,
1861				    pbits))
1862					goto retry;
1863				if (obits & PG_G)
1864					pmap_invalidate_page(pmap, sva);
1865				else
1866					anychanged = 1;
1867			}
1868		}
1869	}
1870	sched_unpin();
1871	vm_page_unlock_queues();
1872	if (anychanged)
1873		pmap_invalidate_all(pmap);
1874	PMAP_UNLOCK(pmap);
1875}
1876
1877/*
1878 *	Insert the given physical page (p) at
1879 *	the specified virtual address (v) in the
1880 *	target physical map with the protection requested.
1881 *
1882 *	If specified, the page will be wired down, meaning
1883 *	that the related pte can not be reclaimed.
1884 *
1885 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1886 *	or lose information.  That is, this routine must actually
1887 *	insert this page into the given map NOW.
1888 */
1889void
1890pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1891	   boolean_t wired)
1892{
1893	vm_paddr_t pa;
1894	register pt_entry_t *pte;
1895	vm_paddr_t opa;
1896	pt_entry_t origpte, newpte;
1897	vm_page_t mpte, om;
1898	boolean_t invlva;
1899
1900	va &= PG_FRAME;
1901#ifdef PMAP_DIAGNOSTIC
1902	if (va > VM_MAX_KERNEL_ADDRESS)
1903		panic("pmap_enter: toobig");
1904	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1905		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1906#endif
1907
1908	mpte = NULL;
1909
1910	vm_page_lock_queues();
1911	PMAP_LOCK(pmap);
1912	sched_pin();
1913
1914	/*
1915	 * In the case that a page table page is not
1916	 * resident, we are creating it here.
1917	 */
1918	if (va < VM_MAXUSER_ADDRESS) {
1919		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1920	}
1921#if 0 && defined(PMAP_DIAGNOSTIC)
1922	else {
1923		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1924		origpte = *pdeaddr;
1925		if ((origpte & PG_V) == 0) {
1926			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1927				pmap->pm_pdir[PTDPTDI], origpte, va);
1928		}
1929	}
1930#endif
1931
1932	pte = pmap_pte_quick(pmap, va);
1933
1934	/*
1935	 * Page Directory table entry not valid, we need a new PT page
1936	 */
1937	if (pte == NULL) {
1938		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1939			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1940	}
1941
1942	pa = VM_PAGE_TO_PHYS(m);
1943	om = NULL;
1944	origpte = *pte;
1945	opa = origpte & PG_FRAME;
1946
1947	if (origpte & PG_PS) {
1948		/*
1949		 * Yes, I know this will truncate upper address bits for PAE,
1950		 * but I'm actually more interested in the lower bits
1951		 */
1952		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1953		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1954		panic("pmap_enter: attempted pmap_enter on 4MB page");
1955	}
1956
1957	/*
1958	 * Mapping has not changed, must be protection or wiring change.
1959	 */
1960	if (origpte && (opa == pa)) {
1961		/*
1962		 * Wiring change, just update stats. We don't worry about
1963		 * wiring PT pages as they remain resident as long as there
1964		 * are valid mappings in them. Hence, if a user page is wired,
1965		 * the PT page will be also.
1966		 */
1967		if (wired && ((origpte & PG_W) == 0))
1968			pmap->pm_stats.wired_count++;
1969		else if (!wired && (origpte & PG_W))
1970			pmap->pm_stats.wired_count--;
1971
1972		/*
1973		 * Remove extra pte reference
1974		 */
1975		if (mpte)
1976			mpte->wire_count--;
1977
1978		/*
1979		 * We might be turning off write access to the page,
1980		 * so we go ahead and sense modify status.
1981		 */
1982		if (origpte & PG_MANAGED) {
1983			om = m;
1984			pa |= PG_MANAGED;
1985		}
1986		goto validate;
1987	}
1988	/*
1989	 * Mapping has changed, invalidate old range and fall through to
1990	 * handle validating new mapping.
1991	 */
1992	if (opa) {
1993		if (origpte & PG_W)
1994			pmap->pm_stats.wired_count--;
1995		if (origpte & PG_MANAGED) {
1996			om = PHYS_TO_VM_PAGE(opa);
1997			pmap_remove_entry(pmap, om, va);
1998		}
1999		if (mpte != NULL) {
2000			mpte->wire_count--;
2001			KASSERT(mpte->wire_count > 0,
2002			    ("pmap_enter: missing reference to page table page,"
2003			     " va: 0x%x", va));
2004		}
2005	} else
2006		pmap->pm_stats.resident_count++;
2007
2008	/*
2009	 * Enter on the PV list if part of our managed memory.
2010	 */
2011	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2012		pmap_insert_entry(pmap, va, m);
2013		pa |= PG_MANAGED;
2014	}
2015
2016	/*
2017	 * Increment counters
2018	 */
2019	if (wired)
2020		pmap->pm_stats.wired_count++;
2021
2022validate:
2023	/*
2024	 * Now validate mapping with desired protection/wiring.
