pmap.c revision 152238
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 152238 2005-11-09 12:22:26Z nyan $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#ifndef PC98
110#include "opt_xbox.h"
111#endif
112
113#include <sys/param.h>
114#include <sys/systm.h>
115#include <sys/kernel.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/uma.h>
140
141#include <machine/cpu.h>
142#include <machine/cputypes.h>
143#include <machine/md_var.h>
144#include <machine/pcb.h>
145#include <machine/specialreg.h>
146#ifdef SMP
147#include <machine/smp.h>
148#endif
149
150#ifdef XBOX
151#include <machine/xbox.h>
152#endif
153
154#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
155#define CPU_ENABLE_SSE
156#endif
157
158#ifndef PMAP_SHPGPERPROC
159#define PMAP_SHPGPERPROC 200
160#endif
161
162#if defined(DIAGNOSTIC)
163#define PMAP_DIAGNOSTIC
164#endif
165
166#if !defined(PMAP_DIAGNOSTIC)
167#define PMAP_INLINE __inline
168#else
169#define PMAP_INLINE
170#endif
171
172/*
173 * Get PDEs and PTEs for user/kernel address space
174 */
175#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
176#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
177
178#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
179#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
180#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
181#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
182#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
183
184#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
185    atomic_clear_int((u_int *)(pte), PG_W))
186#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
187
188struct pmap kernel_pmap_store;
189LIST_HEAD(pmaplist, pmap);
190static struct pmaplist allpmaps;
191static struct mtx allpmaps_lock;
192
193vm_paddr_t avail_end;	/* PA of last available physical page */
194vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
195vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
196int pgeflag = 0;		/* PG_G or-in */
197int pseflag = 0;		/* PG_PS or-in */
198
199static int nkpt;
200vm_offset_t kernel_vm_end;
201extern u_int32_t KERNend;
202
203#ifdef PAE
204static uma_zone_t pdptzone;
205#endif
206
207/*
208 * Data for the pv entry allocation mechanism
209 */
210static uma_zone_t pvzone;
211static struct vm_object pvzone_obj;
212static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
213
214/*
215 * All those kernel PT submaps that BSD is so fond of
216 */
217struct sysmaps {
218	struct	mtx lock;
219	pt_entry_t *CMAP1;
220	pt_entry_t *CMAP2;
221	caddr_t	CADDR1;
222	caddr_t	CADDR2;
223};
224static struct sysmaps sysmaps_pcpu[MAXCPU];
225pt_entry_t *CMAP1 = 0;
226static pt_entry_t *CMAP3;
227caddr_t CADDR1 = 0, ptvmmap = 0;
228static caddr_t CADDR3;
229struct msgbuf *msgbufp = 0;
230
231/*
232 * Crashdump maps.
233 */
234static caddr_t crashdumpmap;
235
236#ifdef SMP
237extern pt_entry_t *SMPpt;
238#endif
239static pt_entry_t *PMAP1 = 0, *PMAP2;
240static pt_entry_t *PADDR1 = 0, *PADDR2;
241#ifdef SMP
242static int PMAP1cpu;
243static int PMAP1changedcpu;
244SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
245	   &PMAP1changedcpu, 0,
246	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
247#endif
248static int PMAP1changed;
249SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
250	   &PMAP1changed, 0,
251	   "Number of times pmap_pte_quick changed PMAP1");
252static int PMAP1unchanged;
253SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
254	   &PMAP1unchanged, 0,
255	   "Number of times pmap_pte_quick didn't change PMAP1");
256static struct mtx PMAP2mutex;
257
258static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
259static pv_entry_t get_pv_entry(pmap_t locked_pmap);
260static void	pmap_clear_ptes(vm_page_t m, int bit);
261
262static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
263static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
264static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
265					vm_offset_t va);
266static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
267
268static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
269
270static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
271static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m);
272static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
273static void pmap_pte_release(pt_entry_t *pte);
274static int pmap_unuse_pt(pmap_t, vm_offset_t);
275static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
276#ifdef PAE
277static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
278#endif
279
280CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
281CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
282
283/*
284 * Move the kernel virtual free pointer to the next
285 * 4MB.  This is used to help improve performance
286 * by using a large (4MB) page for much of the kernel
287 * (.text, .data, .bss)
288 */
289static vm_offset_t
290pmap_kmem_choose(vm_offset_t addr)
291{
292	vm_offset_t newaddr = addr;
293
294#ifndef DISABLE_PSE
295	if (cpu_feature & CPUID_PSE)
296		newaddr = (addr + PDRMASK) & ~PDRMASK;
297#endif
298	return newaddr;
299}
300
301/*
302 *	Bootstrap the system enough to run with virtual memory.
303 *
304 *	On the i386 this is called after mapping has already been enabled
305 *	and just syncs the pmap module with what has already been done.
306 *	[We can't call it easily with mapping off since the kernel is not
307 *	mapped with PA == VA, hence we would have to relocate every address
308 *	from the linked base (virtual) address "KERNBASE" to the actual
309 *	(physical) address starting relative to 0]
310 */
311void
312pmap_bootstrap(firstaddr, loadaddr)
313	vm_paddr_t firstaddr;
314	vm_paddr_t loadaddr;
315{
316	vm_offset_t va;
317	pt_entry_t *pte, *unused;
318	struct sysmaps *sysmaps;
319	int i;
320
321	/*
322	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
323	 * large. It should instead be correctly calculated in locore.s and
324	 * not based on 'first' (which is a physical address, not a virtual
325	 * address, for the start of unused physical memory). The kernel
326	 * page tables are NOT double mapped and thus should not be included
327	 * in this calculation.
328	 */
329	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
330	virtual_avail = pmap_kmem_choose(virtual_avail);
331
332	virtual_end = VM_MAX_KERNEL_ADDRESS;
333
334	/*
335	 * Initialize the kernel pmap (which is statically allocated).
336	 */
337	PMAP_LOCK_INIT(kernel_pmap);
338	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
339#ifdef PAE
340	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
341#endif
342	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
343	TAILQ_INIT(&kernel_pmap->pm_pvlist);
344	LIST_INIT(&allpmaps);
345	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
346	mtx_lock_spin(&allpmaps_lock);
347	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
348	mtx_unlock_spin(&allpmaps_lock);
349	nkpt = NKPT;
350
351	/*
352	 * Reserve some special page table entries/VA space for temporary
353	 * mapping of pages.
354	 */
355#define	SYSMAP(c, p, v, n)	\
356	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
357
358	va = virtual_avail;
359	pte = vtopte(va);
360
361	/*
362	 * CMAP1/CMAP2 are used for zeroing and copying pages.
363	 * CMAP3 is used for the idle process page zeroing.
364	 */
365	for (i = 0; i < MAXCPU; i++) {
366		sysmaps = &sysmaps_pcpu[i];
367		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
368		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
369		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
370	}
371	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
372	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
373	*CMAP3 = 0;
374
375	/*
376	 * Crashdump maps.
377	 */
378	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
379
380	/*
381	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
382	 */
383	SYSMAP(caddr_t, unused, ptvmmap, 1)
384
385	/*
386	 * msgbufp is used to map the system message buffer.
387	 */
388	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
389
390	/*
391	 * ptemap is used for pmap_pte_quick
392	 */
393	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
394	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
395
396	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
397
398	virtual_avail = va;
399
400	*CMAP1 = 0;
401
402#ifdef XBOX
403	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
404	 * an early stadium, we cannot yet neatly map video memory ... :-(
405	 * Better fixes are very welcome! */
406	if (!arch_i386_is_xbox)
407#endif
408	for (i = 0; i < NKPT; i++)
409		PTD[i] = 0;
410
411	/* Turn on PG_G on kernel page(s) */
412	pmap_set_pg();
413}
414
415/*
416 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
417 */
418void
419pmap_set_pg(void)
420{
421	pd_entry_t pdir;
422	pt_entry_t *pte;
423	vm_offset_t va, endva;
424	int i;
425
426	if (pgeflag == 0)
427		return;
428
429	i = KERNLOAD/NBPDR;
430	endva = KERNBASE + KERNend;
431
432	if (pseflag) {
433		va = KERNBASE + KERNLOAD;
434		while (va  < endva) {
435			pdir = kernel_pmap->pm_pdir[KPTDI+i];
436			pdir |= pgeflag;
437			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
438			invltlb();	/* Play it safe, invltlb() every time */
439			i++;
440			va += NBPDR;
441		}
442	} else {
443		va = (vm_offset_t)btext;
444		while (va < endva) {
445			pte = vtopte(va);
446			if (*pte)
447				*pte |= pgeflag;
448			invltlb();	/* Play it safe, invltlb() every time */
449			va += PAGE_SIZE;
450		}
451	}
452}
453
454/*
455 * Initialize a vm_page's machine-dependent fields.
456 */
457void
458pmap_page_init(vm_page_t m)
459{
460
461	TAILQ_INIT(&m->md.pv_list);
462	m->md.pv_list_count = 0;
463}
464
465#ifdef PAE
466
467static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
468
469static void *
470pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
471{
472	*flags = UMA_SLAB_PRIV;
473	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
474	    1, 0));
475}
476#endif
477
478/*
479 *	Initialize the pmap module.
480 *	Called by vm_init, to initialize any structures that the pmap
481 *	system needs to map virtual memory.
482 */
483void
484pmap_init(void)
485{
486	int shpgperproc = PMAP_SHPGPERPROC;
487
488	/*
489	 * Initialize the address space (zone) for the pv entries.  Set a
490	 * high water mark so that the system can recover from excessive
491	 * numbers of pv entries.
492	 */
493	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
494	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
495	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
496	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
497	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
498	pv_entry_high_water = 9 * (pv_entry_max / 10);
499	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
500
501#ifdef PAE
502	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
503	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
504	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
505	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
506#endif
507}
508
509void
510pmap_init2()
511{
512}
513
514
515/***************************************************
516 * Low level helper routines.....
517 ***************************************************/
518
519
520/*
521 * this routine defines the region(s) of memory that should
522 * not be tested for the modified bit.
523 */
524static PMAP_INLINE int
525pmap_track_modified(vm_offset_t va)
526{
527	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
528		return 1;
529	else
530		return 0;
531}
532
533#ifdef SMP
534/*
535 * For SMP, these functions have to use the IPI mechanism for coherence.
536 */
537void
538pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
539{
540	u_int cpumask;
541	u_int other_cpus;
542
543	if (smp_started) {
544		if (!(read_eflags() & PSL_I))
545			panic("%s: interrupts disabled", __func__);
546		mtx_lock_spin(&smp_ipi_mtx);
547	} else
548		critical_enter();
549	/*
550	 * We need to disable interrupt preemption but MUST NOT have
551	 * interrupts disabled here.