2025	 */
2026	newpte = (pt_entry_t)(pa | PG_V);
2027	if ((prot & VM_PROT_WRITE) != 0)
2028		newpte |= PG_RW;
2029	if (wired)
2030		newpte |= PG_W;
2031	if (va < VM_MAXUSER_ADDRESS)
2032		newpte |= PG_U;
2033	if (pmap == kernel_pmap)
2034		newpte |= pgeflag;
2035
2036	/*
2037	 * if the mapping or permission bits are different, we need
2038	 * to update the pte.
2039	 */
2040	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2041		if (origpte & PG_V) {
2042			invlva = FALSE;
2043			origpte = pte_load_store(pte, newpte | PG_A);
2044			if (origpte & PG_A) {
2045				if (origpte & PG_MANAGED)
2046					vm_page_flag_set(om, PG_REFERENCED);
2047				if (opa != VM_PAGE_TO_PHYS(m))
2048					invlva = TRUE;
2049			}
2050			if (origpte & PG_M) {
2051				KASSERT((origpte & PG_RW),
2052	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2053				    va, (uintmax_t)origpte));
2054				if ((origpte & PG_MANAGED) &&
2055				    pmap_track_modified(va))
2056					vm_page_dirty(om);
2057				if ((prot & VM_PROT_WRITE) == 0)
2058					invlva = TRUE;
2059			}
2060			if (invlva)
2061				pmap_invalidate_page(pmap, va);
2062		} else
2063			pte_store(pte, newpte | PG_A);
2064	}
2065	sched_unpin();
2066	vm_page_unlock_queues();
2067	PMAP_UNLOCK(pmap);
2068}
2069
2070/*
2071 * this code makes some *MAJOR* assumptions:
2072 * 1. Current pmap & pmap exists.
2073 * 2. Not wired.
2074 * 3. Read access.
2075 * 4. No page table pages.
2076 * but is *MUCH* faster than pmap_enter...
2077 */
2078
2079vm_page_t
2080pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2081    vm_page_t mpte)
2082{
2083	pt_entry_t *pte;
2084	vm_paddr_t pa;
2085
2086	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2087	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2088	PMAP_LOCK(pmap);
2089
2090	/*
2091	 * In the case that a page table page is not
2092	 * resident, we are creating it here.
2093	 */
2094	if (va < VM_MAXUSER_ADDRESS) {
2095		unsigned ptepindex;
2096		pd_entry_t ptepa;
2097
2098		/*
2099		 * Calculate pagetable page index
2100		 */
2101		ptepindex = va >> PDRSHIFT;
2102		if (mpte && (mpte->pindex == ptepindex)) {
2103			mpte->wire_count++;
2104		} else {
2105retry:
2106			/*
2107			 * Get the page directory entry
2108			 */
2109			ptepa = pmap->pm_pdir[ptepindex];
2110
2111			/*
2112			 * If the page table page is mapped, we just increment
2113			 * the hold count, and activate it.
2114			 */
2115			if (ptepa) {
2116				if (ptepa & PG_PS)
2117					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2118				mpte = PHYS_TO_VM_PAGE(ptepa);
2119				mpte->wire_count++;
2120			} else {
2121				mpte = _pmap_allocpte(pmap, ptepindex,
2122				    M_NOWAIT);
2123				if (mpte == NULL) {
2124					PMAP_UNLOCK(pmap);
2125					vm_page_busy(m);
2126					vm_page_unlock_queues();
2127					VM_OBJECT_UNLOCK(m->object);
2128					VM_WAIT;
2129					VM_OBJECT_LOCK(m->object);
2130					vm_page_lock_queues();
2131					vm_page_wakeup(m);
2132					PMAP_LOCK(pmap);
2133					goto retry;
2134				}
2135			}
2136		}
2137	} else {
2138		mpte = NULL;
2139	}
2140
2141	/*
2142	 * This call to vtopte makes the assumption that we are
2143	 * entering the page into the current pmap.  In order to support
2144	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2145	 * But that isn't as quick as vtopte.
2146	 */
2147	pte = vtopte(va);
2148	if (*pte) {
2149		if (mpte != NULL) {
2150			pmap_unwire_pte_hold(pmap, mpte);
2151			mpte = NULL;
2152		}
2153		goto out;
2154	}
2155
2156	/*
2157	 * Enter on the PV list if part of our managed memory. Note that we
2158	 * raise IPL while manipulating pv_table since pmap_enter can be
2159	 * called at interrupt time.
2160	 */
2161	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2162		pmap_insert_entry(pmap, va, m);
2163
2164	/*
2165	 * Increment counters
2166	 */
2167	pmap->pm_stats.resident_count++;
2168
2169	pa = VM_PAGE_TO_PHYS(m);
2170
2171	/*
2172	 * Now validate mapping with RO protection
2173	 */
2174	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2175		pte_store(pte, pa | PG_V | PG_U);
2176	else
2177		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2178out:
2179	PMAP_UNLOCK(pmap);
2180	return mpte;
2181}
2182
2183/*
2184 * Make a temporary mapping for a physical address.  This is only intended
2185 * to be used for panic dumps.