552	 * XXX we may need to hold schedlock to get a coherent pm_active
553	 * XXX critical sections disable interrupts again
554	 */
555	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
556		invlpg(va);
557		smp_invlpg(va);
558	} else {
559		cpumask = PCPU_GET(cpumask);
560		other_cpus = PCPU_GET(other_cpus);
561		if (pmap->pm_active & cpumask)
562			invlpg(va);
563		if (pmap->pm_active & other_cpus)
564			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
565	}
566	if (smp_started)
567		mtx_unlock_spin(&smp_ipi_mtx);
568	else
569		critical_exit();
570}
571
572void
573pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
574{
575	u_int cpumask;
576	u_int other_cpus;
577	vm_offset_t addr;
578
579	if (smp_started) {
580		if (!(read_eflags() & PSL_I))
581			panic("%s: interrupts disabled", __func__);
582		mtx_lock_spin(&smp_ipi_mtx);
583	} else
584		critical_enter();
585	/*
586	 * We need to disable interrupt preemption but MUST NOT have
587	 * interrupts disabled here.
588	 * XXX we may need to hold schedlock to get a coherent pm_active
589	 * XXX critical sections disable interrupts again
590	 */
591	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
592		for (addr = sva; addr < eva; addr += PAGE_SIZE)
593			invlpg(addr);
594		smp_invlpg_range(sva, eva);
595	} else {
596		cpumask = PCPU_GET(cpumask);
597		other_cpus = PCPU_GET(other_cpus);
598		if (pmap->pm_active & cpumask)
599			for (addr = sva; addr < eva; addr += PAGE_SIZE)
600				invlpg(addr);
601		if (pmap->pm_active & other_cpus)
602			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
603			    sva, eva);
604	}
605	if (smp_started)
606		mtx_unlock_spin(&smp_ipi_mtx);
607	else
608		critical_exit();
609}
610
611void
612pmap_invalidate_all(pmap_t pmap)
613{
614	u_int cpumask;
615	u_int other_cpus;
616
617	if (smp_started) {
618		if (!(read_eflags() & PSL_I))
619			panic("%s: interrupts disabled", __func__);
620		mtx_lock_spin(&smp_ipi_mtx);
621	} else
622		critical_enter();
623	/*
624	 * We need to disable interrupt preemption but MUST NOT have
625	 * interrupts disabled here.
626	 * XXX we may need to hold schedlock to get a coherent pm_active
627	 * XXX critical sections disable interrupts again
628	 */
629	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
630		invltlb();
631		smp_invltlb();
632	} else {
633		cpumask = PCPU_GET(cpumask);
634		other_cpus = PCPU_GET(other_cpus);
635		if (pmap->pm_active & cpumask)
636			invltlb();
637		if (pmap->pm_active & other_cpus)
638			smp_masked_invltlb(pmap->pm_active & other_cpus);
639	}
640	if (smp_started)
641		mtx_unlock_spin(&smp_ipi_mtx);
642	else
643		critical_exit();
644}
645#else /* !SMP */
646/*
647 * Normal, non-SMP, 486+ invalidation functions.
648 * We inline these within pmap.c for speed.
649 */
650PMAP_INLINE void
651pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
652{
653
654	if (pmap == kernel_pmap || pmap->pm_active)
655		invlpg(va);
656}
657
658PMAP_INLINE void
659pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
660{
661	vm_offset_t addr;
662
663	if (pmap == kernel_pmap || pmap->pm_active)
664		for (addr = sva; addr < eva; addr += PAGE_SIZE)
665			invlpg(addr);
666}
667
668PMAP_INLINE void
669pmap_invalidate_all(pmap_t pmap)
670{
671
672	if (pmap == kernel_pmap || pmap->pm_active)
673		invltlb();
674}
675#endif /* !SMP */
676
677/*
678 * Are we current address space or kernel?  N.B. We return FALSE when
679 * a pmap's page table is in use because a kernel thread is borrowing
680 * it.  The borrowed page table can change spontaneously, making any
681 * dependence on its continued use subject to a race condition.
682 */
683static __inline int
684pmap_is_current(pmap_t pmap)
685{
686
687	return (pmap == kernel_pmap ||
688		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
689	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
690}
691
692/*
693 * If the given pmap is not the current or kernel pmap, the returned pte must
694 * be released by passing it to pmap_pte_release().
695 */
696pt_entry_t *
697pmap_pte(pmap_t pmap, vm_offset_t va)
698{
699	pd_entry_t newpf;
700	pd_entry_t *pde;
701
702	pde = pmap_pde(pmap, va);
703	if (*pde & PG_PS)
704		return (pde);
705	if (*pde != 0) {
706		/* are we current address space or kernel? */
707		if (pmap_is_current(pmap))
708			return (vtopte(va));
709		mtx_lock(&PMAP2mutex);
710		newpf = *pde & PG_FRAME;
711		if ((*PMAP2 & PG_FRAME) != newpf) {
712			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
713			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
714		}
715		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
716	}
717	return (0);
718}
719
720/*
721 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
722 * being NULL.
723 */
724static __inline void
725pmap_pte_release(pt_entry_t *pte)
726{
727
728	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
729		mtx_unlock(&PMAP2mutex);
730}
731
732static __inline void
733invlcaddr(void *caddr)
734{
735
736	invlpg((u_int)caddr);
737}
738
739/*
740 * Super fast pmap_pte routine best used when scanning
741 * the pv lists.  This eliminates many coarse-grained
742 * invltlb calls.  Note that many of the pv list
743 * scans are across different pmaps.  It is very wasteful
744 * to do an entire invltlb for checking a single mapping.
745 *
746 * If the given pmap is not the current pmap, vm_page_queue_mtx
747 * must be held and curthread pinned to a CPU.
748 */
749static pt_entry_t *
750pmap_pte_quick(pmap_t pmap, vm_offset_t va)
751{
752	pd_entry_t newpf;
753	pd_entry_t *pde;
754
755	pde = pmap_pde(pmap, va);
756	if (*pde & PG_PS)
757		return (pde);
758	if (*pde != 0) {
759		/* are we current address space or kernel? */
760		if (pmap_is_current(pmap))
761			return (vtopte(va));
762		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
763		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
764		newpf = *pde & PG_FRAME;
765		if ((*PMAP1 & PG_FRAME) != newpf) {
766			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
767#ifdef SMP
768			PMAP1cpu = PCPU_GET(cpuid);
769#endif
770			invlcaddr(PADDR1);
771			PMAP1changed++;
772		} else
773#ifdef SMP
774		if (PMAP1cpu != PCPU_GET(cpuid)) {
775			PMAP1cpu = PCPU_GET(cpuid);
776			invlcaddr(PADDR1);
777			PMAP1changedcpu++;
778		} else
779#endif
780			PMAP1unchanged++;
781		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
782	}
783	return (0);
784}
785
786/*
787 *	Routine:	pmap_extract
788 *	Function:
789 *		Extract the physical page address associated
790 *		with the given map/virtual_address pair.
791 */
792vm_paddr_t
793pmap_extract(pmap_t pmap, vm_offset_t va)
794{
795	vm_paddr_t rtval;
796	pt_entry_t *pte;
797	pd_entry_t pde;
798
799	rtval = 0;
800	PMAP_LOCK(pmap);
801	pde = pmap->pm_pdir[va >> PDRSHIFT];
802	if (pde != 0) {
803		if ((pde & PG_PS) != 0) {
804			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
805			PMAP_UNLOCK(pmap);
806			return rtval;
807		}
808		pte = pmap_pte(pmap, va);
809		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
810		pmap_pte_release(pte);
811	}
812	PMAP_UNLOCK(pmap);
813	return (rtval);
814}
815
816/*
817 *	Routine:	pmap_extract_and_hold
818 *	Function:
819 *		Atomically extract and hold the physical page
820 *		with the given pmap and virtual address pair
821 *		if that mapping permits the given protection.
822 */
823vm_page_t
824pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
825{
826	pd_entry_t pde;
827	pt_entry_t pte;
828	vm_page_t m;
829
830	m = NULL;
831	vm_page_lock_queues();
832	PMAP_LOCK(pmap);
833	pde = *pmap_pde(pmap, va);
834	if (pde != 0) {
835		if (pde & PG_PS) {
836			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
837				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
838				    (va & PDRMASK));
839				vm_page_hold(m);
840			}
841		} else {
842			sched_pin();
843			pte = *pmap_pte_quick(pmap, va);
844			if (pte != 0 &&
845			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
846				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
847				vm_page_hold(m);
848			}
849			sched_unpin();
850		}
851	}
852	vm_page_unlock_queues();
853	PMAP_UNLOCK(pmap);
854	return (m);
855}
856
857/***************************************************
858 * Low level mapping routines.....
859 ***************************************************/
860
861/*
862 * Add a wired page to the kva.
863 * Note: not SMP coherent.
864 */
865PMAP_INLINE void
866pmap_kenter(vm_offset_t va, vm_paddr_t pa)
867{
868	pt_entry_t *pte;
869
870	pte = vtopte(va);
871	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
872}
873
874/*
875 * Remove a page from the kernel pagetables.
876 * Note: not SMP coherent.
877 */
878PMAP_INLINE void
879pmap_kremove(vm_offset_t va)
880{
881	pt_entry_t *pte;
882
883	pte = vtopte(va);
884	pte_clear(pte);
885}
886
887/*
888 *	Used to map a range of physical addresses into kernel
889 *	virtual address space.
890 *
891 *	The value passed in '*virt' is a suggested virtual address for
892 *	the mapping. Architectures which can support a direct-mapped
893 *	physical to virtual region can return the appropriate address
894 *	within that region, leaving '*virt' unchanged. Other
895 *	architectures should map the pages starting at '*virt' and
896 *	update '*virt' with the first usable address after the mapped
897 *	region.
898 */
899vm_offset_t
900pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
901{
902	vm_offset_t va, sva;
903
904	va = sva = *virt;
905	while (start < end) {
906		pmap_kenter(va, start);
907		va += PAGE_SIZE;
908		start += PAGE_SIZE;
909	}
910	pmap_invalidate_range(kernel_pmap, sva, va);
911	*virt = va;
912	return (sva);
913}
914
915
916/*
917 * Add a list of wired pages to the kva
918 * this routine is only used for temporary
919 * kernel mappings that do not need to have
920 * page modification or references recorded.
921 * Note that old mappings are simply written
922 * over.  The page *must* be wired.
923 * Note: SMP coherent.  Uses a ranged shootdown IPI.
924 */
925void
926pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
927{
928	vm_offset_t va;
929
930	va = sva;
931	while (count-- > 0) {
932		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
933		va += PAGE_SIZE;
934		m++;
935	}
936	pmap_invalidate_range(kernel_pmap, sva, va);
937}
938
939/*
940 * This routine tears out page mappings from the
941 * kernel -- it is meant only for temporary mappings.
942 * Note: SMP coherent.  Uses a ranged shootdown IPI.