2186 */
2187void *
2188pmap_kenter_temporary(vm_paddr_t pa, int i)
2189{
2190	vm_offset_t va;
2191
2192	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2193	pmap_kenter(va, pa);
2194	invlpg(va);
2195	return ((void *)crashdumpmap);
2196}
2197
2198/*
2199 * This code maps large physical mmap regions into the
2200 * processor address space.  Note that some shortcuts
2201 * are taken, but the code works.
2202 */
2203void
2204pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2205		    vm_object_t object, vm_pindex_t pindex,
2206		    vm_size_t size)
2207{
2208	vm_page_t p;
2209
2210	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2211	KASSERT(object->type == OBJT_DEVICE,
2212	    ("pmap_object_init_pt: non-device object"));
2213	if (pseflag &&
2214	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2215		int i;
2216		vm_page_t m[1];
2217		unsigned int ptepindex;
2218		int npdes;
2219		pd_entry_t ptepa;
2220
2221		PMAP_LOCK(pmap);
2222		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2223			goto out;
2224		PMAP_UNLOCK(pmap);
2225retry:
2226		p = vm_page_lookup(object, pindex);
2227		if (p != NULL) {
2228			vm_page_lock_queues();
2229			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2230				goto retry;
2231		} else {
2232			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2233			if (p == NULL)
2234				return;
2235			m[0] = p;
2236
2237			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2238				vm_page_lock_queues();
2239				vm_page_free(p);
2240				vm_page_unlock_queues();
2241				return;
2242			}
2243
2244			p = vm_page_lookup(object, pindex);
2245			vm_page_lock_queues();
2246			vm_page_wakeup(p);
2247		}
2248		vm_page_unlock_queues();
2249
2250		ptepa = VM_PAGE_TO_PHYS(p);
2251		if (ptepa & (NBPDR - 1))
2252			return;
2253
2254		p->valid = VM_PAGE_BITS_ALL;
2255
2256		PMAP_LOCK(pmap);
2257		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2258		npdes = size >> PDRSHIFT;
2259		for(i = 0; i < npdes; i++) {
2260			pde_store(&pmap->pm_pdir[ptepindex],
2261			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2262			ptepa += NBPDR;
2263			ptepindex += 1;
2264		}
2265		pmap_invalidate_all(pmap);
2266out:
2267		PMAP_UNLOCK(pmap);
2268	}
2269}
2270
2271/*
2272 *	Routine:	pmap_change_wiring
2273 *	Function:	Change the wiring attribute for a map/virtual-address
2274 *			pair.
2275 *	In/out conditions:
2276 *			The mapping must already exist in the pmap.
2277 */
2278void
2279pmap_change_wiring(pmap, va, wired)
2280	register pmap_t pmap;
2281	vm_offset_t va;
2282	boolean_t wired;
2283{
2284	register pt_entry_t *pte;
2285
2286	PMAP_LOCK(pmap);
2287	pte = pmap_pte(pmap, va);
2288
2289	if (wired && !pmap_pte_w(pte))
2290		pmap->pm_stats.wired_count++;
2291	else if (!wired && pmap_pte_w(pte))
2292		pmap->pm_stats.wired_count--;
2293
2294	/*
2295	 * Wiring is not a hardware characteristic so there is no need to
2296	 * invalidate TLB.
2297	 */
2298	pmap_pte_set_w(pte, wired);
2299	pmap_pte_release(pte);
2300	PMAP_UNLOCK(pmap);
2301}
2302
2303
2304
2305/*
2306 *	Copy the range specified by src_addr/len
2307 *	from the source map to the range dst_addr/len
2308 *	in the destination map.
2309 *
2310 *	This routine is only advisory and need not do anything.
2311 */
2312
2313void
2314pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2315	  vm_offset_t src_addr)
2316{
2317	vm_offset_t addr;
2318	vm_offset_t end_addr = src_addr + len;
2319	vm_offset_t pdnxt;
2320	vm_page_t m;
2321
2322	if (dst_addr != src_addr)
2323		return;
2324
2325	if (!pmap_is_current(src_pmap))
2326		return;
2327
2328	vm_page_lock_queues();
2329	if (dst_pmap < src_pmap) {
2330		PMAP_LOCK(dst_pmap);
2331		PMAP_LOCK(src_pmap);
2332	} else {
2333		PMAP_LOCK(src_pmap);
2334		PMAP_LOCK(dst_pmap);
2335	}
2336	sched_pin();
2337	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2338		pt_entry_t *src_pte, *dst_pte;
2339		vm_page_t dstmpte, srcmpte;
2340		pd_entry_t srcptepaddr;
2341		unsigned ptepindex;
2342
2343		if (addr >= UPT_MIN_ADDRESS)
2344			panic("pmap_copy: invalid to pmap_copy page tables");
2345
2346		/*
2347		 * Don't let optional prefaulting of pages make us go
2348		 * way below the low water mark of free pages or way
2349		 * above high water mark of used pv entries.
2350		 */
2351		if (cnt.v_free_count < cnt.v_free_reserved ||
2352		    pv_entry_count > pv_entry_high_water)
2353			break;
2354
2355		pdnxt = (addr + NBPDR) & ~PDRMASK;
2356		ptepindex = addr >> PDRSHIFT;
2357
2358		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2359		if (srcptepaddr == 0)
2360			continue;
2361
2362		if (srcptepaddr & PG_PS) {
2363			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2364				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2365				dst_pmap->pm_stats.resident_count +=
2366				    NBPDR / PAGE_SIZE;
2367			}
2368			continue;
2369		}
2370
2371		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2372		if (srcmpte->wire_count == 0)
2373			panic("pmap_copy: source page table page is unused");
2374
2375		if (pdnxt > end_addr)
2376			pdnxt = end_addr;
2377
2378		src_pte = vtopte(addr);
2379		while (addr < pdnxt) {
2380			pt_entry_t ptetemp;
2381			ptetemp = *src_pte;
2382			/*
2383			 * we only virtual copy managed pages
2384			 */
2385			if ((ptetemp & PG_MANAGED) != 0) {
2386				/*
2387				 * We have to check after allocpte for the
2388				 * pte still being around...  allocpte can
2389				 * block.
2390				 */
2391				dstmpte = pmap_allocpte(dst_pmap, addr,
2392				    M_NOWAIT);
2393				if (dstmpte == NULL)
2394					break;
2395				dst_pte = pmap_pte_quick(dst_pmap, addr);
2396				if (*dst_pte == 0) {
2397					/*
2398					 * Clear the modified and
2399					 * accessed (referenced) bits
2400					 * during the copy.
2401					 */
2402					m = PHYS_TO_VM_PAGE(ptetemp);
2403					*dst_pte = ptetemp & ~(PG_M | PG_A);
2404					dst_pmap->pm_stats.resident_count++;
2405					pmap_insert_entry(dst_pmap, addr, m);
2406	 			} else
2407					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2408				if (dstmpte->wire_count >= srcmpte->wire_count)
2409					break;
2410			}
2411			addr += PAGE_SIZE;
2412			src_pte++;
2413		}
2414	}
2415	sched_unpin();
2416	vm_page_unlock_queues();
2417	PMAP_UNLOCK(src_pmap);
2418	PMAP_UNLOCK(dst_pmap);
2419}
2420
2421static __inline void
2422pagezero(void *page)
2423{
2424#if defined(I686_CPU)
2425	if (cpu_class == CPUCLASS_686) {
2426#if defined(CPU_ENABLE_SSE)
2427		if (cpu_feature & CPUID_SSE2)
2428			sse2_pagezero(page);
2429		else
2430#endif
2431			i686_pagezero(page);
2432	} else
2433#endif
2434		bzero(page, PAGE_SIZE);
2435}
2436
2437/*
2438 *	pmap_zero_page zeros the specified hardware page by mapping
2439 *	the page into KVM and using bzero to clear its contents.
2440 */
2441void
2442pmap_zero_page(vm_page_t m)
2443{
2444	struct sysmaps *sysmaps;
2445
2446	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2447	mtx_lock(&sysmaps->lock);
2448	if (*sysmaps->CMAP2)
2449		panic("pmap_zero_page: CMAP2 busy");
2450	sched_pin();
2451	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2452	invlcaddr(sysmaps->CADDR2);
2453	pagezero(sysmaps->CADDR2);
2454	*sysmaps->CMAP2 = 0;
2455	sched_unpin();
2456	mtx_unlock(&sysmaps->lock);
2457}
2458
2459/*
2460 *	pmap_zero_page_area zeros the specified hardware page by mapping
2461 *	the page into KVM and using bzero to clear its contents.
2462 *
2463 *	off and size may not cover an area beyond a single hardware page.
2464 */
2465void
2466pmap_zero_page_area(vm_page_t m, int off, int size)
2467{
2468	struct sysmaps *sysmaps;
2469
2470	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2471	mtx_lock(&sysmaps->lock);
2472	if (*sysmaps->CMAP2)
2473		panic("pmap_zero_page: CMAP2 busy");
2474	sched_pin();
2475	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2476	invlcaddr(sysmaps->CADDR2);
2477	if (off == 0 && size == PAGE_SIZE)
2478		pagezero(sysmaps->CADDR2);
2479	else
2480		bzero((char *)sysmaps->CADDR2 + off, size);
2481	*sysmaps->CMAP2 = 0;
2482	sched_unpin();
2483	mtx_unlock(&sysmaps->lock);
2484}
2485
2486/*
2487 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2488 *	the page into KVM and using bzero to clear its contents.  This
2489 *	is intended to be called from the vm_pagezero process only and
2490 *	outside of Giant.