943 */
944void
945pmap_qremove(vm_offset_t sva, int count)
946{
947	vm_offset_t va;
948
949	va = sva;
950	while (count-- > 0) {
951		pmap_kremove(va);
952		va += PAGE_SIZE;
953	}
954	pmap_invalidate_range(kernel_pmap, sva, va);
955}
956
957/***************************************************
958 * Page table page management routines.....
959 ***************************************************/
960
961/*
962 * This routine unholds page table pages, and if the hold count
963 * drops to zero, then it decrements the wire count.
964 */
965static PMAP_INLINE int
966pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
967{
968
969	--m->wire_count;
970	if (m->wire_count == 0)
971		return _pmap_unwire_pte_hold(pmap, m);
972	else
973		return 0;
974}
975
976static int
977_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
978{
979	vm_offset_t pteva;
980
981	/*
982	 * unmap the page table page
983	 */
984	pmap->pm_pdir[m->pindex] = 0;
985	--pmap->pm_stats.resident_count;
986
987	/*
988	 * Do an invltlb to make the invalidated mapping
989	 * take effect immediately.
990	 */
991	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
992	pmap_invalidate_page(pmap, pteva);
993
994	vm_page_free_zero(m);
995	atomic_subtract_int(&cnt.v_wire_count, 1);
996	return 1;
997}
998
999/*
1000 * After removing a page table entry, this routine is used to
1001 * conditionally free the page, and manage the hold/wire counts.
1002 */
1003static int
1004pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
1005{
1006	pd_entry_t ptepde;
1007	vm_page_t mpte;
1008
1009	if (va >= VM_MAXUSER_ADDRESS)
1010		return 0;
1011	ptepde = *pmap_pde(pmap, va);
1012	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1013	return pmap_unwire_pte_hold(pmap, mpte);
1014}
1015
1016void
1017pmap_pinit0(pmap)
1018	struct pmap *pmap;
1019{
1020
1021	PMAP_LOCK_INIT(pmap);
1022	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1023#ifdef PAE
1024	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1025#endif
1026	pmap->pm_active = 0;
1027	PCPU_SET(curpmap, pmap);
1028	TAILQ_INIT(&pmap->pm_pvlist);
1029	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1030	mtx_lock_spin(&allpmaps_lock);
1031	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1032	mtx_unlock_spin(&allpmaps_lock);
1033}
1034
1035/*
1036 * Initialize a preallocated and zeroed pmap structure,
1037 * such as one in a vmspace structure.
1038 */
1039void
1040pmap_pinit(pmap)
1041	register struct pmap *pmap;
1042{
1043	vm_page_t m, ptdpg[NPGPTD];
1044	vm_paddr_t pa;
1045	static int color;
1046	int i;
1047
1048	PMAP_LOCK_INIT(pmap);
1049
1050	/*
1051	 * No need to allocate page table space yet but we do need a valid
1052	 * page directory table.
1053	 */
1054	if (pmap->pm_pdir == NULL) {
1055		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1056		    NBPTD);
1057#ifdef PAE
1058		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1059		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1060		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1061		    ("pmap_pinit: pdpt misaligned"));
1062		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1063		    ("pmap_pinit: pdpt above 4g"));
1064#endif
1065	}
1066
1067	/*
1068	 * allocate the page directory page(s)
1069	 */
1070	for (i = 0; i < NPGPTD;) {
1071		m = vm_page_alloc(NULL, color++,
1072		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1073		    VM_ALLOC_ZERO);
1074		if (m == NULL)
1075			VM_WAIT;
1076		else {
1077			ptdpg[i++] = m;
1078		}
1079	}
1080
1081	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1082
1083	for (i = 0; i < NPGPTD; i++) {
1084		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1085			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1086	}
1087
1088	mtx_lock_spin(&allpmaps_lock);
1089	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1090	mtx_unlock_spin(&allpmaps_lock);
1091	/* Wire in kernel global address entries. */
1092	/* XXX copies current process, does not fill in MPPTDI */
1093	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1094#ifdef SMP
1095	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1096#endif
1097
1098	/* install self-referential address mapping entry(s) */
1099	for (i = 0; i < NPGPTD; i++) {
1100		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1101		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1102#ifdef PAE
1103		pmap->pm_pdpt[i] = pa | PG_V;
1104#endif
1105	}
1106
1107	pmap->pm_active = 0;
1108	TAILQ_INIT(&pmap->pm_pvlist);
1109	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1110}
1111
1112/*
1113 * this routine is called if the page table page is not
1114 * mapped correctly.
1115 */
1116static vm_page_t
1117_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1118{
1119	vm_paddr_t ptepa;
1120	vm_page_t m;
1121
1122	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1123	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1124	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1125
1126	/*
1127	 * Allocate a page table page.
1128	 */
1129	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1130	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1131		if (flags & M_WAITOK) {
1132			PMAP_UNLOCK(pmap);
1133			vm_page_unlock_queues();
1134			VM_WAIT;
1135			vm_page_lock_queues();
1136			PMAP_LOCK(pmap);
1137		}
1138
1139		/*
1140		 * Indicate the need to retry.  While waiting, the page table
1141		 * page may have been allocated.
1142		 */
1143		return (NULL);
1144	}
1145	if ((m->flags & PG_ZERO) == 0)
1146		pmap_zero_page(m);
1147
1148	/*
1149	 * Map the pagetable page into the process address space, if
1150	 * it isn't already there.
1151	 */
1152
1153	pmap->pm_stats.resident_count++;
1154
1155	ptepa = VM_PAGE_TO_PHYS(m);
1156	pmap->pm_pdir[ptepindex] =
1157		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1158
1159	return m;
1160}
1161
1162static vm_page_t
1163pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1164{
1165	unsigned ptepindex;
1166	pd_entry_t ptepa;
1167	vm_page_t m;
1168
1169	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1170	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1171	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1172
1173	/*
1174	 * Calculate pagetable page index
1175	 */
1176	ptepindex = va >> PDRSHIFT;
1177retry:
1178	/*
1179	 * Get the page directory entry
1180	 */
1181	ptepa = pmap->pm_pdir[ptepindex];
1182
1183	/*
1184	 * This supports switching from a 4MB page to a
1185	 * normal 4K page.
1186	 */
1187	if (ptepa & PG_PS) {
1188		pmap->pm_pdir[ptepindex] = 0;
1189		ptepa = 0;
1190		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1191		pmap_invalidate_all(kernel_pmap);
1192	}
1193
1194	/*
1195	 * If the page table page is mapped, we just increment the
1196	 * hold count, and activate it.
1197	 */
1198	if (ptepa) {
1199		m = PHYS_TO_VM_PAGE(ptepa);
1200		m->wire_count++;
1201	} else {
1202		/*
1203		 * Here if the pte page isn't mapped, or if it has
1204		 * been deallocated.
1205		 */
1206		m = _pmap_allocpte(pmap, ptepindex, flags);
1207		if (m == NULL && (flags & M_WAITOK))
1208			goto retry;
1209	}
1210	return (m);
1211}
1212
1213
1214/***************************************************
1215* Pmap allocation/deallocation routines.
1216 ***************************************************/
1217
1218#ifdef SMP
1219/*
1220 * Deal with a SMP shootdown of other users of the pmap that we are
1221 * trying to dispose of.  This can be a bit hairy.
1222 */
1223static u_int *lazymask;
1224static u_int lazyptd;
1225static volatile u_int lazywait;
1226
1227void pmap_lazyfix_action(void);
1228
1229void
1230pmap_lazyfix_action(void)
1231{
1232	u_int mymask = PCPU_GET(cpumask);
1233
1234	if (rcr3() == lazyptd)
1235		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1236	atomic_clear_int(lazymask, mymask);
1237	atomic_store_rel_int(&lazywait, 1);
1238}
1239
1240static void
1241pmap_lazyfix_self(u_int mymask)
1242{
1243
1244	if (rcr3() == lazyptd)
1245		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1246	atomic_clear_int(lazymask, mymask);
1247}
1248
1249
1250static void
1251pmap_lazyfix(pmap_t pmap)
1252{
1253	u_int mymask;
1254	u_int mask;
1255	register u_int spins;
1256
1257	while ((mask = pmap->pm_active) != 0) {
1258		spins = 50000000;
1259		mask = mask & -mask;	/* Find least significant set bit */
1260		mtx_lock_spin(&smp_ipi_mtx);
1261#ifdef PAE
1262		lazyptd = vtophys(pmap->pm_pdpt);
1263#else
1264		lazyptd = vtophys(pmap->pm_pdir);
1265#endif
1266		mymask = PCPU_GET(cpumask);
1267		if (mask == mymask) {
1268			lazymask = &pmap->pm_active;
1269			pmap_lazyfix_self(mymask);
1270		} else {
1271			atomic_store_rel_int((u_int *)&lazymask,
1272			    (u_int)&pmap->pm_active);
1273			atomic_store_rel_int(&lazywait, 0);
1274			ipi_selected(mask, IPI_LAZYPMAP);
1275			while (lazywait == 0) {
1276				ia32_pause();
1277				if (--spins == 0)
1278					break;
1279			}
1280		}
1281		mtx_unlock_spin(&smp_ipi_mtx);
1282		if (spins == 0)
1283			printf("pmap_lazyfix: spun for 50000000\n");
1284	}
1285}
1286
1287#else	/* SMP */
1288
1289/*
1290 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1291 * unlikely to have to even execute this code, including the fact
1292 * that the cleanup is deferred until the parent does a wait(2), which
1293 * means that another userland process has run.
1294 */
1295static void
1296pmap_lazyfix(pmap_t pmap)
1297{
1298	u_int cr3;
1299
1300	cr3 = vtophys(pmap->pm_pdir);
1301	if (cr3 == rcr3()) {
1302		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1303		pmap->pm_active &= ~(PCPU_GET(cpumask));
1304	}
1305}
1306#endif	/* SMP */
1307
1308/*
1309 * Release any resources held by the given physical map.
1310 * Called when a pmap initialized by pmap_pinit is being released.
1311 * Should only be called if the map contains no valid mappings.
1312 */
1313void
1314pmap_release(pmap_t pmap)
1315{
1316	vm_page_t m, ptdpg[NPGPTD];
1317	int i;
1318
1319	KASSERT(pmap->pm_stats.resident_count == 0,
1320	    ("pmap_release: pmap resident count %ld != 0",
1321	    pmap->pm_stats.resident_count));
1322
1323	pmap_lazyfix(pmap);
1324	mtx_lock_spin(&allpmaps_lock);
1325	LIST_REMOVE(pmap, pm_list);
1326	mtx_unlock_spin(&allpmaps_lock);
1327
1328	for (i = 0; i < NPGPTD; i++)
1329		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1330
1331	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1332	    sizeof(*pmap->pm_pdir));
1333#ifdef SMP
1334	pmap->pm_pdir[MPPTDI] = 0;
1335#endif
1336
1337	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1338
1339	vm_page_lock_queues();
1340	for (i = 0; i < NPGPTD; i++) {
1341		m = ptdpg[i];
1342#ifdef PAE
1343		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1344		    ("pmap_release: got wrong ptd page"));
1345#endif
1346		m->wire_count--;
1347		atomic_subtract_int(&cnt.v_wire_count, 1);
1348		vm_page_free_zero(m);
1349	}
1350	vm_page_unlock_queues();
1351	PMAP_LOCK_DESTROY(pmap);
1352}
1353
1354static int
1355kvm_size(SYSCTL_HANDLER_ARGS)
1356{
1357	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1358
1359	return sysctl_handle_long(oidp, &ksize, 0, req);
1360}
1361SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1362    0, 0, kvm_size, "IU", "Size of KVM");
1363
1364static int
1365kvm_free(SYSCTL_HANDLER_ARGS)
1366{
1367	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1368
1369	return sysctl_handle_long(oidp, &kfree, 0, req);
1370}
1371SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1372    0, 0, kvm_free, "IU", "Amount of KVM free");
1373
1374/*
1375 * grow the number of kernel page table entries, if needed
1376 */
1377void
1378pmap_growkernel(vm_offset_t addr)
1379{
1380	struct pmap *pmap;
1381	vm_paddr_t ptppaddr;
1382	vm_page_t nkpg;
1383	pd_entry_t newpdir;
1384	pt_entry_t *pde;
1385
1386	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1387	if (kernel_vm_end == 0) {
1388		kernel_vm_end = KERNBASE;
1389		nkpt = 0;
1390		while (pdir_pde(PTD, kernel_vm_end)) {
1391			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1392			nkpt++;
1393		}
1394	}
1395	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1396	while (kernel_vm_end < addr) {
1397		if (pdir_pde(PTD, kernel_vm_end)) {
1398			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1399			continue;
1400		}
1401
1402		/*
1403		 * This index is bogus, but out of the way
1404		 */
1405		nkpg = vm_page_alloc(NULL, nkpt,
1406		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1407		if (!nkpg)
1408			panic("pmap_growkernel: no memory to grow kernel");
1409
1410		nkpt++;
1411
1412		pmap_zero_page(nkpg);
1413		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1414		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1415		pdir_pde(PTD, kernel_vm_end) = newpdir;
1416
1417		mtx_lock_spin(&allpmaps_lock);
1418		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1419			pde = pmap_pde(pmap, kernel_vm_end);
1420			pde_store(pde, newpdir);
1421		}
1422		mtx_unlock_spin(&allpmaps_lock);
1423		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1424	}
1425}
1426
1427
1428/***************************************************
1429 * page management routines.
1430 ***************************************************/
1431
1432/*
1433 * free the pv_entry back to the free list
1434 */
1435static PMAP_INLINE void
1436free_pv_entry(pv_entry_t pv)
1437{
1438	pv_entry_count--;
1439	uma_zfree(pvzone, pv);
1440}
1441
1442/*
1443 * get a new pv_entry, allocating a block from the system
1444 * when needed.
1445 */
1446static pv_entry_t
1447get_pv_entry(pmap_t locked_pmap)
1448{
1449	static const struct timeval printinterval = { 60, 0 };
1450	static struct timeval lastprint;
1451	struct vpgqueues *vpq;
1452	pmap_t pmap;
1453	pt_entry_t *pte, tpte;
1454	pv_entry_t allocated_pv, next_pv, pv;
1455	vm_offset_t va;
1456	vm_page_t m;
1457
1458	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1459	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1460	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1461	if (allocated_pv != NULL) {
1462		pv_entry_count++;
1463		if (pv_entry_count > pv_entry_high_water)
1464			pagedaemon_wakeup();
1465		else
1466			return (allocated_pv);
1467	}
1468
1469	/*
1470	 * Reclaim pv entries: At first, destroy mappings to inactive
1471	 * pages.  After that, if a pv entry is still needed, destroy
1472	 * mappings to active pages.
1473	 */
1474	if (ratecheck(&lastprint, &printinterval))
1475		printf("Approaching the limit on PV entries, "
1476		    "increase the vm.pmap.shpgperproc tunable.\n");
1477	vpq = &vm_page_queues[PQ_INACTIVE];
1478retry:
1479	sched_pin();
1480	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1481		if (m->hold_count || m->busy || (m->flags & PG_BUSY))
1482			continue;
1483		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1484			va = pv->pv_va;
1485			pmap = pv->pv_pmap;
1486			if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1487				continue;
1488			pmap->pm_stats.resident_count--;
1489			pte = pmap_pte_quick(pmap, va);
1490			tpte = pte_load_clear(pte);
1491			KASSERT((tpte & PG_W) == 0,
1492			    ("get_pv_entry: wired pte %#jx", (uintmax_t)tpte));
1493			if (tpte & PG_A)
1494				vm_page_flag_set(m, PG_REFERENCED);
1495			if (tpte & PG_M) {
1496				KASSERT((tpte & PG_RW),
1497	("get_pv_entry: modified page not writable: va: %#x, pte: %#jx",
1498				    va, (uintmax_t)tpte));
1499				if (pmap_track_modified(va))
1500					vm_page_dirty(m);
1501			}
1502			pmap_invalidate_page(pmap, va);
1503			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1504			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1505			if (TAILQ_EMPTY(&m->md.pv_list))
1506				vm_page_flag_clear(m, PG_WRITEABLE);
1507			m->md.pv_list_count--;
1508			pmap_unuse_pt(pmap, va);
1509			if (pmap != locked_pmap)
1510				PMAP_UNLOCK(pmap);
1511			if (allocated_pv == NULL)
1512				allocated_pv = pv;
1513			else
1514				free_pv_entry(pv);
1515		}
1516	}
1517	sched_unpin();
1518	if (allocated_pv == NULL) {
1519		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1520			vpq = &vm_page_queues[PQ_ACTIVE];
1521			goto retry;
1522		}
1523		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1524	}
1525	return (allocated_pv);
1526}
1527
1528static void
1529pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1530{
1531	pv_entry_t pv;
1532
1533	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1534	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1535	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1536		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1537			if (pmap == pv->pv_pmap && va == pv->pv_va)
1538				break;
1539		}
1540	} else {
1541		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1542			if (va == pv->pv_va)
1543				break;
1544		}
1545	}
1546	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1547	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1548	m->md.pv_list_count--;
1549	if (TAILQ_EMPTY(&m->md.pv_list))
1550		vm_page_flag_clear(m, PG_WRITEABLE);
1551	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1552	free_pv_entry(pv);
1553}
1554
1555/*
1556 * Create a pv entry for page at pa for
1557 * (pmap, va).
1558 */
1559static void
1560pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1561{
1562	pv_entry_t pv;
1563
1564	pv = get_pv_entry(pmap);
1565	pv->pv_va = va;
1566	pv->pv_pmap = pmap;
1567
1568	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1569	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1570	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1571	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1572	m->md.pv_list_count++;
1573}
1574
1575/*
1576 * pmap_remove_pte: do the things to unmap a page in a process
1577 */
1578static int
1579pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1580{
1581	pt_entry_t oldpte;
1582	vm_page_t m;
1583
1584	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1585	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1586	oldpte = pte_load_clear(ptq);
1587	if (oldpte & PG_W)
1588		pmap->pm_stats.wired_count -= 1;
1589	/*
1590	 * Machines that don't support invlpg, also don't support
1591	 * PG_G.
1592	 */
1593	if (oldpte & PG_G)
1594		pmap_invalidate_page(kernel_pmap, va);
1595	pmap->pm_stats.resident_count -= 1;
1596	if (oldpte & PG_MANAGED) {
1597		m = PHYS_TO_VM_PAGE(oldpte);
1598		if (oldpte & PG_M) {
1599			KASSERT((oldpte & PG_RW),
1600	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1601			    va, (uintmax_t)oldpte));
1602			if (pmap_track_modified(va))
1603				vm_page_dirty(m);
1604		}
1605		if (oldpte & PG_A)
1606			vm_page_flag_set(m, PG_REFERENCED);
1607		pmap_remove_entry(pmap, m, va);
1608	}
1609	return (pmap_unuse_pt(pmap, va));
1610}
1611
1612/*
1613 * Remove a single page from a process address space
1614 */
1615static void
1616pmap_remove_page(pmap_t pmap, vm_offset_t va)
1617{
1618	pt_entry_t *pte;
1619
1620	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1621	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1622	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1623	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1624		return;
1625	pmap_remove_pte(pmap, pte, va);
1626	pmap_invalidate_page(pmap, va);
1627}
1628
1629/*
1630 *	Remove the given range of addresses from the specified map.
1631 *
1632 *	It is assumed that the start and end are properly
1633 *	rounded to the page size.
1634 */
1635void
1636pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1637{
1638	vm_offset_t pdnxt;
1639	pd_entry_t ptpaddr;
1640	pt_entry_t *pte;
1641	int anyvalid;
1642
1643	/*
1644	 * Perform an unsynchronized read.  This is, however, safe.
1645	 */
1646	if (pmap->pm_stats.resident_count == 0)
1647		return;
1648
1649	anyvalid = 0;
1650
1651	vm_page_lock_queues();
1652	sched_pin();
1653	PMAP_LOCK(pmap);
1654
1655	/*
1656	 * special handling of removing one page.  a very
1657	 * common operation and easy to short circuit some
1658	 * code.
1659	 */
1660	if ((sva + PAGE_SIZE == eva) &&
1661	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1662		pmap_remove_page(pmap, sva);
1663		goto out;
1664	}
1665
1666	for (; sva < eva; sva = pdnxt) {
1667		unsigned pdirindex;
1668
1669		/*
1670		 * Calculate index for next page table.
1671		 */
1672		pdnxt = (sva + NBPDR) & ~PDRMASK;
1673		if (pmap->pm_stats.resident_count == 0)
1674			break;
1675
1676		pdirindex = sva >> PDRSHIFT;
1677		ptpaddr = pmap->pm_pdir[pdirindex];
1678
1679		/*
1680		 * Weed out invalid mappings. Note: we assume that the page
1681		 * directory table is always allocated, and in kernel virtual.
1682		 */
1683		if (ptpaddr == 0)
1684			continue;
1685
1686		/*
1687		 * Check for large page.
1688		 */
1689		if ((ptpaddr & PG_PS) != 0) {
1690			pmap->pm_pdir[pdirindex] = 0;
1691			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1692			anyvalid = 1;
1693			continue;
1694		}
1695
1696		/*
1697		 * Limit our scan to either the end of the va represented
1698		 * by the current page table page, or to the end of the
1699		 * range being removed.