2491 */
2492void
2493pmap_zero_page_idle(vm_page_t m)
2494{
2495
2496	if (*CMAP3)
2497		panic("pmap_zero_page: CMAP3 busy");
2498	sched_pin();
2499	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2500	invlcaddr(CADDR3);
2501	pagezero(CADDR3);
2502	*CMAP3 = 0;
2503	sched_unpin();
2504}
2505
2506/*
2507 *	pmap_copy_page copies the specified (machine independent)
2508 *	page by mapping the page into virtual memory and using
2509 *	bcopy to copy the page, one machine dependent page at a
2510 *	time.
2511 */
2512void
2513pmap_copy_page(vm_page_t src, vm_page_t dst)
2514{
2515	struct sysmaps *sysmaps;
2516
2517	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2518	mtx_lock(&sysmaps->lock);
2519	if (*sysmaps->CMAP1)
2520		panic("pmap_copy_page: CMAP1 busy");
2521	if (*sysmaps->CMAP2)
2522		panic("pmap_copy_page: CMAP2 busy");
2523	sched_pin();
2524	invlpg((u_int)sysmaps->CADDR1);
2525	invlpg((u_int)sysmaps->CADDR2);
2526	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2527	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2528	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2529	*sysmaps->CMAP1 = 0;
2530	*sysmaps->CMAP2 = 0;
2531	sched_unpin();
2532	mtx_unlock(&sysmaps->lock);
2533}
2534
2535/*
2536 * Returns true if the pmap's pv is one of the first
2537 * 16 pvs linked to from this page.  This count may
2538 * be changed upwards or downwards in the future; it
2539 * is only necessary that true be returned for a small
2540 * subset of pmaps for proper page aging.
2541 */
2542boolean_t
2543pmap_page_exists_quick(pmap, m)
2544	pmap_t pmap;
2545	vm_page_t m;
2546{
2547	pv_entry_t pv;
2548	int loops = 0;
2549
2550	if (m->flags & PG_FICTITIOUS)
2551		return FALSE;
2552
2553	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2554	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2555		if (pv->pv_pmap == pmap) {
2556			return TRUE;
2557		}
2558		loops++;
2559		if (loops >= 16)
2560			break;
2561	}
2562	return (FALSE);
2563}
2564
2565#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2566/*
2567 * Remove all pages from specified address space
2568 * this aids process exit speeds.  Also, this code
2569 * is special cased for current process only, but
2570 * can have the more generic (and slightly slower)
2571 * mode enabled.  This is much faster than pmap_remove
2572 * in the case of running down an entire address space.
2573 */
2574void
2575pmap_remove_pages(pmap, sva, eva)
2576	pmap_t pmap;
2577	vm_offset_t sva, eva;
2578{
2579	pt_entry_t *pte, tpte;
2580	vm_page_t m;
2581	pv_entry_t pv, npv;
2582
2583#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2584	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2585		printf("warning: pmap_remove_pages called with non-current pmap\n");
2586		return;
2587	}
2588#endif
2589	vm_page_lock_queues();
2590	PMAP_LOCK(pmap);
2591	sched_pin();
2592	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2593
2594		if (pv->pv_va >= eva || pv->pv_va < sva) {
2595			npv = TAILQ_NEXT(pv, pv_plist);
2596			continue;
2597		}
2598
2599#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2600		pte = vtopte(pv->pv_va);
2601#else
2602		pte = pmap_pte_quick(pmap, pv->pv_va);
2603#endif
2604		tpte = *pte;
2605
2606		if (tpte == 0) {
2607			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2608							pte, pv->pv_va);
2609			panic("bad pte");
2610		}
2611
2612/*
2613 * We cannot remove wired pages from a process' mapping at this time
2614 */
2615		if (tpte & PG_W) {
2616			npv = TAILQ_NEXT(pv, pv_plist);
2617			continue;
2618		}
2619
2620		m = PHYS_TO_VM_PAGE(tpte);
2621		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2622		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2623		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2624
2625		KASSERT(m < &vm_page_array[vm_page_array_size],
2626			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2627
2628		pmap->pm_stats.resident_count--;
2629
2630		pte_clear(pte);
2631
2632		/*
2633		 * Update the vm_page_t clean and reference bits.
2634		 */
2635		if (tpte & PG_M) {
2636			vm_page_dirty(m);
2637		}
2638
2639		npv = TAILQ_NEXT(pv, pv_plist);
2640		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2641
2642		m->md.pv_list_count--;
2643		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2644		if (TAILQ_EMPTY(&m->md.pv_list))
2645			vm_page_flag_clear(m, PG_WRITEABLE);
2646
2647		pmap_unuse_pt(pmap, pv->pv_va);
2648		free_pv_entry(pv);
2649	}
2650	sched_unpin();
2651	pmap_invalidate_all(pmap);
2652	PMAP_UNLOCK(pmap);
2653	vm_page_unlock_queues();
2654}
2655
2656/*
2657 *	pmap_is_modified:
2658 *
2659 *	Return whether or not the specified physical page was modified
2660 *	in any physical maps.