1700		 */
1701		if (pdnxt > eva)
1702			pdnxt = eva;
1703
1704		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1705		    sva += PAGE_SIZE) {
1706			if (*pte == 0)
1707				continue;
1708			anyvalid = 1;
1709			if (pmap_remove_pte(pmap, pte, sva))
1710				break;
1711		}
1712	}
1713out:
1714	sched_unpin();
1715	vm_page_unlock_queues();
1716	if (anyvalid)
1717		pmap_invalidate_all(pmap);
1718	PMAP_UNLOCK(pmap);
1719}
1720
1721/*
1722 *	Routine:	pmap_remove_all
1723 *	Function:
1724 *		Removes this physical page from
1725 *		all physical maps in which it resides.
1726 *		Reflects back modify bits to the pager.
1727 *
1728 *	Notes:
1729 *		Original versions of this routine were very
1730 *		inefficient because they iteratively called
1731 *		pmap_remove (slow...)
1732 */
1733
1734void
1735pmap_remove_all(vm_page_t m)
1736{
1737	register pv_entry_t pv;
1738	pt_entry_t *pte, tpte;
1739
1740#if defined(PMAP_DIAGNOSTIC)
1741	/*
1742	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1743	 */
1744	if (m->flags & PG_FICTITIOUS) {
1745		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1746		    VM_PAGE_TO_PHYS(m));
1747	}
1748#endif
1749	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1750	sched_pin();
1751	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1752		PMAP_LOCK(pv->pv_pmap);
1753		pv->pv_pmap->pm_stats.resident_count--;
1754		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1755		tpte = pte_load_clear(pte);
1756		if (tpte & PG_W)
1757			pv->pv_pmap->pm_stats.wired_count--;
1758		if (tpte & PG_A)
1759			vm_page_flag_set(m, PG_REFERENCED);
1760
1761		/*
1762		 * Update the vm_page_t clean and reference bits.
1763		 */
1764		if (tpte & PG_M) {
1765			KASSERT((tpte & PG_RW),
1766	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
1767			    pv->pv_va, (uintmax_t)tpte));
1768			if (pmap_track_modified(pv->pv_va))
1769				vm_page_dirty(m);
1770		}
1771		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1772		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1773		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1774		m->md.pv_list_count--;
1775		pmap_unuse_pt(pv->pv_pmap, pv->pv_va);
1776		PMAP_UNLOCK(pv->pv_pmap);
1777		free_pv_entry(pv);
1778	}
1779	vm_page_flag_clear(m, PG_WRITEABLE);
1780	sched_unpin();
1781}
1782
1783/*
1784 *	Set the physical protection on the
1785 *	specified range of this map as requested.
1786 */
1787void
1788pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1789{
1790	vm_offset_t pdnxt;
1791	pd_entry_t ptpaddr;
1792	pt_entry_t *pte;
1793	int anychanged;
1794
1795	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1796		pmap_remove(pmap, sva, eva);
1797		return;
1798	}
1799
1800	if (prot & VM_PROT_WRITE)
1801		return;
1802
1803	anychanged = 0;
1804
1805	vm_page_lock_queues();
1806	sched_pin();
1807	PMAP_LOCK(pmap);
1808	for (; sva < eva; sva = pdnxt) {
1809		unsigned obits, pbits, pdirindex;
1810
1811		pdnxt = (sva + NBPDR) & ~PDRMASK;
1812
1813		pdirindex = sva >> PDRSHIFT;
1814		ptpaddr = pmap->pm_pdir[pdirindex];
1815
1816		/*
1817		 * Weed out invalid mappings. Note: we assume that the page
1818		 * directory table is always allocated, and in kernel virtual.
1819		 */
1820		if (ptpaddr == 0)
1821			continue;
1822
1823		/*
1824		 * Check for large page.
1825		 */
1826		if ((ptpaddr & PG_PS) != 0) {
1827			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1828			anychanged = 1;
1829			continue;
1830		}
1831
1832		if (pdnxt > eva)
1833			pdnxt = eva;
1834
1835		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
1836		    sva += PAGE_SIZE) {
1837			vm_page_t m;
1838
1839retry:
1840			/*
1841			 * Regardless of whether a pte is 32 or 64 bits in
1842			 * size, PG_RW, PG_A, and PG_M are among the least
1843			 * significant 32 bits.
1844			 */
1845			obits = pbits = *(u_int *)pte;
1846			if (pbits & PG_MANAGED) {
1847				m = NULL;
1848				if (pbits & PG_A) {
1849					m = PHYS_TO_VM_PAGE(*pte);
1850					vm_page_flag_set(m, PG_REFERENCED);
1851					pbits &= ~PG_A;
1852				}
1853				if ((pbits & PG_M) != 0 &&
1854				    pmap_track_modified(sva)) {
1855					if (m == NULL)
1856						m = PHYS_TO_VM_PAGE(*pte);
1857					vm_page_dirty(m);
1858				}
1859			}
1860
1861			pbits &= ~(PG_RW | PG_M);
1862
1863			if (pbits != obits) {
1864				if (!atomic_cmpset_int((u_int *)pte, obits,
1865				    pbits))
1866					goto retry;
1867				if (obits & PG_G)
1868					pmap_invalidate_page(pmap, sva);
1869				else
1870					anychanged = 1;
1871			}
1872		}
1873	}
1874	sched_unpin();
1875	vm_page_unlock_queues();
1876	if (anychanged)
1877		pmap_invalidate_all(pmap);
1878	PMAP_UNLOCK(pmap);
1879}
1880
1881/*
1882 *	Insert the given physical page (p) at
1883 *	the specified virtual address (v) in the
1884 *	target physical map with the protection requested.
1885 *
1886 *	If specified, the page will be wired down, meaning
1887 *	that the related pte can not be reclaimed.
1888 *
1889 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1890 *	or lose information.  That is, this routine must actually
1891 *	insert this page into the given map NOW.
1892 */
1893void
1894pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1895	   boolean_t wired)
1896{
1897	vm_paddr_t pa;
1898	register pt_entry_t *pte;
1899	vm_paddr_t opa;
1900	pt_entry_t origpte, newpte;
1901	vm_page_t mpte, om;
1902	boolean_t invlva;
1903
1904	va &= PG_FRAME;
1905#ifdef PMAP_DIAGNOSTIC
1906	if (va > VM_MAX_KERNEL_ADDRESS)
1907		panic("pmap_enter: toobig");
1908	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1909		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1910#endif
1911
1912	mpte = NULL;
1913
1914	vm_page_lock_queues();
1915	PMAP_LOCK(pmap);
1916	sched_pin();
1917
1918	/*
1919	 * In the case that a page table page is not
1920	 * resident, we are creating it here.
1921	 */
1922	if (va < VM_MAXUSER_ADDRESS) {
1923		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1924	}
1925#if 0 && defined(PMAP_DIAGNOSTIC)
1926	else {
1927		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1928		origpte = *pdeaddr;
1929		if ((origpte & PG_V) == 0) {
1930			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1931				pmap->pm_pdir[PTDPTDI], origpte, va);
1932		}
1933	}
1934#endif
1935
1936	pte = pmap_pte_quick(pmap, va);
1937
1938	/*
1939	 * Page Directory table entry not valid, we need a new PT page
1940	 */
1941	if (pte == NULL) {
1942		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1943			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1944	}
1945
1946	pa = VM_PAGE_TO_PHYS(m);
1947	om = NULL;
1948	origpte = *pte;
1949	opa = origpte & PG_FRAME;
1950
1951	if (origpte & PG_PS) {
1952		/*
1953		 * Yes, I know this will truncate upper address bits for PAE,
1954		 * but I'm actually more interested in the lower bits
1955		 */
1956		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1957		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1958		panic("pmap_enter: attempted pmap_enter on 4MB page");
1959	}
1960
1961	/*
1962	 * Mapping has not changed, must be protection or wiring change.
1963	 */
1964	if (origpte && (opa == pa)) {
1965		/*
1966		 * Wiring change, just update stats. We don't worry about
1967		 * wiring PT pages as they remain resident as long as there
1968		 * are valid mappings in them. Hence, if a user page is wired,
1969		 * the PT page will be also.
1970		 */
1971		if (wired && ((origpte & PG_W) == 0))
1972			pmap->pm_stats.wired_count++;
1973		else if (!wired && (origpte & PG_W))
1974			pmap->pm_stats.wired_count--;
1975
1976		/*
1977		 * Remove extra pte reference
1978		 */
1979		if (mpte)
1980			mpte->wire_count--;
1981
1982		/*
1983		 * We might be turning off write access to the page,
1984		 * so we go ahead and sense modify status.
1985		 */
1986		if (origpte & PG_MANAGED) {
1987			om = m;
1988			pa |= PG_MANAGED;
1989		}
1990		goto validate;
1991	}
1992	/*
1993	 * Mapping has changed, invalidate old range and fall through to
1994	 * handle validating new mapping.
1995	 */
1996	if (opa) {
1997		if (origpte & PG_W)
1998			pmap->pm_stats.wired_count--;
1999		if (origpte & PG_MANAGED) {
2000			om = PHYS_TO_VM_PAGE(opa);
2001			pmap_remove_entry(pmap, om, va);
2002		}
2003		if (mpte != NULL) {
2004			mpte->wire_count--;
2005			KASSERT(mpte->wire_count > 0,
2006			    ("pmap_enter: missing reference to page table page,"
2007			     " va: 0x%x", va));
2008		}
2009	} else
2010		pmap->pm_stats.resident_count++;
2011
2012	/*
2013	 * Enter on the PV list if part of our managed memory.
2014	 */
2015	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2016		pmap_insert_entry(pmap, va, m);
2017		pa |= PG_MANAGED;
2018	}
2019
2020	/*
2021	 * Increment counters
2022	 */
2023	if (wired)
2024		pmap->pm_stats.wired_count++;
2025
2026validate:
2027	/*
2028	 * Now validate mapping with desired protection/wiring.
2029	 */
2030	newpte = (pt_entry_t)(pa | PG_V);
2031	if ((prot & VM_PROT_WRITE) != 0)
2032		newpte |= PG_RW;
2033	if (wired)
2034		newpte |= PG_W;
2035	if (va < VM_MAXUSER_ADDRESS)
2036		newpte |= PG_U;
2037	if (pmap == kernel_pmap)
2038		newpte |= pgeflag;
2039
2040	/*
2041	 * if the mapping or permission bits are different, we need
2042	 * to update the pte.
2043	 */
2044	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2045		if (origpte & PG_V) {
2046			invlva = FALSE;
2047			origpte = pte_load_store(pte, newpte | PG_A);
2048			if (origpte & PG_A) {
2049				if (origpte & PG_MANAGED)
2050					vm_page_flag_set(om, PG_REFERENCED);
2051				if (opa != VM_PAGE_TO_PHYS(m))
2052					invlva = TRUE;
2053			}
2054			if (origpte & PG_M) {
2055				KASSERT((origpte & PG_RW),
2056	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2057				    va, (uintmax_t)origpte));
2058				if ((origpte & PG_MANAGED) &&
2059				    pmap_track_modified(va))
2060					vm_page_dirty(om);
2061				if ((prot & VM_PROT_WRITE) == 0)
2062					invlva = TRUE;
2063			}
2064			if (invlva)
2065				pmap_invalidate_page(pmap, va);
2066		} else
2067			pte_store(pte, newpte | PG_A);
2068	}
2069	sched_unpin();
2070	vm_page_unlock_queues();
2071	PMAP_UNLOCK(pmap);
2072}
2073
2074/*
2075 * this code makes some *MAJOR* assumptions:
2076 * 1. Current pmap & pmap exists.
2077 * 2. Not wired.
2078 * 3. Read access.
2079 * 4. No page table pages.
2080 * but is *MUCH* faster than pmap_enter...
2081 */
2082
2083vm_page_t
2084pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2085    vm_page_t mpte)
2086{
2087	pt_entry_t *pte;
2088	vm_paddr_t pa;
2089
2090	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2091	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2092	PMAP_LOCK(pmap);
2093
2094	/*
2095	 * In the case that a page table page is not
2096	 * resident, we are creating it here.
2097	 */
2098	if (va < VM_MAXUSER_ADDRESS) {
2099		unsigned ptepindex;
2100		pd_entry_t ptepa;
2101
2102		/*
2103		 * Calculate pagetable page index
2104		 */
2105		ptepindex = va >> PDRSHIFT;
2106		if (mpte && (mpte->pindex == ptepindex)) {
2107			mpte->wire_count++;
2108		} else {
2109retry:
2110			/*
2111			 * Get the page directory entry
2112			 */
2113			ptepa = pmap->pm_pdir[ptepindex];
2114
2115			/*
2116			 * If the page table page is mapped, we just increment
2117			 * the hold count, and activate it.
2118			 */
2119			if (ptepa) {
2120				if (ptepa & PG_PS)
2121					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2122				mpte = PHYS_TO_VM_PAGE(ptepa);
2123				mpte->wire_count++;
2124			} else {
2125				mpte = _pmap_allocpte(pmap, ptepindex,
2126				    M_NOWAIT);
2127				if (mpte == NULL) {
2128					PMAP_UNLOCK(pmap);
2129					vm_page_busy(m);
2130					vm_page_unlock_queues();
2131					VM_OBJECT_UNLOCK(m->object);
2132					VM_WAIT;
2133					VM_OBJECT_LOCK(m->object);
2134					vm_page_lock_queues();
2135					vm_page_wakeup(m);
2136					PMAP_LOCK(pmap);
2137					goto retry;
2138				}
2139			}
2140		}
2141	} else {
2142		mpte = NULL;
2143	}
2144
2145	/*
2146	 * This call to vtopte makes the assumption that we are
2147	 * entering the page into the current pmap.  In order to support
2148	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2149	 * But that isn't as quick as vtopte.
2150	 */
2151	pte = vtopte(va);
2152	if (*pte) {
2153		if (mpte != NULL) {
2154			pmap_unwire_pte_hold(pmap, mpte);
2155			mpte = NULL;
2156		}
2157		goto out;
2158	}
2159
2160	/*
2161	 * Enter on the PV list if part of our managed memory. Note that we
2162	 * raise IPL while manipulating pv_table since pmap_enter can be
2163	 * called at interrupt time.
2164	 */
2165	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2166		pmap_insert_entry(pmap, va, m);
2167
2168	/*
2169	 * Increment counters
2170	 */
2171	pmap->pm_stats.resident_count++;
2172
2173	pa = VM_PAGE_TO_PHYS(m);
2174
2175	/*
2176	 * Now validate mapping with RO protection
2177	 */
2178	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2179		pte_store(pte, pa | PG_V | PG_U);
2180	else
2181		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2182out:
2183	PMAP_UNLOCK(pmap);
2184	return mpte;
2185}
2186
2187/*
2188 * Make a temporary mapping for a physical address.  This is only intended
2189 * to be used for panic dumps.
2190 */
2191void *
2192pmap_kenter_temporary(vm_paddr_t pa, int i)
2193{
2194	vm_offset_t va;
2195
2196	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2197	pmap_kenter(va, pa);
2198	invlpg(va);
2199	return ((void *)crashdumpmap);
2200}
2201
2202/*
2203 * This code maps large physical mmap regions into the
2204 * processor address space.  Note that some shortcuts
2205 * are taken, but the code works.
2206 */
2207void
2208pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2209		    vm_object_t object, vm_pindex_t pindex,
2210		    vm_size_t size)
2211{
2212	vm_page_t p;
2213
2214	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2215	KASSERT(object->type == OBJT_DEVICE,
2216	    ("pmap_object_init_pt: non-device object"));
2217	if (pseflag &&
2218	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2219		int i;
2220		vm_page_t m[1];
2221		unsigned int ptepindex;
2222		int npdes;
2223		pd_entry_t ptepa;
2224
2225		PMAP_LOCK(pmap);
2226		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2227			goto out;
2228		PMAP_UNLOCK(pmap);
2229retry:
2230		p = vm_page_lookup(object, pindex);
2231		if (p != NULL) {
2232			vm_page_lock_queues();
2233			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2234				goto retry;
2235		} else {
2236			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2237			if (p == NULL)
2238				return;
2239			m[0] = p;
2240
2241			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2242				vm_page_lock_queues();
2243				vm_page_free(p);
2244				vm_page_unlock_queues();
2245				return;
2246			}
2247
2248			p = vm_page_lookup(object, pindex);
2249			vm_page_lock_queues();
2250			vm_page_wakeup(p);
2251		}
2252		vm_page_unlock_queues();
2253
2254		ptepa = VM_PAGE_TO_PHYS(p);
2255		if (ptepa & (NBPDR - 1))
2256			return;
2257
2258		p->valid = VM_PAGE_BITS_ALL;
2259
2260		PMAP_LOCK(pmap);
2261		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2262		npdes = size >> PDRSHIFT;
2263		for(i = 0; i < npdes; i++) {
2264			pde_store(&pmap->pm_pdir[ptepindex],
2265			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2266			ptepa += NBPDR;
2267			ptepindex += 1;
2268		}
2269		pmap_invalidate_all(pmap);
2270out:
2271		PMAP_UNLOCK(pmap);
2272	}
2273}
2274
2275/*
2276 *	Routine:	pmap_change_wiring
2277 *	Function:	Change the wiring attribute for a map/virtual-address
2278 *			pair.
2279 *	In/out conditions:
2280 *			The mapping must already exist in the pmap.
2281 */
2282void
2283pmap_change_wiring(pmap, va, wired)
2284	register pmap_t pmap;
2285	vm_offset_t va;
2286	boolean_t wired;
2287{
2288	register pt_entry_t *pte;
2289
2290	PMAP_LOCK(pmap);
2291	pte = pmap_pte(pmap, va);
2292
2293	if (wired && !pmap_pte_w(pte))
2294		pmap->pm_stats.wired_count++;
2295	else if (!wired && pmap_pte_w(pte))
2296		pmap->pm_stats.wired_count--;
2297
2298	/*
2299	 * Wiring is not a hardware characteristic so there is no need to
2300	 * invalidate TLB.
2301	 */
2302	pmap_pte_set_w(pte, wired);
2303	pmap_pte_release(pte);
2304	PMAP_UNLOCK(pmap);
2305}
2306
2307
2308
2309/*
2310 *	Copy the range specified by src_addr/len
2311 *	from the source map to the range dst_addr/len
2312 *	in the destination map.
2313 *
2314 *	This routine is only advisory and need not do anything.
2315 */
2316
2317void
2318pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2319	  vm_offset_t src_addr)
2320{
2321	vm_offset_t addr;
2322	vm_offset_t end_addr = src_addr + len;
2323	vm_offset_t pdnxt;
2324	vm_page_t m;
2325
2326	if (dst_addr != src_addr)
2327		return;
2328
2329	if (!pmap_is_current(src_pmap))
2330		return;
2331
2332	vm_page_lock_queues();
2333	if (dst_pmap < src_pmap) {
2334		PMAP_LOCK(dst_pmap);
2335		PMAP_LOCK(src_pmap);
2336	} else {
2337		PMAP_LOCK(src_pmap);
2338		PMAP_LOCK(dst_pmap);
2339	}
2340	sched_pin();
2341	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2342		pt_entry_t *src_pte, *dst_pte;
2343		vm_page_t dstmpte, srcmpte;
2344		pd_entry_t srcptepaddr;
2345		unsigned ptepindex;
2346
2347		if (addr >= UPT_MIN_ADDRESS)
2348			panic("pmap_copy: invalid to pmap_copy page tables");
2349
2350		/*
2351		 * Don't let optional prefaulting of pages make us go
2352		 * way below the low water mark of free pages or way
2353		 * above high water mark of used pv entries.
2354		 */
2355		if (cnt.v_free_count < cnt.v_free_reserved ||
2356		    pv_entry_count > pv_entry_high_water)
2357			break;
2358
2359		pdnxt = (addr + NBPDR) & ~PDRMASK;
2360		ptepindex = addr >> PDRSHIFT;
2361
2362		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2363		if (srcptepaddr == 0)
2364			continue;
2365
2366		if (srcptepaddr & PG_PS) {
2367			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2368				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2369				dst_pmap->pm_stats.resident_count +=
2370				    NBPDR / PAGE_SIZE;
2371			}
2372			continue;
2373		}
2374
2375		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2376		if (srcmpte->wire_count == 0)
2377			panic("pmap_copy: source page table page is unused");
2378
2379		if (pdnxt > end_addr)
2380			pdnxt = end_addr;
2381
2382		src_pte = vtopte(addr);
2383		while (addr < pdnxt) {
2384			pt_entry_t ptetemp;
2385			ptetemp = *src_pte;
2386			/*
2387			 * we only virtual copy managed pages
2388			 */
2389			if ((ptetemp & PG_MANAGED) != 0) {
2390				/*
2391				 * We have to check after allocpte for the
2392				 * pte still being around...  allocpte can
2393				 * block.
2394				 */
2395				dstmpte = pmap_allocpte(dst_pmap, addr,
2396				    M_NOWAIT);
2397				if (dstmpte == NULL)
2398					break;
2399				dst_pte = pmap_pte_quick(dst_pmap, addr);
2400				if (*dst_pte == 0) {
2401					/*
2402					 * Clear the modified and
2403					 * accessed (referenced) bits
2404					 * during the copy.