2661 */
2662boolean_t
2663pmap_is_modified(vm_page_t m)
2664{
2665	pv_entry_t pv;
2666	pt_entry_t *pte;
2667	boolean_t rv;
2668
2669	rv = FALSE;
2670	if (m->flags & PG_FICTITIOUS)
2671		return (rv);
2672
2673	sched_pin();
2674	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2675	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2676		/*
2677		 * if the bit being tested is the modified bit, then
2678		 * mark clean_map and ptes as never
2679		 * modified.
2680		 */
2681		if (!pmap_track_modified(pv->pv_va))
2682			continue;
2683		PMAP_LOCK(pv->pv_pmap);
2684		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2685		rv = (*pte & PG_M) != 0;
2686		PMAP_UNLOCK(pv->pv_pmap);
2687		if (rv)
2688			break;
2689	}
2690	sched_unpin();
2691	return (rv);
2692}
2693
2694/*
2695 *	pmap_is_prefaultable:
2696 *
2697 *	Return whether or not the specified virtual address is elgible
2698 *	for prefault.
2699 */
2700boolean_t
2701pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2702{
2703	pt_entry_t *pte;
2704	boolean_t rv;
2705
2706	rv = FALSE;
2707	PMAP_LOCK(pmap);
2708	if (*pmap_pde(pmap, addr)) {
2709		pte = vtopte(addr);
2710		rv = *pte == 0;
2711	}
2712	PMAP_UNLOCK(pmap);
2713	return (rv);
2714}
2715
2716/*
2717 *	Clear the given bit in each of the given page's ptes.  The bit is
2718 *	expressed as a 32-bit mask.  Consequently, if the pte is 64 bits in
2719 *	size, only a bit within the least significant 32 can be cleared.
2720 */
2721static __inline void
2722pmap_clear_ptes(vm_page_t m, int bit)
2723{
2724	register pv_entry_t pv;
2725	pt_entry_t pbits, *pte;
2726
2727	if ((m->flags & PG_FICTITIOUS) ||
2728	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2729		return;
2730
2731	sched_pin();
2732	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2733	/*
2734	 * Loop over all current mappings setting/clearing as appropos If
2735	 * setting RO do we need to clear the VAC?
2736	 */
2737	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2738		/*
2739		 * don't write protect pager mappings
2740		 */
2741		if (bit == PG_RW) {
2742			if (!pmap_track_modified(pv->pv_va))
2743				continue;
2744		}
2745
2746		PMAP_LOCK(pv->pv_pmap);
2747		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2748retry:
2749		pbits = *pte;
2750		if (pbits & bit) {
2751			if (bit == PG_RW) {
2752				/*
2753				 * Regardless of whether a pte is 32 or 64 bits
2754				 * in size, PG_RW and PG_M are among the least
2755				 * significant 32 bits.
2756				 */
2757				if (!atomic_cmpset_int((u_int *)pte, pbits,
2758				    pbits & ~(PG_RW | PG_M)))
2759					goto retry;
2760				if (pbits & PG_M) {
2761					vm_page_dirty(m);
2762				}
2763			} else {
2764				atomic_clear_int((u_int *)pte, bit);
2765			}
2766			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2767		}
2768		PMAP_UNLOCK(pv->pv_pmap);
2769	}
2770	if (bit == PG_RW)
2771		vm_page_flag_clear(m, PG_WRITEABLE);
2772	sched_unpin();
2773}
2774
2775/*
2776 *      pmap_page_protect:
2777 *
2778 *      Lower the permission for all mappings to a given page.
2779 */
2780void
2781pmap_page_protect(vm_page_t m, vm_prot_t prot)
2782{
2783	if ((prot & VM_PROT_WRITE) == 0) {
2784		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2785			pmap_clear_ptes(m, PG_RW);
2786		} else {
2787			pmap_remove_all(m);
2788		}
2789	}
2790}
2791
2792/*
2793 *	pmap_ts_referenced:
2794 *
2795 *	Return a count of reference bits for a page, clearing those bits.
2796 *	It is not necessary for every reference bit to be cleared, but it
2797 *	is necessary that 0 only be returned when there are truly no
2798 *	reference bits set.
2799 *
2800 *	XXX: The exact number of bits to check and clear is a matter that
2801 *	should be tested and standardized at some point in the future for
2802 *	optimal aging of shared pages.