2405					 */
2406					m = PHYS_TO_VM_PAGE(ptetemp);
2407					*dst_pte = ptetemp & ~(PG_M | PG_A);
2408					dst_pmap->pm_stats.resident_count++;
2409					pmap_insert_entry(dst_pmap, addr, m);
2410	 			} else
2411					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2412				if (dstmpte->wire_count >= srcmpte->wire_count)
2413					break;
2414			}
2415			addr += PAGE_SIZE;
2416			src_pte++;
2417		}
2418	}
2419	sched_unpin();
2420	vm_page_unlock_queues();
2421	PMAP_UNLOCK(src_pmap);
2422	PMAP_UNLOCK(dst_pmap);
2423}
2424
2425static __inline void
2426pagezero(void *page)
2427{
2428#if defined(I686_CPU)
2429	if (cpu_class == CPUCLASS_686) {
2430#if defined(CPU_ENABLE_SSE)
2431		if (cpu_feature & CPUID_SSE2)
2432			sse2_pagezero(page);
2433		else
2434#endif
2435			i686_pagezero(page);
2436	} else
2437#endif
2438		bzero(page, PAGE_SIZE);
2439}
2440
2441/*
2442 *	pmap_zero_page zeros the specified hardware page by mapping
2443 *	the page into KVM and using bzero to clear its contents.
2444 */
2445void
2446pmap_zero_page(vm_page_t m)
2447{
2448	struct sysmaps *sysmaps;
2449
2450	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2451	mtx_lock(&sysmaps->lock);
2452	if (*sysmaps->CMAP2)
2453		panic("pmap_zero_page: CMAP2 busy");
2454	sched_pin();
2455	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2456	invlcaddr(sysmaps->CADDR2);
2457	pagezero(sysmaps->CADDR2);
2458	*sysmaps->CMAP2 = 0;
2459	sched_unpin();
2460	mtx_unlock(&sysmaps->lock);
2461}
2462
2463/*
2464 *	pmap_zero_page_area zeros the specified hardware page by mapping
2465 *	the page into KVM and using bzero to clear its contents.
2466 *
2467 *	off and size may not cover an area beyond a single hardware page.
2468 */
2469void
2470pmap_zero_page_area(vm_page_t m, int off, int size)
2471{
2472	struct sysmaps *sysmaps;
2473
2474	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2475	mtx_lock(&sysmaps->lock);
2476	if (*sysmaps->CMAP2)
2477		panic("pmap_zero_page: CMAP2 busy");
2478	sched_pin();
2479	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2480	invlcaddr(sysmaps->CADDR2);
2481	if (off == 0 && size == PAGE_SIZE)
2482		pagezero(sysmaps->CADDR2);
2483	else
2484		bzero((char *)sysmaps->CADDR2 + off, size);
2485	*sysmaps->CMAP2 = 0;
2486	sched_unpin();
2487	mtx_unlock(&sysmaps->lock);
2488}
2489
2490/*
2491 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2492 *	the page into KVM and using bzero to clear its contents.  This
2493 *	is intended to be called from the vm_pagezero process only and
2494 *	outside of Giant.
2495 */
2496void
2497pmap_zero_page_idle(vm_page_t m)
2498{
2499
2500	if (*CMAP3)
2501		panic("pmap_zero_page: CMAP3 busy");
2502	sched_pin();
2503	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2504	invlcaddr(CADDR3);
2505	pagezero(CADDR3);
2506	*CMAP3 = 0;
2507	sched_unpin();
2508}
2509
2510/*
2511 *	pmap_copy_page copies the specified (machine independent)
2512 *	page by mapping the page into virtual memory and using
2513 *	bcopy to copy the page, one machine dependent page at a
2514 *	time.
2515 */
2516void
2517pmap_copy_page(vm_page_t src, vm_page_t dst)
2518{
2519	struct sysmaps *sysmaps;
2520
2521	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2522	mtx_lock(&sysmaps->lock);
2523	if (*sysmaps->CMAP1)
2524		panic("pmap_copy_page: CMAP1 busy");
2525	if (*sysmaps->CMAP2)
2526		panic("pmap_copy_page: CMAP2 busy");
2527	sched_pin();
2528	invlpg((u_int)sysmaps->CADDR1);
2529	invlpg((u_int)sysmaps->CADDR2);
2530	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2531	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2532	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2533	*sysmaps->CMAP1 = 0;
2534	*sysmaps->CMAP2 = 0;
2535	sched_unpin();
2536	mtx_unlock(&sysmaps->lock);
2537}
2538
2539/*
2540 * Returns true if the pmap's pv is one of the first
2541 * 16 pvs linked to from this page.  This count may
2542 * be changed upwards or downwards in the future; it
2543 * is only necessary that true be returned for a small
2544 * subset of pmaps for proper page aging.
2545 */
2546boolean_t
2547pmap_page_exists_quick(pmap, m)
2548	pmap_t pmap;
2549	vm_page_t m;
2550{
2551	pv_entry_t pv;
2552	int loops = 0;
2553
2554	if (m->flags & PG_FICTITIOUS)
2555		return FALSE;
2556
2557	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2558	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2559		if (pv->pv_pmap == pmap) {
2560			return TRUE;
2561		}
2562		loops++;
2563		if (loops >= 16)
2564			break;
2565	}
2566	return (FALSE);
2567}
2568
2569#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2570/*
2571 * Remove all pages from specified address space
2572 * this aids process exit speeds.  Also, this code
2573 * is special cased for current process only, but
2574 * can have the more generic (and slightly slower)
2575 * mode enabled.  This is much faster than pmap_remove
2576 * in the case of running down an entire address space.
2577 */
2578void
2579pmap_remove_pages(pmap, sva, eva)
2580	pmap_t pmap;
2581	vm_offset_t sva, eva;
2582{
2583	pt_entry_t *pte, tpte;
2584	vm_page_t m;
2585	pv_entry_t pv, npv;
2586
2587#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2588	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2589		printf("warning: pmap_remove_pages called with non-current pmap\n");
2590		return;
2591	}
2592#endif
2593	vm_page_lock_queues();
2594	PMAP_LOCK(pmap);
2595	sched_pin();
2596	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2597
2598		if (pv->pv_va >= eva || pv->pv_va < sva) {
2599			npv = TAILQ_NEXT(pv, pv_plist);
2600			continue;
2601		}
2602
2603#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2604		pte = vtopte(pv->pv_va);
2605#else
2606		pte = pmap_pte_quick(pmap, pv->pv_va);
2607#endif
2608		tpte = *pte;
2609
2610		if (tpte == 0) {
2611			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2612							pte, pv->pv_va);
2613			panic("bad pte");
2614		}
2615
2616/*
2617 * We cannot remove wired pages from a process' mapping at this time
2618 */
2619		if (tpte & PG_W) {
2620			npv = TAILQ_NEXT(pv, pv_plist);
2621			continue;
2622		}
2623
2624		m = PHYS_TO_VM_PAGE(tpte);
2625		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2626		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2627		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2628
2629		KASSERT(m < &vm_page_array[vm_page_array_size],
2630			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2631
2632		pmap->pm_stats.resident_count--;
2633
2634		pte_clear(pte);
2635
2636		/*
2637		 * Update the vm_page_t clean and reference bits.
2638		 */
2639		if (tpte & PG_M) {
2640			vm_page_dirty(m);
2641		}
2642
2643		npv = TAILQ_NEXT(pv, pv_plist);
2644		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2645
2646		m->md.pv_list_count--;
2647		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2648		if (TAILQ_EMPTY(&m->md.pv_list))
2649			vm_page_flag_clear(m, PG_WRITEABLE);
2650
2651		pmap_unuse_pt(pmap, pv->pv_va);
2652		free_pv_entry(pv);
2653	}
2654	sched_unpin();
2655	pmap_invalidate_all(pmap);
2656	PMAP_UNLOCK(pmap);
2657	vm_page_unlock_queues();
2658}
2659
2660/*
2661 *	pmap_is_modified:
2662 *
2663 *	Return whether or not the specified physical page was modified
2664 *	in any physical maps.
2665 */
2666boolean_t
2667pmap_is_modified(vm_page_t m)
2668{
2669	pv_entry_t pv;
2670	pt_entry_t *pte;
2671	boolean_t rv;
2672
2673	rv = FALSE;
2674	if (m->flags & PG_FICTITIOUS)
2675		return (rv);
2676
2677	sched_pin();
2678	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2679	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2680		/*
2681		 * if the bit being tested is the modified bit, then
2682		 * mark clean_map and ptes as never
2683		 * modified.
2684		 */
2685		if (!pmap_track_modified(pv->pv_va))
2686			continue;
2687		PMAP_LOCK(pv->pv_pmap);
2688		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2689		rv = (*pte & PG_M) != 0;
2690		PMAP_UNLOCK(pv->pv_pmap);
2691		if (rv)
2692			break;
2693	}
2694	sched_unpin();
2695	return (rv);
2696}
2697
2698/*
2699 *	pmap_is_prefaultable:
2700 *
2701 *	Return whether or not the specified virtual address is elgible
2702 *	for prefault.
2703 */
2704boolean_t
2705pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2706{
2707	pt_entry_t *pte;
2708	boolean_t rv;
2709
2710	rv = FALSE;
2711	PMAP_LOCK(pmap);
2712	if (*pmap_pde(pmap, addr)) {
2713		pte = vtopte(addr);
2714		rv = *pte == 0;
2715	}
2716	PMAP_UNLOCK(pmap);
2717	return (rv);
2718}
2719
2720/*
2721 *	Clear the given bit in each of the given page's ptes.  The bit is
2722 *	expressed as a 32-bit mask.  Consequently, if the pte is 64 bits in
2723 *	size, only a bit within the least significant 32 can be cleared.
2724 */
2725static __inline void
2726pmap_clear_ptes(vm_page_t m, int bit)
2727{
2728	register pv_entry_t pv;
2729	pt_entry_t pbits, *pte;
2730
2731	if ((m->flags & PG_FICTITIOUS) ||
2732	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2733		return;
2734
2735	sched_pin();
2736	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2737	/*
2738	 * Loop over all current mappings setting/clearing as appropos If
2739	 * setting RO do we need to clear the VAC?
2740	 */
2741	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2742		/*
2743		 * don't write protect pager mappings
2744		 */
2745		if (bit == PG_RW) {
2746			if (!pmap_track_modified(pv->pv_va))
2747				continue;
2748		}
2749
2750		PMAP_LOCK(pv->pv_pmap);
2751		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2752retry:
2753		pbits = *pte;
2754		if (pbits & bit) {
2755			if (bit == PG_RW) {
2756				/*
2757				 * Regardless of whether a pte is 32 or 64 bits
2758				 * in size, PG_RW and PG_M are among the least
2759				 * significant 32 bits.
2760				 */
2761				if (!atomic_cmpset_int((u_int *)pte, pbits,
2762				    pbits & ~(PG_RW | PG_M)))
2763					goto retry;
2764				if (pbits & PG_M) {
2765					vm_page_dirty(m);
2766				}
2767			} else {
2768				atomic_clear_int((u_int *)pte, bit);
2769			}
2770			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2771		}
2772		PMAP_UNLOCK(pv->pv_pmap);
2773	}
2774	if (bit == PG_RW)
2775		vm_page_flag_clear(m, PG_WRITEABLE);
2776	sched_unpin();
2777}
2778
2779/*
2780 *      pmap_page_protect:
2781 *
2782 *      Lower the permission for all mappings to a given page.