2803 */
2804int
2805pmap_ts_referenced(vm_page_t m)
2806{
2807	register pv_entry_t pv, pvf, pvn;
2808	pt_entry_t *pte;
2809	pt_entry_t v;
2810	int rtval = 0;
2811
2812	if (m->flags & PG_FICTITIOUS)
2813		return (rtval);
2814
2815	sched_pin();
2816	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2817	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2818
2819		pvf = pv;
2820
2821		do {
2822			pvn = TAILQ_NEXT(pv, pv_list);
2823
2824			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2825
2826			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2827
2828			if (!pmap_track_modified(pv->pv_va))
2829				continue;
2830
2831			PMAP_LOCK(pv->pv_pmap);
2832			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2833
2834			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2835				atomic_clear_int((u_int *)pte, PG_A);
2836				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2837
2838				rtval++;
2839				if (rtval > 4) {
2840					PMAP_UNLOCK(pv->pv_pmap);
2841					break;
2842				}
2843			}
2844			PMAP_UNLOCK(pv->pv_pmap);
2845		} while ((pv = pvn) != NULL && pv != pvf);
2846	}
2847	sched_unpin();
2848
2849	return (rtval);
2850}
2851
2852/*
2853 *	Clear the modify bits on the specified physical page.
2854 */
2855void
2856pmap_clear_modify(vm_page_t m)
2857{
2858	pmap_clear_ptes(m, PG_M);
2859}
2860
2861/*
2862 *	pmap_clear_reference:
2863 *
2864 *	Clear the reference bit on the specified physical page.
2865 */
2866void
2867pmap_clear_reference(vm_page_t m)
2868{
2869	pmap_clear_ptes(m, PG_A);
2870}
2871
2872/*
2873 * Miscellaneous support routines follow
2874 */
2875
2876/*
2877 * Map a set of physical memory pages into the kernel virtual
2878 * address space. Return a pointer to where it is mapped. This
2879 * routine is intended to be used for mapping device memory,
2880 * NOT real memory.
2881 */
2882void *
2883pmap_mapdev(pa, size)
2884	vm_paddr_t pa;
2885	vm_size_t size;
2886{
2887	vm_offset_t va, tmpva, offset;
2888
2889	offset = pa & PAGE_MASK;
2890	size = roundup(offset + size, PAGE_SIZE);
2891	pa = pa & PG_FRAME;
2892
2893	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2894		va = KERNBASE + pa;
2895	else
2896		va = kmem_alloc_nofault(kernel_map, size);
2897	if (!va)
2898		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2899
2900	for (tmpva = va; size > 0; ) {
2901		pmap_kenter(tmpva, pa);
2902		size -= PAGE_SIZE;
2903		tmpva += PAGE_SIZE;
2904		pa += PAGE_SIZE;
2905	}
2906	pmap_invalidate_range(kernel_pmap, va, tmpva);
2907	return ((void *)(va + offset));
2908}
2909
2910void
2911pmap_unmapdev(va, size)
2912	vm_offset_t va;
2913	vm_size_t size;
2914{
2915	vm_offset_t base, offset, tmpva;
2916
2917	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2918		return;
2919	base = va & PG_FRAME;
2920	offset = va & PAGE_MASK;
2921	size = roundup(offset + size, PAGE_SIZE);
2922	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2923		pmap_kremove(tmpva);
2924	pmap_invalidate_range(kernel_pmap, va, tmpva);
2925	kmem_free(kernel_map, base, size);
2926}
2927
2928/*
2929 * perform the pmap work for mincore
2930 */
2931int
2932pmap_mincore(pmap, addr)
2933	pmap_t pmap;
2934	vm_offset_t addr;
2935{
2936	pt_entry_t *ptep, pte;
2937	vm_page_t m;
2938	int val = 0;
2939
2940	PMAP_LOCK(pmap);
2941	ptep = pmap_pte(pmap, addr);
2942	pte = (ptep != NULL) ? *ptep : 0;
2943	pmap_pte_release(ptep);
2944	PMAP_UNLOCK(pmap);
2945
2946	if (pte != 0) {
2947		vm_paddr_t pa;
2948
2949		val = MINCORE_INCORE;
2950		if ((pte & PG_MANAGED) == 0)
2951			return val;
2952
2953		pa = pte & PG_FRAME;
2954
2955		m = PHYS_TO_VM_PAGE(pa);
2956
2957		/*
2958		 * Modified by us
2959		 */
2960		if (pte & PG_M)
2961			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2962		else {
2963			/*
2964			 * Modified by someone else
2965			 */
2966			vm_page_lock_queues();
2967			if (m->dirty || pmap_is_modified(m))
2968				val |= MINCORE_MODIFIED_OTHER;
2969			vm_page_unlock_queues();
2970		}
2971		/*
2972		 * Referenced by us
2973		 */
2974		if (pte & PG_A)
2975			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2976		else {
2977			/*
2978			 * Referenced by someone else
2979			 */
2980			vm_page_lock_queues();
2981			if ((m->flags & PG_REFERENCED) ||
2982			    pmap_ts_referenced(m)) {
2983				val |= MINCORE_REFERENCED_OTHER;
2984				vm_page_flag_set(m, PG_REFERENCED);
2985			}
2986			vm_page_unlock_queues();
2987		}
2988	}
2989	return val;
2990}
2991
2992void
2993pmap_activate(struct thread *td)
2994{
2995	struct proc *p = td->td_proc;
2996	pmap_t	pmap, oldpmap;
2997	u_int32_t  cr3;
2998
2999	critical_enter();
3000	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3001	oldpmap = PCPU_GET(curpmap);
3002#if defined(SMP)
3003	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3004	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3005#else
3006	oldpmap->pm_active &= ~1;
3007	pmap->pm_active |= 1;
3008#endif
3009#ifdef PAE
3010	cr3 = vtophys(pmap->pm_pdpt);
3011#else
3012	cr3 = vtophys(pmap->pm_pdir);
3013#endif
3014	/* XXXKSE this is wrong.