2783 */
2784void
2785pmap_page_protect(vm_page_t m, vm_prot_t prot)
2786{
2787	if ((prot & VM_PROT_WRITE) == 0) {
2788		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2789			pmap_clear_ptes(m, PG_RW);
2790		} else {
2791			pmap_remove_all(m);
2792		}
2793	}
2794}
2795
2796/*
2797 *	pmap_ts_referenced:
2798 *
2799 *	Return a count of reference bits for a page, clearing those bits.
2800 *	It is not necessary for every reference bit to be cleared, but it
2801 *	is necessary that 0 only be returned when there are truly no
2802 *	reference bits set.
2803 *
2804 *	XXX: The exact number of bits to check and clear is a matter that
2805 *	should be tested and standardized at some point in the future for
2806 *	optimal aging of shared pages.
2807 */
2808int
2809pmap_ts_referenced(vm_page_t m)
2810{
2811	register pv_entry_t pv, pvf, pvn;
2812	pt_entry_t *pte;
2813	pt_entry_t v;
2814	int rtval = 0;
2815
2816	if (m->flags & PG_FICTITIOUS)
2817		return (rtval);
2818
2819	sched_pin();
2820	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2821	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2822
2823		pvf = pv;
2824
2825		do {
2826			pvn = TAILQ_NEXT(pv, pv_list);
2827
2828			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2829
2830			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2831
2832			if (!pmap_track_modified(pv->pv_va))
2833				continue;
2834
2835			PMAP_LOCK(pv->pv_pmap);
2836			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2837
2838			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2839				atomic_clear_int((u_int *)pte, PG_A);
2840				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2841
2842				rtval++;
2843				if (rtval > 4) {
2844					PMAP_UNLOCK(pv->pv_pmap);
2845					break;
2846				}
2847			}
2848			PMAP_UNLOCK(pv->pv_pmap);
2849		} while ((pv = pvn) != NULL && pv != pvf);
2850	}
2851	sched_unpin();
2852
2853	return (rtval);
2854}
2855
2856/*
2857 *	Clear the modify bits on the specified physical page.
2858 */
2859void
2860pmap_clear_modify(vm_page_t m)
2861{
2862	pmap_clear_ptes(m, PG_M);
2863}
2864
2865/*
2866 *	pmap_clear_reference:
2867 *
2868 *	Clear the reference bit on the specified physical page.
2869 */
2870void
2871pmap_clear_reference(vm_page_t m)
2872{
2873	pmap_clear_ptes(m, PG_A);
2874}
2875
2876/*
2877 * Miscellaneous support routines follow
2878 */
2879
2880/*
2881 * Map a set of physical memory pages into the kernel virtual
2882 * address space. Return a pointer to where it is mapped. This
2883 * routine is intended to be used for mapping device memory,
2884 * NOT real memory.
2885 */
2886void *
2887pmap_mapdev(pa, size)
2888	vm_paddr_t pa;
2889	vm_size_t size;
2890{
2891	vm_offset_t va, tmpva, offset;
2892
2893	offset = pa & PAGE_MASK;
2894	size = roundup(offset + size, PAGE_SIZE);
2895	pa = pa & PG_FRAME;
2896
2897	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2898		va = KERNBASE + pa;
2899	else
2900		va = kmem_alloc_nofault(kernel_map, size);
2901	if (!va)
2902		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2903
2904	for (tmpva = va; size > 0; ) {
2905		pmap_kenter(tmpva, pa);
2906		size -= PAGE_SIZE;
2907		tmpva += PAGE_SIZE;
2908		pa += PAGE_SIZE;
2909	}
2910	pmap_invalidate_range(kernel_pmap, va, tmpva);
2911	return ((void *)(va + offset));
2912}
2913
2914void
2915pmap_unmapdev(va, size)
2916	vm_offset_t va;
2917	vm_size_t size;
2918{
2919	vm_offset_t base, offset, tmpva;
2920
2921	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2922		return;
2923	base = va & PG_FRAME;
2924	offset = va & PAGE_MASK;
2925	size = roundup(offset + size, PAGE_SIZE);
2926	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2927		pmap_kremove(tmpva);
2928	pmap_invalidate_range(kernel_pmap, va, tmpva);
2929	kmem_free(kernel_map, base, size);
2930}
2931
2932/*
2933 * perform the pmap work for mincore
2934 */
2935int
2936pmap_mincore(pmap, addr)
2937	pmap_t pmap;
2938	vm_offset_t addr;
2939{
2940	pt_entry_t *ptep, pte;
2941	vm_page_t m;
2942	int val = 0;
2943
2944	PMAP_LOCK(pmap);
2945	ptep = pmap_pte(pmap, addr);
2946	pte = (ptep != NULL) ? *ptep : 0;
2947	pmap_pte_release(ptep);
2948	PMAP_UNLOCK(pmap);
2949
2950	if (pte != 0) {
2951		vm_paddr_t pa;
2952
2953		val = MINCORE_INCORE;
2954		if ((pte & PG_MANAGED) == 0)
2955			return val;
2956
2957		pa = pte & PG_FRAME;
2958
2959		m = PHYS_TO_VM_PAGE(pa);
2960
2961		/*
2962		 * Modified by us
2963		 */
2964		if (pte & PG_M)
2965			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2966		else {
2967			/*
2968			 * Modified by someone else
2969			 */
2970			vm_page_lock_queues();
2971			if (m->dirty || pmap_is_modified(m))
2972				val |= MINCORE_MODIFIED_OTHER;
2973			vm_page_unlock_queues();
2974		}
2975		/*
2976		 * Referenced by us
2977		 */
2978		if (pte & PG_A)
2979			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2980		else {
2981			/*
2982			 * Referenced by someone else
2983			 */
2984			vm_page_lock_queues();
2985			if ((m->flags & PG_REFERENCED) ||
2986			    pmap_ts_referenced(m)) {
2987				val |= MINCORE_REFERENCED_OTHER;
2988				vm_page_flag_set(m, PG_REFERENCED);
2989			}
2990			vm_page_unlock_queues();
2991		}
2992	}
2993	return val;
2994}
2995
2996void
2997pmap_activate(struct thread *td)
2998{
2999	struct proc *p = td->td_proc;
3000	pmap_t	pmap, oldpmap;
3001	u_int32_t  cr3;
3002
3003	critical_enter();
3004	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3005	oldpmap = PCPU_GET(curpmap);
3006#if defined(SMP)
3007	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3008	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3009#else
3010	oldpmap->pm_active &= ~1;
3011	pmap->pm_active |= 1;
3012#endif
3013#ifdef PAE
3014	cr3 = vtophys(pmap->pm_pdpt);
3015#else
3016	cr3 = vtophys(pmap->pm_pdir);
3017#endif
3018	/* XXXKSE this is wrong.
3019	 * pmap_activate is for the current thread on the current cpu
3020	 */
3021	if (p->p_flag & P_SA) {
3022		/* Make sure all other cr3 entries are updated. */
3023		/* what if they are running?  XXXKSE (maybe abort them) */
3024		FOREACH_THREAD_IN_PROC(p, td) {
3025			td->td_pcb->pcb_cr3 = cr3;
3026		}
3027	} else {
3028		td->td_pcb->pcb_cr3 = cr3;
3029	}
3030	load_cr3(cr3);
3031	PCPU_SET(curpmap, pmap);
3032	critical_exit();
3033}
3034
3035vm_offset_t
3036pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3037{
3038
3039	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3040		return addr;
3041	}
3042
3043	addr = (addr + PDRMASK) & ~PDRMASK;
3044	return addr;
3045}
3046
3047
3048#if defined(PMAP_DEBUG)
3049pmap_pid_dump(int pid)
3050{
3051	pmap_t pmap;
3052	struct proc *p;
3053	int npte = 0;
3054	int index;
3055
3056	sx_slock(&allproc_lock);
3057	LIST_FOREACH(p, &allproc, p_list) {
3058		if (p->p_pid != pid)
3059			continue;
3060
3061		if (p->p_vmspace) {
3062			int i,j;
3063			index = 0;
3064			pmap = vmspace_pmap(p->p_vmspace);
3065			for (i = 0; i < NPDEPTD; i++) {
3066				pd_entry_t *pde;
3067				pt_entry_t *pte;
3068				vm_offset_t base = i << PDRSHIFT;
3069
3070				pde = &pmap->pm_pdir[i];
3071				if (pde && pmap_pde_v(pde)) {
3072					for (j = 0; j < NPTEPG; j++) {
3073						vm_offset_t va = base + (j << PAGE_SHIFT);
3074						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3075							if (index) {
3076								index = 0;
3077								printf("\n");
3078							}
3079							sx_sunlock(&allproc_lock);
3080							return npte;
3081						}
3082						pte = pmap_pte(pmap, va);
3083						if (pte && pmap_pte_v(pte)) {
3084							pt_entry_t pa;
3085							vm_page_t m;
3086							pa = *pte;
3087							m = PHYS_TO_VM_PAGE(pa);
3088							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3089								va, pa, m->hold_count, m->wire_count, m->flags);
3090							npte++;
3091							index++;
3092							if (index >= 2) {
3093								index = 0;
3094								printf("\n");
3095							} else {
3096								printf(" ");
3097							}
3098						}
3099					}
3100				}
3101			}
3102		}
3103	}
3104	sx_sunlock(&allproc_lock);
3105	return npte;
3106}
3107#endif
3108
3109#if defined(DEBUG)
3110
3111static void	pads(pmap_t pm);
3112void		pmap_pvdump(vm_offset_t pa);
3113
3114/* print address space of pmap*/
3115static void
3116pads(pm)
3117	pmap_t pm;
3118{
3119	int i, j;
3120	vm_paddr_t va;
3121	pt_entry_t *ptep;
3122
3123	if (pm == kernel_pmap)
3124		return;
3125	for (i = 0; i < NPDEPTD; i++)
3126		if (pm->pm_pdir[i])
3127			for (j = 0; j < NPTEPG; j++) {
3128				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3129				if (pm == kernel_pmap && va < KERNBASE)
3130					continue;
3131				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3132					continue;
3133				ptep = pmap_pte(pm, va);
3134				if (pmap_pte_v(ptep))
3135					printf("%x:%x ", va, *ptep);
3136			};
3137
3138}
3139
3140void
3141pmap_pvdump(pa)
3142	vm_paddr_t pa;
3143{
3144	pv_entry_t pv;
3145	vm_page_t m;
3146
3147	printf("pa %x", pa);
3148	m = PHYS_TO_VM_PAGE(pa);
3149	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3150		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3151		pads(pv->pv_pmap);
3152	}
3153	printf(" ");
3154}
3155#endif
3156