3015	 * pmap_activate is for the current thread on the current cpu
3016	 */
3017	if (p->p_flag & P_SA) {
3018		/* Make sure all other cr3 entries are updated. */
3019		/* what if they are running?  XXXKSE (maybe abort them) */
3020		FOREACH_THREAD_IN_PROC(p, td) {
3021			td->td_pcb->pcb_cr3 = cr3;
3022		}
3023	} else {
3024		td->td_pcb->pcb_cr3 = cr3;
3025	}
3026	load_cr3(cr3);
3027	PCPU_SET(curpmap, pmap);
3028	critical_exit();
3029}
3030
3031vm_offset_t
3032pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3033{
3034
3035	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3036		return addr;
3037	}
3038
3039	addr = (addr + PDRMASK) & ~PDRMASK;
3040	return addr;
3041}
3042
3043
3044#if defined(PMAP_DEBUG)
3045pmap_pid_dump(int pid)
3046{
3047	pmap_t pmap;
3048	struct proc *p;
3049	int npte = 0;
3050	int index;
3051
3052	sx_slock(&allproc_lock);
3053	LIST_FOREACH(p, &allproc, p_list) {
3054		if (p->p_pid != pid)
3055			continue;
3056
3057		if (p->p_vmspace) {
3058			int i,j;
3059			index = 0;
3060			pmap = vmspace_pmap(p->p_vmspace);
3061			for (i = 0; i < NPDEPTD; i++) {
3062				pd_entry_t *pde;
3063				pt_entry_t *pte;
3064				vm_offset_t base = i << PDRSHIFT;
3065
3066				pde = &pmap->pm_pdir[i];
3067				if (pde && pmap_pde_v(pde)) {
3068					for (j = 0; j < NPTEPG; j++) {
3069						vm_offset_t va = base + (j << PAGE_SHIFT);
3070						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3071							if (index) {
3072								index = 0;
3073								printf("\n");
3074							}
3075							sx_sunlock(&allproc_lock);
3076							return npte;
3077						}
3078						pte = pmap_pte(pmap, va);
3079						if (pte && pmap_pte_v(pte)) {
3080							pt_entry_t pa;
3081							vm_page_t m;
3082							pa = *pte;
3083							m = PHYS_TO_VM_PAGE(pa);
3084							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3085								va, pa, m->hold_count, m->wire_count, m->flags);
3086							npte++;
3087							index++;
3088							if (index >= 2) {
3089								index = 0;
3090								printf("\n");
3091							} else {
3092								printf(" ");
3093							}
3094						}
3095					}
3096				}
3097			}
3098		}
3099	}
3100	sx_sunlock(&allproc_lock);
3101	return npte;
3102}
3103#endif
3104
3105#if defined(DEBUG)
3106
3107static void	pads(pmap_t pm);
3108void		pmap_pvdump(vm_offset_t pa);
3109
3110/* print address space of pmap*/
3111static void
3112pads(pm)
3113	pmap_t pm;
3114{
3115	int i, j;
3116	vm_paddr_t va;
3117	pt_entry_t *ptep;
3118
3119	if (pm == kernel_pmap)
3120		return;
3121	for (i = 0; i < NPDEPTD; i++)
3122		if (pm->pm_pdir[i])
3123			for (j = 0; j < NPTEPG; j++) {
3124				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3125				if (pm == kernel_pmap && va < KERNBASE)
3126					continue;
3127				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3128					continue;
3129				ptep = pmap_pte(pm, va);
3130				if (pmap_pte_v(ptep))
3131					printf("%x:%x ", va, *ptep);
3132			};
3133
3134}
3135
3136void
3137pmap_pvdump(pa)
3138	vm_paddr_t pa;
3139{
3140	pv_entry_t pv;
3141	vm_page_t m;
3142
3143	printf("pa %x", pa);
3144	m = PHYS_TO_VM_PAGE(pa);
3145	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3146		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3147		pads(pv->pv_pmap);
3148	}
3149	printf(" ");
3150}
3151#endif
3152